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Can the stock market be linearized?
Dimitris N. Politis∗
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Abstract: The evolution of financial markets is a complicated real-world phenom-

enon that ranks at the top in terms of difficulty of modeling and/or prediction. One

reason for this difficulty is the well-documented nonlinearity that is inherently at

work. The state-of-the-art on the nonlinear modeling of financial returns is given by

the popular ARCH (Auto-Regressive Conditional Heteroscedasticity) models and

their generalisations but they all have their short-comings. Foregoing the goal of

finding the ‘best’ model, we propose an exploratory, model-free approach in trying

to understand this difficult type of data. In particular, we propose to transform the

problem into a more manageable setting such as the setting of linearity. The form

and properties of such a transformation are given, and the issue of one-step-ahead

prediction using the new approach is explicitly addressed.

Introduction

Consider data X1, . . . ,Xn arising as an observed stretch from a financial

returns time series {Xt} such as the percentage returns of a stock index,

stock price or foreign exchange rate; the returns may be daily, weekly, or

calculated at different (discrete) intervals. The returns {Xt} are typically

assumed to be strictly stationary having mean zero which—from a practical

point of view—implies that trends and/or other nonstationarities have been
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successfully removed.

At the turn of the 20th century, pioneering work of L. Bachelier [1]

suggested the Gaussian random walk model for (the logarithm of) stock

market prices. Because of the approximate equivalence of percentage returns

to differences in the (logarithm of the) price series, the direct implication

was that the returns series {Xt} can be modeled as independent, identically

distributed (i.i.d.) random variables with Gaussian N(0, σ2) distribution.

Although Bachelier’s thesis was not so well-received by its examiners at the

time, his work served as the foundation for financial modeling for a good

part of the last century.

The Gaussian hypothesis was first challenged in the 1960s when it was

noticed that the distribution of returns seemed to have fatter tails than

the normal [11]. Recent work has empirically confirmed this fact, and has

furthermore suggested that the degree of heavy tails is such that the distri-

bution of returns has finite moments only up to order about two [14] [20].

Furthermore, in an early paper of B. Mandelbrot [16] the phenomenon

of ‘volatility clustering’ was pointed out, i.e., the fact that high volatility

days are clustered together and the same is true for low volatility days; this

is effectively negating the assumption of independence of the returns in the

implication that the absolute values (or squares) of the returns are positively

correlated.

For example, Figure 1 depicts the daily returns of the S&P500 index

from August 30, 1979 to August 30, 1991; the extreme values associated

with the crash of October 1987 are very prominent in the plot. Figure 2 (a)

is a ‘correlogram’ of the S&P500 returns, i.e., a plot of the estimated au-

tocorrelation function (ACF); the plot is consistent with the hypothesis of

uncorrelated returns. By contrast, the correlogram of the squared returns
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Figure 1: Daily returns of the S&P500 index spanning the period 8-30-1979

to 8-30-1991.

of Figure 2 (b) shows some significant correlations thus lending support to

the ‘volatility clustering’ hypothesis.

The celebrated ARCH (Auto-Regressive Conditional Heteroscedasticity)

models of 2003 Nobel Laureate R. Engle [10] were designed to capture the

phenomenon of volatility clustering by postulating a particular structure of

dependence for the time series of squared returns {X2
t }. A typical ARCH(p)

model is described by the equation:

Xt = Zt

√√√√a +
p∑

i=1

aiX2
t−i (1)

where a, a1, a2, . . . are nonnegative real-valued parameters, p is a nonnega-

tive integer indicating the ‘order’ of the model, and the series {Zt} is assumed

to be i.i.d. N(0, σ2). Bachelier’s model is a special case of the ARCH(p)

model; just let ai = 0 for all i, effectivelly implying a model of order zero.
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Figure 2: (a) Correlogram of the S&P500 returns. (b) Correlogram of the

S&P500 squared returns.
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Model (1) beautifully captures the phenomenon of volatility clustering in

a simple equation at the same time implying a marginal distribution for the

{Xt} returns that has heavier tails than the normal. Viewed differently, the

ARCH(p) model may be considered an attempt to ‘normalize’ the returns,

i.e., to reduce the problem to a model with normal residuals (the Zts). In

that respect though the ARCH model (1) is only partially successful as

empirical work suggests that the ARCH residuals often exhibit heavier tails

than the normal; the same is true for the ARCH spin-off models such as

GARCH, EGARCH, etc. [4] [24].

