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Parameter sensitivity analysis for different complexity land surface

models using multicriteria methods

L. A. Bastidas,1 T. S. Hogue,2 S. Sorooshian,3,4 H. V. Gupta,5,6

and W. J. Shuttleworth,5,6

Received 15 June 2005; revised 22 March 2006; accepted 7 June 2006; published 17 October 2006.

[1] A multicriteria algorithm, the MultiObjective Generalized Sensitivity Analysis
(MOGSA), was used to investigate the parameter sensitivity of five different land surface
models with increasing levels of complexity in the physical representation of the
vegetation (BUCKET, CHASM, BATS 1, Noah, and BATS 2) at five different sites
representing crop land/pasture, grassland, rain forest, cropland, and semidesert areas. The
methodology allows for the inclusion of parameter interaction and does not require
assumptions of independence between parameters, while at the same time allowing for the
ranking of several single-criterion and a global multicriteria sensitivity indices. The
analysis required on the order of 50 thousand model runs. The results confirm that
parameters with similar ‘‘physical meaning’’ across different model structures behave in
different ways depending on the model and the locations. It is also shown that after a
certain level an increase in model structure complexity does not necessarily lead to better
parameter identifiability, i.e., higher sensitivity, and that a certain level of
overparameterization is observed. For the case of the BATS 1 and BATS 2 models, with
essentially the same model structure but a more sophisticated vegetation model,
paradoxically, the effect on parameter sensitivity is mainly reflected in the sensitivity of
the soil-related parameters.

Citation: Bastidas, L. A., T. S. Hogue, S. Sorooshian, H. V. Gupta, and W. J. Shuttleworth (2006), Parameter sensitivity analysis for

different complexity land surface models using multicriteria methods, J. Geophys. Res., 111, D20101, doi:10.1029/2005JD006377.

1. Introduction and Scope

[2] This paper discusses the utility of applying multi-
criteria methods to sensitivity analysis in order to evaluate
and improve the ability of different complexity land surface
models (LSMs) to simulate the turbulent heat and water
exchanges, and the temperature and water content of the
soil. Five models, each having different degrees of com-
plexity in the representation of the soil and vegetation
processes, are used in conjunction with observational data
collected at five different sites around the world. One of
these data sets (Cabauw data set) has already been used
extensively for the Project for Intercomparison of Land-

Surface Parameterization Scheme (PILPS) 2 studies [e.g.,
Henderson-Sellers et al., 1995; Desborough, 1999]. The
other data sets have been used by other investigators [e.g.,
Unland et al., 1996; Bastidas et al., 1999; Gupta et al.,
1999; Sen et al., 2001; Hogue et al., 2005].
[3] The sensitivity analysis (SA) procedures are carried

out within a multicriteria framework using an algorithm
originally developed for application to LSMs, i.e., the
MultiObjective Generalized Sensitivity Analysis (MOGSA)
algorithm [Bastidas et al., 1999]. We investigate and com-
pare the influence of different climatic regimes and vegeta-
tion biomes on the parameter behavior and in particular how
the model structure affects the sensitivity of parameters with
the same physical meaning.
[4] The goals of the present study are (1) identify the

sensitivity of the numerous parameters in commonly used
LSMs; (2) determine whether the number of sensitive
parameters changes as model complexity (in the present
study we use the number of parameters as a proxy for the
model complexity) increases; and (3) study how different
parameterizations affect the sensitivity of parameters with
similar physical meaning under different environmental
conditions, i.e. variation from site to site.
[5] This paper is organized as follows: section 2 discusses

the background and context for this work and presents a
review of the literature. Section 3 briefly describes the data
sites and models used. In section 4, the multicriteria frame-
work for sensitivity analysis and the MOGSA algorithm are
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described. Section 5 discusses the results of the analysis.
Section 6 contains conclusions and future extensions.

2. Background

[6] Currently a large number of LSMs are in use (in
excess of 30). This fact stimulated the PILPS [e.g.,
Henderson-Sellers and Brown, 1992; Henderson-Sellers
et al., 1995; Pitman and Henderson-Sellers, 1998; Boone
et al., 2001; Nijssen et al., 2003]. Excellent overviews of
the different existing LSMs and their evolution are given by
Pitman [2003] and Viterbo [2002]. However, few LSMs
have been subject to calibration/parameter estimation and
sensitivity analysis procedures because, as Beck [2002]
remarks, in the context of environmental models, it has
often been considered that models requiring calibration
against observations are inferior and incapable of extrapo-
lation to describe conditions not previously observed. The
preferable alternative, it has been believed, is to develop
models based on the laws of physics that employ constants
whose values are known a priori and are universally
applicable, independent of the specific model equations
used (originally PILPS assumed this). Ideally they will only
contain parameters having physical meaning that were
amenable to independent measurement in the field and
whose behavior will be independent of the forcings and
the parameterizations. As a result, such models would be
expected not to require calibration. However, such a happy
state of affairs does not prevail in practice: to believe so
would appear to be an illusion, albeit a useful one [Beck,
2002]. Of course, in some cases, it may be possible to
directly obtain estimates of certain model parameters from
measurements at field sites or via remote sensing data. Such
parameters could be considered physical parameters–
examples might include vegetation cover, slope, leaf area
index, vegetation height, etc. On the other hand, many
model parameters in the models may not be obtainable
from direct measurements, in which case, some other
method must be used to find appropriate values. Such
parameters could be considered ‘‘functional’’ or effective
parameters [Sorooshian and Gupta, 1995]–examples might
include soil diffusivity, soil thermal capacity, and hydraulic
conductivity, among others. It is, therefore, important to
assess the effect that these functional parameters can have
on the model response and how that influence varies with
the model complexity and the forcings.
[7] Although sensitivity analysis has been used widely in

systems and reliability engineering, it has seen less use in
the physical and natural sciences [Saltelli, 1999]. A robust
and reliable sensitivity analysis is a valuable tool in verify-
ing the response of the model to its input parameters and
assigning uncertainty to these inputs. If the input-state-
output response of a model is insensitive to a parameter, it
may be appropriate to use an a priori or default value for the
simulations. However, if the input-state-output response is
sensitive to specification of the parameter value, it is
essential to adjust the parameter so that model responses
are constrained to closely match available observations
[Gupta et al., 1999]. A crucial step in the modeling process
is, therefore, to first identify which parameters within the
model are sensitive (to each landcover type) and then to

further adjust or calibrate these parameters in a reliable,
objective manner.
[8] Furthermore, Saltelli [2000], quoting Rabitz [1989],

states that to perform modeling without SA is intellectually
dishonest and that all models should undergo sensitivity
analysis as a matter of course prior to and during their use in
different applications. SA is a fundamental ingredient for
model building and a key tool in the understanding of
complex physical processes. In the work reported here, we
use the SA to both do this, and also to reduce the dimen-
sionality of the parameter estimation problem [Bastidas et
al., 1999; Hornberger et al., 1985; Rabitz and Alis, 2000],
this being a critical issue when dealing with such complex
models such as LSMs.
[9] Saltelli [1999], in his critique of common SA meth-

