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Three-dimensional epigenomic characterization reveals insights into gene regulation and 

disease in the human brain 

 

Michael Song 

 

Abstract 

 

Mutations in gene regulatory elements have been associated with a wide range of complex 

neuropsychiatric disorders. However, due to their cell type-specificity and difficulties in 

characterizing their regulatory targets, our ability to identify causal genetic variants has remained 

limited. To address these constraints, we perform integrative analysis of chromatin interactions, 

open chromatin regions, and transcriptomes for four neural cell types: iPSC-induced excitatory 

neurons, iPSC-derived hippocampal dentate gyrus (DG)-like neurons, iPSC-induced lower motor 

neurons, and primary astrocytes. Furthermore, we analyze radial glia (RG), intermediate 

progenitor cells (IPCs), excitatory neurons (eNs), and interneurons (iNs) isolated from mid-

gestational human cortex samples. We utilize the chromatin interactions to link the promoters for 

genes participating in key neurological processes to distal regulatory elements such as enhancers 

and silencers that may be dysregulated in disease. In addition, we identify a novel chromatin 

feature which underlies cell type-specific transcription, which we term super interactive promoters 

(SIPs). Finally, we validate distal regulatory elements in both RG and eNs using CRISPR 

techniques as well as CRISPRview, a novel technique we developed for validating cell type-

specific cis-regulatory elements in heterogeneous populations of primary cells. This work presents 

the first characterization of cell type-specific 3D epigenomes in these neurologically relevant cell 

types, advancing our knowledge of gene regulation during human brain development and 

complex neuropsychiatric disorders. 
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Introduction 

 

A large number of genetic variations and mutations which are associated with diverse human 

traits and diseases are located in putative regulatory regions. Genetic lesions in these regions 

can contribute to disease by modulating gene expression and disrupting finely tuned 

transcriptional networks in function and development. However, deciphering the roles of these 

regulatory variants in disease pathogenesis remains nontrivial due to their lack of annotation in 

the physiologically relevant cell types. In addition, regulatory elements often interact with their 

target genes over large genomic distances, precluding a straightforward mapping of regulatory 

element connectivity and limiting our interpretation of noncoding variants identified in genome 

wide association studies (GWAS). This is especially important for complex neuropsychiatric 

disorders such as Alzheimer’s disease, autism spectrum disorder, and schizophrenia, each of 

which harbor highly heritable components which have eluded characterization to date (Chen et 

al., 2015; Rees et al., 2015). Typically, neighboring genes are assigned as risk loci for noncoding 

variants. However, this model is challenged by both experimental and computational evidence 

(Zhu et al., 2016; Mumbach et al., 2017). For instance, two independent obesity-associated SNPs 

in the FTO gene have been shown not to regulate FTO, but IRX3 in the brain and both IRX3 and 

IRX5 in adipocytes, respectively (Smemo et al., 2014; Claussnitzer et al., 2015). The FTO locus 

in obesity illustrates the potentially intricate and cell type-specific manner in which noncoding 

variants contribute to disease. However, such well-annotated cases are rare, and we still lack 

systematic mappings of GWAS SNPs to their regulatory targets, especially in the context of 

complex neuropsychiatric disorders. 

 

The recent emergence of high-throughput, genome-wide chromosome conformation capture (3C) 

technologies offers a promising approach for linking regulatory elements to their cognate genes. 

These technologies interrogate the complex three-dimensional structure of chromatin by fixing 
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protein-DNA complexes in place, digesting the DNA, then ligating the fragments such that 

interacting loci result in chimeric molecules that can be sequenced and analyzed (Figure 1.1). By 

interrogating the physical chromatin loops that bring regulatory elements such as enhancers and 

silencers in close spatial proximity with promoters to modulate transcription, detailed maps of 

regulatory contacts can be constructed for elucidating how transcriptional regulatory networks are 

established or dysregulated in the cell. Notably, these chromatin interactions are highly cell type-

specific, with enhancer activity determined in part by transcription factor binding and remodeling 

of the local chromatin environment. For complex processes involving the highly orchestrated 

activities of multiple cell types as in development, the analysis of well-characterized, 

physiologically relevant cell lines or sorted cell populations offers significant advantages for 

identifying cell type-specific regulatory interactions which can then be validated in the appropriate 

experimental models. 

  

 

 

Figure 1.1. Overview of Hi-C technology. Hi-C detects chromatin interactions both within and 
between chromosomes by covalently crosslinking protein-DNA complexes using formaldehyde. 
Quantitation of chromatin interactions is achieved through high-throughput sequencing. (Adapted 
from Belton et al., 2012.) 
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In Chapter 1, we use wild type human iPSCs from the WTC11 line (Miyaoka et al., 2014) to 

generate three functionally distinct neural cell types that are relevant to human brain development 

and disease: excitatory neurons (Wang et al., 2017), hippocampal dentate gyrus (DG)-like 

neurons (Mertens et al., 2015), and lower motor neurons (Fernandopulle et al., 2018). GFAP-

positive astrocytes from the gastrulating brains of two individuals are also included in the study. 

By analyzing promoter-centric, long-range chromatin interactions using promoter capture Hi-C 

(pcHi-C), open chromatin regions using assay for transposase-accessible chromatin using 

sequencing (ATAC-seq), and transcriptomes using RNA sequencing (RNA-seq), we identify 

hundreds of thousands of cis-regulatory chromatin interactions between promoters and promoter-

interacting regions (PIRs) in each cell type. We leverage these interactions to highlight putative 

gene targets for both in vivo-validated enhancer elements from the VISTA Enhancer Browser 

(Visel et al., 2007) and disease-associated variants (Buniello et al., 2019), enabling the elucidation 

and validation of PIRs driving diverse processes in cellular identity and disease. In Chapter 2, we 

adopt a similar approach, except we apply it to four major cell types in the developing human 

brain: radial glia (RG), intermediate progenitor cells (IPCs), excitatory neurons (eNs), and 

interneurons (iNs). We identify a novel chromatin feature which underlies cell type-specific 

transcription, which we term super interactive promoters (SIPs), and we explore the role of 

transposable elements (TEs) in their formation. Finally, we develop CRISPRview, a novel 

technique for validating cell type-specific cis-regulatory elements in heterogeneous populations 

of primary cells.  
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Chapter 1. Cis-Regulatory Chromatin Contacts in Neural Cells Reveal Contributions of 

Genetic Variants to Complex Disorders 

 

Previous epigenomic annotations of the germinal zone (GZ) and cortical plate (CP) in the 

developing human brain revealed the importance of chromatin structure in gene regulation and 

disease (Won et al., 2016; de la Torre-Ubieta et al., 2018). However, these studies used complex, 

heterogeneous tissues, limiting their abilities to interpret gene regulation in a cell type-specific 

manner. To address these constraints, we analyzed promoter-centric, long-range chromatin 

interactions using promoter capture Hi-C (pcHi-C), open chromatin regions using assay for 

transposase-accessible chromatin using sequencing (ATAC-seq), and transcriptomes using RNA 

sequencing (RNA-seq) for four neural cell types: iPSC-induced excitatory neurons, iPSC-derived 

hippocampal dentate gyrus (DG)-like neurons, iPSC-induced lower motor neurons, and primary 

astrocytes (Figure 1.2). We identify hundreds of thousands of cis-regulatory chromatin 

interactions between promoters and distal promoter-interacting regions (PIRs), enabling us to link 

regulatory elements to their cognate genes and identify processes that are putatively dysregulated 

in disease. Finally, we validate several PIRs using CRISPR techniques in human excitatory 

neurons, demonstrating that CDK5RAP3, STRAP, and DRD2 are transcriptionally regulated by 

physically linked enhancers. 
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Figure 1.2. Profiling of chromatin interactions in functionally distinct neural cell types. 
Schematic of the study design for generating four functionally distinct neural cell types in the 
central nervous system (CNS) and performing integrative analysis of chromatin interactions using 
pcHi-C, open chromatin regions using ATAC-seq, and transcriptomes using RNA-seq. 

 

1.1 Profiling the epigenomic landscape of chromatin interactions in neural cells 

 

To investigate general epigenomic features for cells in the human CNS, we focused on isogenic 

iPSC-induced excitatory neurons, iPSC-derived hippocampal dentate gyrus (DG)-like neurons, 

and iPSC-induced lower motor neurons, three neuronal subtypes which are currently impractical 

to isolate from primary tissue. Excitatory neurons were induced from a wild type male iPSC line 

(WTC11) containing an integrated, isogenic, and inducible neurogenin-2 (Ngn2) cassette (i3N 

iPSCs) with doxycycline-inducible Ngn2 at the AAVS1 safe-harbor locus (Wang et al., 2017). The 

i3N iPSCs were used to prepare homogenous cultures of excitatory neurons expressing the 

glutamatergic neuron marker VGLUT1 and the cortical neuron marker CUX1 (Zhang et al., 2013; 

Wang et al., 2017), though FOXG1 expression was not detected (Figures 1.3 and 1.4). 

Hippocampal DG-like neurons expressing the DG granule cell marker PROX1 were differentiated 

from a WTC11 line using factors as described previously (Yu et al., 2014; Mertens et al., 2015) 

(Figures 1.3 and 1.4). Finally, lower motor neurons were induced from a WTC11 line containing 

integrated, isogenic, and inducible NGN2, ISL1, and LHX3 at the AAVS1 safe-harbor locus (i3LMN 

iPSCs) (Fernandopulle et al., 2018). The cells exhibited homogenous expression of the lower 

motor neuron markers HB9 and SMI32 (Figures 1.3 and 1.4). All three neuronal subtypes 

expressed the synaptic genes SYN1 and SYN2, the NMDA receptor genes GRIN1 and GRIN2A, 

and the AMPA receptor genes GRIA1 and GRIA2, evidencing mature synaptic functions. We also 

included two batches of astrocytes isolated from 19 week gastrulating male fetal brain samples 

using GFAP as a selection marker. Astrocytes were cultured for two or fewer passages in vitro 

and confirmed for positive expression of GFAP prior to harvesting (Figure 1.3). Based on the age 
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of the donors and transcriptional signatures for dozens of marker genes distinguishing astrocyte 

progenitor cells (APCs) (e.g. AGXT2L1 and WIF1) from mature astrocytes (e.g. TOP2A and TNC) 

(Zhang et al., 2016), the astrocytes were determined to be APCs (Figure 1.4). 

 

 

 

Figure 1.3. Immunofluorescence staining of cell type-specific markers. Immunofluorescence 
staining of key cell type-specific markers in excitatory neurons, hippocampal DG-like neurons, 
lower motor neurons, and astrocytes. Excitatory neurons were positively stained for CUX1, an 
upper cortical layer marker, and MAP2, a neuronal marker specifically expressed in dendrites. 
Hippocampal DG-like neurons were positively stained for PROX1, a transcription factor specifying 
granule cell identity in the DG. Lower motor neurons were positively stained for HB9, a motor 
neuron marker, and the pan-neuronal neurofilament marker SMI32. Astrocytes were positively 
stained for GFAP. The number of staining experiments and the total number of cells are indicated, 
and error bars represent the SEM. Scale bars indicate 25 μm. 
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Figure 1.4. Transcriptional profiles are consistent with cellular identity. Heatmaps displaying 
gene expression results for key marker genes across the neural cell types. The astrocytes used 
in this study exhibit a gene expression profile consistent with APC identity. 

 

We prepared pcHi-C, ATAC-seq, and RNA-seq libraries using two to four biological replicates 

based on independent experiments for each cell type. Specifically, promoter-centric, long-range 

chromatin interactions were mapped using a set of 280,445 RNA probes targeting the promoters 

of 19,603 coding genes in GENCODE 19 (Jung et al., 2019). We first confirmed the reproducibility 

of contact frequency and saturation of inter-replicate correlation for our pcHi-C libraries using 

HiCRep (Yang et al., 2017). Hierarchical clustering of ATAC-seq read density and gene 

expression similarly grouped the replicates by cell type, evidencing minimal variations during the 

cell derivation process. Using CHiCAGO (Cairns et al., 2016), we identified significant chromatin 

interactions with score ³ 5 at 195,322 unique interacting loci across all four cell types, with 73,890, 

108,156, 66,978, and 84,087 significant interactions being represented in the excitatory neurons, 
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hippocampal DG-like neurons, lower motor neurons, and astrocytes, respectively. Overall, 17,065 

or 83.9% of coding gene promoters participate in interactions in at least one cell type, with 80% 

of PIRs interacting within a distance of 160 kb (Figure 1.5a). Over 97% of interactions occur within 

topologically associating domains (TADs) in human fetal brain tissues (Won et al., 2016). 

Furthermore, approximately 40% of interactions occur between promoter-containing bins, while 

60% occur between promoter- and non-promoter-containing bins (Figure 1.5b). The observed 

counts of promoter-promoter interactions can potentially be attributed to transcriptional factories 

of coregulated genes, the widespread colocalization of promoters, and the capacity of many 

promoters to doubly function as enhancers (Jackson et al., 1993; Zhang et al., 2013; Engreitz et 

al., 2016; Diao et al., 2017). Finally, up to 40% of interacting distal open chromatin peaks are 

specific to each cell type (Figure 1.5c), suggesting that PIRs are capable of orchestrating cell 

type-specific gene regulation. Astrocytes in particular exhibit the highest proportion of cell type-

specific open chromatin peaks, likely reflecting fundamental differences between the neuronal 

and glial lineages. 

 

 

 

Figure 1.5. Chromatin interactions link promoters and PIRs. (a) Histogram and empirical CDF 
plots of interaction distances for each cell type. (b) Proportions of interactions between promoter-
containing bins (blue) and promoter- and non-promoter-containing bins (purple) for each cell type. 
(c) Proportions of cell type-specific (blue) and shared (grey) distal open chromatin peaks at PIRs 
for each cell type. 
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Figure 1.6. Integrative analysis of chromatin interactions, epigenomic features, and gene 
expression. (a) Histograms of the number of PIRs interacting with each promoter for each cell 
type. Means are indicated. Only protein coding and noncoding RNA promoters interacting with at 
least one PIR are included. (b) Bar plots showing counts of epigenomic chromatin states inferred 
using ChromHMM in matched tissues overlapping significant (solid bars) versus randomly 
shuffled (striped bars) PIRs for each cell type. Means and the SEM for the number of overlaps 
across n=100 sets of randomly shuffled PIRs are shown. (c) Comparative gene expression 
analysis across all cell types for expressed genes (normalized RPKM > 0.5) whose promoters 
interact exclusively with either enhancer-PIRs (n=6,836 genes) or repressive-PIRs (n=2,612 
genes) (P=9.4*10-63, t=16.9, df=6854.6, two-tailed two sample t-test). Boxplots indicate the 
median, IQR, Q1-1.5*IQR, and Q3+1.5*IQR. Means are indicated with dotted horizontal lines. (d) 
Distributions of gene expression values across all cell types for expressed genes (normalized 
RPKM > 0.5) grouped according to the numbers of interactions their promoters form with 
enhancer-PIRs (P=2.1*10-3, F1,7=22.7, F-test for linear regression). 

 

The majority of promoters interact with more than one PIR (Figure 1.6a), consistent with the large 

number of regulatory elements in the human genome and previous findings that promoters can 

be regulated by multiple enhancers (The ENCODE Project Consortium, 2012; Shen et al., 2012). 

To examine global chromatin signatures at PIRs, we leveraged chromatin states inferred by 

ChromHMM (Ernst et al., 2012) in matched human brain tissues from the Roadmap Epigenomics 
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Project (dorsolateral prefrontal cortex for excitatory neurons, hippocampus middle for 

hippocampal DG-like neurons, and normal human astrocytes for astrocytes) (Roadmap 

Epigenomics Consortium, 2015). We show that PIRs are highly enriched for active chromatin 

features including open chromatin peaks, enhancers, and transcriptional start sites (TSSs) while 

simultaneously exhibiting depletion for repressive heterochromatin marks (Figure 1.6b). PIRs are 

also enriched for H3K27ac and CTCF binding sites mapped using CUT&RUN in excitatory and 

lower motor neurons and ChIP-seq in astrocytes from ENCODE (Skene et al., 2017; Davis et al., 

2018) (Figure 1.7). Promoters interacting with enhancer-PIRs exhibit elevated levels of 

transcription compared to those interacting with repressive-PIRs (P=9.4*10-63, two-tailed two 

sample t-test) (Figure 1.6c). Multiple enhancer-PIRs also present evidence for additive effects on 

transcription. By grouping genes according to the number of interactions their promoters form with 

enhancer-PIRs, a modest correlation is observed between the number of interactions and the 

mean gene expression in each group (P=2.1*10-3, F-test for linear regression) (Figure 1.6d). Our 

results demonstrate that chromatin interactions identify PIRs which are not only enriched for 

regulatory features, but which are also capable of altering gene expression. 

