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Abstract

Characterization of tRNAs, Associated Fragments, and Genomic Loci in Primate Neural
Development and Beyond

by
Alex Laszlo Bagi

This dissertation investigates themultifaceted roles of transfer RNAs (tRNAs) in gene expression regulation,
extending beyond their traditional roles in protein translation. Chapter I explores tRNAs in human brain
development, utilizing cerebral cortical organoids and specialized tRNA sequencing to reveal dynamic
expression patterns of tRNAs and tRNA-derived small RNAs (tDRs) in the early human cerebral cortex.
Notably, it identifies a variety of upregulated tDRs from diverse isodecoders, with sequence-specific
conservation among neural-specific groups, suggesting a pivotal role in neural development. Chapter
II examines the impact of complete telomere-to-telomere (T2T) assemblies of great ape (and human)
genomes on tRNA gene discovery. This has led to the identification of nearly 100 new human cytosolic-
tRNA gene loci, particularly in regions of chromosome 1 associated with neural gene regulation and
implicated in the neural expansion of humans and primates. The chapter also discusses the dynamic
nature of tRNA loci copy number variation across tandem repeats and their roles on adjacent neural genes.
Chapter III introduces two novel bioinformatics tools, tRNAgraph, and tRNAmap, designed to address
the challenges of analyzing tRNA sequencing data across multiple species and experimental conditions.
tRNAgraph offers multi-variate analysis, automated clustering, and classification of tRNAseq data, while
tRNAmap aligns the ‘tRNAnome’ of eukaryotic species for cross-species comparison. These tools enable
advanced analysis of the increasingly common tRNA sequencing data, contributing significantly to our
understanding of tRNAs in neural development and evolution. This dissertation’s exploration into the
complex roles of tRNAs and the innovative tools developed for their analysis not only advances our
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understanding of neural development and evolution but also paves the way for future genomic research
to uncover the intricate mechanisms of gene regulation.
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Chapters
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Chapter 1

Specialized Neural tRNA Expression in Brain

Organoids

2



1.1 Background

Transfer RNAs are the largest, most complex small non-coding RNA family, and are universal
to all living systems. Historically, the majority of tRNA biochemistry, processing, and functional studies
in eukaryotes have utilized the yeast Saccharomyces cerevisiae (Phizicky and Hopper 2010). Yet, the
tRNA gene diversity is relatively limited in this single-celled organism, containing only 55 unique mature
tRNA transcripts encoded redundantly by 275 genes (Chan and Todd M. Lowe 2016). By contrast, most
mammalian genomes have at least 400-600 tRNA genes (tDNAs), with a surprisingly large number of
unique sequences due to an expansion of isodecoder diversity (tRNAs that have the same anticodon
but different sequences); in human, there are 252 unique tRNA gene sequences (five times as many as
yeast), even after discounting likely pseudogenes (Chan and Todd M. Lowe 2016). It is unclear why the
complexity, diversity, and number of unique tRNAs increase in higher eukaryotes relative to single-celled
eukaryotes. However, increased tissue diversity, regulatory programs, and unique developmental needs
are likely driving factors.

A growing body of evidence suggests that tRNAs play regulatory roles that go beyond the scope
of codon translation. Some of these extra-translational roles include global regulation of RNA silencing,
immune system dysregulation leading to disease, and cancer progression regulation (Haussecker et al.
2010; Nie et al. 2019; Su et al. 2019; Goodarzi, Nguyen, et al. 2016). In addition to mature tRNAs, tRNA-
derived small RNAs (tDRNAs or tDRs) have also been demonstrated to have roles in regulation and disease
(Goodarzi, Liu, et al. 2015; Dou, Y. Wang, and Lu 2019; Soares and Santos 2017; Avcilar-Kucukgoze and
Kashina 2020; Morisaki et al. 2021). Some specific angiogenin-induced tDRs also have the ability to form
into G-quadruplexes, which have neuroprotective roles in motor neurons, affecting the pathogenesis of
diseases such as amyotrophic lateral sclerosis (Yang 2014; Ivanov et al. 2014). Further, the bioavailability
of specific amino acids such as Arginine, Glycine, and Selenocysteine have been known to play roles in
neurological function, disorders, and development, which can be related to the expression of specific
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tRNAs and their associated tDRs (Pitts et al. 2014; Ullah et al. 2020; Mader and Czorlich 2021).
Spatial- and time-dependent expression of protein-coding genes is an essential function for

cell patterning and differentiation of neural tissues in mammalian neurodevelopment. Recent studies
have found several instances where tDRs may play roles in neurological diseases (reviewed in Qin et al.
2020). A landmark study found that a specific but previously unremarkable Arg-UCU tRNA (encoded by
one of five different Arg-TCT genes) is abundant almost exclusively in the brain (Ishimura et al. 2014).
This study in mice showed that severe neurodegeneration could be caused by a single point mutation in
the brain-specific tRNA gene when combined with a mutation in a ribosome release factor, showing that
individual tRNA genes can have tissue-specific importance. In addition, it has been shown that loss of
the mature tRNA Arg-TCT-4-1 (n-Tr20 in mouse), leads to changes in seizure susceptibility and mTORC1
suppression leading to altered neurotransmission (Kapur et al. 2020). Except for this one specific tRNA in
mouse, no known cytosolic tRNAs have been shown to play a specialized role(s) in neuro-development
or mature brain function.

We have employed AlkB-facilitated RNA methylation sequencing (ARM-seq) (Cozen et al. 2015)
to enable comprehensive analysis of tRNAs and their derived small RNAs. This specilized tRNA sequencing
method use Escherichia coli dealkylating enzyme AlkB treatments to remove common tRNAmodifications
(primarily m1A, m1G, m3C) that can cause reverse transcription to terminate before reaching the end of
a tRNA or tDR. This and other similar methods, such as YAMAT-seq (Shigematsu et al. 2017), hydro-seq
(Cheng et al. 2019), and QuantM-tRNA-seq (Pinkard et al. 2020), yield a much more complete picture of
tDRs than standard small RNA sequencing methods. Furthermore with specific tRNA analysis pipelines,
tDRs can be sorted into more complex categories than the common 5’ and 3’ halves and fragments
distinction.

We applied ARM-seq to cerebral cortex brain organoids, an established model for early events
in fetal brain development (Eiraku et al. 2008; Camp et al. 2015; Kelava and Lancaster 2016; Kadoshima
et al. 2013), to profile tRNAs and tDRs at a series of time points from pluripotent cells through the
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generation of excitatory projection neurons of the developing cortical plate (Pollen et al. 2019; Fiddes,
Pollen, et al. 2019; Fiddes, Lodewijk, et al. 2018). Studying tRNA dynamics in this unique system has
allowed us to identify previously unknown brain-correlated tRNAs and tDRs expressed during human
cortical neurogenesis. We found that, in addition to an increase in the previously studied Arg-TCT-4 tRNA,
a broader collection of tRNAs and tDRs changed as well. To explore these dynamics further, dimensionality
reduction, clustering, and classification were utilized to recognize processing commonalities among tDRs.
Of the classes we identified, one contains Arg-UCU tDRs as well as other highly expressed tDRs, with
apparent sequence conservation at base pair 30:40 in the anticodon stem of the tRNA and conservation
of other unique sequence motifs.

1.2 Results

1.2.1 Dynamic patterns of small RNA expression during cerebral cortex organoid

differentiation

Human induced pluripotent stem cells (GM12878-c305 iPSCs) were grown into cerebral cortical
organoids as a model to study tRNA changes in early human embryogenesis. A standard time course
of culturing conditions was used to achieve neural induction and organoid growth (Figure 1.1A). Cells
were aggregated into embryoid bodies and differentiated into cortical tissues over a period of 10 weeks.
Samples were taken for characterization and sequencing at the developmental time points of day 0
(D0 - stem cells), day 14 (D14 - neural epithelium and radial glia neural progenitor cells), day 35 (D35 -
emergence of deep layer neurons) and day 70 (D70 - continued generation of cortical projection neurons,
emergence of outer radial glia) based on the emergence of key cell types in the course of dorsal cortex
development in previous studies (Pollen et al. 2019).

5



Figure 1.1

6



Figure 1.1: Human cerebral cortical organoids show neural marker gene expression and small RNA

expression diversity compared to stem cells

(A) Graphical abstract of the project depicting media and small molecule drug changes across organoids
developmental time-course. Representations of organoids and relative size at crucial time points are
shown with 500µm scale bars. RNA collection, tRNA sequencing, analysis pipeline and classification are
also depicted. (B) D70 organoid stains using vimentin and dapi are used showing cytoarchitecture of the
organoid. Emphasis placed with white arrows showing locations or neural rosettes (early endo tube like
formation) found throughout the perimeter of the organoid stains. (C) Antibody stains PAX6 a radial glial
marker, CTIP2 a deep layer neuron marker, and TBR2 an intermediate neural progenitor marker, show
neural marker gene expression with PAX6 staining the inside of neural rosettes, TBR2 surrounding the
rosettes and CTIP2 encompassing the exterior of the organoid. (D)Neural marker stains were merged with
a dotted white line for the exterior perimeter of the organoid. (E) Volcano plot showing D0 vs. D70 log2
fold-changes in abundance of small RNAs against -log10(p-value) with tRNAs shown for scale. Targets
of particular interest are labeled with horizontal dotted lines at p-value=0.05 and p-value=0.001 and
vertical dotted lines at 1.5 fold difference. Small RNAs highly expressed in either stem or neural cells across
multiple conditions (D0 vs. D14, D0 vs. D35, or D0 vs. D70) were highlighted in blue or yellow respectively.
Small RNAs known as stem or neural markers were highlighted in purple or magenta as well. (F) PCA plot
of all ARM-seq samples for all measured small RNAs across organoid time points with PC1 seeming to
represent organoid maturation.
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D70 organoids expressed expected neural cell-typemarkers using immunofluorescence staining
(IF-staining) when compared against D0 stem cells (Figure 1.1). We observe circular structures known as
neural rosettes (early neural tube-like formations) throughout the perimeter of the organoid that stain
with antibodies for PAX6 (a radial glia neural stem cell marker), and vimentin (a radial glial fiber marker)
showing the presence of radial glia neural stem cells (Figure 1.1B-D). The PAX6+ neural rosettes were
surrounded by TBR2+ intermediate neural progenitors and CTIP+ neurons beyond the neural rosettes and
intermediate progenitors (Figure 1.1D). In general, the presence of different neural subtypes increased
over time as the organoids developed and increased in size.

To establish the patterns of tRNA and tDR expression in neural development, we performed
differential expression analysis using tRNA Analysis of eXpression (tRAX) (Holmes et al. 2022) on read data
across the differentiation time course (D0, D14, D35, D70). We validated that the small RNA sequencing
reflected the neural differentiation with small RNA markers known to have specific expression in neurons
or stem cells (Figure 1.1E). Known stem-associated mir302 family miRNAs were more highly expressed
in D0 stem cells, whereas neural-associated miR-9 and miR-LET7 (miR-99a) family miRNAs were more
highly expressed in the D70 organoids (Coolen, Katz, and Bally-Cuif 2013; Cimadamore et al. 2013; Zhao
et al. 2010; Fairchild et al. 2019) (Table S1.1). MT-RNR2, a mitochondrial ribosomal RNA found to play a
neuroprotective role, is also upregulated in organoids relative to stem cells (Hashimoto, Niikura, Tajima,
et al. 2001; Hashimoto, Niikura, Ito, et al. 2001; Ying et al. 2004). Many SNORD115 RNAs, known to
be induced by neuronal differentiation (Bratkovič et al. 2018), were also highly expressed in neural cell
time points, confirming expected small RNA transcriptional changes during the organoid time-course
experiment. Principal Components Analysis (PCA) was performed on small RNA read counts across all
time points (Figure 1.1F), and showed that biological replicates and adjacent time points cluster closest to
one another, as expected.
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1.2.2 Broad changes in tRNA Isotypes do not capture tDR-Specific Changes

The relative expression of the major classes of small RNAs was assessed across the develop-
mental time course, with ARM-seq picking up many small RNAs in addition to tRNAs, and tRNA reads
increasing with AlkB treatment (Figure 1.2A). The diversity of tRNA isotype groups was analyzed in the
AlkB positive conditions to look for changes across time points, as it had increased tRNA reads and
diversity (Figure S1.1). Ala, Asn, iMet, Phe, SeC, and Ser had greater than two fold-change increases
between D0 and D70 (Figure 1.2B). These same groups also appeared to have the highest expression
differences between D0 and D35, with all but Ser having a greater than two-fold increase in the neural
condition. In parallel, more than 40% of Glu, His, Lys, Thr, and Tyr diminished in D0 vs. D70, with His and
Tyr also decreasing in the D0 vs. D35 condition.
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Figure 1.2
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Figure 1.2: tRNA and tDR changes across early human cortical neurogenesis

(A) Human small RNA reads-counts distributions showing relative ratio of small RNAs across organoid
time-course, sequencing type and alkB treatment. (B) Human tRNA isotype reads-counts distributions
showing relative ratio of tRNA isotypes across organoid time-course, sequencing type and alkB treatment.
(C) Coverage profiles for the Gly, Thr, and Val isotype groups showingmax expression across AlkB+ samples
per position within each isotype across organoid time points. D-loop, anticodon-loop, and T-loop shown
in gray, with lines added at specific coverage breakpoints in each plot.
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Relative fragment profiles and their expression as a function of time seem to be dynamic. Gly,
Thr, and Val tRNA isotypes showed changes in expression and diversity in the tDRs between isodecoders
as well as between developmental time points (Figure 1.2C). In Gly a 5’ fragment is evident in D0 samples,
and this fragment diminishes over time, although at different rates in the three isodecoders. However, in
Gly-CCC and to a lesser extent in Gly-GCC, a 3’ fragment increases in expression as the cells differentiate.
In the Thr isotype, a 3’ fragment shape appears in all cases, however, both Thr-AGU and Thr-UGU
isodecoders decrease in expression and share a decrease in coverage at position 58. In contrast, Thr-CGU
isodecoders increase in expression over time and have coverage beyond position 58, suggesting that
modifications at this position may play a role in the processing and abundance of this fragment. Val
tRNA isotypes have the widest variety of tDR coverage profiles with a distinct pattern for each time
point and isodecoder. In addition to Gly, Thr, and Val, other isotypes also had distinct relative fragment
profiles among their isodecoders, but the changes in the relative expression of their codon pools was
less dynamic (Figure S1.2A).

