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Abstract 

The three-dimensional reconstruction of macromolecules from two-dimensional 

single-particle electron images requires determination and correction of the contrast 

transfer function (CTF) and envelope function. A computational algorithm based on 

constrained nonlinear optimization is developed to estimate the essential parameters in 

CTF and envelope function model simultaneously and automatically. The application of 

this estimation method is demonstrated with focal series images of amorphous carbon 

film as well as images of ice-embedded icosahedral virus particles suspended across 

holes. 

1. Introduction 

The 2-D images collected from an electron microscope are not perfect 2-D 

projections of the 3-D structure. Each experimentally collected image can be treated as a 

modulated projection with noises. The modulation of the image is determined by a 

number of factors that are related to the electron microscope settings and imaging 

conditions. The modulation process has been modeled mathematically as the contrast 

transfer function (Thon, 1971, Erickson & Klug, 1970) and envelope functions (Hanszen, 

1967). Each of these functions contains a number of parameters affecting the image 

contrast and quality. In this work, we assume that CTF modulation is considered 

invariant in the entire micrograph, which is valid in many of the single particle cryo-EM 

studies. 

The CTF parameter estimation problem is essentially a non-linear curve-fitting 

problem. A number of schemes have been proposed to solve this problem for single 

particle imaging (Zhu et al., 1997, Conway & Steven, 1999, Ludtke et al., 1999, Huang 

et al., 2003, Velazquez-Muriel et al., 2003, Sander et al., 2003, Mallick et al., 2005). 

However, most of these schemes involve some ad hoc or manual fitting steps instead of 

making use of the state of the art numerical optimization algorithms that can be done 

objectively and accurately. As a result, parameter determination becomes difficult 
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especially when the experimental images are collected near focus where only one or two 

CTF rings are apparent. 

This paper describes the use of efficient and accurate numerical optimization 

techniques to estimate these parameters by treating the estimation problem as a 

constrained nonlinear optimization problem. Such an approach was perceived as 

infeasible or too computationally demanding in the past. Our experimental results 

demonstrate that this can be done reliably, efficiently and automatically. 

2. Problem Formulation 

 Thin biological specimen, consisting of mostly low atomic elements (C, N and O) 

can be approximated as weak phase objects for transmission electron microscopy. For the 

weak phase objects, the mathematical model that describes the relationship between the 

object potential function and the observed image has been well established (Thon, 1971, 

Erickson & Klug, 1970, Hanszen, 1971b). In order to demonstrate our approach, we will 

describe both the well-known as well as the derived formulations.   

2.1 Mathematical Model for Image Contrast 

In the image contrast theory, the 2-D Fourier transform of an image, which we 

denote by I(s), can be related linearly to the structure factor of the specimen, F(s), 

through the expression 

,N(s)F(s)H(s)I(s) +=                                           (1) 

where H(s) is the modulation function characterizing the instrument and experimental 

conditions, and N(s) is the noise function originating from various sources including 

surrounding buffer, electron inelastic scattering and recording media. Here, the bold 

faced s denotes a 2-D frequency vector. This is to be distinguished from the non-bold 

faced s which denotes a 1-D spatial frequency scalar.   
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 Note that I(s), F(s) and N(s) are all complex valued functions. In this paper, we 

assume that the microscope optics is well aligned during image acquisition so that H(s) is 

a real valued function. The computational problem to be solved is to construct H(s) and 

N(s) given I(s) and F(s). Analytical expressions for H(s) exist (Thon, 1971, Erickson & 

Klug, 1970, Hanszen, 1971b). These expressions contain a number of unknown 

parameters that can be determined through a numerical fitting procedure (Saad et al., 

2001). If one assumes that the projection image is not correlated with the background 

noise, then it follows from (1) that 

)()()()( 2222 ssss NHFI += ,                                   (2) 

where )(2 sI , (s)2F  and (s)2N  are the power spectra of the observed projection image, 

the structure factor and the background noise, respectively. Here, the power spectrum of 

an image is defined as the expectation value of the Fourier intensity of the image. The 

subscript 2 in (2) is used to indicate that functions )(2 sI , (s)2F  and (s)2N  describe 

mappings from the 2-D frequency space to the set of real numbers. These functions are to 

be distinguished from the functions )(sI , )(sF  and )(sN , which are defined in 

subsequent sections to describe mappings from 1-D frequency to real numbers. 

Equation (2) can be written in polar coordinates as 

)()()()( θθθ ,,, 2222 sNsHsFsI += .                          (3) 

Note that )(2 sF , which corresponds to the rotationally averaged value of the structure 

factor associated with the specimen, is a 1-D rotationally invariant function. Such 

rotationally averaged 1-D structure factor can be measured in an X-ray scattering 

experiment of a solution suspension of the specimen (Thuman-Commike et al., 1999, 

Schmid et al., 1999, Saad et al., 2001). Alternatively, structure factor can also be 

estimated at low resolution directly from particle images and at high resolution from a 

model (Ludtke et al., 1999). When )(2 sF  is known, the parameter estimation problem 

becomes well defined. 
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The analytical function used to describe the background noise term ),(2 θsN  in 

(3) is somewhat arbitrary and less well defined in the image contrast theory. In this paper, 

we extend the model defined previously (Saad et al., 2001) by including the azimuthal 

dependence of the functions i.e., we set 

snsnsn
ensN

)()()(
32

12
2

4)(),( θθθθθ −−−=  ,                               (4) 

where )(θin (i = 1, 2, 3, 4) are unknown parameters to be determined. 

