UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Perseverative Subgoaling and Production System Models of Problem Solving

Permalink
https://escholarship.org/uc/item/8tg8f4pt

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 18(0)

Author
Cooper, Richard

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8tg8f4pt
https://escholarship.org
http://www.cdlib.org/

Perseverative Subgoaling and Production System Models
of Problem Solving

Richard Cooper
Department of Psychology
Birkbeck College, University of London
Malet St., London, WC1E 7THX
r.cooperé@psyc.bbk.ac.uk

Abstract

Perseverative subgoaling, the repeated successful solution of
subgoals, is 2 common feature of much problem solving, and
its pervasive nature suggests that it is an emergent property
of a problem solving architecture. This paper presents a set
of minimal requirements on a production system architecture
for problem solving which will allow perseverative subgoaling
whilst guaranteeing the possibility of recovery from such situ-
ations. The fundamental claim is that perseverative subgoaling
arises during problem solving when the results of subgoals are
forgotien before they can be used. This prompts further at-
tempts at the offending subgoals. In order for such attempts to
be effective, however, the production system must satisfy three
requirements concerning working memory structure, produc-
tion structure, and memory decay. The minimal requirements
are embodied in a model (developed within the COGENT mod-
elling software) which is explored with respect to the task of
multicolumn addition. The inter-relationship between memory
decay and task difficulty within this task (measured in terms of
the number of columns) is discussed.

Introduction

Since the work of Newell & Simon (1972), production system
models have been successfully used to account for a number
of aspects of human problem solving. Much of this work has
been brought together within Soar (Laird, Newell & Rosen-
bloom, 1987; Newell, 1990), a research programme aimed at
modelling all aspects of cognition within a single production
system architecture. Central to the Soar production system
approach is the problem space computational model (Newell,
1990), a model of cognitive processing which embodies a
number of findings concerning human problem solving. Ac-
cording to this model, problem solving (and cognition in gen-
eral) involves the sequential application of operators to a state,
successively modifying that state until a goal state is reached
or some goal condition is satisfied.

Within the problem space computational model it is as-
sumed that, due to capacity limitations, only a single state can
be represented within working memory at a time. This single
state principle is held to account for one strategy common
in search intensive problem solving: progressive deepening
(see, e.g., Newell, 1990). Progressive deepening is charac-
terised by the initial shallow investigation of alternative solu-
tion paths, followed by the elimination of some solution paths
and the further investigation of those remaining. Critically
to the current work, progressive deepening typically involves
the repeated solution of the same subgoals as the search space
is explored. We refer to the process of solving a subgoal re-

397

peatedly as perseverative subgoaling. Note that, as defined
here, perseverative subgoaling is not the same as progressive
deepening. Perseverative subgoaling is a phenomenon that oc-
curs as a consequence of progressive deepening, but there is
more to progressive deepening than perseverative subgoaling,
and, crucially, there is no a priori reason why perseverative
subgoaling should be restricted to situations involving pro-
gressive deepening. With this in mind, it is clear that, despite
the well established nature of progressive deepening as a cog-
nitive search strategy, it can only account for perseverative
subgoaling under conditions which involve some degree of
search or look-ahead. Though empirical evidence is scarce,
the research reported, and model developed, here are founded
on the claim that perseverative subgoaling occurs in situations
which do not involve search (but which are nevertheless work-
ing memory intensive), and as such, in at least some cases,
perseverative subgoaling cannot be explained by an appeal to
the single state principle. When perseverative subgoaling oc-
curs in search-free tasks, an alternate explanation is required.

The fact that the Soar research community appeals to the
single state principle in order to account for progressive deep-
ening indicates that they are sensitive to the issue of working
memory capacity. However, the single state principle oper-
ates at the level of the problem space computational model. It
does not operate at the level of the production system archi-
tecture which is held to implement the problem space com-
putational model. The underlying production system archi-
tecture is assumed to have a working memory which is not
capacity bound. This assumption of an unlimited working
memory within Soar’s production system base is one archi-
tectural assumption which has been challenged on the grounds
that it lacks psychological plausibility (cf. Cooper & Shallice,
1995).