ods, stated that current techniques are often improperly
used, especially OAT (one factor at a time) methods, which
are used to draw conclusions regarding the impact of
variable input factors on the prediction of the model. To
adequately assess model sensitivity and to discriminate
between models, concurrent variation of the entire input
space must be explored [Saltelli, 1999]. OAT methods have
been common within the land surface community [e.g.,
Wilson et al., 1987a, 1987b; Pitman, 1994; Gao et al.,
1996]. Improved methods recently used by the land surface
community include factorial methods [e.g., Henderson-
Sellers and Brown, 1992; Lettenmaier et al., 1996; Liang
and Guo, 2003], the Fourier amplitude sensitivity test
(FAST) [Collins and Avisssar, 1994], and the regionalized
sensitivity analysis (RSA) methodology [Franks and Beven,
1997]. However, these methods assume model parameter
independence (excluding the factorial method) and are also
computationally unreasonable for models with large numbers
of parameters [Bastidas et al., 1999; Liang and Guo, 2003].
In addition, very few of the reports based on these methods
have employed real system data or use extended time
periods for analysis. A multiobjective, system-based
approach that accounts for the interaction and interdepen-
dence of parameters was proposed by Bastidas et al. [1999].
The MultiObjective Generalized Sensitivity Analysis
(MOGSA) was applied to the BATS land surface
model (version 1e) using data from two specific study sites
(ARM-CART and Tucson, Arizona); it was also applied to
the Simple Biosphere Model 2 (SiB2) at a single location in
the Amazon Forest near the city of Santarem in Brazil to
evaluate the changes between prelogged and logged forest
simulations (L. A. Bastidas et al., Influence of selective
logging in the Amazon on SiB2 parameter values using
multi-criteria methods, submitted to Journal of Geophysical
Research, 2005).
[10] The MOGSA algorithm has also been applied to the

SiSPAT-RS [Braud et al., 1995] model at a French site near
Avignon [Demarty et al., 2004] not only to examine the
sensitivity of the parameters but also to determine a mean-
ingful range of parameter values. These studies have dem-
onstrated that the algorithm is capable of effectively
identifying sensitive parameters specific to the study sites.
[11] The comparisons between land surface models

(LSM) have been an ongoing effort for more than a decade.
PILPS has been a major venue for these efforts since it was
launched in 1992 by the WMO-CAS Working Group on
Numerical Experimentation (WGNE) and now in the Sci-
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ence Panel of the GEWEX Global Land Atmosphere
System Studies (GLASS) [e.g., Henderson-Sellers and
Brown, 1992; Henderson-Sellers et al., 1995; Pitman and
Henderson-Sellers, 1998; Pitman et al., 1999]. In particular,
phase 2 of the PILPS has been devoted to the comparison of
LSM models in an offline mode, using observed meteoro-
logical forcings to drive the models. Comparisons made to
date have been based mostly on time-aggregated measures
to check for the energy balance [Henderson-Sellers et al.,
1995] or to match the monthly streamflow observations of
continental-scale watersheds [Lettenmaier et al., 1996;
Schlosser et al., 2000; Boone et al., 2001; Nijssen et al.,
2003]. The current study attempts to look at the model
performance at high frequencies, i.e., at the 20 or 30 minute
time step of the observations.

3. Data Sites and Models

3.1. Sites

[12] Data collected at five field sites were used in this
study. The sites were chosen on the basis of the data
availability and to represent varying environments and
vegetation characteristics. Specifically, the sites considered
were the ARM-CART E13 field site in Oklahoma, USA; the
ABRACOS Reserva Jaru field site in Ji-Parana, Brazil; the
CABAUW field site in the Netherlands; an Ameri-Flux site
in Illinois, USA; and a semiarid field site near Tucson,
Arizona, USA. These sites may be considered representa-
tive of agricultural cropland/pasture, tropical rain forest,
grassland, cropland, and semiarid biomes, respectively. A
listing of these sites giving respective details, including
annual precipitation, temperature, and global locations
appears in Table 1.
[13] To achieve the required continuous set of forcing

data, synthetic data were generated to fill gaps. For periods
of missing data lasting two hours or less, intermediate
values were generated by linear interpolation. If the period
was longer than two hours, the appropriate hourly average
value for the month in which the data gap occurred was
used, except for the ARM-CART site, where data from a
nearby data location were used. A quality check was
performed on all the data sets to screen out obviously
spurious values from the observations. For measurements
made using Bowen ratio systems, values of fluxes obtained
when the Bowen ratio was close to one were also discarded.
[14] At all sites we have used sensible heat, latent heat,

and ground temperature as the variables of study together
with the root mean square error as the single criterion
objective function.
3.1.1. ABRACOS Field Site (Reserva Jaru)
[15] The tropical rain forest data were collected at the

Reserva Jaru forest site (10�50S, 61�550W, altitude 120 m),
80 km northeast of Ji-Parana in Rondonia, close to the

southwestern edge of the Amazon forest in Brazil. The wet
season is December through April, and there is a pronounced
dry period lasting several weeks between June and August,
when the rainfall is less than 10 mm per month. Meteorolog-
ical measurements were made on a 52-m high tower. The
average tree height was 33 m, but some trees reached 44 m.
The soil at the Reserva Jaru forest site is a medium-textured
red-yellow podzol [Hodnett et al., 1995]. The data between
May 1992 and December 1993 were used in this study. Over
this period, reasonably consistent hourly average data were
collected using the automatic weather station, but there were
some periods (up to five days) without data and some minor
gaps, lasting less than a day. Latent (lE in W/m2) and
sensible heat (H in W/m2) flux measurements were made in
intensive observation periods betweenAugust andOctober in
1992 and between April and July in 1993.
3.1.2. ARM-CART Field Site (E13)
[16] The data set used was from station E13 of the

Atmospheric Radiation Measurement Cloud and Radiation
Testbeds (ARM-CART) program in the Southern Great
Plains site (SGP) in Oklahoma. This site is located near
Lamont, Oklahoma, at 36.605�N and 97.485�Wat an eleva-
tion of 318 m. Meteorological measurements were taken on a
2.5-m tall tower. The data set covers the period April–July
1995 with a time interval of 30 min and includes all the
necessary atmospheric forcings for the model and observa-
tional information on sensible heat (H in W/m2) and latent
heat fluxes (lE in W/m2), soil temperature (Tg in K) as the
average of five sensors that integrate the temperature over the
top 5 cm, and the average of five soil moisture content mea-
surements (Sw in weight of water per weight of dry soil) at
a depth of 2.5 cm. The data are representative of the local-
(small-) scale hydrometeorology and were collected over a
flat cattle pasture plot with a Bowen ratio system.
3.1.3. Cabauw Field Site
[17] The Cabauw site is located on a polder (0.7 m below

mean sea level) in the central portion of the Netherlands
(51�580N, 4�560E). The surroundings of the instrument
tower consist of meadows and ditches with scattered vil-
lages, orchards, and lines of trees [Beljaars and Bosveld,
1997]. The measurements are made in a grass field that is
kept at a height of about 8 cm by frequent mowing. There
are no obstacles within several hundred meters of the tower
in all directions. In the predominant wind direction, the flow
is unperturbed over an upstream distance of about 2 km.
The vegetation cover is close to 100% year-round. The soil
contains 35–55% clay. At Cabauw, the deep soil is satu-
rated throughout the year, and evaporation is seldom limited
by water supply [Chen et al., 1997]. In this study, data used
were made available by Beljaars and Bosveld [1997] for the
entire year 1987. The observation height for the air tem-
perature, wind speed, and specific humidity is 20 m. The
annual total precipitation at this site for 1987 was 776 mm.