 The modulation function ),(2 θsH  can be defined (Thon, 1971, Erickson & Klug, 

1970, Hanszen, 1971b) as 

).,(),(),( 222
2 θθαθ sEsCTFsH ⋅=                                    (5) 

where 

( ) ( )( ),,cos,sin1),( 2 θγθγθ sQsQsCTF +−−=                  (6) 








 ∆
+−=

2

)(

4
2),(

243
szsC

s s λθλ
πθγ ,                                   (7) 

The ( )[ ]θγ ,sin s  and ( )[ ]θγ ,cos s  terms in the CTF function (6) are known as the phase 

and amplitude contrast transfer functions, respectively (Erickson & Klug, 1970). The 

wavelength (λ ) and the spherical aberration ( sC ) are known constants. The unknown 

parameters to be estimated in (5) are the defocus ( z∆ ), the amplitude contrast ratio (Q ), 

the amplitude coefficient (α ), and the envelope function ( ),( θsE ). We should point out 

that Q is, in principle, dependent on the spatial frequency and the atomic composition of 

the specimen. However, for weak phase objects, the variation of Q with respect to these 

factors is so small that it can be considered as a constant parameter. The defocus ( )θz∆  is 

anisotropic in general.  It can be represented by   
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( ) ( )( )010 2sin θθθ −∆+∆=∆ zzz ,                                           (8) 

where 0z∆  is the mean defocus of the sample, 1z∆  is the focal difference due to axial 

astigmatism and 0θ  represents the reference angle of axial astigmatism (Thon, 1971). 

When astigmatism is present, the power spectrum often exhibits elliptically shaped CTF 

rings.   

The envelope function ),( θsE  in (5) is used to account for the spatial and 

temporal coherence effects, specimen drift and other signal decay factors such as the 

modulation function of the recording medium in ),(2 θsH . Analytical expressions for 

some of these factors in the envelope function have been described previously (Frank, 

1969, Frank, 1976, Hanszen, 1967, Hanszen, 1971a). In practice, it has been empirically 

observed that the envelope function for images of ice-embedded particles with 

subnanometer resolution (<6 Å) data from most of the electron microscopes can be 

approximated by a single Gaussian function of the form 

2),(),( ssBesE θθ −= ,                                                           (9) 

where the non-negative parameter ),( θsB  has been called the experimental B-factor 

(Saad et al., 2001). The techniques we employ to solve the parameter estimation problem 

allows alternative formulations of the envelope function.  In particular, we have 

experimented with using a more general envelope function of the form 

                             
3

3
2

21 ),(),(),(),( ssBssBssB
esE

θθθθ −−−=  

to model decay of the power spectrum from low to high frequencies for some data sets. 

2.2 Parameter Estimation via Constrained Nonlinear Optimization 

 We measure the discrepancy between the analytical model (3) and the 

experimentally measured power spectrum ),(ˆ
2 θsI  by the residual function 
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);,(ˆ);,();,( 222 xsIxsIxsr θθθ −=  where ),,,,,,,,,( 4321010 nnnnQBzzx θα ∆∆= . To 

determine the optimal value of x, we propose to minimize the nonlinear objective 

function 

2

22 );,()( xsrx θρ = ,                                                  (10) 

where );,(2 xsr θ  is defined as the standard 2-norm of );,(2 xsr θ , i.e., 

sddxsrxsr

s

s

∫ ∫=
max

min

2

0

2
22 );,();,(

π

θθθ ,                           (11) 

for some low and high cutoff frequencies mins  and maxs .   

When ),( θsCTF , ),( θsE  and ),(2 θsN  are independent of θ  (i.e. astigmatism 

and drift are ignored, which is the case for good-quality experimental images), we can 

simplify the notation to obtain 

).()()()()( 222 sNsCTFsEsFsI +=α                             (12) 

When the structure factor )(sF  is available, one can determine the parameters 

),,,,,,,( 43210 nnnnQBzx ∆= α  by minimizing the function 

,);()(
2

xsrx =ρ                                                        (13) 

where );( xsr  is the one-dimensional (1-D) residual function that measures the 

discrepancy between the 1-D analytical model (12) and the rotationally averaged power 

spectrum )(ˆ sI . The norm of );( xsr  is defined as 

.);();( );(
max

min

max

min

22 ∑∫
=

=

≈=
jj

jj

j

s

s

xsrdsxsrxsr                 (14) 
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Note that the objective function (14) is evaluated on the interval [ ]maxmin , ss . The reason 

for imposing such a restriction is to eliminate the unreliable and noisy data at both low 

and high frequencies.   