1.2.3 Expression patterns of neural tDRs are unique and change over time

Individual tDRs were chosen to be further assessed rather than isodecoder groups or full-length
reads (Due to their abundance in ARM-seq) in order to find neural specific fragments and thier dynamic
expression patterns (Table S1.2). tDR readswere divided into fivemain subgroups consisting of whole tRNA
reads (within 10 bases of the start and of the full tRNA sequence), 5’ fragments (within 10 bases of the
start position but do not reach end), 3’ fragments (within 10 bases of end position, but do not reach start),
other fragments (internal fragments), and pre-tRNAs (pre-partial tRNAs and pre-tRNAs). The expression
of D0 vs. D70 tDRs was compared for all tDRs and all pre-tRNA type reads (Figure 1.3A). Between D0 and
D70 samples, 27 tDRs were found to have a significant (p-value <= 0.05) and log2(fold-change) greater
than 1.5 increase in expression in the cerebral cortex organoids relative to undifferentiated stem cells
(Supp. Table 2). The differences between D0 and D14 samples were far less significant, likely since neural
induction has just started and the space between time points is much closer. As such, tDR changes after
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neural differentiation were mostly examined between D0/D35 and D0/D70 time points. Among the top
rank-expressed neural tDRs, several amino families appeared multiple times: Ala (4), Arg (3), Gly (2), and
Leu (3).
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Figure 1.3
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Figure 1.3: Groups of tDRs change during neural differentiation

(A) Volcano plot showing D0 vs. D70 log2 fold-changes in abundance of tDRs against -log10(p-value) with
3’, 5’ and internal fragment counts and whole length and pre-mature tRNA counts. Targets of particular
interest are labeled with horizontal dotted lines at p-value=0.05 and p-value=0.001 and vertical dotted
lines at 1.5 fold difference. tDRs highly expressed in either stem or neural cells across multiple conditions
(D0 vs. D14, D0 vs. D35, or D0 vs. D70) were highlighted in shades of blue or yellow depending on how
many conditions they appeared in. All samples were batch corrected and normalized using Deseq2 (Love,
Huber, and Anders 2014) to account for differences in sample read counts. (B) Heatmap showing the
top 15 neural and top 15 stem favored tDRs across all conditions. Names in orange have less than 80
uniquely mapping read counts. (C-E) Coverage profiles for the top 3 highly expressed tDRs over organoid
neurogenesis (C), highly expressed stem and neural Gly tDRs (D), and unique tDRs with coverage changes
(E). D-loop, anticodon-loop, and T-loop shown in gray, with lines added at specific coverage breakpoints
in each plot.
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Nearly all tDRs that increase after neural differentiation are 3’ end-counts (3’ fragments that
terminate within 10 bp of the CCA tail), with several pre-mature-tRNA counts also being detected. The
top 15 neural and top 15 stem-expressed tDRs between D0 and D70 were compared (Figure 1.3B), and the
p-values and read counts were assessed to determine overall significance and expression (Figure S1.3A,B).
While 5’ end-counts (5’ fragments that terminate within 10 bp of the tRNA start site) are less common
when compared to 3’ end-counts, they tend to appear in D0 samples and diminish entirely after neural
differentiation in both D35 and D70 time points. With many 3’ tDRs being expressed at D35 and D70,
there is also great diversity in the shape of fragment coverage with drop-offs of coverage at different
conserved tRNA positions. This suggests differential modifications of the mature-tRNA the tDR is derived
from since mature tRNA modifications often act as signals for cleavage creating tDRs (Lyons, Fay, and
Ivanov 2018).

The diversity of the top 3 most neural expressed tDR 3’ fragments was explored in detail
(Figure 1.3C). While coverage drop-off commonly occurred near position 58, other coverage changes
differed between tRNA genes. tRNA-SeC-TCA-1 and tRNA-Arg-TCT-4 derived tDRs, for example, have a
unique coverage drop through the anticodon loop, making these tDRs match more traditional 3’ half
designations. Additionally, while both tRNA-Arg-TCT-4 and tRNA-Arg-TCT-1 increase in expression over
time, the former has severe drop off in coverage around position 40, whereas the later persists into the
D-arm before dropping off (Figure S1.3C). tRNA-Ala-AGC-8-derived tDRs, however, had distinct drops in
coverage between the anticodon and t-loops with residual coverage encompassing the remainder of the
tRNAs canonical position. tRNA-Gly-GCC-2-, and tRNA-Gly-CCC-2-derived tDRs also had distinct drops
in coverage and appeared in the top 10 most neural expressed tDRs in contrast to tRNA-Gly-CCC-1 (The
most stem expressed tDR) (Figure 1.3D). Interestingly both neural specific Gly tDRs (tRNA-GCC-2/CCC-2)
were 3’ specific whereas tRNA-Gly-CCC-1 appeared to be highly 5’ biased with dropoff before position
58. tRNA-Sec-TCA-1, tRNA-Arg-TCT-4, and tRNA-Ala-AGC-8 were validated as increasing in full length
tRNA expression across neural differentiation via Northern blots (Figure S1.3D). Most tDRs that maintain
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the same fragment coverage over the timecourse with changes in relative abundance rather than the
fragment that is expressed changing.

Additional tRNAs showed pronounced changes in the tDR fragments generated over this
developmental time course. tRNA-Asp-GTC-1 derived tDRs look similar in shape and expression at D0
and D14 but gain a large increase in 3’ fragment expression at D35 and D70 (Figure 1.3E). tRNA-Gly-GCC-1-
derived tDRs have a complementary effect with the diminishment of the 5’ end coverage as the organoids
reach D35 and D70 time points. tRNA-Pro-TGG-2 tDRs exhibit a mix of both effects, with a decrease
in 5’ fragments paired with an increase in 3’ fragments over time. Since excitatory neuron formation
increases between D35 and D70, 3’ fragments may be associated with these neurons. tRNA-Arg-TCT-2
and tRNA-Ser-GCT-5 tDRs form a unique group that has a preference for higher expression in D0 and D70
relative to D14 and D35, which may suggest lower expression of these 3’ tDRs in neural progenitor cells
(Figure S1.3E).

1.2.4 Multidimensional analysis of tDRs facilitates the discovery of complex relation-

ships

To assess the full diversity of unique tRNA expression, clustering and classification of fragment
profiles split across different time points was performed. This was done aggregating read coverage,
read-starts/ends, deletions and misincorporation information (suggesting modified positions) and clus-
tering the combined dataset using UMAP (Uniform Manifold Approximation and Projection) followed
by classification via hdbscan (McInnes, Healy, and Astels 2017; McInnes, Healy, and Melville 2018). The
resulting clusters were then manually annotated into neural and stem categories as described in the
methods. This revealed a highly complex, diverse set of tRNAs, each comprising multiple isotypes, and
neural-stem expression levels with no bias in time point observed (Figure 1.4A). Three major groups of
HDBScan clusters were identified (consisting of 21 specific subgroups) labeled A (stem), B (neural), and C
(neutral) as well as the hdbscan unannotated category (U) for tRNAs that were too hard to class into a
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single cluster. Spatially clusters tended to correlate with isotype and neural/stem favored tRNAs with no
observable bias in time point. We next explored the relationship between isotype and cluster to see if
genomic traits could also be correlated to tDR expression.
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Figure 1.4
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Figure 1.4: tRNA-seq allows for clustering of tDRs into functional groups

(A) UMAP projections of tRNA sequencing profiles using unique coverage, 3’ and 5’ read ends (with
consideration to the tRNA structure), deletions, andmismatched bases at position after hdbscan clustering
and manual annotation into stem (A), neural (B), neutral (C), and unannotated (U) classes. Projections of
isotype, neural/stem tRNAs, and time point masked by U class are also shown. (B) Dot plot representation
of the hdbscan clusters with dot size correlating to proportion of isotype found in each cluster and the
color based on the mean neural stem score (as defined in methods) with vertical lines at the top and
bottom 25th percentiles defining the groups.
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The clusters were often dominated by specific tRNA isotypes with several clusters containing
greater than 50% of specific isotypes: A1 (Glu), A2 (Gly), A3 (Gln), C1 (Lys), C2 (Asp), C3 (Leu), C5 (Val), C6
(His), C7 (Gly), C8 (Ser), C12 (Leu), C14 (Arg), B1 (Ala), B2 (Arg), and B3 (Ala) (Figure 1.4B). The clusters
often have distinct isotype (Figure S1.4A), AlkB treatment (Figure S1.4B), and neural expression patterns
(Figure S1.4D) defined by their sequencing characteristics making the uniquely identifiable. Cluster
C10 and C11 are exceptions to this both expressing very diverse isotype compositions and seeming to
correlate more closely with the unannotated (U) category. This can likely be explained by low mean read
coverage in clusters C10 and C11 relative to other clusters making them hard to annotate (Table S1.3). AlkB
conditions were generally diverse with a slight preference for AlkB+ conditions in clusters with higher
neural expression. We also checked subtle genomic features of tRNAs such as tRNAscanSE covariance,
HMM, and secondary structure scores (Infernal - Inference of RNA Alignments) against the clusters
and found that scores tended to match within clusters (Figure S1.4C). These scores measure how much
each individual tRNA sequence matches its canonical isotype which matches what we observed with
individual isotypes defining certain clusters. This suggests that differential expression and tDR formation
are influenced by these genomic features but most likely they are not the only driving factor (Chan, Lin,
et al. 2019; Nawrocki and Sean R. Eddy 2013).

Looking further into the relationship between isotype and cluster, we looked at Arg specific
tDRs. Disregarding U, C10, and C11 (due to aforementioned indiscernibility) Arg tDRsmainly are split across
B1, B2, C4, and C14 clusters all residing in the same spatial area as one another (Figure S1.4D). Interestingly
Arg-TCT-4 shows up in both B1 (neural) and C10 (neutral) clusters with D70 Arg-TCT-4 appearing in B1.
This is most likely due to the extreme change in expression and coverage after neural differentiation
with lower read coverage harder to discern. This indicates that other “neutral” tDRs appearing in C
clusters may also be neurally associated but can be hard to discern with low read coverage. B1 clusters
also contain Arg-TCG-1 and Arg-TCG-5 tDRs, with B2 clusters comprised almost entirely of Arg-CCT tDRs,
all tRNAs that increase moderately over differentiation. Interestingly Arg-TCT-1 (which also increases
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across neural differentiation) appears in C10 (neutral) and U (unannotated) clusters with D70 appearing
in C10, this mimics the change over the time course seen in Arg-TCT-4 albeit from U to C10 rather than
C10 to B1. While both Arg-TCT-1 and Arg-TCT-4 increase in neural expression, the former has less of an
expression increase than the later, and they express entirely different fragments. This revealed that Arg
tDR expression as a function of neural expression is correlated to specific tRNA transcripts rather than
specific isotypes and subtle changes to genomic sequence correlate with broad effects in the type and
expression levels of tDRs.

1.2.5 Sequence characteristics of human neural tDR-generating tRNAs are conserved

across multiple amino groups

To further understand what causes specific neural tDR shape and expression we looked at tRNA
modifications and their enzymes and how they correlated with underlying characteristics of the parent
tRNA. Modification data from Zhang et al. 2024 was taken and projected onto the clusters showing that
specific modifications such as acp3U20, m3C20, and m1I37 correlate strongly with just neural clusters (B),
and acp3U20a, m2,2G26, m3C32, and I34 correlate with neural and neutral (B and C) clusters (Figure 1.5A).
Inosine (at position 37) has been associated with intellectual disabilities, and microcephaly and is added
by ADAT3 in humans. m2,2G (a modification found at position 26 in Arg-TCT-4) has been associated
with intellectual disabilities and microcephaly via TRMT1 (Crécy-Lagard et al. 2019; Chujo and Tomizawa
2021). m1A58 is a ubiquitous modification found in nearly all tRNAs and is consistently expressed across
all groups. While not present in our modification data PUS3 and NSUN2 are known to play a roles in
pseudouridylation and m5C addition at positions 39 and 40, respectively, and are both tied to intellectual
development (J. Chen and Patton 2000; Shaheen et al. 2016; Tuorto et al. 2012). We found that PUS3
and NSUN2 increased while ADAT3 decreased over a five week time course of human embryonic stem
cell derived cortical organoids using data from Fiddes, Lodewijk, et al. 2018 (Figure S1.4E).
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Figure 1.5
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Figure 1.5: Neural tDRs reveal sequence-specific characteristics

(A) Dot plot representation of the hdbscan clusters with dot size correlating to proportion of modification
at position found in each cluster and the color based on themean neural stem score (as defined inmethods)
with vertical lines at the top and bottom 25th percentiles defining the groups. (B) The percentage of 3’
and 5’ read ends of Arg-TCT-1 and Arg-TCT-4 tDRs plotted against representative fragment profile curves.
Positions with greater than 10% of relative normalized fragment readstarts/readends indicated with
vertical dotted lines. (C) Schematic of Arg-TCT-4 with tertiary folding positions connected and Arg-TCT-1
divergence in sequence in bold. (D) Sequence map of Arg-TCT tRNAs and top 15 most neural expressed
tDRs.
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Sequence alignments of the tRNAs in the neural clusters (B) revealed conservation of tRNA
sequence at positions 26, 30, 32, and 40 (Figure S1.5A). This includes bases in close proximity to the
cleavage at position 40. Finally, we wanted to see if sequence motifs (relative to background frequency)
played a role in clusters as they have potential to affect tertiary structure formation. Motifs such as GGGG
(1-4, 68-71), and CCCC (2-5, 60-63) and GCC were observed to be more common in neural (B) clusters
(Figure S1.5B). The motif GCAT (26-29) also indicates a higher frequency of of G at position 26 which
most likely corresponds to the higher frequency of m2,2G26 found in the neural (B) clusters. ATG (28-30),
GTA (39-41) and GCC (39-41 in neural, 40-42 in stem) indicated that the G-C pair between 30 and 40
occurs more frequently in neural groups but a G is more likely at position 40 in stem. With neutral (C)
and unannotated (U) clusters comprising the majority of tRNAs found in the clustering, relative motif
frequency was much closer to expected background.

Finally we also looked at the internal arrangement of the tDRs for both Arg-TCT-1 and Arg-TCT-4
by looking at the ratio of 3’ read ends (in relation to the tRNA structure) to 5’ read ends (Figure 1.5B).
In Arg-TCT-4 read starts are grouped around position 39 and 40 indicating an association with having
a C rather than U base changes at that position as found in other Arg-TCT isodecoders. Arg-TCT has
five distinct genomic tRNA sequences that can exist for that isodecoder, with Arg-TCT-4 having a unique
sequence relative to the others containing a 20b position G as well as 2T, 20aC, 26G, 27C, 40C, 43G, 71A,
and 72T (Figure 1.5C). Further when we compared Arg-TCT-4 against the 15 top neural expressed tDRs we
found conservation of C at position in 40 in all but Ala-TGC-3 and Ala-TGC-4 (Figure 1.5D). Interestingly
Ala-TGC-3/4 both express more in D0 relative to D14 before increasing in D35 and D70 suggesting that
they are active at different neural timepoints and might be part of a different neural expression pathway.

