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Abstract

Towards a Smart Drone Cinematographer for Filming Human Motion

by

Chong Huang

Affordable consumer drones have made capturing aerial footage more convenient and

accessible. However, shooting cinematic motion videos using a drone is challenging be-

cause it requires users to analyze dynamic scenarios while operating the controller.

In this thesis, our task is to develop an autonomous drone cinematography system to

capture cinematic videos of human motion. We understand the system’s filming perfor-

mance to be influenced by three key components: 1) video quality metric, which measures

the aesthetic quality – the angle, the distance, the image composition – of the captured

video, 2) visual feature, which encapsulates the visual elements that influence the filming

style, and 3) camera planning, which is a decision-making model that predicts the next

best movement. By analyzing these three components, we designed two autonomous

drone cinematography systems using both heuristic-based methods and learning-based

methods.

For the first system, we designed an Autonomous CinemaTography system – “ACT”

by proposing a viewpoint quality metric focusing on the visibility of the 3D human skele-

ton of the subject. We expanded the application of human motion analysis and simplified

manual control by assisting viewpoint selection using a through-the-lens method. For the

second system, we designed an imitation-based system that learns the artistic intention

of the cameramen through watching professional aerial videos. We designed a camera

planner that analyzes the video contents and previous camera motion to predict future

camera motion. Furthermore, we propose a planning framework, which can imitate a

viii



filming style by “seeing” only one single demonstration video of such style. We named it

“one-shot imitation filming.” To the best of our knowledge, this is the first work that ex-

tends imitation learning to autonomous filming. Experimental results in both simulation

and field test exhibit significant improvements over existing techniques and our approach

managed to help inexperienced pilots capture cinematic videos.

ix



Contents

Curriculum Vitae vi

Abstract viii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Goals and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 6
2.1 History of Consumer Drones . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Robotic Cinematography System . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Virtual Cinematography System . . . . . . . . . . . . . . . . . . . . . . . 9

3 Guiding the Camera based on Viewpoint Quality 11
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 ACT: An Autonomous Drone Cinematography System for Action Scenes 13
3.3 Through-the-Lens Drone Filming . . . . . . . . . . . . . . . . . . . . . . 30

4 Guiding the Camera based on Imitation Learning 50
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Viewpoint-to-Viewpoint Camera Planning . . . . . . . . . . . . . . . . . 53
4.3 Observation-to-Control Camera Planning . . . . . . . . . . . . . . . . . . 66
4.4 One-Shot Imitation Filming . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Conclusion and Future Work 95

A Appendix Title 98

Bibliography 99

x



Chapter 1

Introduction

1.1 Motivation

Storytelling through film is not just about recording the actions. It also requires one

to select the proper viewpoint, plan the camera motion, and design the trajectory. The

emergence of drones has raised the bar for cinematic quality and visual storytelling for

cinematographers. Compared with conventional camera carriers (e.g., tripods, trucks and

cranes), drones benefit from their high mobility to capture more cinematic shots with

continuously varying viewpoints. However, filming human motions with a camera drone

is a very challenging task, because it requires the cameraman to manipulate the remote

controller and meet the desired filming style simultaneously. All of the above require the

camera-person to have not only artistic insights but also the technical skills of camera

control.

With the growing development of the onboard processors, drones become smarter

and more autonomous. Some intelligent functions of the commercial products are de-

veloped to assist beginners to capture cinematic videos. For example, the ActiveTrack

function in DJI Mavic can track the subject while capturing the video of the subject.
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Introduction Chapter 1

An alternative assistant tool (e.g. QuickShots) allows the drone to capture videos along

predefined trajectories. Meanwhile, academic researchers focus on the problem of guiding

camera based on specific configurations of image compositions. Joubert et al. [1] used

the rule of thirds to guide filming static subjects. Nageli et al. [2] designed a model

predictive control policy to track multiple moving subjects based on the customized on-

screen positions. Although these techniques have achieved one-tap autonomous filming,

the captured videos are fairly unexciting. There are three main reasons why this is the

case: 1) the video quality metric is constrained by 2D image composition principles (e.g.,

rules of thirds). 2) The subject’s on-screen appearance is oversimplified as a 2D point or

bounding box. 3) The planning policy based on the single viewpoint metric limits the

creativity of filming.

In summary, metric, feature and policy requirements of the state-of-the-art drone

cinematography system have not yet reached a level that is satisfactory for autonomous

filming. In this thesis, we target the autonomous drone cinematography system which

can capture cinematic videos of human motion. We understand the systems filming

performance to be influenced by three key components:

Video quality metric: Although the video aesthetic quality is subjective, we can

still design some specific metrics to guide the camera to capture visually-pleasing video.

One intuitive way to measure the video quality is based on the image aesthetic quality

(e.g., camera angle, distance, image composition) over all the frames. An alternative solu-

tion is to consider the video as a sequential pattern of camera behaviors. In this context,

the video quality is reflected by frame-to-frame coherency of viewpoint transition.

Visual feature: The design of visual feature determines the quantification perfor-

mance of video quality. The desired visual feature should satisfy two requirements: 1)

robustly describe the visual elements that influence filming style and 2) avoid significant

delay on feature extraction.

2
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Camera planning policy: The planning policy aims to generate a feasible trajectory

to meet the desired effect. The desired planning policy should not only follow the video

quality metric and but also allow the creativity in different scenarios.

In the following Section 1.2, we list the contributions of this thesis and Section 1.3

concludes by outlining the contents of the thesiss Chapters.

1.2 Thesis Goals and Contribution

This thesis concentrates on the autonomous drone cinematography system for captur-

ing cinematic human motion videos. With this goal in mind, we first analyze the cause

for unexciting shot in existing on-tap autonomous flight mode (e.g., DJI ActiveTrack),

and we identify that the viewpoint metric based on 2D image compositions greatly limits

the creativity of aerial filming because it only guides camera movements such as pan and

follow. Based on the analysis, we proposed a quality metric “visibility of the subject,”

which enables the camera to adaptively select the camera angle around the subject based

on the subject’s 3D skeleton. To the end, we design a planning policy to dynamically drive

the camera to the position that maximizes the viewpoint quality of the moving subject.

Furthermore, we expand the application of the human motion analysis to simplify manual

control. We discover that although moving control sticks can directly control a drones

motion parameters (i.e. roll, yaw, pitch, and throttle), controlling these parameters do

not offer a precise control of the movement of objects in the camera screen. To address

this problem, we propose a “through-the-lens drone filming” mode, which assists the

pilots using three key techniques: 1) 3D human localization that enables real-time sub-

ject tracking and 2) “through-the-lens” interface that allows the user to freely customize

viewpoint in the subject-centered coordinates and 3) planning policy that transfers the

camera configuration in virtual environment to the desired camera motion in real-world.

3
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Furthermore, we expand the goal to imitate professional videos and capture more

complicated cinematic shots. We focus on the filming style, which is the specific se-

quential patterns of camera behavior. We learn the artistic intention of the professional

cameramen by minimizing the imitation error. Analyzing the impact of previous obser-

vation on the future camera motions, we design a camera planner which incorporates

the video contents and previous camera motions to predict future camera motions to

capture professional videos. Furthermore, we design a filming style feature based on

the sequential pattern of video content. Using the filming style feature, we propose a

one-shot imitation filming framework, which can imitate a filming style by “seeing” only

a single demonstration video of the same style. This framework can eliminate the need

for training videos for each style. To the best of our knowledge, this is the first work to

extend imitation learning to autonomous filming.

To summarize, the contributions of this thesis include:

• An autonomous drone cinematography system “ACT” based on analysis of 3D

human motion for addressing the problem of repetitive viewpoints in existing auto

filming techniques.

• A semi-auto mode “through-the-lens drone filming” for simplifying manual opera-

tion of the drone to freely customize the viewpoint.

• A filming style feature for representing the temporal interaction between the subject

and the background.

• An imitation filming framework which could imitate the filming style from only a

single demo video, and generalize it in a broader set of situations, eliminating the

need for training videos for each style.

4
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1.3 Organization of Thesis

The thesis is organized as follows. The next Chapter provides the readers with a

background, including the history of consumer drones, robotic cinematography system

and virtual cinematographer. In Chapter 3, I describe the techniques of guiding the

camera based on viewpoint quality. Chapter 4 presents the techniques of guiding the

camera based on imitation learning. Chapter 5 concludes this work and highlights future

research directions.

5



Chapter 2

Background and Related Work

2.1 History of Consumer Drones

During the mid-to-late 2000s, drones continued to grow in popularity among hobby-

ists. In 2010, the French company Parrot released their “AR.Drone,” the first commer-

cially successful ready-to-fly consumer drone, and the first able to be controlled solely

by a Wi-Fi connection. In 2012, DJI released “Phantom 2” powered by the “Intelligent

Li-Po battery”, which enabled flight times of almost 20 minutes. This improvement at-

tracts more and more cameramen to apply the consumer drone in filming industry. In

2014, 3D Robotics released the drone “IRIS+”. With the GoPro camera fitted in a 3-

axis gimbal, it can capture aerial videos with high mobility. In 2016, DJI came out with

the “Phantom 4”, boasting computer vision and machine learning to track an object on

the ground without simply following a GPS track. In addition, the built-in “obstacle

avoidance” function makes it safe to capture videos in clutter environments. Since 2016,

the consumer industry focuses on designing more compact and foldable drones while

keeping almost all of the technology (e.g. obstacle avoidance). The representative drone

products include DJI Mavic Pro (2016), DJI Spark (2017), DJI Tello (2018). With the

6
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development of the onboard hardware, the future consumer drone will be smarter, safer,

cheaper, more autonomous.

2.2 Robotic Cinematography System

Drone Cinematography System Automatic drone cinematography attracts more

and more attention from industry and academia. Some intelligent functions of the com-

mercial products are developed to assist beginners to capture cinematic videos. For

example, “ActiveTrack” mode is designed to fully autonomously follow a subject using a

RGB camera. The 3DR Solo, DJI Phantom, Yuneec Typhoon, AirDog, and Ghost Drone

all feature a “ActiveTrack” mode that tracks subjects. Another one-button autonomous

flight function is to allow drone to capture the video along the predefined trajectory, e.g.,

DJI “QuickShot”. DJI “QuickShot” provides four flight modes “Rocket, Dronie, Circle,

Helix”, all of which allow the user to get different types of shots throughout the time.

In academia, researchers combines the principles of image compositions and charac-

ters’ pose information to capture more professional shots. Joubert et al. [1] utilize the

visual composition principle to guide the camera control. Although the system has been

successfully used to film a range of activities, such as taking a selfie, the subjects are

stationary and the camera control does not respond to the limbs movements. Nageli et

al. [2] [3] represent the body motion as a set of 3D markers, and allow users to specify

the subject size, viewing angle and position on the screen to generate quadrotor motion

plans automatically. These techniques simplify the camera control in specific scenarios

and do not consider any visual aesthetic objectives to automate the camera drone control.

As a result, the quality of the footage highly relies on the user’s input.

Pan Control Cinematography System Automatic broadcasting makes small events,

such as lectures and amateur sporting competitions, available to a much larger audience.

7
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Several systems based on pan-tilt-zoom (PTZ) camera are designed to decide where the

cameras should look. For example, Chen et al. [4] determined important subregions

by considering user-defined attentional interests (such as including star players). Daigo

et al. [5] developed a system which controlled a robotic camera by tracking audience

face directions and a rough region of where players were located on a basketball court.

Most relevant to this thesis is the work in Chen et al. [6]. They learned the relationship

between player locations and corresponding camera configurations by crafting features

which can be derived from noisy player tracking data, and employ a new calibration algo-

rithm to estimate the pan-tilt-zoom configuration of a human operated broadcast camera

at each video frame. Using this data, they trained a regressor to predict the appropriate

pan angle for new noisy input tracking data. Although we draw inspiration from their

work, these tools are not directly applicable to drone cameras. The drone camera has

more degree-of-freedom (DOF) (DOF: 6 vs 1), making it difficult to estimate the camera

pose configuration from each video frame. In addition, aerial video has more complex

visual elements (e.g. background) than the basketball game. It is more challenging to

design a regressor to predict the future camera pose.

Stationary Cinematography System Stationary cinematography system operate

in an offline or online manner by cropping subregions from recorded video after tracking

players and/or the ball. Kim et al [7] designed a photographer robot for automatically

controlling composition and taking pictures. Hu et al. [8] learned an agent for tracking a

salient object through 360 anoramic videos. In contrast, our system explicitly considers

the dynamics of drones when planning shots.

8
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2.3 Virtual Cinematography System

Camera planning in virtual environments is an active research topic. Proposed solu-

tions are dedicated to address different classes of problems: real-time tracking of targets,

automated shot and edit planning, and designing cinematic narrative experiences.

Real-time tracking of targets. This refers to the problem of finding a collision-

free camera transition from a start position to an end position such that the target is

visible as long as possible. Halper et al. [9] designed a camera engine for track the

player in computer games. The proposed method is based on dynamic consideration

of the visibility of objects which are deemed to be important in a given game context,

which can avoid the camera jumping around too much. Oskam et al. [10] proposed a

real-time camera control system that uses a global planning algorithm to compute large,

occlusion free camera paths through complex environments. The algorithm incorporates

the visibility of a focus point into the search strategy, so that a path is chosen along

which the focus target will be in view.

Automated shot and edit planning. This topic focuses on the problem of placing

cameras to produce nice-looking views of the action in an offline manner. Galvane et

al. [11] proposed a continuity editing model for 3D animations that provides a general

solution to the automated creation of cinematographic sequences. Ranon et al. [12]

introduced novel ways to define visual properties, evaluate their satisfaction, and initialize

the search for optimal viewpoints, and test them in several problems under various time

budgets, quantifying also, for the first time in the domain, the importance of tuning the

parameters that control the behavior of the solving process.

Designing cinematic narrative experiences. With the advent of multi-player

games, there is a significant demand in generating relevant cinematic replays of gaming

sessions. Galvane et al. [13] presented a system that generates cinematic replays for

9
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dialogue-based 3D video games. The system exploits the narrative and geometric infor-

mation present in these games and automatically computes camera framings and edits

to build a coherent cinematic replay of the gaming session.

The above techniques essentially focus on the problem of placing a camera using dif-

ferent levels of specification. Different from these work, the camera planning in the drone

system is limited to the physical constraints and perception range. More importantly,

aerial filming involves more complex visual elements that influences the video quality and

camera motion. Therefore, we cannot directly apply virtual cinematographer in the field

test.

10



Chapter 3

Guiding the Camera based on

Viewpoint Quality

This chapter introduces two techniques about using viewpoint quality metric to guide

camera. First, we introduce an autonomous drone cinematography system “ACT”, which

can adaptively adjust the camera angle based on the handcrafted viewpoint quality “the

visibility of the subject”. Second, we expand the application of the human motion anal-

ysis to simplify manual control, and propose a novel semi-auto viewpoint control mode

“through-the-lens drone filming”, which allows the user to freely customize the viewpoint

in the virtual environment and then converts the camera configuration to the desired

camera motion in real world.

3.1 Related Work

3D skeleton detection: Existing 3D skeleton detection methods rely on infrared-

based depth sensors. The Kinect sensor is an easy-to-operate device for depth detection.

