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ABSTRACT OF THE THESIS

Predicting In-Hospital Mortality

from Intensive Care Admissions Records

with Recurrent Neural Networks

by

Asa Wilks

Master of Applied Statistics

University of California, Los Angeles, 2021

Professor Guido F. Montufar, Chair

This study explores the implications of different modeling choices when predicting mortality

during intensive care visits using recurrent neural networks. Using the MIMIC-III database,

models were trained and tested with varying memory cells, architectures, and other hyper-

parameters. Performance gains from incorporating information from unstructured clinical

notes was tested as well. The study finds that a range of relatively shallow networks with

varying memory cells and architectures can perform well and produce similar results, all

of which outperform traditional mortality risk scores such as SAPS II. Adding information

from clinical notes boosts model performance even with a simple natural language processing

algorithm. Although methodological differences make direct comparisons complicated, the

most accurate model presented here achieves an AUROC score of 0.943 which represents a

slight improvement over similar prior work.
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CHAPTER 1

Introduction

Machine learning applications in healthcare have increased dramatically in recent years with

varying degrees of success and adoption. One promising area of study is prediction of clinical

events. Not only does a great deal of data exist – in the form of Electronic Health Records

(EHR) and clinical images – but clinicians and researchers were making use of risk scores

derived from the predictions of more traditional statistical models already, before the rise of

modern machine learning algorithms such as deep learning. Recent work has demonstrated

the ability of deep learning algorithms to improve upon the accuracy of traditional risk

scores, and this study seeks to explore the degree to which different network architectures,

memory layers, and model inputs affect that accuracy using the publicly available MIMIC-III

database of EHR records from the Intensive Care Unit (ICU) at a major American hospital.

There are four broad objectives of this study. The first goal is to replicate a specific

benchmarking study to allow for direct comparisons between models derived in that work,

comparing the accuracy of both traditional risk scores and deep learning approaches. A sec-

ond objective is to explore the impact of choices between memory cells, network architecture,

and hyperparameters on the accuracy of ICU mortality prediction tasks. The third objective

is to test accuracy improvements from the inclusion of features derived from unstructured

clinical notes. A fourth and final objective is to explore the extent to which the choice of

evaluation metric impacts the selection of preferred models.

This study produces models of comparable accuracy to prior published work using similar

data, with the most accurate model presented here achieving an AUROC score of 0.943. It

provides evidence that the additional retention provided by the third gate in Long Short-

Term Memory (LSTM) layers yield modest benefits over the simpler and less computationally
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expensive Gated Recurrent Unit (GRU) cells with two gates. The study provides no evidence

that including information from future time steps with bidirectional recurrent layers increases

performance. Unlike most prior work, some of these models include both the structured

medical data from the EHR record as well as the unstructured clinical notes consisting

of free text recorded by clinicians. Although overly simplistic, models show that using

Term Frequency-Inverse Document Frequency (TF-IDF) scores to incorporate this free text

results in accuracy improvements. While this study provides evidence of modeling choices

that result in more accurate mortality predictions in the ICU, it also shows that most of

the accuracy improvements of deep learning approaches over traditional risk scores can be

achieved with shallow and relatively simple Recurrent Neural Networks (RNNs). Further it

is shown that the performance of these networks is relatively robust to a range of different

network architectures. Finally, comparing the model performance over a range of evaluation

metrics underscores the importance of making modeling goals explict before selecting the

preferred model.
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CHAPTER 2

Prior Work

Possibly the most widely used model for ICU mortality prediction based on traditional linear

and generalized linear models is an updated Simplified Acute Physiology Score (SAPS II)

developed by Le Gall, Lemeshow, and Saulnier [1]. The SAPS II score is based on regression

methods using 17 features of the ICU admission and the patient over the first 24 hours of the

admission. An improved version of SAPS II was developed by Pirracchio [2] using a modified

logistic regression approach with the same predictors. These scores form the most commonly

used baselines for judging machine learning prediction of mortality in the ICU, but they are

not the highest performing overall. The most accurate system based on traditional statistical

approaches alone appears to be the Acute Laboratory Risk of Mortality Score (ALaRMS) [3],

which combines patient characteristics with results from clinical and comorbidity software

(highest AUROC 0.90-0.91).

Particularly after the release of the Multiparameter Intelligent Monitoring in Intensive

Care (MIMIC) database, there have been numerous studies focused on predicting ICU mor-

tality with various machine learning algorithms. For example Lee [4] uses the MIMIC

database to predict ICU mortality with random forests, while Li-wei et al. [5] explore

predictions based specifically on cardiovascular variables. In early 2020, Yu and colleagues

[6] published work using Recurrent Neural Networks to predict mortality using a dynamic

framework (highest AUROC 0.885) which produces predictions at each time point instead

of once at the end of a 24-hour period. When direct comparions have been published all

of these approaches have produced better accuracy than SAPS II, but directly comparing

deep learning approaches in the literature is complicated by authors making a variety of

different decisions – for example analyzing only subsets of the data or patients with specific

3



conditions. Further, published work is not always accompanied by computer code that can

be used to replicate the results. Purushotham and coauthors [8] work to solve this problem

by benchmarking a variety of methods for multiple different prediction problems and making

their code available on GitHub (highest AUROC= 0.9410). In an effort to add to their work,

the present study adopts nearly all of Purushotham et al.’s data processing decisions in order

to draw direct comparisons, but tests different modeling arrangements.

Perhaps the most successful and commercially viable work predicting in-hospital mortal-

ity, as well as other clinical events, was led by researchers at Google AI [9]. Unlike most

other work, they use all inpatient hospital records as opposed to the smaller subset of data

from the ICU that exists within MIMIC. The researchers also include all unstructured clin-

ical notes. Their predictions are generated by an ensemble of three algorithms, including

a Long Short-Term Memory Recurrent Neural Network (LSTM RNN), examining all prior

patient records rather than limiting to the single admission. While some modeling details

are available, much work was done on proprietary systems at Google from which no code

is available. The choice of Natural Language Processing (NLP) algorithm is also unclear.

Unlike much prior work, the Google researchers do not use the MIMIC-III data and instead

use data from UCSF and University of Chicago medical centers, reporting AUROC accuracy

on in-hospital mortality prediction of 0.93 and 0.95 for the two hospital systems separately.

Of note, the prediction task the Google researchers faced was more challenging than most

other prior work because their population included non-ICU hospital visits, which typically

produce less data for models to consider.