Table 1. Site Characteristics

Site Latitude Longitude
Altitude,
m.a.s.l.

Vegetation
Type

Average
Precip.,
mm/yr

Average
Temp.,
�C Data Period

ARM-CART E13 36.605�N 97.485�W 318 flat cattle pasture 785 15.3 Apr–Aug 1995
Cabauw 51.966�N 4.933�W �0.7 grass field 793 9.8 Jan–Dec 1987
Illinois 40.000�N 88.283�W 300 rotating crop 951 10.8 Jan–Dec 1998
Reserva Jaru 10.083�N 61.917�W 120 tropical rain forest 2300 25.1 May 1992 to Dec 1993
Tucson 32.217�N 111.083�W 730 semiarid desert 305 20.2 May 1993 to Apr 1994
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3.1.4. Illinois Field Site
[18] In August 1996, a flux measurement system was

deployed within an agricultural area on the Reifsteck farm
near Champaign, Illinois, in the GEWEX/GCIP north
central region. Of special interest to the GEWEX/GCIP
program is the cold season energy budget because it is
affected by both land surface and hydrological processes.
The site is typical of the agricultural cropland found
throughout much of the midwestern United States. The
farm has been in continuous ‘‘no till’’ since 1986, rotating
yearly between a soybean and corn crop. The soil is a silt
loam with 5% clay, 70% silt, and 25% loam. Data for this
study were collected at a 30-min time step for the entire year
of 1998 (1 January to 31 December) using an eddy
covariance system. The soybean crop for 1998 had a
planting date of 1 June and a harvest date of 10 October.
Forcing data consisted of short-wave solar, net radiation,
precipitation, temperature, wind speed, relative humidity,
and pressure. Observations for this site include net radia-
tion, sensible heat, latent heat and ground heat fluxes, skin
temperature; soil temperatures at 5, 20 and 60 cm, and soil
moisture measurements at 5, 20, and 60 cm. Carbon flux
measurements were also collected at the Illinois site.
3.1.5. Tucson Field Site
[19] This field site is located at 32�130N and 111�50W in

the semiarid, alluvial Sonoran Desert near Tucson, Arizona,
USA, on a gently sloping terrain at an elevation of 730 m
[Unland et al., 1996]. Total precipitation measured over the
yearlong sampling period was 275 mm. Vegetation heights
range from a few centimeters for low grasses and bushes up
to 7 m for the tallest saguaro cacti. Mean vegetation height
is given as 1.2 m. Observations suggested a significant
fraction of clay in the soil. Standard meteorological and
micrometeorological measurements were taken over a 10-m
tall tower from 12 May 1993 to 5 June 1994.

3.2. Models

[20] Five models were chosen for the present study to
sample the span of model complexity. They are, in order of
increasing complexity, the BUCKET model [Manabe,
1969], CHASM [Desborough, 1999], BATS1e [Dickinson
et al., 1993], Noah, [Ek et al., 2003], and BATS2 [Dickinson
et al., 1998]. Detailed description of the models can be found
in the references sited; only a short description of each of the
models is given here.

3.2.1. BUCKET Model
[21] Manabe [1969] proposed a simple LSM based on

earlier work by Budyko [1956]. The parameterization of the
radiative and turbulent energy exchanges are in terms of a
single-surface energy balance equation relating the energy
fluxes to surface temperature. Evaporation is expressed as a
simple function of the surface’s plant-available moisture
content and an energy-driven potential rate. Plant-available
moisture is modeled explicitly, varying between wilting
point and field capacity in response to precipitation input
and evaporation output. Runoff is instantly produced when
moisture is in excess of the field capacity. The code used
here is similar to the one described by Robock et al. [1995]
and Schlosser et al. [1997], with the important distinction
that (the former did not incorporate) a consistent formula-
tion of potential evaporation calculated using a hypotheti-
cally wet surface temperature is incorporated [Schlosser et
al., 1997]. A list of the parameter names and their physical
meaning are presented in Table 2.
3.2.2. Chameleon Surface Model (CHASM)
[22] The CHASM modeling framework [Desborough,

1999] was originally presented and used to investigate the
influence of surface energy balance complexity on LSM
behavior. CHASM’s hydrological parameterization is based
on the BUCKET model, but has modifications that allow it
to run with a variety of surface energy balance configura-
tions. These range from the simple homogeneous surface of
the BUCKET to a grouped mosaic structure with separate
energy balances for each mosaic tile [e.g., Koster and
Suarez, 1992] and with explicit treatment of transpiration,
bare ground evaporation, and canopy interception as in the
more complicated models that follow the Deardoff [1978]
formulation (e.g., BATS). Parameterizations of intermediate
complexity are constructed around a temporally invariant
surface resistance. CHASM is designed so that all of its
surface energy balance configurations use the same effec-
tive parameterization and parameters, thus allowing the
impact of the configuration differences to be isolated. The
definition of the model parameters is presented in Table 3.
CHASM default mode, called SLAM that includes stability
correction, surface resistance, canopy interception, bare
ground evaporation, canopy resistance, and temperature
differentiation [Desborough, 1999], is used in the present
study.

Table 2. BUCKET Model Parametersa

Index Parameter Name Physical Meaning of Parameters

1 soil1 initial value of soil moisture, mm
2 snow initial value of water equivalent snow cover, mm
3 albsnf albedo of fresh snow cover
4 albsnm albedo of melting snow
5 albns albedo of land surface
6 frfrza fraction of moisture to allow into frozen soil
7 fcap field capacity
8 frmelt fraction of snowmelt into ground
9 drag drag coefficient
10 Csoil thermal inertia of soil, J/m2/k
11 rncf runoff coefficient
12 betad critical value of Beta (as fraction)
aFor Armcart, Tucson, and Reserva Jaru sites, ‘‘snow,’’ ‘‘albsnf,’’ and

‘‘albsnm’’ are fixed.