The Kinect can track multiple subjects without requiring users to wear extra sensors.

11
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Benefited from its compact size, the Kinect sensor [14] can be mounted on the robot

to perceive unknown environments. However, the Kinect sensor calculates depth with a

infrared laser projector, so it cannot work in the outdoor environment. Vicon is another

widely-used system in the field of motion analysis because of its high accuracy of pose

tracking. However, it is also restricted in the indoor environment because of its optical

properties. Meanwhile, its immobility only track the subjects within a limited space.

Subject localization: The GPS-based [1] and the infrared-based [2] [3] wearable

sensors are widely used for subject localization. However, the GPS does not work in

the indoor environments, and the infrared-based sensors are restricted to the indoor

environment because of their optical properties. Furthermore, it is not convenient to

require every subject to wear sensors for filming. The vision-based localization frees the

subject from wearable sensors, but the related work [15] [16] [17] requires the user to

provide the subject’s height, based on which to compute the global translation under

perspective projection. However, these methods become invalid for users with unknown

heights. Besides, Huang et al. [18] utilizes a stereo camera mounted on the drone to

localize the subject, but its field of view is subjected to the drone body and cannot

efficiently track the subject when the drone or the subject is moving.

Trajectory planning in computer graphics: Camera planning for human action

has been widely studied in computer graphics. Researchers focus on searching for a set

of suitable camera configurations for capturing an expressive video clip, while obeying

a set of cinematographic rules [9], as well as other constraints such as occlusion [19],

objects visibility [20] [21], layout in the resulting image [22], frame coherency [9] and

orientations [23]. There are several metrics to quantify the aesthetic quality of the

video clips such as subject’s visibility [24] [25], shape saliency [26] and motion area

[27]. Using these attributes, the system measures the quality of each frame taken from

different viewpoint and outputs the best view. Camera planning is typically formulated

12
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as an offline optimization problem which seeks a camera path in space-time 4D space by

balancing the viewpoint quality and smoothness of the camera path. In addition, virtual

environments are not limited by real-world physics and robot constraints and hence can

produce arbitrary camera trajectories, velocities and viewpoints.

Viewpoint control in the computer graphics: Through-the-lens camera control

[28] has been widely used in virtual cinematography [29] [30] [31] [32] and action games

[33] [34]. However, these techniques are not feasible in real-world scenarios because

a subject’s position cannot be directly obtained like in virtual environments. Some

researchers [1] [2] [3] use wearable sensors to localize a subject and automate filming for

some predefined shots. In addition to the constraints imposed by sensors, their systems

do not provide an efficient interaction for users to design desirable viewpoints.

3.2 ACT: An Autonomous Drone Cinematography

System for Action Scenes

3.2.1 Introduction

In this section, we focus on the problem of filming human action video using the hand-

crafted viewpoint metric. Existing auto-filming systems suffer from unexciting shots due

to oversimplified viewpoint metrics and the representation of the subject. For instance,

Joubert et al. [1] used the rule of thirds to guide filming static subjects. Nageli et

al. [2] [3] designed a system, which can track multiple moving person automatically.

However, their viewpoint metric is limited to the 2D image composition principles. In

addition, the subject’s perception highly replies on the wearable sensors, some of which

are limited to indoor environments. All of these limits the creativity of camera filming.

To address the above challenges, our autonomous drone cinematography system in-

13



Guiding the Camera based on Viewpoint Quality Chapter 3

Figure 3.1: Autonoumous filming human action of the proposed ACT system.

cludes the following techniques:

1. For pose estimation, we combine stereo-based depth estimation and 2D body

skeleton detection to estimate the 3D skeleton pose, and we refine the pose information

based on the temporal properties of body movement.

2. For camera planning, we propose a real-time dynamically trajectory generator to

guide the camera control for unknown body movements. The generated trajectory can

balance aesthetic objectives and the physical limits of real robots.

To achieve real-time onboard pose estimation and camera planning, we mount a stereo

camera and two GPUs on a DJI Matrix 100 drone. We use a gimbal RGB camera to

capture the stabilized footage.

In summary, our contributions are two-fold. First, we propose an efficient 3D skeleton

detection method based on a stereo camera and a real-time camera planning algorithm

that can balance the aesthetic objective and physical limits. The system can be used

in both indoor and outdoor environments. Second, we implement the entire system

on the limited computation resource of the drone platform, including skeleton detection,

14
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viewpoint estimation, trajectory planning and localization, and demonstrate its feasibility

of running the system in real-time (see Fig. 3.1).

3.2.2 3D Skeleton Detection based on Stereo Camera

In this section, we introduce 3D skeleton detection. Our intuition is to recover the

depth of the 2D skeleton position from the depth map. We do not consider the active

depth sensor (e.g., Kinect) because it cannot work in outdoor environments. Instead, we

use stereo cameras to calculate depth. However, the stereo-based depth estimation may

generate inaccurate depth for the region with motion blurs. We add some constraints to

refine the result. Details are introduced as follows:

Raw Depth Acquisition

We utilize a stereo camera to calculate depth based on semi-global block-matching

(SGBM) [35] as Fig. 3.2 (b) shows. The rectified image stream from left camera feeds

to a opensource library OpenPose [36] to detect 2D skeleton points. If the full body

parts are visible, OpenPose can detect 13 keypoints, including the head, nose, hip, left

and right shoulders, elbows, hands, knees and feet (see Fig. 3.2 (a)), which are used to

represent the full human pose. Given a depth map based on left camera, we can convert

each 2D body keypoint (x, y) on the image plane to a 3D body keypoint (X, Y , Z) as

Eq. 3.1. The 3D body keypoints are connected as 3D skeleton (see Fig. 3.2(c)).

Z = depth(x, y),

X = (x− cx) · Z/fx,

Y = (y − cy) · Z/fy,

(3.1)
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where cx, cy are the center of the image and fx, fy are the focal length of the camera on

both axes.

Figure 3.2: (a) 2D skeleton (b) depth map, and (c) 3D skeleton

Skeleton Refinement

As mentioned before, the noise of the depth map may affect the recovered 3D pose,

especially moving subjects. We will refine the 3D pose based on the temporal consistency

of human action.

Assuming that the movement of the body joints is smooth, we can use polynomial

regression to parameterize the trajectory of each keypoint in terms of time. The predictor

resulting from polynomial expansion can determine whether the current pose estimated

from the depth map is trustworthy. Given a set of trustworthy poses [s0, s1,...,sN ], we

set the following optimization function to solve the polynomial coefficients:

min
{an an−1 ··· a0}

N∑
i=0

(s̄i − si)2

subject to s̄i = ant
n
i + ant

n
i + · · ·+ a0,

(3.2)

where s̄i is the pose to be modeled at the ith frame and ti is the timestamp of the ith

frame. N is the number of training frames and n is the order of the polynomial function.
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Considering that the acceleration of the body movement respects the physical limits of

limb, we add a penalty term to control the acceleration along the trajectory as follows:

min
{an an−1 ··· a0}

N∑
i=0

(s̄i − si)2 + w

∫ T

0

(s̈)2dt, (3.3)

where w is the penalty weight and is set as 200, and T is the time taken during N frames.

However, the actual limb movement is complex, and the accuracy of polynomial

fitting is related to the pace and speed of human action. We discuss the selection of the

parameter n and N in four scenarios from CMU Motion Capture Dataset: 1) TaiChi,

2) Walk, 3) Ballet dance, and 4) Run. Each clip of data takes 10 seconds, and the 3D

skeleton of the entire sequence is known. We use the pose history in the past N frames

to predict the current pose. We evaluate the performance by the average limb distance

between the predicted and actual current pose.

Fig. 3.3 shows the distribution of the prediction error in different human actions.

TaiChi and Walk have smooth limb motion and our polynomial function can achieve

highly accurate prediction. In contrast, Run and Ballet Dance have fast limb motion with

various paces. The limb movements are more difficult to predict, because they require

a shorter time window to model the rapidly changing limb movement. The higher order

polynomial function cannot improve the prediction accuracy. Therefore, we set the N

and n as 15 and 5, respectively in our polynomial fitting.

In our system, we apply a simple voter to refine the 3D pose. If the distance between

the pose estimated from the depth map and the modeled pose is larger than 0.5m, we set

the modeled pose as refined pose. Otherwise, pose estimated from the depth map is set

as refined pose. The refined pose is trustworthy and will be used to predict the future

pose.
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Figure 3.3: First row: actual current pose (white), previous pose (gray) and predicted
current pose (red). The red pose is predicted from the previous 30 poses within one
second. The gap between actual and predicted pose becomes larger as the faster
movement pace. Second row: The distribution of prediction error in different human
actions. The vertical axis refers to the ratio of frames with the specific prediction
error in the whole video sequence, and the horizonal axis is the reconstruciton error
between predicted and actual poses. N and n are the size of temporal window and
the order of polynomial function, respectively.

3.2.3 Camera Planning based on Next-Best-View

In this section, we introduce camera planning. The goal is to design a trajectory that

fulfills the aesthetic objectives and respects the physical limits of the real drone. First,

we predict the human pose in the next frame by using predictor in Sec. III.A, and then

calculate the best viewpoint of this pose, and then we generate the physically feasible

trajectory that points to this viewpoint. Details on viewpoint selection and trajectory

planning follow.

Viewpoint Selection

The viewing space is a subject-center sphere for each human pose. We estimate the

best viewpoint in terms of the radius and orientation angle.

The radius, the camera-to-subject distance, determines the size of the subject on the
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image. On the one hand, we need to ensure a smooth displacement of the subject on the

image plane. Vzquez et al. [37] proposes to increase the camera-to-subject distance if

the subject moves fast, and vice versa. On the other hand, we must keep a safe distance

between the camera and the subject to avoid collision. The radius is estimated as follows:

r = r0(1 + kv), (3.4)

where r0 is the minimum camera distance and k is a constant parameter to adjust the

camera distance. v is the subjects current speed, which is represented by the average

speed of the neck and hip keypoints. To gurantee a view of the subject’s whole body,

we set minimum distance r0 as 3m. We set k as 0.4 to keep smooth and stable camera

movement.

Figure 3.4: (a) The 3D skeleton points and its three eigenvectors corresponding to
the eigenvalues in the descending order (BGR). The right images illustrate the cam-
era view from (b) the third eigenvector, (c) the second eigenvector and (d) the first
eigenvector. It is obvious that the camea view from the third eigenvector displays the
maximum projection of point cloud.

The orientation angle defines the pitch and yaw of the camera relative to the subject,

which determines the visible part of the subject on the image. There are several ways
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[24] [25] [26] [27] to measure the quality of a view of a subject in computer graphics. The

objective function that measures this is called a view descriptor, and the best view is

that which maximizes this function. The view descriptor in Assa et al. [24] [25] measures

the visiblity of the joint points of a character to quantify viewpoint quality. Because

we represent human pose as 13 3D skeleton keypoints, we evaluate each frame with this

metric. First, we calculate PCA for 3D skeleton keypoints to get three eigenvalues (λ1,

λ2, λ3) in descending order. The eigenvector corresponding to the minimum eigenvalue

is set as the best view angle, because it is perpendicular to the plane with the largest

projection of the point cloud as Fig. 3.4 shows.

θ = {θ|Pθ = λ3θ}, (3.5)

where P is a matrix consisted of 3D skeleton points and λ3 is the minimum eigenvalue.

The best viewing direction is along with the eigenvector θ pointing to the subject’s center.

It is noted that not all the viewpoints with maximum projection are feasible. First, if

the projections of the subject from different viewpoints are similar, subtle motion in the

consecutive frames also cause “viewpoint jumping” (see Fig. 3.5). “Viewpoint jump” will

cause a sudden change of acceleration during trajectory planning. This not only increases

the instability of the flight control but also makes the footage unpleasing, so we do not

move the camera in this case. Considering that eigenvalues is inversely proportional to the

variation of the projection to which corresponding eigenvector is perpendicular, we can

compare eigenvalues to evaluate the distinctiveness of different viewpoints. Therefore,

we define Eq. 3.6 to estimate the probability of “viewpint jumping”. If it is smaller

than a threshold, it is likely to be “viewpoint jumping” and we skip this viewpoint. The

threshold is set as 1.5.

ε = λ2/λ3. (3.6)
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Figure 3.5: Viewpoint jumping. The world view and camera view (subfigure on the
left-bottom) are shown at (a) T0 and (b) T0 + 0.3s. The red points are the best
viewpoint for each frame and the blue camera is the current camera pose. Because
the viewpoint quality of both camera views is very similar (ε is close to 1), subtle
limb movement causes switch between second and third eigenvectors. The dramatic
change of best viewpoint makes it infeasible to move the camera within short time in
the real scenarios.

Second, because the stereo camera is fixed on the front of the drone, the observatoin

range is determined by the drone’s pose. If the viewing direction calculated by our

algorithm can generate too high- or too low-angle shots, the stereo camera fails to track

the subject within the field of view. To prevent this case, we set the maximum and

minimum pitch angle of viewpoint as 15 and -45 degrees. In addition, we set the minimum

flight height as 0.3 m to avoid colliding ground.

Trajectory Planning

Although our system shares the same view descriptor as [24] [25], there are several

distinct differences in the constraints of the camera control. First, we cannot formulate

the camera planning as an offline optimization for unknown human movement. Second,

the flight control must respect its physical limists. Third, the drone must keep a safety

distance with the subject. In this section, we present our optimization-based trajectory
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generation method under the above constraints.

In our system, we re-plan a trajectory for each frame in real-time. Each trajectory

is calculated based on current camera pose and next waypoint. We model the trajectory

as one-piece polynomial, which is parameterized to the time variable t in each dimension

x, y, z, yaw. The trajectory of one dimension can be written as follows:

fµ(t) =
n∑
j=0

pjt
j t ∈ [0, T ], (3.7)

where pj is the jth order polynomial coefficient of the trajectory, and T is total time

of the trajectory, which is calculated by the segement length, maximum velocity and

acceleration based on trapezoidal acceleration profile [38]. The polynomial coefficients

are computed by minimizing the integral of the square of the kth derivative along the

trajectory. In this paper, we minimize the snap along the trajectory, so k is 4. Instead of

formulating the cost function for each dimension as in [39], in this paper, the coefficients

in all x, y, z, yaw dimensions are coupled into one single equation:

J =
∑

µ∈{x,y,z,yaw}

∫ T

0

(
dkfµ(t)

dtk

)2

dt. (3.8)

The objective function can be written in a quadratic formulation pTQp , where p is a

vector containing all polynomial coefficients in all four dimensions of x, y, z, yaw and Q

is the Hessian matrix of the objective function.

We must define the following constraints to ensure the feasibility of the trajectory:

1) Waypoint Constraints : If there exists a waypoint at the time of T , we have

fµ(T ) = dT . (3.9)
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2) Continuity Constraints : The trajecotry must be continuous at all the kth deriva-

tives at each waypoint between two polynomial segments:

lim
x→T−

f (k)
µ (T ) = lim

x→T+
f (k)
µ (T ). (3.10)

The both constraints can be compiled into a set of linear equality constraints (Ap = d)

in [40]. Thus, the trajectory generation problem can be reformulated as a quadratic

programming problem:

min pTQp

subject to Ap = d.

