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A Wavelet-based Variability Model (WVM) for 

Solar PV Power Plants 
Matthew Lave, Jan Kleissl, Joshua S. Stein 

Abstract – A wavelet variability model (WVM) for simulating 

solar photovoltaic (PV) power plant output given a single 

irradiance point sensor timeseries using spatio-temporal 

correlations is presented. The variability reduction (VR) that 

occurs in upscaling from the single point sensor to the entire PV 

plant at each timescale is simulated, then combined with the 

wavelet transform of the point sensor timeseries to produce a 

simulated power plant output. The WVM is validated against 

measurements at a 2MW residential rooftop distributed PV 

power plant in Ota City, Japan and at a 48MW utility-scale  

power plant in Copper Mountain, NV. The WVM simulation 

match the actual power output well for all variability timescales, 

and the WVM compares well against other simulation methods. 

Index Terms–PV, Solar, Upscaling, Wavelets, Geographic 

Dispersion, Variability. 

I. INTRODUCTION 

High penetration of solar power is highly desirable from an 

environmental point of view, but the variability of solar 

photovoltaic (PV) power is considered an obstacle to 

managing the electrical distribution and transmission system. 

Solar PV power production is variable due to the rising and 

setting of the sun, cloud shadows, changes in composition of 

the clear atmosphere (e.g., dust, smoke, humidity), and 

system-specific variables such as inverter performance, 

module temperature, and soiling. Cloud-induced fluctuations 

have the highest potential to affect the electric grid since they 

introduce changes in power production at short timescales 

(<1-hr). The other causes of variability typically change over 

longer timescales (>1-hr) and are often more predictable than 

clouds. Fortunately, though, since clouds are not 

homogeneous, geographic smoothing reduces short timescale 

variability for a fleet of PV systems.  

We define the variability reduction (VR) as the ratio of 

variance in a time-varying quantity (e.g., normalized 

irradiance or PV power output) at one site to the variance of 

the average of all sites in a network (i.e., a PV power plant). 

Defined this way, an increase in VR will indicate a decrease in 

the aggregate variability. Values of VR depend on the 

correlation between sites:      for perfectly correlated sites 

and      for independent sites. VR values of  2.8 for 1-

min irradiance timeseries of 9 sites in a 4 km by 4 km grid in 

Tsukuba, Japan [1], 1.7 to 3.3 for 1-min steps of power output 

of 3 sites in 100s of km apart in Arizona [2], 2.4 to 4.1 for 5-

min clear-sky index timeseries of 4 sites 100s of km apart in 

Colorado [3], and 2.7 for 5-min power output of 100 sites 

spread throughout Germany [4] have been found.  

Other studies have shown the decorrelation of PV system 

output as a function of distance [5-7]. Hoff and Perez [8] 

showed that the correlation values collapse onto a line when 

the distance is divided by timescale. Accounting for cloud 

speed as determined from satellite further decreased the 

scatter, suggesting a universal correlation law.  

With a similar objective to the present study, Marcos et al. 

[9] used a solar irradiance point sensor timeseries to simulate 

variability of a larger power plant using a transfer function 

based on a low pass filter which is scaled by the power plant 

area. Here, we describe a wavelet variability model that will 

help system planners gain an understanding of the variability 

of a potential power plant (i.e., largest ramp rates and how 

often they occur) with only limited data required as input. We 

describe the steps of the model in section II, section III 

demonstrates and validates use of the model at two test sites, 

and section IV presents the conclusions.  

II. METHODS 

We propose a wavelet variability model (WVM) for 

simulating power plant output given (1) measurements from a 

single irradiance point sensor, (2) knowledge of the power 

plant footprint and PV density (Watts of installed capacity per 

m
2
), and (3) a correlation scaling coefficient (section IIC) by 

determining the geographic smoothing that will occur over the 

area of the plant (Fig. 1). The simulated power plant may have 

any density of PV coverage: it may be distributed generation 

(i.e., a neighborhood with rooftop PV) with low PV density, 

centrally located PV as in a utility-scale power plant with high 

PV density, or any combination of both. In the WVM, we 

assume a statistically invariant irradiance field both spatially 

and in time over the day (i.e., stationary), and we assume that 

correlations between sites are isotropic: they depend only on 

distance, not direction.  
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The WVM is designed to provide simulated power plant 

output to grid integration studies which test the effects of 

adding PV to existing electric feeders. These studies are done 

historically, after load and irradiance have been measured, and 

show the potential impacts of PV variability had PV been 

installed on the feeder being studied. 