 

 

 

Figure 1.7. Enrichment of H3K27ac and CTCF binding sites at PIRs. Bar plots showing counts 
of H3K27ac and CTCF binding sites overlapping significant (solid bars) versus randomly shuffled 
(striped bars) PIRs for excitatory neurons, lower motor neurons, and astrocytes. Means and the 
SEM for the number of overlaps across n=100 sets of randomly shuffled PIRs are shown. 
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1.2 PIRs contribute to cellular identity 

 

Chromatin interactions exhibit distinct patterns of cell type specificity, with tens of thousands of 

interactions observed to be specific for each cell type (Figures 1.8 and 1.9a). These interactions 

may underlie important functional differences between the cell types, with gene ontology (GO) 

enrichment analysis on genes interacting with cell type-specific PIRs yielding terms associated 

with neuronal function in the neuronal subtypes and immune function in the astrocytes (Kuleshov 

et al., 2016) (Figure 1.10). Meanwhile, 58,809 or 30.1% of unique interactions are shared across 

all four cell types, with neural precursor cell proliferation and neuroblast proliferation ranking 

among the top terms for genes participating in shared interactions. In conjunction with the 

enrichment of active chromatin signatures at PIRs, their association with cell type-specific 

processes suggests that PIRs harbor lineage-specific regulatory roles. Numerous promoters of 

differentially expressed genes including OPHN1 in hippocampal DG-like neurons, CHAT in lower 

motor neurons, and TLR4 in astrocytes form contacts with PIRs in their respective cell types 

(Figure 1.11). OPHN1 stabilizes synaptic AMPA receptors and mediates long-term depression in 

the hippocampus, and its loss of function has been linked to mental retardation (Nadif Kasri et al., 

2011). CHAT is a marker for lower motor neuron maturity and function, and TLR4 is a key 

regulator of immune activation and synaptogenesis in astrocytes (Shen et al., 2016). 

 

 

Figure 1.8. Chromatin interactions are cell 
type-specific. Venn diagram displaying 
counts of unique significant promoter-PIR 
interactions for excitatory neurons, 
hippocampal DG-like neurons, lower motor 
neurons, and astrocytes for each specificity 
pattern (groups 1-15 in Figure 1.9a). 
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Figure 1.9. Cell type-specific PIRs and TF motif enrichment analysis. (a) Classification of 
unique chromatin interactions with interaction score ³ 5 in at least one cell type into specificity 
categories based on their scores in each cell type. Counts of significant promoter-PIR interactions 
in each specificity category are summarized in Figure 1.8. Cell types are hierarchically clustered 
based on their interaction scores over all interacting loci. (b) Enrichment of consensus TF motif 
sequences at open chromatin peaks in cell type-specific PIRs by motifs (rows) and cell types 
(columns). 1,145, 1,271, 843, and 2,566 peaks were used as input for the excitatory neurons, 
hippocampal DG-like neurons, lower motor neurons, and astrocytes, respectively. The color of 
each dot represents the degree of enrichment (calculated using the cumulative binomial 
distribution in HOMER) for each motif and cell type, and the size of each dot represents the gene 
expression (normalized RPKM) of the corresponding TFs for each motif. Entries with similar or 
identical consensus TF motif sequences are grouped for brevity. 
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Figure 1.10. GO enrichment analysis of cell type-specific PIRs. Top enriched GO terms from 
the “GO Biological Process 2018” ontology in Enrichr for genes participating in cell type-specific 
interactions with distal open chromatin peaks. Enriched GO terms are ranked by their combined 
scores (calculated by multiplying the log of the p-value based on Fischer’s exact test with the z-
score of the deviation from the expected rank). 
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Figure 1.11. Cell type-specific chromatin interactions with the CHAT and TLR4 promoters. 
Examples of cell type-specific interactions between PIRs (yellow) and the promoters of CHAT and 
TLR4 (orange). ATAC-seq and RNA-seq signal are also displayed for each cell type. 
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Gene expression is coordinately controlled by transcription factors (TFs) and regulatory elements 

such as enhancers. Therefore, PIRs provide a novel perspective for investigating mechanisms 

underlying cell type-specific gene regulation. We used HOMER (Heinz et al., 2010) to evaluate 

TF motif enrichment at cell type-specific distal open chromatin peaks in PIRs for each cell type 

(Figure 1.9b). First, the CTCF motif is highly enriched across all cell types, consistent with its role 

in mediating looping within TADs (Guo et al., 2015; Handoko et al., 2011; Hou et al., 2010; Ren 

et al., 2017). Motifs for ASCL1, ISL1, NEUROG2, OLIG2, and ZIC3, TFs linked to neuronal fate 

commitment, are also broadly enriched across the neuronal subtypes. Additional TFs functioning 

in brain development include CUX1, CUX2, EBF1, EBF2, LHX1, LHX2, NKX6-1, ONECUT1, 

RFX1, RFX2, RFX5, TCF4, and TGIF2. The TBR1 motif is highly enriched in hippocampal DG-

like neurons, consistent with its expression in the hippocampus (Chuang et al., 2014). Meanwhile, 

astrocytes are enriched for motifs in the Fos and Jun families, which contain key regulators for 

inflammatory and immune pathways. Also enriched in astrocytes are motifs for ATF3 and the 

RUNX and TEAD families, TFs with established roles in astrocyte differentiation, maturation, and 

proliferation. Motif enrichment is not always accompanied by expression of the corresponding 

TFs. This may reflect potential synergistic interactions between the cell types. For example, NRF2 

is a key regulator of the oxidative stress response, and its activity has been shown to be repressed 

in neurons while also inducing a strong response in astrocytes (Liddell et al., 2017). Therefore, 

its shared expression may reflect the neuroprotective roles that astrocytes serve for other cell 

types. Alternatively, TFs do not have to be highly expressed to perform their cellular functions due 

to additional avenues for regulation at the post-transcriptional and post-translational levels. Our 

results demonstrate that PIRs contribute to cell fate commitment and are capable of identifying 

both known and novel regulators in a cell type-specific manner. 
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1.3 Identification of regulatory targets for in vivo-validated enhancer elements 

 

Regulation of target genes by enhancers is thought to be mediated by physical chromatin looping. 

Congruent with this concept, chromatin interactions detected by pcHi-C can be used to link 

enhancers with their target genes. The VISTA Enhancer Browser is a database containing 

experimentally validated human and mouse noncoding sequences with enhancer activity (Visel 

et al., 2007). To date, it contains 2,956 tested sequences, 1,568 of which exhibit enhancer activity 

during embryonic development. However, the regulatory targets for these enhancer elements 

have remained largely uncharacterized. To address this knowledge gap, we provide cell type-

specific annotations of putative target genes for each enhancer element using our chromatin 

interactions and open chromatin peaks. Across all cell types, our interactions recover 589 or 

37.6% of positively tested enhancer elements with human sequences, 320 of which were further 

annotated as neural enhancers according to tissue-specific patterns of LacZ staining in mouse 

embryos (Figures 1.12a-b). Of the 589 interacting positive enhancer elements, 306 interact 

exclusively with 464 more distal genes (scenario I), 118 interact with both their nearest genes and 

484 more distal genes (scenario II), and 60 interact exclusively with their nearest genes (scenario 

III) (Figure 1.12c). The remaining 105 elements could not be resolved for interactions with their 

nearest genes (scenario IV), though they interacted with 395 more distal genes. In total, our 

interactions identify 1,343 novel gene targets for positive enhancer elements in the VISTA 

Enhancer Browser, significantly expanding our knowledge of gene regulatory relationships at 

these loci. 
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Figure 1.12. Enrichment of in vivo-validated enhancer elements at PIRs. (a) In vivo-validated 
enhancer elements with neural annotations overlap a significantly higher proportion of open 
chromatin peaks in the neural cells (757 of 919 elements) compared to enhancers with non-neural 
annotations (415 of 649 elements) (P < 2.2*10-16, C2=67.5, df=1, Pearson’s chi-squared test with 
Yates’s correction). (b) Counts of in vivo-validated enhancer elements participating in chromatin 
interactions (589 of 1,568 elements) with neural and non-neural annotations. (c) Counts of 
interacting positive enhancer elements interacting exclusively with their nearest genes (blue), 
more distal genes (pink), or both (orange) and the number of target genes for each scenario 
(right). 

 

1.4 Validation of PIRs in human neural cells using CRISPR techniques 

 

We validated two PIRs physically interacting up to 40 kb away with the CDK5RAP3 promoter 

(regions 1 and 2) (Figure 1.13). CDK5RAP3 regulates CDK5, which functions in neuronal 

development (Yin et al., 2005) and regulates proliferation in non-neuronal cells (Xie et al., 2003). 

Notably, both PIRs overlap open chromatin peaks as well as enhancers annotated with forebrain 

activity in the VISTA Enhancer Browser (mm876 and mm999 for region 1 and mm1299 for region 

2) (Figure 1.14a). We targeted both regions for CRISPR deletion in the i3N iPSCs, followed by 

differentiation of the cells into excitatory neurons and quantification of any changes in gene 

expression by qPCR. Deleting the 2 kb open chromatin peak in region 1 led to significant 
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downregulation of CDK5RAP3 expression across three independent clones (Figure 1.14c). 

However, upon trying to delete the open chromatin peak in region 2, we observed massive cell 

death of iPSCs immediately following introduction of the Cas9-sgRNA protein complex. We picked 

48 individual clones from cells surviving the transfection, but failed to isolate any clones with 

deletions, suggesting that this locus is essential for maintaining CDK5RAP3 expression and 

survival in iPSCs.  

 

 

 

Figure 1.13. Cell type-specific PIRs at the CDK5RAP3 locus. Open chromatin peaks in cell 
type-specific PIRs (regions 1, 2, and 3) interact with the CDK5RAP3 promoter. Both in vivo-
validated enhancer elements (pink) and CTCF binding sites in excitatory neurons (dark blue) are 
localized to all three regions. 

 

To circumvent this lethal phenotype for iPSCs with region 2, we used CRISPR interference 

(CRISPRi) to silence both regions 1 and 2 in excitatory neurons. We also silenced a third region 

that interacts with the CDKRAP3 promoter in the other cell types, but not in excitatory neurons 
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(region 3). We show that silencing of regions 1 and 2, but not region 3, leads to significant 

downregulation of CDK5RAP3 expression without influencing the expression of nearby genes 

(Figures 1.14b and 1.14d). Interestingly, an enhancer with spinal cord activity proximal to region 

3 (mm1675) interacts with the CDK5RAP3 promoter in lower motor neurons and astrocytes, but 

not in the other cell types. Overall, these results demonstrate that chromatin interactions 

recapitulate cell type-specific patterns of enhancer activity, underscoring the importance of 

studying epigenomic regulation in the appropriate cell types. 

 

 

 

 

 

 

Figure 1.14. Validation of cell type-specific PIRs in neural cell types. (a) LacZ staining in 
mouse embryos reveals tissue-specific patterns of enhancer activity. (b) CRISPRi silencing of 
region 1 results in significant downregulation of CDK5RAP3 expression in excitatory neurons 
(P=9.1*10-4, t=4.65, df=10 two tailed two sample t-test). The neighboring genes MRPL10, PNPO, 
and NFE2L1 were unaffected (P=9.1*10-2, t=1.87, df=10, P=4.1*10-1, t=0.853, df=10, and 
P=8.0*10-1, t=0.259, df=10 respectively, two-tailed two sample t-test). Three independent 
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replicates per condition and two sgRNAs per replicate were used for each experiment. Boxplots 
indicate the median, IQR, minimum, and maximum. (c) Significant downregulation of CDK5RAP3 
expression was observed across three independent clones containing biallelic deletions for the 
PIR in excitatory neurons (P=1.6*10-2, t=4.98, df=3, two-tailed two sample t-test). Error bars 
represent the SEM. (d) CRISPRi silencing of region 2, but not region 3, results in significant 
downregulation of CDK5RAP3 expression in excitatory neurons (P=2.2*10-3, t=5.11, df=6 and 
P=3.3*10-1, t=1.05, df=6 respectively, two-tailed two sample t-test). Two independent replicates 
per condition and two sgRNAs per replicate were used for each experiment. 
 
 
 
1.5 Cell type-specific enrichment and regulatory target identification for neuropsychiatric 

disorder risk variants at PIRs 

 

Previous large-scale epigenomic studies of human tissues and cell lines highlighted the 

importance of disease-associated variants at distal regulatory regions and the need for high-

throughput approaches to prioritize variants for further validation (Roadmap Epigenomics 

Consortium, 2015). Therefore, we used our chromatin interactions to annotate complex 

neuropsychiatric disorder- and trait-associated variants from the GWAS Catalog (Buniello et al., 

2019). We mined a total of 6,396 unique GWAS SNPs at a significance threshold of 10-6 for eleven 

traits including Alzheimer’s disease (AD), attention deficit hyperactivity disorder (ADHD), autism 

spectrum disorder (ASD), amyotrophic lateral sclerosis (ALS), bipolar disorder (BD), epilepsy 

(EP), frontotemporal dementia (FTD), mental process (MP), Parkinson’s disease (PD), 

schizophrenia (SCZ), and unipolar depression (UD). We identified linked SNPs at a linkage 

disequilibrium (LD) threshold of 0.8 using HaploReg (Ward et al., 2012) for a total of 95,954 unique 

SNPs across all traits. We find that SNPs are enriched at PIRs in a disease- and cell type-specific 

manner (Figure 1.15a), with ASD, MP, and SCZ SNPs enriched at PIRs across all cell types. UD 

SNPs are enriched exclusively in excitatory and hippocampal DG-like neurons, whereas AD, 

ADHD, and BD SNPs also exhibit enrichment in lower motor neurons. ALS SNPs are enriched in 

the neuronal subtypes but not in astrocytes, consistent with the characterization of ALS as a motor 

neuron disease and reinforcing evidence for its role in hippocampal degeneration (Abdulla et al., 
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2014). Interestingly, PD SNPs are enriched in astrocytes but not in the other cell types. This 

enrichment of PD SNPs at astrocyte-specific PIRs supports the theory that astrocytes play an 

initiating role in PD, based on evidence that numerous genes implicated in PD have functions 

unique to astrocyte biology, as well as the neuroprotective roles astrocytes serve for dopaminergic 

neurons in the substantia nigra (Booth et al., 2017). EP and FTD SNPs are not enriched in any of 

the cell types, indicating their potential functions in alternative cell types, insufficient study power 

or mechanisms acting outside of chromatin-mediated gene regulation. 

 

 

 

Figure 1.15. Genetic analysis of chromatin interactions with complex neuropsychiatric 
disorder-associated variants. (a) Enrichment analysis for complex neuropsychiatric disorder-
associated variants in Alzheimer’s disease (AD), attention deficit hyperactivity disorder (ADHD), 
amyotrophic lateral sclerosis (ALS), autism spectrum disorder (ASD), bipolar disorder (BP), 
epilepsy (EP), frontotemporal dementia (FTD), mental process (MP), Parkinson’s disease (PD), 
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schizophrenia (SCZ), and unipolar depression (UD). The color and size of each dot represent the 
enrichment p-value (two-tailed one sample z-test) and the raw fold enrichment (determined as 
the number of SNPs overlapping significant PIRs divided by the mean number of SNPs 
overlapping n=100 sets of randomly shuffled PIRs), respectively. (b) Proportions and total counts 
of GWAS SNPs with at least one linked SNP participating in chromatin interactions across all four 
cell types. (c) Counts of GWAS SNPs across all diseases with at least one linked SNP interacting 
exclusively with their nearest genes (blue), more distal genes (pink), or both (orange) and the 
number of target genes for each scenario (right). 