(3.11)

In practice, we need to check maximum velocity and acceleration of the trajectory

to ensure dynamical feasibility. If the acceleration or velocity of trajectory exceeds the

maximum value, we extend the flight time T and recalculate Eq. 3.11 to get a new

trajectory. Then check the feasibility of the trajectory until that it meets the requirement.

For simplification, we only check the trajectory at most five iterations and extend the

time T by 1.2 times each iteration. The maximum acceleration and velocity is set as

2.5m/s2 and 1.5m/s. If the trajectory is still infeasible after five iterations, we do not

move the camera. In most cases, we can solve a feasible trajectory at most two iterations.

In addition, although we have limited the minimum distance of each waypoint, the

distance between subject and generated trajectory is likely to be less than safety distance.

For safety, we define a sphere centered at the subject with radius rs as a safety region. If

the generated trajectory intersects with safety region, we skip this waypoint and do not

move the camera. The radius rs is set as 2m.
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Figure 3.6: The Architecture of the System

3.2.4 System Architecture

The system architecture is shown in Fig. 3.19. In the perception module, we esti-

mate 3D skeleton points by fusing stereo depth and monocular 2D Skeleton detection.

Meanwhile, we adopt the state-of-the-art visual inertial system (VINS) [41] to get the 6

degrees of freedom (DoF) state estimation using image stream of left camera and IMU

data stream. It is noted that we use image stream of left camera for 2D skeleton detection

and state estimation. Given the pose of the camera, we can obtain the subject’s pose

in the world coordinates. In the planning module, we predict the next best viewpoint

based on the subjects 3D movements and publish a sequence of the waypoints. Then

the trajectory planning converts the waypoints to a feasible trajectory in real-time. The

drone is commanded to fly through the trajectory and capture the footage with gimbal

camera. Tab. 4.1 shows the runtime of different modules for each frame. Because the

2D skeleton detection and other modules are running parallelly, the runtime of a frame

24



Guiding the Camera based on Viewpoint Quality Chapter 3

is less than 200ms, which is sufficient in the aerial filming.

Table 3.1: Runtime of Different Modules
TX2 Module Runtime(ms)

GPU1 Skeleton Detection 117.64
Depth Estimation 35.21

Skeleton Refinement 39.68
GPU2 Viewpoint Estimation 20.51

Trajectory Planning 12.67
State Estimation 52.22

We integrate processors, stereo cameras, and gimbal camera on DJI Matrix 100 as

Fig. 3.7 shows. Because 2D skeleton detection and the stereo-based depth map take up

most of the computation resources, they require GPU for real-time computation. Con-

sidering the power efficiency and limited load of the drone, we use two NVIDIA TX2

to run the whole system simultaneously. The TX2 is equipped with a quad-core ARM

Cortex-A57 processor, a dual-core Denver2 processor and 8 GB memory, and consumes

approximately 7.5 watts of power. The 256 GPU cores on the TX2 make it partic-

ularly suitable for parallel computing of depth images and body keypoints detection.

The stereo camera module is constructed of two horizontal forward-looking MatrixVision

mvBlueFOX-MLC200w5 global shutter cameras (740x480, 25 fps). We choose Zenmuse

X3 Gimbal Camera for capturing stabilized footage and record the footage with resolution

1280x720.

We deploy different modules on two GPUs based on their computation complexity.

More precisely, one GPU is only used for 2D skeleton detection, and the other GPU covers

the rest of the computations. Both TX2 are powered by the battery of the DJI Matrix

100. The two TX2 are connected using an Ethernet cable. Communication between two

computers is done by utilizing the ROS infrastructure.
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Figure 3.7: The prototype drone of the proposed ACT system

3.2.5 Experiments

In this section, we will evaluate our system on CMU Motion Capture Dataset and real-

time action scenes. We compare our system with a state-of-the-art autonomous filming

technique “Active Track”. “Active Track” is an intelligent flight mode on the DJI Mavic

Pro, in which the camera can autonomously keep the distance to follow the target and

adjust the camera to place subject on the center of the camera screen. We develop the

autonomous cinematography system based on DJI Matrix 100. In the following sections,

we offer a detailed discussion on 3D skeleton detection (Sec. 3.1), camera planning (Sec.

3.2) and real-time aerial filming (Sec.3.3).

3D Skeleton Detection

This section we compare our skeleton detection algorithm with Kinect sensors in the

indoor environment. The Kinect can achieve accurate skeleton detection with skeletal

tracking SDK, so we set the skeleton keypoints from Kinect as the groundtruth. We
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evaluate the performance of skeleton refinement in terms of two metrics: 1) Reconstruc-

tion Error: The average distance of the 3D point cloud. 2) Viewpoint Estimation Error:

Angle difference of the best viewpoint of each frame. We use error distribution in the

entire sequence to measure the performance of our system. The larger proportion in the

low error case means better performance. We conduct this experiment for slow-paced

TaiChi and fast-paced “Gangnam Style” dance .

Figure 3.8: Comparison of reconstruction between our methods (w and w/o skeleton
refinement).

Figure 3.9: Comparison of viewpoint estimation between our methods (w and w/o
skeleton refinement).

Fig. 3.8 and Fig. 3.9 show that skeleton refinement can improve the performance of

reconstruction and viewpoint estimation. Meanwhile, the improvement of the reconstruc-
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tion in fast motion is not obvious as in slow motion, because it is more difficult to achieve

motion prediction in faster limbs movement. Even so, we can still achieve the accurate

best viewpoint estimation after skeleton refinement. Fig. 3.9 shows that angle error of

best viewpoint estimated from our method (with skeleotn refinement) is less than 30 de-

gree in the most cases (more than 70%). In our application, the angle difference within

30 degrees is acceptable, which meets the requirement of view estimation. Moreover,

our 3D skeleton detection can work in both indoor and outdoor environments. Fig. 3.10

demonstrate the skeleton detected from our method with skeleton refinement is similar

to that from Kinect. In addition, the reconstruction accuracy decreases as the movement

becomes fast.

Figure 3.10: Comparison of 3D skeleton between Kinect (blue) and our method (red)
with skeleton refinement

Camera Planning

We test our camera planning algorithms on the CMU Motion Capture Dataset (MO-

CAP), including a set of the motion data and reference video. There is only one subject

in each clip of motion data. The 3D motion data is extracted from 41 Vicon markers

taped on the subject’s body. The motion data is recorded for 6-12 seconds in 120 Hz. In

28



Guiding the Camera based on Viewpoint Quality Chapter 3

our application, we only consider 13 markers to represent the human action. We select

10 clips of motion capture data from the MOCAP dataset and classify them as 5 clips

of slow-paced motion (e.g. TaiChi, Walk) and 5 clips of fast-paced motion (e.g., Dance,

Run).

Figure 3.11: The distribution of viewpoint quality.

We define the viewpoint that corresponds to maximum projection of point cloud as

best viewpoint. We evaluate the viewpoint quality of each frame by the angle difference

between the actual viewpoint and the best viewpoint. The aesthetic effect of each piece

of footage is evaluated by the distribution of the viewpoint quality. Fig. 3.11 shows that

our drone system can capture the footage from a good viewpoint with higher frequency.

This can be explained as the “Active Track” just follows the subject and ignores the pose.

Meanwhile, we can see that fast-paced motion (Fig. 3.11(right)) makes it more difficult

for the drone to capture the subject from the best viewpoint because of the physical

limits of the drone.

Fig. 3.12 compares the camera trajectory from our systems and “Active Track” for

Tai Chi. Compared with Active Track, the camera trajectory from our system covers

more viewpoints and captures more creative footage.
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Figure 3.12: The camera trajectory of (a) the proposed system (b) Active Track

Real-Time Aerial Filming

We compare the proposed ACT system with “Active Track” mode of DJI Mavic in

the outdoor environment. We initialize the same postion of camera and subject, and

then subject performs TaiChi and dance in front of the drone camera. Fig. 14 shows

several snapshots of footage captured from both systems. As the human motion goes on,

the difference of the footages from both systems becomes more obvious. We can see that

the subject in the footage from our system looks more pleasing because of more visible

motion and fewer limbs occlusions. The attached videos will provide a more convincing

comparison.

3.3 Through-the-Lens Drone Filming

3.3.1 Introduction

It is challenging for beginners to manipulate the remote controller to freely capture

the desired viewpoint. While moving control sticks can directly control a drone’s motion

parameters (i.e. roll, yaw, pitch, and throttle), controlling these parameters do not

offer a precise control of the movement of objects in the camera screen. Compared

30



Guiding the Camera based on Viewpoint Quality Chapter 3

Figure 3.13: Comparison of the footage snapshots between (a) “Active Track” mode
of DJI Mavic and (b) the proposed ACT system. We set the same initial relative
position between subject and drone. The snapshots of both methods at T=4 s looks
similar, but our system can capture more pleasing shots as the TaiChi performance
goes on.

with the direct control of the drone’s parameters, through-the-lens camera control [28]

parameterizes the camera pose in terms of azimuth, elevation, and radius in a subject-

centered spherical coordinate system rather than six degrees of freedom (DOF) in a

reference-fixed Cartesian coordinate system. Through-the-lens camera control allows

a user to drag or zoom in (out) the subject in the image space to adjust the image

composition. This control mode greatly simplifies viewpoint control of a moving subject,

so it is widely used in action games and 3D animation. Introducing through-the-lens

control operations to drone filming can greatly reduce the difficulty of the manual control

and allow a cameraman to focus more on the viewpoint selection.

However, it is difficult to apply this subject-centered control mode in real-world sce-

narios because the subject’s position cannot be directly obtained like computer graphics.

Some studies [1] [2] [3] localize the subjects by wearable sensors (e.g. GPS, Vicon) to

assist in the drone filming, but these sensors are constrained to specific environments.

For example, the GPS-based sensors work only in an outdoor environment. In addition,

the wearable-sensors-based solutions are ineffective for unknown targets.
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Figure 3.14: Overview of the through-the-lens drone filming. (1) The filming scene.
(2) Camera View. (3) The preview of 3D human model estimated from camera view.
(4) User manipulates the 3D model in the preview to design the viewpoint.

Some researchers [15] [16] [17] [42] use vision-based methods and the prior knowledge

of a subject’s height to localize the subject. These methods work in both indoor and

outdoor environments. Lim et al. [17] localizes the subject based on the position and size

of the bounding box estimated from person detection, but the size of the bounding box

is sensitive to the person’s pose (e.g. Bending over outputs the smaller bounding box

than stretching), which affects the localization accuracy. More sophisticated methods

[15] [16] [42] adopt 3D human pose estimation to improve subject localization. Because

the output of 3D pose estimation loses the absolute scale and depth, the actual height of

the subject is required to recover the scale and depth. However, it is not always feasible

to request a user to input the height of each subject in unknown scenes.

To address the above challenges, we propose an efficient drone filming mode, called

“Through-the-Lens drone filming” (see Fig. 4.10), which is enabled by the following
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techniques:

1. An automatic subject localization method without the prior knowledge of a sub-

ject’s height. We utilize the drone’s motion information and the normalized 3D human

pose to estimate the subject’s height. With the estimated height, we can localize the

subject accurately during filming.

2. An effective interaction that allows the user to control the drone by manipulating

the virtual camera in the preview of a 3D model. In addition, our system can convert

the desired viewpoints in the virtual environments to a physically-feasible trajectory in

the true metric space.

To facilitate users’ real-time operation, we mount two GPUs (NVIDIA Jetson TK1

and TX2) on a DJI Matrix 100 drone. In addition, we develop an Android app to provide

through-the-lens drone control.

The contributions of this paper are three-fold. First, the localization does not require

the prior knowledge of the subject’s height, which broadens the application of the system

to unknown scenes. Second, the proposed through-the-lens drone filming simplifies the

manual control for capturing the subject-focused shot and enables the user to customize

the viewpoint for moving subjects in real-time. Third, we optimize the implementation

of the entire system based on the limited computation resource of a drone platform,

including 2D skeleton detection, 3D pose estimation and localization, and camera trajec-

tory planning, and demonstrate the feasibility of running the system in approximately

real-time.

3.3.2 Subject Localization based on Visual-Inertial Fusion

In this section, we introduce subject localization based on visual-inertial fusion. Be-

cause skeleton-based localization [15] [16] is robust for the varying pose of the subject, and
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a full 3D model can facilitate users to operate the camera, we adopt the monocular 3D

human skeleton estimation (Sec.III.A) as baseline. As mentioned above, skeleton-based

methods require a known height to recover the scale and depth of the normalized 3D

pose. Fig. 3.15(a) shows that incorrect height inputs render biased localization. Under

an undistorted perspective projection, the localization error is proportional to the error

between the actual and the assumed height. Figs. 3.15(b)(c) show that a subject’s po-

sitioning information from different camera viewpoints may differ when the assumption

is inconsistent with the true height, so our intuition is to find an optimal height which

can minimize the bias caused by the camera’s movement. Compared with the conven-

tional multi-view 3D reconstruction, the scale range of a human subject is limited (we set

the height range for an adult between 1.4m and 2.2m in the proposed system to reduce

the search space). In addition, the normalized 3D poses contain an inherent structure

among 3D points cloud and thus, in turn, make it feasible to localize the subject from

a moving camera, even when the subject is moving. The proposed subject localization

includes three steps: 1) monocular camera 3D human pose estimation, 2) scale and depth

initialization, and 3) global subject localization.

Monocular Camera 3D Human Pose Estimation

We extract 3D human pose from the images captured by a gimbal camera. This task

consisted of two steps: First, we use OpenPose [36] to detect 14 2D joints, including

the head, nose, left and right hip, shoulders, elbows, hands, knees, and feet. Second,

we use a sequence-to-sequence network proposed in Hossain et al [42] to estimate 3D

pose from a sequence of 2D joints. To address incomplete 2D joint estimation caused by

occlusion, we use the value in the previous frame to compensate for the missing space of

the current frame. Because the input of the network [42] has been normalized to zero

mean and a standard deviation of 1, the estimated 3D pose loses the absolute scale and
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depth information.

Scale and Depth Initialization

This subsection introduces how to recover the scale and depth of a normalized 3D pose

by a moving camera. We start with notation definitions. We denote (·)w as the world

frame, which is initialized by the drone’s navigation system. (·)c is the camera frame

and (·)v is the image frame, where the origin is the center of the screen. We assumed

that the camera model is weak perspective projection and the subject’s movement is

smooth during initialization, we define the following optimization function to minimize

two terms 1) F : the image projection error from 3D joint locations, and 2) G: the

temporal smoothness of the subject’s displacement.

min
{α,T c0 ,···T cτ }

F (α, T c0 , · · · T cτ ) + λG(T c0 , · · · , T cτ )

F =
τ∑
t=0

N∑
n=0

∥∥∥pvt,n −K(αP̂ c
t,n + T ct )

∥∥∥2
G =

τ∑
t=1

∥∥(Rw
t T

c
t + Twt )− (Rw

t−1T
c
t−1 + Twt−1)

∥∥2
(3.12)

where τ and N are the size of the temporal window and the number of joints. Based

on the assumption of smooth movements, the scale between the true height and the

normalized 3D pose during the time interval [0, τ ] shares the same α. Because 3D joints

spread in the depth direction is negligible compared to its distance to the camera, we only

use one T ct to represent the relative position between each joint and camera coordinates

at time t. pvt,n and P̂ c
t,n are the n-th 2D joint locations and the normalized 3D pose at

time t respectively. K represents the camera projection matrix. λ is the parameter to

balance the penalty between projection error and smoothness constraints.