Table 3. CHASM Model Parameters

Index Parameter Name Physical Meaning of Parameters

1 albg albedo of bare ground
2 albn albedo of snow
3 albv albedo of vegetated surface
4 aleafm leaf area index potential
5 aleafs leaf area index seasonality parameter
6 fvegm fractional vegetation potential
7 fvegs fractional vegetation seasonality parameter
8 rcmin minimum stomatal resistance, s/m
9 rhon density of snow, kg/m3

10 wrmax moisture holding capacity for root zone, kg/m3

11 zcol soil color index [0–9]
12 z0g roughness length of ground, m
13 z0n roughness length of snow, m
14 z0v roughness length of vegetated surface, m
15 ts aerodynamic surface temperature, k
16 wn available moisture in root zone, mm
17 wr snow moisture equivalent, mm
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3.2.3. Biosphere Atmosphere Transfer Scheme
Version 1e (BATS1e)
[23] BATS [Dickinson et al., 1993] is a conceptual

parameterization that consists of six interacting hydromete-
orological components (three layers of soil, a canopy air
component, a canopy leaf-stem component, and a snow
covered portion). Together, these components simulate the
various radiative and hydrological processes at the land-
atmosphere interface.
[24] In principle, the BATS model computes the evolution

of 12 state variables; namely, the temperature and water
content for each of the six model components. However,
two of these variables are not independent because the
model assumes that the temperature of the lowest soil layer
is constant and that, when snow cover is present, it has the
same temperature as the upper soil layer. Thus BATS uses
10 water-energy conservation equations to solve for the
dynamical evolution of the 10 independent state variables.
The parameters of the model are given in Table 4. [Note: in
BATS1e, the parameters xmowil and xmofc are not real
parameters since they are computed from some of the other
parameters, but are here described as such because they
were in the original model description.]
3.2.4. Noah Model
[25] The Noah model [Ek et al., 2003; Mitchell et al.,

2000] is one of the evolving community (i.e., multigroup)
land surface models that traces its origins to the OSU-LSM
[Mahrt and Pan, 1984]. The Noah model was chosen for
evaluation for several reasons. It has been used in previous
studies by this research group and demonstrated a good
performance for another semiarid site [Hogue et al., 2006].
More importantly, the model is currently parameterized for
use over semiarid regions in the National Centers for
Environmental Prediction (NCEP) North American Land
Data Assimilation System (NLDAS) [Mitchell et al., 2004]
of the National Weather Service (NWS). Updates of the

model are posted periodically on the NCEP Web site (online
at ftp://ftp/ncep.noaa.gov/pub/gcp/ldas/Noahlsm); version
2.5.1 is used in this analysis (release date: 5 March 2002).
[26] The Noah model contains four soil layers: a thin

10-cm top layer, a second root zone layer of 20 cm, a deep
root zone of 60 cm, and a subroot zone of 110 cm. It can be
run for 13 vegetation covers (2 of which use the same
parameter values) and nine different soil types (two of which
also use the same parameters). A local greenness fraction is
computed from the Normalized Difference Vegetation Index
(NDVI) to establish seasonality in the model for each of the
13 vegetation types. The leaf area index (LAI) value is
typically held constant (or used as a tuning parameter)
instead of also being varied seasonally [Gutman and Ignatov,
1998]. Consequently, the LAI parameter was included as a
parameter to be calibrated, while the monthly greenness
fraction was obtained from NCEP and not adjusted. Table 5
contains a description of the model parameters.
3.2.5. Biosphere Atmosphere Transfer Scheme
Version 2 (BATS2)
[27] The modifications made to BATS between the orig-

inal and revised versions include a revised stomatal con-
ductance model and the inclusion of a growth model
[Dickinson et al., 1998]. The original version of BATS
represents 15 biomes by prescribing a seasonally varying
fractional vegetation cover, albedo, and leaf area index
(LAI), the LAI being calculated as a function of temperature
between prescribed maximum and minimum values. In
BATS2, this prescribed LAI behavior is replaced with a

Table 4. BATS 1e Model Parameters

Index Parameter Name Physical Meaning of Parameters

1 vegc maximum fractional cover of vegetation
2 seasf diff. between vegc and fractional cover at 269 K
3 rough aerodynamic roughness length, m
4 displa displacement height, m
5 rsmin minimum stomatal resistance, s/m
6 xla maximum area leaf index
7 xlai0 minimum area leaf index
8 sai stem area index
9 sqrtdi inverse sqrt of leaf dimension, m�0.5

10 fc light dependence of stamatal resistance, m2

11 depuv array for depth of surface soil layer, mm
12 deprv array for depth of root zone soil layer, mm
13 deptv depth of total soil layer, mm
14 albvgs veg. albedo for wavelengths < 0.7 microns
15 albvgl veg. albedo for wavelengths > 0.7 microns
16 rootf ratio of roots in upper layer to in root layer
17 xmopor fraction of soil that is voids
18 xmosuc minimum soil suction, mm
19 xmohyd maximum hydraulic conductivity of soil, mm/s
20 xmowil fraction of water content at permant wilting
21 xmofc ratio of field capacity to sat water content
22 bee clapp and hornbereger ‘‘b’’ parameter
23 skrat ratio of soil thermal conduct. to that of loam
24 solour soil albedo for different colored soils
25 ssw water in upper soil layer, mm
26 rsw water in root zone layer, mm
27 tsw water in total soil layer, mm

Table 5. BATS 2 Model Parameters

Index Parameter Name Physical Meaning of Parameters

1 vegc maximum fractional cover of vegetation
2 sla single-side leaf area
3 tdlef Leaf freezing temperature, k
4 wdpool flag for existence of wood
5 wrrat wood to nonwood ratio
6 seasf diff. between vegc and fractional cover at 269 K
7 rough aerodynamic roughness length, m
8 displa displacement height, m
9 rsmin minimum stomatal resistance, s/m
10 xla maximum area leaf index
11 xlai0 minimum area leaf index
12 sai stem area index
13 sqrtdi inverse sqrt of leaf dimension, m�0.5

14 fc light dependence of stomatal resistance, m2

15 depuv array for depth of surface soil layer, mm
16 deprv array for depth of root zone soil layer, mm
17 deptv depth of total soil layer, mm
18 albvgs veg. albedo for wavelengths < 0.7 microns
19 albvgl veg. albedo for wavelengths > 0.7 microns
20 rootf ratio of roots in upper layer to in root layer
21 xmopor fraction of soil that is voids
22 xmosuc minimum soil suction, mm
23 xmohyd maximum hydraulic conductivity of soil, mm/s
24 xmowil fraction of water content at permant wilting
25 xmofc ratio of field capacity to sat water content
26 bee clapp and hornbereger ‘‘b’’ parameter
27 skrat ratio of soil thermal conduct. to that of loam
28 solour soil albedo for different colored soils
29 ssw water in upper soil layer, mm
30 rsw water in root zone layer, mm
31 tsw water in total soil layer, mm
32 lfmass leaf mass, g/m2

33 fastcp short-lived carbon, g/m2

34 rtmass mass of fine roots, g/m2

35 wood mass of wood, g/m2

36 stblcp stable carbon pool, g/m2
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modeled seasonal evolution. The concepts used to describe
carbon assimilation follow those of Farquhar et al. [1980].
The equation linking carbon assimilation and stomatal
conductance, the reciprocal of stomatal resistance, is a
derivative of that given by Ball et al. [1987]. The whole
canopy stomatal resistance is then obtained by dividing the
average stomatal resistance by the LAI. The assimilated
carbon is allocated into the components of the vegetation,
i.e., leaves, wood, and roots, in a growth model. The carbon
stored in these components plus that stored in the soil, the
Net Primary Productivity (NPP), and the carbon flux to the
atmosphere is computed at each time step. The growth
model then returns the updated LAI to BATS2. The para-
meters of the model are presented in Table 6.