 In general, the objective function defined in (14) has many local minima. To 

narrow the search range and avoid being trapped at an undesirable local minimum, we 

impose explicit constraints. In most cases, the defocus value of z∆  can be estimated from 

the experimentally intended imaging conditions to be within [ ]maxmin , zz ∆∆ . The valid 

values for Q  are between 0 and 1 (Erickson & Klug, 1970). However, in practice, the 

upper bound forQ  is generally believed to be much smaller than one (Toyoshima et al., 

1993).  Since the experimental B-factor is always positive as defined in (Saad et al., 

2001), the inequality of the type max0 BB ≤≤ , for some constant maxB , is a natural 

constraint.  Similarly, to ensure that the intensity of the background noise never falls 

below zero, we impose 03 ≥n . 

In addition to these bound constraints, we also impose a set of nonlinear 

inequality constraints in the form of )(ˆ)( jj sIsN ≤ , for .,..., maxmin jjj =  These constraints 

are developed to ensure that the noise background term )(sN  is always less than )(ˆ sI . 

Because the intensity of the background signal typically decreases from low to 

high spatial frequencies, it is desirable to include constraints of the following type: 

.,,for  0
)(

maxmin jjj
s

sN j
K=≤

∂

∂
      (15) 

In summary, when ),( θsCTF , ),( θsE  and ),(2 θsN  are independent of θ , as 

found in many experimental cases (e.g., (Jiang et al., 2003, Ludtke et al., 2008, Jiang et 

al., 2008, Liu et al., 2007, Ludtke et al., 2004)), we can estimate the unknown parameters 

for the CTF function that characterize the image modulation process by solving the 

following constrained nonlinear optimization problem. 
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)(min x
x

ρ                  (16) 

                                                     subject to               

maxmin zzz ∆≤∆≤∆     (17) 

max0 BB ≤≤             (18) 

maxmin QQQ ≤≤          (19) 

30 n≤                          (20) 

maxmin ,,for )(ˆ)( jjjsIsN jj K=≤      (21) 

,,for  0
)(

maxmin jjj
s

sN j
K=≤

∂

∂
         (22) 

where )(xρ  is defined in (13). 

In practice, the magnitude of )(sI  may vary by several orders of magnitudes 

between the low and high frequencies as seen in the X-ray solution scattering of the 

single particle suspension (Thuman-Commike et al., 1999, Ludtke et al., 2001). In this 

case, applying a non-linear optimization solver to (16)-(22) directly may result in an 

approximate solution that produces more accurate low frequency fit at the expense of 

severe misfit at the intermediate and high frequency ranges of the power spectrum. 

Because the defocus parameter z∆ , the most important parameter in the CTF model, is 

largely determined by the intermediate to high frequency part of the power spectrum, 

such a misfit is likely to be detrimental in subsequent computations. 

To overcome this problem, one may introduce a set of weights jω  in (13) that 

vary with respect to the frequency js . That is, one can define the objective function in 

(13) to be 
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[ ] .)()(ˆ)(
2

maxmin

j

sss

jj

j

sIsIx ωρ ∑
≤≤

−=                                  (23) 

However, choosing a set of appropriate weights is not a trivial task. 

An alternative strategy for mitigating problems associated with the large 

magnitude variation in )(ˆ sI  is to estimate the desired parameters by fitting ( ))(ˆlog sI  

instead.  Since the log function is monotonically increasing on ( )∞,0 , minimizing (13) is 

equivalent to minimizing 

( ) ( )
2

)(log)(ˆlog)( sIsIx −=η .                                        (24) 

Note that )(sI also depends on the parameter x to be estimated. In this formulation, we 

may need to impose additional constraints 

,for  ,0)( maxmin ssssI jj ≤≤>                                          (25) 

to ensure that the second log term in (24) is well defined. 

The use of the objective function (13) is not appropriate when astigmatism and 

drift are present in the micrograph. When ),( θsCTF , the envelope function ),( θsE  and 

the background noise ),(2 θsN  all vary with respect to θ , one must resort to the most 

general form of the objective function defined in (10). Because parametersα , B, Q, and 

1,2,3,4)( =ini  are all assumed to have angular dependency in this case and the defocus is 

now parameterized by three parameters 0z∆ , 1z∆  and 0θ  that appear in (8), the number of 

unknown parameters to be estimated becomes 37 +θm , where θm  is the number of 

angular samples used in the evaluation of (10). The angular dependency of the parameters 

to be estimated also introduces angular dependency in the constraints defined by (18) – 

(22). As a result, the total number of nonlinear constraints (eqns. 21-22) in the 

constrained nonlinear optimization model will increase by a factor of θm . The increased 

number of unknowns and constraints makes the optimization problem much more 
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difficult to solve.  Hence, we need to seek other alternatives that are computationally 

more efficient. 

 When the angular dependency of (3) is caused solely by astigmatism, i.e., the 

defocus )(θz∆  is the only parameter that varies with respect to θ , integrating the right 

hand side of (5) with respect to θ  yields a closed form expression which we will not 

show here. Such an expression allows us to again reduce the 2-D fitting problem to a 1-D 

fitting problem. Unfortunately, the residual norm (13) associated with this 1-D fitting 

problem has far too many local minima within the domain defined by the constraints 

(18)-(22). Hence, it is difficult to compute the optimal estimation of the desired 

parameters in practice. 