We propose a simple yet highly efficient method to initialize the scale. First, to
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quantify the relation between scale α and the camera-subject relative position T c in

camera projection Eq. 3.13, we use the method in [15] to describe T c = (T cx , T
c
y , T

c
z ) as

expressed in Eq. 4.3.

min
T c

N∑
n=0

∥∥∥pvn −K(αP̂ c
n + T c)

∥∥∥2 (3.13)

T cx = α(
γ

fx
p̄vx +

¯̂
P c
x)

T cy = α(
γ

fy
p̄vy +

¯̂
P c
y )

T cz = αγ

γ =

∑N
n=0

∥∥∥H(P̂ c
n −

¯̂
P c
n)
∥∥∥2∑N

n=0

∥∥∥(pvn − p̄vn)H(P̂ c
n −

¯̂
P c
n)
∥∥∥

H =

fx 0 0

0 fy 0



(3.14)

where p̄x and p̄y are the average values of x and y of 2D joints,
¯̂
Px and

¯̂
Py are the

average values of x and y of the normalized 3D joints. H is a matrix consisting of the

focal length fx and fy.

Second, because T ct is proportional to α in Eq. 4.3, we rewrite T ct as αT̂ ct , where T̂ ct can

be considered as the relative position of the normalized 3D pose in camera coordinates.

We can solve α by substituting αT̂ ct into Eq. 3.15. The α in Eq. 3.16 is set as the

estimated scale. Note that if the estimated height is beyond a reasonable range (1.4m-

2.2m in our experiments), or the variance of
∥∥∥ T̃wt−1−T̃wt
Rwt T̂

c
t −Rwt−1T̂

c
t−1

∥∥∥ exceeds a threshold (0.4 in

our experiments), we move the temporal sliding window to restart the initialization.

min
α

τ∑
t=1

∥∥∥α(Rw
t T̂

c
t −Rw

t−1T̂
c
t−1) + Twt − Twt−1

∥∥∥2 (3.15)
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α =
1

τ − 1

τ∑
t=1

∥∥∥∥∥ T̃wt−1 − T̃wt
Rw
t T̂

c
t −Rw

t−1T̂
c
t−1

∥∥∥∥∥ (3.16)

Global Subject Localization

Once we finish scale initialization, we can estimate the subject’s global position based

on Eq. 3.17 for the following frames.

Pw
t = αRw

t T̂
c
t + Twt (3.17)

Discussion

In this subsection, we discuss how to move the camera to optimize the localization

performance. Considering that the uncertainty of the depth is a function of the length of

the baseline between different views, the drone automatically moves sideways to collect

15 images of a subject within a period of 2 seconds to estimate the height. Our strategy

is partially motivated by DJI Spark’s “ShallowFocus” mode in which a drone creates the

effect of shallow depth of the field from 15 images captured during its automatic rising

within 20cm. We do not adopt the strategy of elevating the drone to collect images

because the change of elevation is likely to degrade the performance of pose estimation.

Scale estimation can possibly be affected by noisy measurements from the navigation

system. We neglect the noise of the rotation because the camera gimbal stabilization

system can achieve accurate and consistent rotation measurements. To evaluate the lo-

calization performance with respect to different initialization states, we design simulation

experiments to evaluate the localization error with respect to different camera displace-

ments, camera-subject distance and different levels of noise. For these experiments, we

select 42 downsampled motion capture data ( average 140 frames, 8 fps, including stand-

ing, jumping, sitting, climbing and walking) from Carnegie Mellon University Motion
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Capture Dataset. We set the height of the 3D model as 1.8m.

First, we tested the localization error when the subject has no displacement in the

space during initialization, where the subject’s center is fixed to the origin of the world

coordinate system. Based on the physical property of the drone’s navigation system,

we evaluated the localization error when the camera’s translational displacements are

0.4m, 1.2m and 2.0m respectively and the standard deviation of the positioning noise is

0.00m, 0.04m, 0.08m and 0.12m respectively. Considering the subject’s safety and the

maximum distance of 3D pose estimation, we set the range of the camera-subject distance

as [3-11]m. Fig. 3.16 shows that the larger displacement can improve the localization

accuracy. In addition, it is harder to localize the subject if the subject is far away from

the camera during initialization. This can be explained that the resolution of the limb

decreases when the subject moves away from the camera, increasing the image projection

error of the subject. In particular, when the displacement is 0.4m, the increasing noise

impacts the performance more obviously as the camera-subject distance increases.

Second, we tested the performance of localization when the subject is free to move

within a region during initialization, where the radius of the moving region is set as

[0.3, 0.5, 1.0, 2.0]m. We also set zero displacement (radius = 0m) as a reference. This

comparison focuses on the case when the camera’s displacement is 1.2m and the standard

deviation is 0.12m. For cases of other displacement and standard deviation values, the

trends are similar. Fig. 3.17 indicates that the localization becomes worse as the moving

region is widened.

From simulation results, we can draw the conclusion that the localization accuracy

is determined by a set of initialization states including the subject’s movement, the

camera-subject distance, the positioning noise and the length of camera’s displacement.

The localization error, greater than, say, 1.0m, will affect the subject’s safety and thus

cannot be allowed. Therefore, to achieve accurate localization within an allowable range,
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we better choose the moment when the subject is fairly static and set a closer viewpoint

to launch initialization.

3.3.3 Through-the-lens Camera Planning

In this section, we introduce through-the-lens camera control and trajectory planning.

First, we introduce how a user manipulates the 3D preview to design the viewpoint.

Second, we describe a novel automatic filming mode to track the moving subject. Third,

we present our trajectory planning strategy to handle these tasks.

Through-the-lens Viewpoint Control

This section starts with a short description of the User Interface (illustrated in

Fig. 3.18(A)). The 3D model is rendered by OpenGL based on the normalized 3D pose.

Our system allows the user to touch the screen to move the camera view while keep-

ing the position of the 3D object fixed. A user can adjust the viewpoint by rotating

and zooming the 3D model and command the drone to capture the desired viewpoint.

Through-the-lens control includes:

Rotate: Swipe the screen to orbit the virtual camera in the horizontal and vertical

direction (illustrated in Fig. 3.18(B)).

Zoom: Spread or pinch the screen to change the field of view of the virtual camera

(illustrated in Fig. 3.18(C)).

We denote (·)wc and (·)ws as the position of the drone (camera) and the subject in the

world coordinates respectively. In addition, we use (·)oc to describe the pose of the virtual

camera in the virtual 3D environment. Once the user publishes the desired viewpoint to

the drone, our system will map the state of the camera (P (x, y, z), yaw) from the virtual
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3D environment to the true world space as follows:

Pw
c = Rw(βP o

c + T c) + Tw

yawwc = Rwyawoc

(3.18)

where β is a constant to amplify camera-subject distance for safety.

Subject-Oriented Tracking

The above interface allows the user to manipulate 3D model to set the viewpoint. To

facilitate users to track the moving person from the desired viewpoint, we further extend

it with an automatic filming mode: subject-oriented tracking. In this mode, once the

user sets the virtual viewpoint of the subject, the camera will track the subject from

a fixed relative position between the subject and the camera. To this end, our system

automatically analyzes the subject’s skeleton to estimate its orientation. Considering

that the direction of two shoulders are normally parallel to the ground, we denote (·)s as

the subject-oriented coordinates, where three axes can be defined as follows:

zs = zc

xs =
pcrs − pcls

norm(pcrs − pcls)
× zs

ys = zs × xs

(3.19)

where pcls and pcrs denote the 3D positions of the left shoulder and the right shoulder

in the camera coordinates. zc denotes the z-axis of the camera coordinates. The rotation

matrix Rcs from camera to subject coordinates is described as (xs, ys, zs). Once the

user sets the tracking viewpoint, our system records the pose of the virtual camera P s
c

and yawsc in the subject coordinates. The corresponding tracking viewpoint in the world
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space can be expressed as follows:

Pw
c = Rw(βRcsP s

c + T c) + Tw

yawwc = RwRcsyawsc

(3.20)

Trajectory Planning

This subsection discusses generation of a feasible path given the customized view-

points. First, we require the camera to move along the spherical surface centered around

the subject Pw
s to achieve visual-pleasing footage and avoid collision with the subject.

Therefore, we adopt Spherical Linear Interpolation (Slerp) [43] to uniformly interpo-

late a set of intermediate waypoints between the current position Pw
now and the desired

position Pw
des along an arc. The interpolated points are described as follows:

Pw
c,i =

sin((1− i
N

) ∗ θ)
sinθ

∗ (Pw
c,now − Pw

s )

+
sin( i

N
∗ θ)

sinθ
∗ (Pw

c,des − Pw
s ) + Pw

s i = 1, ..., N

(3.21)

where θ is the angle between Pw
c,now − Pw

s and Pw
c,des − Pw

s , and N is the number

of interpolated points. In particular, if Pw
s is in the middle of a line between Pw

c,now

and Pw
c,des, Eq. 3.21 will be reduced to a linear interpolation, rendering that the camera

moves across the subject. In order to keep a safe camera-subject distance, we add the

midpoint Pw
c,m of the semicircular arc as the interpolated point. After that, we use the

same algorithm as Sec. 3.1.4 to perform trajectory planning for each waypoint.

3.3.4 System Architecture

The system architecture is shown in Fig. 3.19. In the perception module, we extract

the normalized 3D skeleton from the result of 2D skeleton detection. We estimate the

scale by fusing the normalized skeleton and motion data from the drone’s navigation
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system. After the scale is estimated, we can localize the subject in the world space. In

the planning module, the system receives the virtual camera pose from the mobile device

and estimates the user’s desired viewpoint. Then the trajectory planning converts the

waypoints to a feasible trajectory. The drone is commanded to fly along the trajectory

and capture the footage.

Table 3.2: Runtime of Different Modules
GPU Module Runtime(ms)
TX2 2D Skeleton Detection 218.47

2D-to-3D Estimation 37.44
Scale Estimation 28.16

Manifold Subject Localization 9.40
Viewpoint Estimation 12.09
Trajectory Planning 33.87

The system hardware is similar to the Sec.3.1.5. The difference is that we remove the

stereo camera.

Table 4.1 shows the runtime of different modules for each frame. We deploy different

modules to the two GPUs based on their computation complexity. More precisely, one

GPU is dedicated for 2D skeleton detection, and the other GPU covers the rest of the

computations. Both GPUs are powered by the battery of the DJI Matrix 100 and are

connected using an Ethernet cable. Communication between two computers is done by

utilizing the ROS infrastructure. The system takes about 300ms to respond to the user’s

input, which is sufficiently fast for our filming application.

3.3.5 Experiments

Subject Localization

In this section, we test the localization accuracy of our system on 8 persons (1.6m-

1.9m) in real filming. We set the camera-subject distance during initialization as 5m and
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allow the subjects to move. Fig. 3.21 illustrates that our system can achieve sufficient

location accuracy (error is less than 1.0m) in real scenes within 7m camera-subject dis-

tance. The localization bias becomes more obvious when the camera-subject distance is

farther than 7m. This trend is quite intuitive as decreasing the subject size in the image

increases the difficulty of 2D skeleton detection, where the incorrect 3D skeleton further

degrades the localization accuracy.

Camera Planning

In this section, we evaluate the footage captured from two modes: through-the-lens

viewpoint control and subject-oriented tracking. We start with subject-oriented track-

ing in the simulation. We use the distance between the current and the desired camera

position to measure the tracking error. We tested 3 motion capture data (walking, danc-

ing and Tai Chi, average 1300 frames, 30 fps) from the CMU Motion Capture Dataset.

We set the height of the 3D model as 1.8m and the maximum speed and acceleration

as 1.5m·s−1 and 1.0m·s−2, respectively. Meanwhile, we set the viewpoint to focus on

the frontal direction of the subject by 3.5m. We use the average speed of the desired

viewpoint (ASDV) to describe the intensity of the human movements. Table 3.3 shows

that our system can reach the desired viewpoint, with a tracking error less than 1.0m,

for different human movements.

Table 3.3: Subect-Oriented Tracking on Different Movements
Motion Description ASDV (m/s) Tracking Error (m)

Walk 0.11 0.12
Tai Chi 0.47 0.39
Dance 1.04 0.53

For the real-world scenes, we compare the actual and desired viewpoints in both

modes. Fig. 3.22(a) shows that when the user customizes the viewpoint by zooming
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in, rotating horizontally and vertically, the viewpoints of the captured footage match

the desired viewpoints of 3D model in the through-the-lens viewpoint control mode.

Fig. 3.22(b) shows that the proposed subject-oriented tracking enables the drone to

capture the subject from a consistent viewpoint, even when the subject is moving and

rotating. The attached demo video confirms high accuracy and impressive performance.

Discussion

The current system works well when the subject’s limbs are clearly visible, but it

becomes difficult for users to manipulate the drone when the human pose cannot be

accurately recognized. Fig. 3.23(a) shows that the limb of the subject is vague due to

a long camera-subject distance. In addition, the camera viewpoint also affects the 3D

model visualization. Fig. 3.23(b) shows that a sharp angle decreases the body’s visibility

and makes it difficult to recognize the limbs. These problems are partially due to the fact

that our system processes resized images (304x176) to reduce the computation delay. We

plan to compress the current 2D skeleton network to process a larger-size image and to

perceive a greater range.
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Figure 3.15: (a) The localization error for a person with 1.8m height standing in front
of a camera (x- and y-focal length is 380 pixel without distortion) by 5m. The x-axis
represents the height guess and y-axis represents the error of localization in depth. (b)
The camera view captured from Cam 2. (c) A static subject with 1.8m height stands
in the groundtruth position (red skeleton). The blue and green skeletons are estimated
based on 1.6m assumption from Cam 1 and Cam 2 placed 5 meters away from the
subject in different directions. The estimated position from different viewpoints differs
from each other.

Figure 3.16: Localization error in terms of different initialization states (camera-sub-
ject distance, noise levels and camera displacement)
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Figure 3.17: Localization error with respect to different initialization states (subject’s
moving regions and camera-subject distance).

Figure 3.18: (A) User Interface of the through-the-lens viewpoint control is consisted
of the camera, including a camera view (the upper window) and a 3D model preview
(the lower window). The user moves the virtual camera by (B) rotating the 3D model
or (C) zooming the 3D model in the 3D model preview window.
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Figure 3.19: The architecture of the system

Figure 3.20: The prototype drone based on through-the-lens control
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Figure 3.21: Localization error in terms of different moving regions (during initializa-
tion) and camera-subject distance (after initialization).