 

Up to 70% of GWAS SNPs have at least one linked SNP overlapping PIRs in one or more cell 

types (Figure 1.15b). As it is common practice to assign GWAS SNPs to their nearest genes, we 

counted the number of GWAS SNPs with at least one linked SNP interacting with their nearest 

gene across all diseases. We find that 1,365 GWAS SNPs interact exclusively with 3,361 more 

distal genes (scenario I), 1,243 GWAS SNPs interact with both their nearest genes and 12,070 

more distal genes (scenario II), and 248 GWAS SNPs interact exclusively with their nearest genes 

(scenario III) (Figure 1.15c). In total, 16,471 non-neighboring gene targets are identified across 

all diseases. To prioritize variants potentially disrupting regulatory interactions, we focused on 

SNPs overlapping open chromatin peaks at PIRs and find that these putative regulatory SNPs 

interact with genes that are relevant in the context of their respective disease etiologies. GO 

enrichment analysis for genes targeted by AD SNPs yields terms associated with amyloid beta 

formation, interferon beta production, and cranial nerve development (Figure 1.16). Meanwhile, 

genes targeted by ASD, BD, SCZ, and UD SNPs are enriched for epigenetic terms including 

chromatin assembly, nucleosome assembly, and nucleosome organization. For genes targeted 

by GWAS SNPs in the other diseases, enriched terms include neuronal processes such as myelin 

maintenance, neuron projection extension, synapse assembly, synaptic transmission, and 

nervous system development. 
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Figure 1.16. GO enrichment analysis of PIRs with complex neuropsychiatric disorder-
associated variants. Top enriched GO terms from Enrichr for genes whose promoters are 
targeted by variants for each disease. EP and FTD are omitted due to their low numbers of 
reported variants and target genes identified by significant promoter-PIR interactions. Expanded 
lists of enriched GO terms are available in Song et al., 2019. 
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Notably, a previously reported interaction between the FOXG1 promoter and a PIR with SCZ 

SNPs over 700 kb away is recapitulated by our data (Won et al., 2016) (Figure 1.17). At a different 

locus, an astrocyte-specific PIR with AD SNPs targets the promoter of CASP2, which encodes a 

well-known mediator of apoptosis that is linked to neurodegeneration (Tiwari et al., 2011; Zhao et 

al., 2016) (Figure 1.18a). Hippocampal DG-like neuron-specific PIRs with ASD SNPs target the 

promoter of BCAS2, whose knockdown in mice leads to microcephaly-like phenotypes with 

reduced learning, memory, and DG volume (Huang et al., 2016) (Figure 1.18c). Finally, the MSI2 

promoter is targeted by an astrocyte-specific PIR with SCZ SNPs, as well as by PIRs with BD 

SNPs in hippocampal DG-like neurons, lower motor neurons, and astrocytes (Figure 1.18d). 

Overall, we demonstrate that an approach leveraging epigenomic data to jointly prioritize and map 

regulatory targets for variants enables the identification of putative processes that are disrupted 

in disease and development. 

 

 

 

Figure 1.17. SCZ-associated variants at the FOXG1 locus. Significant promoter-PIR 
interactions in hippocampal DG-like neurons and astrocytes recapitulate a previously reported 
interaction between the FOXG1 promoter and a distal open chromatin peak containing 
rs1191551:G>T, a SCZ-associated variant. 
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Figure 1.18. Cell type-specific PIRs with putative regulatory SNPs. In all examples, 
interacting PIRs are highlighted in yellow and the targeted promoters are highlighted in orange. 
(a) A PIR with AD SNPs interacts with the promoters of FAM131B and CASP2 in astrocytes, but 
it interacts instead with the ZYX promoter in hippocampal DG-like neurons and lower motor 
neurons. (b) PIRs with MP SNPs in an intron for PTPRO interact with the STRAP promoter across 
all four cell types. (c) A PIR with SCZ SNPs interacts with the TRIM33 promoter in astrocytes. 
Two additional PIRs with SCZ SNPs interact with the promoters of TRIM33 and BCAS2 in 
hippocampal DG-like neurons. (d) A PIR with BD SNPs interacts with the MSI2 promoter in 
hippocampal DG-like neurons, lower motor neurons, and astrocytes, while also interacting with 
the AKAP1 promoter in lower motor neurons and astrocytes. Another group of PIRs with SCZ 
SNPs interacts with the MSI2 promoter in astrocytes. 
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1.6 Validation of PIRs containing neuropsychiatric disorder risk variants 

 

PIRs with MP SNPs in an intron for PTPRO interact over 300 kb away with the promoter of STRAP 

(Figures 1.18b and 1.19a), which encodes a component of the survival of motor neuron (SMN) 

complex (Grimmler et al., 2005). The complex itself facilitates spliceosome assembly and is 

associated with spinal muscular atrophy (Burghes et al., 2009). To validate this locus, we derived 

three independent i3N iPSC clones containing biallelic deletions for a PIR in this region and 

observed significant downregulation of STRAP expression following differentiation of the cells into 

excitatory neurons (P=3.4*10-4, two-tailed two sample t-test). Targeting the same PIR with 

CRISPRi also consistently downregulated STRAP expression in excitatory neurons (P=7.4*10-3, 

two-tailed two sample t-test) (Figure 1.19c). Next, we focused on a PIR 20 kb upstream from the 

promoter of DRD2, which encodes the D2 subtype of the dopamine receptor. Previously, 

rs2514218:C>T, a noncoding variant 47 kb upstream from DRD2, was found to be associated 

with antipsychotic drug response in a cohort of schizophrenia patients (Zhang et al., 2015). This 

variant is in LD with a cluster of SCZ SNPs overlapping open chromatin peaks in the PIR for 

DRD2. DRD2 is also the gene associated with the Taq1A polymorphism, which has been linked 

to reduced dopamine receptor density as well as addiction, anxiety, depression, and social 

problems in patients (Eisenstein et al., 2016). We first demonstrate that monoallelic deletion of 

this PIR in three independent clones leads to significant downregulation of DRD2 expression in 

excitatory neurons (P=6.2*10-3, two tailed two sample t-test) (Figure 1.19b). Next, through TOPO 

cloning and genotyping cDNA with allele-specific variants, we confirm that monoallelic deletion of 

the same PIR leads to allelically imbalanced DRD2 expression (Figure 1.19d). By prioritizing and 

validating PIRs containing putative regulatory SNPs for key genes such as DRD2, our approach 

enables the development of novel therapeutic and diagnostic strategies targeting specific risk 

variants in otherwise recalcitrant complex neuropsychiatric disorders. 
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Figure 1.19. Validation of PIRs with complex neuropsychiatric disorder-associated 
variants. (a) PIRs containing MP SNPS in an intron for PTPRO interact with the STRAP promoter. 
Biallelic deletion of this PIR in three independent clones results in significant downregulation of 
STRAP expression in excitatory neurons (P=3.4*10-4, t=18.5, df=3, two-tailed two sample t-test). 
Error bars represent the SEM. (b) A PIR containing SCZ SNPs interacts with the DRD2 promoter. 
Monoallelic deletion of this PIR in three independent clones results in significant downregulation 
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of DRD2 expression in excitatory neurons (P=6.2*10-3, t=6.92, df=3, two tailed two sample t-test). 
Error bars represent the SEM. (c) CRISPRi silencing of a PIR for STRAP results in significant 
downregulation of STRAP expression in excitatory neurons (P=7.4*10-3, t=3.34, df=10, two-tailed 
two sample t-test). No significant downregulation was detected for the neighboring genes MGST1 
and WBP1, though the expression of PTPRO was affected (P=3.0*10-1, t=1.09, df=10, P=5.8x10-
1, t=0.570, df=10, and P=2.2*10-3, t=4.07, df=10, respectively, two-tailed two sample t-test). Three 
independent replicates per condition and two sgRNAs per replicate were used for each 
experiment. Boxplots indicate the median, IQR, minimum, and maximum. (d) Schematic of 
detected genotypes in the DRD2 gene and its PIR in two wild type clones and three monoallelic 
deletion clones. Genotyping and qPCR sequencing for WTC11 variants in the DRD2 gene reveal 
allele-specific imbalances in DRD2 expression, consistent with the monoallelic deletion of the 
PIR. 

 

1.7 Genetic variants contribute to chromatin interaction bias and changes in transcription 

 

Since regulatory variants and other genetic perturbations are thought to introduce or disrupt 

chromatin loops between promoters and PIRs, we were interested to see if we could detect 

instances of allelic bias across our sets of significant promoter-PIR interactions. We used our 

chromatin interaction data to perform genome-wide phasing of WTC11 variants using HaploSeq 

(Selvaraj et al., 2013) and performed allele-specific mapping at a resolution of 10 kb using HiC-

Pro (Servant et al., 2015). We identified 41 (0.185%) and 151 (0.703%) of significantly interacting 

bins to exhibit allelic bias at an FDR cutoff of 5% (two-tailed binomial test with BH correction) in 

the excitatory and lower motor neurons, respectively (Figure 1.20a). In one case, allelically biased 

interactions were detected between a PIR containing bipolar alcoholism SNPs (Lydall et al., 2011) 

and the promoter of SYT17, which encodes a member of a family of membrane-trafficking proteins 

that mediate synaptic function and calcium-controlled neurotransmitter release (Sudhof et al., 

2012). The risk allele of the lead variant (rs8062326:G>A) is associated with the WTC11 allele 

exhibiting reduced interaction frequency in both cell types (Figure 1.20b), suggesting that 

regulatory variants can increase individual risk for bipolar alcoholism by disrupting interactions for 

SYT17. 
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Figure 1.20. Genetics variants contribute to chromatin interaction bias and alterations in 
gene expression. (a) Quantile-quantile plots showing the proportions of interacting 10 kb bins 
exhibiting significant allelic bias at an FDR cutoff of 5% (two-tailed binomial test with BH 
correction) in excitatory neurons (n=22,162 bins) and lower motor neurons (n=21,479 bins). (b) A 
sample interaction with significant allelic bias in excitatory neurons (P=5.4*10-4, two-tailed 
binomial test) and lower motor neurons (P=4.2*10-7, two-tailed binomial test). The interaction 
occurs between the SYT17 promoter and a PIR with bipolar alcoholism SNPs at an open 
chromatin peak. Heterozygous phased WTC11 variants at the PIR as well as bar graphs of allele-
specific read counts are shown. (c) Enrichment of significant eQTLs from GTEx V7 at significant 
versus randomly shuffled PIRs in matched tissue types for excitatory and hippocampal DG-like 
neurons (P < 2.2*10-16 for both cell types, two-tailed one sample z-test). Means and the SEM for 
the number of overlaps across n=100 sets of randomly shuffled PIRs are shown. (d) Distributions 
of interaction scores for chromatin interactions overlapping significant eQTL-TSS pairs versus 
randomly sampled nonsignificant eQTL-TSS pairs in excitatory neurons and hippocampal DG-
like neurons (P=2.3*10-4 for excitatory neurons and P=1.8*10-6 for hippocampal DG-like neurons, 
two-tailed two sample Kolmogorov-Smirnov test). Violin plots show the distributions of gene 
expression values within each group, and boxplots indicate the median, IQR, Q1-1.5*IQR, and 
Q3+1.5*IQR. 

 

Physical chromatin interactions have been theorized to mediate the effects of cis-acting regulatory 

variants including expression quantitative trait loci (eQTLs) on gene expression. In support of this 

hypothesis, we first demonstrate that significant eQTLs in cortical and hippocampal tissues from 

GTEx V7 (GTEx Consortium, 2017) are enriched at PIRs for excitatory and hippocampal DG-like 

neurons, respectively (P < 2.2*10-16 for both cell types, two-tailed one sample z-test) (Figure 



 30 

1.20c). Next, we show that scores for interactions overlapping significant eQTL-TSS pairs are 

significantly higher than scores for interactions overlapping randomly shuffled eQTL-TSS pairs 

(P=2.28*10-4 for excitatory neurons and P=1.76*10-6 for hippocampal DG-like neurons, two-tailed 

two sample Kolmogorov-Smirnov test) (Figure 1.20d). This indicates that chromatin interactions 

recapitulating regulatory relationships between significant eQTL-TSS pairs are identified by pcHi-

C with increased levels of confidence. Overall, our results present orthogonal lines of evidence 

that chromatin interactions can not only be altered by variants in an allele-specific manner, but 

that variants can also modulate gene expression through the formation or disruption of regulatory 

chromatin loops. 

 

1.8 Discussion 

 

Here, we have leveraged pcHi-C, ATAC-seq, and RNA-seq to comprehensively annotate 

previously uncharted regulatory relationships between promoters and distal regulatory elements 

in cell types that are relevant to complex neuropsychiatric disorders. We show that PIRs are not 

only cell type-specific, but they are enriched for regulatory chromatin signatures including open 

chromatin peaks and in vivo-validated enhancer elements from the VISTA Enhancer Browser. 

Inspection of cell type-specific distal open chromatin peaks at PIRs reveals subtype-specific 

binding sites for TFs involved in the specification and maintenance of cellular identity. 

Furthermore, our interactions identify novel gene targets for disease-associated variants and 

enable the prioritization of variants for validation using CRISPR techniques. We report a large 

number of putative regulatory variants which may provide additional insights into aspects of 

complex disease biology. Finally, the disease- and cell type-specific enrichment of variants at 

PIRs, combined with the observation that the same PIRs can target different genes in different 

cell types, supports existing evidence that regulatory variants possess context-dependent 

functional specificities. 



 31 

The integrative analysis in this study has several limitations including a lack of cell type-specific 

annotations for genomic and epigenomic features occurring at PIRs. For example, the analysis of 

chromatin state and eQTL enrichment at PIRs used data in matched tissues from the Roadmap 

Epigenomics Project and GTEx V7, respectively. Furthermore, while studying chromatin 

interactions in healthy cells enables the detection of regulatory interactions in the absence of 

dysregulation, the epigenomic characterization of patient-derived cells will be important to glean 

specific insights into how the 3D epigenome is altered in disease. Additional experiments are 

necessary to determine how the haploinsufficiency of genes such as STRAP and DRD2 may 

contribute to phenotypes in disease. Finally, in vitro cultured cells can at present only approximate 

the full set of cellular responses occurring in vivo, especially for complex structures such as the 

brain, and they may reflect different developmental stages than expected based on their time in 

culture. Future approaches isolating specific cell types from tissues, using single cell sequencing, 

or using advanced organoid models will be essential for drilling down more deeply into 

mechanisms driving cellular identity and disease. The epigenomic characterization of additional 

cell types should continue to yield rich insights into the landscape of transcriptional regulation, 

contributing towards an improved understanding of complex disease biology. 

 

1.9 Methods 

 

Cell culture 

 

Human excitatory neurons were generated using integrated, isogenic, and inducible neurogenin-

2 (Ngn2) iPSCs (i3N iPSCs) with doxycycline-inducible mouse Ngn2 integrated at the AAVS1 

safe-harbor locus. The i3N iPSCs have a well-characterized wild type genetic background 

(WTC11) (Miyaoka et al., 2014). A simplified, two-step pre-differentiation and maturation protocol 

was used to generate the excitatory neurons (Wang et al., 2017). Briefly, i3N iPSCs were 
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incubated with 2 μg/ml doxycycline in pre-differentiation media containing KnockOut DMEM/F12 

supplemented with 1x N-2, 1x NEAA, 1 μg/ml mouse laminin, 10 ng/ml BDNF, and 10 ng/ml NT3. 

In addition, 10 μM Rock inhibitor was included in the pre-differentiation media for the first day. 

Media was changed daily for three days. For maturation, pre-differentiated precursor cells were 

dissociated and subplated on poly-D-lysine/laminin plates in maturation media containing equal 

parts DMEM/F12 and Neurobasal-A with 2 μg/ml doxycycline and supplemented with 0.5x B-27, 

0.5x N-2, 1x NEAA, 0.5x GlutaMax, 1 μg/ml mouse laminin, 10 ng/ml BDNF, and 10 ng/ml NT3. 

The doxycycline was omitted from all subsequent media changes. Half of the media was changed 

weekly for the first two weeks, then the amount of media was doubled on day 21. Thereafter, a 

third of the media was replaced weekly until harvesting. 7 to 8 week old excitatory neurons were 

harvested for library preparation. 

