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The minimum obtainable transverse emittance (thermal emittance) of electron beams generated
and trapped in plasma-based accelerators using ionization injection is examined. The initial trans-
verse phase space distribution following ionization and passage through the laser is derived, and
expressions for the normalized transverse beam emittance, both along and orthogonal to the laser
polarization, are presented. Results are compared to particle-in-cell simulations. Ultra-low emit-
tance beams can be generated using laser ionization injection into plasma accelerators, and examples
are presented showing normalized emittances on the order of tens of nm.

I. INTRODUCTION

Plasma-based accelerators [1] can produce extremely large accelerating gradients, enabling compact sources of high
energy particle beams. The characteristic accelerating field in a plasma accelerator is on the order of E0(V/m) '
96
√
n0(cm−3), with n0 the plasma electron density, and E0 can be several orders of magnitude larger than that

obtainable in conventional accelerators. In addition, plasma accelerators produce ultrashort electron beams with
durations < λp/c [2, 3], where λp(µm) ' 3.3×1010/

√
n0(cm−3) is the plasma wavelength. High-quality GeV electron

beams were first demonstrated using an intense laser driving a plasma wave in a cm-scale plasma, relying on self-
injection for electron beam generation [4]. In the nonlinear laser-driven bubble regime [5], where the particles are
self-trapped [6], experiments show that an electron beam with normalized transverse emittance of εn ∼ 0.1 mm mrad
can be achieved [7, 8]. High-quality, laser-plasma-accelerated electron beams could be good candidates to drive free-
electron lasers [9–12] or Thomson photon sources [13], enabling a new generation of low-cost, compact light sources.
Improved beam phase space characteristics, and, in particular, reduced transverse emittance, is highly desired for
light sources and other applications.

In order to improve the quality and stability of laser-plasma-accelerated electron beams, controlled injection methods
are actively being pursued, including colliding pulse injection [14–21], plasma density transitions [22–26], and ionization
injection [27–38]. In conventional ionization injection into laser-plasma accelerators [29–33], a single laser pulse is used
both for wake generation and ionization of a high-Z gas. Typically large laser intensities a0 > 1, with w0 ∼ 10 µm,
are needed to excite a sufficiently large wake so that an electron ionized near the peak intensity of the laser pulse can
be trapped. Here w0 is the laser spot size and a0 is the peak normalized amplitude of the laser vector potential. For
linear polarization, a20 = 7.3× 10−19[λ(µm)]2I0(W/cm

2
) with I0 the peak laser intensity and λ the laser wavelength.

Ionization at these large laser intensities typically results in large transverse momentum [33], and, hence, large
transverse emittance of the injected particle beam.

The trapped electron beam quality may be improved by considering independently-controlled ionization injection
into a pre-established plasma wake. For example, one may consider a charged particle beam driving a plasma wake in
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FIG. 1: Illustration of (two-color) laser-ionization injection from a 3D PIC simulation: a drive beam (a circular-polarized, 5 µm-
wavelength laser pulse with a0 = 1.17, 92 fs FWHM duration, and spot size w0 = 36 µm) is propagating in the ẑ-direction in
a plasma of density n0 = 2 × 1017 cm−3 doped with a high-Z gas (Krypton), and generates a plasma wave (wake), Ez. An
injection laser pulse (linear-polarized with λi = 0.4 µm, ai = 0.135, 16 fs FWHM duration, and spot size wi = 5 µm, and) is
co-propagating and delayed with respect to the beam driving the plasma wave such that ionized electrons (Kr8+ to Kr9+) are
trapped in the wake forming a trailing accelerated electron bunch.

the blow-out regime [39], followed by a laser pulse that ionizes and traps electrons in the wake of the beam [35, 36].
Since field ionization by the beam driver can be small, this reduces the intensity required for the ionization laser, and
simulations of this method indicate that ultra-low emittance beams can be generated [35, 36]. An all-optical method
of reducing the ionization laser intensity has also been proposed that relies on using two lasers of different colors
[37]. In the two-color ionization injection method, a long-wavelength pump pulse, with large ponderomotive force and
small peak electric field, excites a wake without fully ionizing a high-Z gas. A short-wavelength injection pulse, with
small ponderomotive force and large peak electric field, co-propagating and delayed with respect to the pump laser,
ionizes a fraction of the remaining bound electrons at a trapping phase of the plasma wave, generating an electron
beam that is accelerated by the wake. Numerical modeling indicates that two-color ionization injection can produce
electron beams with normalized emittances of the order ∼10 nm [37]. An illustration of the basic geometry of the
two-color ionization injection method is shown in Fig. 1.

In this work we address the fundamental limit of the obtainable beam emittance, the thermal emittance, from
laser ionization injection methods in plasma-based accelerators. These results are independent of the driver of the
plasma accelerator (e.g., laser or particle beam). In particular, it is shown that the thermal emittance of the beam

at injection, in the plane of laser polarization, is approximately εx ' (3π/
√

2)rB(UH/UI)
3/2wia

2
i /λi, where rB is the

Bohr radius, UI is the ionization potential (normalized to UH ' 13.6 eV), and a2i , wi, and λi are the normalized
intensity, spot size, and wavelength of the ionization injection laser pulse, respectively.