Figure 3.22: The actual viewpoint in real-world filming and the desired viewpoint
of the 3D model (the subfigure on the right-bottom). (Top) The snapshot of
through-the-lens viewpoint control. The user controls the drone by manipulating
the 3D model. (Bottom) The snapshot of the subject-oriented tracking. The user sets
the desired viewpoint as the front-right direction in the 3D preview window (first from
the left), and then the drone camera keeps tracking the subject from the customized
viewpoint.
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Figure 3.23: The viewpoint and distance affects the 2D skeleton detection, making it
difficult for user to visualize the 3D model.

49



Chapter 4

Guiding the Camera based on

Imitation Learning

In this section, we focus on the problem of capturing the professional videos, which

create a film look via specific viewpoint transition. It is difficult to handcraft a metric

to reproduce the similar effect. Therefore, we expect the drone to be more intelligent to

learn filming skills and improvise cinematic videos.

Watching a large number of video clips captured by professional filmmakers is an

effective way for beginners to learn video shooting skills and ultimately derive their own

creative works. Such a “watching - learning - imitating” strategy has been successfully

applied to camera planning in some automated filming tasks and is known as ”imitation

filming”. [44] and [6] learned a recurrent decision tree to automate basketball game

broadcasting with a pan-tilt-zoom (PTZ) camera. [8] learned an agent for tracking a

salient object through 360◦ panoramic videos using a recurrent neural network. These

successful applications of imitation filming benefit from low-degree-of-freedom control

outputs and the manually-labeled data.

Inspired by these works, we aim to extend imitation learning to the more complex
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drone system to assist inexperienced users to capture cinematic footage. However, there

exist several challenges that prohibit direct usage of the existing data-driven approaches

in our task.

1) Hard to provide an objective evaluation metric: The goal of our task, i.e. cinematic

aerial footage, is subjective. Although [45, 46, 47] provides several metrics (e.g. lighting,

color and composition) to quantify the aesthetic quality of the footage, it is still difficult

to use these metrics to drive the drone to capture cinematic videos.

2) Lack of the annotated training data: Imitation learning requires the video and

synchronized camera pose as training data. Although existing visual-based camera pose

estimation (e.g. ORB-SLAM [48, 49]) can estimate the camera pose (without the abso-

lute scale), the ambiguous scale makes it infeasible to feed the camera pose with different

scales into the training network.

In this work, we continue to focus on filming videos containing one subject. We

present our learning framework by three levels: First, considering that the cinematic

videos create visual-pleasing effect by a specific pattern of viewpoint transition, the net-

work receives the previous viewpoints and learns to predict the next camera viewpoint,

i.e., viewpoint-to-viewpoint camera planning. Second, we further analyze the impact of

foreground and background on the future camera motions, and design a camera plan-

ner which incorporates the video contents and previous camera motions to predict the

future camera motions that enable the capture of professional videos, which we call

observation-to-control camera planning. Finally, we propose a more efficient framework

“one-shot imitation filming”, which can imitate a filming style by seeing only a single

demonstration video of the same style. Compared with the previous framework, “one-

shot imitation filming” does not need to train multiple style-specific models to imitate

different filming styles. This advantage can enable the camera agent to quickly learn to

generalize the unknown style of a given video to the new situation.
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4.1 Related Work

Imitation Filming: Imitation filming is essentially a data-driven autonomous cam-

era planning. [44] and [6] directly use the video clips of basketball games to imitate

professional filming for team sports. [8] uses images labeled with the object’s position

for their application of tracking the most salient object in the 360◦ panoramic video. Our

system aims to capture aesthetic footage for human action, yet the definition of ”aes-

thetic” is subjective and ambiguous. Therefore, it is difficult to formulate the problem

without predefined heuristics.

Filming Style Characterization Filming styles characterization have been well

studied in multimedia community. Rath et al. [50] proposed a four-parameter linear

global motion model to describe the camera motion, i.e. pan and zoom. Bhattacharya

et al. [51] presented a discriminative representation of video shot which can effectively

distinguish among eight cinematographic shot classes: aerial, bird-eye, crane, dolly, es-

tablishing, pan, tilt and zoom. Li et al. [52] constructed a videography dictionary to rep-

resent the foreground and background motion of each video clip. However, their video

representation based on bag-of-visual-words does not consider the sequential patterns

of video content, so it cannot distinguish the long sequence (concatenation) of multiple

different foreground/background motions.

Video Aesthetic Quality Assessment: Many studies have been conducted to

imitate human’s way for evaluating the aesthetic quality of videos. Conventional methods

mainly employ handcrafted features including color distribution [53, 54, 55], the rule of

thirds [56], simplicity [45, 57], composition [58] and motion [59] for describing the

aesthetic quality of a video. Recent works focus on learning deep convolutional neural

networks (CNNs) features [60, 61] for the aesthetic quality assessment task [62, 63, 64,

65, 66].
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One-Shot Imitation Learning: Several studies have been conducted in the lit-

erature for imitation learning from very few demonstration. Duan et al [67] proposed

a “one-shot imitation learning” framework to enable the robotic to stack blocks as the

desired height of the block towers given a single demonstration. Finn et al [68] proposed

a model-agnostic meta-learning (MAML) for better generalization performance on the

same task. However, few of them are directly applicable to imitate the filming style in

terms of the camera motion. On the one hand, existing one/few-shot imitation learning

methods aim to learn a policy to reach the final state. Therefore, their models can learn

the intention of the video from the snapshot of the final state. In our filming task, we

focus on learning the filming style, which refers to a sequential pattern of the camera be-

havior (e.g., camera angles, distance to characters and on-screen layout). This requires

a representative feature which can communicate the filming style from a video to the

agent and retarget the cinematic characteristics to a new scenario. On the other hand,

the conventional imitation learning methods requires the video and synchronized action

as training data. However, our training data is collected from the website without the

associated action variable. Although existing structure from motion techniques can esti-

mate the camera trajectory, the ambiguous scale makes it infeasible to use the sequence

of the camera pose to supervise learning the model and drive the camera motion.

4.2 Viewpoint-to-Viewpoint Camera Planning

4.2.1 Preliminary

Coordinates Definition

We denote (·)w as the world frame, which is initialized by the drone’s navigation

system. (·)c is the camera frame and (·)v is the image frame, where the origin is the center
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of the screen. To describe the relative position between the subject and the camera, we

use the subject’s 3D skeleton joints to define the subject-oriented coordinate system (·)s.

The subject-oriented coordinate system is updated with the subject’s movement. More

concretely, the origin is the center of the subject’s 3D skeleton and three axes are defined

as follows:

zs = zw

xs = norm(pwls − pwrs)× zs

ys = zs × xs,

(4.1)

where pwls and pwrs denote the 3D positions of the subject’s left shoulder and the right

shoulder, respectively in the world coordinate system, and zw denotes the z-axis of the

world coordinates.

Shot Definition

We define the subject’s appearance on the screen as “shot” [3], which is related to

three important aspects: 1) camera-subject distance, 2) relative viewing angle, and 3) the

screen position of the filmed target. Therefore, we represent the shot with two features:

s = {pv, T s} ∈ R5, (4.2)

where T s is the camera’s relative position in the subject-oriented coordinated system,

and pv is the center of the subject’s 2D projection on the camera screen.

4.2.2 Problem Definition

Our system takes the desired shot sd given by the user as the input and automatically

records the video, where the evolution of the subject’s appearance over time is close to
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Figure 4.1: The framework of imitation filming.

professional filming. Considering that aerial filming is a continuous process, the future

camera movement is determined by not only the current shot st but also the previous

shots {st−K , ..., st−2, st−1}. The set consisting of the current and previous shots is denoted

by s≤t.

Our task is to model the conditional probability of the next camera movement based

on s≤t and sd. Because the camera pose directly corresponds to how the subject appears

on the screen, we divide the motion prediction into two steps: 1) predict the next shot se

based on the previous shots s≤t and the desired shot sd, and 2) estimate the next camera

pose based on the predicted shot. Finally, the next camera pose will be published to the

flight control to guide the drone.

In the following, we introduce the imitation filming method in terms of training phase

and testing phase.

4.2.3 Training

We illustrate the training part of our method in Fig. 4.1(top). First, we extract the

shot features from the collected professional videos. Second, we use the sliding windows
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Figure 4.2: The camera poses (PA, PB and PC) are estimated from a sequence of
frames (IA, IB and IC). The estimated camera positions are represented in the sub-
ject-oriented coordinate system.

to create the training data set, where each tuple consists of se, s≤t and sd. Finally, we

use the supervised learning network to train a prediction model p(se|s≤t, sd).

Data Collection

We start by collecting a set of demonstrations for our task. To obtain continuous

video clips with good image composition and smooth camera movement, we download

videos containing only one person from www.gettyimages.com, which offers professional

photography and videography. Specifically, we use the keywords ”aerial view, one man

only, sport” to obtain 1,641 videos clips, each of which is around 15 seconds long. Because

some videos are captured in poor lighting conditions, from a long distance, and/or include

occlusions, which affect the 2D skeleton detection, we feed these videos to a 2D skeleton

detection network based on OpenPose to remove the videos where the subject cannot

be identified in more than 4/5 of the sequence. Because we resize the input video by

304x176 pixels to guarantee real-time computation in the testing phase, we also resize

the training data to achieve the same scale. Finally, we obtain 298 feasible videos, from

which 200 videos are randomly selected as the training set and the remaining videos are

test set.
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Shot Feature Extraction

In this subsection, we present how to extract the feature Eq. 4.2 from the aerial video.

We divide feature extraction into five main steps:

1) We use Openpose [36] to detect the 2D skeleton in the image. To address incom-

plete 2D joint estimation caused by occlusion, we use the value in the previous frame to

compensate the missing space of the current frame. The center of the 2D skeleton joints

is set as pv.

2) We use a seq2seq model [42] to estimate the 3D skeleton from the 2D skeleton.

The estimated 3D skeleton is without global position information.

3) We follow [16] [15] and use the predefined subject’s height to estimate the subject’s

relative position to the camera, where the scale of the camera-subject distance is related

to the subject’s height. Considering that the network requires the input camera pose to

maintain the same scale, we set the height of the subject to be the same in all the videos.

In fact, the height setting has no impact on learning because the input will be normalized

before being fed into the network. We set the height as 1.8m in training phase.

4) We then transform the subject’s relative position in the camera coordinate system

to the camera’s position T s in the subject-oriented coordinate system.

5) We normalize the shot feature to balance the scale between the screen position and

the spatial position as follows:

x̂v = xv/(width/2)

ŷv = yv/(height/2)

x̂s = xs/max(xs)

ŷs = ys/max(ys)

ẑs = zs/max(zs),

(4.3)
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where max(xs),max(ys) and max(zs) are the maximum distances of the training

data in the three respective axes. The width and height are the pixel-wise width and

height of the input video, respectively. Each video is represented as a sequence of vectors

s = [x̂v, ŷv, x̂s, ŷs, ẑs].

Training Data Generation

In this subsection, we introduce how to construct the training tuples given a sequence

of shot features. We utilize an N -length sliding window to scan the whole sequence. We

select the feature of the first K frames (K will be discussed later) of the window to be

s≤t. We set the shot feature of the (K + 1)th frame and the Nth as the next shot se

and sd, respectively. To cover more cases, the length of the sliding window starts with

20 frames for each scan and increases until it is the length of the entire video clip. In

addition, we flip each frame of the video horizontally to augment the training video.

Learning Network

In this subsection we describe how to model the conditional probability p(se|s≤t, sd).

A natural choice is to use a neural machine translation (NMT) architecture [69, 70, 71,

72], which consists of two components: (a) an encoder, which computes a hidden state

for the source input words, and (b) a decoder, which generates one target output word

given a target input word. The objective is formulated as follows:

Jθ =
∑

(se,s≤t,sd)∈D

− log p(se|s≤t, sd, θ), (4.4)

where θ are learned parameters of the encoder and the decoder, and D are our parallel

training corpus.

In our application, the encoder and decoder architecture are based on two long short-
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Figure 4.3: The network architecture for imitation filming.

term memory (LSTM) networks [73] with 512 hidden units. This allows the network to

learn when to forget previous hidden states and when to update hidden states given new

information. In addition, we wrap the LSTM with an attention layer [71, 72] to handle

possible long-length sequences.

The network architecture is illustrated in Fig. 4.3. The encoder receives a sequence

of shot features s≤t and produces a context vector Ct. The decoder is responsible for

predicting the next shot se given the context vector Ct and sd. The context vector Ct

is the linear combination of the previous K hidden states from the source input and

corresponding attention weights, as follows:

Ct =
K∑
k=0

at−kht−k, (4.5)

The attention weight ak is derived by comparing the current hidden state hd from the

59



Guiding the Camera based on Imitation Learning Chapter 4

Figure 4.4: The box plot of the 5-steps attention weights of 250 sequences. The
attention weight ak of the last step is the highest and plays the most important role
to create a context vector.

decoder with each source hidden state of ht from the encoder:

ak = align(hk, hd)

=
exp(score(hk, hd))∑
k≤t exp(score(hk, hd))

,
(4.6)

where score is referred to as a parameterized function to evaluate the similarity

between hd and hk. Here we adopt Luong’s multiplicative style score(hk, hd) = hTdWhk

[71]. We analyze the attention weight ak to understand where the network should focus

its attention during decoding. Fig. 4.4 illustrates the distribution of the attention weights

when the length of the input sequence is 5. The last hidden state obtains the highest

attention (a4) from the model and creates a context vector with more than fifty percent

weights. Because the sum of the last four average attention weights (a1∼4) is more than

90%, it is sufficient to set the length of the input sequence to five (K = 5).
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Given the target hidden state hd and the source-side context vector Ct, we employ a

simple concatenation layer to combine the information from both vectors to produce a

transition viewpoint as follows:

se = tanh(W [Ct;hd]), (4.7)

Across all the experiments, we use Adamax [74] to perform the optimization, with a

learning rate of 0.0001.

4.2.4 Testing

In this section, we introduce the implementation of the test phase (see Fig. ??(bottom)).

First, the system extracts shot features of the input video stream in real-time and collect

the shot features of the latest 5 frames as the buffer s≤t. Simultaneously, we follow [16]

[15] to use the extracted skeleton and the prior knowledge of the subject’s height to esti-

mate the subject’s relative position to the camera. Given the known drone’s positioning

information, we can obtain the position and orientation of the subject in the real world.

Second, we take the framing objective given by the user as sd, and then feed s≤t and

sd into the learned network to predict the feature of the next shot se.

Finally, we apply the joint quadrotor and camera model used in [1] [?] to model

the gimbal and drone body. The subject’s screen position pv and the relative camera

position T s in se are used to guide the gimbal and drone body movement independently.

It is noted that the predicted pv and T s are required to recover their scale based on the

inverse operation of Eq. 4.3 before further processing.
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Gimbal Control

We apply the PD controller to adjust the gimbal camera to place the subject in the

predicted screen position pv.

Drone Body Control

We adopt min-snap (second derivative of acceleration) piecewise trajectory planning

[40] to guide the drone.