 

Human hippocampal DG-like neurons were generated from dissociated hippocampal organoids. 

Briefly, WTC11 iPSCs were grown on MEF feeder cells and patterned towards a neural ectoderm 

fate using dual SMAD inhibition as floating embryoid bodies (EBs) in media containing 20% 

KnockOut Serum Replacement. Next, 4 week old EBs were patterned towards a hippocampal 

fate using WNT and BMP in media containing 1x N-2. After patterning, organoids were dissociated 

using a neural tissue dissociation kit (MiltenyiBiotech), plated on PDL- and laminin-coated plates, 

and cultured for 4 weeks in media containing 1x B-27, 10 ng/ml BDNF, 10 ng/ml GDNF, 0.5 mM 

cAMP, and 200 μM ascorbic acid. 

 

Human lower motor neurons were differentiated from WTC11 iPSCs with a doxycycline inducible 

transgene expressing NGN2, ISL1, and LHX3 integrated at the AAVS1 safe-harbor locus (i3LMN 

iPSCs) (Fernandopulle et al., 2018). Briefly, i3LMN iPSCs were maintained on growth factor 

reduced Matrigel in StemFit media (Nacalai USA). On day 0, 1.5*106 i3LMN iPSCs were plated 

on 10-cm dishes, followed 24 hours later by exchange into neural induction media containing 
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doxycycline and compound E. On day 3, the precursor cells were re-plated onto 12-well plates 

coated with poly-D-lysine and laminin at a density of 2.5*105 cells per well. From day 3 to day 4, 

the cells were treated with a pulse of 40 μM BrdU for 24 hours to suppress the proliferation of 

undifferentiated cells. Media was exchanged on day 4 and every three days thereafter. The cells 

were harvested after 10 days post-differentiation for library preparation. 

 

Human primary astrocytes (P0) were purchased from ScienCell Research Laboratories (catalog 

#1800) and cultured using the recommended media (catalog #1801). Briefly, cells were cultured 

in flasks coated with poly-L-lysine (2 µg/cm2) and passaged once with trypsin and EDTA before 

harvesting. 

 

Promoter capture Hi-C (pcHi-C) 

 

In situ Hi-C libraries for the excitatory neurons, hippocampal DG-like neurons, lower motor 

neurons, and astrocytes were constructed from 1 to 2 million cells (fixed in 1% PFA) using HindIII 

as a restriction enzyme as previously described (Rao et al., 2014). pcHi-C was performed using 

biotinylated RNA probes according to an established protocol (Jung et al., 2019). Briefly, sets of 

120 bp probes with 30 bp overhangs were designed to capture sequences adjacent to the 

restriction sites flanking each promoter-containing HindIII fragment. Three probes were targeted 

to each side of a restriction site for a total of 12 probes targeting each promoter-containing HindIII 

fragment. In total, promoters (defined as the sequences up to 500 bp upstream and downstream 

of each TSS) for 19,603 of the 20,332 protein coding genes in GENCODE 19 were captured using 

this approach. While noncoding RNA promoters were not explicitly targeted by this design, the 

probes also targeted HindIII fragments containing 3,311 of the 14,069 noncoding RNA promoters 

in GENCODE 19. 
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To perform the hybridization, 500 ng of each situ Hi-C library was first mixed with 2.5 μg human 

Cot-1 DNA (Invitrogen #15279011), 2.5 μg salmon sperm DNA (Invitrogen #15632011), and 0.5 

nmol each of the p5 and p7 IDT xGen Universal Blocking Oligos in a total volume of 10 μL and 

denatured for 5 min at 95ºC before holding at 65ºC. Next, a hybridization buffer mix was prepared 

by combining 25 μL 20x SSPE, 1 μL 0.5 M EDTA, 10 μL 50x Denhardt’s solution, and 13 μL 1% 

SDS and pre-warming the mix to 65ºC. Finally, 500 ng of the probes was mixed with 1 μL 20 U/μL 

SUPERase-In (Invitrogen #AM2696) in a total volume of 6 μL, pre-warmed to 65ºC, then 

combined with the library and hybridization buffer mixes. The solution was transferred to a 

humidified hybridization chamber and incubated for 24 hours at 65ºC. 0.5 mg Dynabeads MyOne 

Streptavidin T1 magnetic beads (Invitrogen #65601) were used to pull down the captured 

fragments in a binding buffer consisting of 10 mM Tris-HCl pH 7.5, 1 M NaCl, and 1 mM EDTA. 

The beads were washed once with 1x SSC and 0.1% SDS for 30 minutes at 25ºC, followed by 

three washes with pre-warmed 0.1X SSC and 0.1% SDS for 10 minutes at 65ºC. The library was 

eluted in 20 μL nuclease-free water, amplified, then sent for paired-end sequencing on the HiSeq 

4000 (50 bp reads), the HiSeq X Ten (150 bp reads), or the NovaSeq 6000 (150 bp reads). 

 

Calling significant promoter-PIR interactions 

 

Paired-end sequencing reads were first trimmed using fastp 0.20.0 (Chen et al., 2018) running 

the default settings before being mapped, filtered, and deduplicated using HiCUP 0.71 (Wingett 

et al., 2015) with bowtie2 (Langmead et al., 2012) and filtering for ditags between 100 and 1200 

bp. In addition, the sequencing depths of all libraries was normalized so that each replicate had 

the same number of usable reads (defined as the number of on-target cis pairs interacting over a 

distance of 10 kb). Significant promoter-PIR interactions were called using CHiCAGO (Cairns et 

al., 2016) running the default settings and retaining baited fragments that are supported by at 

least 250 reads (minNPerBaits=250). Interactions between HindIII fragments with a score 
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(defined as the negative log p-value) ³ 5 in each cell type were determined to be significant. In 

cases where CHiCAGO reported the same interaction in different orientations, the two interactions 

were merged, retaining the higher score of the two interactions. Interchromosomal interactions 

were omitted from the analysis. To call overlaps between our sets of significant interactions and 

genomic and epigenomic features including promoters, open chromatin peaks, chromatin states, 

disease-associated variants, and eQTLs, interacting bins were expanded to a minimum width of 

5 kb or retained as the original widths of the HindIII fragments if they exceeded 5 kb. Interactions 

involving HindIII fragments larger than 100 kb were omitted from our analysis. An interaction was 

considered to be shared between cell types if both of its interacting ends intersected the 

corresponding ends of an interaction in another cell type. Otherwise, an interaction was 

determined to be cell type-specific. 

 

Validation of PIRs using CRISPR deletion 

 

To validate genomic interactions captured by pcHi-C, candidate PIRs were targeted for CRISPR 

deletion in the i3N iPSCs. Pairs of sgRNAs targeting the putative regulatory element as localized 

by open chromatin peaks in the candidate PIR were designed for each locus of interest. All 

sgRNAs were synthesized by Synthego. Cas9 protein was sourced from QB3-Berkeley. To 

generate deletion lines, CRISPR/Cas9 nucleofections were performed using the LONZA Human 

Stem Cell Nucleofector® Kit. For each nucleofection, approximately 500,000 i3N iPSCs were 

transfected with Cas9:sgRNA RNP complex (consisting of 12 μg Cas9, 10 μg sgRNA 1, and 10 

μg sgRNA 2) using program “A-023” on the LONZA 4D-Nucleofector. The nucleofected cells were 

then seeded onto Matrigel-coated 6-well plates containing Essential 8™ Medium (ThermoFisher 

#A15169-01) with Y-27632 added for recovery following nucleofection. After 48 hours, the cells 

were split into new 6-well plates at a concentration of approximately 50 cells per well for picking 

single colonies. Clones picked from the 6-well plates containing homozygous deletions were 
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confirmed by qPCR and induced into excitatory neurons for quantifying the expression of genes 

targeted by the deleted PIRs. For each experiment, we used three deletion clones and two wild 

type clones. Total RNA from the excitatory neurons was extracted using a Qiagen AllPrep 

DNA/RNA Mini Kit, and cDNA was synthesized using a Bio-RAD iScript™ cDNA Synthesis Kit. 

qPCR for targeted genes was performed with FastStart Essential DNA Green Master reaction mix 

(Roche) on the LightCycler® 96 System (Roche). 

 

Validation of PIRs using CRISPRi  

 

Excitatory neurons induced from i3N iPSCs were infected with lentivirus carrying dCas9-KRAB-

blast (Addgene #89567) and colonies with high expression of dCas9 were picked. The CROP-

seq-opti vector (Addgene #106280) was used for sgRNA expression. sgRNAs were cotransfected 

with lentivirus packaging plasmids pMD2.G (Addgene #12259) and psPAX (Addgene #12260) 

into 293T cells with PolyJet (SignaGen Laboratories #SL100688) according to the manufacturer’s 

instructions. Virus-containing media was collected for 72 hours, filtered through a 0.45 μm filter 

(Millipore #SLHV033RS), then concentrated using an Amicon Ultra centrifugal filter (Millipore 

#UFC801024). The virus was titrated in the excitatory neurons by qPCR 72 hours post-

transfection. The internal qPCR control targeted an intronic region (forward primer: 

TCCTCCGGAGTTATTCTTGGCA and reverse primer: CCCCCCATCTGATCTGTTTCAC). 

Integration of the WPRE fragment was quantified in comparison with a cell line containing a known 

copy number of WPRE. For CRISPRi silencing of putative regulatory elements, excitatory neurons 

were treated with lentivirus containing the sgRNAs in two or three independent differentiation 

(MOI ~3). Cells were collected for mRNA extraction 7 days post-transfection, and gene expression 

was determined using qPCR. Each independent replicate was repeated with three technical 

replicates, and the mean values were used for statistical testing. 
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Motif enrichment analysis 

 

We took the sets of all cell type-specific distal open chromatin peaks participating in significant 

promoter-PIR interactions between promoter-containing and non-promoter-containing bins for 

each cell type and used the sequences in 250 bp windows around the peak summits to perform 

motif enrichment analysis using HOMER (Heinz et al., 2010) running the default settings. The 

cumulative binomial distribution was used for motif scoring. The entire genome was used as a 

background. Significance and expression values for each detected motif and its corresponding 

TFs are reported in Song et al., 2019. 

 

VISTA enhancer analysis and target gene identification 

 

Human and mouse enhancer regions with orthologous human sequences and positive 

annotations in the VISTA Enhancer Browser (Visel et al., 2007) were downloaded and analyzed 

for overlap with our sets of significant promoter-PIR interactions for each cell type. Of the 2,956 

tested elements in their database (January 2019), 1,568 were positive elements with orthologous 

human sequences (976 human elements and 892 mouse elements with orthologous human 

sequences). Positive elements were expanded to a minimum width of 5 kb. The “hs” or “mm” 

prefixes for elements indicate the species of DNA origin. For determining whether positive 

elements interacted with their nearest or more distal genes, we only considered protein coding 

and noncoding RNA genes in GENCODE 19. To evaluate cases where interactions between 

positive elements and their nearest genes were unresolvable (“same fragment ambiguity”), we 

determined if a promoter for the nearest gene overlapped at least one HindIII fragment that the 

positive element did not also overlap. The following terms were considered to be neural 

annotations: neural tube, hindbrain, cranial nerve, midbrain, forebrain, mesenchyme derived from 

neural crest, dorsal root ganglion, and trigeminal V. 
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SNP enrichment analysis and target gene identification 

 

GWAS SNPs for a total of eleven neuropsychiatric disorders including Alzheimer’s disease (AD), 

attention deficit hyperactivity disorder (ADHD), amyotrophic lateral sclerosis (ALS), autism 

spectrum disorder (ASD), bipolar disorder (BD), epilepsy (EP), frontotemporal dementia (FTD), 

mental process (MP), Parkinson’s disease (PD), and schizophrenia (SCZ), and unipolar 

depression (UD) were mined from the GWAS Catalog (Buniello et al., 2019) (December 2018) 

using a p-value threshold of 10-6. The GWAS SNPs were expanded to sets of linked SNPs using 

HaploReg 4.140 at an LD threshold of 0.8 according to the reported study population(s) for each 

SNP. All SNPs were lifted over to hg19 and filtered for duplicates by position. Disease- and cell 

type-specific enrichment for SNPs was calculated as the number of SNPs overlapping significant 

PIRs divided by the mean number of SNPs overlapping randomly shuffled PIRs with matching 

distance distributions. n=100 sets of randomly shuffled PIRs were sampled in each case. To 

determine whether a GWAS SNP interacted with a target gene, we determined whether it or any 

of its linked SNPs (expanded to a minimum width of 1 kb) interacted with a promoter associated 

with the nearest gene. To evaluate cases where interactions between GWAS SNPs and their 

nearest genes were unresolvable (“same fragment ambiguity”), we determined if a promoter for 

the nearest gene overlapped at least one HindIII fragment that a GWAS SNP or any of its linked 

SNPs did not also overlap. Finally, we derived a list of SNPs for which the SNP was located within 

2 kb of the center of an open chromatin peak at a PIR, indicating additional evidence for a 

functional regulatory variant at that locus. These SNPs are referred to as “putative regulatory 

SNPs.” 
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Phasing of the WTC11 genome 

 

Phasing of the WTC11 genome was performed as previously described (Selvaraj et al., 2013). 

Briefly, WTC11 variants were split by chromosome and phase-informative reads from pcHi-C 

were extracted using extractHAIRS with the minimum mapping quality set to 10 and the maximum 

insert size set to 30000000 bp (Bansal et al., 2008). Phasing was performed with Hapcut using a 

maximum of 101 iterations. Next, we extracted the maximum variants phased (MVP) haplotype 

block from the output of Hapcut to use as a seed haplotype. We modified the “neighborhood 

correction” aspect of phasing by filtering phased variants whose predicted phase would have a 

marginal probability below 0.99 according to an in-house implementation of a hidden Markov 

model (HMM) as described previously (Li et al., 2003; Delaneau et al., 2013) with a reference 

haplotype set from the 1000 Genomes Project. Missing variants were imputed using the 

aforementioned HMM with the reference haplotype set from the 1000 Genomes Project. The 

WTC11 SNP phasing data is available at the Gene Expression Omnibus under the following 

accessible number: GSE113483. 

 

Allelic bias analysis 

 

We used the WTC11 phasing data along with the allele-specific mapping capabilities of HiC-Pro 

(Servant et al., 2015) to quantify allelic bias between significantly interacting 10 kb bins genome-

wide in the excitatory and lower motor neurons. We selected these two cell types because they 

used homogenous induction of TFs for differentiation, therefore minimizing the noise introduced 

by conventional differentiation techniques. Briefly, reads were mapped using bowtie (Langmead 

et al., 2009) to a version of the hg19 reference genome where all sites with heterozygous phased 

SNPs were masked. Unfiltered HiC-Pro contact maps were used for this analysis. Next, 

nucleotides at masked polymorphic sites were used to assign reads to either allele. Reads 
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reporting conflicting allele assignments or unexpected bases were filtered out. Reads with at least 

one allele-specific mate were used to construct allele-specific Hi-C contact maps at a resolution 

of 10 kb. The allele-specific Hi-C contact maps were intersected with the set of all significant 

promoter-PIR interactions with score ³ 3 to assess allelic bias between interacting 10 kb bins. 

Only interacting bins with 10 or more reads across both alleles were retained (n=22,162 bins for 

excitatory neurons and n=21,479 bins for lower motor neurons). A two-tailed binomial test was 

used to assess allelic bias across each set of interacting bins, and the resulting p-values were 

adjusted using BH correction to filter out significantly biased loci at an FDR cutoff of 5%. Allelically 

biased interactions with p-values < 10-3 are reported in Song et al., 2019. 