When ),( θsCTF , ),( θsE  and ),(2 θsN  vary slowly with respect to θ , which is 

the case for good quality images, a simple and practical strategy that one can use to 

reduce the complexity of the computation is to divide the 2-D power spectrum evenly 

into k angular sectors for some k that is relatively small (e.g., between 8 and 10). This 

strategy is discussed in (Frank, 1996) and implemented in (Huang et al., 2003). All 

parameters are assumed to be rotationally invariant within each sector. Rotational 

averaging of the power spectrum is performed within each sector to produce k averaged 

1-D profiles. The unknown parameters associated with (3) are estimated separately within 

each sector by solving (16)-(22) within that sector. This procedure returns k defocus 

values )( jz∆ , kj ,...,2,1= . These defocus values can be used to estimate the 

parameters 0z∆ , 1z∆  and 0θ  by solving a constrained nonlinear least squares (NLS) 

problem 

2

1

)(
010

,,
2

2
2sin

2

1
min

010
∑
=









∆−







 −∆+∆
k

j

jz
k

jzz θ
π

θδδ
         (26) 

subject to                                                                 

max
00

min
0 zzz ∆≤∆≤∆                                                      (27) 
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max
11

min
1 zzz ∆≤∆≤∆                                                      (28) 

.max
00

min
0 θθθ ≤≤                                                      (29) 

We will demonstrate that this strategy works very well for images that contain a modest 

level of astigmatism. 

 When the experimental images contain significant amount astigmatism, one may 

need to divide the power spectrum of each image into a larger number of angular sectors 

in order to accurately determine the astigmatism parameters. The potential pitfall of this 

approach is that the signal to noise (SNR) ratio associated with the 1-D rotationally 

averaged power spectrum within each sector is likely to be very low, hence the defocus, 

the experimental B-factor and other parameters associated with each sector may not be 

reliably estimated. We argue that in this case, the collected images should be discarded 

anyway. However, such a decision calls for an image analysis tool that can automatically 

make a distinction between images that contain mild astigmatism and images that are too 

distorted to be useful. We have developed such a tool based on the active contour model 

(ACM)  algorithm (Blake, 1998).  The main idea behind the ACM algorithm is to use a 

special contour tracing technique to identify concentric Thon rings in the power spectra 

of each image. The ratio between the radii associated with the major and minor axes of 

these elliptically shaped rings are estimated through a least squares procedure. When the 

estimated ratio is much larger than one, the image would be excluded for subsequent 

image processing and reconstruction.   

3. Numerical Methods  

 In this section, we describe numerical algorithms and software we use to tackle 

the constrained nonlinear minimization problem formulated above. We focus on the 1-D 

curve fitting formulation shown in (16)-(22), which can be used directly to estimate the 

unknown defocus, and the parameters for the envelope and noise functions when 

astigmatism and drift are negligible. When both astigmatism and anisotropic 
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experimental B-factor are present in the data, we divide the power spectrum into several 

angular sectors and perform separate 1-D curve fittings within each sector.   

The constrained minimization problem described by (16)-(22) can be solved in a 

number of ways. Algorithms for solving general constrained nonlinear optimization 

problem include the quadratic penalty method, the log barrier method, the augmented 

Lagrangian method, and the sequential quadratic programming (SQP) method (Nocedal, 

1999). We have chosen the SQP method because recent studies (Gould, 2004) indicate 

that the SQP method is the most effective one for small to medium sized problems, i.e., 

problems with less than a thousand variables and constraints.  

 To simplify the notation in the discussion that follows, we denote the set of 

nonlinear constraint functions in (21) and (22) by )(xq , where x is a column vector 

representation of the unknown parameters to be estimated, i.e.,  

).,,,,,,,( 4321 nnnnQzBx ∆= α                                   (31) 

In this notation, all nonlinear constraints in (21) and (22) can be conveniently represented 

by a single vector inequality 0)( ≥xq . 

The SQP algorithm searches for an optimal solution to (16)-(22) iteratively.  In 

SQP, the approximate solution kx  is updated, at each step, by  

                kkkk pxx τ+←+1 ,                                                    (32) 

where the search direction 
kp  is obtained by solving a quadratic minimization problem 

of the form  

k

T

kkk

T

k
p

pxpHp
k

)(
2

1
min ρ∇+                                 (33) 

subject to the same bound constraints as defined in (17)-(20) and also the linearized 

constraint 
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.0)()( ≥+∇ kjk

T

kj xqpxq                                       (34) 

The matrix kH  in (33) is an approximate Hessian of the Lagrangian function  

∑
=

−=
n

j

jj xqxxL
1

)()(),( µρµ ,                                (35) 

evaluated at the k-th iterate kx , and ( )nµµµµ ,,, 21 K=  denotes a set of Lagrangian 

multipliers associated with the nonlinear constraints )(xq j . The step length 
kτ  in (32) is 

chosen to minimize some merit function while keeping the approximate solution 1+kx  

within the bound constraints (Nocedal, 1999). 

