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Single-cell genomics (SCG) methods provide a unique opportunity to ana-
lyse whole genome information at the resolution of an individual cell.
While SCG has been extensively used to investigate bacterial and archaeal
genomes, the technique has been rarely used to access the genetic makeup
of uncultivated microbial eukaryotes. In this regard, the use of SCG can pro-
vide a wealth of information; not only do the methods allow exploration of
the genome, they can also help elucidate the relationship between the cell
and intracellular entities extant in nearly all eukaryotes. SCG enables the
study of total eukaryotic cellular DNA, which in turn allows us to better
understand the evolutionary history and diversity of life, and the physiological
interactions that define complex organisms.

This article is part of a discussion meeting issue ‘Single cell ecology’.
1. Introduction
Associations of eukaryotes with archaea and bacteria are central to eukaryote
evolution and were the driving force behind the emergence of the eukaryotic
cell. An alphaproteobacterial symbiont that once settled within a pre-eukaryotic
cell gave rise to mitochondria [1]. Likewise, other bioenergetic organelles, pri-
mary plastids of Archaeplastida, arose upon a symbiotic event where an
archaeplastid ancestor engulfed a cyanobacterium [2]. During later stages of
evolution, some major eukaryotic lineages independently acquired secondary
or even tertiary plastids, for instance by taking up a cell already containing
the primary or secondary plastid, respectively [3]. Over time, the morphologies
and genomes of precursors of secondary and tertiary plastids have been
reduced to different degrees. Unlike most of the phototrophic eukaryotic
lineages, chromistan and chlorarachniophyte algae contain a nucleomorph, a
residual nucleus originating from engulfed eukaryotes that contain the primary
plastid within their secondary plastids [4,5]. Dinotoms (Kryptoperidiniaceae, a
small group of Dinoflagellata) also retained the engulfed nucleus and preserved
the symbiont’s mitochondria within dinotom plastids [6].

While the evolutionary impact of semiautonomous organelles becomes
easily apparent, they are not the only DNA containing entities that contribute
to the genomic complexity of eukaryotic cells. Eukaryotes frequently host
archaeal, bacterial and even eukaryotic endocytobionts (endosymbionts living
intracellularly). Note that we use symbiosis here in its broadest sense—that
is, any intimate and constant interaction along the continuum between mutual-
ism and pathogenicity and ranging from harmful to beneficial and from
facultative to obligate [7]. Whereas some of these associations resemble the
fate of the semiautonomous organelles, i.e. being present in whole host popu-
lation and transmitted only vertically (e.g., Perkinsela in Neoparamoeba, [8]),
other endocytobionts (and intracellular entities) are dependent on horizontal
transmission and thus their presence and prevalence in host populations is
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difficult to predict and fluctuates, respectively. In phagocy-
tosis capable eukaryotes, another intracellular, nucleic acid
containing component, albeit transient, is represented by
ingested prey items. Lastly, viruses as common obligate
intracellular parasites are extremely diverse and ubiquitous;
despite their generally rather small particle and genome
sizes they play a major role in controlling their host popu-
lations, thereby impacting biogeochemical cycles across
ecosystems [9]. Giant viruses, members of nucleocytoplasmic
large DNA viruses, are comparable in size and complexity to
other intracellular entities. They infect a wide range of eukar-
yotes, especially those capable of phagocytosis [10] and can
host other viruses [11], and they are predicted to having
evolved from smaller viruses through successive horizontal
gene transfer of genetic material from their hosts [12].

All the above-mentioned intracellular entities contain
nucleic acids, and thus, the pool of total cellular DNA in a
single eukaryotic cell reflects this sum. Aside from general
biological importance, this has practical implications when
using single-cell genomics (SCG). Here we do not reflect on
these cellular conglomerates as something that weakens the
SCG data but as an exciting opportunity to study under-
explored multipartite associations within eukaryotic cells.
Here, we focus on unicellular eukaryotes and discuss compo-
sitions of various possible genomic pools within their single
cells. We illustrate how the cultivation skew is limiting our
current understanding of eukaryote intracellular associations
and how emerging SCG provides a promising tool to enhance
our knowledge of the genetic make-up of these associations.
2. Genome-wide approaches to studying
intracellular associations in unicellular
eukaryotes