4.2.5 System Architecture

The system hardware is same as the Sec.3.1.5. We deploy different modules to two

processors (i.e., TX2 and Manifold) based on their computation complexity. Table 4.1

shows the runtime of different modules for each frame. More precisely, the TX2 is dedi-

cated for shot feature extraction, and the DJI Manifold covers the viewpoint prediction

and camera planning. Both processors are powered by the battery of the DJI Matrix 100

and are connected using an Ethernet cable. Communication between two computers is

done by utilizing the ROS infrastructure. Meanwhile, the user utilizes the user interface

on the ground PC to design the shot and send it to the drone using Wi-Fi.

Table 4.1: Runtime of Different Modules
GPU Module Runtime (ms)
TX2 Shot Feature Extraction 218.47

Manifold Viewpoint Prediction 22.43
Gimbal/Drone Body Control 17.36
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Figure 4.5: (A, C) The snapshots of two footages captured by our drone system. (B,
D) The framing objectives given by users in the User Interface.

4.2.6 Experiments

In this section, we conduct quantitative and qualitative experiments to evaluate our

method. These experiments are designed to answer the following questions:

4.2.7 Does the predictive model learn the filming skills from

the professional videos?

Experiment: We train two learning networks with the professional videos from get-

tyimages.com and the random single-subject videos from Youtube. We keep the same

amount of training data (200 videos) and compare the prediction error of the test videos

from gettyimages.com.

Table 4.2: The prediction error of the screen position and relative camera position
Training Data Screen Position Relative Camera Position

(pixel) (m)
Professionals 11 0.33

Random 16 0.59

Result: Tab. 4.2 compares the prediction error of two models trained from different

datasets. The screen positions and the relative camera positions predicted from the

professional videos are more accurate than those from random videos. The predicted
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Figure 4.6: Left: The possibility of collision decreases with the increasing training
data. Right: The drone can pass by the subject in the test phase.

results are related to not only the previous inputs but also the memory of the training

data in the network. We can draw the conclusion that the predictive model does learn

the filming skills from the professional videos.

4.2.8 Is the drone system capable of avoiding collision with the

subject?

Experiment: We export one human model from the CMU motion capture dataset [75]

to the simulation. Given the random user’s input and the initial position of the drone, we

count the collision times along with the increasing training data. We model the avoided

region (see the red sphere in Fig. 4.6 (right)) using a sphere around the subject (2 m). If

the drone intrudes into the avoided region, we consider it to be a collision. We test 100

times for each set of training data.

Result: Fig. 4.6 (left) shows that the possibility of collision decreases with the increas-

ing training data. This can be explained by the fact that the training video implicitly

includes the information of keeping the safety distance. Inspired by [76], we believe that

the drone system can be more robust in avoiding collisions if we feed in more training

video captured in different conditions.
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4.2.9 What are the benefits of learning?

Experiment: We utilize the user study to analyze the benefits of learning via two

experiments: 1) comparing the quality of the footage captured by beginners with versus

without the assistance of our system, and 2) comparing the footages captured manually

by experts and by beginners with the assistance of our system. We recruited 5 novice

volunteers with no prior knowledge of cinematography nor drone piloting experience,

and 5 volunteers with aerial filming experience. Each participant is required to capture

2 pieces of video clips with and without using our system, and then each one is assigned

a questionnaire to score (from 1 (worst) to 5 (best)) the quality of all the video clips.

Table 4.3: The User Study for Benefits of Learning
Manual Filming Automatic Filming Manual Filming

by Beginners by Beginners by Experts
1.71± 1.29 4.25± 0.53 4.11± 0.82

Result: The experimental result among beginners shows that the scores (4.25± 0.53)

for the footage captured with our system are higher than for the footage captured manu-

ally (1.71± 1.29). In the second experiment, the footage captured by the beginners with

the assistance of our system is close to that filmed by the experts, which demonstrates

that our system does successfully mimic a professional cameraman.

Fig. 4.5 illustrates two sequences of snapshots of the video (A and C) and two framing

objectives (B and D) given by users in the UI. The end frame (t=9 s) is consistent with

the user’s inputs. The attached videos demonstrate that our system achieves film-look

footage and successfully mimics a professional cameraman. More comparison results are

demonstrated in our demo video.
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4.3 Observation-to-Control Camera Planning

4.3.1 Problem Formulation

We aim at a learner that can imitate human experts’ policy for camera planning by

“watching” a large collection of professional videos from experts. Let do denote a dis-

tribution of input observation sequence ȯ = (ot−M+1, ot−1, ..., ot) ∼ do, where t denotes a

temporal point and ot is feature vector representing imitation-related information cap-

tured from the input video frames (It−M+1, ..., It).

Let π denote a class of policies that our learner is considering. Given a sequence of

observation o, each π ∈ Π generates a stream of outputs ċ = (ct+1, ct+2, ..., ct+N) denoting

imitation-related labels during the future period [t + 1, t + N ]. Operationally, c could

be 6DOF camera motions, control commands or any other aesthetic quality assessment

metrics.

The goal of the learner is to find a policy π̂ that best imitates the human experts π∗.

Thus the learning process is to minimize the imitation loss as:

π̂ = arg min
π

Eȯ∼doL(ȯ, π, π∗) (4.8)

Three key factors in the formulation that affect the final performance are: 1) the

imitation-related information encoded in the input feature representation, 2) the accuracy

of the ground truth outputs (i.e. π∗(o) for training), and 3) the learning ability of the

model for regressing the correlations between the inputs and outputs.

Input feature design: Three components are highly related to imitation-oriented

camera planning: 1) The motions (e.g. velocity, position and pose) of the subject, which

would determine the camera’s moving velocity, trajectory and viewpoint to provide the

best view of the subject; 2) The background scene which would affect the composition
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Figure 4.7: Overview of our imitation learning framework. The framework is consisted
of three modules: 1) feature extraction, 2) prediction network and 3) camera motion
estimation. We illustrate the dimension of the data flow as (time-step × width ×
height × depth).

of a frame, e.g. it is better to include both the subject and flowering shrubs in a frame,

and exclude disordered clutters from the frame; 3) The previous camera motions which

could ensure a smooth footage. Imitating an expert to film is a highly complex task and

we think it is necessary to jointly consider all the three components and their impacts on

the final captured footage. Therefore, in this work we design novel features to effectively

represent the three components. Details will be presented in Sec. 4.3.

Output label design: Just like beginners always learn to paint by first copying

every stroke of masters’ work, we think that training the learner to duplicate the flying

trajectories and camera poses provided by the experts should be an effective scheme

for imitating filming. Therefore, we define ċ = (ct+1, ct+2, ..., ct+N) as 6DOF camera

motions. It is feasible to obtain camera motions via visual-inertial navigation on a real

camera drone platform equipped with inertial sensors [77]; however, it is impossible to

derive absolute camera motions directly from training videos which do not contain inertial

sensor data collected from the internet. As a result, directly utilizing camera motions as

the output prohibits the usage of enormous professional videos publicly available online

for training, and in turn impose great difficulties in collecting sufficient training data.
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To alleviate the problem of collecting training data, we utilize dense optical flow of the

static regions in a video as the output label of the learner to reflect the camera motion.

The camera motions in the testing phase are recovered via a VIN system. Details of

converting optical flows to camera motions are presented in Sec. 4.3.

Learning method: A desired learning model should effectively fuse information

from multiple inputs and meanwhile spatial and temporal information from the inputs

and their correlations with output predictions. To this end, we design on learning model

based on the convolution long short-term memory (ConvLSTM) [78] to mine spatial

and temporal information of each type of input and to fuse multiple input types in the

network.

In addition, the length of the input and output sequences may be not equal. Therefore,

we apply sequence-to-sequence architecture (Seq2Seq) [69] to map the input observation

to the future camera motion.

4.3.2 Imitation Learning Framework

This section describes the framework of our imitation learning algorithm (see Fig. 4.7),

including feature extraction, prediction network and camera motion estimation.

Feature extraction

Subject motion feature: As discussed in the previous section, we desire to encode

the subject’s motion in the feature representation. To this end, we design the subject

motion feature in which the position and pose of the subject are represented using 13

keypoints of a skeleton extracted from OpenPose [36] (see Fig. 4.8 3rd column). The

velocity of the subject could be partially reflected by consecutive subject motion maps.

However, OpenPose detects only a single pixel for each keypoint, which could be very
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Figure 4.8: The extraction process of the subject motion feature.

sensitive to small geometric changes. To address this problem, we convolve each of 13

keypoints using a Gaussian kennel independently to blur and dilate the keypoint, yielding

13 subject motion maps for a video frame (see Fig. 4.8 last column).

It is common that OpenPose could fail when the size of the subject is too small,

yielding incorrect subject motion maps and noisy inputs to the learner. To alleviate this

problem, rather than directly applying OpenPose to the entire image, we use subregions

of the image containing human detected by the YOLOv3 [79] (see Fig. 4.8 2nd column).

Such preprocess step could greatly exclude background clutters and remove distractors

for OpenPose. If the YOLOv3 detects the human but the OpenPose fails to detect the

keypoints, we will copy the keypoints in the previous frame to this frame. We noticed

that this scheme performs well on our benchmark videos despite the size of the subject

is small.

The subject motion maps at temporal point t could effectively represent the pose of

the moving subject. Concatenating subject motion maps of successive temporal points

could reflect the relative motion between the subject and camera. In our experiment, we

resize each feature map into 40×20 pixels.
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Background Feature: To represent background scenes, we extract CNN features

of the original RGB image using a 3-layer convolutional encoder as describe in Tab. 4.4.

The final output feature maps are converted to three maps with size of 40×20 pixels.

Table 4.4: Layer parameters of background feature extraction network. The output
dimension is given by (width × height × depth). PS: patch size for convolutional and
transposed convolutional layers; S: stride. Layer types: C: convolutional

Name Type Output Dim PS S
F-conv1 C 160x80x32 3x3 2
F-conv2 C 80x40x64 3x3 2
F-conv3 C 40x20x3 3x3 2

Camera motion: As discussed in Sec.4.3.1, we use optical flow to represent the

camera motion. In particular, we adopt the dense optical-flow method because it out-

puts the fixed amount of motion vectors, each of which corresponds to a pixel with the

same spatial position in RGB image. This design facilitates learning the spatiotemporal

relationship between the subject and the background. Many advanced dense optical flow

extraction methods could be used, e.g. FlowNet1.0 [80] and FlowNet2.0 [81]. In this

work, we utilize the method proposed by Liu et al. [82] for its high efficiency on a drone

platform and sufficient robustness in our task. For each frame, two dense optical flow

maps are outputted by [82], representing the horizontal and vertical components of the

optical flow for every pixel respectively. The dense optical flow maps are also resized to

images of 40×20 pixels for the subsequent processing.

For each frame, we stack the 13-channel subject motion maps, the 3-channel scene

maps and the 2-channel optical flow maps to form an 18-channel representation. We

concatenate feature representation of M consecutive frames as the input of the prediction

network.
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Prediction Network

The prediction network is based on a Seq2Seq ConvLSTM model (see Fig. 4.7), in-

cluding an encoder and a decoder. All the ConvLSTM [78] cells in the encoder and

decoder share the same weights.

The encoder first processes each input of M feature maps (40 × 20 × 18) using 4

convolutional layers, and then feeds the output of the last convolutional layer to the

ConvLSTM recurrently. The decoder receives the state vector of encoder conditioned

on M inputs and produces predictions for the following N steps. The outputs of the

ConvLSTM are further processed using 4 transposed convolutional layers [83] to predict

the subject’s motion and camera motion. Each subject’s motion is represented using 13

subject motion maps and the corresponding camera motion is described using 2 dense

optical maps. Thus we split the output of the last transposed convolutional layer to two

groups, the first group consists of N×40×20×13 maps representing the subject’s motions

of N temporal points and the other group consists of N×40×20×2 maps representing

the camera motions of N temporal points. Details of the prediction network are shown

in Tab. 4.5. The selection of M and N is experimentally evaluated in Sec.4.4.

Table 4.5: Layer parameters of prediction network. The output dimension is given by
(width × height × depth). PS: patch size for convolutional and transposed convolu-
tional layers; S: stride. Layer types: C: convolutional, TC: transposed convolutional,
CL: convolutional LSTM cell.

Name Type Output Dim PS S
P-conv1 C 40x20x8 3x3 2
P-conv2 C 20x10x8 3x3 1
P-conv3 C 20x10x8 3x3 2
P-conv4 C 10x5x4 1x1 1

convLSTM CL 10x5x4 3x3 1
P-tconv4 TC 10x5x4 1x1 1
P-tconv3 TC 20x10x8 3x3 2
P-tconv2 TC 20x10x8 3x3 1
P-tconv1 TC 40x20x15 1x1 2
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We train our prediction network using a combination of two losses: 1) the pixel-wise

mean square errors (MSE) between the predicted optical flow and the corresponding

ground truth, i.e. L2(ḟ , ḟ ∗), and 2) the pixel-wise MSE between the predicted subject

motion feature and the corresponding ground truth, i.e. L2(ṗ, ṗ∗), as shown in Eq. 4.9.

min α ∗ L2(ḟ , ḟ ∗) + β ∗ L2(ṗ, ṗ∗) (4.9)

where ḟ and ṗ refer to the future dense optical flows (ft+1, ..., ft+N) and subject

motions (pt+1, ..., pt+N), respectively. ()∗ is used to distinguish the ground-truth from the

prediction. We use α and β to balance the weight of the prediction of the optical flow

and human pose. In our experiments, α and β are set as 1 and 0.3.

The first loss L2(ḟ , ḟ ∗) ensures a high-fidelity imitation of the planned camera’s tra-

jectories and poses. The second loss L2(ṗ, ṗ∗) ensures the proper composition of the

picture and the view of the moving subject.

Camera Motion Estimation

This section describes how to estimate the camera motion from optical flow during

online filming. We apply a two-stage strategy to generate a camera trajectory: First, we

use the learned model to predict the future optical flow {ft+1, .., ft+N} for the new input

images {It, .., It−M+1}. Second, according to the optical flow maps at time [t + 1t + N ],

we identify 800 matching points, based on which we can derive an essential matrix E

[84]. We decompose E as Eq. 4.10 to obtain the 3DOF rotation and 3DOF translation

of the camera at time t+ i:

(p′)TK−TEK−1(p) = 0

E = R[t]×

(4.10)
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where p and p′ are homogeneous image coordinates of the start point and end point

of the optical flow vectors. K,E,R and [t]× refer to the camera intrinsic matrix, the

essential matrix, the rotation matrix and the matrix representation of the cross product

with the translation vector, respectively.

Because the essential matrix is up to scale (i.e. the scale of the translation is ambigu-

ous), we apply a simple and efficient method to get the scale parameter before autonomous

filming: the drone automatically moves backward to collect 10 images of a subject within

2 meters. We estimate the translation (up to scale) from the collected images based on

the decomposition of the essential matrix. We calculate the scale parameter by dividing

the camera trajectory from the drone’s navigation system and the estimated translation.

After initialization, the scale, as a constant factor, is multiplied to the camera translation

estimated from optical flow as the final translation.

Once N steps of camera motions are obtained, we generate a smooth and feasible tra-

jectory with a min-snap polynomial trajectory planning algorithm [40]. This trajectory

will be sent to the flight control module to guide the drone to move.