One of the objectives of this study is to replicate the Purushotham et al. study, allowing

direct comparisons between models. The relevant results from that work are presented in

Table 2.1.

The SAPS II and New SAPS II represent the baseline traditional ICU mortality risk

measures. Included as a deep learning based alternative to SAPS II, the feed forward SAPS

II is a simple feed forward neural network only using the SAPS II inputs as features. The

Multimodal Deep Learning model, the best performing Purushotham et al. model, consists

of applying two dense layers to the time invariant features and one Gated Recurrent Unit
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Table 2.1: Purushotham et al. (2018) Mortality Prediction Accuracy Results using tradi-

tional models SAPS II, New SAPS II and neural network models Feedforward SAPS II and

Multimodal Deep Learning

Model AUROC

SAPS II 0.8035

New SAPS II 0.8235

Feed Forward Network SAPS II 0.8496

Multimodal Deep Learning 0.9410

(GRU) layer for the time varying features before merging and applying two more dense

layers. As shown in Table 2.1, the shallow feed forward network outperforms the traditional

scores when given the same information as features. The Multimodal Deep Learning model

uses all the structured clinical information (but not the unstructured notes) as inputs, and

significantly outperforms the traditional scores.
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CHAPTER 3

Data

3.1 MIMIC-III

The Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-III) database [10] was

developed by the MIT Lab for Computational Physiology and contains data on 61,532 ICU

stays from Beth Israel Deaconess Medical Center in Boston from June 2001 through October

2012. The 26-table relational database includes all the standard components of EHR records

including demographics of the patient, diagnoses, procedures, prescription drugs, microbi-

ological events, lab results, chart events, and free-text clinical notes. The structured data

included in this analysis is taken from the input events, output events, lab events, chart

events, and prescription drug tables. The unstructured free-text doctor’s notes data comes

from the note events table. All time-varying data elements include timestamps in seconds.

Data is deidentified but MIT requires several data security trainings to obtain a Data Use

Agreement and download the files. Table 3.1 displays a summary of the tables in MIMIC-III

along with a brief description. Using MIMIC-III requiers constructing a relational database

from these tables. Tables in the database are linked with a variety of identifiers, including

identifiers for patients, ICU stays, admissions, and caregivers. Other tables include a tempo-

ral component to the linking stategy. Figure 3.1 shows a summmary of a selection of clinical

variables for a hypothetical patient. Data points within an admission are timestamped and

various time series can be constructed as in this example.
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Table 3.1: MIMIC-III Table Names and Descriptions, from MIMIC-III Summary [10]

Table Description

ADMISSIONS Every unique hospitalization for each patient in the database (defines HADM ID).

CALLOUT Information regarding when a patient was cleared for ICU discharge and when the

patient was actually discharged.

CAREGIVERS Every caregiver who has recorded data in the database (defines CGID).

CHARTEVENTS All charted observations for patients.

CPTEVENTS Procedures recorded as Current Procedural Terminology (CPT) codes.

CPT High level dictionary of Current Procedural Terminology (CPT) codes.

ICD

DIAGNOSES

Dictionary of International Statistical Classification of Diseases and Related Health

Problems (ICD-9) codes relating to diagnoses.

ICD

PROCEDURES

Dictionary of International Statistical Classification of Diseases and Related Health

Problems (ICD-9) codes relating to procedures.

ITEMS Dictionary of local codes (’ITEMIDs’) appearing in the MIMIC database, except those

that relate to laboratory tests.

LABITEMS Dictionary of local codes (’ITEMIDs’) appearing in the MIMIC database that relate to

laboratory tests.

DATE-

TIMEEVENTS

All recorded observations which are dates, for example time of dialysis or insertion of

lines.

DIAGNOSES

ICD

Hospital assigned diagnoses, coded using the International Statistical Classification of

Diseases and Related Health Problems (ICD) system.

DRGCODES Diagnosis Related Groups (DRG), which are used by the hospital for billing purposes.

ICUSTAYS Every unique ICU stay in the database (defines ICUSTAY ID).

INPUTEVENTS

CV

Intake for patients monitored using the Philips CareVue system while in the ICU, e.g.,

intravenous medications, enteral feeding, etc.

INPUTEVENTS

MV

Intake for patients monitored using the iMDSoft MetaVision system while in the ICU,

e.g., intravenous medications, enteral feeding, etc.

OUT-

PUTEVENTS

Output information for patients while in the ICU.

LABEVENTS Laboratory measurements for patients both within the hospital and in outpatient clinics.

MICROBIOLO-

GYEVENTS

Microbiology culture results and antibiotic sensitivities from the hospital database.

NOTEEVENTS Deidentified notes, including nursing and physician notes, ECG reports, radiology

reports, and discharge summaries.

PATIENTS Every unique patient in the database (defines SUBJECT ID).

PRESCRIP-

TIONS

Medications ordered for a given patient.

PROCE-

DUREEVENTS

MV

Patient procedures for the subset of patients who were monitored in the ICU using the

iMDSoft MetaVision system.

PROCEDURES

ICD

Patient procedures, coded using the International Statistical Classification of Diseases

and Related Health Problems (ICD) system.

SERVICES The clinical service under which a patient is registered.

TRANSFERS Patient movement from bed to bed within the hospital, including ICU admission and

discharge.
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Figure 3.1: Sample Patient Stay, from MIMIC-III Summary [10]
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3.2 Structured Clinical Data Processing

This research nearly replicates the initial data preprocessing from Purushotham et al., which

is discussed in detail in their paper, and major points are presented here. Like Purushotham

et al., this study excludes patients under age 16 at the time of admission. In cases where

the patient was admitted multiple times between 2001 and 2012, only one admission is

included. Unlike the Purushotham et al. work, which keeps only the first record for patients

with multiple admissions, this study selects an admission at random. Keeping only the first

admission in an analysis of mortality has the effect of classifying all patients with multiple

admissions as survivors, which is a departure from any real-world data these models might

encounter. This decision results in in a slightly higher death rate – 11.15 percent compared to

10.49 percent in Purushotham et al. Table 3.2 summarizes the outcome variable, in-hospital

deaths, and shows that there were 3,974 deaths among 35,644 admissions. From the data

available within MIMIC-III it is possible to track survival after the patient is released from

the hospital in order to construct measures of 30-day or 60-day mortality, but those measures

are beyond the scope of this study.