To use a constrained nonlinear optimization solver, one must provide procedures 

for calculating the objective function (13) or (24) and the constraint function )(xq . One 

may also provide a procedure for computing the gradient of the objective function and the 

constraint with respect to the unknown parameters in x. Because the derivatives of the 

objective and constraint functions with respect to the unknown parameters are easy to 

compute for the problem defined in (16)-(22), we carry out these operations explicitly. If 

the procedures for the gradient calculation are not supplied by the user, most software 

packages have the capability to compute approximate gradient through the technique of 

finite difference.   

Several software packages have been developed to solve nonlinear constrained 

optimization problems using SQP. Among the most well known are NPSOL (Gill, 1986, 

Schittkowski, 1986, Gill, 2002) and the fmincon function in MATLAB (MathWorks, 

2004). We use the MATLAB fmincon function for our implementation.  

4. Results and Discussion 

4.1. Image Data 
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Two types of datasets were generated to demonstrate the applicability of the 

proposed method for the microscope parameter determination. One data set was the focal 

series images of an amorphous carbon film, which was evaporated on freshly-cleaved 

mica surface and then transferred onto a holey grid. The images were recorded at 200 kV 

in a JEM2010F electron microscope onto the Gatan 4k×4k CCD camera (US4000) at an 

effective magnification of 110,400 ×. To assess the reliability and accuracy of our 

computational estimation scheme, we collected images of carbon film in a broad range of 

defocus settings from 0.2 to 5.0 mµ underfocus.  

Carbon film was chosen as the test specimen for our algorithm because of the ease 

of detecting the CTF rings in the power spectra of the images. The images were taken 

with pre-determined defocus so that we can assess the accuracy of the proposed 

computational procedure. Figure 1 shows a focal series of carbon-film images and their 

corresponding power spectra. In this case, the astigmatism was well adjusted to negligible 

level prior to the data collection. These represent the best type of data that could be 

recorded. To test the capability of astigmatism estimation, we purposely introduced a 

mild level of stigmatism in the image which power spectrum is shown in Figure 2. The 

structure factor for the carbon film data set was estimated from electron diffraction 

pattern of carbon film (courtesy of Dr. Jaap Brink). 

The second set of data was the P22 mature phage particles recorded onto 

photographic films (Kodak SO-163) in the JEM3000SFF electron microscope operated at 

300 kV and specimen temperature of 4.2K. Images between 0.5 to 3 µm underfocus were 

used in this test (e.g., Figure 3). In this dataset, no carbon film was used to determine the 

CTF and associated parameters because the ice-embedded virus particles are suspended 

across holes with no support film.  The data were digitized with a Nikon scanner at a 

scanning interval of 1.06 Å/pixel. The structure factor associated with P22 mature phage 

was obtained from the modified X-ray solution scattering curve (Thuman-Commike et 

al., 1999) to yield the best fit for a broad spectra of spatial frequencies to the cryo-EM 

data.  
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4.2. CTF and associated parameter estimation of carbon film images with negligible 

astigmatism 

 Using the estimated structure factor, we applied the constrained nonlinear 

minimization algorithm (the MATLAB fmincon function) discussed in Section 3 to each 

individual power spectrum image shown in Figure 1. The bound constraints for each of 

the parameters are listed in Table 1. The cutoff frequencies defined in (eqn. 11) were 

chosen to be smin = 0.02 Å-1 and smax = 0.2 Å-1. Our initial guesses for the B-factors, 

amplitude contrast ratio, and noise parameters were set to: B=100, Q=0.1, 

0.14321 ==== nnnn , respectively. Because our dataset contains images taken under a 

wide range of defocus settings, we tried five different starting guesses for the defocus 

value ( 0.9,0.7,0.5,0.3,0.1=dz  µm) for each of the runs. The CTF, envelope and noise 

parameters associated with minimum final objective function value (13) among the five 

runs were chosen to be our optimal estimation of the parameters. Note that all these 

procedures are implemented as part of the fitting processes, there is no need for user to 

provide initial guess for different micrographs and to repeat the runs. 

 Table 2 shows typical convergence history associated with each fmincon run. The 

first column of the table lists the iteration number. Column 2 gives the total number of 

function evaluations performed up to the k-th iteration. The progress of the convergence 

is measured by the value of the objective function (column 3), the magnitude of the 

directional derivative along the search direction (column 4), and the norm of the 

Lagrangian gradient (column 5) which provides the necessary first order optimal 

condition for the constrained nonlinear optimization problem defined in (16). The 

minimization procedure was terminated when the norm of the Lagrangian gradient is less 

than 0.05. The final objective function attains the value of 0.08 indicating a good match 

between the computational model defined by the estimated parameters and the power 

spectrum data. In Figure 4, we plot both the 1-D rotationally averaged power spectrum 

(the red curve) and the intensity curve defined by the function (12) using the optimal 

parameters returned from the constrained minimization procedure (blue curve). It is 

apparent that the difference between the experimental data (red curve) and the fitted data 
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(blue curve) is negligible in the frequency domain of interest. This suggests that our 

constrained optimization procedure successfully identified the global minimum of the 

objective function defined in (eqn. 16). 