1.3 Discussion

tRNA sequencing data on human pluripotent stem cells and cerebral cortex organoids derived
from them has yielded a wealth of previously unknown information. In particular, specific mature tRNAs,
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as well as tDRs derived from them, show striking changes in abundance during early human corticogenesis.
We have identified many unique tRNAs/tDRs that change their expression profile and have categorized
them. Further, the tDRs have been grouped together to assist in finding parallel traits shared between
neural tDRs. In doing so we are able to combine both RNA sequencing features as well as genomic
trait loci characteristics to provide a much better understanding of tRNA/tDRs associated with cortical
neurogenesis.

tRNA-Arg-TCT-4 has been previously identified in mouse as a neural specific tRNA with defects
leading to truncal ataxia and severe neurodegeneration when position 50 has a C to T mutation (Ishimura
et al. 2014), here we show that the Arg-TCT-4 derived tDRs abundance increases across early human
neurogenesis as well. This profile of brain organoids has also allowed for the discovery of new tDRs that
are induced during neural differentiation, such as those from SeC-TCA-1 and Ala-AGC-8. Further, while
most studies focus on single tRNAs/tDRs, using ARM-seq combined with cerebral brain organoids has
allowed for the discovery of many tDRs with dynamic expression in early human embryonic development.
These fragments each have unique breakpoints in their read coverage as well, indicative of a unique
modification profile on a tRNA by tRNA basis. The top hits for neural specific tDRs seemed to share a
coverage profile similar to one another, suggesting they may be generated by a common mechanism.

The profiles of these tDRs tended to fall into similar patterns that could be visually grouped
together. For example, some of the top neural favored tDRs (Arg-TCT-4 and Ala-AGC-8) each have a 3’
fragmentation pattern that is visually unique, reflecting a combination of associated sequence factors
that allows for the fragments to be classified into distinct clusters that are proximal to one another (B1
and C13). This suggests that advanced sequence characteristics beyond unique read coverage drive the
grouping of neural expressed tDRs. Pairing this information with known regulatory tDRs can be further
used to understand the relationship between unique fragment profiles and tRNA regulation.

While this approachwas used in the context of human cerebral cortex differentiation, identifying
and classifying tDRs can be used in a broader context. Understanding the relationship of tDRs in a more
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expansive way than 3’ and 5’ derived can lead to a better understanding of tDR regulation overall. For
example, the abundance of Arg-TCT-4 and Arg-TCT-1 both increase over neural development, however,
Arg-TCT-4’s associated 3’ tDR spans from the anticodon to the end, whereas the one in Arg-TCT-1 starts in
the D-loop instead. Arg-TCT-4 is also expressed at 1/10th the level of Arg-TCT-1, despite having a known
regulatory role in the brain. Taken in conjunction, it is suggestive that the uniqueness of the Arg-TCT-4
fragment and not just the abundance of read coverage in mature neurons are what defines Arg-TCT-4
as a neural specific tDR regulator. As such tDRs roles in neurological development may go beyond just
upregulation of expression across neural differentiation, and instead be a combination of genomic and
RNA features (such as sequence motif and modifications) that play greater roles in regulation rather than
translation.

1.4 Methods

1.4.1 Organoid methods

HumanGM12878-c305 inducedpluripotent stemcells (iPSCs)were generated from theGM12878
lymphoblastoid cell line (Coriell) using a proprietary episomal vector-based reprogramming method by
Cellular Dynamics International (fujifilmcdi.com) and were confirmed to have a normal karyotype using
the KaryoStat Karyotyping service (ThermoFisher). Undifferentiated cells were grown in feeder-free con-
ditions on matrigel (Corning) with mTeSR Plus (Stemcell Technologies) or on vitronectin with Essential-8
Flex media (ThermoFisher). Cerebral cortex organoids were generated using a protocol adapted from
Kadoshima et al. 2013. 10,000 cells per embryoid body were aggregated using AggreWell-800 plates
in AggreWell media (Stemcell Technologies) supplemented with 10 uM Y-27632 rock inhibitor (Stemcell
Technologies), and transferred to low attachment 6-well dishes (Corning) on day 2. These methods
supplemented the respective media with 10 uM SB431542 (SB, Millipore), and 1 uM IWR-1 (Millipore) for
the first 14 days of differentiation. The media was then changed to Sasai II media (DMEM/F12 + glutamax
supplemented with N2) on day 14. At this point, organoids were supplemented with 10ng/mL beta
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fibroblast growth factor (bFGF) and 10ng/mL epidermal growth factor (EGF) to improve survival in Sasai II
media. On day 18 the organoids were transferred to an in-incubator orbital shaker (100 rpm) where they
remained for the duration of the experiment. After day 35, all cultures were grown in Sasai III media
(Sasai II media supplemented with 50 mL of FBS (Hyclone)) supplemented with 10 ng/mL brain-derived
neurotrophic factor (BDNF) and 10 ng/mL of neurotrophin-3 (NT-3) (Kindberg et al. 2014).

1.4.2 Immunofluorescence Microscopy

Organoids were collected and fixed in 4% Paraformaldehyde (PFA) (ThermoFisher), washed 3x
with PBS, then incubated in 500µL of 30% Sucrose for 2-3 days at 4◦C until they began to float. They
were then embedded in square cryomolds with Tissue-Tek O.C.T. Compound (Sakura) and placed at -80◦C
for storage. They were then sectioned to 18 µm using a cryostat (Leica Biosystems) directly onto glass
slides. After allowing samples to come to room temperature, 3 washes of 35 minutes in 1X PBS were
performed. The sections were then incubated in a blocking solution of 10% BSA for 2 hours. The sections
were then incubated in primary antibodies and blocking solution at 1:1000 dilution overnight at 4◦C
(Supp. Table 4). They were then washed 3 times for 30 minutes and incubated in secondary antibodies
for 2 hours at room temperature. They were then washed 3 times for 30 minutes in PBS and sealed
with ProLong™ Gold Antifade Mountant with DAPI (ThermoFisher Scientific # P36935). Microscopy was
performed using a Zeiss Axio Imager and Zen Software suite, with processing of the images performed
using Fiji (Schindelin et al. 2012).

1.4.3 RNA Isolation

Isolation of total RNA from cerebral cortical organoids and stem cells was performed using
Direct-Zol RNA MiniPrep Kit (Zymo Research) with TRI Reagent (Molecular Research Center, Inc.). Since a
single organoid would yield far less total RNA, approximately 3-8 organoids would be pooled in Trizol
depending on organoid size for each sample replicate. The manufacturer’s recommended volume of TRI
Reagent was added to each sample (∼1 mL). For RNA purification of stem cells, Trizol was directly added
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to cell culture plates on ice, scraped, and homogenized via pipetting. Organoids in Trizol were broken
down via pipetting inside a 1mL Eppendorf tube on ice via a syringe. All total RNA was processed using a
MirVana miRNA Isolation Kit (Life Technologies), according to the manufacturer’s instructions, to select
for RNA <200 nt. This was followed by an RNA Clean and Concentrate-25 (Zymo Research).

Samples were divided into plus-AlkB experimental treatment and minus-AlkB control as previ-
ously described in ARM-seq methods (Cozen et al. 2015). AlkB sample treatment was used to effectively
increase RT processivity of hyper-modified tRNA/tDRs while also removing sequencing bias favoring
hypo-modified tRNA/tDRs (Figure S1.1A). For example, the proportion of ARM-seq tRNA reads more than
doubles (8.9% to 21.8%) when comparing untreated versus AlkB-treated samples. This was followed by a
phenol-chloroform cleanup treatment. RNA samples were then used for library preparations.

1.4.4 ARM-seq library preparation

ARM-seq libraries were constructed as described previously (Cozen et al. 2015) utilizing the
NEBNext Multiplex Small RNA Library Prep Set (New England Biolabs). Treated RNA (Minus- or Plus-
AlkB treatment; 100ng total small RNA) was used as input into the library preparation, and ¼ reaction
volume of all reagents were used with the NEBNext kit. PCR-amplified libraries were purified using a
phenol-chloroform extraction cleanup and then size-selected (140-250 nts) on a 6% non-denaturing
TBE-acrylamide gel to remove unwanted primer dimer products. Libraries were eluted from sliced gel
pieces using Gel Elution Buffer (New England Biolabs) and precipitated using 0.3 M NaOAc, 80% Ethanol,
and 1 µL of Linear Acrylamide (supplied in NEBNext Kit) at final concentration. Samples were left in -80◦C
freezer overnight to precipitate. Precipitated libraries were then pelleted, washed twice in 80% Ethanol,
and resuspended in pure H2O. Libraries were then quantified using NanoDrop and Agilent DNA High
Sensitivity kit.
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1.4.5 RNA sequencing and differential expression analysis

Libraries prepared for ARM-seq were sequenced using Illumina MiSeq. 75-nt pair-ended reads
were produced as FASTQ files that were analyzed using tRNA Analysis of eXpression (tRAX) (Holmes
et al. 2022). Sequence adapters were trimmed, and pair-ended reads were merged using the tool
trimadapters.py in tRAX. The reference database for tRAXwas built with high-confidence tRNA predictions
retrieved from the Genome tRNA Database (Chan and Todd M. Lowe 2016) and the sequences of human
genome assembly GRCh38. Other gene annotations were obtained from Ensembl release 102. Biological
replicates of organoids at each time point were grouped as sample replicates for tRAX inputs and different
time points were marked as pairs for differential expression comparison for each sequencing type. For
ARM-seq samples, default options of tRAX were used. To check for biases in organoid time points,
total normalized reads (Figure S1.1A,B) were compared, showing no notable differences in abundance
between time points. Additionally, we found the relative levels of tRNAs were consistent between sample
groups, with no significant difference in total reads found between samples within AlkB treatment groups
(Figure S1.6A,B). AlkB treatment significantly increases tRNA read counts relative to overall RNA reads
(Figure S1.1B). ARM-seq also preferentially picks up more tRNA fragments and their read counts relative
to full-length tRNAs (Figure S1.1C). In order to standardize tRNA coverage profiles, each series of reads
was aligned to conserved tRNA positions (Sprinzl et al. 1996), dropping gap and extension positions.
All visualizations were created using tRNAgraph (https://github.com/alba1735/tRNAgraph) and custom
Python scripts.

1.4.6 tRNA Classification Analysis

Sequencing output data from tRAX was used for tDR classification. Deseq2 normalized read
counts were combined into an AnnData object and were arranged by coverage-associated data across
human GRCh38 tRNAs (Virshup et al. 2021; Love, Huber, and Anders 2014). These were comprised of
unique coverage (normalized read count with reads that are uniquely mapped to feature at the specific

30



position), 3’ and 5’ read ends (with consideration to the tRNA structure), deletions (number of reads that
have a gap at the specific position), and mismatched bases per position (normalized read count that does
not match the reference base at specific position). Unique reads were chosen over total reads as this
provided more specific coverage changes in the clusters and better tRNA uniformity therein. Thus, each
cluster portrays the coverage makeup of component tDRs and gives a fragment profile in addition to other
underlying sequence features. The data was further preprocessed by removing read counts less than 20,
regressing out the number of reads, and scaling and centering the data. Dimensionality reduction was
performed using Uniform Manifold Approximation and Projection (UMAP) and clustering using hdbscan
(McInnes, Healy, and Astels 2017; McInnes, Healy, and Melville 2018). Classifying tRNAs into neural,
neutral, and stem categories was based on the log2 fold-changes between day 0 and day 70 time points
split into the top and bottom 20th percentiles of all tRNAs, after removing reads with low coverage and
p-value >0.05. log2 fold-change was normalized between -1 and 1 with each tRNA transcript and assigned
a “neural stem score” based on its relative expression between the differentiated and undifferentiated
timepoints. To determine if a cluster was neural or stem specific, the mean of the “neural stem scores”
was taken for each cluster, and the top and bottom 25 percentiles correlated to neural (B) and stem (A)
clusters, respectively. Clusters from neither group were labeled as neutral (C) and unannotated (U) results
from hdbscan, their own group. Sequence logos were generated using Logomaker (Tareen and Kinney
2020) by using the mean normalized read counts per position and converting them into information
scores (T. D. Schneider and Stephens 1990).
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Chapter 2

Telomere-to-telomere Ape Assemblies Reveal

Novel tRNAs and Expanded Evolutionary

Relationships in The Hominid Lineage
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2.1 Background

tRNAs are ubiquitous RNAmolecules essential for all life forms, often only viewed in the context
of their roles in translation. Despite this, recent tRNA research has focused on roles outside of translation,
such as in mammalian gene regulatory function (Avcilar-Kucukgoze and Kashina 2020; G. Li et al. 2022)
and disease (Chujo and Tomizawa 2021; Morisaki et al. 2021; Qin et al. 2020; Nie et al. 2019; Sun et al.
2018). Despite the importance of understanding these regulatory mechanisms, most eukaryote tRNA
research focuses on the yeast Saccharomyces cerevisiae, an organism with only 55 unique mature tRNA
sequences (encoded by approximately 275 gene loci) (Phizicky and Hopper 2010). In contrast to single-
celled organisms, most mammalian genomes contain a surprisingly large number of unique sequences
(∼400-600) due to an expansion of isodecoder diversity (tRNAs with the same anticodon but different
sequences). For instance, after discounting likely pseudogenes, the human GRCh38/hg38 assembly has
252 unique tRNA gene sequences, five times as many as yeast (Chan and ToddM. Lowe 2016). Despite the
wide variety of tRNAs found in humans, our understanding of their relationship with other ape primates
remains incomplete and is currently limited to Pongo abelii and Pan troglodytes.

To identify the tRNA genes in a new genome assembly, tRNAs are found using tRNAscan-SE and
curated in the tRNA database gtRNAdb using a standardized nomenclature (Chan, Lin, et al. 2019; Chan
and Todd M. Lowe 2016). This standard nomenclature makes tRNAs easier to understand and discuss
in human-readable language, unlike NCBI’s RefSeq automated naming systems, by giving information
about amino acid (isotype), anticodon (isoacceptor), unique sequence (isodecoder), and genomic copy
number. Additionally, this system divides tRNAs into what is known as the high-confidence set of tRNAs
predicted to actively be transcribed as tRNAs and the total set, which includes likely pseudogenes and
other tRNA-like genes. This is done by attributing scores to tRNA genes based on their match to the
archetypical tRNA for a domain of life, their predicted secondary structure, and their match against
all possible isotypes, then filtering based on these scores with specific cutoffs. After filtering, these
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tRNAs in the high confidence set are predicted to be the most likely involved in ribosomal translation,
but additional tools such as tRNA Activity Predictor (tRAP) can further refine this list depending on the
circumstances (Thornlow et al. 2019). Additionally, while the high-confidence set is a good guideline
for translational activity, evidence for alternative regulatory roles means that the tRNAs found in the
total set are also important. Furthermore, tRNAs serve roles in genomic architecture and can mark
regions of relative instability and evolution as they often move via the translocation of tRNA clusters
(Bermudez-Santana et al. 2010; Guimarães et al. 2021; Parisien, X. Wang, and Pan 2013).