Table 3.2: MIMIC-III Sample Summary: Admissions and Deaths

Admissions 35,644

In-hospital Deaths 3,974

In-hospital Death Rate 0.1115

As is common in medical data, MIMIC includes a nontrivial amount of data errors,

missingness, and other general noise, and some basic data cleaning was undertaken. Values

were multiplied by factors of ten to convert to common units - typically grams, milligrams,

or milliliters – unless more than 90 percent of the records were the same unit, in which case

records with other units were set to missing. For events of the same type occurring at exactly

the same time, values were averaged (for continuous variables) or the first ordered value was

selected (for categorical variables). Finally, some variables had values that represented a

range at a given timestamp and in these cases the median was used.

9



Variables with repeated observations were set up in a time series of one record per hour

through the first 24 hours of the ICU stay. Within each ICU admission, if multiple obser-

vations were recorded for a given variable during the hour these were either summed (for

input/output events like fluids or medications) or averaged (for other variables such as heart

rate, body temperature, etc). If an admission has gaps in these variables, forward and back-

ward imputation was undertaken within the admission using hourly records before or after

the gap. Variables that were completely missing during the stay were imputed with the

mean within training and validation samples separately.

The SAPS II score is derived from a logistic regression model predicting mortality from

17 variables, including 12 physiological variables, presence of drug overdose, length of stay

prior to being admitted to the ICU, clinical category, source of admission to the ICU, age,

and sex. The values of the physiological predictors in the model are determined by the

worst value for each during the first 24 hours of the ICU stay. The SAPS II model produces

both a raw score and a predicted probability of death. The predicted probability of death

is typically used as a risk control in broader analyses of patient health rather than a clinical

tool to alert clinicians of elevated risk. Table 3.3 summarizes the hourly average of the raw

numeric inputs required for computation of the SAPS II score, among the most important

features for predicting mortality. The full list of 136 features derived from the structured

clinical data is shown in Appendix A.

3.3 Unstructured Text Processing

Clinical notes records, not considered in the Purushotham et al. study, were processed

separately. Within each admission, all notes occurring within the same hour for the first 24

hours were appended together such that each admission has 24 “bags of words” corresponding

to each hour. In the bag of words conceptualization, rules of grammar, punctuation, and the

sequence of words are ignored, and only the frequencies are stored [17]. Hourly note records

were then stripped of stop words, punctuation, digits, and made lower case. As no other

cleaning was performed on the notes, they contain all manner of abbreviations, typographical

10



Table 3.3: SAPS II Inputs from Structured Clinical Data

Feature Mean Standard Deviation

Age (days) 27,280.87 19,953.74

Glasgow Coma Scale - Verbal 2.93 1.90

Glasgow Coma Scale - Motor 5.24 1.44

Glasgow Coma Scale - Eyes 3.24 1.09

Systolic Blood Pressure 121.82 144.13

Heart Rate (beats per min) 89.17 4,677.05

Body Temperature (Celsius) 37.04 2.38

Partial Pressure of Oxygen (PaO2) 143.19 94.77

Fraction Inspired Oxygen (FiO2) 27.27 32.73

Urine Output 131.25 2,920.01

Serum Urea Nitrogen Level (mmol/l) 29.00 23.37

White Blood Cell Count (103/mm3) 11.42 9.80

Serum Bicarbonate Level (mmol/l) 25.28 4.86

Sodium Level (mmol/l) 138.51 5.40

Potassium Level (mmol/l) 4.12 0.94

Bilirubin Level (mg/dl) 3.67 7.20
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errors, and other noise. Term frequency - inverse document frequency (TF-IDF) was then

implemented using the scikit-learn vectorizer, requiring each word to be in a minimum of 5

records and to be present in less than 50 percent of records to receive a score. Results were

saved for the top 250, 1,000, 2,500, and 4,000 words. The natural language processing is

disussed in more detail in section 4.1.5 of the methods chapter.

3.4 Processed Data Structure

After the various data preparation steps outlined above, the structured data takes the form of

a tensor with dimensions 35,644 (number of admissions), 24 (number of hours per admission),

and 136 (number of features from the structured data). For models including the clinical

notes the number of features rises, reaching 4,136 for the 4,000 word case. This includes the

136 features and Term Frequency-Inverse Document Frequency (TF-IDF) scores for the top

4,000 words. Prior to analysis this data is split into training (60 percent), validation (20

percent), and test (20 percent) sets. All results are reported on the test set, which was not

used for training or validation.

12



CHAPTER 4

Methods

4.1 Network Architecture

4.1.1 Recurrent Neural Networks

All neural networks explored were Recurrent Neural Networks (RNNs) designed for sequence

data [14]. Because many features are used to make a single classification prediction, the

RNNs in this study have many-to-one network architectures. RNNs are a class of deep

neural networks that make information from prior time steps in the sequence available to

predict current and future time steps. The RNN accomplishes this by maintaining a hidden

state that is updated after each time step. Figure 4.1 illustrates a deep many-to-one recurrent

neural network such as those used in this study. In this case, the inputs x represent the set

of features measured at each of 24 hourly time steps with k hidden layers. Each hidden layer

is a collection of neurons that performs a nonlinear transformation on inputs from the prior

layer and passes output to the subsequent layer.

The basic memory cells in simple RNNs, which control the information passed forward

in the hidden state, often result in a vanishing or exploding gradient problem that makes

it difficult if not impossible for the network to learn dependencies more than a few time

steps away. Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) cells are

popular solutions that allow for signal to be effectively carried forward as the sequence is

processed. In general, GRUs are less computationally expensive to train but LSTMs can

have somewhat better performance.

13



Figure 4.1: Many-to-One Deep Recurrent Neural Network. Inputs x and hidden state vari-

able h produce a single prediction as an output.

4.1.2 Gated Recurrent Units

Gated Recurrent Units, developed by Kyunghyun Cho et al. [7], include an update gate (Γu)

and a reset gate (Γr) to carry information across time steps. The update gate determines

the information passed to future steps, while the reset gate determines what information is

discarded. The structure of the GRU memory cell is summarized in the Figure 4.2. In this

single cell, the update gate z determines whether to update the hidden state h and reset

gate r determines whether to ignore the prior hidden state.

4.1.3 Long Short-Term Memory

Long short-term memory cells have additional forget and output gates [15]. The forget gate

(Γf ) determines how much information from the previous hidden state is retained and the

output gate (Γo) determines the hidden state for the next time step. A value for a given time

step represents the activation of the inputs for that time step multiplied by their weights,

14



Figure 4.2: GRU Memory Cells, with Update Gate z, Reset Gate r, and Hidden State h,

from Cho et al. [7].

plus the hidden state value from the prior time step multiplied by its own weights. The

structure of the LSTM memory cell is summarized in Figure 4.3, showing two LSTM cells

in a sequence.