This paper is organized as follows. In Sec. II we describe and calculate the spatial distribution of electrons created by
laser tunneling ionization. The initial distribution in longitudinal position determines the initial transverse momentum
of the electrons obtained from the laser quiver motion in the plane of laser polarization. The initial phase space
distribution of the ionized electron beam is compared to particle-in-cell (PIC) simulations. Section III describes
the effect of the ponderomotive force of the ionization laser. It is shown that, since the momentum gain via the
ponderomotive force is correlated to the transverse position of the electron at ionization, the ponderomotive force
does not contribute to the initial thermal emittance of the beam. However, the ponderomotive kick can contribute to
the saturated emittance after phase mixing. In Sec. IV, the thermal emittance from ionization is derived. Interaction
with the plasma wave will typically lead to phase mixing and emittance growth. Expressions for the transverse
emittance, after phase mixing, along and orthogonal to the laser polarization direction are derived. These results
are compared to 3D PIC simulations of the ionization injected electron beam using two-color ionization injection.
Conclusions are presented in Sec. V.

II. ELECTRON PHASE SPACE DISTRIBUTION FROM LASER TUNNELING IONIZATION

The laser ionization process determines the initial electron phase space distribution. For a linearly polarized laser
field, the ionization rate in the tunneling limit, assuming the static electric field approximation, is [40]

W = 4ωaC
(UI/UH)(6n

∗−3|m|−1)/2

|E/Ea|2n∗−|m|−1
exp

[
−2

3

(UI/UH)3/2

|E/Ea|

]
, (1)
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where ωa = α3c/re, UI is the ionization potential with UH = mec
2α2/2 = 13.6 eV the ionization potential of

Hydrogen, E is the laser field, and Ea = e/r2B ' 0.5 TV/m the atomic field, with rB = re/α
2 the Bohr radius,

re = e2/mec
2 the classical electron radius, and α = e2/~c the fine structure constant. Here m is the projection of

the angular momentum quantum number l on the electric wave field and n∗ = Z(UH/UI)
1/2 is the effective principal

quantum number, with Z is the ion charge number after ionization. The constant C is a function of the atomic
quantum numbers (determined by the atomic wave function),

C =
24n

∗−4−2|m|

n∗Γ(n∗ + l∗ + 1)Γ(n∗ − l∗)
(2l + 1)(l + |m|)!
|m|!(l − |m|)!

, (2)

where l∗ = n∗0 − 1 is the effective orbital quantum number, with n∗0 the effective principal quantum number of
the ground state. For a Hydrogen-like atom, C = 1. Equation (1) will be valid for small Keldysh parameter,
γK = (UI/2Up)

1/2 < 1, where Up = mec
2a2i /4 is the electron oscillation energy, with ai = eAi/mec

2 the peak
normalized laser vector potential of the linear-polarized ionization laser. For γK > 1 multiphoton ionization will be
dominant. Ionization injection into a plasma wakefield can be achieved using multi-photon ionization. However, for
typical laser-plasma parameters γK < 1, and in the following we consider laser tunneling ionization to be the dominant
ionization mechanism with γK < 1.

The distribution of ionized electrons can be calculated from the laser field using the ionization rate Eq. (1). Consider
the laser field used for ionization injection to have the form

Ei = Ep exp(−r2/w2
i ) cos(kiξ), (3)

where ξ = z− ct is the co-moving variable, wi is the laser spot size, ki = 2π/λi, with λi the laser wavelength, and Ep
is the peak electric field of the laser Ep[TV/m] ' 3.21ai/λi[µm]. From Eq. (1), the ionization probability is largest
near the peaks of the laser field where r � wi and kiξ − jπ � 1, with j an integer. Here we assume that ionization
occurs near the peak of the laser envelope (laser envelope effects will be discussed in Sec. II B). Assuming the charge
state of the gas/ions is not fully ionized (a fully-ionized gas will be discussed in Sec. II D), near the peak of the laser
electric field,

EL ' Ep
[
1− (r/wi)

2 − (kiξ − jπ)2/2
]
, (4)

and, using Eq. (1), the ionization rate is

W ≈Wp exp

[
− (r/wi)

2

σ2
ψ

]
exp

[
− (kiξ − jπ)2

2σ2
ψ

]
. (5)

In Eq. (5), Wp is approximately the tunneling ionization rate at the peak of the laser field and the rms spread in
injection laser phase is

σψ = ∆
[
1− (2n∗ − |m| − 1)∆2

]−1/2
, (6)

with

∆ =

(
3

2

Ep
Ea

)1/2(
UH
UI

)3/4

=

(
3πreai
α4λi

)1/2(
UH
UI

)3/4

. (7)

The rms spread in laser phase position of the ionized electrons about the field peak, σψ, will result in a finite transverse
momentum spread of the electrons after exiting the laser, as discussed in Sec. II A.

The parameter ∆2 is the normalized laser field amplitude. Ionization injection is optimized for field amplitudes
near the threshold for ionization. For short-pulse lasers, the field amplitude required to ionize an atomic state can
be estimated by considering the laser field amplitude where the ionization rate (probability) over a laser period is of
order unity: (λi/c)Wp ∼ 1. For typical parameters of interest (λi/c)Wp ∼ 1 for ∆2 � 1. For example, (λi/c)Wp = 1
requires ∆2 ' 0.07 for He1+ (UI = 24.6 eV) with λi = 0.8 µm, (λi/c)Wp = 1 requires ∆2 ' 0.1 for N6+ (UI = 522 eV)
with λi = 0.8 µm, and (λi/c)Wp = 1 requires ∆2 ' 0.04 for Kr9+ (UI = 230 eV) with λi = 0.4 µm. Hence, the limit
∆2 � 1 is satisfied at the ionization threshold and σψ ' ∆ < 1 (i.e., ionization occurs near the field maxima).