Nonetheless, the goal of normalization is most worthwhile and it is indeed

achievable as will be shown in the sequel where the connection with the issue

of nonlinearity of stock market returns will also be brought forward.

Linear and Gaussian time series

Consider a mean zero, stationary time series {Yt}. The most basic tool

for quantifying the inherent strength of dependence is given by the auto-

covariance function γ(k) = EYtYt+k and the corresponding Fourier series

f(w) = (2π)−1
∑∞

k=−∞ γ(k)e−iwk; the latter function is termed the spec-

tral density. We can also define the autocorrelation function (ACF) as

ρ(k) = γ(k)/γ(0). If ρ(k) = 0 for all k > 0, then the series {Yt} is said

to be a white noise, i.e., an uncorrelated sequence; the reason for the term

‘white’ is the constancy of the resulting spectral density function.

The ACF is the sequence of second order moments of the variables

{Yt}; more technically, it represents the second order cumulants [6]. The

third order cumulants are given by the function Γ(j, k) = EYtYt+jYt+k

whose Fourier series F (w1, w2) = (2π)−2
∑∞

j=−∞
∑∞

k=−∞ Γ(j, k)e−iw1j−iw2k
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is termed the bispectral density. We can similarly define the cumulants of

higher order, and their corresponding Fourier series that constitute the so-

called higher order spectra.

The set of cumulant functions of all orders, or equivalently the set of

all higher order spectral density functions, is a complete description of the

dependence structure of the general time series {Yt}. Of course, working

with an infinity of functions is very cumbersome; a short-cut is desperately

needed, and presented to us by the notion of linearity.

A time series {Yt} is called linear if it satisfies an equation of the type:

Yt =
∞∑

k=−∞
βkZt−k (2)

where the coefficients βk are (at least) square-summable, and the series {Zt}
is i.i.d. with mean zero and variance σ2. Eq. (2) is not to be confused with

the Wold decomposition that all purely nondeterministic time series possess.

In the Wold decomposition the ‘error’ series {Zt} is only assumed to be a

white noise and not i.i.d.; the latter assumption is much stronger.

Linear time series are easy objects to work with since the totality of

their dependence structure is perfectly captured by a single entity, namely

the sequence of βk coefficients. To elaborate, the autocovariance and spec-

tral density of {Yt} can be calculated to be γ(k) = σ2
∑∞

s=−∞ βsβs+k and

f(w) = (2π)−1σ2|β(w)|2 respectively where β(w) is the Fourier series of

the βk coefficients, i.e., β(w) =
∑∞

k=−∞ βke
iwk. In addition, the bispectral

density is simply given by

F (w1, w2) = (2π)−2µ3 β(−w1)β(−w2)β(w1 + w2) (3)

where µ3 = EZ3
t is the 3rd moment of the errors. Similarly, all higher order

spectra can be calculated in terms of β(w).
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The prime example of a linear, mean zero, time series is given by the

Auto-Regressive (AR) family [28] in which the time series {Yt} has a linear

representation with respect to its own lagged values, namely

Yt =
p∑

k=1

θkYt−k + Zt (4)

with the error process {Zt} being i.i.d. as in eq. (2). AR modeling lends

itself ideally to the problem of prediction of future values of the time series.

For concreteness, let us focus on the one-step-ahead prediction problem,

i.e., predicting the value of Yn+1 on the basis of the observed data Y1, . . . , Yn,

and denote by Ŷn+1 the optimal (with respect to Mean Squared Error)

predictor. In general, we can write Ŷn+1 = gn(Y1, . . . , Yn) where gn(·) is an

appropriate function. As can be shown [2], the function gn(·) that achieves

this optimal prediction is given by the conditional expectation, i.e., Ŷn+1 =

E(Yn+1|Y1, . . . , Yn). Thus, to implement the one-step-ahead prediction in a

general nonlinear setting requires knowledge (or accurate estimation) of the

unknown function gn(·) which is far from trivial [13] [27] [26].

In the case of a causal [7] AR model however, it is easy to show that

the function gn(·) is actually linear, and that Ŷn+1 =
∑p

k=1 θkYn+1−k. Note

furthermore the property of ‘finite memory’ in that the prediction function

gn(·) is only sensitive to its last p arguments. Although the ‘finite mem-

ory’ property is specific to finite-order causal AR (and Markov) models, the

linearity of the optimal prediction function gn(·) is a property shared by a

large subset of the class of linear time series, namely the class of all causal

and invertible, i.e., “minimum-phase” [22], ARMA models with i.i.d. inno-

vations.