In order to explore the extent to which unlimited work-
ing memory is critical to Soar’s performance, earlier work
(Cooper, Fox, Farringdon & Shallice, in press) explored
a number of potential mechanisms for reducing the work-
ing memory requirements of the underlying production sys-
tem. Several soft constraints on working memory capac-
ity (generally forms of memory decay) were implemented
and the resulting performance compared within an empiri-
cal/computational methodology (cf. Cohen, 1995). It was
observed that one such mechanism (probabilistic decay of
refractory memory elements) lead to a system which, on oc-
casions, exhibited perseverative subgoaling (independently of
progressive deepening). However, unlike human problem
solvers, only rarely was the modified Soar system able to

http://ac.uk

recover from this subgoaling and solve the original task. In-
stead, problem solving would often breakdown irrecoverably,
with the system resorting to its default behaviour.

The work reported here further investigates perseverative
subgoaling in production system architectures. However,
rather than adopting the Soar research strategy of develop-
ing, exploring, and possibly extending, a complex production
system in order to generalise the domains that it may account
for (a strategy which has received substantial criticism: see
Cooper & Shallice (1995) and references cited therein), an
alternate strategy — that of attempting to determine mini-
mal requirements for the behaviour in question — has been
adopted. This strategy is founded on the fact that, given the
level at which psychological theorising takes place, any com-
putational model will necessarily include aspects which are
not theoretically motivated (i.c., implementation details). It
is therefore not sufficient to simply demonstrate that a par-
ticular model may simulate interesting behaviour. Rather, it
is necessary to know which aspects of that model lead to the
interesting behaviour, and which aspects are necessary only
for the purposes of implementation. (For more details and jus-
tified of this strategy, see Cooper et al. (in press).) The aim
of this work, then, is to determine minimal requirements on a
production system architecture (irrespective of their manifes-
tation in any particular production system) which will allow
recoverable perseverative errors without substantially increas-
ing the likelihood of problem solving failure.

The assumption of a production system architecture as an
appropriate starting point is justified by the success of such
architectures in modelling other aspects of problem solving
behaviour (as noted above). Two obvious competitors to this
starting point are analogical approaches and connectionist ap-
proaches. Connectionist approaches, highly popular in other
domains of cognitive science, have offered few insights into
problem solving, being limited mainly to the implementation
of production systems (e.g., Touretzky & Hinton, 1988) and
analogical models (e.g., Holyoak & Thagard, 1989). Ana-
logical approaches to problem solving (e.g., Gentner, 1983;
Keane, 1988) offer a more serious alternative. Though they
have generally only been applied within problem solving sit-
uations where some variant of case-based reasoning is suf-
ficient (i.e., where a sequence of problem solving decisions
is not required), perseverative subgoaling should fall within
their remit, and future work may explore how perseverative
subgoaling might arise in such systems.

Requirements for Perseverative Subgoaling

In order to develop a minimal model of perseverative subgoal-
ing it is necessary to understand why this behaviour occurred
when Soar was modified as mentioned above. It is also nec-
essary to understand why perseverative subgoaling was only
observed relatively rarely in the modified system. Each of
these issues can be understood in the context of a simpler,
more standard, production system.

A typical production system (see, for example, Charniak
& McDermott, 1985) employs two primary memory compo-
nents: a production memory (which contains schematic con-
dition/action rules corresponding to problem solving knowl-
edge) and a working memory (which contains a representation
of the current problem solving state and which can trigger in-

398

stances of rules in production memory). Processing is cyclic
and consists of repeatedly selecting a rule from production
memory whose conditions are satisfied by the contents of
working memory, and executing that rule. This typically re-
sults in the addition or deletion of elements from working
memory, and hence leads to further production rules becom-
ing applicable. Most production systems also employ a third
memory component, a refractory memory. This memory con-
tains the set of instances of rule which have already been
employed in the current episode of problem solving, and is
necessary because it prevents a single set of working memory
elements from causing a single production rule to be executed
more than once. To accommodate a refractory memory the
processing cycle must be modified slightly: selection of an
applicable rule from production memory must be limited to
instances of rules which have not previously been executed,
and when an instance of a production rule is executed, ele-
ments should be added to and deleted from working memory
as usual, but the instance of the rule must also added to re-
fractory memory.

Within Soar, this picture is somewhat more complicated,
Various processes exist which modulate the effects of pro-
duction firing on working memory (most notably the decision
phase). These complications, however, are not germane to the
issue of perseverative subgoaling, and are avoided here in the
interests of clarity.