4. Sensitivity Analysis Using Multicriteria
Methods

[28] The multicriteria approach provides a more rigorous
framework for analysis of multi-input/multi-output models
of dynamic earth system responses than the traditional
single-criterion approach [Gupta et al., 1998]. The multi-
objective generalized sensitivity analysis (MOGSA) algo-
rithm [Bastidas, 1998] was developed as a multicriteria
extension of the generalized sensitivity analysis (GSA)–that
later became known as the regionalized sensitivity analysis
(RSA) approach [Spear and Hornberger, 1980; Hornberger
and Spear, 1981; Spear et al., 1994] for testing the
identifiability of environmental models. The RSA method-
ology establishes the sensitivities of individual parameters
by examining whether a priori distributions of the param-
eters are statistically different under a specific behavioral
classification, via the Kolmogorov-Smirnov (KS) two-
sample test: the smaller the KS probability, the more

sensitive the parameter. By introducing the Pareto ranking
concept [Goldberg, 1989] as the technique for selecting the
discriminatory threshold for behavioral and nonbehavioral
parameter sets, MOGSA takes into account the multicriteria
nature of typical sensitivity problems of environmental
models. To overcome the effect that specific sampling
procedures may have on the outcome of the sensitivity
analysis MOGSA uses bootstrapping [Efron, 1979a, 1979b]
to determine the median (a robust statistic [Rousseeuw,
1991]) of the KS probability value.
[29] In the implementation of MOGSA, a number of

samples (i.e., parameter sets) are randomly chosen from
the predefined feasible parameter space and the error
function (EF) values are calculated for each sample. On
the basis of the corresponding EF values, the samples are
then ranked using Pareto ranking and an arbitrary rank
threshold is used to partition the samples into behavioral
and nonbehavioral groups. The K-S test is performed on the
two sets to estimate the multicriteria (or global) sensitivity
of each parameter. The test is repeated using the boot-
strapping procedure (i.e., resampling with replacement) to
reduce the sampling dependence of the results. This process
is repeated with successively larger sample sizes until the
total number of sensitive parameters stabilizes. Different
Pareto rank thresholds may also be used to test the sensi-
tivity to the choice of the threshold. A certain threshold, for
which the sample size required for stability is smallest and
the number of sensitive parameters is largest, is then chosen
to decide the final global sensitivities. Once the global
sensitivities (i.e., multicriteria sensitivities) have been esti-
mated, the corresponding quantile of the error function
value is used as the discerning threshold to decide the
sensitivity of a single objective. Further details are provided
by Bastidas [1998] and Bastidas et al. [1999].
[30] The main advantage of the MOGSA algorithm is that

it automatically includes the possible parameter interactions
and provides a ‘‘global sensitivity’’ value along with sensi-
tivities to specific responses of the model, for example,
sensible heat, latent heat, soil moisture, etc. At the same
time, on the basis of the values for the median of the KS
statistic, an objective ranking of the sensitivity level can be
obtained. Also, in the present work, we show that MOGSA
is not complex in its implementation and thus is a good
candidate for conducting thorough sensitivity analysis
among large numbers of LSMs. Although the original
MOGSA algorithm suffered from the sensitivity results
being dependent on the selected parameter range, that
disadvantage has been overcome by using the approach
presented by Demarty et al. [2004], which screens out
ranges that produce severe nonbehavioral error function
values.

5. Results

[31] To achieve the goals stated in section 1 the MOGSA
algorithm was run for each model at all sites using prespe-
cified parameter ranges (ranges available from the authors).
Table 7 presents the number of sensitive parameters for each
model at each study site; the upper part of the table presents
the raw number of sensitive parameters and the lower part
of the table represents the ratio of sensitive to total number
of parameters (total number in parentheses). The average

Table 6. Noah 2.51 Model Parameters

Index Parameter Name Physical Meaning of Parameters

1 rcmin minimum stomatal resistance, s/m
2 rgl used in solar radiation term of canopy res
3 hs used in vap. pres. deficit term of canopy res
4 z0 roughness length, m
5 lai leaf area index
6 cfactr canopy water parameter
7 cmcmax second canopy water parameter, m
8 sbeta used in calc. of veg. effect on soil heat flux
9 rsmax maximum stomatal resistance, s/m
10 topt optimum transpiration air temperature, K
11 maxsmc porosity
12 drysmc air dry soil moisture content limits
13 psisat saturated soil potential
14 satdk saturated soil hydraulic conductivity, m/s
15 b the ‘‘b’’ parameter
16 satdw saturated soil diffusivity
17 quartz soil quartz content
18 nroot number of root layers
19 refdk reference value for sat. hydraulic conductivity
20 fxexp bare soil evaporation exponent
21 refkdt reference value for surface infiltration parameter
22 czil to calculate roughness length of heat
23 csoil soil heat capacity for mineral soil component
24 zbot depth of lower boundary soil temp, m
25 frzk ice threshold (above frozen soil is impermeable)
26 xnup threshold snow depth (100% snow cover), m
27 snoalb maximum albedo over deep snow
28 salp shape of dist. function of snow cover
29 slope average terrain slope
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number of sensitive parameters and corresponding ratio are
also listed for each model for each of the five sites. For the
BATS 1e, Noah, and BATS 2 models, fewer parameters
are actually analyzed for sensitivity than those listed in
Tables 4–6. This is because we are not including the
initial soil water content for the different layers and in the
case of the BATS2 parameters are calculated during model
simulations or are set at prefixed values (eight parameters);
also five carbon parameters were not analyzed as part of
this sensitivity analysis because of a lack of carbon flux
data at the given sites.
[32] The number of sensitive parameters in the models var-

ies from an average of around three for the simple BUCKET
model to an average of 16 sensitive parameters for the more
complex Noah model. The BATS1e model has an average of
around 11 sensitive parameters, while the BATS2 has on
average 13 parameters that are sensitive at the various sites.
An alternative comparison index is the ratio of sensitive
parameters to the total number of parameters analyzed; this
index will be referred to as the ‘‘relative’’ number of sensitive
parameters. In general, the relative index increases with an
increasing number of model parameters, from 0.356 for the
BUCKETmodel to 0.559 for theNoahmodel. However, when
going from the BATS1e (relative index 0.467) to the more
complex, but with a similar structure, BATS2 model (relative
index 0.457) there is actually a decrease in the relative number
of sensitive parameters for three of the sites (ARM-CART,
Cabauw, and Tucson). Although the BATS2 model has be-
come more commonplace in modeling studies because of its
growth model and carbon assimilation processes, our study
indicates that the model has lost some sensitivity, possibly
because of overparameterization or compensation of inter-
acting parameters.
[33] There is no clear trend in the number of sensitive

parameters at a specific site as complexity increases. For
example, the Cabauw and Reserva Jaru sites (the more
humid study sites) have the most sensitive parameters with
the BUCKET model; however, as complexity increases, the
number of sensitive parameters does not necessarily in-
crease. In fact, with the more complex Noah model, the