A. Intrinsic transverse momentum spread

We make the semi-classical assumption that the initial transverse momentum of the electrons is zero, with respect
to the atom, at the moment of their ionization. Assuming kiwi � 1, transverse canonical momentum conservation
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implies ∂ξ[ux − ax] ' 0 (here the x-direction is in the plane of laser polarization). After exiting the ionization laser,
the transverse momentum of the electron is given by the laser vector potential at ionization

ux = −a[ξ(ti)] ' −ai sin [kiξ(ti)] e
−r(ti)2/w2

i , (8)

where kiξ(ti) − jπ � 1 is near the peak of the laser electric field at the time of ionization ti. Ionization away from
the peak of the laser electric field results in transverse momentum along the direction of laser polarization after the

electron exits the laser. The rms spread in transverse momentum σpx =
〈
u2x
〉1/2

= ai
〈
sin2(kiξ) exp(2r2/w2

i )
〉1/2

(in
the laser polarization plane) is

σpx = ai

(
e−σ

2
ψ sinh(σ2

ψ)

1 + 2σ2
ψ

)1/2

' σψ
(
1− 3σ2

ψ/2
)
ai, (9)

where σψ is the rms spread in laser phase position of the ionized electrons about the field peak Eq. (6). Equation (9)
includes the effects of the nonlinear laser phase dependence on momentum and off-axis ionization of electrons. For
σψ � 1,

σpx ' ai∆ '
(

3πre
α2λi

)1/2(
UH
UI

)3/4

a
3/2
i . (10)

The rms momentum spread, in the laser polarization plane, has a nonlinear dependence on the ionization laser intensity

σpx ∝ a
3/2
i . Note that the derivation of the differential ionization rate with respect to the initial photoelectron

momentum (see Ref. [40]) yields the rms momentum spread along the direction of the field (to lowest order in γK � 1

for a plane electromagnetic wave) of [3~ω/(2mec
2)]1/2γ

−3/2
K = ai∆, in agreement with Eq. (10).

Equation (8) assumes the electrons are ionized from atoms at rest. The ion temperature may be neglected provided
the ion velocity βi = vi/c is small compared to σpx, where βi ' (me/Mi)

1/2(2kBTi/mec
2)1/2, with Mi the ion mass, Ti

the ion temperature, and kB the Boltzmann constant. The condition βi � σpx is typically well satisfied for parameters
of interest.

B. Laser envelope effects

Since the rate of laser ionization grows exponentially about the laser electric field peak [cf. Eq. (1)], laser envelope
effects manifest as small corrections to the distribution of ionized electrons. Consider a Gaussian laser envelope along
the propagation direction such that

Ei = Epe
−ξ2/2L2

i cos (kiξ) , (11)

where Li is the rms length of the laser field envelope. Assuming the ionization occurs near the peak of the laser
envelope (and the peaks of the laser electric field), such that Ei ' Ep(1− ξ2/2L2

i ), the rate of ionization at the field
peak located at ξ in the laser envelope is

W = Wp exp
[
−ξ2/(2∆2L2

i )
]
. (12)

The rate of ionization away from the laser envelope peak decreases, and the distribution has rms length Li∆. Figure 2
shows the normalized ionization rate (solid black line), the laser envelope (dotted blue line), and Eq. (12) describing the
reduced rate of ionization owing to the laser envelope (dashed red line), for a Gaussian envelope with the parameters
kiLi = 64 and ∆ = 0.2. As illustrated in Fig. 2 the ionization rate decreases exponentially over a fraction of the laser
envelope.

Ionization that occurs at a field peak away from the peak of the laser envelope will be at a smaller laser field
a(ξ), resulting in a correspondingly smaller injection laser phase region σψ ∝ [a(ξ)]1/2. Assuming kiLi∆ � 1, and
performing an average over the field peaks weighted by the local ionization rate, the rms spread in the laser phase
region of the ionized electrons is

σψ = ∆
[
1 + (2n∗ − |m| − 1)∆2/2−∆2/4

]
, (13)

where the last term of the right-hand side of Eq. (13) is due to laser envelope effects (reducing the injection phase
region). Notice that the correction due to the laser envelope is independent of the laser envelope length Li, since the
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FIG. 2: Solid black curve is the normalized ionization rate for a laser field having a Gaussian envelope with the parameters
kiLi = 64 and ∆ = 0.2. The rms width of each peak is σξ = σψ/ki ' ∆/ki. Dashed red curve shows the longitudinal region
of ionization due to the laser envelope, with rms width σξ = Li∆. Dotted blue line is the normalized laser field envelope with
rms length σξ = Li.

rms length of the ionization region is proportional to the envelope length Li∆, and Eq. (13) is valid for any Gaussian
envelope length, provided kiLi∆� 1.

Including envelope effects the rms spread in transverse momentum after exiting the laser is σpx = 〈〈aσψ(1−3σ2
ψ/2)〉〉,

where the average, denoted by 〈〈·〉〉, is over the field peaks weighted by the local ionization rate. The Gaussian laser
envelope reduces the rms transverse momentum of the ionized electrons because laser phase fronts away from the peak
have lower field amplitude and, hence, the electrons are ionized over a narrower range of laser phases. Performing the
weighting yields,

σpx = ai∆
[
1− 3∆2/4− 3∆2/2 + (2n∗ − |m| − 1)∆2/2

]
, (14)

where the second, third, and fourth terms in the brackets are the effects of the laser envelope, the nonlinear dependence
of momentum on phase position and off-axis ionization [cf. Eq. (9)], and the non-exponential dependence on the
ionization rate [cf. Eq. (6)], respectively.

