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The road to purified hematopoietic stem cell transplants is 
paved with antibodies

Aaron C. Logan1,2, Irving L. Weissman2, and Judith A. Shizuru1,2

1Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University 
School of Medicine, Stanford, CA

2Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of 
Medicine, Stanford, CA

Abstract

Hematopoietic progenitor cell replacement therapy remains a surprisingly unrefined process. In 

general, unmanipulated bone marrow or mobilized peripheral blood grafts which carry potentially 

harmful passenger cells are administered after treating recipients with high-dose chemo- and/or 

radiotherapy to eradicate malignant disease, eliminate immunologic barriers to allogeneic cell 

engraftment, and to “make space” for rare donor stem cells within the stem cell niche. The 

sequalae of such treatments are substantial, including direct organ toxicity and non-specific 

inflammation that contributes to the development of graft-versus-host disease and poor immune 

reconstitution. Passenger tumor cells that contaminate autologous hematopoietic grafts may 

contribute to relapse post-transplant. Use of antibodies to rid grafts of unwanted cell populations, 

and to eliminate or minimize the need for non-specifically cytotoxic therapies used to condition 

transplant recipients, will dramatically improve the safety profile of allogeneic and gene-modified 

autologous hematopoietic stem cell therapies.

Introduction

The fundamental goal of hematopoietic cell (HCT) and stem cell (HSCT) transplantation — 

both autologous and allogeneic — is to replace defective, malignant, or chemotherapy-

damaged stem cells. For most patients undergoing this type of stem cell replacement therapy, 

recipient conditioning has traditionally involved high doses of cytotoxic and/or 

immunosuppressive chemotherapy, with or without adjunctive radiation to all or part of the 

body. Hematopoietic rescue or cell replacement is currently achieved by infusion of 
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unmanipulated hematopoietic cell products carrying passenger cells with the potential to 

cause harm to the recipient. Given the diversity of conditions that are treated with HCT/

HSCT, a uniform approach to conditioning is neither practical nor desirable. Rather, a 

balance between targeted disease eradication, graft manipulation, and immunosuppression 

tailored to individual malignant and non-malignant indications for HSC transplantation will 

prevail.

The primary directive of autologous HCT/HSCT is to regenerate stem cell reservoirs 

damaged by a malignancy such as lymphoma or myeloma or by the chemotherapy used to 

treat these conditions. In this setting, the use of antibodies during conditioning may 

primarily be focused on improving disease control or decreasing regimen toxicity. In the 

case of lymphoma, a monoclonal antibody (mAb) has also been used to purge autografts of 

lymphoma progenitors [1]. Since the advent of clinical antibody therapy with OKT3, an 

immunosuppressant murine anti-human CD3ε mAb [2], and the widespread use of 

Rituximab, a mouse/human chimeric mAb directed at the human CD20 antigen expressed on 

B lineage lymphomas and leukemias [3], therapeutically useful antibodies to targets in 

several other malignancies have been developed [4**]. These agents may be employed to 

eradicate malignant cells in patients receiving autologous transplants; however, it is critically 

important to develop a strategy that ensures passenger tumor cells are not reinfused with the 

HCT product.

Antibody selection using technologies to sort purified HSC by immunomagnetic beads 

and/or fluorescence activated cell sorting (FACS) are alternative and perhaps preferable 

methods for providing autologous HSC grafts free of contaminating tumor cells. This 

approach is relevant to several malignant diseases treatable with myeloablative 

chemotherapy and rescue with autologous HCT, including lymphomas, multiple myeloma, 

germ cell tumors and carcinomas. Administration of antibody-purified, cancer depleted HSC 

grafts may prevent the reinfusion of circulating tumor cells.

When malignant or immunogenetically defective stem cells and hematopoietic populations 

are targeted for replacement by allogeneic HCT, the requirements of the conditioning 

regimen are more substantial. Lethality to endogenous stem cells is required, but, in 

addition, sufficient immunosuppression must be achieved to prevent host-versus-graft 

(HVG) mediated immunologic graft rejection [5*]. Furthermore, ongoing 

immunosuppression is required post-transplant to attenuate graft-versus-host disease 

(GVHD) caused by donor T cells in unmanipulated HCT grafts [6].