 In Table 3, we list the optimal parameters associated with these carbon film 

images. The first row of the table gives the intended defocus values during the data 

collection where the defocus of the first image was determined using the 

DigitalMicrograph software (Gatan, Inc.) and the rest of the image defocuses were 

digitally set using the JAMES software (Booth et al., 2004). Clearly, our estimations of 

the defocus values (the second row) match very well with the intended defocuses. This 

suggests that our fitting procedure can be used reliably to estimate the CTF parameters 

associated with images taken under a wide range of defocus settings. 

4.3. The Importance of constraints  

We shall emphasize the importance of constraints in the formulation of the 

minimization problem (16)-(22). Removing bound and/or nonlinear constrains from the 

problem formulation turns the CTF parameter estimation problem into a standard 

nonlinear least squares (NLSQ) problem which can be solved efficiently using a Gauss-

Newton type of method (Dennis, 1981, More, 1984, Nocedal, 1999). However, unless the 

starting guess used by an NLSQ solver is sufficiently close to the optimal solution, one 

may obtain a solution that is physically wrong. 

To illustrate this point, we use the power spectrum associated with the carbon film 

micrograph as an example. The image is taken under roughly 1.0 mµ defocus (Figure 

1(b)). We plot the contour of the function  

( )4321 ,,,,,,,),( nnnnQzBBz ∆=∆ αρζ               (36) 

where ρ  is the objective function defined in (13), and α , Q  and 
in  are fixed at the 

optimal values obtained from a manual fit. This function is the restriction of ρ  to a 2-D 

subspace (spanned by B and z∆ ) with α α= , QQ = , and ii nn = , for 1 2 3 4i = , , , .   
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The contour plot shown in Figure 5 indicates that ),( Bz∆ζ  has two local minima 

within[ 2 2] [0 300]− , × , . The desired local minimum is marked by a plus sign on the left 

half of the figure. If the update of the approximate minimizer in an NLSQ solver is not 

restricted to ensure that the underdefocus is used, the optimization procedure may 

converge to a local minimum that is entirely infeasible. Figure 5 also shows that the 

convergence of the optimization algorithm is less sensitive to the starting guess for B 

because ),( Bz∆ζ  appears to be convex in the direction of B within the neighborhood of 

interest. 

 To demonstrate the importance of the nonlinear constraints, we applied a NLSQ 

solver to (16) alone without additional constraints using a starting guess close to the 

optimal solution. Figure 6 shows that without the nonlinear constraints, the NLSQ solver 

converged to an infeasible solution in which the background term )(2 sN  in (12) becomes 

larger than the measured power spectrum at the second and the third CTF zeros. The 

quality of the fitting curve is considerably worse than that obtained from constrained 

nonlinear optimization shown in Figure 9(b). 

4.4. Multiple starting guesses for the defocus parameter 

 The bound and nonlinear constraints established in (17)-(22) do not completely 

remove all undesirable local minima of (16). When particle images are collected under a 

broad range of defocus settings (i.e., the difference between minz∆  and maxz∆  is large), 

the objective function in (16) may still have multiple local minima within the range of 

defocus of interest. Figure 7 shows the change of the objective function (16) with respect 

to different defocus values along the line segment defined by 

( )4321 ,,,,,,, nnnnQzBx ∆=
v

α , where α , B , Q , and 
in ( 1 2 3 4i = , , , ) are optimal 

parameters determined in advance and [ ]10,0∈∆z ( mµ ). Clearly, the objective function 

)(xρ  contains two local minima within this interval. The global minimum (marked by 

the circle) is located at ,m53.0 µ=∆z  which is the desired defocus value associated with 

this particular data set. However, if one chooses the initial guess of the defocus to be 
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around 8.0 mµ , for example, SQP may converge to an incorrect defocus value which 

corresponds to the undesirable local minimum located near 7.8 mµ .  

 To prevent SQP from converging to the wrong local minima within the defocus 

range of interest, we solve (16)-(22) with multiple starting guesses evenly distributed 

between minz∆  and maxz∆ . Because the number of local minima within the defocus range 

of interest is typically small, we normally need to try only 3-5 different starting guesses. 

4.5. Astigmatism estimation   

 When images contain a mild level astigmatism such as the one shown in Figure 2, 

we apply the practical procedure discussed in Section 2.5 to estimate all angular 

dependent parameters. To test this procedure on the power spectrum shown in Figure 2, 

we divided power spectrum evenly into eight angular sectors. Each sector was 

rotationally averaged to produce a 1-D curve to be fitted with the constrained nonlinear 

model described in (16)-(22). Figure 8(a) shows the 1-D curves generated from different 

angular sectors of the power spectrum shown in Figure 2. These curves differ slightly in 

the positions of their peaks and valleys, implying the variation of the defocus along 

different radial directions. 