Figure 3 shows the rms transverse momentum distribution versus ionization laser intensity for two cases: (a)
conventional single-pulse ionization injection using a high intensity laser pulse (cf. parameters used in Ref. [33]), and
(b) two-color ionization injection using a low intensity laser pulse (cf. parameters used in Ref. [37]). Figure 3(a) is for
an ionization laser with λi = 0.8 µm and FWHM duration 40 fs, ionizing a Nitrogen gas, N5+ → N6+ (UI = 552 eV),
in a background plasma of density 1.7 × 1018 cm−3 (for this case ∆ ≈ 0.3), and Fig. 3(b) is for an ionization laser
with λi = 0.4 µm and FWHM duration 16 fs, ionizing a Krypton gas, Kr8+ → Kr9+ (UI = 230 eV), in a background
plasma of density 2 × 1017 cm−3 (for this case ∆ ≈ 0.2). The points in Fig. 3 were obtained from two-dimensional
(2D) PIC simulations with the laser polarization out of the simulation plane: Fig. 3(a) used the PIC code vlpl [41]
(implementing the ionization algorithm Ref. [42]), and the Fig. 3(b) used the PIC code warp [43] (implementing the
ionization algorithm Ref. [42]). For large laser intensities a ∼ 1 [as in Fig. 3(a)], the 2D PIC simulation with the laser
polarization out of the plane allows separation of the effects of the quiver motion and the ponderomotive force (the
effect of the ionization laser ponderomotive force is discussed in Sec. III). The dashed curves show Eq. (14) for each
case. Excellent agreement between the PIC modeling and the analytic expression Eq. (14) is achieved for a range of
laser intensities, different laser wavelengths, and for different gases.

C. Transverse electron distribution after ionization

Equation (5) predicts that the rms spread in transverse position of ionized electrons is

σx = σy = wiσψ/
√

2, (15)

where σψ, including laser envelope effects, is given by Eq. (13). In the limit ∆2 � 1, σx = σy ' wi∆/
√

2. As

expected, the transverse size of the distribution of ionized electrons is proportional to the laser spot size, σy ∝ wia1/2i .
Figure 4 shows an example of the rms transverse size of the distribution of electrons ionized versus the laser spot
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FIG. 3: The rms transverse momentum distribution versus ionization laser intensity for laser ionization injection using (a) a
high intensity laser pulse, with λi = 0.8 µm and FWHM duration 40 fs, ionizing a Nitrogen gas, N5+ → N6+ (UI = 552 eV), in
a background plasma of density 1.7 × 1018 cm−3, and (b) a low intensity laser pulse, with λi = 0.4 µm and FWHM duration
16 fs, ionizing a Krypton gas, Kr8+ → Kr9+ (UI = 230 eV), in a background plasma of density 2× 1017 cm−3. The points are
obtained from PIC simulations, the dashed curves are Eq. (14).
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FIG. 4: The rms width of the transverse distribution of ionized electrons versus laser spot size wi using laser with ai = 0.135
and λi = 0.4 µm ionizing a Krypton gas, Kr8+ → Kr9+ (UI = 230 eV). Points are PIC simulations using warp, and dashed
line is the analytic expression Eq. (15).

size. The points in Fig. 4 are simulations performed using the PIC code warp, and the dashed line is Eq. (15). For
this example we are considering the two-color ionization injection geometry [37] with an ionization laser ai = 0.135,
and all other parameters as in Fig. 3(b). For these parameters ∆ ' 0.2. There is excellent agreement between the
expression Eq. (15) and the numerical modeling of the ionization.
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FIG. 5: Fractional ionization n/ng for (a) ai = 0.14 and (b) ai = 0.2. The laser field has a wavelength of 0.4 µm and a Gaussian
longitudinal envelope with length kiLi = 32.

D. Fully-ionized gas

As the ionization laser propagates it generates plasma electrons at the rate

∂t(n/ng) = [1− (n/ng)]W, (16)

where ng is the atomic gas density (of the ions in the charge state used for ionization trapping). The initial distribution
of electrons will be given by the ionization rate distribution Eq. (5), provided that the charge state is not fully-ionized
before reaching the peak field of the laser envelope. Figure 5 shows the solution to Eq. (16) for the fractional ionization
n/ng for (a) ai = 0.14, where the peak field of the laser is below that required to fully ionize on-axis, and (b) ai = 0.2,
where the peak field of the laser is sufficiently high to fully ionize before reaching the laser envelope peak. Here we are
considering ionization of Krypton gas, Kr8+ → Kr9+ (UI = 230 eV), using a 0.4 µm laser with length kiLi = 32. As
Fig. 5 illustrates, the distribution of ionized electrons is altered from a Gaussian form if the charge state is fully-ionized
before reaching the peak of the laser.