 

eQTL enrichment analysis 

 

1D enrichment of significant eQTLs from GTEX V7 (GTEx Consortium, 2017) at significant versus 

randomly shuffled PIRs in matched tissue types for excitatory neurons (Brain - Cortex, n=136) 

and hippocampal DG-like neurons (Brain - Hippocampus, n=111) was performed in the same 

manner as the chromatin state and SNP enrichment analysis. We used the full set of significant 

eQTL SNP-gene associations available from GTEx which included 478,903 eQTLs associated 

with 6,146 eGenes for the cortex and 221,876 eQTLs associated with 3,262 eGenes for the 

hippocampus. To determine the 2D enrichment of eQTL-TSS pairs in our significant interaction 

sets, we first filtered out eQTL-TSS pairs that were within 10 kb of each other or on the same 

HindIII fragment as this would be below the minimum detectable resolution by pcHi-C. Next, we 

sampled a set of nonsignificant eQTL-TSS pairs with a matching distance distribution as the set 

of significant eQTL-TSS pairs for each cell type, controlling for the number of genes around which 

the eQTL-TSS pairs were centered. We compared the distributions of interaction scores for 

significant interactions supporting the significant and nonsignificant eQTL-TSS pairs by 

overlapping the eQTL-TSS pairs with our significant interactions.  
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Chapter 2. Cell Type-Specific 3D Epigenomes in the Developing Human Cortex 

 

The human cortex is a complex, heterogeneous structure which undergoes extensive expansion 

during development, a process which is markedly different and features distinct cell types from 

mouse cortex development. Previous studies utilized single cell RNA sequencing (scRNA-seq) to 

unravel the transcriptomic diversity of the developing human cortex, revealing at least nine major 

cell types and up to 26 distinct subtypes in the dorsal cortex alone (Nowakowski et al., 2017; 

Zhong et al., 2018). Much of this diversity arises from cortical stem cells known as radial glia (RG), 

whose cell bodies reside in the germinal zones (GZs) of the dorsal and ventral cortices. Within 

the dorsal cortex, RG divide asymmetrically to give rise to intermediate progenitor cells (IPCs), 

which proliferate and differentiate into excitatory neurons (eNs) (Pontious et al., 2008; Hansen et 

al., 2010). These newborn neurons undergo radial migration until they reach the cortical plate 

(CP), where they mature and undergo synaptogenesis. Meanwhile, interneurons (iNs) produced 

in the ventral cortex migrate tangentially into the dorsal cortex through the marginal and germinal 

zones (Anderson et al., 1999). These processes result in a CP comprised primarily of eNs and 

iNs, and a GZ where all four cell types are intermixed. 

 

Dynamic changes in the epigenomic landscape have been shown to play a critical role in 

development and cell fate commitment, for instance through the rewiring of physical chromatin 

loops between promoters and distal regulatory elements (Zheng et al., 2019). These regulatory 

interactions are of particular interest as their dysregulation has been linked to complex disorders 

and traits (Li et al., 2018; Schoenfelder et al., 2019). Despite their utility, detailed epigenomic 

characterizations are still missing for specific cell types in the developing human cortex due to 

limitations associated with the analysis of bulk tissues (Won et al., 2016). For example, previous 

studies focused on the CP and GZ, both of which contain diverse mixtures of lineages 

encompassing endothelial cells, microglia, and oligodendrocyte progenitor cells in addition to RG, 
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IPCs, eNs, and iNs. Furthermore, important developmental genes such as SOX2, PAX6, and 

NPAS3 are often broadly expressed across multiple cell types and lineages, obfuscating 

interpretations of heterogeneous data. Here, we present a novel approach for isolating RG, IPCs, 

eNs, and iNs from mid-gestational human cortex samples, enabling the profiling of their cell type-

specific epigenomic landscapes. In addition, we present CRISPRview, a versatile and sensitive 

technique for validating cell type-specific cis-regulatory elements in heterogeneous populations 

of primary cells. We apply CRISPRview to demonstrate that key genes including GPX3, TNC, 

HES1, and IDH1 are regulated by cell type-specific enhancers in RG and eNs. Overall, our results 

identify novel mechanisms underlying gene regulation and lineage specification during human 

corticogenesis, providing a framework for the understanding of diverse processes in development 

and disease. 

 

2.1 Sorting specific cell types from the developing human cortex 

 

To isolate RG, IPCs, eNs, and iNs from mid-gestational human cortex samples between 

gestational weeks (GW) 15 to 22, we expanded upon an established approach for isolating RG 

from human cortical samples using fluorescence-activated cell sorting (FACS) (Thomsen et al., 

2016). Microdissected GZ and CP samples were dissociated, stained using antibodies for 

EOMES, SOX2, PAX6, and SATB2, and partitioned into their constituent populations using FACS 

(Figure 2.2). IPCs were isolated as the EOMES+ population, while eNs were isolated from the 

EOMES- and SOX2- population based on high SATB2 expression, which marks both newborn 

and mature eNs at the samples’ ages (Nowakowski et al., 2017). RG were isolated based on high 

SOX2 and high PAX6 expression, and iNs were isolated based on medium SOX2 and low PAX6 

expression. The gene expression profiles of the sorted cell populations were both highly 

consistent with cellular identity and reproducible between individuals (Figures 2.1a and 2.3a-b). 
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Figure 2.1. Reproducibility between RNA-seq, ATAC-seq, and PLAC-seq replicates. (a) 
RNA-seq replicates were hierarchically clustered according to gene expression sample distances 
using DESeq2. (b) Principle component analysis (PCA) was performed based on normalized 
contact frequencies across all PLAC-seq replicates (see methods). PCA was performed using 
interacting 5 kb bins in a 600 kb window. (c) Heatmap showing correlations and hierarchical 
clustering for read densities at open chromatin peaks across all ATAC-seq replicates. 
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Figure 2.2. Sorting specific cell types from the developing human cortex. Within the dorsal 
cortex, the germinal zone (GZ) is populated by radial glia (RG), which extend fibers towards the 
cortical plate (CP). These RG divide asymmetrically to produce intermediate progenitor cells 
(IPCs), which differentiate into excitatory neurons (eNs) that migrate towards the CP. At the same 
time, interneurons (iNs) can be found in both the GZ and CP. Microdissected GZ and CP samples 
were dissociated into single cells before being fixed, stained with antibodies for EOMES, SOX2, 
PAX6, and SATB2, and sorted using FACS. 

 

2.2 Characterizing cell type-specific 3D epigenomes 

 

We used H3K4me3 proximity ligation-assisted ChIP-seq (PLAC-seq) (Fang et al., 2016) to identify 

chromatin interactions at active promoters and assay for transposase-accessible chromatin using 

sequencing (ATAC-seq) to profile open chromatin peaks for the sorted cell populations (Figure 

2.3c). After confirming that the samples cluster by cellular identity (Figures 2.1b-c), we applied 

the Model-based Analysis of PLAC-seq (MAPS) pipeline (Juric et al., 2019) to call significant 

H3K4me3-mediated chromatin interactions at a resolution of 5 kb. We identify 35,552, 26,138, 

29,104 and 22,598 interactions in RG, IPCs, eNs, and iNs, respectively, with approximately 85% 

of the interactions classified as anchor to non-anchor, and the remaining interactions classified 

as anchor to anchor (Figure 2.3d). The median interaction distance was between 170 kb to 230 

kb (Figure 2.3e), with an average of 4-5 interactions per promoter (Figure 2.3f), and the majority 

of interactions occurred within topologically associated domains (TADs) in the GZ or CP (Won et 

al., 2016). 
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Figure 2.3. Features of 3D epigenomes during human corticogenesis. (a) Heatmap 
displaying the expression of key marker genes for each cell type. (b) Heatmap showing 
correlations between gene expression profiles for the sorted cell populations and single-cell RNA 
sequencing (scRNA-seq) data in the developing human cortex. The sorted cell populations 
exhibited the highest correlation with their corresponding subtypes while exhibiting reduced 
correlation with the endothelial, mural, microglial, and choroid plexus lineages. (c) WashU 
Epigenome Browser snapshot displaying a region (chr17: 72,970,000-73,330,000) with 
interactions linked to SSTR2 expression in IPCs. (d) Bar graph of interaction counts for each cell 
type, with the proportions of anchor to anchor (red) and anchor to non-anchor (blue) interactions 
highlighted. (e) Cumulative distribution function (CDF) plots of interaction distances for each cell 
type. (f) Histogram displaying the numbers of interactions for interacting promoters across all cell 
types. 
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Figure 2.4. GO enrichment analysis of cell type-specific chromatin interactions. The top 
annotation clusters from DAVID are reported along with their group enrichment scores. 

 

2.3 Chromatin interactions influence cell type-specific transcription 

 

Since H3K4me3 is a mark associated with active promoters, we characterized the extent to which 

H3K4me3-mediated chromatin interactions influence cell type-specific transcription. First, the 

sorted cell populations cluster by developmental age based on their interaction strengths across 

all interacting loci (Figure 2.5a). This is consistent with iNs at this age possessing progenitor-like 

characteristics including high SOX2 expression. Meanwhile, genes participating in cell type-

specific interactions are enriched for biological processes linked to their respective cell types, 

including cell proliferation for RG and IPCs, neuron projection development for IPCs and eNs, 

and synaptogenesis for eNs (Figure 2.4). Interaction strength and gene expression are positively 

correlated across all cell types (Figure 2.5b), suggesting that chromatin interactions orchestrate 

transcription in a manner that is distinctly cell type-specific. Next, we leveraged the enrichment of 
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open chromatin peaks at distal interacting regions (Figure 2.5c) and performed transcription 

factor (TF) motif enrichment analysis for distal interacting regions in each cell type (Figure 2.5d). 

The motifs for PAX6, EOMES, and TBR1 are enriched in RG, IPCs, and eNs, respectively, 

recapitulating their sequence of expression along this developmental trajectory (Englund et al., 

2005). Meanwhile, the motifs for DLX1, DLX2, DLX6, GSX2, and LHX6 are enriched in iNs, in 

accordance with their roles in iN maturation and function (Lim et al., 2018). Our results link key 

lineage-specific TFs while linking them to their interacting genes, enabling novel insights into gene 

regulatory networks during human corticogenesis. 

 

 

 

Figure 2.5. H3K4me3-mediated chromatin interactions influence cell type-specific 
transcription. (a) Heatmaps showing interaction strengths (left) and gene expression (right) for 
anchor to non-anchor interactions grouped according to their cell type specificity. Interaction 
strengths are based on the -log10FDR from the MAPS pipeline. (b) Scatterplot showing the 
correlation between the difference in the number of interactions for each promoter and the 
difference in the expression of the corresponding genes for RG and eNs (Pearson product-
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moment correlation coefficient, two-tailed, P=1.32*10-279, n=13,996 anchor bins with promoters). 
The trendline from linear regression is shown. (c) Fold enrichment of open chromatin peaks over 
distance-matched background regions in 1 Mb windows around distal interacting regions for RG. 
(d) TF motif enrichment analysis for open chromatin peaks at cell type-specific distal interacting 
regions in each cell type. Colors represent enrichment scores based on the p-value from HOMER, 
while sizes represent the gene expression of the corresponding TFs. 

 

 

 

 
 
Figure 2.6. SIPs are enriched for lineage-specific genes. (a) Scatterplots showing the 
correlation between interaction counts and gene expression at promoters for each cell type 
(Pearson product-moment correlation coefficient, two-tailed, n=13,996 anchor bins with 
promoters). (b) CDF plots of the numbers of interactions for shared versus cell type-specific genes 
for each cell type (two-sample t-test, two-tailed). (c) Venn diagram displaying cell type-specificity 
for SIPs in each cell type. (d) Anchor bins were ranked according to their cumulative interaction 
scores in RG, IPCs, eNs, and iNs. Super interactive promoters (SIPs) are located past the point 
in each curve where the slope is equal to 1. 
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2.4 Super interactive promoters are enriched for lineage-specific genes 

 

The number of chromatin interactions at H3K4me3-mediated anchor bins is only modestly 

correlated with gene expression (Figure 2.6a). One potential explanation is that individual genes 

are expressed to varying degrees in the contexts of their diverse cellular functions, and a subset 

of regulatory elements may be better described as fine-tuning rather than independently inducing 

or silencing the expression of their interacting genes. Multiple regulatory interactions can also 

exert synergistic or nonlinear effects on transcription. We first demonstrate that cell type-specific 

genes tend to harbor more chromatin interactions than shared genes across all four cell types 

(Figure 2.6b). Next, by ranking anchor bins according to their cumulative interaction scores, we 

delineate a subset of promoters with significantly increased levels of chromatin interactivity, 

termed super interactive promoters (SIPs). We identify 755, 765, 638, and 663 SIPs in RG, IPCs, 

eNs, and iNs, respectively (Figures 2.6c-d). SIPs are enriched for key lineage-specific genes 

including GFAP and HES1 for RG, EOMES for IPCs, SATB2 for eNs, and DLX5, DLX6, GAD1, 

GAD2, and LHX6 for iNs. We also observe forebrain-specific SIPs including FOXG1 in all four 

cell types, progenitor-specific SIPs including SOX2 in RG, IPCs, and iNs, and cortical neuron-

specific SIPs including TBR1 in IPCs and eNs. Numerous promoters for lincRNAs including 

LINC00461 and LINC01551 are annotated as SIPs, consistent with their expression in the 

developing human cortex (Liu et al., 2016). In general, SIPs are enriched in cell types with the 

highest expression of their linked genes, supporting their putative roles in lineage specification 

(Figure 2.7a). Moreover, super-enhancers and DNA methylation valleys (DMVs) (Luo et al., 

2016), two epigenetic features associated with developmental genes and cellular identity, both 

exhibit enrichment at SIPs (Figures 2.7c-d). Finally, SIPs based on promoter capture Hi-C data 

in neutrophils, naive CD4+ T cells, monocytes, megakaryocytes, and erythroblasts (Javierre et 

al., 2016) are analogously enriched for cell type-specific over shared genes (Figure 2.7b), 
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implying that SIPs present a generalized mechanism for maintaining the expression of key genes 

underlying cellular identity and function. 

 

 

 

Figure 2.7. Features of SIPs. (a) The number of SIPs was divided by the total number of anchor 
bins (both SIPs and non-SIPs) associated with genes with the 1st, 2nd, 3rd, and 4th highest 
expression among all four cell types (n=13,996 anchor bins with promoters). Fold enrichment was 
calculated relative to the group with the lowest expression among all four cell types. (b) Forrest 
plot showing that SIPs identified in hematopoietic cells are analogously enriched for cell type-
specific over shared genes. Odds ratios and 95% confidence intervals are shown. We identified 
554, 709, 460, 712, and 401 SIPs in neutrophils, naive CD4+ T cells, monocytes, 
megakaryocytes, and erythroblasts, respectively. (c-d) Enrichment of super-enhancers and 
DMVs at SIPs versus non-SIPs (left) and distal interacting regions for SIPs versus non-SIPs (right) 
(Fisher’s exact test, two-tailed). Super-enhancers were based on data in the fetal brain and adult 
cortex, while DMVs were based on data in 40 and 60 day cerebral organoids with closely matched 
gene expression profiles to mid-fetal cortex samples.  

 

2.5 Transposable elements in SIP formation 

 

To explore potential mechanisms underlying SIP formation, we evaluated the contributions of 

transposable elements (TEs), which have been shown to influence 3D chromatin architecture and 

propagate regulatory elements throughout the genome (Feschotte et al., 2008; Zhang et al., 2019; 
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Choudhary et al., 2020). We analyzed the enrichment of TEs at the class, family, and subfamily 

levels in sequences defined by SIPs and their distal interacting regions, termed super interactive 

promoter groups (SIPGs) (Figures 2.8a-d). We first observe that ERVL-MaLR TEs are enriched 

in SIPGs across all four cell types. Next, we identify 16 SIPGs in eNs that exhibit significant 

enrichment for ERVL-MaLR TEs and have 40 or more distal interacting regions (hypergeometric 

test, one-tailed, P < 0.01) (Figure 2.8e). TF motif enrichment analysis for ERVL-MaLR TEs in 

these SIPGs reveals the most enriched motif to be that for ZNF143, an architectural protein that 

has been demonstrated to mediate physical chromatin looping between promoters and distal 

regulatory elements (Bailey et al., 2015) (Figure 2.8f). Moreover, ERVL-MaLR TE subfamilies 

have been linked to ZNF143 binding in 3T3 and HeLa cells (Ngondo-Mbongo et al., 2013). We 

find that ZNF143 motifs are broadly enriched in ERVL-MaLR TEs, SIPGs, and ERVL-MaLR TEs 

in SIPGs (Figures 2.8h-j). The ADRA2A SIPG in particular exhibits the strongest enrichment of 

ERVL-MaLR TE-localized ZNF143 motifs (hypergeometric test, one-tailed, P=1.59x10-6) (Figure 

2.8g) and is linked to elevated ADRA2A expression in eNs (Figure 2.8k). The ADRA2A SIPG 

spans 42 distal interacting regions, 25 of which contain ERVL-MaLR TEs, and 12 of which contain 

ERVL-MaLR TE-localized ZNF143 motifs (Figures 2.8l and 2.9a). Many of these ZNF143 motifs 

can be mapped back to the consensus sequences of their corresponding ERVL-MaLR TE 

subfamilies (Figure 2.8m). This supports a model in which ZNF143 motifs are coordinately 

expanded by ERVL-MaLR TE insertion, promoting increased binding site redundancy and 

strengthened assembly of the ADRA2A regulatory unit (Figure 2.9b). Using CRISPRi to target 

ERVL-MaLR TE-localized ZNF143 motifs in the ADRA2A SIPG resulted in the significant 

downregulation of ADRA2A expression for 3 of 7 regions in eNs (two-sample t-test, two-tailed, P 

< 0.05) (Figure 2.9c), implying that TEs are capable of mediating the formation of higher order 

chromatin features including SIPs (Sundaram et al., 2018). 