While the WVM is not a stand-alone forecasting model, it 

could be integrated into forecasting methods if spatially-

distributed forecasted irradiances were available at high 

temporal resolution. However, satellite and numerical weather 

prediction forecast models typically only output at a temporal 

resolution of 30 minutes such that an upscaling method such 

as the WVM is not required since essentially no geographic 

smoothing occurs over power plant length scales (O~10 km) at 

such long timescales. 

The main steps to the WVM are detailed in the sections 

below. 

A. Wavelet Decomposition 

We decompose the input irradiance point sensor timeseries 

into its components at various timescales by using a wavelet 

transform. 

To obtain a stationary signal, the irradiance timeseries is 

normalized such that output during clear conditions is 1.  

       ( )     ( )       ( ), (1)  

where        ( ) is the normalized signal, and       ( ) is 

the clear-sky model (here the Ineichen model [10]). For 

simplicity of notation, we here assume that the point sensor is 

a global horizontal irradiance (GHI) sensor. If instead a plane 

of array (POA) sensor were used, a POA clear-sky model 

would be required. 

The wavelet transform of the clear-sky index,        ( ), 

is:   

  ̅( )  ∫        (  )
 

√ ̅
 (

    

 ̅
)    

    

      
, (2)  

where the wavelet timescale (duration of fluctuations) is  ̅ , 

       and      designate the start and end of the GHI 

timeseries, and    is a variable of integration. For the discrete 

wavelet transform,  ̅ is increased by factors of 2, such that 

values of  ̅  are defined by   ̅    . We used the top hat 

wavelet, defined by: 

 ( )  {

               
 

 
      

                 
 

 
           

 

 
    

                    

, (3)  

because of its simplicity and similarity to the shape of solar 

power fluctuations [11]. For 1-day at 1-sec resolution, we 

compute wavelet modes (timeseries) for  ̅ values ranging from 

2-sec (   ) to 4096-sec (    ), thus decomposing the 

       ( )  timeseries into 12 modes   ̅( )  showing 

fluctuations at these various timescales. Symmetric signal 

extension is used to ensure resolution at endpoints. The largest 

timescale over which correlations are considered is 4096 sec (j 

= 12) because over the spatial scales of interest (O~10 km) the 

amount of smoothing that occurs at longer time scales is 

insignificant. In addition, modes for      require such 

significant signal extension that they are no longer 

representative of true fluctuations in the irradiance timeseries. 

We adopt a special definition for the highest wavelet mode, 

defining   ̅    ( )  to be the moving average with 

window 4096-sec. By doing so, we achieve the property that 

the sum of all wavelet modes equals the original input signal: 

∑   ̅   ( )    
          ( ). (4)  

B. Distances 

We next discretize the power plant into individual ‘sites’. A 

single site is chosen to be an area over which  (      ̅)    

for the timescales of interest. For distributed plants, a single 

site is one rooftop PV system. For utility-scale plants, a single 

site is a small container of PV modules, as dictated by 

computational limitations. When using larger containers, a 

correction is applied for the in-container smoothing. Once 

discrete sites have been defined, the distance between each 

pair of sites is computed.  

C. Correlations 

To determine correlations between sites we assume that 

correlation is a function of distance divided by timescale [8]: 

 (      ̅)      ( 
 

 

    

 ̅
), (5)  

where   is the correlation between sites,       is the distance 

between sites   and  ,  ̅  is the timescale, and   is a 

correlation scaling factor. The   value can be found using a 

small network of irradiance sensors (at least ~4-6 sites) where 

the correlations, distances, and timescales are known and   

may be solved for using Eq. 5. The   value varies day-by-day 

and by location due to changing cloud speed. Smaller   values 

(1-3, typically observed at coastal sites with low, slow clouds) 

result in lower correlations between sites, while large   values 

(>4, typical of inland sites with high, fast-moving clouds) 

mean higher correlations. Through future work, we will create 

a closed form solution where   can be determined from 

geographic and meteorological variables and multiple 

irradiance sensors are not required. 