Here we provide a discussion about use of mAbs for: 1) improving conditioning regimens by 

facilitating host stem cell depletion, thus removing physical barriers to engraftment into the 

stem cell niche, 2) facilitating HSC graft purification, and 3) enhancing immunosuppression 

to enable engraftment of stem cells across histocompatibility barriers.

Conditioning strategies: Radioimmunoconjugates

Antibodies conjugated with radionuclides have been shown to effectively deliver 

radiotoxicity to tumors. This technology is adaptable to use in radiation-mediated 
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myeloablation of bone marrow stem and progenitor cells. To date, most approaches have 

utilized non-HSC-specific targets that are present in the bone marrow, such as CD45, a pan-

leukocyte antigen. When antibody-bound radionuclides concentrate in the marrow due to 

affinity to such targets, the HSC are subjected to genotoxic radiation either by virtue of the 

fact that they also express the antigen, or via a bystander effect (so-called “cross-fire 

effect”), in which case HSC are physically situated in close proximity to other cells with the 

cognate antigen to which the antibody binds [7,8*]. The rationale for intensifying 

radiotoxicity to the marrow with this strategy is based upon experience using total body 

irradiation (TBI) to condition patients for allotransplantation. Increasing the dose of TBI 

reduced relapse and ensured achievement of full donor chimerism (ie, higher level and 

longer lasting multi-lineage donor engraftment), but escalating doses are associated with 

increased regimen-related mortality and GVHD [9,10]. Radioimmunoconjugates enable the 

delivery of higher radiation exposures specifically to hematopoietic tissues, thus sparing 

exposure to other critical organs.

The safety of 131I-labelled monoclonal antibodies to CD45 was originally demonstrated in 

mice [7], non-human primates [11], and then humans [8,12], by investigators at the Fred 

Hutchinson Cancer Research Center. This approach has since been adapted to clinical use by 

other investigative groups. Other non-HSC-specific antigens which have been targeted 

include CD33 [13–15] and CD66 [16]. Original studies of this approach utilized monoclonal 

antibodies conjugated with beta particle emitters such as 131I [12,17], 188Re [16], and 90Y 

[18]. These radionuclides are not entirely suited to this application due to deep tissue 

penetration of beta particles, which may be associated with undesirable toxicities. As an 

alternative, alpha emitters such as 213Bi [19,20–21] and 211At [19,22], which have tissue 

penetration path lengths of 40 to 90 μm, are being investigated to limit off-site toxicities and 

increase the therapeutic index of these treatments [23*]. Nevertheless, comprehensive 

elimination of endogenous HSC with these short-range reagents will likely depend on 

targeting antigens that are present on HSC, due to decreased by-stander effect.

A further refinement of the radioimmunoconjugate approach is the development of pre-

targeting strategies, in which a streptavidin conjugated antibody is administered and time is 

permitted for its accumulation in the target tissue (e.g., bone marrow) [23*,24]. A biotin-

bound radionuclide is then administered, and because the radionuclide-bound protein is 

rapidly excreted in urine if it is not retained by binding to the pre-targeted antibody-

streptavidin complex, off-site radiotoxicity is minimized.

Conditioning regimens: Unconjugated antibodies

As an alternative to using mAbs to deliver toxic payloads, unconjugated mAbs can be 

effectively applied to targeted elimination of specific cell populations. The therapeutic 

effects of these antibodies rely on functional characteristics of the specific immunoglobulin 

molecule produced by the mAb-generating hybridoma. Potential mechanisms to facilitate 

stem cell depletion include lysis of target cells by complement fixation, apoptosis induction 

by surface antigen cross-linking or growth factor deprivation, antibody-mediated cellular 

cytotoxicity, and antibody-dependent phagocytosis.
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France and colleagues used two rat anti-human CD45 mAbs which work synergistically to 

fix complement and lyse cells via assembly of a membrane attack complex [25**]. Although 

HSC express abundant CD45, as do all hematopoietic cells in the bone marrow, treatment 

with these mAbs was not associated with significant depletion of marrow progenitor cells or 

enhancement of engraftment in syngeneic mice [26], but did show some activity in clearance 

of leukemic blasts from the bone marrow in humans [27]. These mAbs were recently 

employed in a reduced-intensity conditioning regimen for congenital immunodeficiencies, in 

conjunction with fludarabine, cyclophosphamide, and alemtuzumab (anti-CD52) [28**]. 