 

 



 52 

 

 

Figure 2.8. Transposable elements in SIP formation. (a-c) Enrichment of TEs at the class (a), 
family (b), and subfamily (c) levels in SIPGs for each cell type. Only TE families occupying more 
than 1% of the genome are shown in (b). Only TE subfamilies from the MIR and ERVL-MaLR TE 
families occupying more than 0.1% of the genome are shown in (c). (d) Scatterplot showing the 
enrichment and numbers of observed copies for TE families in SIPGs for eNs. TE families 
occupying more than 1% of the genome are colored. (e) Scatterplot showing the enrichment and 
numbers of distal interacting regions for ERVL-MaLR TEs in SIPGs for eNs (n=638 SIPGs). The 
16 SIPGs with significant enrichment (hypergeometric test, one-tailed, P < 0.01) and 40 or more 
distal interacting regions are highlighted. (f) Scatterplot showing the enrichment of TF motifs in 
ERVL-MaLR TEs for the 16 SIPGs highlighted in (e). Enrichment P values are from HOMER. (g) 
Scatterplot showing the enrichment of ZNF143 motifs in ERVL-MaLR TEs for the 16 SIPGs 
highlighted in (e) (Poisson distribution, see methods). (h) Both ERVL-MaLR TEs (left, 32% versus 
19% of sequences, P < 2.2*10-16, binomial test, two-tailed) and THE1C TEs (right, 73% versus 
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19% of sequences, P < 2.2*10-16, binomial test, two-tailed) are enriched over background 
sequences for ZNF143 motifs in eNs. (i) ZNF143 motifs are enriched at SIPGs in eNs (left, 
P=5.39*10-82, two-sample t-test, two-tailed, n=8,894 distal interacting regions). Means are 
indicated and error bars represent the SEM. Distributions comparing the number of ZNF143 
motifs per bin for actual versus shuffled SIPGs are shown (right, P < 2.2*10-16, Kolmogorov-
Smirnov test, two-tailed, n=638 SIPGs). (j) ERVL-MaLR TEs in SIPGs are enriched over 
background sequences for ZNF143 motifs in eNs (31% versus 17% of sequences, P=4.3x10-98, 
binomial test, two-tailed). (k) Boxplots showing elevated ADRA2A gene expression in eNs. The 
median, upper and lower quartiles, minimum, and maximum are indicated. (l) Illustration of the 12 
distal interacting regions containing ERVL-MaLR TE-localized ZNF143 motifs in the ADRA2A 
SIPG. ZNF143 motifs are colored by strand. The bin numbers correspond to Fig. 3j. (m) 
Conservation of ERVL-MaLR TEs in the ADRA2A SIPG. Blue bars indicate consensus 
sequences, yellow bars indicate ERVL-MaLR TEs, and red bars indicate ZNF143 motifs. 

 

 

 

Figure 2.9. Validating ERVL-MaLR-localized ZNF143 motifs. (a) Interactions between the 
ADRA2A promoter and 12 distal interacting regions containing ERVL-MaLR TE-localized ZNF143 
motifs. (b) Proposed mechanism for the contribution of TEs to SIP formation. (c) ADRA2A 
expression was significantly downregulated for 3 of 7 regions relative to control sgRNAs (two-
sample t-test, two-tailed, P < 0.05, n=3 for all regions except region III, which has n=2). Means 
are indicated and error bars represent the SEM. 
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2.6 Developmental trajectories from RG to eNs 

 

Since RG, IPCs, and eNs represent a developmental trajectory from dorsal cortical progenitors to 

mature functional neurons, we grouped genes based on their gene expression and chromatin 

interactivity along this axis and identified genes linked to cell type-specific processes in RG, IPCs, 

and eNs (groups 1-3) (Figures 2.10a and 2.10c). We similarly identified genes with anticorrelated 

gene expression and chromatin interactivity from RG to eNs (groups 4-5), which represent eN-

silenced and RG-silenced genes, respectively. eN-silenced genes are enriched for biological 

processes linked to chromatin remodeling and epigenetic regulation, while RG-silenced genes 

are enriched for eN-specific signatures. Furthermore, genes in these two groups are depleted for 

interactions with enhancers annotated using ChromHMM in the germinal matrix (Davis et al., 

2018) while exhibiting enrichment for interactions with TFs containing domains associated with 

transcriptional repression (Figure 2.10b). Our results demonstrate that cell type-specific 3D 

epigenomes are capable of identifying distinct modes of epigenetic regulation during 

development. 
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Figure 2.10. Developmental trajectories from RG to eNs. (a) Genes categorized based on their 
gene expression and chromatin interactivity from RG to eNs. Groups 1-5 represent RG-
upregulated, IPC-upregulated, eN-upregulated, eN-silenced, and RG-silenced genes, 
respectively. Representative genes and biological processes are shown for each group. (b) 
Groups 1 (75 of 312 bins) and 3 (40 of 127 bins) are enriched for interactions with enhancers 
relative to groups 4 (6 of 58 bins) and 5 (3 of 52 bins) (chi-squared test, two-tailed). Only bins with 
at least one interaction were considered. (c) Boxplots showing the distributions of gene 
expression and cumulative interaction scores for the groups identified in (a). The median, upper 
and lower quartiles, minimum, and maximum are indicated. 

 

2.7 Human-specific aspects of cortical development 

 

Human corticogenesis is dramatically distinct from other mammals, driven largely by the 

increased diversity and proliferative capacity of cortical progenitors which contribute to the 

enhanced size and complexity of the human brain (Miller et al., 2019). Notch signaling genes in 

particular have been implicated in the clonal expansion of RG, which represent the major subtype 

of cortical progenitors in the developing human cortex (Rani et al., 2016; Suzuki et al., 2018). 

Here, RG are enriched relative to other cell types for interactions involving Notch signaling genes 

(Carbon et al., 2009) (Figure 2.11). Furthermore, compared to other cell types, interactions in RG 

target a significantly higher proportion of human-gained enhancers (HGEs) identified through 
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comparative analyses of human, rhesus macaque, and mouse brains (Reilly et al., 2015). This 

suggests that epigenetic modifications surrounding Notch signaling genes in RG contribute to 

significant neurological differences between humans and other species. Additional biological 

processes exhibiting enrichment for interactions with HGEs include forebrain neuron fate 

commitment in RG, neuroblast proliferation in IPCs, forebrain neuron development in eNs, and 

GABAergic interneuron development in iNs. 

 

 

 

Figure 2.11. Human-specific aspects of cortical development. Bar graph of interaction counts 
from Notch signaling genes to regions with and without HGEs in each cell type (chi-squared test, 
two-tailed). 

 

2.8 Partitioning SNP heritability for complex disorders and traits 

 

Chromatin interactions present a unique resource for mapping complex disorder- and trait-

associated variants to their target genes. This is important as regulatory variants can modulate 

transcription through the formation or disruption of physical chromatin loops. For instance, both 

fetal (Walker et al., 2019) and adult (Hoffman et al., 2019) brain eQTLs are enriched at chromatin 
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interactions across all four cell types (Figures 2.12f-h). Chromatin interactions additionally enable 

the assessment of cell type-specific patterns of SNP heritability enrichment. Therefore, we 

leveraged linkage disequilibrium score regression (LDSC) (Bulik-Sullivan et al., 2015; Finucane 

et al., 2015) using our 3D epigenomes to partition SNP heritability for seven complex 

neuropsychiatric disorders and traits: Alzheimer’s disease (AD), attention deficit hyperactivity 

disorder (ADHD) (Demontis et al., 2019), autism spectrum disorder (ASD) (Grove et al., 2019), 

bipolar disorder (BD) (Stahl et al., 2019), intelligence quotient (IQ) (Savage et al., 2018), major 

depressive disorder (MDD) (Howard et al., 2019), and schizophrenia (SCZ) (Pardinas et al., 

2018). First, conditioned on a baseline model (Gazal et al., 2017), PLAC-seq anchor and target 

bins exhibit significant enrichment for all of the disorders and traits we tested, except for AD and 

ASD (Figure 2.12a). Anchor and target bins are also more informative relative to distal open 

chromatin peaks and cell type-specific genes (Figures 2.12b-c). This can be attributed to the 

utility of chromatin interactions for linking genes to functional regulatory sequences over long 

genomic distances. Next, we utilized a joint model incorporating all four cell types to investigate 

cell type-specific patterns of SNP heritability enrichment (Figures 2.12d-e). First, target bins 

exhibit significantly more variability than anchor bins in terms of their enrichment scores, reflecting 

the increased cell type specificity of distal regulatory elements compared to promoters. 

Furthermore, eNs and iNs present higher enrichment scores at target bins relative to RG and 

IPCs, suggesting the increased relevance of neuronal cell types for the disorders and traits in our 

study. We used H-MAGMA (Sey et al., 2020) to identify enriched biological processes for genes 

interacting with non-coding variants for each disease and cell type (Figure 2.13). Our results 

recapitulate the roles of lipoprotein metabolism and transport in AD pathophysiology (Andersen 

et al., 2006). Meanwhile, IPCs and eNs are enriched across all diseases for interactions between 

SNPs and genes linked to neural precursor cell proliferation, axon guidance, and axonogenesis. 

Finally, our results for SCZ align with extensive evidence that the disruption of chromatin and 

epigenetic regulators is a contributor to disease risk (Akbarian et al., 2014; Won et al., 2016). 
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Figure 2.12. Partitioning SNP heritability for complex neuropsychiatric disorders and traits. 
(a) LDSC enrichment scores for each disease and cell type, conditioned on the baseline model 
from Gazal et al., 2017 and stratified by PLAC-seq anchor and target bins. Non-significant 
enrichment scores are shown as striped bars. (b-c) LDSC enrichment scores for each disease 
and cell type, conditioned on the baseline model from Gazal et al., 2017 and using either distal 
open chromatin peaks (b) or cell type-specific genes (c). Non-significant enrichment scores are 
shown as striped bars. (d-e) LDSC enrichment scores for each disease and cell type, stratified 
by PLAC-seq anchor and target bins. Non-significant enrichment scores are shown as striped 
bars. (f) Forrest plot showing the enrichment of fetal and adult brain eQTL-TSS pairs in our 
interactions compared to n=50 sets of distance-matched control interactions (Fisher’s exact test, 
two-tailed). Odds ratios and 95% confidence intervals are shown. The increased significance of 
adult brain eQTLs can be attributed to the larger sample size of the CommonMind Consortium 
(CMC) study (n=1,332,863), while larger odds ratios were observed for the more closely matched 
fetal brain eQTLs (n=6,446). (g-h) Histograms displaying the numbers of adult and fetal brain 
eQTL-TSS pairs recapitulated by n=50 sets of distance-matched control interactions in each cell 
type. The numbers of eQTL-TSS pairs recapitulated by our interactions are indicated by red lines 
(Fisher’s exact test, two-tailed). 
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Figure 2.13. GO enrichment analysis of genes interacting with noncoding variants. GO 
enrichment analysis was performed for each disease and cell type using H-MAGMA and gProfileR 
(Fisher’s exact test, two-tailed, BH method). Results are shown for Alzheimer’s disease (AD), 
attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder 
(BD), intelligence quotient (IQ), major depressive disorder (MDD), and schizophrenia (SCZ). 

R
G

IP
C eN iN

SURWHLQíOLSLG�FRPSOe[�UHPRGHOLQJ
QHJDWLvH�UHJXODWLRQ�RI�UHFHSWRUíPHGLDWHG�HQGRF\WRVLV
*'3íPDQQRVH�ELRV\QWKHWLF�SURFHVV
QHJDWLvH�UHJXODWLRQ�RI�9/'/�SDrWLFOH�FOHDrDQFH
FK\ORPLFURQ�UHPQDQW�FOHDrDQFH
D[RQ�JXLGDQFH
VQ51$�WrDQVFrLSWLRQ�E\�51$�SRO\PHrDVH�,,
QHXrDO�SUHFXUVRU�FHOO�SUROLIerDWLRQ
UHJXODWLRQ�RI�FKROHVWHURO�ELRV\QWKHWLF�SURFHVV
VWUHVV�JrDnXOH�GLVDVVHPEO\
6&)�XELTXLWLQíGHSHQGHQW�SURWHDVRPDO�SURWHLQ�FDWDEROLF�SURFHVV
D[RQRJHQHVLV

R
G

IP
C eN iN

/íPHWKLRQLQH�VDOvDJH�IURP�PHWK\OWKLRDGHQRVLQH
FHUHErDO�FRrte[�UHJLRQDOL]DWLRQ
QHXrDO�SUHFXUVRU�FHOO�SUROLIerDWLRQ
SURWHLQ�.��íOLQkHG�XELTXLWLQDWLRQ
JO\FLQH�VHFUHWLRQ
IRUHErDLQ�GevHORSPHQW
UHJXODWLRQ�RI�QHXURJHQHVLV
QHXURQ�SURMHFWLRQ�PRrSKRJHQHVLV
FHOO�PRrSKRJHQHVLV�LnvROvHG�LQ�QHXURQ�GLIIHUHQWLDWLRQ
D[RQRJHQHVLV
QHXURQ�PLJrDWLRQ
D[RQ�JXLGDQFH

AD ADHD
R
G

IP
C eN iN

axon guidance
axon development
axonogenesis
UHJXODWLRQ�RI�F\VWHLQHïW\SH�HQGRSHSWLGDVH�DFWLYLW\�LQ�DSRSWRVLV
trigeminal sensory nucleus development
commitment to specific neuron type in forebrain
branching morphogenesis of a nerve
cerebral cortex regionalization
neural precursor cell proliferation
neuron projection morphogenesis
cell morphogenesis involved in neuron differentiation
central nervous system neuron development

ASD

R
G

IP
C eN iN

neural precursor cell proliferation
positive regulation of neural precursor cell proliferation
negative regulation of microglial cell activation
axonogenesis
axon guidance
observational learning
anatomical structure regression
forebrain development
synaptic transmission involved in micturition
central nervous system neuron development
central nervous system projection neuron axonogenesis
regulation of transcription from RNAPII promoter in response to hypoxia

BD

R
G

IP
C eN iN

FHQWrDO�QHrvRXV�V\VWHP�SURMHFWLRQ�QHXURQ�D[RQRJHQHVLV
FHQWrDO�QHrvRXV�V\VWHP�QHXURQ�GevHORSPHQW
FRrSXV�FDOORVXP�GevHORSPHQW
UHVSRQVH�WR�WRSRORJLFDOO\�LQFRUUHFW�SURWHLQ
SRVLWLvH�UHJXODWLRQ�RI�KLVWRQH�GHDFHW\ODWLRQ
IRUHErDLQ�JHQHrDWLRQ�RI�QHXURQV
IRUHErDLQ�QHXURQ�IDWH�FRPPLWPHQW
QHXrDO�SUHFXUVRU�FHOO�SUROLIerDWLRQ
IRUHErDLQ�GevHORSPHQW
D[RQRJHQHVLV
D[RQ�JXLGDQFH
SRVLWLvH�UHJXODWLRQ�RI�VRGLXPíGHSHQGHQW�SKRVSKDWH�WrDQVSRrt

IQ

R
G

IP
C eN iN

FHOOXODU�FKORrLGH�LRQ�KRPHRVWDVLV
QHXrDO�SUHFXUVRU�FHOO�SUROLIerDWLRQ
DXGLWRr\�EHKDvior
LPLWDWLvH�OHDrQLQJ
D[RQ�JXLGDQFH
PXFRVDO�LPPXQH�UHVSRQVH
ROIDFWRr\�EXOE�GevHORSPHQW
FKURPDWLQ�VLOHQFLQJ�DW�U'1$
SURWHLQí'1$�FRPSOe[�DVVHPEO\
'1$�SDFNDJLQJ
FKURPDWLQ�DVVHPEO\�RU�GLVDVVHPEO\
nXFOHRVRPH�RUJDQL]DWLRQ

MDD

R
G

IP
C eN iN

SRVLWLvH�UHJXODWLRQ�RI�KLVWRQH�GHDFHW\ODWLRQ
FKURPDWLQ�VLOHQFLQJ
FKURPDWLQ�VLOHQFLQJ�DW�U'1$
axon guidance
QHXURQ�SURMHFWLRQ�PRrSKRJHQHVLV
IRUHErDLQ�GevHORSPHQW
D[RQRJHQHVLV
D[RQ�GevHORSPHQW
SURWHLQí'1$�FRPSOe[�DVVHPEO\
DNA packaging
FKURPDWLQ�DVVHPEO\�RU�GLVDVVHPEO\
nXFOHRVRPH�RUJDQL]DWLRQ

SCZ

HQ
ULF
KP

HQ
W�P

�Y
DO
XH

10í�
10í�
10-2
0.05

0.1

0.25

1



 60 

 

 

Figure 2.14. Overview of CRIPSRview. Image analysis was performed using the SMART-Q 
pipeline. 