 
Fig. 1. Diagram showing the inputs and outputs for the WVM. 
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D.  Variability Reduction 

The variability reduction as a function of timescale,   ( ̅), 

is defined as the variance of the point sensor divided by the 

variance of the entire PV power plant at each timescale. VR 

can be expressed as the inverse of the average of all 

correlations modeled in Eq. (5):  

  ( ̅)  
  

∑ ∑  (      ̅) 
   

 
   

 , (6)  

where   is the total number of sites. Defined this way, 

     for entirely independent sites (       ), and 

     for entirely dependent sites. 

E. Simulate Wavelet Modes of Power plant 

By combining the wavelet modes   ̅( )  found in section 

II.A with the variability reductions   ( ̅) from section II.D, 

we simulate the wavelet modes of the power plant. The 

simulated wavelet modes of normalized power are reduced in 

magnitude by the square root of VR: 

  ̅
   ( )  

  ̅( )

√  ( ̅)
, (7)  

where   ̅
   ( ) are the simulated power plant wavelet modes. 

We can sum the simulated wavelet modes (inverse wavelet 

transform) to create a simulated clear-sky index of area-

averaged     over the power plant: 

        
      ( )  ∑  

 ̅   
   ( )  

   . (8)  

F. Convert to Power Output 

Power output is obtained by multiplying the spatially 

averaged irradiance (section II.E) by a clear-sky power output 

model,  ( )   . 

 ( )            
      ( )   ( )    (9)  

 ( )    is created by combining a plane of array irradiance 

clear-sky model with the plant’s capacity,   , and a constant 

conversion factor,  .  

 ( )               ( ) (10)  

To obtain        ( ) , we apply the Page Model [12] to 

      ( ). Since the Page Model requires GHI and diffuse 

irradiance as inputs, diffuse fraction was estimated as in [13]. 

The constant conversion factor,  , is determined based on the 

power plant’s conversion efficiency.   

Since PV plant power output is nearly linearly proportional 

to spatially averaged irradiance [14], using only a constant 

multiplier (  ) is a reasonable approximation for this 

application. In practice, though, more sophisticated 

performance models [15] should be used that depend on 

ambient temperature, wind speed, and module specifications. 

The improvement in accuracy of power output achieved by 

using such a non-linear model depends on how far variables 

such as temperature deviate from standard test conditions 

(STC), but is expected to usually be less than 10%. Errors in 

estimating the variability at short timescales will be even 

smaller, since most of the non-linear irradiance to power 

effects occur over long timescales. 

III. RESULTS/APPLICATION TO OTA CITY AND  

COPPER MOUNTAIN POWER PLANTS 

To demonstrate the WVM model, we use the 2.13MWp 

distributed generation (residential rooftop) plant in Ota City, 

Japan, and the Copper Mountain 48MWp utility scale PV 

power plant in Boulder City, NV. Footprints of each plant are 

shown in Fig. 2.  For both, the results of the WVM simulation 

were compared to the actual measured power output for the 

whole plant.   

The Ota City (OC) plant consists of 550 houses, most with 

polycrystalline silicon PV systems ranging from 3-5kW, at 

varying tilts and azimuths. The average orientation of all PV 

modules producing power at OC on the test day was found to 

be 15° tilt from horizontal and 10° azimuth east of south.  

GHI recorded once per second using an EKO instruments 

ML-020VM silicon pyranometer (expected uncertainty   ) 

was used as input to the WVM, and power output of the entire 

neighborhood also at 1-sec resolution was used for validation. 

The total power output was simply the sum of the output of 

  
Fig. 2. Polygons showing the footprints of the (a) Ota City and (b) Copper Mountain power plants. The red shading shows the polygon footprints, while the blue 
dots show the simulation containers representing either houses (Ota City), or small groups of PV modules (Copper Mountain). The large yellow dots indicate the 

location of the GHI point sensors used as input. The Ota City map shows approximately     km, while the Copper Mountain map is approximately     km.  
Maps © Google Maps. 
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each house, so ignored transmission losses. Results for a 

typically variable day (October 12, 2007) in OC (Fig. 3a) will 

be presented. 

The Sempra Generation Copper Mountain (CM) plant 

contains ground-mounted cadmium telluride (CdTe) thin-film 

PV at a fixed tilt of 25°. GHI at 1-sec resolution from a Kipp 

& Zonen CMP11 (expected daily uncertainty    ) was 

input to the WVM model, and the output was compared to 

power output of the entire plant also measured at 1-sec. Total 

power output was the sum of all inverter power outputs, so 

ignores AC transmission losses. October 1, 2011 was chosen 

as a typically variable test day at CM (Fig. 3b).  