In older human assemblies GRCh37/hg19, 416 tRNA genomic loci were found in the high
confidence set, which was later increased to 429 with GRCh38/hg38 (Chan, Lin, et al. 2019). This number
of tRNAs was relatively stable, and most of the changes were attributed to sequencing errors and a
better reference assembly. Additionally, other tRNA-like predictions, such as possible pseudogenes,
increased from 177 to 187, with many falling into a neural expansion region (NER) comprised of the 1q21
(1q21.1/2) and 1p11 regions of chromosome 1, a notoriously dynamic and highly repetitive human-primate
expansion region caused by many recent duplication-deletion events derived from 1p11 onto 1q21 (Fiddes,
Lodewijk, et al. 2018). Despite having a high copy number, many of these tRNA pseudogenes contain short
interspersed nuclear elements (SINEs) and retain promoter elements, signifying evolutionary conservation
for translational alternative roles (Palazzo and Lee 2015; Kutter et al. 2011). Some tRNAs appear to have
tissue-specific transcription or are not transcribed despite having high sequence conservation (Kundaje
et al. 2015). Recent tools have been made to predict the activity of tRNAs (such as tRAP). However, they
rely on epigenetic information from large-scale histone Chromatin Immunoprecipitation data, often
missing in the repetitive regions where many tRNA genes are located (Thornlow et al. 2019).

tRNAs are widely associated with their critical roles in translation, and so typically, tRNA gene
copy number has been matched to codon use (Duret 2000; Novoa et al. 2012; Pechmann and Frydman
2013). Thus, the link between translation efficiency and codon mismatching is highly correlated with the
tRNA gene pool and can be affected by various mechanisms, such as stress response and cell-cycle growth
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(Begley et al. 2007; Berg and Kurland 1997; Letzring, Dean, and Grayhack 2010; Patil et al. 2012; Plotkin
and Kudla 2011; Xu et al. 2013). Due to these constraints, high tRNA gene variability is not expected, and
what variability is observed is often in tRNA-derived SINEs, not in essential “core” tRNAs. In the cases
where high copy number variation (CNV) of tRNA genes have been studied, the analysis was constrained
to closely related species with smaller tRNA gene sets relative to Human, showing alternative codon
usage or wobble-dependent pairing occurs, which has various effects on translational stability (Higgs and
Ran 2008; Iben and Maraia 2012).

A few studies have focused on tRNA gene CNV in Human, observing variable repeats in the
1q23.3 region (more than observed in hg19) and deletion of a tRNA gene on Chr 11 (Iben and Maraia
2014). Another study found this same region of tandem repeats of tRNA genes varying between 9 to 43
repeat units across mammals but focused on its function as a genomic boundary element (Darrow and
Chadwick 2014). Due to the limited quality of hg19/hg38 genome assemblies in the vicinity of tandem
repeats, however, this region has collapsed to five repeats in the UCSC Genome Browser, and these
studies focused on boundary elements rather than specific tRNA sequence variation within this region.
While predictions were made about the activity states of tRNAs in these repetitive regions, the lack
of granular observation of the individual tRNAs in the tandem repeats and incomplete chromatin data
leaves an open question over what is and isn’t transcriptionally active.

Although the updated hg38 human reference genomes enhanced our comprehension of certain
specific genomic regions, it did not encompass all tRNA genomic information because numerous tRNAs
were still located on unplaced scaffolds and hard-to-sequence centromeric regions (Chaisson et al.
2015; V. A. Schneider et al. 2017). This was recently solved with the release of CHM13v2.0/hs1 by the
Telomere-to-Telomere (T2T) Consortium, which addressed the remaining unresolved regions of the
genome representing a complete 3.055 billion-base pair gapless assembly (Nurk et al. 2022). Notably,
the completed regions include segmental duplication regions that have expanded across the primate
lineage, such as the NER and 1q23.3. The NER is also interesting in the context of T2T assembly as it
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harbors the NOTCH2-N-terminus-like (N2NL) family (A/B/C/R) and neuroblastoma breaking-point family
(NBPF) genes, which are essential in human-primate brain evolution and has been notoriously difficult to
assemble because of the many segmental duplications in this region (Fiddes, Pollen, et al. 2019).

The new human T2T genome (hs1) provides a fresh perspective on human tRNA genes, diverging
significantly from earlier assemblies (hg19/hg38). Expanding upon the human telomere-to-telomere
(T2T) project, recent genome assemblies have employed comprehensive end-to-end sequencing in ape
primates, giving a greater evolutionary context (Makova et al. 2023). By leveraging these ape genomes, we
can fully reconstruct the intricate tRNA gene landscape across hominid evolution and gain deeper insights
into the interplay between tRNA gene conservation and neural expansion. Despite limited attention to
tRNA copy number variation and diversity within Eukaryotes, our findings unveil a multifaceted landscape
of tRNA gene copy number variation, shedding light on its significance in human-primate neural gene
expansion.

2.2 Results

2.2.1 Nearly 100 additional tRNA gene loci in newer Human Genome Assemblies

After running tRNAscan-SE on the new human T2T-CHM13v2.0(hs1) genome assembly, we ob-
served almost 100 additional tRNA gene loci when compared to the two prior assemblies GRCh38(hg38)/
GRCh37(hg19) (Table 2.1). In the high confidence set, this number increases from 429 to 521 (an increase
of 92); in the total set, this number increases from 619 to 715 (an increase of 96). We next examined if
any tRNA genes were changed in sequence in the new assembly. While most tRNAs maintained the same
sequence, a few notable examples changed between assembly versions.

tRNA sequence divergence occurs in 56 syntenic tRNA genes when compared against those
located at the same loci in the previous assembly (hg38) (Table S2.1). tRNA-Ser-GCT-4-4 (previously
tRNA-Ser-GCT-6-1) is one such example where two base changes in the stem of the tRNA at positions 2
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Genome Assembly High Confidence Total Set

hg19 416 596
hg38 429 619
hs1 521 715

Table 2.1: Human tRNA Counts
Human hg19, hg38, and hs1 tRNA counts.

and 3 increase the tRNAs tRNAscan-SE score (based on the Eukaryotic domain covariance model) from
71.6 to 88.4 (Figure 2.1A). A score above 50 is typically associated with the high-confidence set with higher
relative scores conforming more closely to an archetypical translationally active tRNA. This change is
associated with increased stability of the tRNA due to an A to C at position 3, allowing binding with G on
the opposing side of the acceptor stem. Furthermore, this tRNA switches from being a unique genomic
loci to becoming identical to several other Ser-GCT genes. tRNA-Ala-AGC-25-1 and tRNA-Ser-AGA-2-3 are
other unique examples in that they both contain changes in position 35 of their anticodons changing
from A to G and G to A, respectively. In the case of Ala-AGC, this causes an identity switch from Val-AAC
on the previous assembly (hg38) while maintaining a high enough set of tRNAscan-SE scores to remain a
high confidence set tRNA. tRNA-Ser-AGA-2-3 is particularly interesting because, in addition to changing
its anticodon from Ser-AGA to Phe-AAA, its relative tRNA structure maintains identity elements of Ser,
causing a large isotype prediction disagreement (IPD) of -134.60, the difference between the highest
isotype score and the isotype score with the detected anticodon. This indicates a disagreement between
the canonical predicted sequence of the hs1 tRNA gene loci being a Phe-AAA. This suggests it structurally
looks more similar to a Ser-AGA despite the reflected anticodon (Phe-AAA).
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Figure 2.1: Human GRCh38/hg38 and CHM13v2.0/hs1 tRNA Changes

(A) Schematic of tRNAs mapped to the same genomic loci but have changes in their sequence between
hg38 and hs1 assemblies of the human genome, with new base pair change/s shown in orange. (B-
D) Bar plots showing the relative counts of tRNAs found across (B) isotype, (C) chromosome, and (D)
chromosome 1 cytoband locations in hg38 (yellow) and hs1 (blue). (E) Schematic representation of human
1q23.3 between hs1 and hg38/hg19 with different colored bars representing tRNA regions defined as
tRNA genomic loci bound by protein-coding genes, with tRNA repeat unit region and gene duplications
highlighted in black. (F) Schematic representation of the five tRNA genomic loci found in each 1q23.3 tRNA
repeat cluster, directionality shown in white and spaced to scale. (G) Sequence alignment of TRU Gly-GCC
consensus, tRNA-Gly-GCC-2-1 (proximal to FCGR2A), and tRX-Cys-NNN-3-1/2 (proximal to FCGR3B), with
solid and hollow arrows to distinguish positions of changes between the tRNA gene sequences.
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The relative concentration of DNA variants between hs1 and hg38 shows that the mutation
rate could be higher in the anticodon stem and stems relative to D/T-arms of the tRNA, possibly due to
higher conservation of the A and B boxes (tRNA promoter region) (Figure S2.1A). DNA variants are more
common in Ala (9), Lys (6), and Cys (5) isotypes. Secondary structure scores (predicting the tRNA’s ability
to form internal pairing structure) show that about half of the 56 tRNAs with alternate bases have score
increases and half have score decreases with the most extreme change∼9-10 in either direction. This
typically matches whether a base change in a stem/loop will facilitate better/worse binding and create a
more/less canonical tRNA structure. In addition to looking at tRNA variants between the two assemblies,
we next wanted to determine what was causing the large increase in tRNA genes.

Asp, Glu, Gly, and Leu isotypes had the highest increase in gene copy number with gains of
17, 20, 37, and 18 loci, respectively (Figure 2.1B-D). When broken down by isoacceptors, Gly seemed to
split evenly between GCC (17) and TCC (17), with CCC (3) accounting for only a minor portion of the pool’s
increase (Figure S2.1B). Asp only had changes in its major isoacceptor (GTC), and Glu had the majority of
changes in CTC (17) rather than TTC (3). Interestingly, the tRNA isotype Leu has the most diverse set of
possible anticodons in Humans. Yet, nearly all loci increases were found in CAG (17), with a single other
change in CAA. Since a specific set of tRNAs was increasing rather than a random distribution, which
would be expected if only caused by SNPs and population variance, we wanted to determine where these
increases occurred.

Looking at tRNA loci on a chromosome basis, we found that chromosome 1 had 94 additional
tRNA loci, accounting for 98% of the total additional tRNAs in hs1 (Figure 2.1C). On hg38, chromosome 6
contained most tRNA genes followed by chromosome 1; however, this no longer seems to be the case
with the marked increase in chromosome 1 tRNA genes. Interestingly, the highest number of variants
was found on chromosome 6 (23 out of 56) despite only having one additional tRNA in hs1 (Figure S2.1A).
We then determined a large increase in Chromosome 1 and localized to the 1q21 and 1q23.3 regions, with
1q23.3 accounting for the greatest tRNA gene increase by far (Figure 2.1D).
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The high resolution of the telomere-to-telomere assembly helped to resolve sequences and
scaffolds that were unclear within the 1q21 region in previous assemblies. tRNA genes often fall into
proximal clusters on the genome and were defined as tRNA clusters based on continuous regions of
tRNA genes bound by protein-coding genes. In 1q21, 16 distinct tRNA regions were found in hg38 and hs1
assemblies with two different regions that were inverted in the new assembly relative to the old one
(Figure S2.2A). Since many tRNA genes in this region are found adjacent to either N2NL or NBPF genes
(which share location and sequence), this set of rearrangements shows that the prior understanding of
tRNAs in the region wasn’t fully understood. This is particularly important as over 5% of high-confidence
tRNA genes fall into 1q21 (28/521), but nearly 20% of tRNA pseudogenes and others filtered from the
total set also reside there (37/194). Altogether, just short of 10% of all tRNA genes and pseudogenes fall
within this region in hs1 (as well as in hg38). Many of these tRNA genes were predicted to be inactive on
previous assemblies, hinting at alternative non-translation functions. Interestingly, many protein-coding
genes in these regions have roles in neural developmental and neurogenetic disease (Brunetti-Pierri et al.
2008; Mefford et al. 2008).

tRNA gene loci in 1p36.13 also seem to more than double (6 to 14) relative to hg38. Looking at
the region closely, a series of Asn-GTT, Glu-TTC, Gly-CCC, and Val-CAC are copied and rearranged within
the region, forming semi-repeating units of 2-5 tRNA genes. This series of tRNA gene repeats flank NBPF1
on one end of the tRNA region and CROCC on the other, genes associatedwith neuroblastoma and primary
autosomal recessive microcephaly (Dang and Schiebel 2022; L. Li et al. 2022). Further, 1p36 deletion
syndrome, characterized by developmental delay/intellectual disability and other neurodevelopmental
disorders, is one of the most common human disorders resulting from terminal autosomal deletion
(Radio et al. 2021). Since tRNA copy number seems variable between hs1/hg38, we wanted to look at
other regions of tRNA CNV.

In contrast to 1q21, the 1q23.3 region is more clearly defined and marked by four distinct tRNA
regions in hg19/hg38, with an extra region appearing in hs1. One tRNA region in 1q23.3 has a series of 5
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tRNAs Glu-CTC (-), Gly-TCC(-), Asp-GTC (-), Leu-CAG (+), and Gly-GCC (+) defined as a tRNA repeat unit
(TRU) in variable copy across the genomes (Figure 2.1E,F). In prior assemblies, this repeat unit appeared
5x times, increasing to x22 in hs1 with the same series of 5 tRNAs in all units except on one outside
TRU, which had the first Glu-CTC absent. Segmental duplications (via SEDEF) are predicted at over 99%
similarity for the entire tRNA region, and the expansion of repeat copy number is likely in part due to the
use of ultralong reads during assembly, which were most likely collapsed on older assemblies (Numanagic
et al. 2018; Vollger et al. 2022).

It has been observed that an orthologous relationship between FCGR2A and FCGR3 genes is
adjacent to the 1q23.3 TRU region throughout the primate lineage (Lejeune, Brachet, and Watier 2019).
When looking at the gene evolution of FCGR2A to FCGR3B closely, we discovered that tRNA genes also
got carried along with an Asp-GTC, Gly-GCC, Leu-CAG, Gly-TTC, and Asn-GTT (similar in sequences to the
TRU) being adjacent both FCGR genes. The TRU Gly-GCC has an identical sequence across all 22 repeats
in hs1, with only two base changes compared to the FCGR2A version. Both are in the high-confidence
tRNA set (Figure 2.1G). In contrast, when comparing the FCGR2A Gly-GCC and FCGR3B Cys-GCA tRNA
genes, the tRNAscan-SE model prediction scores are drastically lower, indicating complete degradation
of these tRNA into pseudogenes. This suggests that much more evolutionary constraint is placed on the
tRNA genes in the 1q23.3 TRU region than in the repeats associated with these FCGR genes.

2.2.2 Increased tRNA Diversity is Found in Neural Expansion Regions of Primate

We examined the six new T2T ape assemblies aligned to hs1 in a cactus graph (HAL) to compare
tRNA loci across these closely related species. From proximal to distal to human relation, the included
genomes are Pan troglodytes (Chimpanzee) mPanTro3, Pan paniscus (Bonobo) mPanPan1, Gorilla gorilla
(Gorilla) mGorGor1, Pongo pygmaeus (Bornean orangutan) mPonPyg2, Pongo abelii (Sumatran orangutan)
mPonAbe1, and Symphalangus syndactylus (Siamang gibbon) mSymSyn1. In general, the number of tRNA
genes in both the high confidence and total tRNA gene sets decreased with evolutionary distance from
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hs1, with the expectation being mPonAbe1, which has more tRNA genes than all other primates (Ta-
ble 2.2). Only prior assemblies for Chimpanzee (Pan_tro 3.0), Gorilla (gorGor4), and Sumatran Orangutan
(Susie_PABv2) have prior tRNA gene sets computed on gtRNAdb. In the case of prior assemblies, Sumatran
orangutan also has a higher copy number of tRNA genes relative to gorillas but less than humans or
chimpanzees. Prior Orangutan, Gorilla, and Chimpanzee genomes have many unresolved scaffolds (5299,
40729, and 45510, respectively) across many contigs, suggesting that tRNA gene copy number variation
could be an artifact of poor genome assembly or could indicate that tRNA copy number is dynamic.

