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Exploratory data analysis is a crucial part of data-driven scientific discovery. Yet, the process of discovering
insights from visualization can be a manual and painstaking process. This article discusses some of the les-
sons we learned from working with scientists in designing visual data exploration system, along with design
considerations for future tools.
Exploratory data analysis (EDA) is a

crucial part of the scientific process and

often informs subsequent modeling and

hypothesis testing. Scientists perform

EDA to identify research questions and

uncover insightful patterns and trends in

their data—with information visualizations

often serving as a gateway to understand-

ing complex scientific phenomena. How-

ever, the current process of discovering

visualizations with actionable insights re-

quires scientists to manually construct

and examine large numbers of visualiza-

tions one-at-a-time. This painstaking pro-

cess of combing through a considerable

number of visualizations in search of

desired patterns is a common challenge

across many domains. We reflect on

some of the challenges and lessons

learned from working with three groups

of end-user scientists in designing visual

data exploration systems for scientific

discovery.1
Lesson #1: Managing Large
Collections of Visualizations Is a
Common Challenge
The current process ofmanually exploring

a large number of visualizations is tedious,

overwhelming, and error-prone for scien-

tists who are not already intimately

familiar with their datasets. One group of

scientific researchers we worked with

study how genes relate to phenotypes ex-

pressed during early embryonic develop-

ment.2,3 Their data consist of a collection

of gene expression profiles over time for

mouse stem cells, aggregated over multi-

ple experiments. The expression profile
This is an open access ar
for each gene is plotted as a line chart,

with time on the x axis and expression

level on the y axis. During EDA, a common

task that these researchers perform is

correlating gene function with their

expression profiles, to gain a high-level

overview of the expression profile pat-

terns. However, researchers often have

to write custom data pipelines for prepro-

cessing, clustering, and visualizing hun-

dreds and thousands of line charts (one

for each gene). While existing systems

such as STEM4 provide a graphical user

interface for clustering, comparing, and

visualizing time series frommicroarray ex-

periments, they do not support users’

ability to search for visually similar pat-

terns to a given trend or visualization.

For instance, researchers are often inter-

ested in finding patterns that look similar

to the profile of a known gene regulated

by the estrogen receptor, since these

visually similar patterns suggest that the

gene may be affected by the same fac-

tors. The challenge of generating and

searching through large numbers of visu-

alizations is not only specific to the ge-

netics setting, but similar needs also arise

in other scientific domains, such as

searching for supernovae signatures in

astronomical light curves or searching

for electrolytes with desirable physical

property trends for battery design.

To mitigate the aforementioned chal-

lenge, there is a need for a ‘‘search

engine’’ for visualizations, enabling scien-

tists to quickly find desired visual patterns

in their datasets via an intuitive querying

interface. Visual query systems are a class
Patterns
ticle under the CC BY-NC-ND license (http://cr
of visualization search interfaces that

allow users to specify the desired pattern

via a high-level specification (e.g., show

me a line chart where values first increase

then decrease), with the system returning

recommendations of visualizations that

match the specified pattern. This is in

stark contrast with traditional visualization

construction interfaces, such as ggplot or

Tableau, where users have to exactly

specify the visual encoding (chart type,

mark properties) and data aspects (what

to visualize on the x and y axis, what sub-

sets of data to visualize). Early work in vi-

sual query systems focused on interfaces

to search for time series with specific

patterns. For example, TimeSearcher5

supports a rectangular box as a query

specification mechanism, with the system

filtering out all of the time series that do

not pass through it. In QuerySketch6 and

Google Correlate,7 the query is sketched

as a pattern on a canvas, with the system

filtering out all the time series that have a

different shape. Subsequent work recog-

nized the ambiguity in sketching by

studying how humans rank the similarity

in patterns8 and improving the expres-

siveness of sketched queries through

finer-grained specification interfaces and

pattern-matching algorithms.9 While

these systems are promising in address-

ing the challenge of searching through

large collections of visualizations, despite

almost two decades of research, these vi-

sual query systems have not been widely

adopted by the end-users they were de-

signed for. The subsequent lessons that

we learned from working with scientists
1, October 9, 2020 ª 2020 The Author(s). 1
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points to some fundamental design flaws

that may have led to the lack of the adop-

tion of these systems.

Lesson #2: Proactive
Recommendation and Guidance
Jumpstarts Exploration
In exploratory data analysis, scientists

often do not have an exact inquiry in

mind but instead make use of the insights

discovered from their data to inform their

hypotheses in a ‘‘bottom-up’’ manner.

For example, genetics researchers often

first cluster their gene expression data

and get an overview of the patterns in their

dataset before composing a visual query

for genes similar to the common patterns.