 

2.9 Characterizing distal interacting regions in primary cells 

 

Validating distal regulatory elements in primary cells has proved challenging in the past, with most 

experiments performed using cell lines or iPSC-derived cells. A major obstacle lies in the robust 

detection of transcriptional changes resulting from epigenetic perturbations in complex, 

heterogeneous samples. Therefore, we developed CRISPRview to validate cell type-specific 

distal regulatory elements in single cells (Figure 2.14). Specifically, primary cultures of GZ or CP 

samples are first infected with lentivirus expressing mCherry, dCas9-KRAB, and sgRNAs 

targeting open chromatin peaks interacting with a gene of interest, in addition to lentivirus 

expressing GFP, dCas9-KRAB, and sgRNAs targeting non-human sequences. Next, the cells are 

fixed and stained using antibodies for mCherry, GFP, cell type-specific markers, DAPI, and 

intronic RNAscope probes targeting the gene of interest. Finally, we leverage SMART-Q (Yang 

et al., 2020) to compare the number of nascent RNA transcripts between experimental and control 

sgRNA-treated cells. We validated four regions interacting with the GPX3 promoter, all of which 

exhibited significant downregulation in terms of GPX3 expression upon silencing (Figures 2.15a-

c). Meanwhile, silencing three regions interacting with the IDH1 promoter in RG and eNs resulted 

in the significant downregulation of IDH1 expression in the respective cell types (Figures 2.15d-

e). Finally, we characterized two additional RG-specific loci in TNC and HES1, both of which are 
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annotated as SIPs (Figures 2.16a-f). The observation of small but significant changes in gene 

expression supports the hypothesis that multiple interactions frequently work in concert to titrate 

the expression of key genes underlying cellular identity and function. 

 

 
 

Figure 2.15. Validation of cell type-specific distal regulatory elements using CRISPRview. 
(a) Interactions between the GPX3 promoter and distal interacting regions containing open 
chromatin peaks that were targeted for silencing are highlighted. Notably, region 1 overlaps both 
an HGE and Vista enhancer element (mm1343), supporting its function as a putative enhancer. 
(b) Representative images show staining for intronic RNAscope probes (white), DAPI (blue), 
GFAP (light blue), GFP (green), and mCherry (red). The scale bar is 50 μm. (c) Boxplots show 
results for experimental (red) and control (green) sgRNA-treated cells for each region (two-sample 
t-test, two-tailed). The median, upper and lower quartiles, and 10% to 90% range are indicated. 
Open circles represent single cells. Sample sizes are indicated above each boxplot. (d-e) 
Validation of distal interacting regions at the IDH1 locus in RG and eNs. Silencing region 1, which 
interacts with the IDH1 promoter only in eNs, results in the significant downregulation of IDH1 
expression in eNs but not in RG. Silencing region 2, which interacts with the IDH1 promoter only 
in RG, results in the significant downregulation of IDH1 expression in RG but not in eNs. Silencing 
region 3, which interacts with the IDH1 promoter in both RG and eNs, results in the significant 
downregulation of IDH1 expression in both cell types. 
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Figure 2.16. Validation of additional RG-specific loci using CRISPRview. Boxplots show 
results for experimental (red) and control (green) sgRNA-treated cells for each region (two-sample 
t-test, two-tailed). The median, upper and lower quartiles, and 10% to 90% range are indicated. 
Open circles represent single cells. Sample sizes are indicated above each boxplot. (a-f) 
Validation of distal interacting regions at the TNC and HES1 loci in RG. Interactions between the 
promoters of TNC and HES1 and distal interacting regions containing open chromatin peaks that 
were targeted for silencing are highlighted. Representative images show staining for intronic 
RNAscope probes (white), DAPI (blue), GFAP (light blue), GFP (green), and mCherry (red). The 
scale bar is 50 μm. 

 

2.10 Discussion 

 

Recent publications leveraging single-cell RNA sequencing have highlighted the heterogeneity of 

the developing human cortex, with RG, IPCs, eNs, iNs, microglia, endothelial cells, and subplate 

neurons present in the dorsal cortex alone. Despite significant differences in lineage and 

maturation state, many of these cell types share intriguing similarities in their transcriptional 

landscapes. For example, iNs express genes for TFs that are typically associated with RG 
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proliferation, including SOX2, as well as with eN differentiation, including ASCL1 and NPAS31. 

Therefore, bulk assays cannot be used to reliably distinguish nuanced epigenetic programs 

driving gene expression in complex tissues. By profiling cell type-specific 3D epigenomic 

landscapes during human corticogenesis, we not only demonstrate that gene expression is tightly 

linked to chromatin interactivity, we also identify SIPs that are highly cell type-specific and 

enriched for key lineage-specific genes. SIPs represent a novel chromatin structural feature that 

is distinct from A/B compartments (Lieberman-Aiden et al., 2009), TADs (Dixon et al., 2012), and 

frequently interacting regions (FIREs) (Schmitt et al., 2016). Furthermore, compared to highly 

interacting regions (HIRs) (Sohby et al., 2019), SIPs are distinct promoter-centric. We uncover a 

potential mechanism through which specific TE families propagate binding sites for architectural 

proteins such as ZNF143, facilitating the formation of multi-interaction clusters that may serve to 

sustain gene expression. While the analysis of TEs is currently constrained by the list of known 

TF motifs and the resolution of chromatin interactions in this study, future advances should enable 

the discovery of additional mechanisms through which TEs contribute to 3D chromatin 

architecture and gene regulation. 

 

Cortical progenitors, eNs, and iNs are highly divergent in terms of their diversity, proliferative 

capacity, distribution, and functional characteristics between humans and mice. Therefore, 

important processes occurring during human corticogenesis cannot be fully recapitulated using 

mouse models. These non-murine features also suggest that enhancer mutations in humans may 

not adequately phenocopy to mice. Our dataset provides a comprehensive catalog of annotations 

for human-gained enhancers and complex neuropsychiatric disorder- or trait-associated variants 

in cell types that are intricately tied to human cortex development, enabling the interpretation and 

prioritization of regulatory sequences for follow-up studies. Lastly, by developing CRISPRview, 

we achieve several emergent advantages for validating distal regulatory elements in primary cells. 

First, we are able to focus our analysis on specific cell types, circumventing averaging effects 
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associated with bulk measurements in complex samples. Next, we are able to directly compare 

experimental and control sgRNA-infected cells within the same population. Finally, we achieve 

enhanced sensitivity and statistical power based on the detection of nascent RNA transcripts in 

single cells. Future experiments leveraging CRISPRview in live tissue cultures should continue to 

reveal regulatory relationships in a manner that is truly representative of the complex in vivo 

environment during human corticogenesis. 

 

2.11 Methods 

 

Tissue dissociation  

 

The tissue dissociation protocol was adapted from Nowakowski et al., 2017. Briefly, samples were 

first cut into small pieces in artificial cerebrospinal fluid before being added to pre-warmed papain 

dissociation media (Worthington #LK003150). The samples were incubated in dissociation media 

for 45 minutes at 37°C. Next, they were triturated, filtered through a 70 µM nylon mesh, and 

centrifuged for 8 minutes at 300 g. For individual germinal zone (GZ) and cortical plate (CP) 

cultures, samples were first cut coronally into thin slices. As previously described, cell density 

drops dramatically past the outer subventricular zone, enabling the clear identification of the outer 

filamentous zone and subplate. Samples were dissected along this boundary to separate the GZ 

from the CP prior to dissociation. 

 

Sample fixation 

 

Mid-gestational human cortex samples between GW15 and GW22 were fixed in 2% 

paraformaldehyde prepared in PBS with gentle agitation for 10 minutes at room temperature. 

Glycine was added to a final concentration of 200 mM to quench the reactions, and the samples 
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were centrifuged for 5 minutes at 4°C and 500 g. The samples were washed twice with PBS 

before being frozen at -80°C for further processing. 

 

Permeabilization and staining 

 

The cell pellet was thawed on ice and resuspended in PBS containing 0.1% Triton-X-100 for 15 

minutes. The cells were then washed twice with PBS and resuspended in 5% BSA in PBS for 

staining. Staining proceeded for at least one hour with FcR Blocking Reagent (Miltenyi Biotech, 

1/20 dilution), EOMES PE-Cy7 (Invitrogen, Cat 25-4877-42, Clone WD1928, Lot 1923396, 1/10 

dilution), PAX6 PE (BD Biosciences, Cat 561552, Clone O18-1330, Lot 8187686, 1/10 dilution), 

SOX2 PerCP-Cy5.5 (BD Biosciences, Cat 561506, Clone O38- 678, Lot 8165744, 1/10 dilution), 

and SATB2 Alexa Fluor 647 (Abcam, Cat ab196536, Clone EPNCIR130A, Lot GR3208103-I and 

GR228747-2, 1/100 dilution). After staining, the cells were centrifuged for 5 minutes at 500 g, and 

the pellet was diluted into PBS. When sorting cells for RNA-seq, 1% RNasin Plus RNase Inhibitor 

(Promega) was added to all buffers, and acetylated BSA was used to prepare 5% BSA in PBS for 

staining. 

 

FACS 

 

AbC Total Antibody Compensation Beads (Thermo Fisher) were used to generate single color 

compensation controls prior to sorting. Sorting was conducted on either the FACSAria II, 

FACSAria IIu, or FACSAria Fusion instruments using a 70 µM nozzle, and cells were collected in 

5 ml tubes pre-coated with FBS. A sample of each sorted cell population was reanalyzed on the 

same machine to assess purity. Cells were collected by centrifuging for 10 minutes at 500 g, and 

the cell pellet was frozen at -80°C for further processing. When sorting cells for RNA-seq, cells 

were collected in 5 ml tubes pre-coated with both FBS and RNAlater (Thermo Fisher). 



 66 

Primary cell culture 

 

Following dissociation, cells were plated onto Matrigel-coated coverslips in 48 well plates or 

chamber slides at a density of approximately 0.7x106 cells per well. All cell culture was handled 

in sterile conditions. The cells were infected with lentivirus the day after plating, and media was 

changed every two days. Media was composed of 96% DMEM/F-12 with GlutaMAX, 1% N-2, 1% 

B-27, and 1% penicillin/streptomycin. The cells were grown in 8% oxygen and 5% carbon dioxide 

and harvested four days post-infection for CRISPRview. For qPCR at the ADRA2A locus, the 

cells were harvested six days post-infection. 

 

PLAC-seq 

 

PLAC-seq was performed according to Fang et al., 201611. 1 to 5 million cells were used to 

prepare each library. Digestion was performed using 100 U MboI for 2 hours at 37°C, and 

chromatin immunoprecipitation was performed using Dynabeads M-280 sheep anti-rabbit IgG 

(Invitrogen #11203D) superparamagnetic beads bound with 5 µg anti-H3K4me3 antibody 

(Millipore 04-745). Sequencing adapters were added during PCR amplification. Libraries were 

sent for paired-end sequencing on the HiSeq X Ten or NovoSeq 6000 instruments (150 bp paired-

end reads). fastp was applied to trim reads to 100 bp for all downstream analysis. 

 

MAPS 

 

We used the MAPS pipeline to call significant H3K4me3-mediated chromatin interactions at a 

resolution of 5 kb based on our PLAC-seq data. First, bwa mem was used to map raw reads to 

hg38. Unmapped reads and reads with low mapping quality were discarded, and the resulting 

read pairs were processed as previously reported (Juric et al., 2019). To define PLAC-seq anchor 
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bins, we took the union of peaks identified by MACS2 using the options “--nolambda --nomodel -

-extsize 147 --call-summits -B --SPMR” and an FDR cutoff of 0.0001 for all read pairs with 

interaction distance < 1 kb in each cell type. Next, we classified read pairs as AND, XOR, or NOT 

interactions based on whether both, one, or neither of the interacting 5 kb bins overlapped anchor 

bins (Figure 2.17). Since we were specifically interested in identifying long-range H3K4me3-

mediated chromatin interactions, we retained only read pairs corresponding to intrachromosomal 

XOR and AND interactions with interaction distances between 10 kb and 1 Mb. We downsampled 

the number of read pairs separately for each chromosome to ensure that we started with the same 

number of read pairs for each cell type. 

 

 

Figure 2.17. Identifying significant H3K4me3-mediated chromatin interactions. Illustration 
of XOR and AND interactions in a representative PLAC-seq contact matrix. Purple cells represent 
AND interactions where both of the interacting bins are anchor bins. Orange cells represent XOR 
interactions where only one of the interacting bins is an anchor bin. Grey cells represent NOT 
interactions where neither of the interacting bins are anchor bins. 

 

To call significant interactions, we employed a Poisson regression-based approach to normalize 

systematic biases from restriction sites, GC content, sequence repetitiveness, and ChIP 

enrichment. We fitted models separately for AND and XOR interactions and calculated FDRs for 

interactions based on the expected and observed contact frequencies between interacting 5 kb 
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bins. We grouped interactions whose ends were located within 15 kb of each other into clusters 

and classified all other interactions as singletons. We defined our significant H3K4me3-mediated 

chromatin interactions as interactions with 12 or more reads, normalized contact frequency 

(defined as the ratio between the observed and expected contact frequency) ≥ 2, and FDR < 0.01 

for clusters and FDR < 0.0001 for singletons. This was based on the reasoning that biologically 

meaningful interactions are more likely to appear in clusters, while singletons are more likely to 

represent false positives. 

 

ATAC-seq 

 

ATAC-seq was performed as previously described using the Nextera DNA Library Prep Kit 

(Illumina #FC-121-1030). Briefly, fixed cells were washed once with ice cold PBS containing 1x 

protease inhibitor before being resuspended in ice cold nuclei extraction buffer (10 mM Tris-HCl 

pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal CA630, and 1x protease inhibitor) for 5 minutes. 