Returning then to the issue of perseverative subgoaling,
the form of memory decay in Soar under which lead to this
phenomenon consisted of a probabilistic decay of refractory
memory elements, together with the removal from working
memory of any elements that were added by the execution
of the decayed refractory memory elements. Thus, on each
problem solving cycle, there was a small change (typically
of the order of 1 chance in 500) that each refractory memory
element would decay (i.e., vanish from refractory memory).
If a refractory memory element r did decay, then all those ele-
ments which were in working memory at the time of the decay
and which had been added by the rule firing corresponding to
r were also removed from working memory. This mechanism
was designed to enforce some kind of decay on working mem-
ory elements (as is often argued for on psychological grounds),
but at the same time to allow decayed elements to be replaced
if necessary by the repeated firing of the instantiation of the
production rule which originally lead to their creation. The
constraint is a soft constraint on working memory size. It
does not strictly limit the capacity of working memory, but
should effectively reduce the cardinality of working memory
by implementing the psychologically plausible assumption
that working memory is an imperfect storage device.

It should be clear that perseverative subgoaling is a con-
ceivable consequence of refractory memory decay. If, after
a subgoal has been solved, the refractory memory element
which lead to the subgoal’s answer were to decay, then the
subgoal’s answer would disappear from working memory and
it would be necessary to repeat the problem solving necessary
to determine that answer. This would be possible because the
refractory memory elements which would normally prevent
repetition will also be absent. Perseverative subgoaling was
not, however, the original intention (or even a prediction) of
the introduction of this form of decay. It was observed post

hoc to arise on a small number of trails. More frequently,
refractory memory decay was observed to lead to complete
problem solving breakdown. Detailed analysis of the causes
of such breakdowns indicates that two additional properties
are required of a production system if it is to be subject to re-
coverable perseverative subgoaling: firstly, production rules
must be “fine-grained” (in a sense to be elaborated below),
and secondly, memory decay must not result in disconnected
subgoals.

The requirement on the granularity of production rules may
be stated more formally as the requirement that no production
may add more than one element to working memory, and that
all productions must explicitly list in their conditions each
working memory element which must be present for their
application. These restrictions may be rationalised informally
by noting that the conditions of all rules must be sensitive to the
possibility that working memory may not be complete. Rules
can therefore not assume that the presence of one working
memory element will guarantee that other working memory
elements will necessarily be present. Indeed, the frequent
breakdown of problem solving within Soar with refractory
memory decay can be traced to such dependencies in Soar’s
default productions (the productions which control standard
problem solving heuristics). This is not intended as a criticism
of Soar: the assumptions embodied in the default rules are
valid in the normally functioning system, although leaving
them implicit does mean that each rule cannot be understood
in purely declarative terms.

The prohibition on disconnected subgoals is necessary to
prevent problem solving from stalling after successful com-
pletion of a disconnected subgoal. Effectively the constraint
states that the system cannot forget why it is attempting to
solve a subgoal.! Without this constraint (and assuming that
problem solving is under the service of a goal stack), situa-
tions could arise in which no goal would be within the current
focus. The system could successfully solve a subgoal, but
then be left not knowing what to do next. In Soar, with
refractory memory decay, this constraint is satisfied because
goal/subgoal relations are not created by production firing. As
such, those relations cannot be deleted when refractory mem-
ory elements decay. However, in more standard production
systems (in which productions can explicitly set subgoals) this
constraint could be violated.

A Model of Perseverative Subgoaling
COGENT: The Modelling Environment

The model presented here was developed using the COGENT
modelling software. COGENT (previously known as GOOSE:
cf. Cooper, 1995) was developed from the Sceptic executable
specification language (Hajnal, Fox & Krause, 1989; Cooper
& Farringdon, 1993) in work aimed at improving the method-
ology of computational modelling (cf. Cooper, er al., in press).
[t provides a set of cognitive “objects” (in the object-oriented
sensc) and a graphical editor. Together, these allow the spec-
ification of executable models in the box/arrow style. This
style, it is argued, is more akin to that used by experimen-
tal psychologists in outlining their theories of processing than
traditional programming languages, and as such allows amore

'I am indebted to an anonymous reviewer for this locution.

399

direct and perspicuous mapping between theory and imple-
mentation. In addition, COGENT is a step towards reducing the
computer skills required of psychologists who wish to develop
their own computational models.