Although the regimen was well-tolerated and high-level donor chimerism was achieved, the 

contribution of the lytic anti-CD45 mAb treatment in the context of these other agents 

remains to be further clarified.

Another way mAb targeting may be used to deplete normal and malignant cells involves 

deprivation of protective barriers between these cells and components of the innate immune 

system. For instance, the cell surface protein CD47 prevents phagocytosis of migrating stem 

cells by providing inhibitory signals to macrophages via binding to SIRPα and is 

upregulated on HSC and all human leukemias [29]. When CD47:SIRPα interactions are 

blocked, pro-phagocytic signals mediated by another surface protein, calreticulin, 

predominate [30*]. Blocking mAbs to CD47 have been developed which enable 

phagocytosis of otherwise protected cell populations such as mobilized stem cells and 

malignant progenitors [31**]. Normal HSC express lower levels of calreticulin as compared 

to malignant cells explaining why this approach has been demonstrated to eliminate cancer 

stem cells in xenogeneic models of acute myelogenous leukemia [32**] acute lymphoid 

leukemia [33*], and several solid tumors [34**,35] while sparing normal hematopoiesis. 

Anti-CD47 based therapies are rapidly moving toward clinical application and may 

ultimately play a role in clearing stem cell niches of malignant progenitors.

Monoclonal antibodies to cell surface receptors that inhibit interactions with critical ligands 

represent a potentially powerful mechanism to induce specific stem cell depletion. Targeting 

HSC surface antigens which are linchpins to their survival or required for the maintenance 

of pluripotency is a goal of this research. Czechowicz and colleagues demonstrated the 

feasibility of using mAbs to CD117 (c-kit) that block interactions with its ligand stem cell 

factor (aka, kit ligand or steel factor), as an approach for facilitating host HSC depletion and 

donor HSC engraftment in histocompatible mouse strains [36**]. Anti-CD117, when 

administered to immunodeficient Rag2−/− or Rag2−/−IL2Rγc−/− mice — which are models 

for human severe combined immunodeficiency (SCID) variants lacking B and T cells (as 

well as natural killer [NK] cells in the case of IL2Rγc−/−) — leads to deep depletion of 

long-term HSC and all downstream c-kit-expressing progeny [36**]. When adequate time is 

permitted for antibody catabolism, allogeneic HSC engraft at significantly higher levels in 

anti-CD117-treated animals than observed in unconditioned animals. We have since found a 

clinical-grade humanized anti-human CD117 mAb that capably depletes human HSC in a 

xenograft model (unpublished) and this approach will soon be evaluated as an allotransplant 

conditioning method in patients with SCID.

Interestingly, when used as a monotherapy, anti-CD117 mAbs do not adequately deplete 

endogenous HSC or facilitate allogeneic HSC engraftment in immunocompetent animals 
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[36**]. Via mechanisms which have yet to be fully elucidated, cells not present in SCID 

animals, but present in immunocompetent hosts, appear to partially protect HSC from 

depletion in the setting of c-kit blockade. Nevertheless, Xue and colleagues demonstrated 

engraftment of congenic hematopoietic progenitors in immunocompetent mice treated with 

anti-CD117 and low dose radiation [37]. Even low dose radiation, however, has the potential 

to confer long-term risks, particularly in children, so it remains an important goal to develop 

regimens that permit anti-CD117-mediated HSC depletion without adding significant 

additional toxicity.

Graft preparation: Antibody-purified autologous HSC

A misnomer in the field of cellular therapy is the practice commonly called autologous 

“stem cell” transplantation. Autografts comprised of unmanipulated G-CSF mobilized 

peripheral blood (MPB) cells are routinely used to rescue hematopoiesis following high-

dose chemotherapy, which as a side effect causes myeloablation. Antibody-purified HSC 

grafts can substantially reduce the likelihood of reinfusing circulating tumor cells in this 

context. Monoclonal antibody reagents may be used to either deplete tumor cells based on 

their expression of specific antigens, or to sort pure stem cell populations away from other 

cells in MPB, as is commonly practiced when HSC are enriched by CD34 expression [38–

40,41*]. It is important to recognize, however, that CD34 is not expressed exclusively on 

HSC, and indeed some non-hematologic malignancies may be CD34+ [41*,42*], so this 

practice does not yet offer a satisfactory solution for purifying HSC grafts of circulating 

tumor cells. This fact necessitates the development of other mAb reagents of good 

manufacturing practice (GMP) quality to achieve better HSC purification.