Gaussian series form another most interesting subset of the class of lin-

ear time series; they occur when the series {Zt} of eq. (2) is i.i.d. N(0, σ2),
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and they too exhibit the useful linearity of the optimal prediction function

gn(·). Furthermore, in the Gaussian case all spectra of order higher than

two are identically zero; it follows that all dependence information is concen-

trated in the spectral density f(w). Thus, the investigation of a Gaussian

series’ dependence structure can focus on the simple study of second order

properties, namely the ACF ρ(k) and/or the spectral density f(w). For ex-

ample, an uncorrelated Gaussian series, i.e., one satisfying ρ(k) = 0 for all

k, necessarily consists of independent random variables.

To some extent, this last remark can be generalised to the linear setting:

if a linear time series is deemed to be uncorrelated, then practitioners typ-

ically infer that it is independent as well. Strictly speaking, however, this

inference is only valid for the aforementioned class of causal and invertible

ARMA models [5]. Note that to check/test whether an estimated ACF,

denoted by ρ̂(k), is significantly different from zero, the Bartlett confidence

limits are typically used—see e.g. the bands in Figure 2 (a); but those too

are valid only for linear time series [17].

Linearizing or normalizing the stock market?

It should come as no surprise that a simple parametric model as (1) might

not perfectly capture the behavior of a complicated real-world phenom-

enon such as the evolution of financial returns that—almost by definition

of market ‘efficiency’—ranks at the top in terms of difficulty of model-

ing/prediction. As a consequence, researchers have recently been focusing

on nonparametric methods for the analysis of financial time series; see [12]

for a detailed overview. For example, consider the nonparametric ARCH
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model defined by the equation:

Xt = gp(Xt−1, . . . ,Xt−p) Zt (5)

where Zt is i.i.d. (0, σ2), and gp is an unknown smooth function to be esti-

mated from the data.

Despite its nonparametric character, eq. (5) is nevertheless just another

model attempting to fully capture/describe the probabilistic characteristics

of the time series in question which is perhaps an overly ambitious task.

Foregoing the goal of finding the ‘best’ model, we may instead resort to an

exploratory, model-free approach in trying to understand this difficult type

of data. In particular, we may attempt to transform the problem into a

more manageable setting such as the setting of linearity.

Consider again the financial returns data Xn = (X1, . . . ,Xn), and a

transformation of the type Vn = H(Xn) where Vn is also n-dimensional.

Ideally, we would like the transformed series Vn = (V1, . . . , Vn) to be linear

since, as mentioned before, such time series are easy to work with.

However, just asking for linearity of the transformed series is not enough.

For example, the naive transformation Vt = sign(Xt) may be thought of

as a linearizing transformation since, by the efficient market hypothesis,

sign(Xt) is i.i.d. (taking the values +1 and -1 with equal probability), and

therefore linear. Nevertheless, in spite of the successful linearization, the

sign transformation is not at all useful as the passage from Xn to Vn is

associated with a profound loss of information.

To avoid such information loss “due to processing” [9], we should further

require that the transformation H be in some suitable sense invertible, allow-

ing us to work with the linear series Vt but then being able to recapture the

original series by the inverse transformation H−1(Vn). Interestingly, the key
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to finding such a transformation is asking for more: look for a normalizing

(instead of just linearizing) information preserving transformation.

We now show how this quest may indeed be fruitful using the ARCH

equation (1) as a stepping stone. To this end, define Vt = Xt/st for t =

1, 2, . . . , p, and

Vt =
Xt√

αs2
t−1 + a0X2

t +
∑p

i=1 aiX2
t−i

for t = p + 1, p + 2, . . . , n; (6)

in the above, α, a0, a1, . . . , ap are nonnegative real-valued parameters, and

s2
t−1 is an estimator of σ2

X = V ar(X1) based on the data up to (but not

including) time t. Under the zero mean assumption for Xt, the natural

estimator is s2
t−1 = (t − 1)−1

∑t−1
k=1 X2

k .

The invertibility of the above transformation is manifested by solving

eq. (6) for Xt, thus obtaining:

Xt =
Vt√

1 − a0V 2
t

√√√√αs2
t−1 +

p∑
i=1

aiX2
t−i for t = p + 1, p + 2, . . . , n. (7)

Given the initial conditions X1, . . . ,Xp, the information set FX
n = {Xt, 1 ≤

t ≤ n} is equivalent to the information set FV
n = {Vt, 1 ≤ t ≤ n}. To

see this, note that with eq. (7) we can recursively re-generate Xt for t =

p + 1, p + 2, . . . , n using just FV
n and the initial conditions; conversely, eq.