The specification of a model in COGENT involves firstly
drawing the appropriate box/arrow diagram (with the aid of
the graphical editor) and then specifying properties and other
details for the individual boxes employed in the diagram.
The provision of a set of basic box classes (represented by
different shaped boxes), together with the use of techniques
from object-oriented programming, minimises the effort in
specifying properties and standardises the definitions of the
fundamental box classes employed in a model (cf. Cooper,
1995). Apart from the work reported here, the environment
has been employed in the development of models of concept
combination (Cooper & Franks, 1996), prospective memory
(Ellis, Shallice and Cooper, in submission), the interaction of
memory recall and decision making (cf. Fox, 1980), and the
creation of long term memory records (cf. Morton, Hammer-
sley & Bekerian, 1985). Details of COGENT availability and
system requirements are available from the author.

The Functional Modules

The basic unit of COGENT is the cognitive object. This is the
software’s equivalent of a psychologist’s functional module.
In the production system model reported here, four major
functional modules were employed: Task Control, Working
Memory, Perceptual Buffer, and Memory Decay. A fifth ob-
ject, Transcript, was used to record the model’s behaviour.
Figure 1 shows the connectivity of the modules.

Buffer
Perceptual
Working 3
Memory

O = buffer

Legend
A—=B = A sends/writes to B
= process
<= = datasink

—

A—B = A reads from B

Figure 1: The simplified production system in COGENT

Refractory memory and refractory memory decay were not
explicitly modelled. Instead, a simpler alternative was em-
ployed in which production rules were not refracted (and so
any instantiation of a production rule could fire any number of
times), but were modified so as to include in their conditions
the logical negation of their actions. Thus a rule which added
an element to working memory was modified to include an
explicit check that the element in question was not already in
working memory. Decay was then imposed on working mem-
ory. This scheme, which with the production rules employed
in the current model is equivalent to refractory memory decay,
leads to a number of simplifications in the basic production
system architecture (such as removing the requirement for a
refractory memory and an associated test against this memory

during the selection of productions to execute), and is consis-
tent with the goal of demonstrating minimal requirements for
perseverative subgoaling.

Task Control Most of the standard production system pro-
cessing is performed by a single COGENT object: a rule-based
process. This object is an instance of a standard object class
provided by COGENT, and its behaviour is fully determined by
a set of production-like rules which read from and write to
other objects in the model (in particular, Working Memory).
The process operates in a cyclic manner but without any form
of conflict resolution. Thus several rules may, in principle,
fire on a single cycle.

Task Control contains five declarative rules, each of which
is task independent. Together they embody a general approach
to tasks with a fixed (and known) goal/subgoal structure. In
summary, the functions of the rules are:

1. focus on the first unresolved child of the lowest unresolved
goal;
2. directly execute a childless goal (i.e., a primitive operator);

3. merge the results of a goal’s subgoals to give the results of
the goal;

4. delete intermediate subgoal results if a goal’s result is
known; and

5. delete intermediate subgoals if a goal's result is known;

All rules modify Working Memory by adding or deleting in-
formation about goal/subgoal relationships or goal/result rela-
tionships. The rules are not refracted, but are fully declarative,
so fire only under appropriate conditions (including when their
consequent elements decay from working memory).

Three additional pieces of information are required in order
to execute a specific task: the task’'s goal/subgoal structure,
the means of effecting all lowest level goals, and the means
of assembling the resolution of a goal’s subgoals into the
resolution of that goal. This additional information is also
associated with Task Control in the form of Prolog conditions.

Working Memory Working memory is modelled by an un-
limited capacity (symbolic) buffer — another standard class
of object provided by COGENT. Elements are added to, and
deleted from, this buffer by Task Control, which also matches
information in the buffer when determining which rules to
fire. Note that no explicit constraint is placed on the buffer
capacity. A fixed capacity working memory would be no more
psychologically plausible than an unlimited capacity working
memory. The current work therefore employs a soft constraint
derived from working memory decay (explicitly modelled by
another process). Assuming that elements can only be added
to Working Memory at a finite rate, a high decay rate will
naturally lead to a low (but variable) capacity.