CD34+CD90+ (Thy1+) selected MPB HSC sorted by FACS were evaluated for use in 

autografting for multiple myeloma after it was demonstrated that this phenotype excluded 

myeloma progenitor cells [43*]. Sorting on the additional parameter of CD90 expression 

eliminates roughly 50–60% of CD34+ cells in G-CSF MPB that do not have long-term 

engraftment capacity, and facilitates purification of HSC from malignant cells. The first 

study using these highly enriched HSC in myeloma treated 9 patients and demonstrated a 

delay in neutrophil and platelet engraftment; however, the study was not designed to identify 

a threshold cell dose required for adequate engraftment [44]. A contemporaneous study by 

another group using the same CD34+CD90+ selection method treated 23 myeloma patients 

with a similar conditioning regimen and observed four engraftment failures (four patients 

failed to recover adequate platelet counts, and three remained dependent on G-CSF to 

prevent neutropenia) [45*]. This study defined a minimum CD34+CD90+ HSC dose of 

8x105 cells per kilogram recipient weight, above which no engraftment failures were noted 

and no delays to neutrophil or platelet recovery were observed [45*].

Vose and colleagues autografted 20 non-Hodgkin lymphoma (NHL) patients with 

CD34+CD90+ HSC after high-dose chemotherapy [46]. Autograft products sorted for this 

phenotype were assayed for contaminating tumor cells by PCR quantification of lymphoma-

specific targets, such as mutated bcl-1 or bcl-2. The sort strategy depleted circulating NHL 

cells by a factor of 3–5 fold. Rapid neutrophil engraftment (day 12) and platelet transfusion 

Logan et al. Page 5

Curr Opin Immunol. Author manuscript; available in PMC 2016 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



independence (day 12) was observed with a median CD34+CD90+ cell dose of 5x105 cells 

per kilogram recipient weight. No engraftment failures were observed.

CD34+CD90+ HSC were also used in a single trial of high-dose chemotherapy for metastatic 

breast cancer [42*]. Micro-metastases to bone marrow have been reported in up to 82% of 

patients with stage IV breast cancer [47], substantiating a risk for reinfusion of circulating 

tumor cells in unmanipulated grafts in this non-hematopoietic malignancy. The 

CD34+CD90+ phenotypic sorting strategy eliminated circulating breast tumor cells to a level 

less than 0.0001%, which compared favorably with unmanipulated HCT that were often 

contaminated with cytokeratin positive adenocarcinoma cells [42*]. No engraftment failures 

or delays to neutrophil or platelet engraftment (days 10 and 14, respectively) were observed 

in 22 patients treated on this clinical trial. Long-term follow-up of these patients revealed a 

higher than expected fraction not only remained free of cancer, but maintained normal 

hematopoiesis and peripheral blood counts for as long as 14 years after autologous G-CSF 

mobilized CD34+CD90+ HSC administration [48**]. These findings verify that cells of the 

CD34+CD90+ phenotype rapidly rescue long-term blood formation, and that the efficacy of 

this approach for metastatic breast cancer and potentially other malignancies deserves 

further investigation in clinical trials.

Graft preparation: Purified allogeneic HSC transplantations

In the future, some indications for allogeneic transplantation will likely be supplanted by 

gene-modified autologous HSC replacement. Nevertheless, many malignant and non-

malignant diseases will remain curable only with allogeneic transplantation, the primary 

toxicity of which is GVHD. Using positive selection for CD34+CD90+ cells as discussed 

above can reduce the T cell content of MPB grafts by 1,000,000-fold to a level at which the 

risk of GVHD is substantially reduced. Such antibody-purified allogeneic HSC transplants 

may not be a viable approach for treatment of malignancies until methods for complete 

eradication of all host tumor progenitor cells is achieved, thus eliminating the need for graft-