4.4 One-Shot Imitation Filming

4.4.1 Introduction

In the previous framework “viewpoint-to-viewpoint camera planning” and “observation-

to-control camera planning”, we utilize imitation learning to train a prediction network

from drone video clips, where the prediction network can predict the next location of the

drone, given the past locations and video content. However, both techniques suffer from

one common drawback: the learned model is style-specific. For example, a policy might

have been trained through an imitation learning algorithm to orbit around the subject,
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and then another policy would be trained to chase the subject, etc. Each model has

only a single-style control policy. In addition, these methods require significant amount

of samples and training time for each style. If there are few video samples (even single

sample) for one style, the learning model in the auto filming system will suffer from

overfitting. This is far from what we desire. Ideally, a sophisticated learning algorithm

should enable the camera agent to perform like a skillful cameraman so that the camera

agent can reproduce the same filming style from a given demo video without long time

to practice, which we call one-shot imitation filming.

In this work, we aim to design a one-shot imitation filming framework, including the

following techniques to address the above problems:

First, the filming style feature is required to represent the sequential pattern of the

video content. We design a filming style feature extractor which takes the subject’s

on-screen position, size and orientation and the background’s motion field as input and

outputs a low-dimensional feature. We apply a cascaded long short term memory net-

works with attention layers to fuse the temporal information of different inputs. Con-

sidering that most filming styles are a combination of finite basic styles, we learn the

feature by minimization of the classification error of a classifier, which aims to categorize

5 predefined basic styles (i.e., fly-by, orbiting, fly-through, follow, and super-dolly).

Second, the filming style is required to transferred from a demo video to a video being

recorded. We design an improved learning strategy based on meta-learning. Inspired by

the fact that the prior experience of imitating basic filming style enables the agent to

imitate the complex filming style, we focus on learning the transferring ability of 5 basic

styles under the different circumstances. To enable the agent to read the sequential

pattern of camera behavior from the style feature, we design a multi-task loss function

to train the model by minimizing the camera motion prediction error of the demo video

and content video.
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Third, although there is no available camera motion ground-truth from video, we

apply a simple and efficient method to represent the necessary control variable for our

applications. Because we focus on imitating the relative motion between the subject and

the camera, we leverage the angular speed and linear velocity direction of the camera and

the subject’s on-screen size to guide the camera movement. These control variable can

be obtained from the video by existing structure from motion and human detection tech-

niques. We can further convert these variables into the actual motion by incorporating

with odometry information during the online filming.

We deploy our model to a real drone platform and the real demo shows that our drone

cinematography system can successfully achieve one-shot imitation filming. We analyze

the impact of different inputs and compare the proposed method with several baselines.

Experimental results demonstrate the superiority of our method to conventional baselines.

To the best of our knowledge, this is the first work to analyze and design features for

representing filming styles and re-apply the cinematic characteristics to a new scenario

through an improved one-shot imitation learning framework.

We detail one-shot imitation filming in Sec. 4.4.2. We present the experimental

results to evaluate our system in Sec. 4.4.3. Finally, we give the conclusion in Sec. 4.4.4.

4.4.2 One-Shot Imitation Filming

Problem Formulation

In this work, we focus on imitating the human motion video with one single person in

the scene.The filming style refers to the sequential pattern of cinematic characteristics of

a video (camera angles, distance to the subject, on-screen layout). We can represent the

filming style as a sequence of camera poses, which are parameterized to the time variable

t in each dimension of 6 DOF as follows:
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Figure 4.9: The relative motion between the camera and the subject influences the
cinematic characteristics of the video. pct and pst represents the pose of the camera
and the subject in the world coordinates at time t, respectively.

Figure 4.10: Our proposed framework for one-shot imitation filming.

style ∼ {at}0:T

at = {xct − xst , yct − yst ,zct − zst , rollct , yawct , pitchct}
(4.11)

where (.)c and (.)s are the pose of the camera and subject in the world coordinates

respectively, and T is the duration of a video clip.

We aim to learn a camera agent, which can adaptively predict the next camera motion

(i.e. at+1) based on the current observation ot and the camera motion at so that the

capture video conforms to the filming style of the demo video gφ(d).

at = fθ(at+1|ot, at, gφ(d)) (4.12)

76



Guiding the Camera based on Imitation Learning Chapter 4

As Fig. 4.10 shows, our objective is to learn two models:

1) The style feature extractor gφ(), which can encode cinematic characteristics of a

variable-length video clip to a low-dimensional fixed-length feature vector.

2) The camera motion predictor fθ(), which can predict the next camera poses given

the style feature of the demo video and the current observation and camera poses.

This section is organized as follows: we start by presenting the filming style feature

and detail the design of our cinematic feature extractor. We then describe the camera

motion predictor, followed by the camera pose estimation in the field test. Finally, we

introduce an segmentation-based method to handle the input video with the mixed style.

Filming Style Feature

The filming style is closely related to the relative motion between subject and camera,

but we cannot obtain the actual trajectories of the camera and subject from the video.

Existing solutions rely on the strong priors on the content of the scene. Because the

relative motion between the camera and the subject influences the cinematic character-

istics of the video, we utilize the appearance change of the foreground and background

to represent the filming style feature instead. For the foreground, we utilize the subject’s

on-screen position, size and orientation to represent the camera angels and distance to

the subject. The static background is an important reference to identify the camera

movement, especially when the subject keeps relatively still to the camera. For example,

when a camera is orbiting around a spinning dancer, the subject’s on-screen appearance

may look relatively static to the camera but we can identify the orbiting pattern of the

camera from the background.

The design of the filming style features is guided by

1) the efficiency of the feature extraction that allows the time-critical applications

2) the feasibility of encoding the temporal correlations between the camera motions
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and the scene contents into fixed-length vector.

3) the distinguishability of style feature in terms of different filming styles.

Feature Design Efficiency: We downsample the input video as 4fps to reduce the

duplicate information. We extract the foreground/background feature as follows:

Background : The motion pattern on the static background can reflect the camera

movement, so we utilize the sparse optical flow method to represent the background.

Foreground : The subject’s appearance (i.e., the on-screen position, size and upper-

body orientation) includes the information of the camera angles, distance to characters

and on-screen layout. We utilize the person detection and human upper-body orientation

jointly to extract the foreground feature. Although the skeleton positions on the 2D

image implicitly embed the above information, the 2D skeleton detection is much more

time-consuming. More importantly, the increased dimensionality will cause “curse of

dimensionality”, which makes it more difficult to learn a model from limited dataset.

Feasibility Since our neural network needs to handle demo videos with variable

lengths, long short term memory (LSTM) network [73] is a natural operation due to

its ability to map the variable-length temporal signal to fixed-dimensional vector. In

addition, inspired by that the snippet embedding in [85] can enhance the temporal

representation, we apply a two-state cascade temporal encoding strategy: 1) we adopt

a overlapping sliding window to segment the video as multiple snippets and utilize two

LSTM networks to encode the foreground and background feature within each snippet

as a snippet embedding. 2) We utilize another set of LSTM networks to encode all the

snippet embedding of the entire video to represent the video feature.

Distinguishability Because the most filming styles are a combination of several

basic styles, we learn a feature extractor by adding a multi-class classifier and minimizing

the misclassification error of several predefined basic filming styles. According to [86],
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Figure 4.11: Exemplar videos with the style (A) fly-through (B) fly-by (C) follow (D)
orbiting and (E) super-dolly.

five widely-used basic filming styles in single-subject drone cinematography include (see

Fig. 4.6):

• Fly-through: pass through a subject without rotation.

• Fly-by: fly past the target in a straight line while rotating the camera to keep the

subject framed in the shot.

• Follow: follow the subject with the fixed distance.

• Orbiting: rotate around the subject of interest while pointing to the subject.

• Super-dolly: fly backwards, leading the subject.

Implementation In this section , we detail the implementation of style feature extrac-

tor based on deep neural network. As the Fig. 4.12 shows, the style feature extractor

takes the entire video as input, and produces a fixed-length vector.
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Figure 4.12: The style feature extractor. Step 1: frame-level feature extraction. Step
2: snippet-level embedding. Step 3: video-level embedding

Step 1: Frame-level feature extraction We extract the foreground/background

feature for each frame as follows:

Background. We adopt the grid-based motion field [52] to describe the motion

between adjacent frames. In details, we densely computed Kanade-Lucas-Tomasi (KLT)

tracks [87] over the entire image. The image plane is splitted as a K × L regular

grids. We calculate the per-grid velocity Vk×l as the average from multiple KLT tracks

intersecting that grid. As suggested in [52], the block size is set to 8×8.

Foreground. We utilize YOLO network [79] and Deep Orientation netwwork [88] to

detect the bounding box and upper-body of the subject, respectively. The position and

size can be described as a 4-dimensional bounding box, and the upper-body orientation

is represented as a 1-dimensional Euler angles.

Step 2: Snippet-level embedding We utilize a sliding window with length N

frames (i.e. N=8) to group the features as a snippet. Given a snippet of the fore-

ground/backgroujnd feature, we utilize an auto-encoder [89] based on LSTM networks

[78] to learn snippet embedding. We train two encoders for the snippet embedding of

background and foreground, respectively. As the sliding window scans the entire video,
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a video can be represented as a sequence of the background embedding and a sequence

of foreground embedding. The foreground encoder is a LSTM network with 64 hidden

units and the background encoder is one with 128 hidden units.

Step 3: Video-level embedding We apply two different feature embedding net-

works to encode the snippet embeddings of foreground and background, respectively. It is

noted that the amount of valuable information provided by different frames is in general

not equal. Only some of the frames (key frames) contain the most distinctive information

about the style. For example, for the style “fly-through”, the snippet captured when the

camera is passing by the subject should have higher importance than the snippet when

the camera is moving closer to the subject. Based on such insight, we design a temporal

attention network to automatically pay different levels of attention to different snippets.

Similarly, we apply two parallel temporal attention networks to process the foreground

and background independently. Finally, we output the style feature by fusing the tem-

poral attention and the feature embedding. Let c
FG/BG
t and β

FG/BG
t denote the outputs

of the foreground/background main networks and the temporal attention value of the

foreground/background attention network at each time step t, the style feature v is the

concatenation of the weighted sum of the outputs at all time steps T :

v = [
T∑
t=0

βFGt · cFGt :
T∑
t=0

βBGt · cBGt ]. (4.13)

We implement the feature embedding network and temporal attention network of

foreground and background with 4 different LSTM network with 80 hidden units. The

final style feature is a 160-dimensional feature vector.

We train the network by feeding the style feature into a 5-dim fully-connected layer p

followed with a softmax layer to convert to probability of five basic styles. The loss func-

tion is written as Eq. 4.14, including 1) the cross-entropy loss of style mis-classification
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2) the L2-norm loss of the foreground temporal attention and 3) the L2-norm loss of the

background temporal attention.

min
φ

C∑
c=1

yclogpc(gφ(sFG1:T , s
BG
1:T ))

+
λ1
T

T∑
t=1

‖βFGt ‖2 +
λ2
T

T∑
t=1

‖βBGt ‖2

(4.14)

where C is the number of the basic styles (i.e. C=5) and T is the number of the

snippets of each video. In this work, we set both of λ1 and λ2 as 0.01.

Camera Motion Prediction

In this subsection, we introduce the camera motion predictor, which can re-apply the

filming style of the demo video to the new scenario by adaptively predicting the next

camera motion based on the current observation. Inspired by the fact that prior expe-

rience of imitating basic filming style enables the agent to imitate the complex filming

style, we can train the predictor to transfer the basic filming style under different cir-

cumstances so that the predictor can quickly learn to generalize the unknown style of

a given video to the new situation. The design of the camera motion predictor should

answer the following questions:

1) How can we represent the camera motion when building the ground-truth? It is

impossible to derive 6 DOF camera motions directly from training videos which do not

contain inertial sensor data collected from the internet.

2) How can we transfer the filming style (i.e., the sequential pattern of camera be-

havior) of the demo video to a video being recorded?

Camera Motion Representation We apply a simple and efficient method to repre-

sent the necessary control variable for our applications. First, we utilize the structure
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from motion techniques to estimate the camera trajectory (without the scale) from the

video. Because each camera pose in the estimated trajectory has one timestamp, we can

obtain the angular speed and linear velocity direction in the world coordinates. Second,

because the style is essentially determined by the relative position between the subject

and the camera, we can use the subject’s height to represent the scale of the relative

camera motion (if we assume that subject’s height would not be changed frequently).

Therefore, we use the 3-dimensional angular speed, 3-dimensional linear velocity direc-

tion and 1-dimensional the subject’s on-screen height to approximate the camera motion

relative to the subject as the output label of the network. It is noted that the subject’s

on-screen height is normalized between 0 and 1 by dividing the pixel-wise the subject’s

height by the height of the image screen.

Filming Style Transferring Ideally, a context embedding should include the style-

related information from the observation and ignore the trivial factors (e.g. background

layout). Although different videos with the same style are different in terms of the cam-

era speed, background layout and the subject’s motion, they share the same sequential

pattern of the camera behavior. Therefore, there exists the temporal matches (the same

development progress) between two videos with the same style. Based on this insight,

we propose a novel meta-learning strategy to train the predictor (see Fig. 4.13). First

we sample two videos (style video and content video) with the same style. We sample

a snippet (content snippet) from the content video and find the matching snippet (style

snippet) from the style video. The context embedding, which is calculated from the style

feature of style video and the content snippet, should predict the next action for the

content snippet and style snippet respectively (conditioned on the current action in the

content and style snippets). We perform the same training procedure for 5 basic styles,
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Figure 4.13: Left: Training the camera motion predictor. The snippets cropped by
two red bounding boxes are the matching snippets. Ct refers to the context embedding.
Right: Testing the camera motion predictor.

and the loss function can be written as follow:

min
θ

‖fθ(act , v, oct)− ac∗t+1‖+ λ ∗ ‖fθ(ast′ , v, oct)− as∗t′+1‖ (4.15)

where the (.)s and (.)c refer to the variable of style snippet and content snippet. (.)∗

indicates the ground-truth camera motion. t and t′ are two matching timesteps from two

videos. The hyper-parameter λ is set as 0.7.

How to find the matching snippets? There are multiple ways to find the optimal

matching patterns between two variable-length sequences. In this work, we utilize the

dynamic time warping (DTW) [90] to detect the matching snippet of two videos, while

the video is represented as a sequence of concatenation of background and foreground

embeddings. Fig. 4.14 shows that the warping path in which the two sequences with

style “fly-by” are aligned in time. We can see that each red point on the warping path

corresponds to two matching snippets ai and bi, which share the similar relative subject’s

on-screen position.
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Figure 4.14: Left: the warping path generated from two videos with the same style.
Right: the matching snippets in each row share the similar relative subject’s position.

Implementation We utilize the deep neural network to implement the camera motion

predictor. The camera motion predictor takes the style feature from the demo video, the

current observation and camera motion as inputs and predicts the next camera motion.

We embed the latest N frames from the camera as the foreground and background

embeddings.

The network is constructed by two subnetworks. The first subnetwork, which con-

sisted of two fully-connected layers (128 and 64 hidden units), produces a context embed-

ding given the concatenation of style feature, the foreground and background embeddings,

and the second subnetwork, which consisted of two fully-connected layers (32 and 7 hid-

den units), predicts the next camera motion from the context embedding and the current

camera motion.