If the atomic state is fully ionized (n/ng ' 1) after the laser envelope reaches some threshold field before the
laser envelope peak af < ai, then we expect the transverse momentum of the ionized electrons to saturate at, using
Eq. (10),

σpx '
(

3πre
α2λi

)1/2(
UH
UI

)3/4

a
3/2
f , (17)

for af < ai. For the parameters of Fig. 5 [and Fig. 3(b)], the gas is fully ionized for the state Kr8+ → Kr9+ at
af ' 0.15, and Eq. (17) yields σpx ' 0.34. Figure 6 shows the rms transverse momentum σpx (blue points) versus
normalized laser field amplitude ai, after interaction with the ionization laser pulse calculated using the PIC code
warp in 2D with the laser polarization out of the simulation plane. Figure 6 considers an ionization laser with
λi = 0.4 µm, and FWHM duration 16 fs, ionizing a Krypton gas in a background plasma of density 2 × 1017 cm−3.
The blue dashed curve (for ai < af ) is Eq. (14), and the blue dotted line (for ai > af ) is the saturated value Eq. (17).

As Fig. 5(b) illustrates, the transverse distribution of ionized electrons will be approximately uniform, out to the
threshold field amplitude for fully ionizing the gas: af = ai exp(−x2f/w2

i ). Therefore we expect the initial rms
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FIG. 6: The rms transverse momentum of the ionized electron distribution, after the ionization laser pulse, σpx (blue points)
and the rms size of the transverse spatial distribution of ionized electrons normalized to the laser spot size σy/wi (red circles)
obtained from PIC simulations. The ionization laser has λi = 0.4 µm, and FWHM duration 16 fs, ionizing a Krypton gas,
Kr8+ → Kr9+ (UI = 230 eV), in a background plasma of density 2 × 1017 cm−3. The blue dashed curve is Eq. (14), and the
blue dotted line is the saturated value Eq. (17). The dashed red line is Eq. (15), and the red dotted line is Eq. (18).

transverse size of the distribution to be approximately

σx ' xf/
√

3 = wi

√
ln(ai/af )/3. (18)

Figure 6 shows the rms width of the transverse distribution of ionized electrons (red circles) normalized to the laser
spot size, σx/wi, versus normalized laser field amplitude ai calculated using the PIC code warp. The dashed red
curve (for ai < af ) is Eq. (15), and the dotted red curve (for ai > af ) is Eq. (18). There is good agreement between
the simple model and the PIC simulation results.

To minimize the emittance of the injected beam, it is advantageous to operate below or at the threshold for fully
ionizing the charge state, ai . af , such that the transverse momentum and beam size are reduced. Further increasing
the ionization laser intensity will increase the beam emittance without significantly increasing the trapped charge.

E. Trapped charge

For a sufficiently large plasma wave amplitude, an electron ionized at rest at the proper wake phase will be trapped
in the plasma wave. This condition may be expressed as [33]

1 + φmin − φ(ψi) ≤ γ−1p
[
1 + ax(ψi)

2
]1/2

, (19)

where ψi = kpξ is the phase position in the plasma wakefield of the ionized electron, with k2p = 4πnere and ne the
electron plasma density, γp is the phase velocity of the plasma wave, and φ is the potential of the wakefield (normalized
to mec

2/e), with φmin in the minimum amplitude of the potential. In the limits γ2p � 1 and maximum accelerating

wakefield Em � mec
2kp/e = E0, φmin ' −1 + (E0/Em)2, and the wake phase region where trapping occurs is given

by φ(ψi) ≥ (E0/Em)2.
For an ionization laser pulse ax located at the proper phase ψi of a plasma wave of sufficient amplitude φmin, given

by Eq. (19), electrons ionized at rest will be on trapped orbits, and the amount of trapped charge will be determined
by the number of ionized electrons: Nt = 2πσxσy`ifing, where fi = n/ng is the ionization fraction (cf. Sec. II D)
and `i is the length of the high-Z gas region. Here we assume the length of the high-Z gas region is shorter than
the ionization-laser Rayleigh range, `i < ZRi = πw2

i /λi. If the length of the high-Z gas region is longer than the
ionization laser Rayleigh range, `i & ZRi, then the total charge will be limited by the diffraction of the ionizing laser.

Assuming the high-Z gas is not fully ionized by a laser pulse with a Gaussian transverse profile, σx and σy are given
by Eq. (15), and

Nt ' πw2
i `ifing∆

2, (20)

for `i < ZRi and ∆2 � 1. For example, for ∆ = 0.2, a fully-ionized gas fi = 1, and a Gaussian laser with spot
size wi = 5 µm propagating in a gas density of ng = 2 × 1017 cm−3, the trapped charge per distance propagated is
eNt/`i ' 57 pC/mm. Higher charge can be obtained by extending the interaction distance `i, however this will result
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in a spread in injection times `i/c for the head and tail of the beam and, hence, a larger energy spread is produced.
Equation (20) assumes all the ionized electrons are trapped, and, hence, is valid when the ionizing laser pulse duration
is contained in the wake phase region where electrons ionized at rest are trapped [defined by Eq. (19)] and when the
trapped charge is sufficiently small such that beam loading effects may be neglected.

III. TRANSVERSE MOMENTUM FROM PONDEROMOTIVE FORCE OF IONIZATION LASER

Section II A described the intrinsic momentum spread in the plane of the laser owing to the quiver motion. In
addition to this momentum originating from ionization off-peak of the laser electric field, an electron ionized off-axis,
with respect to the laser propagation direction, will experience the transverse ponderomotive force of the ionization
laser [1]: F⊥/mec

2 = −∇⊥γ⊥, where γ2⊥ = 1 + a2i /2 and linear polarization is assumed. For a Gaussian transverse
laser profile, the ponderomotive force is

F⊥
mec2

=
a2i
γ⊥

x⊥
w2
i

e−2r
2/w2

i . (21)

If the electron is ionized near the peak of the laser, r � wi, the momentum gained from the laser ponderomotive force
is approximately

u⊥PMF ≈
(√
πLi/2

) a2i
w2
i γ⊥

x⊥. (22)

Equation (22) assumes wi/Li � u⊥PMF, i.e., the ionized electron slips through the laser before being ponderomotively
expelled transversely.