4.1.4 Bidirectional Layers

Bidirectional RNN layers connect layers processing the time series both in order and then in

reverse order [16]. The outputs from both directions are combined for each time step, allowing

the network to include information from both the past and the future during the current

time step. The resulting network therefore has more parameters than a similar unidirectional

layer. Figure 4.4 illustrates the flow of information forwards as well as backwards through

the timesteps.

4.1.5 Term Frequency-Inverse Document Frequency

The unstructured clinical notes were processed using the term-frequency inverse document

frequency (TF-IDF) algorithm. For each admission, notes were combined hourly for the first

24 hours and each hourly record was considered a document. Term frequency scores are first

computed for each word by dividing each word’s frequency in a document by the total number

15



Figure 4.3: LSTM Memory Cells, from Hochreiter and Schmidhuber [15].
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Figure 4.4: Bidirectional Recurrent Neural Network, Adapted from Shuster and Paliwal [16]

of words in that document. The inverse document frequency is computed as the log of the

total number of documents divided by the number of documents containing the word. The

TF-IDF score is computed as the product of the term frequency and the inverse document

frequency and provides a measure of how common a word is in a document compared to

other documents. Equations 4.1 - 4.3 below capture the TF-IDF scoring algorithm.

TFt =
Occurences of Term t in a Document

Number of Terms in the Document
(4.1)

IDFt = log

(
Number of Documents

Number of Documents including Term t

)
(4.2)

TFIDFt = TFt(IDFt) (4.3)

A high TF-IDF score for a term means the term had a combination of high frequency

within that hour’s notes and a low prevalence across all other hours of notes and all other

admissions. In order to limit to relevant features, words were not scored if they appeared

less than 5 times across all notes. Words that appeared in more than half of notes were

similarly excluded.

Figure 4.5 shows a prototypical example of the note processing (with segments truncated

and scrambled to avoid using an actual data point as an example), which also demonstrates
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Figure 4.5: Scrambled and De-Identified Example of Note Processing
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why TF-IDF scores are almost surely an overly simplistic tool for this problem. The algo-

rithm is simply comparing frequency and not discerning meaning. For example, part of the

cleaned note reads “the lungs are clear and there are no pleural effusions.” This note would

receive the same TF-IDF scores for ‘pleural’ and ‘effusions’ regardless of whether the doctor

indicated their presence or absence, or whether these words were even directly adjacent to

one another in the note. More sophisticated NLP processing could potentially combine al-

gorithms to consider phrases as opposed to words. Further, more sophisticated work could

employ algorithms that take advantage of an existing corpus of clinical notes and perform

sentiment analyses to classify notes’ tone as positive, negative, or nuetral with respect to a

patient’s health. These techniques were beyond the scope of this study, which simply tests

the value of the TF-IDF scores in prediction as a baseline.

4.2 Computation

4.2.1 Optimization

Neural networks are trained iteratively, with parameters being adjusted to minimize pre-

diction error in the training set. Stochastic gradient descent is by far the most commonly

used algorithm used to tackle this optimization problem, and there are many extensions [14].

Two popular stochastic gradient descent optimization algorithms were tested in the course of

this study. The RMSProp, or Root Mean Square Propagation, algorithm was suggested by

George Hinton in a Coursera lecture [11] and was initially used in this study in keeping with

the Purushotham et al. work. The RMSProp algorithm automatically adjusts the learning

rate and allows rates to vary across parameters. In RMSProp each parameter is updated

according to the following equations. George Hinton’s suggested default is β = 0.9.

mt = βmt−1 + (1− β)g2t (4.4)

wt+1 = wt −
η

√
mt + ε

gt (4.5)

Some experimentation with optimizer choice made it clear that the Adam algorithm
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was superior over a range of different model architectures. Adam, or Adaptive Moment

Optimization, also calculates adaptive learning rates for each parameter but adds a momen-

tum component [12]. The following equations (4.6) and (4.7) represent the first and second

moments of the gradient, respectively:

mt = β1mt−1 + (1− β1)gt (4.6)

vt = β2vt−1 + (1− β2)g2t (4.7)

The bias corrected equations are:

m̂t =
mt

1− βt
1

(4.8)

v̂t =
vt

1− βt
2

(4.9)

And the parameter update equation is:

wt+1 = wt −
m̂tη√
v̂t + ε

(4.10)

After some experimentation with Adam’s hyperparameters β1, β2, and ε, the default

values proposed by the authors of Adam (0.9, 0.999, and 10−8 respectively) were selected for

results presented here. Through evaluation of the accuracy on the validation set of learning

rate parameters 0.001, 0.0075, 0.0005, and 0.00025 a learning rate of 0.0005 was selected.

4.2.2 Regularization

Both L2 regularization, dropout, and a combination of the two were tested. L2 regularization

reduces overfitting by applying a penalty for large weights in the loss function, based on the

norm of the weights [14]. Weights regularized with an L2 penalty may shrink dramatically

but, unlike L1 regularization, will not typically shrink to zero [18]. L2 regularization was

applied to the input weights on the RNN units using the kernel regularizer in Keras within
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TensorFlow [19]. Dropout regularization works by randomly dropping units from the network

to avoid overfitting by too heavily relying on a small subset of the weights. Regularization

for the RNNs included both dropout and recurrent dropout, where units are dropped from

the recurrent state. While L2 regularization was effective in some cases, especially when

combined with a low level of dropout, it proved difficult to tune. The level of L2 regularization

that was effective for one network often resulted in either overfitting or underfitting when

applied to another model. The combination of dropout and recurrent dropout, however,

proved effective for most models with minimal tuning. Therefore, final models presented

here do not include L2 regularization and instead include dropout of 0.2, meaning that one

fifth of units were dropped out.

4.2.3 Performance Metrics

The primary accuracy metric used in this study is the area under the reciever operating

characteristic (AUROC), also known as the AUC or c-statistic. The reciever operating

characteristic curve is a plot of the sensitivity against the specificity, and the AUROC metric

provides balance when comparing model performance in terms of false positives and false

negatives [18]. In mortality prediction this reflects both the percent of deaths correctly

classified and the percent of survivals correctly classified [13]. An AUROC score of 1.0

corresponds to a perfect classifier and a score of 0.5 corresponds to a random classifier.