For purposes of validating the WVM, we will use 

irradiances at a point, area-averaged irradiances, and power 

output (for nomenclature see Table 1). For validation, the 

simulated power output (    ) is compared to the actual 

power output (  ). The point sensor is included in some 

comparisons to show how the WVM output has improved 

from the input GHI.  

Table 1: Nomenclature for GHI, simulated power output, and actual power 

output. Angle brackets denote averaging.           is the clear-sky index, 

while              is the ratio of actual to clear-sky output power. 

Since the later does not align with the definition of the clear-sky index, the 

         notation was chosen. 

 
GHI units 
[W m-2] 

Clear-sky index 
[-] 

Power 

units 

[MW] 

measured point 

sensor 
              

simulated power 
plant output 

                   
            

actual power plant 

output 
                      

A. Inputs and Running the Model 

The layouts of OC and CM were input and the WVM 

picked discrete points inside these footprints to use as “sites” 

in the simulation, as shown in Fig. 2. The spacing of sites was 

chosen based on the density of the plant. For OC, discrete sites 

were spaced roughly 20m apart such that each site represented 

a single house with rooftop PV. For CM, sites were closer 

together (a few meters), with each site representing a 

sufficiently small group of PV modules that can be assumed to 

have a correlation coefficient of 1.  

   
Fig. 3. GHI at 1-sec resolution at (a) Ota City on October 12th, 2007, and at (b) Copper Mountain on October 1, 2011. X-axis is time in [HH:MM]. 

  
Fig. 4. Correlations of wavelet modes for pairs of point sensors (a) at Ota City on October 12th, 2007 and (b) Copper Mountain on October 1, 2011.  The x-axis is 

    ( 
    

  ̅
) to show the exponential relationship between correlation and the quantity distance divided by timescale. Six GHI point sensors were used at Ota 

City, and 15 plane-of-array reference cells were used at Copper Mountain. Time scales range from 2-sec to 2048-sec. Dots to the far left have large 
    

  ̅
 ratios 

meaning either very short timescales or very long distances, while dots to the far right have small 
    

  ̅
 ratios so either very long timescales or very short distances. 

The red line is the line of best fit and corresponds to using       (Ota City) or       (Copper Mountain) in Eq. 5. 
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Also input to the WVM were the GHI measurement vectors, 

as well as latitude, longitude, and UTC offset (for creating the 

clear-sky model,       ). The test day at OC contains large 

cloud-induced irradiance fluctuations throughout the day. The 

test day at CM has some large irradiance fluctuations as well 

as a few clear periods (e.g., 10:00-12:00). Thus, the WVM 

model will be tested at two different sites and types of daily 

cloud conditions (highly variable and partly variable).  

For OC on the test day,      , as found from 6 GHI point 

sensors. Similarly, 15 plane-of-array reference cells at CM 

were used to determine        on October 1 (Fig. 4). The 

small scatter of correlation points (black dots) around the best-

fit curve, most noticeable at CM, is likely due to small 

anisotropic effects (i.e., pairs of sensors arranged in a certain 

direction may have higher correlation for all timescales).  

Following steps A-E (section II), a simulated normalized 

irradiance (similar to a clear-sky index, see Table 1) timeseries 

for the entire Ota City and Copper Mountain power plants was 

created,          
      ( ) . Fig. 5a shows the effect of 

spatial averaging on the (simulated) reduction in variability. 

Fluctuations on timescales less than 8-sec are essentially zero 

and the fluctuations are reduced for timescales of 64-sec and 

shorter. At longer time scales, though, the wavelet modes 

between the GHI point sensor and the simulation are 

essentially identical. The power plant output ‘clear-sky index’ 

agrees with the simulation results across all timescales (Fig. 

5b).  