Species Current Release High Con. Total Prior Release High Con. Total

Human hs1 521 715 hg38 429 619
Chimpanzee mPanTro3 519 689 Pan_tro 3.0 430 622
Bonobo mPanPan1 498 670 NA
Gorilla mGorGor1 496 679 gorGor4 390 571

Bornean orangutan mPonPyg2 465 650 NA
Sumatran orangutan mPonAbe1 535 721 Susie_PABv2 405 596
Siamang gibbon mSymSyn1 421 656 NA

Table 2.2: Primate tRNA Counts
Primate tRNA counts compared to the prior release.

The primate tRNA genes were aligned to the human tRNA genes by chromosomes and found
to follow the same trend of having the most tRNAs on Chromosome 1 and 6 (Figure 2.2A). The two most
considerable discrepancies from hs1 seemed to be with tRNA counts on the mPonAbe1 and mSymSyn1
genomes, in particular with mPonAbe1 having more tRNA genes than Human on chr1 in contrast to all
other primates and mSymSyn1 having more tRNA genes on chr15 and 16. When looking at the total tRNA
set, this gap is greatly reduced in mPonAbe1 but grows even larger in mSymSyn; this suggests that at least
on hs1 chr1 has far more tRNA pseudogenes than mPonAbe1 (Figure S2.3). Besides mSymSyn1, primates
had precise mapping of the syntenic chromosomes, with the exception of two chromosome tRNA sets,
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both of which mapped to human chr2 and a known fusion event (Poszewiecka et al. 2022). mSymSyn,
however, had a much more complicated set of tRNA mappings when compared to the other species
with multiple mSymSyn1 chromosome tRNAs mapping to chr1, chr3, chr6, and chr16 and none mapping
to chr21 and chr22 as well as tRNAs on various mSymSyn1 chromosomes mapping to multiple human
chromosomes. This marks a drastic change in tRNA mappings between Gibbon and Orangutan that
are then preserved in the ape lineage to Human. Finally, the amount of tRNAs relative to Human goes
from negative to positive on chromosome 6 between the Gorilla and Chimpanzee/Bonobo branches,
suggesting a tRNA gene translocation event happens between those species.
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Figure 2.2: Primate tRNA Genomic Loci Comparisons

(A) Heatmap of high confidence tRNA counts found in hs1 and aligned primate chromosomes. The top
row in purple shows total tRNA counts in hs1 (human) and the divergence in counts from Human in the
primates from green (increase) to orange (decrease) relative to hs1. The phylogenetic tree is located on
the left and arranged from most to least similar to humans. (B-C) Scaled schematic representation of
the (B) 1q23.3 and (C) Neural Expansion Region aligned across all T2T primates with tRNA genes colored
by isotype. The signature genes of each region are shown in black, and the asterisks next to genomes
denotes that the region is inverted relative to hs1.
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Across the apes, we noticed that a high copy number of tRNA genes fell into 1q23.3 with a region
of variable TRUs bound by the SDHC gene on one side and the FCGR2A gene on the other (Figure 2.2B).
Humans had the second-highest copy number of TRU, with mPonAbe1 containing an additional five
repeats (27 total). In contrast, the other orangutan (mPonPyg2) only had 12 repeats within the region,
only five more copies than the lowest (mSymSyn1 at 7 TRU). With the exception of mSymSyn1, all primates
had the missing Glu-CTC in their first TRU (Figure 2.1F). In addition to the TRUs that expanded, a gene
transfer event also increased the copy number of tRNA genes, as was determined by looking at tRNA
genes adjacent to other genes in the region. The first gene duplication even appears to happen between
the gorilla and chimpanzee/bonobo branch points, with FCGR2A and FCGR3B splitting into FCGR2C and
FCGR3A, respectively, copying a series of 5-6 tRNA genes with them. One more duplication event occurs
between the chimpanzee/bonobo and human lineage, with FCGR2C and FCGR3B becoming FCGR2C-1
and FCGR3B-1. Compared to the prior Human assembly hg38, these additional copies of FCGR2C/FCGR3B
and the carried tRNA genes are absent.

We wanted to assess the changes in tRNAs in the neural expansion region (NER) of 1p11 and
1q21 because of their association with neural genes, changes in copy number, and conservation. Since
this region expanded so much over the ape lineage, it’s hard to pinpoint whether this is actually two
distinct regions in other primates, and it is still being determined if they are split across centromere
as in humans (Figure 2.2C). From mSymSyn1 to hs1, the tRNAs in this region tend to move in parallel
with N2NL and NBPF expansions as they fall upstream and downstream of these genes, similar to the
FCGR adjacent tRNA expansion in 1q23. The region approximately doubles in size when going from
Gibbon to Orangutan, splitting the tRNAs into two larger groups, one containing an extra copy of an
N2NL-pseudogene (precursor to N2NLR on the 1p11 region of human) with associated tRNA gene cluster.
In the jump to Gorilla, this region approximately doubles oncemore, splitting the N2NLR-pseudogene into
2 copies. The evolutionary split between Gorilla and Chimpanzee/Bonobo matches human with three
N2NL-pseudogenes (precursors to A/B/C) carried over into Human. Over this expansion, the number of
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tRNA genes increases from 27 (mSymSyn1) to 32 (hs1) in the NER, but the amount of tRNA-pseudogenes
drastically expands from 29 (mSymSyn1) to 44 (hs1) (Table S2.2). Since gene copy number and tRNA
isotype variance differ drastically in these two regions, we wanted to examine the relationship between
sequence conservation and TRUs more closely.

2.2.3 tRNA Codon Usage Bias Changes Based on Proximal Genes

We suspected that sequence conservation varies between the NER and 1q23.3 regions and
found over 95% identity matching within the 1q23.3 TRUs, with the highest variance found in TRUs
on the region’s edges (Figure 2.3A). We determined this by looking at the average substitution rate
across the TRUs compared to the consensus (most common base per position) and found the Asp-GTC
located in the center had the highest sequence conservation, followed by the Gly-GCC and Leu-CAG.
The Glu-CTC and Gly-TCC are very close to one another (∼250bp) within the TRU and seemed to have
a higher rate of substitutions overall, with hs1, mPanTro3, and mPonAbe1 having an average rate of 1
substitution per sequence between 19-42%, seeming to correlate with the number of TRU copies per
genome. The tRNAscan-SE score of tRNAs in the TRU region also remained consistent, not degrading into
tRNA-pseudogenes (Figure S2.4A). The Leu-CAG to Gly-GCC gap is the largest in the TRU (∼1700bp), with
the last TRU having an extension of∼9250bp (In Human) to the Gly-GCC (closest to FCGR2A), since this
was an entirely different Gly-GCC relative to the Gly-GCC in the TRU it was excluded from the substitution
calculation.
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1-GluCTC 2-GlyTCC 3-AspGTC 4-LeuCAG 5-GlyGCC
tRNAs

19.05% 13.64% 4.55% 9.09% 0.00%

23.53% 0.00% 0.00% 0.00% 0.00%

0.00% 7.14% 0.00% 0.00% 7.69%

0.00% 37.50% 0.00% 0.00% 0.00%

9.09% 0.00% 0.00% 0.00% 0.00%

42.31% 0.00% 0.00% 3.70% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00%

1q23 Repeat Average Number of Substitutions per tRNA Locus
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Figure 2.3: Primate tRNA Genomic Loci Comparisons

(A) Heatmap of the five tRNA genomic loci found in each repeat cluster with the average substitution rate
against the consensus per tRNA sequence across all T2T primates. (B-C) Barplot of the (B) ratio of tRNAs
in the high confidence set vs the total set and (C) the average tRNAscan-SE score in the neural expansion
and the 1q23.3 regions. The line at a score of 50 distinguishes the cutoff for secondary filtering of the
tRNA high confidence set. (D) Codon usage by neural genes and FCGR genes (1q23.3) compared against
the total NCBIRefSeq annotated gene set. Significance by independent t-test shown as ns (p <= 1), * (1e-02
< p <= 5e-02), ** (1e-03 < p <= 1e-02), *** (p <= 1e-03).
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Matching tRNAs by TRU and gene (as in 1q23.3) was far more difficult in the NER due to large
changes and rearrangements from one primate genome to the next. We took tRNA genes by isoacceptor
and analyzed them by which tRNA set they fell into (total vs. high confidence) and their tRNAscan-SE
score (where less than 50 is considered a likely pseudogene) (Figure 2.3B,C; Table 2.3). When tRNAs have
a high score, they are more likely to be predicted as functional tRNA genes used for translation, with a
lower score often associated with alternative roles or an artifact of gene duplication. This is consistent
with what we observed with the tRNAs in the NER, which appeared in the high confidence set nearly half
as often as the total set on average. Additionally, the mean tRNAscan-SE score for tRNA genes in the NER
is on the threshold of secondary filtering, indicating that the abundance of tRNA pseudogenes is much
higher in the NER relative to 1q23.3. In general, tRNA genes seem far less conserved within the NER, with
an example of Leu-TAA and Trp-CCA only appearing in Gorilla as 6 pseudogenes or Arg-CCG fluctuating in
tRNAscan-SE score between primate branches before dissipating in hs1. tRNA pseudogenes for Ser-CGA
and SeC-TCA entirely vanish between mSymSyn1 and hs1. Asn-GTT and Val-CAC appear to increase the
most in humans relative to the other primates, rising from a mean of∼19 to 29 copies (a∼45% increase)
for Asn-GTT and from∼2 to 7 for Val-CAC (Figure S2.4B). The Asn isotype expansion falls in line with Asn
being heavily favored in the 1q21 region, as∼58% (26/45) of Asn isotype from the total set fall into 1q21
as well, suggesting that Asn copy number was favored across the neural expansion.
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Neural Expansion Region (NER)

Assembly High Con. Total High Con.% tRNAscan-SE Score (Avg.)

hs1 32 76 42.10 51.73
mPanTro3 36 70 51.43 55.45
mPanPan1 34 64 53.13 56.49
mGorGor1 31 64 48.44 51.36
mPonPyg2 25 55 45.45 52.72
mPonAbe1 25 58 43.10 51.32
mSymSyn1 27 56 48.21 52.42

1q23.3 TRU Region

Assembly High Con. Total High Con.% tRNAscan-SE Score (Avg.)

hs1 118 128 92.19 70.79
mPanTro3 98 104 94.23 71.74
mPanPan1 77 84 91.67 71.15
mGorGor1 86 88 97.73 73.06
mPonPyg2 66 68 97.06 73.00
mPonAbe1 140 143 97.90 73.49
mSymSyn1 42 44 95.45 73.49

Table 2.3: tRNA Conservation in Chromosome 1 Region
Human hs1 tRNA high confidence to total set ratios and average domain scores for the NER and 1q23.3.
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When comparing the NER and 1q23.3 regions, the secondary structure score is consistently
lower in all primates in the NER (Figure S2.5A). A primary drop in secondary structure scores might
indicate less functional translational efficiency. Pol III has roles in regulating the transcription of tRNA
genes; however, some Pol III regulates Pol II transcription and chromatin binding, altering local chromatin
structures and Pol II transcription rate (Jiang et al. 2022). The degradation in tRNAs between the NER and
1q23.3 regions might have more to do with Pol III as an insulator and the conservation of A/B boxes being
more important for tRNA genesis for translation. Lastly, the assumption that tRNA rates are often tied to
codon use might indicate that the abundance of Arg, Asn, Gly, Glu, and Val in 1p36.13, 1p11, 1q21, and
1q23.3 in neural active gene regions correlates to higher use of those amino acids in neural specific genes.

We thus wanted to test if codon usage was tied to abundance for the NER and 1q23.3 regions
and how well tRNA gene copy number correlates with translational need. In the context of 1q23.3, the
FCGR (Fc gamma receptor) and FCRL (Fc receptor-like) genes in the region encode a receptor for the
Fc portion of immunoglobulin G (or a similar protein, respectively), which play roles in immune cells,
their response, and autoimmune disease susceptibility when dysregulated (X. Li et al. 2009; Lassaunière
and Tiemessen 2021). When comparing the codon usage of these Fc genes against the mean codon
usage of all coding genes, we found no significant difference in Asp, Glu, Gly, and Leu (the TRU tRNAs)
(Figure 2.3D). These immune response genes increase in number over the ape lineage alongside the
increase in TRU copy number (with the exception of mPonAbe1), suggesting that transcription of TRU
tRNAs is not dependent on copy number alone but may be indirectly regulated based on the need for
immune response.

In the context of the NER, we found that the expansion of Asn tRNA genes and pseudogenes
corresponds with a significant decrease in Asn codon usage in neural genes. Since these Asn tRNA genes
are expanded over the hominids, but usage of these codons is decreased in a neural context, we conclude
that they are conserved for a non-translational purpose. Arg, Gly, Glu, and Val are also commonly found
in the NER, with a significant increase in codon usage of Arg and Gly tRNAs in neural genes. This suggests
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that the increase in Arg and Gly is driven by translation needs, whereas the increase and conservation of
Asn pseudogenes is driven by a non-translational role. Due to the contrasting roles of these tRNAs, we
conclude that the dynamics of tRNA genes and codon usage in the NER are shaped by a delicate interplay
between translational requirements and non-translational functions.

2.3 Discussion

The new T2T assembly hs1 has added almost 100 new cytosolic tRNA gene loci to the human
genome and has expanded our understanding of tRNA variability in populations. This has led to a greater
understanding of tRNA repeat regions that were previously collapsed, as well as variability in neural gene
regions containing tRNA genes in chromosome 1 and the equivalent regions in closely related primates.
Furthermore, looking at changes to tRNAs on a base level indicates that tRNAs are dynamically changing
between individuals and that “one reference” genome will not give a complete story about human tRNA
diversity. A greater focus must be placed on the state of tRNA gene copy number, chromosomal location,
and conservation of nucleotides across positions.

tRNAs’ extra-translation roles are often neglected, especially in the context of copy number
variation and nearby gene regulation. It is still not understood if the regulation of genes adjacent to tRNA
genes in 1q23.3 (such as FCGR2A) is dependent on POL III/II regulation pathways and how altering the
tRNA genes to alternate ones, removing the regions entirely or altering the POL III promoters will have
an effect. Further, the necessity of tRNA copy numbers being closely related to translation efficiency
indicates that these regions might dynamically change tRNA gene transcription needed to operate at
various stages of neural development.