Model loss was used as the metric for model selection. A TensorFlow callback was written

which tracked validation loss after each epoch and saved an updated model each time the

validation loss improved. The AUROC is perhaps the most widely used metric for binary

classification tasks, and it was selected to allow for comparisons with other work. However,

other performance measures were computed as well.

The overall accuracy is reported throughout, reflecting the percent of correct predictions

overall. This metric can be useful when comparing models, but it does not account for

the fact that the data is unbalanced, with survival far more common than death. Recall,

a measure of sensitivity, is computed as the True Positive Rate, which in this case is the
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percentage of ICU deaths that were correctly classified as such. Precision, a measure of

specificity, can be measured by computing the Positive Predictive Value, or the number

of true positives divided by the sum of true and false positives. In other words, precision

represents the share of all predicted deaths that were actual deaths. In probability terms,

recall in this study is the probability of predicted death conditional on an actual death, while

precision is the probability of an actual death conditional on a predicted one. Finally, the

F1 score is also reported. Seeking to balance precision and recall the F1 score is computed

as:

F1 =
1

1
2
( 1
recall

+ 1
precision

)
(4.11)

4.2.4 Statistical Computing

The scale of computation required for both data preparation and analysis was too great

for a standard personal machine, and this study used cloud-based services for all statistical

computing. For full functionality the MIMIC-III data must be deployed as a relational

database with 26 tables. In this case, the database was stood up from zipped .csv files

using PostgreSQL 12 on Amazon’s Relational Database Service (RDS) within Amazon Web

Services (AWS). Raw data was loaded into tables, applying indexes to speed processing and

running completeness checks. The RDS instance was of class db.m5.2xlarge with 8 CPUs

and 32GB of RAM, allowing for parallelization during the data preparation step by ensuring

the database was capable of efficiently processing multiple queries simultaneously.

Primary data preparation computation was done within an AWS Elastic Computing

(EC2) instance. After configuring and assigning appropriate permission groups, the EC2 in-

stance was able to pass queries to the RDS instance and store the results. The EC2 instance

was of class c5d.12xlarge, designed for high performance computation, networking and stor-

age, with 48 CPUs and 96GB of RAM running on Amazon Linux. All data preparation

code was written in Python 3. Queries were passed to the PostgresSQL database instance

using the ‘psycopg2’ package, and parallelization was done using the ‘multiprocessing’ pack-
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age. Using these packages tandem, each of the 48 CPUs in the EC2 instance could act as

an independent worker node sending distinct PostgreSQL queries to the RDS instance and

retrieving results.

Once ready for analysis, the data was moved from Amazon’s Elastic Cloud Compute

(EC2) instance to an Amazon Simple Storage Service (S3) bucket and transferred to the

RAND Corporation’s in-house platform known as the Analytic Cloud Computing Service

(ACCS). The RAND ACCS platform is a secure and compliant solution running on Amazon

Web Services (AWS) cloud infrastructure, which is only accessible from within the RAND

private network. Besides access restrictions, the RAND ACCS platform generally functions

as AWS does, with the same products available at the same prices. Models were trained

with Deep Learning Machine Images (AMIs) on Ubuntu Linux using the P2 and G3 class

GPU instances, scaled up depending on network size.

4.3 Summary of Tested Models

To aid interpretation of the results presented in this study, a concise summary the neural

network attributes that are fixed and those that vary is provided here. Models of varying

depth and with varying types of recurrent layers are presented, but all hidden layers contain

136 nodes. This number was chosen to match the number of inputs from the structured

clinical data. The number of nodes per hidden layer was kept constant and the number

of overall parameters was instead varied by adding or subtracting layers in the network.

Some experimentation provided no reason to believe that shallower networks with greater

numbers of nodes, or the opposite, would have a meaningful effect on the results. After some

tuning, the Adam optimizer was used throughout with a learning rate of 0.0005 and Beta

1 and Beta 2 were set at 0.9 and 0.999, respectively. Batch size was set at 100 in keeping

with the Purushotham et al. work after some experimentation provided no support for

changing it. All recurrent layers used the TensorFlow defaults of tanh activation and sigmoid

recurrent activation functions. After experimentation with L2 regularization combined with

varying levels of dropout, a fixed dropout rate of 0.2 was selected across all models presented
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here. A TensorFlow callback was written to preserve the model with the lowest validation

loss, and all results reported here are based on the 20 percent test set which was held out

completely. Finally, models excluding clinical notes features were trained for 250 epochs

(passes through the entire dataset) while models including the notes were trained for 500

epochs, as it appeared they were still learning after 250. Its also worth noting that while the

data preparation decisions were chosen to nearly match the Purushotham study the model

attributes were not - that study used the RMSProp optimizer with a higher learning rate

and a lower dropout rate, and only used GRU recurrent layers without exploring LSTM or

bidirectional layers.
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CHAPTER 5

Results

The results presented here are organized according the objectives of the study. The first

section demonstrates replication of the Purushotham et al. work, compares results from

shallow RNNs to traditional methods like SAPS II, and explores implications of modeling

choices with shallow networks. The second section shows the results of experimenting with

deeper networks. The third section tests gains in accuracy from including information from

unstructured clinical notes. Finally, the fourth section explores the sensitivity of model

selection to the use of different evaluation metrics.

5.1 Shallow Recurrent Neural Networks

Table 5.2 shows the initial set of results for this study, presenting models with one or two

recurrent layers using all features except the unstructured notes. A primary objective of this

study is to compare results to the Purushotham et al. work, and the feed forward version of

SAPS II is designed to exactly replicate their result from Table 2.1. Running the same Feed

Forward model with nothing but the SAPS II predictors yields and AUROC score of 0.8401

compared to 0.8496 in the comparison work. As mentioned previously, this study made use

of the same data with nearly identical data processing protocols. The single exception is

that for patients with multiple admissions, the Purushotham et al. work selected the first

admission while here a single admission was selected randomly. This means there are slightly

more deaths in this study, and the somewhat lower AUROC score for the replicated feed

forward network suggests the randomly selected admissions were slightly harder to classify.