Over the last decades, the use of easily-maintainable host
laboratory cultures has been a standard procedure for studying
eukaryote intracellular associations [13,14] and our understand-
ing of the nature of many intracellular associations stems
primarily from whole genome information. The need for
genomic DNA of sufficient quantity and quality for studying
interactions has narrowed the phylogenetic scope of research
favouring model hosts grown axenically (i.e. isolated as
single species, under contaminant free conditions) [15,16].
These laboratory model systems lack the higher complexity
observed in naturally occurring intracellular associations; for
example, associations between intracellular entities and a
single host cell can vary across natural host populations [17].
Moreover, the genetic diversity of the intracellularly associated
entities is expected to greatly exceed what can be deduced from
laboratory culture-based models (e.g. [18,19]). Consequently,
the effects of eukaryotic intracellular associations on ecosystem
processes (through modulating microbial population structure
[9]) or on their hosts (by providing new metabolic capabilities
[20]) remain poorly studied beyond laboratory conditions.
Looking at the phylogenetic diversity of eukaryotes that host
three important obligate parasitic groups (Chlamydiae, Rickett-
siales, giant viruses) studied at the genomic level (figure 1b), it
is clear that Obazoa (which includes animals), Amoebozoa
(namely Acanthamoeba strains), and Archaeplastida are over-
represented, suggesting that most of the diversity is still
hidden and remains to be discovered. The biases and
limitations of laboratory model systems can be partly overcome
by employing cultivation-independent methods (e.g. metage-
nomics) on environmental samples; however, these methods
lack single-cell resolution and therefore obscure host–symbiont
relationships. Thus, only by focusing on one eukaryotic cell at a
time can we obtain a detailed understanding of these fascinat-
ing multipartite associations and SCG has already begun to fill
this gap (lineages labelled on figure 1a).

SCG has become a well-established approach for studying
the coding potential and evolutionary histories of bacteria and
archaea [22,23], specifically for microbial dark matter clades
[24,25]. While bacteria and archaea have been extensively
investigated by SCG, studies of associations within unicellular
eukaryotes have lagged behind [26]. Unicellular eukaryotes are
ubiquitous, encompass the most diverse and abundant part of
the eukaryotic domain, and play a critical role across various
ecosystems as primary producers, consumers, decomposers,
and trophic links in food webs (e.g. [27]). Further, while
some groups have initially used SCG (and SCG-like methods)
to investigate this set of organisms, nearly all have followed
protocols developed for the study of archaeal and bacterial
associations (e.g. [28–32]; for the review of methods, see
[23]). Although the standard SCG approach (i.e. physical
separation of single cells and whole genome amplification
and sequencing) works well with eukaryotes there are some
unique aspects associated with sorting eukaryotic cells.
Several separation techniques have been developed for obtain-
ing individual cells (reviewed by Blainey [33]). Briefly, the
separation techniques can be divided into two approaches
based on whether the individual cells are selected randomly
(random encapsulation methods) or identified first and then
sorted (micromanipulation methods). The choice of the separ-
ation technique is of decisive influence on cell throughput
and the micromanipulation approaches (e.g. micropipetting,
optical tweezers) are among those considerably limited by
their speed. Currently, the most common method, fluor-
escence-activated cell sorting (FACS), represents the random
encapsulation approach and excels in speed. Another major
advantage of FACS is the possibility of characterizing cells
based on different fluorescence signals, e.g. autofluorescence
from chlorophyll and specific staining for acidic organelles
[28], providing some level of selectivity. The sizes of protists
oftenmake it possible to observe individual cells and their mor-
phology under light microscopy, which enables: (i) assigning
them to a group of target organisms [31]; (ii) examination of
their current condition in fresh samples; or (iii) identifying the
presence of endosymbionts and even their physical separation
from the host cell [34].On the technical side, sample preparation
may have to be adjusted for some eukaryotic taxa compared to
bacterial/archaeal samples. Generally, eukaryotic cells are
much more fragile and sensitive to mechanical treatment
(such as filtration or sonication) or cryopreservation, though
this varies greatly across eukaryotic groups, e.g. Not et al. [35].
Thus, sample preparation needs to be tailored to meet the
specific needs of a particular eukaryotic target group.