(6) defines Vt in terms of FX
n .

Equation (6) describes the proposed normalizing (and therefore also lin-

earizing) transformation, i.e., the operator H in Vn = H(Xn). Note that

formally the main difference between eq. (6) and the ARCH eq. (1) is the

presence of the term X2
t paired with the coefficient a0 inside the square root;

this is a small but crucial difference without which the normalization goal

may not always be feasible [18] [19].
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Despite its similarity to model (1), eq. (6) is not to be interpreted as

a “model” for the {Xt} series. In a modeling situation, the characteristics

of the model are pre-specified (e.g., errors that are i.i.d. N(0, σ2), etc.),

and standard methods such as Maximum Likelihood or Least Squares are

used to fit the model to the data. By contrast, eq. (6) does not aspire to

fully describe the probabilistic behavior of the {Xt} series. The order p

and the vector of nonnegative parameters (α, a0, . . . , ap) are chosen by the

practitioner with just the normalization goal in mind, i.e., in trying to render

the transformed series {Vt} as close to normal as possible; here, ‘closeness’

to normality can be conveniently measured by the Shapiro-Wilk (SW) test

statistic [23] or its corresponding P -value.

It is advantageous (and parsimonious) in practice to assign a simple

structure of decay for the ak coefficients. The most popular such structure—

shared by the popular GARCH(1,1) model [3]—is associated with an expo-

nential rate of decay, i.e., to postulate that ak = Ce−dk for some positive

constants d and C which—together with the parameter α—are to be chosen

by the practitioner.

Taking into account the convexity requirement α +
∑p

k=0 ak = 1, the

exponential coefficients scheme effectively has only two free parameters that

can be chosen with the normalization goal in mind, i.e., chosen to maximise

the SW statistic calculated on the transformed series Vt or linear combina-

tions thereof—the latter to ensure normality of joint distributions.

As it turns out, the normalization goal can typically be achieved by

a great number of combinations of these two free parameters, yielding an

equally great number of possible normalizing transformations. Among those

equally valid normalizing transformations the simplest one corresponds to

letting α = 0. Alternatively, the value of α may be chosen by an additional
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Figure 3: Normalized S&P500 returns, i.e., the tranformed V -series, span-

ning the same period 8-30-1979 to 8-30-1991.

optimisation criterion driven by an application of interest such as predictive

ability.

For illustration, let us revisit the S&P500 returns dataset. The normaliz-

ing trasformation with ak = Ce−dk and the simple choice α = 0 is achieved

with d = 0.0675; the resulting tranformed V -series is plotted in Figure 3

which should be compared to Figure 1. Not only is the phenomenon of

volatility clustering totally absent in the tranformed series but the outliers

corresponding to the crash of October 1987 are hardly (if at all) discernible.

Quantifying the degree of nonlinearity and nonnormality

There are many indications pointing to the nonlinearity of financial returns.

For instance, the fact that returns are uncorrelated but not independent is

a good indicator; see e.g. Figure 2 (a) and (b). Notably, the ARCH model
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Figure 4: Figure 4 ABOUT HERE

Figure 5: Figure 5 ABOUT HERE

and its generalisations are all models for nonlinear series.

To quantify nonlinearity, it is useful to define the new function

K(w1, w2) =
|F (w1, w2)|2

f(w1)f(w2)f(w1 + w2)
. (8)

From eq. (3), it is apparent that if the time series is linear, then K(w1, w2)

is the constant function—equal to µ2
3/(2πσ6) for all w1, w2; this observation

can be used in order to test a time series for linearity [25] [15]. In the

Gaussian case we have µ3 = 0 and therefore F (w1, w2) = 0 and K(w1, w2) =

0 as well.

Let K̂(w1, w2) denote a data-based nonparametric estimator of the quan-

tity K(w1, w2). For our purposes, K̂(w1, w2) will be a kernel smoothed esti-

mator based on infinite-order flat-top kernels that lead to improved accuracy

[21]. Figure 4 shows a plot of K̂(w1, w2) for the S&P500 returns; its non-

constancy is direct evidence of nonlinearity. By contrast, Figure 5 shows

a plot of K̂(w1, w2) for the normalized S&P500 returns, i.e., the V -series.