Segmental duplication events involving tRNA gene loci are shared across the primate lineage,
and this has changed how we define “static” and “conserved” tRNA gene loci. Segmental duplication
events involving tRNA genes are common in the primate lineage, such as the fusion events of chr6 and
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chr2. Each time, highly concentrated regions of tRNAs are formed, but the translation activity of these
regions is unclear. 1q23.3 has extremely high levels of conservation, whereas the human-primate NER
tends to change drastically. Regardless of the surrounding base conservation, the amount and variety of
tRNA genes in both regions change. It is unclear why some tRNA genes are preferentially conserved over
others.

Tools like tRNA Activity Predictor (tRAP) (Thornlow et al. 2019) estimate similar activity levels
as GRCh38/hg38 in hs1; however, highly duplicated/repetitive regions are uncertain. In regions where
tRNA gene copy number changes, the necessity of new methods or experiments to determine the state
of tRNA activity has never been more important. This can help establish whether tRNAs in these regions
are important translationally, extra-translationally, or both. Additionally, the complicated dual roles of
tRNAs found in the clusters of the NER reveal a need for disentangling tRNA functions based on their
proximity to nearby coding genes.

Finally, by following the evolution of tRNA genes across species, they can be used as anchors in
highly duplicated regions to help explain the recent evolution of important genes such as NOTCH2NL.
These regions are notoriously difficult to understand because of segmental duplication events, dynamic
tRNA copy numbers, and the potential for erroneous assembly. tRNA genes are relatively easy to find
with software, and important databases like gtRNAdb provide context for finding syntenic tRNA genes.
These tRNAs thus can be used as anchor points in the genome to find important evolutionary events and
help distinguish between orthologous genes based on adjacent tRNAs. T2T assemblies going forward will
become more standard, giving a better idea of the “true” makeup of repetitive regions, but in turn, this
opens new questions about the stability of tRNA regions and the evolutionary roles they play.
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2.4 Methods

2.4.1 Data Acquisition

Reference genomes were obtained from the “Telomere-to-Telomere consortium primates
project” via GenBank for the latest assembly releases of mGorGor1, mPanTro3, mPanPan1, mPonAbe1,
mPonPyg2, and mSymSyn1 (Table S2.3) (Makova et al. 2023). CHM13v2.0/hs1 and GRCh38/hg38 reference
genomes were obtained from the UCSC goldenPath. tRNA annotations for GRCh38 were obtained from
gtRNAdb. A HAL alignment of the human and primate genomes was created using CACTUS as part of
the Comparative Genomics Toolkit (Armstrong et al. 2020). Gene annotations were obtained from NCBI
for RefSeq and UCSC by using Liftoff and the Comparative Annotation Toolkit (CAT + Liftoff) on the hg38
annotated gene set (Fiddes, Armstrong, et al. 2018; Shumate and Salzberg 2021). Additionally, BLAST was
used to find possible syntenic genes relative to Human across the primates accounting for gene evolution
and drift and repetitive elements (Altschul et al. 1990; Camacho et al. 2009).

2.4.2 tRNA Analysis and Annotation

tRNAscan-SE 2.0 software was used for tRNA gene identification and annotation within the
assemblies, followed by the EukHighConfidenceFilter to exclude tRNA pseudogenes and tRNA-derived
SINEs (Chan, Lin, et al. 2019). The HAL alignment was used to perform a liftover of tRNA and gene
annotations from one assembly to another, enabling direct comparisons and analysis of tRNA genes
across different coordinate systems via CACTUS (Table S2.4). Output bed files were generated, and tRNA
annotations matched across assemblies using Bedtools (Quinlan and Hall 2010). Syntenic chromosomes
were aligned using the matching assembly hs1 chromosome in the NCBI assembly reports with the
exception of mSymSyn1. These primates’ chromosomes were manually aligned based on the highest
number of syntenic tRNA genes and related adjacent genes.
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2.4.3 Evolutionary Analysis

1q23.3 Region tRNA repeats were annotated by manually viewing the region and aligning them
sequentially as they occur in the genome. The average substitution rate in repeat clusters was calculated
by counting the number of bases per position across the aligned tRNA gene sequences, with the highest
scoring base at each position acting as the consensus. The number of mismatches to the consensus was
then summed across each tRNA in the TRU and divided by the amount of the same isoacceptor tRNA in all
TRU for that species to adjust for variable rates of TRU copies. 1q21 regional analysis was performed using
a combination of NCBI RefSeq, Liftoff+CAT, and BLAST to find syntenic gene regions across the primates,
accounting for gene size, location, and proximal gene annotations. 1q21 tRNA conservation analyses
were performed by creating violin plots of the tRNAs found in the region using their tRNAscan-SE scores.
Codon usage bias was calculated using coding genes (CDS) from NCBI RefSeq for hs1, then compared
against the brain “Tissue enhanced” (At least four-fold higher mRNA level in the brain compared to the
average level in all other tissues) gene annotations for neural genes found in the Human Protein Atlas
(Sjöstedt et al. 2020).

2.4.4 Visualization and Computational Analysis

In addition to the methods described above, analysis was performed in Python using Seaborn,
Pandas, and Numpy Packages via Jupyter Notebooks (Harris et al. 2020; Waskom 2021; Kluyver et al.
2016). TrackHubs were created for the UCSC Genome Browser to facilitate comparisons of complicated
gene regions across species (Nassar et al. 2023). Specific tRNA regions were analyzed using custom
Python scripts and Bedtools to bound tRNA genomic loci between coding genes found in NCBI RefSeq
gene annotation sets for each primate.
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Chapter 3

Computational Tools to Facilitate Multivariate

and multi-species tRNA Analysis
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3.1 Background

In recent years, direct small RNA sequencing has becomemuchmorewidespread and accessible
with specialized tRNA sequencing methods arising, such as OTTR-seq, ARM-seq, and DM-tRNA-seq
(Cozen et al. 2015; Upton et al. 2021; Zheng et al. 2015). These techniques have allowed us to perform
experiments that monitor specific tRNA genes. In particular, this has been tremendously helpful in
accelerating discovery of specific tRNA genes and their roles within specific isotypes, such as in stress-
dependent responses to cells (G. Li et al. 2022). Ensuring consistent use of specific tRNA genes between
experiments has required the use of databases and tRNA identification tools.

As a ubiquitous and diverse class of RNA molecules, tRNAs have colossal diversity in copy
numbers across all species. In higher-level metazoans like Humans, the number of tRNAs can range above
500-700 depending on the particular assembly, but in species such as Saccharomyces cerevisiae, this is
closer to 250-300 copies (Todd M. Lowe and Chan 2016). When considering a species such as Pyrococcus
furiosus (an Archea), this number can be around 46 tRNA genomic loci. This means that tRNAs in more
complex organisms often have multiple redundant copies with identical genomic sequences in various
locations. Despite this, there needs to be more understanding of the complexity of tRNA diversity across
many species and why some tRNAs have higher levels of conservation than others. To facilitate the
discovery of new tRNAs and catalog them, gtRNAdb (the Gemomic tRNA database) and tRNAscan-SE (a
genomic tRNA search tool) were created (Todd M. Lowe and Chan 2016; T. M. Lowe and S. R. Eddy 1997).

tRNAscan-SE names tRNAs as they sequentially appear in the genome and based on their
chromosome. To make these names easier to understand, gtRNAdb adopted a naming convention of
tRNA followed by Isotype followed by Isodecoder, then numbered by highest scoring tRNA within that
isotype that matches the covariance model and the genomic loci copy number. Thus, tRNAs can be
quickly identified by isotype, isodecoder, covariance score, and amount of genomic loci copies. While this
system makes it easier to interpret tRNAs in a human-readable manner, it, unfortunately, makes it more
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difficult to compare tRNAs across species as the highest scoring tRNA in one isotype is not necessarily the
same for another species. For example, Arg-TCT-4-1 in Human hg38/GRCh38 and Mouse mm10/GRCm38
refer to two different tRNAs. This can make it very difficult to annotate syntenic tRNAs across species.

In addition to naming discrepancies, some species have many tRNA-derived SINEs (Short
interspersed nuclear elements) and pseudogenes. For example, in Mice, over 30000 possible tRNA
pseudogenes exist before filtering. tRNA pseudogenes are also poorly understood; sometimes, they
become highly conserved and serve alternative purposes in gene regulation and pre-tRNA processing
(Kaçar, Beier, and Gross 1995; Mabuchi et al. 2004). While gtRNAdb tries to filter and maintain consistent
naming, it will be harder to keep up as whole genome assemblies get completed faster, more often, and
in greater numbers than ever.

To assistwith the abundance of tRNA-sequencing data acrossmany species, computational tRNA
pipelines such as tRAX (tRNA Analysis of eXpression), which easily combine information from tRNAscan-SE
and gtRNAdb with sequencing data, were created (Holmes et al. 2022). tRAX often provides a great first
analysis of tRNA sequencing data as it can take known tRNA annotations, assign reads (broken by uniquely
and multi-mapping tRNAs), and generate figures of general expression information. While this is helpful
for projects with single experimental conditions, it is unsuitable for multiple experimental conditions,
such as an experimental time course with different conditions at each time point. Furthermore, tRAX can
only be run on one tRNA database (genome) at a time, requiring further analysis when comparing tRNAs
across species.

Taking advantage of this gtRNAdb and tRAX framework for tRNA analysis, I have created the
tools tRNAgraph and tRNAmap to facilitate the analysis of complex tRNA sequencing experiments. This
means creating standardized data objects that contain all tRNA sequencing information that can be
combined and analyzed in parallel. They can use new nomenclature that works across species based on
unique sequences (rather than loci and score). They can also leverage the high dimensionality of the
data and single-cell-like computational methods to get deeper insights into tRNAs and their functions.
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3.2 Results

3.2.1 tRNAgraph: advanced tRNA Sequencing Analysis

tRNAgraph is a tool for analyzing tRNA-seq data generated from tRAX. While tRAX generates
a comprehensive set of results, it does not provide a way to visualize specific meta-data associated
with a particular experiment. Additionally, tRAX cannot process multiple experimental conditions or
offer insights into changes across these conditions. While the output of tRAX is useful the amount of
knowledge that can be learned in these cases is limited and is broken into many hard-to-interpret files.
tRNAgraph addresses this by creating a single AnnData (Annotated Data) database object from a tRAX
output directory and any additional metadata provided about the samples in the sequencing experiment
(Virshup et al. 2021). This single object can then be used to generate a variety of visualizations, including
heatmaps, coverage plots, PCA plots, and more that are more specific to the experimental conditions of
interest, as well as automated downstream analysis (Figure S3.1A).

tRNAgraph can be used with build, cluster, merge, graph, and tools commands. The build
command generates an AnnData object (Virshup et al. 2021) from a tRAX coverage file. The graph
command creates visualizations from the database object. The cluster command is used to cluster the
database object. The merge command is used to merge two database objects. The build command will
take any tRAX run as input and convert it to a single file. This object type was chosen because of its
flexible nature and how it was designed to work well with large feature-heavy datasets (such as single-cell
sequencing). The AnnData object is a type of hierarchical data format (HDF) used to store large amounts
of data in multidimensional arrays, which is commonly used in scientific analysis. In the use case of
tRNAgraph, this object has four major components: observations (obs), variables (var), unsorted (uns),
and reads by position (X), each appearing as aligned data frames (Figure 3.1A).

The observations (obs) are the metadata categories derived from the sequencing data corre-
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Figure 3.1: tRNAgraph data structure
(A) Schematic representation of the aligned data structure of a tRNAgraph file, with observations (obs) in

blue, features (var) in purple, and data (X) in green.

sponding to samples and conditions. By default, the tool will generate obs for tRNA, Isotype, Anticodon,
Sample Name, Sample Group, and reads broken down into normalized and raw categories split by
full-length, 5’, 3’, and other read counts based on whether a tRNA sequencing read is in the form of a
fragment or full length read. These numbers are independent of the positional reads in the read data (X).
Additionally, supplemental metadata, such as experimental conditions, can be added.

The variables (var) are commonly associated with “Features” in single-cell sequencing data,
however, in the use case of tRNAgraph, instead, positional information is saved aligned to the read
data (X). This includes all positional information from the sequencing data; since tRNAs can have many
alternate positions and extensions, a position column is provided with aligned Sprinzl information (Sprinzl
et al. 1996), and a gap column allows easy filtering between canonical positions and extended positions
(gap positions) (Figure S3.2A). In general, these gap positions are skipped when plotting as they are
non-uniform across tRNAs. Since tRAX provides coverage information that is unique and multimapping
(due to the nature of tRNA sequence similarity), these categories are provided in parallel in the object.
Further information is provided on tRNA positional information, such as whether a specific position is
found in a 3’ Half or the T-loop structure of the tRNA. Since all the read-at-position data is aligned against
the var and obs data frames, it can quickly be filtered to draw any relevant information, such as a specific
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set of tRNAs’ unique read coverage within the loop structures of tRNAs. Thus far, no other tRNA analysis
software can focus on tRNAs at such specific and precise levels.

Some data generated by tRAX is important but not directly aligned with the observations (obs)
and variables (var) of the read data (X). The following is unstructured data (uns), saved as independent
data frames that can be recalled on command. This mostly includes precomputed data such as isotype and
anticodon counts, non-tRNA small RNA reads, log-fold change of differential expressions cross conditions,
as well as tRAX and tRNAgraph run information for reliable data reproduction (and prevention of merging
data generated in different software versions). The merge function can combine these AnnData objects
across multiple sequencing conditions or runs, which may be important if two different sequencing types
are performed under the same experimental conditions. tRNAgraph facilitates this by automatically
merging across the var, obs, and X-aligned parts and will combine the unstructured data appropriately.

An innate function can cluster the database object using UMAP and cluster using HDBSCAN.
The default parameters used in tRNAgraph were designed to work well on ARMseq, DM-tRNAseq, and
OTTRseq data; however, each dataset is different and may require fine-tuning to yield the best results. To
address this, we allow many inputs to be used that can optimize the full functionality of both UMAP and
HDBSCAN APIs. By default, clustering is performed across the unique coverage, read-starts, read-ends,
mismatched bases, and deletions categories of the AnnData object. Clustering is performed on sample
and group observations. In the case of samples, every set of reads for every single tRNA is used for
clustering. In the case of groups, the mean of the reads is taken for each tRNA across the read categories
and then used for clustering. This is done to reduce the number of samples used for clustering and to
reduce the noise in the clustering.

tRNAgraph provides many functions to visualize data automatically as barplots (of the various
tRNA coverage, tRNA, isodecoder, and isotype ratios), cluster projections (UMAP projections), correlation
plots (Spearman/Pearson correlation plots of samples and coverage), coverage plots (read -coverage,
-starts, and -ends), heatmaps (differential expression), sequence logos (tRNA coverage), PCA (of sam-
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ples/groups), radar plots (tRNA isodecoder distributions), and volcano plots (differential tRNA expression).
Each of these plots is highly customizable with various flags allowing one to filter by any metadata at-
tributes provided. JSON config files also provide support for custom complex filtering and colors. This
extensible data object is supported in various coding languages such as Python, Julia, and R for further
downstream analysis.