3. Single-cell genomics-enabled biological
insights into eukaryote intracellular
associations

The SCG approach has sufficient sensitivity to recover geno-
mic data of other DNA containing entities present within a
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Figure 1. (a) Schematic relationships among the major eukaryotic groups (based on Adl et al. [21]). Lineages with intracellular entities identified by the SCG
approach are in bold and highlighted in yellow. (b) Numbers of sequenced genomes of three groups of obligately intracellular parasites of eukaryotes (Chlamydiae,
Rickettsiales, and giant viruses (defined here as members of double stranded DNA viruses with a genome greater than 0.2 Mb)) are displayed if their host is known
(host clades are indicated by colour). Genomic data (genome size, host) were retrieved from JGI genome (http://genome.jgi.doe.gov) and NCBI genome (http://www.
ncbi.nlm.nih.gov/genome) portals on 21 January 2019 or, when missing, from their respective publications.

Table 1. Unicellular eukaryote single-cell genomic studies revealing intracellular associations.

eukaryote cell sequenced
(taxonomic affiliation)

no. of cells
sequenced intracellular entities revealeda reference

Picozoa (Diaphoretickes) 3 Bacteroidetes, Proteobacteria, Firmicutes, nanovirus, large double stranded

DNA viruses, Proteobacteria, phages

[26]

Emiliania huxleyi (Haptista) 84 E. huxleyi-virus (EhV) [29]

MAST-4 lineage (Stramenopiles) 1 Pelagibacter ubique [28]

Chrysophyta (Stramenopiles) 3 Actinobacteria; Bacteroidetes; bacteria related to the candidate divisions

TG2 and ZV3

[28]

Basidiomycota (Opisthokonta) 1 Bacteroidetes [28]

Alveolata 1 Bacteroidetes [28]

Cercozoa (Rhizaria) 1 bacteria distantly related to Rickettsiales [28]

Paulinella cf. ovalis (Cercozoa) 2 Cyanobacteria, cyanophages, Proteobacteria [36]

Paramecium aurelia (Ciliophora) 2 Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Bacteroidetes [35]
aIt cannot be ruled out that in some instances the listed intracellular entities may represent accidentally co-sorted bacteria, archaea or viruses.
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single cell. As referenced earlier, Yoon and colleagues [26]
focused on an (at that time) obscure group of likely photoau-
totrophic marine plankton—Picobiliphyta (currently called
Picozoa). Their data did not provide any evidence of plastid
sequences, as was expected, but instead revealed bacterial
and viral DNA probably originating from ingested prey
items. Similarly, phagotrophic interactions were assumed in
subsequent SCG-based studies (table 1). Plotnikov et al. [37]
found rich bacterial assemblages within single cells of the cili-
ate Paramecium aurelia, however, it was not possible to
unambiguously identify their role inside their hosts. Aside
from the ingested prey, infections caused by nanovirus [26],
and putative symbionts related to Rickettsiales and the candi-
date divisions ZB3 and TG2 [28] were also revealed. These

http://genome.jgi.doe.gov
http://genome.jgi.doe.gov
http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20190082