versus-malignancy (GVM) effects. It is possible, however, that graft manipulation strategies, 

such as provision of T cells with known targets and sortable by tetramer reagents, will 

obviate the need to give crude T cell grafts. Co-transplantation with purified HSC and T cell 

subpopulations with targeted anti-tumor or anti-pathogen activity may be a useful strategy 

for providing stem cell replacement and rapid disease-specific functional immunity to 

improve outcomes. As a proof-of-concept example of this approach, Müller and colleagues 

recently demonstrated transplantation of mice with purified allogeneic HSC plus tetramer-

selected T cells directed against murine cytomegalovirus (MCMV) [49*]. Massive 

expansion of functional anti-MCMV specific T cells with enhanced anti-viral immunity was 

observed in comparison with recipients of HSC plus unselected T cells. De novo T cell 

immunity arising from the donor HSC was also significantly improved [49*], indicating this 

strategy may lead to better qualitative immune recovery than with unmanipulated grafts that 

involve crude whole T cell adoptive transfer.
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Combining antibody conditioning and antibody-purified allogeneic HSC 

grafts

The area of most immediate promise for the use of antibody purified allogeneic HSC and 

targeted host conditioning is in the treatment of non-malignant disease. Graft T cells are 

thought to both confer GVM effects as well as facilitate the engraftment of donor cells 

aiding in the conversion of recipients to fully donor-derived hematopoiesis. Even low 

amounts of adoptively transferred allogeneic T cells are associated with overt GVHD, 

however [39,40,50–52]. Furthermore, subclinical GVHD severely impairs immune 

reconstitution [53*,54*], even when destruction of non-immune tissues is not observed. 

Since neither GVM nor complete donor chimerism are required for effective treatment of 

non-malignant disease, GVHD should be avoidable without compromising the efficacy of 

stem cell replacement.

The multitude of non-malignant disorders curable by partial hematopoietic chimerism 

ranges from congenital immune deficiencies to hemoglobinopathies, lysosomal storage 

diseases, and other marrow failure states. In most of these conditions, low-level mixed donor 

chimerism (ie, 5–30%) is sufficient to correct the hematologic disorder and prevent disease-

related sequalae. Another clinical scenario in which mixed donor chimerism achieved with 

HSCT following reduced-intensity conditioning may be useful is the induction of immune 

tolerance in patients undergoing solid organ transplantation. As proof of concept for this 

latter scenario, Scandling and colleagues recently demonstrated in a clinical study that 

mixed chimerism can be routinely achieved in patients undergoing combined human 

leukocyte antigen (HLA)-matched kidney and hematopoietic cell transplantation thereby 

permitting cessation of immune suppressive drugs with long-term kidney allograft survival 

[55]. Mixed chimerism and immune tolerance was achieved using conditioning with total 

lymphoid irradiation and anti-thymocyte globulin followed by CD34-enriched MPB 

hematopoietic precursors, a regimen utilizing antibody-based immunoablation with 

administration of antibody-enriched HSC.

Another nascent field which will likely be advanced by the availability of antibody-based 

conditioning and purified HSC grafts is the treatment of severe autoimmune disorders. 

Evidence that transplantation of purified allogeneic HSC and establishment of mixed 

hematopoietic chimerism can successfully inhibit autoimmune disease pathogenesis has 

been demonstrated in mice. Beilhack and colleagues showed that transplantation of either 

major histocompatibility complex (MHC)-mismatched or MHC-matched allogeneic HSC 

blocked development of hyperglycemia in diabetes-prone NOD mice by attenuating auto-

reactive peripheral T cells responsible for pancreatic islet destruction [56,57]. Diabetes was 

prevented in NOD mice treated with non-marrow ablative radiation and establishment of 

multi-lineage mixed donor/host chimerism. In a mouse model of systemic lupus 

erythmatosus (SLE), Smith-Berdan and colleagues similarly showed that induction of mixed 

chimerism by transplantation of purified allogeneic HSC after nonmyeloablative 

conditioning reversed the symptoms of established disease, including proteinuric lupus 

nephritis, and lowered the frequency of circulating immune complexes or autoantibodies 
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[58]. These studies support further clinical study of purified HSCT in patients with severe 

autoimmune disorders.