3.2.2 tRNAmap: graph-based tRNA gene relationship exploration

Working with multiple species in a parallel analysis is difficult as gtRNAdb names do not match
across species. In order to identify tRNAs that match across species, you would need to know both
the tRNA gene sequence and its genomic coordinates, both prone to changing between species and
even within species (Darrow and Chadwick 2014). To alleviate this monumental task, we aligned the
unique sequences of all eukaryotic tRNAs found in gtRNAdb (25751 unique sequences) by their canonical
positions and then calculated their sequence divergence from one another against each isotype using
a Hamming Distance metric against the base pairs. We also assigned each tRNA sequence a unique
sequence identifier (tRNAid) as each tRNA gtRNAdb name can be different across various species.

Arg tRNAs are a primary example of tRNA conservation patterns (because of their high copy-
number and neural important tRNA-Arg-TCT-4-1), with five large subtypes appearing correlated to the
five major isoacceptors with varying conservation of isodecoders therein (Figure 3.2A). The tRNAid
Arg-TCT-ID25 is found across many mammals and matches the human tRNA-Arg-TCT-4-1, which is neurally
important for development (Ishimura et al. 2014). In addition to this Arg-TCT, we found 15 other Arg-
isodecoders found in greater than or equal to half of the eukaryotic species in the dataset (1787 unique
Arg sequences), showing that a select few Arg iso-decoders are highly conserved, with many single
nucleotide variations existing across species outside this core set. When looking across all isotypes, 25751
unique tRNA sequences exist in eukaryotes, 2815 exist in 2 or more species, 791 exist in 5 or more, 101
exist in 35 (about half the species), and 28 are found in (70 species). tRNAs often have low hamming
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divergence scores from these “core” sequences, implying subtle mutations across species or allowable
SNP variations rather than degenerate rapid mutation associated with pseudogenes and those that would
be rapidly transcribed, such as tRNAs.
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Figure 3.2: tRNAmap shows sequence relations of Arg-tRNAs

(A) Clustermap of all Arg tRNA sequences in the Eukaryotic tRNA dataset that appear in 2 or more species,
based on hamming distance from one another. The isodecoder group is shown on the y-axis, and the
species count is on the x-axis. (B) A minimum spanning tree of the Arg tRNA sequences in the Eukaryotic
tRNA dataset that appear in 2 or more species, based on hamming distance from one another. Labeled
tRNAs (using tRNAid) are those found in half or more of the species in the dataset (>=35).
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We also applied Kruskal’s algorithm to the hamming matrix to generate a DeBrujin graph
minimum spanning trees (MST) for all isotypes. The purpose was to see the linkages between different
tRNA sequences and to establish a graph structure of the data for exploration. This revealed that 1)
sequence variation is less likely to happen to an anticodon as isodecoders tended to correlate highly with
one another and 2) some tRNAs broke this trend, indicating evolutionarily divergent isodecoders. In the
case of Arg tRNAs, nearly all conserved isodecoders (2 or more species) are closely related (less distance),
with the exception of 3 groups of Arg-CCG (Figure 3.2B). The three groups each are more closely related
to a different set of anticodons ACG, TCG, and CCT, with the latter two containing the twomost commonly
conserved Arg-CCG with tRNAid Arg-CCG-ID3 and Arg-CCG-ID5 respectively.

We wanted this data to be available and easily filtered, so we packaged it into a Plotly-based
web application. In addition to containing the precomputed node graphs, we attached associated data for:
tRNAid, human (hg38) syntenic name, isoacceptor, isotype, species counts and species list, tRNAscan-SE
associated scores, GC content, and adjacency scores (number of proximal nodes). This list allows for
easy filtering in the context of the web app as well as custom coloring for visualization. Additionally, the
database was designed for easy upgradability as new species genomes are curated by using insertion
into the hamming matrix to prevent high computational cost as well as new tRNAids sequentially being
added to prevent clashing.

3.2.3 Multivariate tRNA Sequencing Analysis

When combined, both tools can be used for powerful cross-species analysis. We wanted to
check the relative levels of tRNAs in three species: human (c305), chimpanzee (epi8919), and orangutan
(jos3c1). These three species represent important great apes in the human primate lineage and have
a massive expansion of the 1q21 region of human chromosome 1; a region containing many tRNAs and
tRNA pseudogenes. The respective stem cells were grown into cerebral cortical organoids as a model to
study tRNA changes in early human embryogenesis. A standard time course of culturing conditions was
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used to achieve neural induction and organoid growth. Cells were aggregated into embryoid bodies and
differentiated into cortical tissues over a period of 10 weeks. Samples were taken for characterization
and sequencing at the developmental time points of day 0 (D0 - stem cells), day 35 (D35 - emergence of
deep layer neurons), and day 70 (D70 - continued generation of cortical projection neurons, emergence
of outer radial glia) based on the emergence of key cell types in the course of dorsal cortex development
in previous studies (Pollen et al. 2019).

Isodecoder Human Chimpanzee Orangutan

AAT 15 13 13
GAT 3 2 3
TAT 5 5 6

Table 3.1: IF-Staining Antibodies
List of primary and secondary antibodies concentrations used for IF-staining.

We then used OTTR-seq to get the expression levels of tRNAs and tDRs from these primate
organoids, as it is a robust protocol for obtaining tRNA sequencing data (Gustafsson et al. 2022; Upton
et al. 2021). When comparing the relative levels of isodecoders across the three species and three
neurodevelopmental time points, we found that Ile diverged in chimpanzees relative to humans and
orangutans (Figure 3.3A). In the case of humans and orangutans, GAT isodecoders were around∼20-30%
of the isodecoder pool at timepoint 0 but reduced to less than 5% in all neural timepoints (35/70). In the
case of chimpanzees, however, GAT levels are higher on day 0 and remain consistently high throughout
embryogenesis, with a severe reduction in AAT at day 70. The genomic loci for chimpanzee Ile tRNAs
surprisingly have one less GAT genomic loci compared to the other two species, suggesting that copy
number alone is indicative of the expression of a single isodecoder (Table 3.1).

We compared the neurally important human tRNA-Arg-TCT-4-1 to the primates (tRNA-Arg-TCT-
3-1) we found broadly similar expression patterns across organoids (Figure 3.3B). The expression in each
primate drastically increases as the cells differentiate into neurons. Additionally, coverage drops around
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Figure 3.3: tRNAgraph facilitates multivariate analysis
(A) Reads-counts distributions showing the relative ratio of Ile tRNA isodecoder across developmental

time-course for human (hg38), chimpanzee (panTro5), and orangutan (ponAbe3) organoids. (B)
Coverage profiles for the tRNA-Arg-TCT4-1 (human) and tRNA-Arg-TCT-3-1 (chimpanzee/orangutan)

syntenic tRNA that is highly expressed over organoid neurogenesis. D-loop, anticodon-loop, and T-loop
are shown in gray, with lines added at specific coverage breakpoints in each plot.

position 40 in all primates, suggesting a consistent tRNA-derived small RNA (tDR) fragment is forming in
each primate. tRNAs are heavily modified and associated with tDR fragmentation (Kuhle, Q. Chen, and
Schimmel 2023), demonstrating that these primates’ modification pathways are conserved.

After normalization and batch correction, the combined primate data can be clustered via
UMAP to find commonalities in the tRNAs and tDR expression patterns. We found that tRNAs/tDRs
tended to discriminate cleanly by isotype despite not being given any information about nucleotides
(Figure 3.4A). This suggests that tRNAs/tDRs specific bases play roles in unique fragment formation and
expression. We also looked at the distribution of data by species and time point and found that no biases
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existed within those. Since the majority of clusters are discriminated by sequence, we wanted to check
the underlying modifications that are linked to these expression and fragmentation patterns.

71



U
M

A
P 

1

UMAP 2

Is
ot

yp
e 

Pr
oj

ec
tio

n

Is
ot

yp
e A
la

A
rg

A
sn

A
sp

Cy
s

G
ln

G
lu

G
ly

H
is

Ile Le
u

Ly
s

M
et

Ph
e

Pr
o

Se
C

Se
r

Su
p

Th
r

Tr
p

Ty
r

Va
l

iM
et

U
M

A
P 

1

UMAP 2

O
rg

an
oi

d 
Ti

m
ep

oi
nt

 P
ro

je
ct

io
n

Ti
m

ep
oi

nt
D

ay
 0

D
ay

 3
5

D
ay

 7
0

U
M

A
P 

1

UMAP 2

Sp
ec

ie
s 

Pr
oj

ec
tio

n

G
en

om
e

hg
38

pa
nT

ro
5

po
nA

be
3

A

U
M

A
P 

1

UMAP 2

M
od

s 
at

 P
os

iti
on

 6
 P

ro
je

ct
io

n

M
od

i�
ca

tio
n

m
1A

m
1G

m
1I

m
6t

6A
m

s2
t6

A

m
2G

U
M

A
P 

1

UMAP 2
M

od
s 

at
 P

os
iti

on
 1

0 
Pr

oj
ec

tio
n

M
od

i�
ca

tio
n

m
1A

m
1G

m
1I

m
6t

6A
m

s2
t6

A

m
2G

U
M

A
P 

1

UMAP 2

M
od

s 
at

 P
os

iti
on

 3
7 

Pr
oj

ec
tio

n

M
od

i�
ca

tio
n

m
1A

m
1G

m
1I

m
6t

6A
m

s2
t6

A

m
2G

B

Figure 3.4
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Figure 3.4: UMAP clustering of modification data

(A-B) UMAP projections of tRNA sequencing profiles using unique coverage, 3’ and 5’ read ends (consid-
ering the tRNA structure), deletions, and mismatched bases at the position after HDBSCAN clustering.
(A) Projections of isotype, species, and time point masked by HDBSCAN unannotated are also shown.
(B) Projections of modifications at positions 6, 10, and 37 mapped to hg38 only. The region of interest is
shown with an orange circle.
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We took observed Human modification data based on Modomics and misincorporations and
found we could use it to infer those samemodifications on similar primates based onmatching expression
patterns. We found one particular cluster of lysines broken into two subgroups (group cluster 5/6) with
an m2G at positions 6 and 10 and a ms2t6a at position 37 (Figure 3.4B; Table S3.1). The human tRNAs
tRNA-Lys-TTT-1/3/4/6 fell into this group, as well as the chimpanzee (panTro5) tRNA-Lys-TTT-1/3/4/6
and orangutan (ponAbe3) tRNA-Lys-TTT-4/5. The other proximal Lys group (6) was made mostly of
tRNA-Lys-CTT, only containing the common m1A at position 58. tRNAgraph with tRNAmap thus provides
a useful framework for cross-species tRNA analysis.

3.3 Discussion

tRNAgraph and tRNAmap work together to achieve cross-species tRNA analysis. Creating a list
of tRNAids based on tRNA gene sequence allows us to focus on tRNAs that are the same regardless of
gene loci. tRNAs can often multimap to several locations, so to alleviate the burden of genomic location,
focus can be placed on functional differences in the expression as they pertain to sequences independent
of genomic loci. Eukaryotic studies of tRNAs focus mostly on yeast (saccharomyces cerevisiae), humans,
and mice with different tRNA gene sets and gtRNAdb IDs. Neural critical tRNAs like tRNA-Arg-TCT-4-1
in humans are known as tRNA-Arg-TCT-3-1 in chimpanzees and orangutans. Instead, by using a unique
tRNA-ID tied to sequence this ties all these tRNAs together.

The generation of tRNA sequencing data is becoming increasingly frequent, and there is a need
for specific analysis that can discriminate between subtle differences. tRNAgraph handles much of the
overhead of complicated dimensionality reduction by conveniently aligning and organizing all tRNAseq
information before clustering the data. Additionally, tRNAgraph allows independent tRNA sequencing
datasets to be combined and batch-corrected. Combined with tRNAids, the datasets can be combined
across multiple species, allowing for complicated cross-species pattern matching, such as combining
human cardiomyocyte cells and mouse heart tissue. As tDRs are becoming frequently recognized for
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translation alternative roles, they can thus be used as therapeutic targets found via this pipeline.
While tRNAmap improves understanding of tRNA genomic sequence frequency and evolution-

ary conservation, it does not contain information about genomic loci. We can understand the relative
ratios of tRNA isodecoders in different primates, such as the chimpanzee having two Ile-GAT tRNA genes
against human/orangutans with three Ile-GAT but the software alone cannot provide an explanation for
why certain tRNAs are more abundant than others. These questions can be addressed by meaningfully
combining more sequencing data. As greater importance is given to tRNA modification patterns, the
need for tools to predict these modifications is apparent.

3.4 Methods

3.4.1 Organoid methods

Human GM12878-c305, Chimpanzee Epi-8919, and Orangutan Jos-3C1 induced pluripotent
stem cells (iPSCs) were used to generate cerebral cortical organoids. Undifferentiated cells were grown
in feeder-free conditions on matrigel (Corning) with mTeSR Plus (Stemcell Technologies) or on vitronectin
with Essential-8 Flex media (ThermoFisher). Cerebral cortex organoids were generated using a protocol
adapted from Kadoshima et al. 2013. 10,000 cells per embryoid body were aggregated using AggreWell-
800 plates in AggreWell media (Stemcell Technologies) supplemented with 10 uM Y-27632 rock inhibitor
(Stemcell Technologies) and transferred to low attachment 6-well dishes (Corning) on day 2. These
methods supplemented the respective media with 10 uM SB431542 (SB, Millipore), and 1 uM IWR-1
(Millipore) for the first 14 days of differentiation. Themediawas then changed to Sasai IImedia (DMEM/F12
+ glutamax supplemented with N2) on day 14. At this point, organoids were supplemented with 10ng/mL
beta fibroblast growth factor (bFGF) and 10ng/mL epidermal growth factor (EGF) to improve survival
in Sasai II media. On day 18 the organoids were transferred to an in-incubator orbital shaker (100 rpm)
where they remained for the duration of the experiment. After day 35, all cultures were grown in Sasai
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III media (Sasai II media supplemented with 50 mL of FBS (Hyclone)) supplemented with ten ng/mL
brain-derived neurotrophic factor (BDNF) and 10 ng/mL of neurotrophin-3 (NT-3) (Kindberg et al. 2014).

3.4.2 RNA Isolation and PNK Treatment

Isolation of total RNA from cerebral cortical organoids and stem cells was performed using
Direct-Zol RNA MiniPrep Kit (Zymo Research) with TRI Reagent (Molecular Research Center, Inc.). Since a
single organoid would yield far less total RNA, approximately 3-8 organoids would be pooled in Trizol
depending on organoid size for each sample replicate. The manufacturer’s recommended volume of
TRI Reagent was added to each sample (∼1 mL). For RNA purification of stem cells, Trizol was directly
added to cell culture plates on ice, scraped, and homogenized via pipetting. Organoids in Trizol were
broken down via pipetting inside a 1mL Eppendorf tube on ice via a syringe. All total RNA was processed
using a MirVana miRNA Isolation Kit (Life Technologies), according to the manufacturer’s instructions, to
select for RNA <200 nt. This was followed by an RNA Clean and Concentrate-25 (Zymo Research). RNA 3’
de-phosphorylation was carried out as previously described (Huppertz et al., 2014) using 1ug of total RNA
from each sample. Briefly, samples were treated with T4 Polynucleotide Kinase (T4PNK; New England
Biolabs) in a modified 5x reaction buffer (350 mM Tris-HCl, pH 6.5, 50 mMMgCl2, 5mM dithiothreitol)
under low pH conditions in the absence of ATP for 30 mins.