In the transverse plane orthogonal to the laser polarization, electrons are ionized off axis with an rms width in
initial transverse position given by Eq. (15), σy = σψwi/

√
2 ' wi∆/

√
2. Hence the rms momentum gained from the

ponderomotive force of the laser is

σpy ≈
(√

π

8

Li
wi

)
a2i
γ⊥

∆, (23)

for ∆2 � 1.
The transverse momentum gained from the quiver motion in the plane of laser polarization (proportional to the

longitudinal laser phase position at ionization) and the transverse position at ionization are uncorrelated 〈uxx〉 = 0.
Therefore, using Eq. (14), the rms momentum gained in the plane of laser polarization, including the ponderomotive
kick from the ionization laser σpx = 〈(ux + uxPMF)2〉1/2, is

σpx = ai∆

[
1 +

(
2n∗ − |m| − 11

2

)
∆2 +

π

8

(
Li
wi

ai
γ⊥

)2
]1/2

, (24)

for ∆2 � 1. The momentum gained from the transverse ponderomotive force in the plane of polarization will be an
important contribution to the rms momentum spread for parameters such that (Li/wi)ai/γ⊥ ∼ 1.

IV. EMITTANCE

The nature of the laser tunneling ionization mechanism sets a minimum (intrinsic) initial injected normalized
beam emittance after exiting the ionization laser. In the following we assume that the ionization laser is located in
the plasma wave such that ionized electrons reside on trapped and focused orbits. The momentum gained from the
ponderomotive force of the ionization laser will not contribute to the initial transverse rms emittance (i.e., the thermal
emittance) since the momentum gained from the ponderomotive force is correlated to the transverse position: from
Eq. (22),

〈u⊥PMFx⊥〉 =

(√
π

2

Li
w2
i

a2i
γ⊥

)
〈x2⊥〉. (25)

In the transverse plane orthogonal to the laser polarization, the initial rms emittance after passage through the
ionization laser is ε2y = σ2

pyσ
2
y − 〈yuyPMF〉2 = 0.
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In the plane of laser polarization, the initial rms transverse normalized emittance εx =[
σ2
xσ

2
px − 〈x(ux + uxPMF)〉2

]1/2
is

εx ' aiwi∆2/
√

2 =

(
3πre√

2α2

)(
UH
UI

)3/2
wia

2
i

λi
, (26)

for ∆2 � 1. Equation (26) is the thermal emittance of the beam after ionization and passage through the ionization
laser pulse, in the laser polarization plane, and is a function of the ionization potential of the gas, the laser wavelength,
amplitude, and spot size. Note that, for ∆ . 1, higher-order corrections to the emittance to order O(∆3) may be
included by retaining the corrections owing to laser envelope, the nonlinear dependence of momentum on phase
position [cf. Eq. (9)], and the non-exponential dependence on the ionization rate [cf. Eq. (6)], as discussed in Sec. II.

As the trapped electrons exit the ionization laser, they begin to rotate in phase space determined by the plasma
wakefield. A detailed discussion of the dynamics of the ionized electrons in the plasma wakefield is presented in
Ref. [38]. In the following we will consider a linear focusing force provided by the plasma wakefield, with the betatron
wavenumber kβ related to the focusing force of the plasma wakefield: γk2βr ' kp(Er − Bθ)/E0. In the bubble or

blow-out regime, where an ion cavity is formed by the driver, kβ = kp/
√

2 initially (i.e., for γ ' 1).
In the plasma wakefield, the initial rms betatron amplitude is

rβ =
(
σ2
⊥ + σ2

p⊥
/k2β
)1/2

. (27)

For a matched beam kβσ⊥ = σp⊥ , and rβ =
√

2σ⊥ ≈ wi∆, for ∆2 � 1. In general, the ionized injection beam will be
mis-matched to the plasma wakefield focusing forces and phase mixing will result in emittance growth [38]. As the
electrons are accelerated, the betatron wavenumber decreases kβ ∝ γ−1/2. Provided the acceleration is adiabatic with

respect to the betatron frequency, the betatron amplitude decreases rβ ∝ γ−1/4, and the normalized emittance will
be preserved during acceleration: ε⊥(γ ∼ 1) ≈ ε⊥(γ). The final transverse emittance, saturated after phase-mixing
via phase-space rotation, is

ε⊥ = kβr
2
β/2 =

(
kβσ

2
⊥ + σ2

p⊥
/kβ
)
/2. (28)

Consider a small amplitude ionization injection pulse ai � 1 such that the ponderomotive kick may be neglected.
In the limit ∆2 � 1, Eq. (28) predicts the emittance in the plane of laser polarization after saturation via phase
mixing is

εx =
(
k2βw

2
i + 2a2i

) ∆2

4kβ
. (29)

For kβ ≈ σpx/σx, or ai ≈ (kβwi)/
√

2, the beam is injected approximately matched to the focusing forces of the
wakefield, and the intrinsic thermal emittance after ionization injection is preserved, i.e., Eq. (29) reduces to Eq. (26).
Matched injection can be achieved, for example, using the two-color ionization injection scheme [37], as discussed in
Sec. IV A. The emittance out of the plane of polarization after saturation via phase mixing is

εy = kβw
2
i∆

2/4. (30)

In the limit of sufficiently small laser amplitude such that ai � kβwi/2, the emittance is dominated by the transverse
spatial distribution of the ionized electrons and the initial transverse momentum may be neglected. In this regime the
transverse emittance will be approximately symmetric εy ' εx. Also in this limit, we expect a linear relation between
the emittance and trapped charge; using Eqs. (20) and (30), the trapped charge is Nt = (4π`ifing/kβ)εy.