B. Validation of Simulated Power plant Output 

Here we present comparisons between the simulated and 

actual power output using the fluctuation power index (   ) 

and ramp rate (RR) distributions. The    , which is the power 

content of fluctuations in the wavelet modes at each timescale, 

is used as a variability metric to test the WVM. The goal of 

the WVM is to create simulated power output that statistically 

has the same variability distribution across timescales as the 

actual power output. The main output of the WVM is the VR 

as a function of timescale, but small errors in VR are 

irrelevant if the     is small (such as on clear days or at very 

short timescales when fluctuations have tiny magnitudes), as 

  
Fig. 5.  [top most plots] Clear-sky index timeseries, and [bottom 12 plots] wavelet modes for Ota City on the test day. [Left] Clear-sky index measured 

(        , black) and simulated spatially averaged across the power plant (        
       , magenta).  [Right] Power plant output ‘clear-sky index’ measured 

(           , blue) and simulated (         
      , magenta).  
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errors will also be very small. However, when the     is large 

(such as on cloudy days or at long timescales), errors in VR 

can lead to significant errors in     . Additionally,     and 

total power output can be slightly offset in time based on the 

direction of cloud movement and the location of the GHI 

sensor versus the centroid of the power plant. Since the     

describes the variability content (and total variance) rather 

than the time of occurrence, it allows measuring the accuracy 

of the WVM independent of these geographic limitations. 

Fig. 6 shows the    s of         ,             , and 

        
       for both OC and CM. As expected based on 

Fig. 5, the      of the irradiance at a point sensor,        , 

deviates from the     of the spatial average,            , 

at short timescales due to geographic smoothing. There is 

good agreement between simulated and actual    s of the 

power output ‘clear-sky index’ at all timescales. The 

variability at CM at timescales of 2 to 8-sec is higher than 

estimated by the WVM, though this may be caused by 

differences in sensor response times between the GHI and 

power measurements. Since the power content is so small at 

these timescales (       compared to        at longer 

timescales), though, there is little effect on simulated power 

output. At both sites, the WVM (         
       ) 

significantly improved over its input (         ) at 

quantifying the fluctuation power content of the actual power 

output .  

Another validation of the model is to compare the irradiance 

profile of the input GHI point sensor, WVM output areal 

averaged irradiance, and the ‘actual’ area-averaged irradiance 

derived from the power output. To obtain the actual area-

averaged irradiance, we multiply the power output clear-sky 

index by the GHI clear-sky model:  

    ( )         ( )           ( )   . (11)  

The simulated area-averaged irradiance clear-sky index 

must also be multiplied by the GHI clear-sky model to obtain 

simulated areal averaged irradiance: 

       ( )          ( )    
          ( )   . (12)  

Fig. 7 shows that        ( )     is essentially a filtered 

version of     ( ); during long clear or cloudy periods the 

area-averaged GHI approaches the point sensor while short 

fluctuations e.g., at 09:09, are more strongly reduced. The 

timeseries of fluctuations,     ( )     and 

       ( )     are not expected to match perfectly, since 

only a single point sensor is used as input, but the statistics of 

the fluctuations are expected to agree. For the eight minute 

segment shown in Fig. 7a, the ‘upper envelope’ of area-

averaged irradiance is accurately simulated. However, 

especially during long cloud events (large timescales), the 

lower envelope of the power plant is as small as or even 

smaller than the envelope of the point sensor. Physically this 

could mean that the optical depth of the cloud at the point 

sensor was less than the average of the cloud system over the 

power plant (spatial heterogeneity); it could also mean that the 

tilt and azimuth of the PV modules comprising the plant 

(versus the horizontal GHI) resulted in a smaller diffuse 

irradiance at the power plant during these morning hours. 

While the WVM has been shown to match     (Fig. 6) and 

smoothing of area-averaged irradiance (Fig. 7), ramp rate 

statistics are often of greater interest to power plant and grid 

operators. Fig. 8 shows the cdf of ramp rates at 1s, 10s, 30s, 

and 1-min, for both OC and CM.   and      show similar RR 

distributions at all of these timescales. The match between 

RRs is slightly worse at CM, but this is expected since CM is 

  
Fig. 6.  Fluctuation power index (   ) for the GHI point sensor (black), actual power output of (red), and simulated power output (blue line) at (a) Ota City on 

October 12, 2007 and (b) Copper Mountain on October 1, 2011. 

 
Fig. 7. Point sensor GHI (black), power plant area-averaged GHI (red), and 

simulated area-averaged GHI (blue) for Ota City on October 12, 2007. (a) 
Zoomed in to eight minutes in the morning, and (b) the entire day. 
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a larger area than OC. Over the larger area, the irradiance 

statistics may be less homogenous and lead to error in the 

WVM output. For example, half of CM could be consistently 

experiencing partly cloudy conditions while the other half is 

under clear skies. If the sensor used as input to the WVM were 

in the clear-sky section, the WVM would under predict the 

variability of the total plant. This scenario is less likely to 

happen at OC, since the distance across the plant is shorter 

(~1km at OC vs. ~2km at CM).  