Another key objective of this study was to compare the accuracy of various RNN struc-
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Table 5.1: Shallow Networks without Clinical Notes

Model Hidden Layers AUROC Accuracy F1 Score

FFN SAPS-II 4 0.8401 0.8964

GRU 1 0.9318 0.9299 0.6449

GRU 2 0.9309 0.9266 0.6082

LSTM 1 0.9311 0.9289 0.6366

LSTM 2 0.9394 0.9313 0.6392

Bidirectional LSTM 1 0.9353 0.9331 0.6600

Bidirectional LSTM 2 0.9384 0.9324 0.6471

tures for mortality prediction with EHR data to more established clinical risk scores. Its

clear from comparing the results of Table 2.1 to those from Table 5.1 that that AUROC

performance of the shallow RNNs is much higher relative to the traditional SAPS II scores.

The traditional methods in Table 2.1 show AUROC scores of 0.80 and 0.82 for SAPS II and

New SAPS II, respectively, but all of the shallow RNNs acheived an AUROC of at least

0.93. Another important result is that perfoemace is quite similar across the RNN models,

with AUROC between 0.93 and 0.94 on all the shallow RNNs despite different memory cells

and network architectures. Despite their similarities, some notable patterns were apparent.

The models generally benefitted slightly from an additional recurrent layer. Comparing the

networks with two recurrent layers across memory cell types, it also appears that the ad-

ditional gate in the LSTM memory cells adds some benefit when compared to the simpler

GRU cells. Finally, although it seems plausible that incorporating information from future

events might aid in prediction, that does not appear to be the case. The networks with

bidirectional LSTM layers had very similar but slightly inferior AUROC scores compared

the unidirectional networks, which is particularly notable since each bidirectional layer has

more parameters than the unidirectional layers. Because models were selected based on the
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Table 5.2: Deeper RNNs

RNN Hidden Layers AUROC Accuracy F1 Score

LSTM 3 0.9406 0.9338 0.6478

Bidir. LSTM/LSTM/GRU 3 0.9365 0.9308 0.6383

LSTM/Dense 3 0.9374 0.9315 0.6504

Bidir. LTSM/LSTM/LSTM 3 0.9382 0.9311 0.64853

Bidir. LSTM/Dense 3 0.9344 0.9264 0.59522

LSTM 4 0.9389 0.9324 0.64507

lowest validation loss, this result is not due to overfitting the networks with bidirectional

layers. Finally, allthough much better performing than traditional methods (or the feed

forward network with only the traditional predictors as features) the best of these models

also have slightly lower AUROC scores than the most accurate Purushotham et al. model

which acheived an AUROC score of 0.941.

5.2 Deeper Recurrent Nerual Networks

Table 5.2 shows results from a selection of deeper recurrent networks. A variety of combina-

tions were tried, including architectures which added a dense layer prior to the output layer.

All models showed good – and similar – performance but the only model that resulted in

better performance than the model with two unidirectional LSTM layers was the model with

three such layers. This model has a nearly identical AUROC score to the best Multimodal

model from the Purushotam et al. study (AUROC of 0.9406 and 0.9410, respectively), shown

in Table 2.1.

All other configurations of GRU, bidirectional, or dense layers had slightly worse AUROC

scores. Notably, a model with four unidirectional LSTM layers slightly underperformed the

three-layer version. While far from an exhaustive list of all possible configurations, the

results broadly confirm that unidirectional LSTM is the best choice for the problem even
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though good performance was obtained from all models. Again, the lack of performance gains

from the bidirectional layers is especially notable since these layers include more parameters

overall.

5.3 Networks Including Clinical Notes

Another primary goal of the study was to explore potential performance gains from adding

information from clinical notes. Results from the models without clinical notes suggested

no added benefit from a bidirectional layer, but with TF-IDF scores for words now included

as features that may no longer be the case. Table 5.3 shows results for a variety of network

architectures including the same 136 features from the structured clinical data and an ad-

ditional 2,500 features from the clinical notes, trained for 250 epochs. These new features

represent words with the top 2,500 TF-IDF scores. If one of these words was present in

the notes during the hour, the feature takes the value of the TF-IDF score, otherwise it

takes a value of zero. The three-layer unidirectional LSTM network, the best performing

model without the notes features, also has the highest AUROC score when including them

and the score has risen, although only slightly. The model with two bidirectional LSTM

layers has a similar score but the fact that this model has more parameters without better

performance suggests that the bidirectional part of the layer is not important to the model.

As in the models without including notes, models with GRU layers had similar but slightly

worse performance and adding a dense layer before the output layer was not helpful. Notably

inclusion of the notes has led the best models here to perform with higher accuracy than the

best model from the Purutosham et al. study which did not include the notes.

By tracking training and validation loss, its was also unclear that the three-layer uni-

directional model was done training after 250 epochs. Figure 5.1 plots loss and AUROC

score over the epochs for the three-layer unidirectional LSTM including no clinical notes fea-

tures, 1,000, and 2,500 clinical notes features trained for 500 rather than 250 epochs. While

progress had mostly flattened out, training continued slowly and the selected best model (as

defined by smallest loss) occurred in epoch 268 with no clinical notes features, epoch 345
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Table 5.3: Networks with 2,500 Clinical Notes Features, Trained for 250 Epochs

Hidden Layers AUROC Accuracy F1 Score

Bidir. LSTM 2 0.9414 0.9325 0.6653

Bidir. LSTM (2), GRU 3 0.9403 0.9327 0.6537

Bidir. LSTM (2), Dense 3 0.9357 0.9303 0.6775

LSTM 3 0.9418 0.9341 0.6676

with 1,000, and epoch 414 with 2,500 notes features. As a final test of the value of adding

clinical note TF-IDF scores, Table 5.5 shows the results of this model, along with results

of three-layer unidirectional LSTM models trained for 500 epochs using 0, 250, 1,000, and

4,000 clinical notes features.
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Table 5.4: Networks with a Range of Clinical Notes Features, Trained for 500 Epochs

RNN Hidden Layers Note Features AUROC Accuracy F1 Score

LSTM 3 0 0.9408 0.9327 0.6486

LSTM 3 250 0.9400 0.9310 0.6506

LSTM 3 1,000 0.9415 0.9328 0.6576

LSTM 3 2,500 0.9432 0.9321 0.6361

LSTM 3 4,000 0.9425 0.9320 0.6457

Training the model with three unidirectional LSTM layers and no clinical notes features

for 500 epochs barely increased the AUROC score. This was expected as the validation

loss plots suggested the model was done training, but the result is important in that this

model with no note features achieves almost exactly the same AUROC score as the highest

performing model from the Purushotham et al. study – 0.9408 compared to 0.9410, despite

using different models – and models including clinical notes show higher AUROC scores than

the comparison study. As more clinical notes features are included the scores generally rise,

although not dramatically, until the 4,000 word model which does not show improvement.