A. Case: Two-color ionization injection

In the two-color ionization injection method [37], a long-wavelength pump pulse, with large ponderomotive force
and small peak electric field, excites a wake without fully ionizing a high-Z gas. A short-wavelength injection pulse,
with small ponderomotive force and large peak electric field, co-propagating and delayed with respect to the pump
laser, ionizes a fraction of the remaining bound electrons at a trapping phase of the plasma wave, generating an
electron beam that is accelerated by the wake. Figure 1 shows an illustration of the two-color ionization injection
geometry obtained from a 3D PIC simulation using the code warp.

Using two-color ionization injection, a matched beam can be injected in the plane of laser polarization. For
example, consider the two-color ionization case show in Fig. 1 where a plasma wake excited by a circular-polarized,



11

FIG. 7: Transverse phase space (in the plane of laser polarization) of ionized electrons after passage through the laser. Dashed
line shows the orbit of an electron in the plasma wave with initial transverse position rβ . (Two-color ionization injection
parameters are the same as Fig. 1.)

FIG. 8: Transverse phase space (out of the plane of laser polarization) of ionized electrons after ionization region kβLi ' 1.9,
with transverse rms emittance εy ' 0.011 µm. (Two-color ionization injection parameters are the same as Fig. 1.)

5 µm-wavelength laser pulse with a0 = 1.17, 92 fs FWHM duration, and spot size w0 = 36 µm, propagating in a
plasma of density n0 = 2× 1017 cm−3 (λp = 75 µm) doped with Krypton gas. The pump pulse ionizes the Krypton
to Kr8+ without trapping electrons. A linear-polarized injection laser pulse with ai = 0.135, wi = 5 µm, λi = 0.4 µm,
and 16 fs FWHM duration, is delayed with respect to the pulse driving the plasma wave such that ionized electrons
Kr8+ to Kr9+ are trapped in the wake. For these parameters kβwi/

√
2 ≈ ai, and Eq. (26) predicts the (matched)

emittance is εx ' 0.02 µm. Figure 7 shows the transverse phase space in the plane of laser polarization of the
approximately matched beam obtained from a 3D PIC simulation for these parameters using the code warp. The
numerically calculated normalized transverse emittance for the simulated beam shown in Fig. 7 is εx ' 0.021 µm, in
good agreement with Eq. (26). The dashed curve in Fig. 7 is the orbit in transverse phase space of an electron with
initial radial position of

rβ = [1 + 2a2i /(kβwi)
2]1/2wi∆/

√
2. (31)

The matched injection shown in Fig. 7 is for the beam transverse phase space in the plane of laser polarization.
Figure 8 shows the transverse phase space for the same beam in the transverse plane orthogonal to the laser polar-
ization. In the transverse plane orthogonal to the laser polarization the injected beam is mis-matched to the wake
focusing forces. The phase space distribution is due to the fact that the high-Z gas region (where ionization injection
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FIG. 9: The normalized emittance evolution in the laser polarization plane εx (black curve) and orthogonal to the laser
polarization plane εy (red curve). (Two-color ionization injection parameters are the same as Fig. 1.)

occurs) in the simulation is limited to `i = 50 µm. As the laser propagates through the high-Z gas region, electrons
are ionized and trapped, while earlier trapped electrons rotate in phase space. The total betatron phase advance of
the electrons injected first compared to the final injected electrons (after `i propagation of the laser) is ∆ψβ ≈ kβ`i.
For ∆ψβ < π the transverse phase space ellipse is only partially filled, as illustrated in the example shown in Fig. 8.

In this case ∆ψβ < π, the emittance will be reduced by a factor of [1−sin2(∆ψβ)/(∆ψβ)2]1/2 [38]. For the parameters
of Fig. 8, the reduced emittance,

εy ' (kβw
2
i∆

2/4)

[
1− sin2(kβ`i)

(kβ`i)2

]1/2
, (32)

is εy ' 0.01 µm. The rms transverse emittance of the PIC generated beam shown in Fig. 8 is εy ' 0.011 µm,
in agreement with Eq. (32) with `i = 50 µm. Following the short injection region kβ`i < π, the particle orbits
will undergo betatron motion (and acceleration) in the fields of the wake. Phase mixing will occur, due to energy
spread and pulse length effects, and, after a sufficiently large number of betatron periods, the projected emittance will
typically saturate to Eq. (30). Figure 9 shows the normalized emittance evolution in the laser polarization plane (εx,
black curve) and orthogonal to the laser polarization plane (εy, red curve). For these parameters (same as Figs. 1, 7,
and 8) the emittance of the injected beam is matched in the plane of laser polarization εx ≈ constant. The emittance
in the plane orthogonal to the laser polarization εy grows until the end of the high-Z gas region (`i = 50 µm), then

reduces due to evolution of the betatron frequency as the electrons are accelerated (kβ ∝ γ1/2) [38] (betatron phase
mixing has not fully occurred over 1 mm of propagation). The trapped charge for the beam shown in Figs. 7 and 8
is Nt ' 0.35 pC, in good agreement with the prediction of Eq. (20) (where n/ng ≈ 0.5).