C. Comparison to Other Upscaling Methods 

To evaluate the performance of the WVM, we compare it to 

other methods for simulating power plant output. We chose to 

compare to 3 other methods that have been applied for 

upscaling. (1) A primitive method is to simply linearly scale 

the irradiance measured by a single point sensor as       , 

where CF is a constant factor related to the plant area. This 

assumes identical relative variability between the point sensor 

and the whole plant, strongly overestimating variability for all 

but the smallest of PV plants.  (2) Since geographic smoothing 

occurs over certain time scales (Fig. 5), a moving average (or 

box filter) can be applied to an irradiance timeseries. The 

timescale of the moving average can be physically motivated 

from the relation      
    

 
, where   is the plant area and    

is the cloud velocity. While fundamentally similar to the 

WVM, this moving average method is restricted to smoothing 

at  a single timescale (     ), and so cannot take into effect 

different amounts of smoothing at different timescales.  (3) A 

third method is to average the timeseries from all available 

irradiance sensors. This method becomes more accurate as 

more sensors are added and in the extreme case of e.g. one 

sensor per PV panel would be exact.  It requires the PV 

sensors to be representative of the actual plant layout: for best 

results, sensors should be equally spaced and cover the entire 

plant footprint (but not extend past the footprint, or smoothing 

will be overestimated).  

In Fig. 9, the extreme RRs of CM power output for these 3 

methods are compared to the WVM on the test day. For 

method 2, the plant area is 1.33km, and a cloud speed of 10 m 

s
-1

 was assumed, resulting in a moving average 

timescale          . For method 3, the 15 reference cells 

available at CM were averaged.  

Method 1 overestimated the RRs at all timescales, since 

geographic smoothing is ignored. Method 2 also 

overestimated most RRs at all timescales (maximum RRs 

were underestimated), but performed markedly better than 

method 1. Method 2 could be improved by using measured 

cloud velocity instead of an assumed value. Method 3 

overestimated RRs at shorter timescales (1s and 10s), but was 

more accurate at longer timescales (30s and 60s). At short 

timescales when short-distance changes are important, 15 

sensors will not be enough to accurately represent all of the 

PV modules. As the timescale increases, the distances over 

which changes are important will increase, and this 15 sensor 

network will be more accurate in representing the entire plant. 

Since grid operators are often concerned about worst-case 

scenarios, it is important that these simulation methods also 

produce reasonable maximum RRs. Table 2 shows the 

maximum RRs by timescale for each of the simulation 

methods. The WVM showed small percentage errors (-8% to -

20%) at all timescales. Methods 1 and 3 will always 

overestimate the maximum RRs, since at 1 and 15 point 

measurements, respectively, they both underrepresent the 

actual diversity of the plant. As expected, Method 3 

outperformed Method 1 with a range of errors of 8% to 38%. 

  
Fig. 8.  Extreme (    percentile) ramp rate distributions at 1-sec (a, e), 10-sec (b, f), 30-sec (c, g), and 1-min (d, h) for   and      for Ota City (a-d) and 
Copper Mountain (e-h). X-axis units are multiplied by an arbitrary scaling factor to protect the confidentiality of the power data. 

0 0.2 0.4

0.8

0.9

1

abs(RR) [relative units]

c
d
f

1s

 

 

P

P
sim

0 1 2 3

0.8

0.9

1
10s

abs(RR) [relative units]

c
d
f

0 2 4

0.8

0.9

1
30s

abs(RR) [relative units]

c
d
f

0 2 4 6

0.8

0.9

1
60s

abs(RR) [relative units]

c
d
f

a) b)

c) d)

Ota City

0 1 2 3 4 5

0.8

0.9

1

abs(RR) [relative units]

c
d
f

1s

 

 

0 10 20 30

0.8

0.9

1
10s

abs(RR) [relative units]

c
d
f

0 20 40 60 80

0.8

0.9

1
30s

abs(RR) [relative units]

c
d
f

0 25 50 75 100

0.8

0.9

1
60s

abs(RR) [relative units]

c
d
f

P

P
sim

e)

g) h)

f)

Copper Mountain



Lave et al. A Wavelet-based Variability Model (WVM) for Solar PV Powerplants 8 

Method 2, always overestimated the maximum RRs, and had 

moderate errors at most timescales (-0% to -45%).  