Memory Decay Each COGENT object has a set of proper-
ties which determine its precise behaviour. Symbolic buffers,
such as Working Memory, have two properties which govern
decay (one specifying a decay function, and one specifying a
decay rate). However, this built-in functionality does not take
account of structure on the contents of the buffer in question,
and so specifying decay from Working Memory in this way in
the current model could lead to disconnected subgoals. There-

fore, in the model reported here decay of Working Memory is
explicitly effected by a separate rule-based process, Memory
Decay. On each production cycle, this process may randomly
delete some terminal working memory elements. This be-
haviour is programmed by a single rule which generates a
random number (uniformly distributed between 0 and 1) for
each terminal working memory element, and, if that number
is less than a preset threshold, deletes the corresponding ele-
ment from Working Memory. The probability of deletion (i.e.,
the preset threshold) is independent of the working memory
element (provided it is a terminal clement) and given by a
separate parameter of the process.

The use of a separate process governing the decay of work-
ing memory is an unsatisfactory aspect of the model, and
reflects an inadequacy in the COGENT modelling environment.
Ideally, memory decay should be an intrinsic property of the
buffer concerned, not the result of some explicit decay pro-
cess acting on the buffer. Thus, it should be possible to state
the appropriate form of decay as a property of the buffer (as
discussed in the preceding paragraph). This could be done
with COGENT in its current form if 1) refractory memory was
explicitly modelled (as in Soar), 2) subgoals were created
by some mechanism other than production system firing (as
in Soar), and 3) decay was imposed on refractory memory
(contrary to Soar).

Perceptual Buffer In most problem solving situations it is
possible to distinguish between two sorts of information: in-
formation generated and maintained by internal processes (in
this case the contents of Working Memory), and perceptual
information. Perceptual information is always immediately
available to the problem solver. As such there is no clear sense
in which it decays. The current model therefore makes use
of one further unlimited capacity symbolic buffer, Perceptual
Buffer, which contains a representation of information avail-
able in the external world. The precise contents of this buffer
will depend on the external environment of the problem solv-
ing agent, but the buffers existence is crucial to the agent’s
problem solving behaviour.

Transcript The last functional module employed in the
model is Transcript, a data sink which is used to record the
models behaviour, including the elements which decay from
working memory and the models final solution to its problem
solving task. This module has no theoretical import.

The Task: Multicolumn Addition

The original work on refractory memory decay in Soar was
based on two versions of a standard Al task, the monkey and
bananas task. This task has many interesting features, but is
more complex than necessary to show recoverable persevera-
tive subgoaling. A different task is therefore considered here.
The multicolumn addition task (see, e.g., Anderson, 1993,
pp. 4-6) involves adding two “large” integers using the stan-
dard algorithm taught in most Western schools: first sum the
units column, recording the units digit of the sum and carrying
the tens digit (if any) to the next column, then sum the tens
column, recording the units digit of the sum and carrying the
tens digit (if any) to the next column, and so on. The task has
the advantage of having a clear goal/subgoal structure, viz:

Goal Subgoals
multicolumn-add ~ process-column(l)
process-column(2)
;.Jmcess'- remaining-carry
process-column(N) get-digits(N)
add-digits

add-previous-carry
split-answer-units-and-carry

Furthermore, the task can be made to place heavy demands
on working memory by requiring that intermediate results
(L.e., the sums of individual columns) be remembered during
the computation (rather than being written down as the com-
putation progresses), and those demands will increase as the
number of columns in the sum increases. As discussed below,
this makes the task ideal for empirical investigation.

Multicolumn addition was therefore modelled in COGENT
by the inclusion of task specific goal/subgoal information in
the Task Control object. In addition, the Perceptual Buffer
was initialised with the stimulus information (a representa-
tion of the integers to be summed). As noted above, no decay
was specified for this buffer, modelling the fact that this infor-
mation would always be available throughout the task. Two
experimental conditions were examined in the simulations. In
the first, intermediate results were not added to the Perceptual
Buffer, but were instead stored in Working Memory for the
duration of the task, thus modelling the situation where the
subject is required to perform the entire calculation without
the aid of an external memory. In this condition, intermediate
results are subject to potential decay. In the second condition,
the results of summing individual columns were added to the
Perceptual Buffer, and Task Control was able to freely consult
this buffer. This condition models the task were the subject is
able to record his/her results as problem solving progresses.

An additional rule was added to Task Control to detect
when the task was complete and print the answer contained in
Working Memory.