50,000 cells were aliquoted, exchanged into 50 μL 1x Buffer TD, and incubated with 2.5 μL TDE1 

enzyme for 45 minutes at 37°C with shaking. Following transposition, 150 µL reverse crosslinking 

solution (50 µL 1 M Tris pH 8.0, 100 µL 10% SDS, 2 µL 0.5 M EDTA, 10 µL 5 M NaCl, 800 µL 

water, and 2.5 µL 20 mg/mL Proteinase K) was added to each tube and incubated at 65°C 

overnight. DNA was column purified, PCR amplified, and size-selected for fragments between 

300 and 1000 bp. Libraries were sent for paired-end sequencing on the NovaSeq 6000 instrument 

(150 bp paired-end reads). Raw reads were trimmed to 50 bp, mapped to hg38, and processed 

using the ENCODE pipeline (https://github.com/kundajelab/atac_dnase_pipelines) running the 

default settings. The optimal naive overlap peaks for each cell type were used for all downstream 

analysis. 
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RNA-seq 

 

We extracted total RNA from the sorted cell populations using the RNAstorm™ FFPE RNA 

extraction kit (Cell Data Sciences #CD501) starting with 5*105 to 1.5*106 cells. The quality of the 

extracted RNA was checked by determining the percentage of RNA fragments with size > 200 bp 

(DV200) from the Agilent 2100 Bioanalyzer. RNA samples with DV200 >= 40% were used for 

library construction. First, samples were depleted of ribosomal RNA using the KAPA RNA 

HyperPrep Kit with RiboErase (HMR #KK8560). Next, we performed first and second strand 

synthesis, dA-tailing, and sequencing adapter ligation. cDNA was cleaned up and sequencing 

adapters were added via PCR amplification. Libraries were sent for paired-end sequencing on 

the NovaSeq 6000 instrument (150 bp paired-end reads). Raw reads were trimmed using Trim 

Galore and aligned to hg38 using STAR running the standard ENCODE parameters, and 

transcript quantification was performed in a strand-specific manner using RSEM with the 

GENCODE 29 annotation. The edgeR package in R was used to calculate TMM-normalized 

RPKM values for each gene, and the mean values across all replicates were used for all 

downstream analysis. 

 

GO enrichment analysis 

 

Protein coding and non-coding RNA genes participating in cell type-specific XOR interactions 

were used for GO enrichment analysis. Only interactions with open chromatin peaks overlapping 

promoters (defined as the 1 kb region centered around a gene’s TSS) in their anchor bins and 

distal open chromatin peaks (defined as open chromatin peaks not overlapping promoters) in their 

target bins were used. A minimum RPKM of 0.5 was used to retain only genes that were 

expressed, and the resulting genes were input into DAVID 6.8 running functional annotation 

clustering using the “GOTERM_BP_ALL” ontology. Group enrichment scores based on the 
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geometric mean of EASE scores for terms in each group are reported. To report enriched 

biological processes for genes interacting with non-coding variants for each disease and cell type, 

we assigned non-coding SNPs for each disorder and trait to genes based on interactions with the 

5 kb bins containing their promoters. Next, we ran H-MAGMA using our annotations to generate 

ranked lists of gene-level association statistics which were used to perform functional enrichment 

analysis using the gprofiler2 package in R (Reimand et al., 2007). 

 

TF motif enrichment analysis  

 

We used 200 bp windows centered around open chromatin peaks participating in cell type-specific 

XOR interactions for TF motif enrichment analysis using HOMER. We used the complete set of 

vertebrate motifs from the JASPAR database, specifying the “-float” option to adjust the 

degeneracy threshold, and the entire genome was used as the background. The binomial 

distribution was used to calculate p-values. 

 

Super interactive promoters 

 

We used an approach similar to calling super-enhancers (Hnisz et al., 2013) to annotate super 

interactive promoters (SIPs) in each cell type. For each anchor bin, we calculated the cumulative 

interaction score, defined as the sum of the -log10FDR for interactions overlapping each anchor 

bin. We used this metric as it accounts for noise and is directly associated with the interaction 

strength in PLAC-seq data. Next, we prepared plots of ranked cumulative interaction scores for 

anchor bins in each cell type and defined SIPs to be anchor bins located past the point in each 

curve where the slope is equal to 1. 
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Cell type-specific versus shared genes 

 

We classified each gene as cell type-specific or shared according to its Shannon entropy score 

across all four cell types. Specifically, for each gene, we calculated its relative expression value 

in each cell type, defined as its RPKM in that cell type divided by the sum of its RPKMs across all 

four cell types. Next, we calculated the Shannon entropy score for each gene based on its relative 

expression values across all four cell types. We classified a gene as specific for a cell type if met 

the following conditions: its Shannon entropy score was < 0.01, its RPKM was > 1 in that cell type, 

and its RPKM in that cell type was the highest across all four cell types. All other genes with 

RPKM > 1 were classified as shared. 

 

TE enrichment in SIPGs 

 

TE enrichment in SIPGs was evaluated as follows. The foreground enrichment was defined as 

the number of TEs at the class, family, or subfamily levels overlapping SIPGs in each cell type. 

The background enrichment was defined as the number of TEs overlapping all interacting 5 kb 

bins (both SIPGs and non-SIPGs). At least 50% of a TE had to overlap a 5 kb bin for it to be 

considered overlapping. The overall enrichment was defined as the foreground enrichment 

divided by the background enrichment multiplied by the proportion of interacting 5 kb bins that 

were assigned to SIPGs.  

 

For the enrichment of SIPGs for ERVL-MaLR TEs, the foreground enrichment for each SIPG was 

defined as the number of distal interacting regions containing one or more ERVL-MaLR TEs for 

that SIPG. The background enrichment for each SIPG was defined as the number of randomly 

shuffled distal interacting regions containing one or more ERVL-MaLR TEs for that SIPG. We 

computed the background enrichment over 100 permutations. The overall enrichment was 
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defined as the foreground enrichment divided by the background enrichment. The significance for 

each SIPG was calculated using the hypergeometric distribution as follows:  

 

𝑃 =
#𝑚𝑞 & #

𝑛
𝑘 − 𝑞&

#𝑚 + 𝑛
𝑘 &

 

 

where “q” is the number of distal interacting regions containing one or more ERVL-MaLR TEs for 

that SIPG, “m” is the number of 5 kb bins containing one or more ERVL-MaLR TEs on the same 

chromosome, “n” is the number of 5 kb bins containing no ERVL-MaLR TEs on the same 

chromosome, and “k” is the size of the SIPG. 

 

ZNF143 motif enrichment  

 

For the enrichment of SIPGs for ERVL-MaLR TE-localized ZNF143 motifs, the foreground 

enrichment for each SIPG was defined as the number of ERVL-MaLR TE-localized ZNF143 motifs 

in its distal interacting regions. FIMO (Grant et al., 2011) was used to detect ZNF143 motifs within 

ERVL-MaLR TEs. The background enrichment was defined as the total number of ZNF143 motifs 

in the SIPG. The overall enrichment was defined as the foreground enrichment divided by the 

background enrichment multiplied by the proportion of the SIPG that is occupied by ERVL-MaLR 

TEs. The significance for each SIPG was calculated using a Poisson distribution where the 

number of events (k) is the foreground enrichment and the rate parameter is the background 

enrichment multiplied by the proportion of the SIPG that is occupied by ERVL-MaLR TEs. 

 

For evaluating the genome-wide enrichment of ZNF143 motifs in ERVL-MaLR and THE1C TEs, 

we first used FIMO to scan all ERVL-MaLR and THE1C TEs for instances of ZNF143 motifs. As 
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a background, we scanned 100 sets of chromosome- and length-matched, non-overlapping 

sequences randomly sampled to avoid gaps and blacklisted regions in the human genome. We 

used a similar approach to evaluate the enrichment of ZNF143 motifs in ERVL-MaLR TEs in 

SIPGs. For evaluating the enrichment of ZNF143 motifs in SIPGs, we compared the mean 

numbers of ZNF143 motifs per 5 kb bin for distal interacting regions across all SIPGs to 100 sets 

of chromosome- and length-matched, non-overlapping sequences randomly sampled to avoid 

gaps and blacklisted regions in the human genome. For comparing the distributions of the mean 

numbers of ZNF143 motifs per 5 kb bin for actual versus shuffled SIPGs, we sampled distal 

interacting regions for each SIPG 100 times on the same chromosome in a non-overlapping 

manner. 

 

Partitioning SNP heritability for complex disorders and traits. 

 

We leveraged linkage disequilibrium score regression (LDSC) to partition SNP heritability 

separately for each complex neuropsychiatric disorder and trait based on joint models 

incorporating PLAC-seq anchor or target bins across all cell types. We also ran LDSC using a 

baseline model (Gazal et al., 2017) consisting of coding, UTR, promoter, and intron regions, 

histone marks, DNase I hypersensitive sites, ChromHMM/Segway predictions, regions that are 

conserved in mammals, super-enhancers, FANTOM5 enhancers, and LD-related annotations 

(recombination rate, nucleotide diversity CpG content, etc.) that are not specific to any cell type. 

This informs us whether our epigenomic annotations for a given cell type are informative for SNP 

heritability enrichment compared to a comprehensive set of genomic features that has been 

widely adopted in the field. To compare different epigenomic annotations for each cell type, we 

used both distal open chromatin peaks and 100 kb windows around the transcription start and 

end sites of cell type-specific genes based on their Shannon entropy scores and RPKM > 1. 
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Validating ERVL-MaLR-localized ZNF143 motifs 

 

CRISPRi and qRT-PCR were used to validate ERVL-MaLR TE-localized ZNF143 motifs at distal 

interacting regions in the ADRA2A SIPG. Of the 12 distal interacting regions containing ERVL-

MaLR TE-localized ZNF143 motifs, we were able to design sgRNAs to target ZNF143 motifs 

overlapping open chromatin peaks for 7 of the regions. ZNF143 motifs were extended by 100 bp 

in both directions for designing sgRNAs. To maximize CRISPRi efficiency, we designed two 

sgRNAs for each region and cloned them into the dual expression cassette in the CRISPRi vector 

as described for CREST-seq (Diao et al., 2017). sgRNA sequences were confirmed by Sanger 

sequencing and packaged into lentivirus. Primary cell cultures enriched for eNs based on SATB2 

staining were infected with lentivirus for 24 hours, and mRNA was extracted on day 7. qRT-PCR 

was used to quantify ADRA2A expression using the following primers: 

TCGTCATCATCGCCGTGTTC (forward) and AAGCCTTGCCGAAGTACCAG (reverse). 

 

Validating distal interacting regions using CRISPRview 

 

The CRISPRi vector was modified from the Mosaic-seq (Xie et al., 2017) and CROP-seq 

(Datlinger et al., 2017) vectors. The hU6-sgRNA expression cassette from the CROPseq-Guide-

Puro vector (Addgene #86708) was cloned and inserted downstream of the WPRE element in the 

Lenti-dCas9-KRAB-blast vector (Addgene #89567). The blasticidin resistance gene was replaced 

with either mCherry or EGFP. sgRNAs targeting open chromatin peaks in distal interacting 

regions were designed using CHOPCHOP (Labun et al., 2019). Single-stranded DNA was 

annealed and ligated into the CRISPRi vector at the BsmBI cutting locus. Single clones were 

picked following transformation, and the sgRNA sequences were confirmed by Sanger 

sequencing. For lentiviral packaging, the CRISPRi vector, pMD2.G (Addgene #12259), and 

psPAX (Addgene #12260) were transformed into 293T cells using PolyJet (SignaGen 
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Laboratories #SL100688) according to the manufacturer’s instructions. Virus-containing media 

was collected three times over 16 to 20 hours and concentrated using Amicon 10K columns. All 

lentivirus was immediately stored at -80°C. Primary cell cultures were infected with virus (MOI < 

1) 24 hours after plating, and cells were fixed with 4% PFA four days post-infection for FISH and 

immunostaining. 

 

FISH experiments were performed using the RNAScope Multiplex Fluorescent V2 Assay kit 

(ACDBio #323100). Probes targeting intronic regions for GPX3 (ACDBio #572341), IDH1 

(ACDBio #832031), TNC (ACDBio #572361), and HES1 (ACDBio #560881) were custom-

designed, synthesized, and labeled with TSA Cyanine 5 (Perkin Elmer #NEL705A001KT, 1:1000 

dilution). Fixed cells were pretreated with hydrogen peroxide for 10 minutes and Protease III for 

15 minutes, and probes were hybridized and amplified according to the manufacturer’s 

instructions. Slides were washed with PBS before blocking with 5% donkey serum in PBS for 30 

minutes at room temperature. Next, slides were incubated with primary antibodies against 

mCherry (Abcam ab205402, 1/200), GFP (Abcam ab1218, 1/500), and GFAP (Abcam ab7260, 

1/400) for RG or SATB2 (Abcam ab92446, 1/300) for eNs overnight at 4°C, followed by incubation 

with Alexa Fluor 488 donkey anti-mouse IgG (Thermo Fisher Scientific #A21202, 1/800), Alexa-

546 nm donkey anti-rabbit IgG (Thermo Fisher Scientific #A10040, 1/500), and Alexa-594 nm 

goat anti-chicken IgG (Thermo Fisher Scientific #A11042, 1/500) for 1 hour at room temperature. 

3D confocal microscopy images were captured using a Leica TCS SP8 with a 40x oil-immersion 

objective lens (NA=1.30). The z-step size was 0.4 µm. For five color multiplexed imaging, three 

sequential scans were performed to avoid overlapping spectra. The excitation lasers were 405 

nm and 594 nm, 488 nm and 633 nm, and 561 nm. All images were obtained using the same 

acquisition settings. For FISH analysis, we developed a Python-based pipeline called Single-

Molecule Automatic RNA Transcription Quantification (SMART-Q) for quantifying nascent RNA 

transcripts in single cells. Briefly, the RNAscope channel was first filtered and fitted in three 
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dimensions using a Gaussian model. Next, segmentation was performed in two dimensions on 

the DAPI channel to ascertain the location of each nucleus. Finally, segmentation was performed 

on the remaining channels to identify experimental and control sgRNA-infected RG or eNs for 

nascent RNA transcript quantification.  
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Conclusion 

 

There is a distinct lack of 3D epigenomic annotations in cell types that are relevant to disease and 

development, especially in the field of brain research. Past studies have relied on heterogeneous 

tissues comprised of cell types with disparate functions, limiting their abilities to detect and 

interpret instances of cell type-specific gene regulation. Neurons and glia, for example, represent 

lineages with divergent functions that coexist in most tissues of the CNS. At the same time, 

complex diseases often involve multiple dysregulated loci with cell type-specific patterns of 

activity. This presents unique challenges for deciphering disease etiology, for example in 

attempting to distinguish causative mechanisms from secondary, reactive phenotypes when 

multiple cell types are involved. For these reasons, the comprehensive annotation of regulatory 

relationships in specific, well-characterized cell populations enables the derivation of deeper 

insights into complex disease biology. Chromatin interactions in particular are ideal for mapping 

promoters to distal regulatory elements, as they provide direct evidence of regulatory sequences 

physically contacting loci of interest. To date, several studies have characterized chromatin 

interactions in fetal brain tissues and cultured neural cells (Won et al., 2016; Rajarajan et al., 

2018). However, these studies relied on in situ Hi-C for their interaction calls, which lacks power 

compared to targeted approaches such as pcHi-C and PLAC-seq. 

 

By performing integrative analysis of promoter-centric, long-range chromatin interactions, open 

chromatin regions and transcriptomes, we provide comprehensive annotations for promoters and 

distal promoter-interacting regions (PIRs) in four neural cell types that are highly relevant to 

complex neuropsychiatric disorders: iPSC-induced excitatory neurons, iPSC-derived 

hippocampal dentate gyrus (DG)-like neurons, iPSC-induced lower motor neurons, and primary 

astrocytes. We identify putative gene targets for both in vivo-validated enhancer elements from 

the VISTA Enhancer Browser as well as disease-associated variants, enabling the functional 
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validation of PIRs driving diverse processes in cellular identity and disease. Furthermore, we 

provide epigenomic characterizations for radial glia, intermediate progenitor cells, excitatory 

neurons, and interneurons isolated from mid-gestational human cortex samples. We show that 

chromatin interactions underlie multiple aspects of gene regulation, with transcription factor 

motifs, families of transposable elements, and disease-associated variants enriched at distal 

interacting regions in a cell type-specific manner. Notably, promoters with significantly increased 

levels of chromatin interactivity, termed super interactive promoters, are enriched for lineage-

specific genes, evidencing that interactions at these loci contribute to the fine-tuning of cell type-

specific transcription. Finally, we develop CRISPRview, a novel technique combining 

immunostaining, CRISPRi, RNAscope, and image analysis for validating cell type-specific cis-

regulatory elements in heterogeneous populations of primary cells. Our study presents the first 

characterization of cell type-specific 3D epigenomes in the aforementioned human neural cell 

types and the developing human cortex, revealing critical insights into genome organization, gene 

regulation, and lineage specification during human brain development. 
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