Table 2: Maximum RRs for CM on the test day compared to maximum RRs 

simulated using other methods described in Section III.C. Relative units are 

used for RRs to protect confidential data. 

 
 

P WVM 
method 

 1 2 3 

1s 
max RR 0.50 0.46 4.08 0.28 0.68 

% error  -8% 723% -45% 38% 

10s max RR 4.29 3.79 21.80 2.70 4.70 

% error  -12% 408% -37% 9% 

30s max RR 11.19 8.92 24.95 7.88 12.11 

% error  -20% 123% -30% 8% 

60s max RR 15.29 13.70 28.17 15.28 18.02 

% error  -10% 84% -0% 18% 

It is also worth noting the data requirements of each method. 

Aside from method 1 (which requires only a single sensor), 

the WVM has the simplest input requirements, needing just a 

single irradiance sensor and an   value. The   value can either 

be determined from a small network of irradiance sensors (~4-

6), or reasonably estimated based on observed trends in   

values. Method 2 requires the cloud velocity, which is difficult 

to determine since ground wind speeds are not well correlated 

with cloud speeds, and only sparse measurements exist of 

cloud height and winds aloft. Method 3 performs best with a 

high-density sensor network. When such a network is not 

available, the accuracy of method 3 will decrease towards that 

of method 1. Overall, the WVM has simple input requirements 

and is best at simulating extreme and maximum RRs.  

IV. CONCLUSION 

A wavelet-based variability model (WVM) for simulating 

the power output of a solar photovoltaic (PV) plant was 

presented and tested. The WVM uses the plant footprint, 

density of PV modules in the plant, and the timeseries 

measurements from a single point sensor to create a simulated 

power output timeseries. First, correlations between sites (i.e., 

houses or small groups of PV modules) within the power plant 

are determined using an equation based on the distance 

between sites, timescales, and a correlation scaling coefficient 

(   value). From these correlations, variability reductions 

(VRs), or the ratio of variability of a single point sensor to the 

variability of the entire PV plant, at each fluctuation timescale 

are found. Wavelet decomposition is then used to separate the 

normalized input point sensor timeseries by fluctuation 

timescale. By combining the wavelet modes at each timescale 

with the VRs at each timescale, the normalized plant power 

output is simulated. Actual power output (in MW) is then 

obtained by using a clear-sky model for power output. 

The WVM was validated at the 2MW distributed residential 

rooftop plant in Ota City, Japan, and the Copper Mountain, 

NV 48MW central power plant. For both test cases, the WVM 

simulation matched the statistics of the actual power output 

well. Fluctuation power index (   ) comparisons showed that 

the WVM accurately represented variability by timescale at 

both Ota City and Copper Mountain. Ramp rates (RRs) at 1-

sec, 10-sec, 30-sec, and 60-sec were also compared between 

simulated and actual power, and again, the WVM fared well at 

both test sites.  

Comparison between the WVM and other power plant 

simulation methods highlighted the benefits of using the 

WVM. The WVM has reasonable input requirements (single 

sensor and   value), while other methods required harder to 

obtain inputs such as cloud velocity or irradiance from a dense 

sensor network. The WVM was best at matching extreme and 

maximum RRs for the test day at Copper Mountain.  

Future work will concentrate on characterizing the   values 

used in the correlation equation in section II.C. Currently,   

values are determined form a small network of irradiance 

sensors. To allow for broader application of the WVM, we 

will determine how   values vary based on geographic region 

and meteorological condition. Then, a closed form WVM 

program will be created which will estimate the variability of 

potential PV plants for grid integration and siting studies 

without requiring a sensor network.    

 
Fig. 9.  Extreme (>90th percentile) ramp rate cumulative distribution functions 

at CM on October 1, 2011  at 1-sec (a), 10-sec (b), 30-sec (c), and 1-min (d) 

for measured power output (solid red), and for different methods of simulating 
PV power plant output: WVM (dashed blue), method 1: linearly scaling from 

a point sensor (dashed black), method 2: a moving average of 115s 

corresponding to      
    

 
  (dashed green line), and method 3: averaging all 

15 reference cells (dashed magenta line).  
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