3.4.3 OTTR-seq Library Preparation

OTTR-seq libraries were generated as previously described (Upton et al. 2021). Briefly, total
PNK-treated RNA was 3’ tailed using mutant BoMoC RT in buffer containing only ddATP for 90 minutes at
30◦C, with the addition of ddGTP for another 30 minutes at 30◦C. This was then heat-inactivated at 65◦C
for 5 minutes, and unincorporated ddATP/ddGTP was hydrolyzed by incubation in 5 mMMgCl2 and 0.5
units of shrimp alkaline phosphatase (rSAP) at 37◦C for 15 minutes. 5 mM EGTA was added and incubated
at 65◦C for 5 minutes to stop this reaction. Reverse transcription was then performed at 37◦C for 30
minutes, followed by heat inactivation at 70◦C for 5 minutes. The remaining RNA and RNA/DNA hybrids
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were then degraded using 1 unit of RNase A at 50◦C for 10 minutes. cDNA was then cleaned up using a
MinElute Reaction CleanUp Kit (Qiagen). To reduce adaptor dimers, cDNA was run on a 9% UREA page
gel, and the size range of interest was cut out and eluted into gel extraction buffer (300mM NaCl, 10mM
Tris; pH 8.0, 1mM EDTA, 0.25% SDS) and concentrated using EtOH precipitation. Size-selected cDNA was
then PCR amplified for 12 cycles using Q5 High-fidelity polymerase (NEB #M0491S). Amplified libraries
were then run on a 6% TBE gel, and the size range of interest was extracted to reduce adaptor dimers
further. Gel slices were eluted into gel extraction buffer (300mM NaCl, 10mM Tris; pH 8.0, 1mM EDTA)
followed by concentration using EtOH precipitation. Final libraries were pooled and sequenced on an
Illumina NextSeq 500 150-cycle high-output kit.

3.4.4 RNA sequencing and differential expression analysis

Libraries prepared for OTTR-seq were sequenced using Illumina NextSeq 500 150-cycle high-
output kit. Single-ended reads were produced as FASTQ files that were analyzed using tRNA Analysis
of eXpression (tRAX) (Holmes et al. 2022). Sequence adapters were trimmed, and pair-ended reads
were merged using the tool trimadapters.py in tRAX. The reference database for tRAX was built with
high-confidence tRNA predictions retrieved from the Genome tRNA Database (Chan and Lowe, 2016)
and the sequences of human genome assembly GRCh38. Other gene annotations were obtained from
Ensembl release 102. Biological replicates of organoids at each time point were grouped as sample
replicates for tRAX inputs, and different time points were marked as pairs for differential expression
comparison for each sequencing type.

3.4.5 Multispecies tRNA Gene Alignment

Eukaryotic genomes were chosen by taking species available on gtRNAdb and then aligning the
tRNA sequences based on their Sprinzl positions (Chan, Lin, et al. 2019; Chan and Todd M. Lowe 2016;
Sprinzl et al. 1996). A hamming distance matrix for the sequences in the alignment table was created
via the Pandas Python package (McKinney 2010). A directed node graph was then computed from the
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distance matrix using NetworkX, and a minimum spanning tree was generated using Kruskal’s algorithm
(Hagberg, Swart, and Chult 2008; Kruskal 1956). These were then turned into an interactive Python web
app via Plotly.
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Supplemental Figure S1.1: ARM-seq expression patterns

(A-B) Normalized readcount distribution for tRNA reads by (A) AlkB treatment and (B) timepoint for ARM-
seq with significance by Welch’s t-test shown as ns (p <= 1), * (1e-02 < p <= 5e-02), ** (1e-03 < p <= 1e-02),
*** (1e-04 < p <= 1e-03), and **** (P <= 1e-04). (C) Human tRNA and tDR reads-counts distributions
showing relative ratio of fragments vs full-length tRNAs across organoid time-course, sequencing type
and alkB treatment. (D) Human tRNA isotype reads-counts distributions showing relative ratio of tRNA
isotypes across organoid time-course, sequencing type and alkB treatment.
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Supplemental Figure S1.2: Maximized fragment distributions of tDR Isotypes

(A) Coverage profiles for tDRs over organoid neurogenesis. D-loop, anticodon-loop, and T-loop shown in
gray, with lines added at specific coverage breakpoints in each plot. The mean value was taken across all
coverage profiles within a specific isotype at each position, with isodecoders not expressing a mean >=
20 reads are not displayed.
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Supplemental Figure S1.3: tRNA expression in neural organoids

(A-B) Heatmap showing the top 15 neural and top 15 stem favored tDRs across all conditions by p-value
(A) and readcounts (B). P-value and normalized read counts are shown in green with a cutoff of <=0.001
and >=1000 respectively. (C) Coverage profiles for Arg-TCT-1 and Arg-TCT-4 ARM-seq over organoid
neurogenesis. D-loop, anticodon-loop, and T-loop shown in gray, with lines added at specific coverage
breakpoints in each plot. (D) Northern blot analysis of Arg-TCT-4, Ala-AGC-8 and SeC-TCA-1 probs at full
length mature tRNAs between day 0 and day 70 timepoints.(E) Coverage profiles for the tDRs that appear
to downregulate with neural progenitors (D14 and D35). D-loop, anticodon-loop, and T-loop shown in
gray, with lines added at specific coverage breakpoints in each plot.
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Supplemental Figure S1.4: tDR clustering and associated enzyme expression

(A-B) Bar plots of each tDR class’s relative isotype (A) and AlkB treatment (B) distribution by each hdbscan
class. (C-D) UMAP projections of tRNA sequencing profiles using unique coverage, 3’ and 5’ read ends
(with consideration to the tRNA structure), deletions, and mismatched bases at position after hdbscan
clustering. Projections of (C) tRNAscan-SE covariance and HMM as well as secondary structure (Infernal)
scores and (D) Log2 fold-change normalized expression between day 0 and day 70 timepoints masked
by unannotated (U) class are shown. (E) Normalized base-mean tRNA enzyme expression from human
embryonic stem cells cultured into cerebral cortical organoids on a 5 week (day 35) time course.
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Supplemental Figure S1.5: K-mer frequency distribution

(A) Sequence logo representation of the read counts for tRNAs found in neural (B) clusters dropping
non-expressed tRNAs (>20 reads) and treating each sequence as if the full sequence was transcribed to
prevent 5’/3’ bias. (B) Kmer frequency plot showing the percent frequency change from background kmer
frequency for neural (B), neutral (C), stem (A) and unannotated (U) clusters, after filtering out low (>15)
read counts.
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Supplemental Figure S1.6: Mean expression of small RNA reads

(A-B) Normalized readcount distribution for tRNA reads by (A) AlkB treatment and (B) timepoint for
ARM-seq with significance by Welch’s t-test shown as ns (p <= 1), * (1e-02 < p <= 5e-02), ** (1e-03 < p <=
1e-02), *** (1e-04 < p <= 1e-03), and **** (P <= 1e-04).
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Supplemental Figure S2.1: Specific Human tRNA Base Changes

(A) Heatmap showing all tRNA genomic loci divergence between hg38 and hs1 aligned by canonical
position and SNP density at each position normalized relative to all other SNP frequencies in the plot. (B)
Bar plot showing the relative counts of tRNAs found across isoacceptor in hg38 (yellow) and hs1 (blue).
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Supplemental Figure S2.2: Schematic of human 1q21 region between hs1/hg38

(A) Schematic representation of human 1q21 region between hs1 and hg38 with different colored bars
representing tRNA regions defined as tRNA genomic loci bound by protein-coding genes and regional
inversions (RI) highlighted in black.
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Supplemental Figure S2.3: Total Predicted tRNAs and Pseudogenes in T2T Primates

(A) Heatmap of all predicted tRNA counts found in hs1 and aligned primate chromosomes. The top row in
purple shows total tRNA counts in hs1 (human) and the divergence in counts from Human in the primates
from green (increase) to orange (decrease) relative to hs1. The phylogenetic tree is located on the left and
arranged from most to least similar to humans.
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Supplemental Figure S2.4: Sequence Logos of T2T Apes in 1q23.3 tRNA Repeats

(A-B) Violin plots of the tRNA genomic loci found in (A) 1q23.3 TRU and (B) Neural Expansion Regions across
the T2T primates. The dotted line at score 50 split tRNAs into predicted tRNAs and likely pseudogenes
based on the tRNAscan-SE score.
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Supplemental Figure S2.5
(A) Barplot of the average tRNA secondary structure score in the neural expansion and the 1q23.3 regions.
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Supplemental Figure S3.1: tRNAgraph pipeline

(A) Detailed schematics of the tRNAgraph pipeline. The initial tRAX output directory is shown in green,
and optional metadata and config files are shown in gold. Blue represents outputs from the pipeline
either as visualizations or updates/creations of the hd5f AnnData file.
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Supplemental Figure S3.2
(A) Detailed schematic of tRNA structure with positional information, including gap/extensions, 3’/5’, and

internal fragment ranges.
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Chapter 1: Supplemental Tables

Supplemental Table S1.1: Differential Expression of Small RNAs

List of small RNAs picked up in the ARM-seq data, with associated read counts, log2 fold-changes and

p-values for developmental time points.
1.supp.1.csv

Supplemental Table S1.2: ARM-seq Differential Expression of tRNAs

List of tRNAs and tDRs picked up in the ARM-seq data, with associated read counts, log2 fold-changes

and p-values for developmental time points of AlkB+ and AlkB- treatments.
1.supp.2.csv

Supplemental Table S1.3: tRNAs Classes and tRNAs therein

List of tRNA clusters that were manually annotated from UMAP/hdbscan clustering. Associated

metadata, isotype, amino group, organoid developmental time point, alkB treatment, number of read

counts, reference tRNA gene.
1.supp.3.csv

Primary Dilution Secondary Dilution

ctip2 (ab18465) 1:1000 rat (ab150155) anti-donkey 1:250
tbr2/eomes (ab23345) 1:1000 rb (A10040) anti-donkey 1:250
pax6 (AB_528427) 1:1000 ms (ab150105) 1:250
sox2 (sc-398254) 1:1000 ms (ab150105) 1:250
vim (NB300-223SS) 1:1000 ch (ab150169) 1:1000
hopx (NBP1-97503) 1:1000 ms (ab150105) 1:1000
satb2 (ab34735) 1:1000 rb (A10040) 1:1000

Supplemental Table S1.4: IF-Staining Antibodies
List of primary and secondary antibodies concentrations used for IF-staining.
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tables/1.supp.2.csv
tables/1.supp.3.csv


Chapter 2: Supplemental Tables

Supplemental Table S2.1: tRNA Sequence Divergence HS1-HG38

List of all syntenic tRNAs that have divergent sequences between hg38 and hs1 assemblies, their assigned

gtRNAdb id, tRNAscan-SE score, hg38 gtRNAdb id alias if it changed, and notes about the tRNA.
2.supp.1.csv

Species Assembly High Con. Total

Human hs1 32 76
Chimpanzee mPanTro3 36 70
Bonobo mPanPan1 34 64
Gorilla mGorGor1 31 64

Bornean orangutan mPonPyg2 25 55
Sumatran orangutan mPonAbe1 25 58
Siamang gibbon mSymSyn1 27 56

Supplemental Table S2.2: tRNA NER Primate Counts
List of tRNAs in the NER by primate.

Supplemental Table S2.3: Samples and Metadata

List of all included genomes, their URL locations, accession codes for GenBank, and whether they are a

primary, supplementary, or alternative haploid assembly.
2.supp.3.csv

Supplemental Table S2.4: tRNA Name Map

List of hs1 tRNAscan-SE names and assigned gtRNAdb IDs aligned to hg38 and all T2T primates.
2.supp.4.csv
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Chapter 3: Supplemental Tables

Supplemental Table S3.1: Clustering results of combined Primate OTTR-seq

List of tRNA clusters that were identified from UMAP/HDBSCAN clustering. Associated metadata, isotype,

amino group, organoid developmental time point, alkB treatment, number of read counts, reference

tRNA gene.
3.supp.1.csv
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Chapter 1: Data Accesss

All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE259250.
All visualizations were created using tRNAgraph (https://github.com/alba1735/tRNAgraph) and custom
Python scripts, available upon request.

Chapter 2: Data Accesss

The FASTA files for assemblies and NCBI RefSeq genes can be located via NCBI RefSeq Accessions:
hs1 (GCF_009914755.1), mGorGor1 (GCF_029281585.2), mPanTro3 (GCF_028858775.2),
mPanPan1 (GCF_029289425.2), mPonAbe1 (GCF_028885655.2), mPonPyg2 (GCF_028885625.2), and
mSymSyn1 (GCF_028878055.2).

Chapter 3: Data Accesss

Data available upon request.
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Appendix A

Glossary
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1p36: Human Chromosome 1 neural region of interest.
1p11: Human P-arm region proximal to the centromere that contains NOTCH2 and NOTCH2NLR that
comprises part the “Neural expansion region” (NER).
1q21: Human Q-arm region proximal to the centromere that contains NOTCH2NLA/B/C that comprises
part of the “Neural expansion region” (NER).
1q23: tRNA expansion region found in human chromosome 1 and syntenic region in mammals.
AnnData: Annotated Data file type, a type of Hierarchical Data Formats (HDF) files used by tRNAgraph.
gtRNAdb: Genomic tRNA Database
Isoacceptor: tRNA molecules which are acylated by the same amino acid but have divergent anticodons.
Isodecoder: tRNA molecules sharing the same anticodon but diverging elsewhere in their sequence.
Isotype: tRNA molecules which are acylated by the same amino acid.
MST:Minimum spanning tree
NBPF: Neuroblastoma break-point family genes, commonly found in the “Neural expansion region” and
proximal to many tRNAs.
NER: Neural expansion region found across primates expanding greatly over the human-primate lineage.
NOTCH2: Notch2, a member of the Notch family of receptors.
NOTCH2NL: A paralog of the NOTCH2 receptor, with the ability to promote cortical progenitor mainte-
nance (Fiddes, Lodewijk, et al. 2018).
SINE: Short interspersed nuclear element
tRAX: tRNA Analysis of eXpression (http://trna.ucsc.edu/tRAX/) (Holmes et al. 2022)
tRNA: Transfer RNA
tRNAgraph: A software pipeline for advanced and multivariate analysis of tRNA sequencing data.
tRNAid: Identification of unique tRNA sequences from tRNAmap
tRNAmap: A database and webtool for tRNA sequence graphical relationships across Eukaryotes.
tRNAnome: The collection of all tRNA sequences found across all species.
tDR: Transfer RNA-derived small
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