While relatively minor, the higher accuracy of models using a simple natural language pro-

cessing algorithm to generate features from the notes suggest this information should not

be routinely ignored in attempts to build predictive algorithms for EHR data. The fact

that the relatively simplistic TF-IDF metric can improve performance suggests that a more

complex representation of the notes, which captures words’ meaning rather than simply their

frequency, may result in an even bigger performance increase.

5.4 Comparison of Evaluation Metrics

The AUROC score was used as throughout as the primary performance metric by which

models were compared, but there are important reasons to pay attention to additional per-

formance metrics as well. Table 5.5 shows the full set of performance metrics for a selection

of the higher performing models of various types. For the model with two hidden GRU lay-
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Table 5.5: Full Evaluation Metrics for Selected Models

RNN Note Features AUROC F1 Score Recall Precision

GRU (2) 0 0.9311 0.6082 0.4921 0.7961

LSTM (3) 0 0.9406 0.6478 0.5261 0.8427

LSTM (2), Dense 0 0.9396 0.6775 0.5806 0.8132

LSTM (3) 250 0.9400 0.6506 0.5552 0.7856

LSTM (3) 1000 0.9415 0.6576 0.5576 0.8014

LSTM (3) 2500 0.9432 0.6361 0.5127 0.8376

LSTM (3) 4000 0.9425 0.6457 0.5358 0.8125

ers, the performance measures are all in agreement that the model is inferior to the others.

However for the higher performing deeper LSTM networks the metrics show some ambiguity

in which model is highest performing. Based on the primary AUROC metric, the network

with three hidden LSTM layers and 2,500 clinical note features is the highest performing.

However, the model with the highest F1 score - if only by a small margin - is the model with

two LSTM layers and a dense layer with no clinical notes included. Examining the perfor-

mance of these models based on precision and recall separately highlights the importance of

defining a model’s purpose before selecting the “best” model. If the goal of the model is to

estimate patient risk to use as a covariate in the context of a broader study, model builders

might prefer the model with highest precision, as this metric summarizes the probability of

death conditional on a predicted death. On the other hand, if the model were to be used in

a clinical setting alerting doctors to a patient in a dire situation, model builders might prefer

the model with the highest recall since this metric captures the share of true deaths that

were accurately predicted as such, and thereby minimizes highly undesirable cases where a

patient who is predicted to survive actually dies. It is instructive that the model with the

highest precision rates relatively poorly on recall, and vice versa, while these two models

look relatively similar in terms of the balanced AUROC and F1 score metrics.
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CHAPTER 6

Conclusion

This study implemented many variations of Recurrent Neural Networks for predicting mor-

tality in the ICU and documented the implications for model performance. One general

conclusion is that a range of popular choices of RNN architecture, memory cells, and hyper-

parameters can achieve good (and similar) results. However the results here also show that

some modeling choices consistently led to better performance in this context. Throughout

the study, LSTM layers generally performed somewhat better than GRU layers which sug-

gests that the additional gates in the LSTM cells provide performance gains at the cost of

additional computing power. Secondly, although it seems intuitive that using information

from future timesteps to predict a current timestep in the ICU whould be beneficial, this

study found no evidence that using bidirectional RNN layers yields performance gains. The

RNNs with bidirectional layers tended to be no more accurate, and in some cases slightly

worse performing, than unidirectional layers, despite the fact that these bidirectional lay-

ers include more parameters. Additionaly, this study concludes that the Adam optimizer

outperforms the RMSProp optimizer and found no evidence to support deviating from the

authors’ proposed default parameter of β1, β2, and ε as 0.9, 0.999, and 10−8 respectively.

Another contribution of this study is exploring the addition of unstructured free-text

clinical notes in combination with the more commonly used structured clinical data. The

TF-IDF algorithm used here for natural language processing represents more of a first step,

or proof of concept, approach than something that would be implemented in a production

environment. The TF-IDF algorithm is overly simplistic for these purposes because it only

measures the relative frequency of individual words in the note without considering phrases

of multiple words or even attempting to determine the presence or absence conditions or
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treatments that are mentioned. A more sophisticated approach might consider phrases rather

than just words, attempt to locate a previously assembled clinical notes corpus, and perform

a sentiment analysis to classify each note as postiive, negative, or nuetral with respect to

patient prognosis. Still, that even a very basic NLP approach resulted in higher accuracy,

even by relatively small margins, suggests that this data source should not be ignored, and

additional performance gains could result from more sophisticated text processing.

Placing the results of this study in the context of prior work, all models investigated here

had non-trivially higher accuracy than the widely used SAPS II score [1]. This is a result

that has been found consistently in the existing research on mortality prediction in the ICU.

With respect to the Purushotham et al. work [8], from which this study borrows most data

processing decisions, the best performing model presented here without considering clinical

notes achieves nearly identical performance compared to the best performing Purushotham

model despite significantly different modeling choices. Models that included processed clin-

ical notes features, not considered by Purushotham et al., slightly outperformed the models

in that study, although no performance gains were found after 2,500 TF-IDF score features.

Although the models here are less comparable to other previous work due to methodological

and data differences, models in this study generally have comparable AUROC performance

to other published work. For example, the accuracy of the higher performing models in this

study is within the range of the results reported by Google AI [9]. Google AI processes the

notes with more sophisticated NLP algorithms and uses an ensemble of multiple prediction

techniques but also faces a more challenging prediction task in that predictions are made for

all hospital admissions not just those in the ICU.