Simulation Results

We consider first the results of the “difficult” condition in
which intermediate results are stored in Working Memory.
Figure 2 shows a trace of the primitive operators invoked by
the model on one particular trial when working with a decay
rate of 0.03. The model was attempting the sum:

895 +
267

Of principal concern is the perseverative subgoaling occur-
ring between cycle 25 and cycle 31. During this period, the
model is solving the four subgoals which comprise process-
column(l). These subgoals were originally solved during
cycles 4-10, after which their results were assembled to pro-
duce a result for process-column(l). However, by cycle 25,
this result was no longer in Working Memory (due to Working
Memory decay), prompting the model to automatically repeat
its prior problem solving. The model recovers after this bout
of perseverative subgoaling, and produces the correct answer,
although its solution time (measured in number of cycles to
completion) is sub-optimal.

401

Cycle 4 get-digits(column(]))

Cycle 6 add-digits(column(1))

Cycle 8 add-previous-carry(column(1))
Cycle 10 split-answer(column(1))
Cycle 15 get-digits(column(2))

Cycle 17 add-digits(column(2))

Cycle 19 add-previous-carry(column(2))
Cycle 22 split-answer(column(2))
Cycle 25 get-digits(column(l))

Cycle 27 add-digits(column(1))

Cycle 29 add-previous-carry(column(1))
Cycle 31 split-answer(column(l))
Cycle 36 get-digits(column(3))

Cycle 38 add-digits(column(3))

Cycle 40 add-previous-carry(column(3))
Cycle 42 split-answer(column(3))
Cycle 47 process-carry(column(4))
Cycle 49 STOP: answer = 1162

Figure 2: Perseverative subgoaling in 3-column addition

Figure 2 shows, then, that the model is indeed subject to
perseverative subgoaling. Perhaps surprisingly, it is robust
against substantially greater decay rates than Soar was in the
original experiments. A decay rate of 0.03 (which lead to the
transcript in Figure 2) is three times greater than the highest
rate for which Soar’s behaviour was examined (and found
wanting), and yet performance is only moderately impaired,
showing slowing but not error.

Extensive experimentation has shown that the model is able
to recover from any failure except premature decay of the root
of the goal stack. Provided that decay does not occur over the
first cycle of problem solving, the model will always solve
the task, though the number of cycles required to solve the
problem will vary depending on the decay rate and the com-
plexity of the task (which is here determined by the number
of columns). However, and in spite of this apparent robust-
ness, the system is prone to error. In particular, the operator
add-previous-carry assumes that if a carry should be added, it
will be in Working Memory. Decay of carry information can
therefore lead to errors.?

Also worthy of note is that the effect of decay on solution
time increases super-linearly with the number of columns in
the sum. A decay rate of 0.10 working memory elements per
cycle led on average to a 1.6 times increase in solution time
for two column sums. This grew to 3.2 for three column sums
and 13.5 for four column sums. The number of incorrect
solutions (due to failure to carry) increases in a similar way
with the number of columns in the sum.

With regard to the second experimental condition, where
the sums of columns were stored in the Perceptual Buffer
(and hence not subject to decay), solution times as measured
in number of cycles were, as expected, generally shorter than
in the first condition, and there was substantially less variance.

2This source of error, decay of carry information, is not a nec-
essary aspect of the model. The rules could be designed to treat
a missing carry as a decayed subgoal result. However, this error
appears to be consistent with human performance on the task, and so
no attempt was made to avoid it.

Over ten trials of a 4-column task with a decay rate of 0.03,
the average number of cycles to solution was 47.1 (s.d. = 2.5).
This compares with 59.1 (s.d. = 12.5) for the equivalent task
in the difficult condition.

Future Developments

The simulation results suggest that perseverative subgoaling
will occur most frequently when working memory capacity
is stretched (e.g., in multicolumn addition involving many
columns). Future work will empirically explore the nature
of perseveration in problem solving with different working
memory requirements. Multicolumn addition is an ideal task
for this work as the demands on working memory can be
easily varied by varying the number of columns in the sum.
Alternately, the task can be coupled with some other concur-
rent, working memory intensive, task in order to investigate
the effects of working memory load.

One hypothesis to be addressed by this work is that perse-
verative subgoaling will be greater when memory resources
are in high demand. This hypothesis is motivated by a
strengthening of the putative relationship between working
memory load and working memory decay — that the rate of
decay is dependent on the load, being greater when the load is
greater. Should empirical work confirm this hypothesis, the
COGENT modelling software will facilitate the exploration of
capacity sensitive alternatives to the rules governing working
memory decay presented here.