B. Case: Laser ionization injection in beam-driven plasma wakes

Since field ionization by the beam driver can be small, this reduces the intensity required for the ionization laser.
In this case, the ionization laser amplitude typically satisfies ai � kβwi/2, and the emittance is dominated by the
transverse spatial distribution of the ionized electrons (with approximately symmetric transverse emittance, εy ' εx).
For a plasma wakefield in the cavitated (blow-out) regime (where kβ = kp/

√
2γ),

εy ' εx = kpw
2
i ai

(
3πre

4
√

2α2λi

)(
UH
UI

)3/2

. (33)

Equation (33) is typically valid for the parameter regime of the “trojan horse” scheme, as discussed in Ref. [35], where
a low amplitude ionization laser pulse is delayed with respect to an electron beam driver for wakefield excitation.
Using the parameters in Ref. [35], ai = 0.018, wi = 4 µm, UI = 24.6 eV (He gas), λi = 0.8 µm, and λp = 60 µm,
Eq. (33) predicts εx ' εy ' 0.026 µm. Equation (33) has the scaling εy ∝ w2

i ai, in contrast to the estimate given in
Ref. [35]. Note that, if the high-Z gas is fully-ionized (e.g., as for the parameters considered in Ref. [38]) the saturated
emittance is Eq. (28) with σ⊥ given by Eq. (18).
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The betatron wavenumber decreases with increasing energy as kβ ∝ γ−1/2, and, assuming adiabatic energy gain,

the betatron amplitude decreases as rβ ∝ γ−1/4. The beam divergence also decreases with energy θ ' γ−3/4kβrβ . In
the limit of ai � kβwi/2 and in the cavitated regime, the beam divergence is

θ ' γ−3/4kpwi∆/2. (34)

Using the parameters in Ref. [35], ai = 0.018, wi = 4 µm, UI = 24.6 eV (He gas), λi = 0.8 µm, and λp = 60 µm,
Eq. (34) predicts a divergence of θ ≈ 1.1 mrad at an energy of 108 MeV (in close agreement with the simulation in
Ref. [35]).

V. SUMMARY AND CONCLUSIONS

In this work we have derived the thermal emittance of an electron beam obtained from ionization injection in
a plasma-based accelerator. The initial transverse phase space distribution created from laser tunneling ionization
was calculated and compared to PIC simulations for a range of laser intensities, spot sizes, wavelengths, and gases.
From the initial beam transverse phase space distribution after ionization and passage through the laser, the thermal
emittance was calculated. A general expression was presented for the final saturated (after phase-mixing) transverse
beam emittance both in and out of the laser polarization plane. The final emittance is shown to be a function of the
plasma density, laser wavelength, field amplitude, spot size, and ionization potential of the gas. The expressions for
the normalized transverse emittance were compared to simulation results and found to be in good agreement.

The transverse normalized emittance after phase-mixing is ε⊥ = kβr
2
β/2 ∼ kβw

2
i∆

2/4 (for a small amplitude

ionization injection laser, ai < kβwi). For a fixed rate of ionization, U
3/2
I λi/ai ≈ constant and ∆2 ≈ constant. For

example, an ionization laser with ai = 0.01 and λi = 0.8 µm ionizing Helium to He2+ (UI = 24.6 eV), as in the
example of ionization injection in a beam-driven wake (cf. Sec. IV B) and an ionization laser with ai = 0.15 and
λi = 0.4 µm, ionizing Krypton to Kr9+ (UI = 230 eV), as in the example of ionization injection in a laser-driven wake
(cf. Sec. IV A), both yield ∆ ' 0.22. Although the quiver momentum ai is an order of magnitude smaller for the
case of Helium ionization, we expect a similar beam emittance can be achieved in the plasma accelerator for a given
injection laser spot size (wi) and plasma wakefield amplitude (kβ).

To minimize the emittance of the injected beam, it is advantageous to operate at the threshold for fully ionizing
the charge state, such that the transverse momentum and beam size are reduced. Further increasing the ionization
laser intensity will increase the beam emittance without significantly increasing the trapped charge. In this regime
the trapped charge is linearly proportional to the emittance, ε⊥ = kβr

2
β/2 ∼ kβw

2
i∆

2/4 ∝ Nt. For fixed ionization

rate (fixed ∆) and fixed plasma focusing (fixed kβ), the emittance may be reduced by decreasing the ionization laser
spot size, and further minimization of the emittance will be limited by the focusability of the laser, wi > λi. The
beam charge may be increased by increasing the length of the high-Z gas region, however, increasing the interaction
length `i will result in larger energy spreads and beam loading will eventually become important.

The general results presented in this work can be applied to a variety of ionization injection schemes and geometries
in plasma-based accelerators, independent of the wakefield driver, and enable the design and optimization of plasma-
based accelerators using ionization injection for the generation of ultra-low emittance beams.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department
of Energy under Contract Nos. DE-AC02-05CH11231 and DE-FG02-12ER41798, and by the DOE SCIDAC program
COMPASS. This research used computational resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.
This work was supported in part by the National Basic Research Program of China (Grant No. 2013CBA01504) and
the National Natural Science Foundation of China (Grant No. 11405107).

[1] E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).
[2] O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismail, X. Davoine, G. Gallot, J. Goddet, E. Lefebvre, V. Malka,

et al., Nature Phys. 7, 219 (2011).



14
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