 In Figure 8(b), we plot the defocus values derived from the constrained nonlinear 

minimization procedure (applied to each angular sector) against kθ̂ , where kθ̂  is the angle 

formed by the bisector of the k-th angular sector and the horizontal axis. The estimated 

defocus values are marked by circles. An NLS algorithm was used to fit these defocus 

values to the analytical expression ( )( )010 2sin)( θθθ −∆+∆=∆ zzz . The fitting procedure 

produces 059.0 and m017.0  m, 546.0 010 ==∆=∆ θµµ zz .  

We should point out that multiple starting guesses are typically required to solve 

the constrained NLS problem (16)-(22) in at least one of the angular sectors. Once the 

parameter estimation problem has been solved for that angular sector, the estimated 

parameters associated with that particular angular sector can be used as the starting 

guesses for the minimization procedure applied to other angular sectors. Since the 
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variation of the CTF, envelope and noise background parameters are typically small for 

images that contain mild astigmatism and drift, the use of this starting guess often enables 

the optimization routine to converge in a few iterations. 

 It is worth pointing out that typical cryo-EM images to be used for image 

reconstruction have a negligible level of astigmatism. A level that is much smaller than 

that shown in this test case. In fact, single particle cryo-EM studies have been able to 

obtain near atomic resolution (~4Å) 3-D reconstructions without the need of considering 

astigmatism in the images (Jiang et al., 2008, Ludtke et al., 2008). While we have shown 

here that this method can successfully handle the images with a significant level of 

astigmatism, the use of this functionality is rarely necessary in practice for single particle 

cryo-EM study. 

4.6. Parameters Estimation with Images of Ice-Embedded Particles 

Often the ice-embedded particles are suspended across holes without any carbon 

substrate as shown in Figures 3(a) and 3(b). The incoherent average of the power 

spectrum of the boxed-out particles has been used to determine the CTF and associated 

parameters by manual fitting procedure (Saad et al., 2001). Figure 9 shows that the fitting 

curves produced by the optimization procedure match extremely well with the 1-D 

rotationally averaged power spectra of the micrographs. Furthermore, the determined 

parameters compare well with those determined manually. These data show that even 

without the carbon support film, our fitting method works equally well with authentic ice-

embedded particle images. 

4.7. CPU Requirements 

The average amount of CPU time required to fit a micrograph of 240MB size on a 

1.8 Ghz Pentium 4 laptop is under a minute. With a meticulous choice of the convergence 

tolerance and maximum iteration number, the computational time can be further reduced. 

In practice, the range of defocus values associated with the experimental data is often 

much less than 10 mµ . Thus, we may either tighten the bound constraints associated with 

the defocus or reduce the number of initial guesses to further speed up the computation. 
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4.8. General Accessibility of the software 

The algorithms and techniques described here have been implemented as a 

standard-alone Python script, which is available on the NCMI Web site 

(http://ncmi.bcm.edu/software/fitctf). It runs on all the major computer platforms (Linux, 

Windows, MacOS X). It allows the user to perform CTF estimation in a fully automated 

fashion once the 2-D single particles have been boxed out from the micrograph. The 

resulting parameters are formatted to be compatible to single particle image processing 

software package EMAN. 

5. Conclusions 

 An accurate determination of the CTF and associated parameters are essential in 

3-D structural determination of biological samples. Though manual fitting methods for 

these determinations have been used successfully, it is time consuming and subject to 

human errors. The proposed constrained nonlinear minimization algorithm has provided 

not only objective and accurate but also automated protocol. The examples shown here 

demonstrate its utility not only on images of carbon film but also on ice-embedded 

biological particles. A unique feature of this algorithm is the ability of determining 

images taken at smaller defocus (i.e. 0.5 µm), which is desirable for high resolution 

structure determination (Jiang et al., 2008, Liu et al., 2007). For such a small defocus 

image, it is generally difficult to estimate its CTF with confidence by a manual fitting 

method. This algorithm has been successfully applied to determining the CTF and 

associated parameter in images used for 3D reconstruction in a broad range of resolutions 

(e.g. Chang et al, 2006, Jiang et al., 2006, 2008).   

Though the extension (Figures 8 and 9) of our nonlinear optimization based fitting 

procedure can handle images with astigmatism and anisotropic B-factor, the accuracy of 

their determination may not be very high because of the need of dividing the power 

spectrum into multiple sectors resulting in poor signal-to-noise ratio. On the other hand, 

many structures of single particles have been determined to 4-9 Å resolution without 

considering astigmatism and anisotropic B-factor by excluding those images with 
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apparent astigmatism and/or drift (Zhou et al., 2001, Jiang et al., 2003, Ludtke et al., 

2004, Ludtke et al., 2005). More recently, structure of epsilon15 phage has been solved 

to 4.5 Å (Jiang et al., 2008) with images of which the CTF and associated parameters 

were determined with this procedure. Therefore, our proposed algorithm will be of 

immediate usage for data up to this resolution range at which the resulting structure is 

interpretable in terms of protein backbone trace.  
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Table 1. The bound constraints for the CTF, envelope and noise parameters to be 

estimated. 