4
and other studies provide an interesting perspective on the
power of SCG and its limitations. SCG and ancillary methods
have the potential to provide insight, at the single cell level,
into predator–prey relationships in phagotrophic eukaryotes,
uncover prey associated phages and intracellular symbionts,
and identify viral infections. On the other hand, technical
issues associated with separation of single cells and genome
amplification cannot be ignored. For example, associations
may be wrongly inferred if DNA from non-associated entities
is introduced into a sample by co-sorting under relaxed sorting
conditions or if bacteria/viruses are firmly attached to cells
[38]. Another critical step—whole genome amplification—
may introduce various artefacts including amplification
bias and genome loss [39]. The most challenging aspect,
however, is the specific interpretation of the nature of intracellu-
lar associations revealed by SCG. In data obtained from
phagocytosis-capable eukaryotes (table 1), it has been difficult
todiscernwhether bacterial contigs inSCGassemblies belonged
to prey items or endosymbionts. This situation may not be sim-
pler for photosynthetic microbial eukaryotes, as many of them
are also capable of phagocytosis [40]. Distinguishing prey
from other intracellular entities in silico is of considerable
importance or else long-term interactions may remain obscure
because of this uncertainty. Even if viruses (only double
stranded DNA and single stranded DNAviruses are detectable
by SCG) or strictly intracellularly living organisms (e.g. mem-
bers of Chlamydiae or Rickettsiales) are detected, their origin
as prey items cannot be renounced. Clustered regularly inter-
spaced short palindromic repeat (CRISPR) systems can link
viruses to their host but this approach has two limitations: it is
only suited for bacterial/archaeal genomes, and complete or
nearly complete genome assemblies from host and virus are
necessary [41,42]. Thus, while using CRISPRs can link viruses
with bacteria and archaea, either food or symbiotic, it relies on
the quality of the assemblies. Alternatively, putative viral-host
connections can be identified by aligning viral transfer RNAs
with other recovered genomes [43].

A complementary approach to differentiate free-living
and endosymbiotic organisms is to look for typical genomic
signatures of an intracellular lifestyle. Generally speaking,
bacteria obligately associated with and living intracellularly
in other organisms tend to have genomes that are (i) small,
(ii) AT-rich, and (iii) rapidly evolving [44,45]. These genome
changes occur during the transitions from free-living to facul-
tative to obligately intracellular [46]. In the early stage of the
adaptation towards endosymbiosis, i.e. during the shift from
a free-living to an intracellular lifestyle, genomes undergo
extensive pseudogenization and gene loss [47,48]. Further
adaptation towards obligate endosymbiosis, hence towards
a stable and nutrient-rich environment, leads to genome
reduction through gene loss. Endosymbionts tend to have
limited biosynthetic capabilities (though a unique combi-
nation of functional pathways is often retained [46]) and
pathways of energy metabolism and biosynthesis of nucleo-
tides, amino acids or vitamins are the most frequently
disrupted [44]. Genome reduction affects many other genes,
including those involved in cell motility [49], cell division
[50], or DNA repair mechanisms [51,52]. In addition, their
genes frequently encode a wide range of proteins involved
in host interactions or the transport of metabolites [8,53].
Pathogens have acquired genes encoding proteins with
eukaryotic motifs that are probably involved in modulation
of host functions, e.g. suppressing host defences and allowing
survival and replication within eukaryotic host cells [54].
Taken together, a wealth of genomic signatures is associated
with the intracellular lifestyle; these signatures provide an
opportunity to build and gradually optimize models for pre-
dicting endosymbionts in SCG data. Considering that some
genomic signatures indicate well-defined effects of symbiont
presence on host fitness (e.g. pathogens, metabolic mutual-
ists), or stages of host adaptation, the models may ideally
provide even finer classification.
4. Validating the nature of intracellular
associations revealed by single-cell genomics

While the aforementioned possible strategies for the distinction
between prey and other intracellular entities heavily rely on
the genomic sequence data, other approaches can be used to
further validate the nature of intracellular associations revealed
by SCG. Recurrent observation of the same ‘contaminating’
DNA may suggest the symbiotic lifestyle and rule out the
prey origin, especially in combination with starvation exper-
iments. However, it is nearly impossible to eliminate bacteria
in environmental samples without depletion of heterotrophic
unicellular eukaryotes. A plausible strategy could be the repla-
cement of a diverse bacterial community by a homogeneous
and well-defined population of a single bacterium. Lagkouvar-
dos et al. [55] succeeded using the Escherichia coli tolC
knockout strain that not only substituted diverse original
bacterial communities in several environmental isolates of
Acanthamoeba but also could be later controlled by a sublethal
concentration of ampicillin owing to its hypersensitivity.