Cabauw site actually has a smaller relative index, 0.448. In
contrast, at Illinois the BUCKET has only one sensitive
parameter (of 11) while the other models show stronger
sensitivity. This latter result may be related to the parame-
terization of cold weather processes or insensitivity to
saturated conditions in the more complex models. The
Cabauw site is the most northern site in the study and is a
site where the soils are saturated year-round [Beljaars and
Bosveld, 1997]. Most high-latitude regions experience snow
accumulation. The albedo of this snow surface significantly
moderates the energy exchange between the land surface
and the atmosphere, reflecting more of the short-wave
radiation back to the atmosphere.
[34] A sensitivity analysis based on groupings of (1) vege-

tation parameters and (2) soil and snow parameters is also of
interest. Snow and soil parameters were grouped together
for this analysis. Initial condition parameters were not
included as part of either group. The BUCKET model does
not explicitly contain any parameters related to vegetation
dynamics. In general, the BATS1e, BATS2, and Noah
models show an even distribution between vegetation and
soil parameter sensitivity, with similar index values for soil
and vegetation parameters. Interestingly, the CHASM model
shows much more sensitivity to vegetation parameters
(highest relative index) than to soil parameters, possibly
because the CHASM model structure used in this analysis
consists of a fairly simple bucket structure with a more
complex vegetation representation. Of the three more com-
plex models, the BATS1e again has a higher index for soil
than either the BATS2 or Noah models. BATS1e and
BATS2 are similar in the relative index of vegetation
parameters (0.440 and 0.466), and the Noah model has
the lowest index for vegetation parameters. This is some-
what disconcerting for the BATS2, which includes a much
more advanced vegetation parameterization than either the
BATS1e or Noah models; hence one would expect higher
sensitivity to vegetation than the other models. A sensitivity
analysis which would include carbon parameters may alter
these results and should be an issue for further study at sites
where more carbon flux data are readily available.
[35] Some general comments can be summarized from

this sensitivity analysis.
[36] 1. A simpler land surface model does not necessarily

result in more identifiable or sensitive parameters for a site;
in fact, the opposite appears to be the case in this analysis.
The more complex models have a larger relative index of
sensitive parameters, although this varies somewhat with
the vegetation sites. The BATS1e is most sensitive to the
more semiarid sites, ARM-CART and Tucson. BATS2 has
the most sensitivity to the Illinois site, while the Noah
model has the most sensitivity to the crop sites, ARM-
CART and Illinois. As land surface models become more
complex, these results are somewhat encouraging because
the additional parameters do not necessarily result in model
overparameterization.
[37] 2. The preceding statement appears to hold true only

to a certain level of complexity. The Noah model has the
highest relative sensitivity index of parameters in this
analysis. However, when moving from the BATS1e to the
more complex BATS2 model, there is actually a decrease in
the average number of sensitive parameters. The more
complex BATS2 has less overall sensitivity than its prede-

Table 7. Number of Sensitive Parameters for Each Model at

Different Sites

Sites

Raw Number of Sensitive Parameters

BUCKET
(9/12a)

CHASM
(17)

BATS 1e
(24)

BATS 2
(28)

Noah
(29)

ARMCART 2 7 9 12 18
Cabauw 6 6 13 14 13
Illinois 1 11 12 14 20
Reserva Jaru 5 3 10 12 16
Tucson 2 7 12 12 14
average 3.2 6.8 11.2 12.8 16.2

Sites

Percentage Ratio of Sensitive Parameters to Total

BUCKET
(12)

CHASM
(17)

BATS 1e
(24)

BATS 2
(28)

Noah
(29)

ARMCART 22.22 41.18 37.50 42.86 62.07
Cabauw 66.67 35.29 54.17 50.00 44.83
Illinois 11.11 64.71 50.00 50.00 68.97
Reserva Jaru 55.56 17.65 41.67 42.86 55.17
Tucson 22.22 41.18 50.00 42.86 48.28
average 35.56 40.00 46.67 45.71 55.86

aThree snow parameters were fixed at ARMCAT, R Jaru, and Tucson.
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cessor, BATS1e. Only the Cabauw and Reserva Jaru sites
have slightly more sensitive parameters in the BATS2
model. The fact that most of the developments of the Noah
model were made using the Illinois site may be reflected in
the high sensitivity level at that site.
[38] 3. The sensitivity of the parameters in this study is

also probably linked to the atmospheric forcings (input data)
used in the analysis. The different environments used in the
analysis (wetter sites (i.e., Reserva Jaru) vs. drier sites (i.e.,
Tucson)) lead to various levels of activation in model
processes, resulting in different sensitive parameters for
the study sites.

5.1. Global Sensitivity Model Specific Comments

[39] When analyzing the sensitivity plots for each site and
model, more specific comments can be made regarding the
parameter sensitivities. Figure 1 presents the results grouped
by model for all the different sites. In all the plots, the
values further away from the center represent an increased
sensitivity index for the corresponding parameter. The red
and green dashed circles correspond to our predefined
(heuristically) levels of medium (5% significance level)
and high sensitivity (1% significance level). Parameters
inside the red circle (significance level > 5%) are considered
insensitive.
5.1.1. BUCKET Model
[40] In comparison to the other models used in this

analysis, the BUCKET model has the lowest relative index
(0.317). The drag coefficient (drag), influencing momentum,
is the only parameter sensitive at all sites. Csoil is sensitive at
four of the five sites, all but the Illinois site. Both ARM-
CART and Tucson, the two more arid sites in this study, had
the same two sensitive parameters (drag and Csoil (thermal
inertia of soil)). Interestingly, the Cabauw site is sensitive to
the three albedo values (fresh snow, old or melting snow, and
land surface) along with the initial snow water equivalent
value. Reserva Jaru is the only site where the field capacity
parameter (fcap) and the initial soil moisture conditions (soil)
are sensitive. Three of the BUCKET parameters show
insensitivity at all sites: fmelt (fraction of snowmelt infiltrat-
ing), mcf (runoff coefficient), and betad (critical value of
Beta (as fraction)). Because streamflow was not used as a
criterion or variable in this analysis, few conclusions can be
drawn on the insensitivity of the runoff coefficient. It is
expected this result may change if streamflow or runoff data
were used as a criterion in a sensitivity analysis.
5.1.2. CHASM Model
[41] In the CHASM model analysis 14 parameters and

three initial states were all involved in the model simulations.
All three initial states in the model (surface temperature, soil
moisture, and snow water equivalent) were analyzed as
parameters. The snow water equivalent (wn) value was
insensitive at all sites, even the snow regions (Illinois and
Cabauw), and the initial soil moisture (wr) was only sensitive
at the ARM-CART site. Interestingly, the initial surface
temperature (ts), however, was sensitive at all sites.
[42] Of the vegetation and soil parameters, the CHASM

model shows more sensitivity to the vegetation parameters
than the soil parameters, most likely because of the simpler
soil representation. Two of the CHASM vegetation param-
eters (fractional vegetation potential (fvegm) and the mini-
mum stomatal resistance (rcmin)) were sensitive at all sites.