Often, these hypotheses are under-spec-

ified or ambiguous, which can be chal-

lenging to even articulate and sketch in a

visual query interface. For instance, an

astronomer that we worked with wanted

to look for patterns that are slightly irreg-

ular, indicating the presence of a pulsat-

ing star. Given the challenge of cold-start

exploration, there is a need for visual data

exploration systems to provide recom-

mendation and guidance. The idea of

incorporating recommendations into vi-

sual exploration systems is not new.

There has been work in designing visuali-

zation recommendation systems that sug-

gest interesting visualizations to users to

accelerate data exploration. These sys-

tems often leverage statistical and

perceptual properties10,11 to surface rele-

vant patterns and trends in the underlying

dataset.

From our experience in working with

scientists, we find that users frequently

leveraged a recommended list of com-

mon visual patterns and outliers to jump-

start their inquiries. For example, one

scientist identified that the three repre-

sentative patterns recommended by a

visual query system with proactive rec-

ommendations corresponded to the

same three groups of genes discussed

in a recent publication:3 induced genes

(        ), repressed genes ( ), and tran-

sient genes ( ). They then used the vi-

sual query system to search for other

genes that also exhibited a transient

pattern by dragging and dropping the rec-

ommended pattern into the query canvas.

Based on the query results, they learned

that among the transient patterns, there

was a group of genes that all transitioned

at the same timestep, while others transi-
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tioned at different timesteps. These ex-

amples demonstrate how incorporating

even basic recommendations during vi-

sual querying can be helpful to users in

providing data examples that inspire

further exploration.

Lesson #3: Integrative Workflow
Encourages Experimentation
By observing how our scientific collabora-

tors interacted with a visual query system,

we discovered that scientists engaged in

three primary ways of making sense of

their data—a finding that echoes a classic

cognitive model of how analysts perform

information processing tasks.12 These

three sensemaking processes include

top-down pattern search (where users

leverage their intuition about what the

pattern should look like to perform the

pattern search), bottom-up inquiry (where

user queries are driven by something that

they observe in the data), and context cre-

ation (where users navigate across

different visualization collections to un-

derstand the pattern in their data). Further

analysis revealed that all groups of partic-

ipants engage with all three sensemaking

processes to some degree, but in

different proportions, depending on their

analytical needs. In fact, we find that all

three sensemaking processes are essen-

tial for visual query systems to flexibly

support a diverse range of analyt-

ical goals.

In addition to integration across all

three sensemaking processes, we found

that integration across the different parts

of the analysis workflow is also crucial

for encouraging rapid and sustained

experimentation with data. In particular,

we observed that many scientists

switched between parameter specifica-

tion, code execution, and visualization

comparison in their existing data analysis

workflow. The non-interactive nature of

these segmented workflows incurs a

substantial cognitive barrier during

exploratory data analysis, especially in

collaborative settings. For example, a

geneticist would specify several clus-

tering and visualization parameters in a

custom data-processing script, then visu-

ally inspect whether the patterns in each

cluster look ‘‘clean’’ in a graphical user

interface (GUI). The geneticist would

then iteratively tune parts of the clustering

script and rerun the analysis until the visu-

alized clusters look ‘‘clean enough.’’
While modifying and rerunning the pipe-

line took no more than 15 min every

time, the multi-step, segmented workflow

meant that the genetics team had tomake

all the changes offline, so that their valu-

able meeting time is not wasted on regen-

erating results. When the team switched

to a more integrative system that allowed

both cluster specification and visual

querying in a single interactive window,

the new tool dramatically sped up their

collaborative analysis process and

encouraged them to experiment with pre-

viously unexplored parts of their pipeline.

Our findings point to the need for inte-

grative systems that support seamless

transitions between analytic activities.

These lessons have inspired our most

recent project Lux (https://github.com/

lux-org/lux), which combines the benefits

of interactive visualization interfaces and

programmatic specification of analysis

and visualizations. Visualizations are dis-

played as a widget within an integrated,

reproducible computational notebook

environment, providing a seamless transi-

tion between code and interaction. More

importantly, by bringing interactive visual-

ization into notebooks, this approach

supports intelligent visual data discovery

alongside other data science activities,

such as data cleaning and modeling,

without the cost of switching between

different tools and interfaces.

Conclusion
The aforementioned lessons that we

learned fromworking withmultiple groups

of scientists, such as the importance of an

integrative visual query system across all

sensemaking processes, open up a num-

ber of new research directions in

providing proactive and tailored assis-

tance during visual data exploration.

Indeed, visual querying systems can be

incredibly powerful and effective, but

need to bemindfully designed in amanner

that encourages holistic, proactive, and

efficient exploration of patterns in data.

We hope our lessons can inform the next

generation of tools for data-driven scienti-

fic discovery.
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