Note that, in order to show some nontrivial pattern, the scale on the vertical

axis of Figure 5 is 500 times smaller than that of Figure 4. Thus, it should

come as no surprise that the function K̂(w1, w2) for the normalized S&P500

returns is not statistically different from the zero function, lending support

to the fact that the trasformed series is linear with distribution symmetric

about zero; the normal is such a distribution but it is not the only one.

To further delve into the issue of normality, recall the aforementioned

Shapiro-Wilk (SW) test which effectively measures the lack-of-fit of the
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Figure 6: QQ-plot of the S&P500 returns.

quantile-quantile plot (QQ-plot) to a straight line. Figure 6 shows the QQ-

plot of the S&P500 returns; it is apparent that a straight line is not a good

fit. As a matter of fact the SW test yields a P-value that is zero to several

decimal points—the strongest evidence of nonnormality of stock returns. By

contrast, the QQ-plot of the normalized S&P500 returns can be very well

approximated by a straight line: the R2 associated with the plot in Figure 7

is 0.9992, and the SW test yields a P-value of 0.153 lending strong support

to the fact that the trasformed series is indistiguishable from a Gaussian

series.

The proposed transformation technique has been applied to a host of

different financial datasets including returns from several stock indices, stock

prices and foreign exchange rates. Invariably, it was proven successful in its

dual goal of normalization and linearization.
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Figure 7: QQ-plot of the normalized S&P500 returns.

APPENDIX: Prediction using the transformation technique

For concreteness, we focus on the problem of one-step ahead prediction, i.e., prediction

of a function of the unobserved return Xn+1, say h(Xn+1), based on the observed data

FX
n = {Xt, 1 ≤ t ≤ n}. Our normalizing transformation affords us the opportunity to

carry out the prediction in the V -domain where the prediction problem is easiest since

the problem of optimal prediction reduces to linear prediction in a Gaussian setting.

The prediction algorithm is outlined as follows:

• Calculate the transformed series V1, . . . , Vn using eq. (6).

• Calculate the optimal predictor of Vn+1, denoted by V̂n+1, given FV
n . This predictor

would have the general form V̂n+1 =
�q−1

i=0 ciVn−i. The ci coefficients can be found

by Hilbert space projection techniques, or by simply fitting the causal AR model

Vt+1 =

q−1�
i=0

ciVt−i + εt+1. (9)

to the data where εt is i.i.d. N(0, σ2). The order q can be chosen by an information

criterion such as AIC or BIC [8].
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Note that eq. (7) suggests that h(Xn+1) = un(Vn+1) where un is given by

un(V ) = h

⎛⎝ V√
1 − a0V 2

#??�αs2
t−1 +

p�
i=1

aiX2
n+1−i

⎞⎠ .

Thus, a quick-and-easy predictor of h(Xn+1) could then be given by un(V̂n+1).

A better predictor, however, is given by the center of location of the distribution of

un(Vn+1) conditionally on FV
n . Formally, to obtain an optimal predictor, the optimality

criterion must first be specified, and correspondingly the form of the predictor is obtained

based on the distribution of the quantity in question. Typical optimality criteria are L2, L1

and 0/1 losses with corresponding optimal predictors the (conditional) mean, median and

mode of the distribution. For reasons of robustness, let us focus on the median of the

distribution of un(Vn+1) as such a center of location.

Using eq. (9) it follows that the distribution of Vn+1 conditionally on FV
n is approx-

imately N(V̂n+1, σ̂
2) where σ̂2 is an estimate of σ2 in (9). Thus, the median-optimal

one-step-ahead predictor of h(Xn+1) is the median of the distribution of un(V ) where V

has the normal distribution N(V̂n+1, σ̂
2) truncated to the values ±1/

√
a0; this median is

easily computable by Monte-Carlo simulation.

The above Monte-Carlo simulation actually creates a predictive distribution for the

quantity h(Xn+1). Thus, we can go a step further from the notion of a point-predictor:

clipping the left and right tail of this predictive distribution, say δ·100% on each side, a

(1 − 2δ)100% prediction interval for h(Xn+1) is obtained.
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Figure 4: Plot of K̂(ω1, ω2) vs. (ω1, ω2) for the S&P500 returns.

Figure 5: Plot of K̂(ω1, ω2) vs. (ω1, ω2) for the normalized S&P500 returns.
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