Parameters Lower bound 

(carbon film) 

Upper bound 

(carbon film) 

Lower bound  

(P22 phage) 

Upper bound  

(P22 phage) 

z∆  0 9.0 0 4.0 

B 0 ∞  0 ∞  

α  0 ∞  0 ∞  

Q  0 0.2 0 0.1 

1n  ∞  ∞  ∞  ∞  

2n  ∞  ∞  ∞  ∞  

3n  0.0 ∞  0.0 ∞  

4n  ∞  ∞  ∞  ∞  
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Table 2. A typical convergence history of fmincon when it is applied to CTF parameter 

estimation of a carbon film. The first column gives the iteration number. The second 

column gives the total number of function evaluations at the end of the k-th iteration.  

The third column lists the relative norm of the residual. The fourth column gives the 

directional derivative at the k-th iteration. The last column gives the first-order optimality 

of the constrained optimization problem. 

k f-count }){,,,,( inQz∆βαη  
k

T sη∇  L  

1 9 453.9 -1440 3160 

11 126 32.82 -0.33 14.4 

21 232 28.71 0.002 6.02 

31 341 28.34 -0.06 4.77 

41 453 24.00 -0.2 18.4 

51 559 21.12 -0.39 25.8 

61 662 3.538 1.07 85.4 

71 762 0.09 -0.02 3.63 

76 812 0.08 -7e-7 0.04 
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Table 3. The CTF, envelope function, and noise background parameters returned from 

the constrained nonlinear minimization procedure (the MATLAB fmincon function) for 

carbon film images taken at different defocus settings. The first row (bold faced numbers) 

of the table shows the intended defocus under which each image is taken.   

Intended z∆ (µm)  0.2 0.5 1.0 1.5 2.0 3.0 4.0 5.0 9.0 

Determined z∆ (µm) 0.23 0.54 1.04 1.55 2.05 3.06 4.10 5.13 9.36 

B (Å2) 119 104 104 104 106 110 116 126 186 

α  12.0 8.14 6.66 5.91 5.43 4.99 4.72 4.63 4.39 

Q  0.03 0.0 0.01 0.02 0.03 0.03 0.03 0.03 0.02 

1n  -2.26 26.0 16.4 13.5 23.2 31.6 33.0 27.9 33.5 

2n  17.0 -33.6 -10.1 -2.8 -22.5 -39.8 -4.2 -27.9 -34.7 

3n  5.8 343 86.3 56.9 197 547 719 435 1402 

4n  -0.7 4.6 -2.5 -1.3 3.4 4.5 4.6 -3.4 3.6 
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Figure Captions 

Figure 1. 200-kV CCD frames of carbon-film (a-d) and their corresponding power 

spectra (e-h) taken under different defocus settings: (a) 0.5 mµ  (b) 1 mµ  (c) 3 mµ  (d) 

4 mµ . 

 

Figure 2. Power spectrum of a carbon film image with a mild astigmatism.   

 

Figure 3. 300-kV CCD frames of P22 mature phage (a) and (b) taken under different 

defocus settings and the corresponding power spectra (c) and (d). The estimated defocus 

is 0.41 mµ  for (a) and 1.14 mµ for (b). 

 

Figure 4. Comparing the 1-D rotationally averaged power spectrum data (the red dots) 

with the CTF fitting curves (the solid blue curves) generated by the constrained nonlinear 

minimization on a series of carbon-film images shown in Figures 1(a)-(d). The dash-

dotted curves in (a)-(d) show the noise background estimated from solving equations 

(16)-(22). 

 

Figure 5. The contour of ),( Bz∆ζ  associated with the image of carbon film taken under 

roughly 1.0 mµ defocus. This function has two local minima. The desired local minimum 

is marked by a plus sign on the left half of the contour plot. 

 

Figure 6. Without imposing the nonlinear constraints (21) and (22), applying a NLSQ 

fitting procedure to the P22 mature phage particle image shown in Figure 3(b) returns a 

solution in which the background term N(s) in (12) (the black dash-dotted curve) is larger 

than the power spectrum (red dots) near 0.06 and 0.14 Å-1.  

 

Figure 7. Variation of the objective function (16) with respect to the defocus values along 

the line segment defined by ( )4321 ,,,,,,, nnnnQzBx ∆=
v

α , where α , B , QQ = , and 
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)4,3,2,1( =ini
are optimal parameters determined in advance. Clearly, (16) has two local 

minima in m]10,0[ µ .  The desired global minimum is marked by a circle near 0.5 mµ . 

 

Figure 8. (a) Variation of the 1-D power spectra obtained from rotationally averaging the 

2-D power spectrum shown in Figure 2 among 8 even divided angular sectors. (b) 

Variation of the defocus along different radial directions. The circles represent the 

defocus value estimated from each angular sector of the power spectrum. The curve 

corresponds to the function ( )( )010 2sin)( θθθ −∆+∆=∆ zzz , where 010 ,, θzz ∆∆  are 

estimated by a nonlinear least squares fitting procedure. 

 

Figure 9. Comparing the 1-D rotationally averaged power spectrum data (the red dots) 

with the CTF fitting curves (the solid blue curves) generated by the constrained nonlinear 

minimization on the P22 mature phage images shown in Figure 3(a) and (b). The dash-

dotted curves in (a) and (b) show the noise background estimated from solving equations 

(16)-(22). 
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