Although our imitation policy is similar to the conventional one-shot imitation learn-

ing [67, 68], we do not follow their end-to-end training strategy to learn the entire model

by minimizing the action prediction error. As different filming styles may output simi-

lar camera motion (but different timesteps), it may cause the vanishing gradient in the

style feature extractor, preventing us to train the network end-to-end. Another feasible
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solution is to finetune the entire network end-to-end after separate training, but there is

no obvious improvement.

The above training process is based on the assumption that the input demo video has

only a single basic style. In the test phase, the input demo video could be a long sequence

(concatenation) of multiple basic styles, we need to analyze the motion coherency of the

video and decompose the video into a sequence of single-style segments. Then we perform

imitation filming for each segment orderly.

Camera Motion Estimation

This section describes how to produce the camera motion from the outputs (angular

speed ω, linear velocity direction v and subject’s scale s) of the prediction network

during online filming. In details, we have the drone’s position pdt and orientation ϕdt at

the timestep t. If the subject’s height is known, we can utilize Lim et al’s method [17]

to localize the subject’s position pst based on its bounding box sst . We assume that the

subject’s movement is smooth and we can use Kalman Filter to predict the subject’s

location pst+Mt in the next timestep. As Fig. 4.15 shows, the drone’s orientation ϕdt+Mt in

the next timestep can be obtained by adding ϕdt with ωMt. The drone’s position pdt+Mt

in the next step is calculated by searching a position on the ray with the direction v to

minimize the error between the observed bounding box sst+Mt on this position and the

predicted subject’s scale s. This estimated waypoint (ϕdt+Mt and pdt+Mt) will be sent to the

actuator to control the drone.

4.4.3 Experiments

In this section, we first introduce the dataset collection, and then describe the exper-

imental setup and the measurement metrics, followed by experimental results.
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Figure 4.15: The camera dynamically estimates the next camera pose based on its
actual observation and the network prediction.

Dataset

We collect the video clips from the website www.gettyimages.com, which offers profes-

sional photography and videography. Specifically, we used three keywords “aerial view,

one person only, outdoor” to initialize our search. We excluded the searched video results

which contain extremely poor lighting conditions, subjects taking up too small regions

and/or being occluded for too long time during the video.

To select the video with the predefined basic styles , we recruit 3 human annotators

and asked them to manually label the videos based on the definition of each style. Each

video was labeled by 1 annotator and verified and corrected by the other 2 annotators.

We will drop the video if it does not belong to any of the basic styles. Eventually, we

obtain 146 videos, each of which is around 5-50 seconds long, yielding videos of totally

3218 seconds. Tab. 4.6 shows the statistics of the style annotations in our data.

We resized each video frame to 640x480 and down-sampled the video to frame rate

of 4fps to adapt to the actual computation speed. In addition, we provide the ground-

truth of camera trajectory (rotation and translation) and subject on-screen information

(position, size and orientation). More specifically, we apply the state-of-the-art structure
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from motion tool OpenSFM [91] to extract the ground-truth of camera trajectory. The

ground-truth of subject on-screen bounding box is detected based on YOLOv3 [79] and

the orientation is estimated based on the result of [88], while we manually correct the

misidentified skeleton joints to replace the original result.

Table 4.6: Statistics of the style annotations in our data
Style fly-by fly-through follow orbiting super-dolly

Videos 21 42 30 28 25
Duration
(Second)

452 976 670 587 533

Experimental Setup

We split our dataset into 97 training videos and 49 test videos. The number of videos

from the five styles (i.e. fly-by, fly-through, follow, orbiting, super-dolly) are 14, 28, 20,

18, 17 for the training set and 7,14,10,10,8 for the testing set. For each training and

testing video, we applied an overlapping sliding window with a length of 8 to generate

a set of snippets for background/foreground embedding. The stride of the overlapping

sliding window is 4. Accordingly, we generate a total of 1960 training clips and 1002

testing clips. We further augmented the training data by flipping each video clip along

the horizontal axis, yielding 3920 training clips. We train our network on the Nvidia

Tesla K50c and utilize Adamax [74] to perform the optimization, with a learning rate

of 0.001.

We evaluate the performance of our method as follows:

1) We utilize the confusion matrix of the style classification to examine the represen-

tation ability of the style feature.

2) We measure the accuracy of the camera motion predictor by calculating the mean

square error (MSE) between the predicted camera motion and the ground-truth in terms
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of angular speed (rad/s), linear velocity direction and (rad) the subject’s normalized

scale.

3) We evaluate the imitation performance of the capture video by comparing it with

the demo video in terms of four metrics: 1) the on-screen position error, 2 the upper-body

orientation error, and 3) motion field average end-point error.

4.4.4 Filming Style Feature

In this subsection, we design the experiments based on our dataset to carefully analyze

two factors on the style classification results: 1) input feature selection and 2) attention

mechanism. To the end, we design the following baselines: FG-only, BG-only, FG+BG,

FG+BG+Att. Details of the four baselines are listed in Tab. 4.7.

Table 4.7: Design of the four network baselines
FG-only BG-only FG+BG FG+BG+Att

foreground X X X
background X X X
attention X

Because FG-only and BG-only baselines only use one branch network, we double the

number of hidden neurons such that they have the same number of parameters as other

two baselines. Fig. 4.16 shows that the foreground and background have complementary

relationship for filming styles classification. For example, the orbiting style depends more

on the background than the foreground, while it is reverse for the follow style. In addition,

the baseline FG+BG performs better than the baselines with a single input (FG-only

and BG-only), indicating that the combination of both feature can further improve the

classification performance. The baseline FG+BG+Att achieves the best performance

among all the baselines, which proves that the attention layer is beneficial to process

long sequence.
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Figure 4.16: The confusion matrix of four baselines.

To further investigate where the attention layer focus on, we visualize the attention

weights of the background and foreground. Fig. 4.17 shows the distribution of the atten-

tion weights of a video with the style “fly-through”. We can see that when the subject’s

on-screen size becomes large, the network pays more attention on the foreground. Specif-

ically, the network assigns the highest weight to the clip during time interval 0:14-0:16

because this 2-second clip is much more distinctive than other clips in terms of style

recognition.
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Figure 4.17: The foreground/background attention weights (FG/BG att.) of a video
with the style “fly-through”.

Camera Motion Prediction

In this subsection, we compare the imitation performance of the models trained by

the proposed loss function (Eq. 4.15) and the loss in [67]. Tab. 4.8 shows the prediction

accuracy of the angular speed (ω), linear direction vector (v) and the scale (s) in terms

of different filming styles. We can see that the our proposed method can keep consistent

improvement over the model trained from the method [67] in different styles.

Table 4.8: Comparison of action prediction with different loss

proposed method Duan et al. [67]
style ω v s ω v s
fly-by 0.043±0.012 0.435±0.097 0.046±0.010 0.079±0.013 0.863±0.118 0.048±0.014

fly-through 0.012±0.002 0.010±0.001 0.028±0.004 0.013±0.002 0.009±0.003 0.030±0.005
orbiting 0.049±0.005 0.031±0.002 0.028±0.003 0.062±0.007 0.044±0.002 0.026±0.008
follow 0.011±0.001 0.003±0.000 0.025±0.003 0.011±0.001 0.010±0.001 0.024±0.006

super-dolly 0.019±0.003 0.027±0.002 0.023±0.003 0.020±0.005 0.029±0.004 0.034±0.002

Application to Drone Cinematography System

In this subsection, we deploy our one-shot imitation filming method to a real drone

platform for the autonomous cinematography task. Specifically, we build our drone

cinematography system on the DJI Matrix 100 with two onboard embedded systems

(Nvidia Jetson TX2 and DJI Manifold). We feed a demo video and captured a new video

within the same duration.

First we evaluate imitation filming of the demo video with a single basic styles. We
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invited 5 pilot beginners and 2 pilot professionals and asked each of them to capture 2

video clips for each style (each style only has one demo video). Meanwhile, we utilize

our drone system to capture 2 video clips for each style. As Fig. 4.18 shows, our drone

system can imitate the demo video as the professional cameramen. More specifically, Fly-

by and orbiting are more difficult to imitate because they require users to manipulate

the rotation and translation simultaneously. Follow is more difficult than fly-through and

super-dolly to imitate because it require users to keep pace with the subject.

Figure 4.18: The difference between the captured video and the demo video in terms
of different metrics

Second, we evaluate the performance on the demo video with the mixed style. We

select 4 demo videos including orbit/super-dolly, super-dolly/orbit, follow/super-dolly,

and follow/orbiting. Similarly, we invited 5 pilot beginners and 2 pilot professionals and

asked each of them to capture 2 video clips for each video. Fig. 4.19 shows the difference

between the captured video and the demo video. We can see that our proposed system

can consistently imitate the demo video as the professional cameraman. In addition, we

also find that follow/super-dolly is relatively easy to imitate because it is composed of two

linear motions. Follow/orbiting is relatively difficult to imitate because it requires the

camera to orbit around the subject while keeping tracking the subjects motion. Fig. 4.20

shows the snapshots of the demo video and captured videos with the same filming style

“follow/orbiting”. As the demo video (first row) of Fig. 4.20 shows, the camera starts by

following a running person and then moves to the right side along a smooth curve. The
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video (second row) of Fig. 4.20 shows that the beginner cannot skillfully manipulate the

camera to adjust the image composition, especially when the camera is being transferred

to the right side. The on-screen subject is placed to the edge of the image on the

250th frame. In the third row of Fig. 4.20, the professional cameraman can imitate

the demo video with the consistent image composition and camera angle. Similar to

the professional cameraman, our proposed system also can capture the similar video

while there exists subtle different image composition. To dive deep into the imitation

performance, we quantifies the temporal change of visual appearance of Fig. 4.20 in terms

of the subject’s on-screen position error and sparse optical flow error. When the back

view begins to transfer to the side view at the 150th frame, the image composition error of

the video manually captured by the beginner keeps increasing until the 210th frame (see

Fig. 4.21(top)). The non-smooth optical flow change in Fig. 4.21(bottom) explains that

the stiff operation of the beginner causes the sudden change of the image composition

of the subject. We can see that our proposed system can generate consistent image

composition and optical flow as the professional cameraman. Even the system suffers

from the occasional biased tracking due to misprediction at the 100th frame, the system

can adjust back to the correct camera pose via feedback control instantly. The attached

videos will provide a more convincing comparison.

Figure 4.19: The difference between the captured video and the demo video in terms
of different metrics
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Figure 4.20: The snapshots of four videos: (first row) demo video, (second row) the
video manually captured by a beginner, (third row) the video manully captured by a
professional, and (fourth row) the video autonomously captured by our system.

Figure 4.21: The difference between the capture videos and the demo video: (top)
subject’s on-screen position error, and (bottom) the average end-point error of the
optical flow on the background.
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Conclusion and Future Work

In this thesis, we present two approaches of capturing a cinematic video of human motion

using a drone: 1) guiding the camera based on the viewpoint quality and 2) guiding the

camera based on imitation learning.

First, we aim to maximize the video quality by maximizing the viewpoint quality over

all the frames. We found that the existing drone cinematography systems fail to capture

the cinematic video due to the oversimplified viewpoint quality metric. Specifically, these

methods apply the predefined configuration of image composition to guide only guides

the camera movement such as pan and follow, which greatly limits the creativity of aerial

filming. Meanwhile, these drone cinematography systems depend on the external motion

capture systems to perceive the human action, which is limited to the indoor environ-

ment. Based on the analysis, we design a quality metric “visibility of the subject” as the

guidance of camera planning. To the end, we propose an Autonomous CinemaTography

system “ACT” on the drone platform which can adjust camera angle by analyzing human

motion from the RGB camera. Experimental results in both simulation and real-world

scenarios demonstrate that our cinematography system “ACT” can capture more expres-

sive video footage of human action than existing drone systems. Meanwhile, we extend
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the application of human motion analysis to manual operation of viewpoint control. We

found that although moving control sticks can directly control a drones motion parame-

ters (i.e. roll, yaw, pitch, and throttle), controlling these parameters do not offer a precise

control of the movement of objects in the camera screen. To address this problem, we

introduce the concept of “through-the-lens” from graphics community to simplify the

manual operation of the camera. This is done by three key techniques: 1) real-time sub-

ject tracking based on 3D human localization and 2) “through-the-lens” interface that

can allow the user to freely customize best viewpoint and 3) planning policy transfer the

camera configuration in virtual environment to the desired camera motion in real-world.

Furthermore, we extend the goal to autonomously imitating the professional video,

which creates a film look via the specific pattern of viewpoint transition. Because it is

difficult to handcraft the viewpoint metric to reproduce the similar visual effect over dif-

ferent dynamic scenarios, we propose a data-driven learning-based approach, which can

imitate a professional cameramans intention for capturing a film-look aerial footage of a

single subject in real-time. Our journey to imitation filming includes three stages: First,

we describe the viewpoint as the combination of the image composition and camera posi-

tion, and present a “viewpoint-to-viewpoint” camera planning framework, which model

the decision-making process of the cameraman with two steps: 1) we train a network

to predict the future viewpoint, and 2) our system then generates control commands to

achieve the desired shot framing. Second, analyzing the impact of different factors on the

future camera motion, we design a camera planner which incorporates the foreground and

background feature in video contents and previous camera motions to predict the future

camera motions that enable the capture of professional videos. Finally, we propose a

framework, which can imitate a filming style by seeing only a single demonstration video

of the same style, i.e., one-shot imitation filming. This is done by two key enabling tech-

niques: 1) feature extraction of the filming style from the demo video, and 2) filming style
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transfer from the demo video to the new situation. Compared with the previous frame-

work, “one-shot imitation filming does not need to train multiple style-specific models to

imitate different filming styles. This advantage can enable the camera agent to quickly

learn to generalize the unknown style of a given video to the new situation.

Although in this dissertation we only focus on filming the video that contains only

one person, the proposed techniques can be transferred to multi-person activities. For

example, we can utilize the same viewpoint quality metric to automate filming a video

of boxing game. Of course, in more complex situations (e.g. soccer), the viewpoint

quality is not just determined by the visibility of the players but also the attention of

different players. The key player would be placed in the more visible on-screen position.

Similarity, the imitation-based approach also works in the multi-person activities if we

change the inputs of the network. For example, we can utilize the spatial and temporal

distribution of the players on the ground as input.

In addition, with the development of the technologies of multi-drone collaboration,

the multi-drone collaborative filming will be a new active topic in the future. The problem

will be not just the combination of a set of independent viewpoint selection sub-problems

from multiple drones. The related factors involve the the coverage of field view, energy

consumption, communication quality, obstacle avoidance and so. In summary, a key ques-

tion is how to integrate sensing, networking, and coordination on the resource-constrained

drone platforms.

Last but not least, we can extend the input of auto filming to the audio. Camera

movement appears to be a technique to make a music footage more interesting and keep

the audience engaged. When the movement is done well, it can increase the audience’s

opinion of your production value. Therefore, we can apply imitation learning techniques

to learn the connection between the pace of a given song and the change of video content.
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