A second area of future work concerns uses of the un-
derlying mechanism which leads to recoverable persevera-
tive subgoaling, i.e., non-refracted fine-grained productions
along with refractory memory decay. Together, these produce
a mechanism which effectively refreshes working memory
when critical elements decay. One clear theoretical domain
where such a refreshing mechanism may be appropriate is the
articulatory loop (see, e.g., Baddeley, 1986), an area in which
network models (notably that of Burgess & Hitch, 1992) have
shown some success. The mechanism presented here of-
fers the promise of a symbolic alternative to such network
approaches. More generally, the introduction of stochastic
elements into symbolic models may allow the development of
semantically perspicuous models with sufficient plasticity to
rival their connectionist counterparts.

Conclusions

We have isolated three requirements which will lead a pro-
duction system to exhibit recoverable perseverative subgoal-
ing: refractory memory decay, fine-grained productions, and
a decay-free goal stack. None of the three requirements alone
is sufficient if the resultant system is to exhibit the effect. The
conjunction of the three, however, cannot be claimed to be
necessary conditions. With sufficient ingenuity, alternate sys-
tems could undoubtably achieve the same effect. The claim
here is that no simpler system could do so.

Acknowledgements

I am grateful to Nick Braisby, John Fox, Bradley Franks, and
Tim Shallice for advice and discussion on issues related to
the work presented here. Part of this work was supported by
the Joint Council Initiative in Cognitive Science and Human-
Computer Interaction, project grant #G9212530.

402

References

Anderson, J. R. (1993). Rules of the Mind. Lawrence Erlbaum
Associates, Hove, UK.

Baddeley, A. D. (1986). Working Memory. Oxford University
Press, Oxford, UK.

Burgess, N., & Hitch, G. J. (1992). Toward a network model of
the articulatory loop. Journal of Memory and Language,
31, 429-460.

Chamniak, E., & McDermott, D. (1985). Introduction to Arti-
ficial Intelligence. Addison-Wesley, Reading, MA.

Cohen, P. R. (1995). Empirical Methods for Artificial Intelli-
gence. MIT Press, Cambridge, MA.

Cooper, R. (1995). Towards an object-oriented language for
cognitive modeling. In Proceedings of the 1 7t Annual
Conference of the Cognitive Science Society, pp. 556
561. Pittsburgh, PA.

Cooper, R., & Farringdon, J. (1993). Sceptic Version 4 User
Manual. Tech. rep. UCL-PSY-ADREM-TR6, Depart-
ment of Psychology, University College London, UK.

Cooper, R., Fox, J., Farringdon, J., & Shallice, T. (In press). A
systematic methodology for cognitive modelling. Arti-
ficial Intelligence, 85.

Cooper, R., & Franks, B. (1996). The iteration of concept
combination in Sense Generation. In Proceedings of
the 18" Annual Conference of the Cognitive Science
Society. This volume. San Diego, CA.

Cooper, R., & Shallice, T. (1995). Soar and the case for Unified
Theories of Cognition. Cognition, 55(2), 115-149.

Ellis, J., Shallice, T., & Cooper, R. (1996). Memory for, and
the organization of, future intentions. In submission.

Fox, J. (1980). Making decisions under the influence of mem-
ory. Psychological Review, 87, 190-211.

Genter, D. (1983). Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science, 7, 155-170.

Hajnal, S., Fox, J., & Krause, P. (1989). Sceptic User Man-
ual: Version 3.0. Advanced Computation Laboratory,
Imperial Cancer Research Fund, London, UK.

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by
constraint satisfaction. Cognitive Science, 13,295-355.

Keane, M. T. (1988). Analogical Problem Solving. Ellis
Horwood, Chichester.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR:
An architecture for general intelligence. Artificial In-
telligence, 33, 1-64.

Morton, J., Hammersley, R. H., & Bekerian, D. A. (1985).
Headed records: A model for memory and its failures.
Cognition, 20, 1-23.

Newell, A. (1990). Unified Theories of Cognition. Harvard
University Press, Cambridge, MA.

Newell, A., & Simon, H. (1972). Human Problem Solving.
Prentice~Hall, Englewood Cliffs, NJ.

Touretzky, D. S., & Hinton, G. E. (1988). A distributed con-
nectionist production system. Cognitive Science, 12,
423-466.

	cogsci_1996_397-402