The fractional vegetation seasonality parameter (fvegs) is
sensitive at four of the five sites (insensitive at Rjaru). The
insensitivity of the seasonality parameter is consistent with
the evergreen broadleaf vegetation of the tropical rain forest.
Of the remaining 14 parameters, two vegetation parameters
(aleafm and aleafs–both leaf area index parameters) along
with the snow density parameter (rhon) and the soil color
index (zcol) were insensitive at all sites. The Illinois site
contains the most sensitive parameters using CHASM; 11 of
the 17 parameters show high sensitivity to the criterion. The
more complex vegetated site, Reserva Jaru, contains only
three sensitive parameters: fvegm, rcmin, and the initial
temperature (ts).
5.1.3. BATS1e Model
[43] Of the models used in this study, the BATS1e has the

highest overall number of sensitive parameters. During this
analysis, only two of the 27 parameters were held fixed in
the model, xmowil and xmofc, because these are calculated
during model simulations. Of the three initial states in the
model, the upper soil layer moisture (ssw) was sensitive at
all sites. Tucson was the only site where the initial soil
moisture values in each layer (ssw, rsw, and tsw) were
sensitive in the model. The BATS1e model shows fairly
even distribution between the number of sensitive vegeta-
tion parameters and sensitive soil parameters. The ARM-
CART site has the most sensitivity to vegetation, with six of
ten parameters showing sensitivity. Cabauw, Illinois, and
Tucson only have four sensitive vegetation parameters out
of the ten vegetation parameters in the model. Surprisingly,
there are only three vegetation parameters sensitive at the
Reserva Jaru site. The Tucson site has the largest number of
sensitive soil parameters, eight of 12. This seems to be
consistent, as the vegetation cover at this site would not
seem to play as big a role in the large sensible heat fluxes in
the region. The Tucson site was also the most sensitive to
initial conditions, with sensitivity to the initial moisture in
all three zones (surface, root, and total). Cabauw has the
least number of sensitive soil parameters, five of the 12
values. Several parameters were sensitive at all sites: two
vegetation parameters, fractional vegetation cover (vegc)
and maximum leaf area index (xla), and three soil param-
eters: depth of the upper soil layer (depuv), the root fraction
(rootf), and porosity (xmopor). Several other important
parameters were also sensitive at only some of the sites.
Minimum stomatal resistance (rsmin) was sensitive at three
of the sites (ARM-CART, RJaru, and Tucson). The Clapp
and Hornberger ‘‘b’’ parameter was sensitive at four of the
sites, not at the RJaru site. The BATS1e model only shows
three of the 25 parameters, which are insensitive at all sites:
the seasonality fraction (seasf) and two soil parameters,
depth of the total soil layer (deptv) and the short-wave
albedo parameter (albvgs).
5.1.4. BATS2 Model
[44] The BATS2 model had on average ten sensitive

parameters for the five sites. The Illinois site has the most
sensitive parameters (12), and RJaru has the least sensitive
parameters with eight. Of the vegetation and soil parame-
ters, the BATS2 model actually has the fewest parameters
sensitive to the vegetation at the RJaru site, which has the
most mature and complex vegetation of the sites in the
study. This is an interesting outcome, as the BATS2 model
was specifically developed to have an improved vegetation
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Figure 1. Sensitivity analysis plots for the BUCKET, CHASM, BATS 1e, BATS 2, and Noah models at
the different sites. The values represented are those of the multicriteria ‘‘global’’ sensitivity index, i.e.,
sensitivity to sensible head, latent heat, and ground temperature combined. The farther away from center,
the more sensitive the parameter. The dotted lines correspond to the 0.05 and 0.01 significance levels and
are associated with thresholds for moderate and high sensitivity. The plots are grouped by model.
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Figure 2. Same as Figure 1 but for the sensible heat sensitivity.
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parameterization, able to simulate the growth and decay of
vegetation. Four of the sites have fewer sensitive parameters
in BATS2 (than BATS1e) parameters, with only the Cabauw
site having more sensitivity with the BATS2, and this is
only one more parameter. At all of the sites, five of the soil
parameters were sensitive (index of 0.417), although these
were not the same parameters throughout. Three of the
BATS2 parameters are sensitive at all the sites: vegetation
cover (vegc), minimum stomatal resistance (rsmin), and the
Clapp and Hornberger ‘‘b’’ (bee) parameter. These findings
are also consistent with Bastidas et al. [1999] in the
BATS1e model (and as in the previous section). Lettenmaier
et al. [1996] also found the ‘‘b’’ parameter to be sensitive in
the PILPS 2-c studies. Several of the BATS2 parameters are
insensitive in all models, including single-side leaf area
(sla), stem area index (sai), inverse square root of leaf
dimension (sqrtdi). This is also consistent with the BATS1e
findings at the Tucson site [Bastidas et al., 1999].
5.1.5. Noah Model
[45] The Noah model (version 2.5.1) contains the most

parameters of any of the models in this study; however, 12
of the 49 parameters are initial conditions that need to be
estimated. Eight of the parameters relating to initial soil
moisture were included in the sensitivity analysis, while the
initial temperatures of the soil zones were not. Of the
remaining 37 parameters, 24 were included for analysis
and 13 were set to default values. The number of soils layers
(nroot) in this analysis was set to four. The model had on
average 15 of 32 sensitive parameters (0.475), varying from
nine for the Cabauw site, to 20 for the ARM-CART site.
Following the BATS1e model, the Noah model has the most
sensitive parameters. Of the vegetation parameters, ARM-
CART had the highest sensitivity, at an index of 0.700. The
roughness length parameter (z0), along with four soil
parameters, saturated hydraulic conductivity (satdk), satu-
rated soil diffusivity (satdw), reference value for saturated
hydraulic conductivity (refdk), and a parameter used in the
calculation of roughness length of heat (czil), were sensitive
at all the sites. Five of the Noah parameters were insensitive
at all sites, three vegetation parameters: canopy resistance
function parameter (hs), second canopy water parameter
(cmcmax), and the maximum stomatal resistance (rsmax);
one soil parameter: saturated soil potential (psisat).
5.1.6. General Sensitivity Summary
[46] As discussed above, several of the parameters were

clearly either insensitive or sensitive at all of the analyzed
sites for each of the models. The BUCKET model has three
parameters (of the 12 in the model) that are insensitive at
each of the sites. Of the more complex models, the BATS2
and Noah models have five and six parameters, respectively,
that were insensitive to all of the study sites. With the
increasing number of parameters in the models, a broad
sensitivity analysis, such as that performed here, can be
undertaken to determine which parameters within the mod-
els are relevant. It is apparent that some parameters are
important to the modeling process, while others are not, no
matter to which biome they are applied. These insensitive
parameters can probably be safely set to default values to
reduce the dimensionality of the parameter estimation
problem for the various land surface models, regardless of
the application site. Development of a systematic approach
for defining sensitive and insensitive parameters, such as

that used in this analysis, allows insight into the degree of
difficulty of the parameter estimation problem and which
parameters explicitly influence the modeling process.