Use of antibodies to overcome allogeneic immune barriers

Although promising and technically within reach, the proposed use of purified allogeneic 

HSC grafts for the routine treatment of non-malignant diseases will require a paradigm shift 

in the practice of preparing patients for stem cell transplants. Regimen-related toxicities that 

may have an acceptable benefit-risk ratio and confer therapeutic effects against malignancies 

can be made unnecessary for non-malignant diseases if alternative approaches to permit 

engraftment are established. Given that the major barriers to allogeneic HSC engraftment are 

host immune cells (primarily T and NK cells) and resident HSC it is possible to target and 

eliminate these populations with antibodies.

Attempts have been made to develop T cell specific mAb reagents such as anti-TCRαβ in 

murine [59] and canine [60,61] HSC transplant models; however, no such reagents have yet 

been employed therapeutically in human trials. Rather, polyclonal antibody preparations 

such as anti-thymocyte globulin (ATG) and non-T cell specific monoclonal antibodies such 

as alemtuzumab, an antibody to CD52, which leads to depletion of T, B, NK, and some 

myeloid cells, are increasingly being used clinically to facilitate immunosuppression of 

allotransplant recipients, with conflicting results regarding benefit [62–64].

Alternatively, mAb reagents targeting T cell co-stimulatory molecules are being advanced to 

clinical trials to facilitate development of peripheral immunologic tolerance and prevent 

graft rejection [65]. CTLA4-Ig, which interrupts CD28:CD80/CD86 (B7-1/B7-2)-mediated 

costimulation, demonstrated promising activity for development of immunologic tolerance 

to hematopoietic and other grafts in mice [66], but has not yet translated to use in human 

HSC transplantation. Antibodies to CD154 (CD40 ligand), which mediates antigen-

presenting cell activation when ligated to CD40, were shown to facilitate the development of 

mixed chimerism in mice receiving fully MHC mismatched bone marrow grafts without 

other conditioning [67*]. Unfortunately, attempts to translate this clinically were halted 

when anti-CD154 mAbs were found to precipitate arterial and venous thromboemboli, likely 

due to aggregation of CD154-expressing activated platelets [68]. Combination of CTLA4-Ig, 

a non-depleting mAb to CD40, and sirolimus, which blocks T and B cell response to IL-2, 

was recently shown to facilitate development of mixed donor chimerism and immunologic 

tolerance in a non-human primate model of unmanipulated bone marrow transplantation, and 

may represent a clinically translatable approach for induction of immune tolerance to 

purified HSC grafts [69].

The combination of these lymphodepleting or lymphosuppressive reagents, together with 

antibodies that target endogenous marrow and/or HSC populations (as discussed above), will 

be required to overcome host resistance and allow the engraftment of purified allogeneic 

HSC. A similar need for deep immunosuppression of the recipient is also needed when 

gene-modified autologous HSC are given, since the product of the corrected gene, in most 

cases, represents a neo-antigen to the recipient and thus a target for HVG immune rejection 

[70–72].
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Concluding remarks

Monoclonal antibody reagents are increasingly important in the design of clinical trials 

addressing methods for improving patient outcomes in autologous and allogeneic 

transplantation by reducing regimen-related toxicities and improving eradication of diseased 

or damaged hematopoietic stem cells. Immunosuppression required for engraftment of cells 

with minor (and, potentially, major) histocompatibility differences from the recipient will 

increasingly rely on targeted immune therapies. Antibody reagents will also play an 

increasingly critical role in the isolation and clinical separation of stem cell populations from 

other contaminating cells. These approaches to eradication of stem cells, malignant or 

otherwise, using functionally active mAbs in combination with immunodepleting mAb 

therapies, will enable minimally-toxic stem cell replacement with material from multiple 

potential sources, including gene-modified autologous cells, allogeneic stem cells, and 

potentially embryonic stem cells and induced pluripotent stem cells.
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Highlights (for review)

• We discuss different methods for using monoclonal antibodies to 

improve conditioning regimens for hematopoietic stem cell 

transplantation

• We discuss methods for using antibodies to purify hematopoietic stem 

cells to remove potentially harmful passenger cells

• We discuss use of antibodies to enhance immunosuppression to 

enhance engraftment of allogeneic hematopoietic stem cells
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