Finally, examining alternative performance metrics underscores the extent to which model

selection is sensitive to the choice of metric. The AUROC statistic is clearly the most widely

used metric in current mortality prediction work, but another balanced metric – the F1

score – could also be chosen and would sometime yield different results. For some purposes

a balanced metric may not be the most appropriate choice at all. For example models with

the goal of generating accurate risk controls to be used as inputs in another model – as

is often the case with SAPS II – may prefer to maximize precision. Models such as those
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developed by Google AI, which are intended to be clinical tools, may be better off focusing

on recall since most clinicians would likely have a higher tolerance for false alarms than for

undetected fatal conditions. The results here show that models chosen to maximize recall

may do so at the expense of precision, and vice versa, so carefully selecting metrics at the

outset is important.
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APPENDIX A

Appendix

Table A.1: Full list of inputs from structured clinical data

and the table from which they were drawn

Data Element MIMIC-III Table

AlarmsOn CHARTEVENTS

arterial pressure mean CHARTEVENTS

ArterialBloodPressurediastolic CHARTEVENTS

ArterialBloodPressuremean CHARTEVENTS

body temperature CHARTEVENTS

CentralVenousPressure CHARTEVENTS

diastolic blood pressure mean CHARTEVENTS

fio2 CHARTEVENTS

Gcseyes CHARTEVENTS

Gcsmotor CHARTEVENTS

Gcsverbal CHARTEVENTS

Glucose CHARTEVENTS

Glucosefingerstick CHARTEVENTS

heart rate CHARTEVENTS

HeartRateAlarm-Low CHARTEVENTS

Height CHARTEVENTS

ie ratio mean CHARTEVENTS

Continued on next page
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Table A.1 – full list of structured inputs continued from previous page

Data Element MIMIC-III Postgres Table

MeanAirwayPressure CHARTEVENTS

MinuteVolume CHARTEVENTS

MinuteVolumeAlarm-High CHARTEVENTS

MinuteVolumeAlarm-Low CHARTEVENTS

O2Flow CHARTEVENTS

Peakinsp.Pressure CHARTEVENTS

PEEPset CHARTEVENTS

PulmonaryArteryPressurediastolic CHARTEVENTS

PulmonaryArteryPressuremean CHARTEVENTS

PulmonaryArteryPressuresystolic CHARTEVENTS

RespAlarm-High CHARTEVENTS

RespiratoryRate CHARTEVENTS

RespiratoryRate(Set) CHARTEVENTS

SkinCare CHARTEVENTS

spo2 peripheral CHARTEVENTS

SpO2DesatLimit CHARTEVENTS

systolic blood pressure abp mean CHARTEVENTS

TidalVolume(observed) CHARTEVENTS

TidalVolume(set) CHARTEVENTS

weight CHARTEVENTS

Albumin 5% INPUTEVENTS

Calcium Gluconate INPUTEVENTS

D5 1/2NS INPUTEVENTS

dopamine INPUTEVENTS

epinephrine INPUTEVENTS

fentanyl INPUTEVENTS

Continued on next page
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Table A.1 – full list of structured inputs continued from previous page

Data Element MIMIC-III Postgres Table

Fresh Frozen Plasma INPUTEVENTS

Furosemide (Lasix) INPUTEVENTS

Gastric Meds INPUTEVENTS

GT Flush INPUTEVENTS

Hydralazine INPUTEVENTS

Insulin - Regular INPUTEVENTS

KCL (Bolus) INPUTEVENTS

Lorazepam (Ativan) INPUTEVENTS

LR INPUTEVENTS

Magnesium Sulfate INPUTEVENTS

Magnesium Sulfate (Bolus) INPUTEVENTS

midazolam INPUTEVENTS

Midazolam (Versed) INPUTEVENTS

Morphine Sulfate INPUTEVENTS

Nitroglycerin INPUTEVENTS

Norepinephrine INPUTEVENTS

OR Crystalloid Intake INPUTEVENTS

Packed Red Blood Cells INPUTEVENTS

Phenylephrine INPUTEVENTS

Piggyback INPUTEVENTS

PO Intake INPUTEVENTS

Potassium Chloride INPUTEVENTS

Propofol INPUTEVENTS

Solution INPUTEVENTS

Sterile Water INPUTEVENTS

Vasopressin INPUTEVENTS

Continued on next page
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Table A.1 – full list of structured inputs continued from previous page

Data Element MIMIC-III Postgres Table

ALANINE AMINOTRANSFERASE (ALT) LABEVENTS

ALBUMIN LABEVENTS

ALKALINE PHOSPHATASE LABEVENTS

ANION GAP LABEVENTS

ASPARATE AMINOTRANSFERASE (AST) LABEVENTS

BASE EXCESS LABEVENTS

BASOPHILS LABEVENTS

bilirubin level LABEVENTS

CALCIUM LABEVENTS

CALCULATED TOTAL CO2 LABEVENTS

CHLORIDE LABEVENTS

Chloride LABEVENTS

CREATININE LABEVENTS

EOSINOPHILS LABEVENTS

GLUCOSE LABEVENTS

HEMATOCRIT LABEVENTS

HEMOGLOBIN LABEVENTS

Hgb LABEVENTS

INR(PT) LABEVENTS

LACTATE LABEVENTS

LYMPHOCYTES LABEVENTS

MAGNESIUM, TOTAL LABEVENTS

MCH LABEVENTS

MCHC LABEVENTS

MCV LABEVENTS

MONOCYTES LABEVENTS

Continued on next page
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Table A.1 – full list of structured inputs continued from previous page

Data Element MIMIC-III Postgres Table

NEUTROPHILS LABEVENTS

pao2 LABEVENTS

PCO2 LABEVENTS

peep LABEVENTS

PH LABEVENTS

PHOSPHATE LABEVENTS

PLATELET COUNT LABEVENTS

potassium level mean LABEVENTS

PT LABEVENTS

PTT LABEVENTS

RDW LABEVENTS

RED BLOOD CELLS LABEVENTS

serum bicarbonate level mean LABEVENTS

serum urea nitrogen level LABEVENTS

sodium level mean LABEVENTS

SPECIFIC GRAVITY LABEVENTS

white blood cells count mean LABEVENTS

Chest Tube #1 OUTPUTEVENTS

Chest Tube #2 OUTPUTEVENTS

Fecal Bag OUTPUTEVENTS

Gastric Tube OUTPUTEVENTS

Jackson Pratt #1 OUTPUTEVENTS

OR EBL OUTPUTEVENTS

Pre-Admission OUTPUTEVENTS

Stool Out Stool OUTPUTEVENTS

TF Residual OUTPUTEVENTS

Continued on next page
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Table A.1 – full list of structured inputs continued from previous page

Data Element MIMIC-III Postgres Table

Ultrafiltrate OUTPUTEVENTS

urinary output sum OUTPUTEVENTS

Urine Out Incontinent OUTPUTEVENTS

Aspirin PRESCRIPTIONS

Bisacodyl PRESCRIPTIONS

Docusate Sodium PRESCRIPTIONS

Humulin-R Insulin PRESCRIPTIONS

Metoprolol Tartrate PRESCRIPTIONS

Pantoprazole PRESCRIPTIONS
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