Distinction between prey and endosymbionts can also be
achieved by localization of the organism(s) detected in the
single-cell data using fluorescence in situ hybridization via
specific oligonucleotide probes. The sample has to be chemi-
cally fixed [56] for later hybridization and microscopical
inspection. Endosymbionts may reside virtually in any poss-
ible compartment within the host cell whereas phagocytized
prey is generally limited only to phagosomes and last until
completely digested in phagolysosome (phagosome fused
with lysosomes). Thus, an intracellular localization beyond
vacuoles provides conclusive evidence for the symbiotic life-
style whereas the presence within vacuoles does not prove
the prey origin. Both endosymbionts and prey can be found
in phagosomes because phagocytosis is also a common way
of entering host cells for endosymbionts [57]. Even the pres-
ence within acidified vacuoles (late phagosomes) does not
necessarily confirm a prey origin as some pathogens are
known for their ability to persist within acidified vacuoles
(e.g. Coxiella burnetii [58]).

Lastly, single-cell RNA sequencing (scRNA-seq) provides
an opportunity to assess the nature of intracellular associ-
ations. Though still hampered by technical challenges when
applied to single celled eukaryotic microorganisms [59], pro-
gress has been made over the last years (e.g. [60–63]).
Because scRNA-seq is capable of showing different patterns
of gene expression in each cell at a specific time point, it
could be highly beneficial in the differentiation of symbionts
versus prey. Unlike the adapted endosymbionts able to manip-
ulate phagosome maturation, phagocytized free-living
organisms encounter a hostile environment with which they
cannot cope. The phagosome becomes more acidic during its
maturation and the engulfed microorganisms are gradually
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degraded by hydrolytic enzymes [64]. Thus, they cannot opti-
mally function which would be reflected in their gene
expression. Consequently, apart from the eukaryote host tran-
scriptome probably represented in high abundance in scRNA-
seq data, endosymbiont transcripts could be present with
upregulated genes involved in host interactions. One caveat
to this approach however is that current scRNA-seq protocols
applied to single celled eukaryotic microorganisms [60–63] do
not process all RNA present in the eukaryotic host cell.
Instead, only eukaryotic messenger RNAs (mRNAs) that pos-
sess polyadenylated (polyA) tails are hybridized to an
oligo(dT)-containing primer and transcribed into complemen-
tary DNA [65]. Thus, ribosomal RNAs (rRNAs) and transfer
RNAs along with bacterial or archaeal mRNAs are omitted
from sequencing. While scRNA-seq has been applied to bac-
teria [66], there is no rRNA depletion step [67], hampering
efficient transcript detection. An alternative approach to the
polyA selection universal for both host and symbiont cells
is needed.
 B
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5. Concluding remarks
Intracellular associations underlie the emergence and sub-
sequent flourishing and evolutionary trajectory of eukaryotic
cells. However, as pointed out by Woyke & Schulz [68], we
still do not know much about these intimate relationships,
and what we do know is heavily skewed towards established
laboratory systems, represented by a small number of model
hosts that do not reflect the true diversity of eukaryotes
(figure 1) or their intracellular associations. We predict that
SCG methods will lead to fundamental discoveries and
move us forward in understanding one of the most remarkable
phenomena on Earth.

In principle, there are two primary directions for exploring
diverse eukaryotic lineages and their associated intracellular
entities. First, microbial culture collections around the world
store strains of unicellular eukaryotes, some of which represent
neglected eukaryotic lineages [69]. Most likely, reasons for
their exclusion as established model taxa include difficulties
with maintaining these cultures. Their genome data could be
obtained by SCG, and priority strains with genomic signatures
of likely symbionts or viruses could be selected to optimize
culture conditions for further experimental work. The second
approach would encompass the targeted sorting of unicellular
eukaryotes from environmental samples with a focus on
eukaryotic lineages currently lacking in culture collections.

To accelerate progress in this field, we encourage the
research community to establish a genomic encyclopaedia
of eukaryote intracellular associations. A robust genomic
database connecting eukaryote host cells and their intracellu-
lar entities will enable (i) extension of the tree of life with new
microbes (archaeal, bacterial, and eukaryotic) and viruses,
(ii) investigation of the intracellular associations in ecological
context (determination of prevalence, distribution and abun-
dance of identified associations), and (iii) large-scale
comparative genome analyses (metabolic features, virulence
factors, new gene functions provided to hosts). By sequencing
a single eukaryotic cell at a time, we can bypass cultivation
requirements, overcome existing biases and gain insight
into naturally occurring associations within so far neglected
eukaryotic hosts.
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