5.2. Single Criterion Sensitivity Behavior

[47] As in the case of global sensitivity, Figures 2–4
present the results for the single criterion sensitivity analysis
grouped by model. Figure 2 represents the parameter
sensitivity to sensible heat flux, Figure 3 to latent heat flux,
and Figure 4 to the ground temperature. As in the global
sensitivity case, in all the plots, the values further away
from the center represent an increased sensitivity index for
the corresponding parameter. The red and green dashed
circles correspond to the heuristically predefined levels of
medium (5% significance) and high sensitivity (1% signif-
icance). Parameters inside the red circle (significance >5%)
are considered insensitive.
[48] Overall, it is of interest to note how the shapes of the

polygons change, representing the changes in the sensitivity
levels and the effects of the parameter interaction. It is also
of interest that the sensitivity for the sensible heat and the
ground temperature are more similar than the sensitivities
between sensible and latent heat. This is physically mean-
ingful, and speaks to the discerning power of the MOGSA
methodology, because the sensible heat is calculated as a
gradient of temperatures; for example, the sensible heat and
the ground temperature sensitivities at the Cabauw site for
the BUCKET model or the Noah model at the Tucson site.
It is also of interest to note that when the parameters are
highly sensitive to at least one of the fluxes (sensible or
latent heat) or a state variable (ground temperature) an
overall sensitivity is automatically achieved in almost all
the cases; an exception will be the solour parameter for the
BATS 1e and BATS 2 models for all the sites.

5.3. Sensitivity Analysis Across Models

[49] In the following section we present a detailed global
(multicriteria) sensitivity analysis of parameters with similar
physical meaning in models with different complexity
(recall that we use the number of parameters as a proxy
for complexity).
5.3.1. Models With Different Structure
[50] First we examine across four models the parameters

selected to represent both soil and vegetation submodels.
The parameters were chosen so that they represent actual
measurable physical parameters such as the fractional veg-
etation cover and also ‘‘process parameters’’ such as the soil
porosity or hydraulic conductivity. The actual names of the
parameters change from model to model but we have
selected seven parameters and ascribed to them names.
Table 8 describes those names and the corresponding
physical meaning.
[51] The CHASM, BATS1e, BATS2, and Noah model

parameters were included in this analysis; the BUCKET
model does not explicitly contain any of the parameters
chosen for this study and is therefore excluded. The goal of
this detailed analysis is to investigate the parameterization
or ‘‘physical meaning’’ of these parameters within different
model structures for land surface models, whether the
meaning is consistent from model to model, and if the
sensitivity varies between same site/different models and
same model/different sites.
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Figure 3. Same as Figure 1 but for the latent heat sensitivity.
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Figure 4. Same as Figure 1 but for the ground temperature sensitivity.
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[52] The parameters selected are listed in Table 8. They
include four vegetation parameters: fractional vegetation
cover, aerodynamic roughness length, displacement height,
and minimum stomatal resistance, and three soil parameters:
porosity, maximum saturated hydraulic conductivity, and
the Clapp and Hornberger ‘‘b’’ parameter. Several of these
parameters have been listed in the literature as being
important or sensitive in representing land surface processes
[e.g., Bastidas et al., 1999; Driese and Reiners, 1997;
Lettenmaier et al., 1996; Gao et al., 1996; Henderson-
Sellers and Brown, 1992; Liang and Guo, 2003]. The seven
parameters are common to many of the recently developed
models. The fractional vegetation cover (fveg) in the models
is a parameter that varies between a minimum and maxi-
mum value during the growing season, typically based on
the subsurface soil temperature. Any snow cover on vege-
tation reduces this fractional vegetation, as this part of the
land surface does not interact with the atmosphere. The
roughness length (rough) is used to express the roughness
of the surface and is typically a fraction of the land surface
cover or vegetation height. It affects the intensity of
mechanical turbulence and the various fluxes above the
surface. A lower roughness length implies less exchange
between the surface and the atmosphere. The minimum
resistance (or maximum conductance) encountered by dif-
fusion of water moving from inside the leaf (or canopy) to
the outside is referred to as the minimum stomatal resistance
(rsmin). This can occur through leaf stomata or cuticles and
changes with environmental conditions [Dickinson et al.,
1993]. The parameter is used in the calculation of overall
stomatal resistance of the canopy. Displacement height or
zero plane displacement height (displa) is used in the
determination of aerodynamic resistance of the surface.
Porosity and hydraulic conductivity have the same defini-
tions found in classical hydrogeology, with porosity (poros)
defined as the volume of voids in the soil fraction and
hydraulic conductivity (hydcond) defined as the constant in
Darcy’s law, which relates hydraulic gradient to specific
discharge. Porosity is used in estimating maximum satu-
rated conditions in each of the soil zones in the layers, while
hydraulic conductivity is used to define gravitational drain-
age or flow from the soil layers. Clapp and Hornberger’s
‘‘b’’ parameter is a nondimensional soil texture parameter
relating changes in soil water potential and hydraulic
conductivity with soil water.
[53] The CHASM model contains three of the chosen

parameters, the BATS1e and BATS2 contain all seven, and
the Noah model contains five of the parameters. Figure 5
displays the global sensitivity indices for each of the
parameters with each model grouped by study site. It can
be seen that the vegetation cover parameter (fveg) is

sensitive at all sites in the three models, which explicitly
contain this parameter. However, there is variability in
several of the other parameters in the models. The displace-
ment height (displa) parameter in BATS1e and BATS2 has
variable sensitivity from site to site. This is also true of the
minimum stomatal resistance (rsmin) parameter in the Noah
model and the porosity parameter in BATS2 and Noah.
Hydraulic conductivity in BATS1e and BATS2 changes
significantly from site to site, as does the ‘‘b’’ parameter
in the Noah model.
[54] The vegetation cover (fveg) is sensitive for all of the

models (CHASM, B1, and B2) at the ARM-CART site.
However, the roughness parameter (rough) is insensitive in
the CHASM model, but is sensitive in Noah and highly
sensitivity for Bats 1 and Bats 2. Other notable results at
ARM-CART: the minimum stomatal resistance (rsmin) is
insensitive in both BATS models yet is highly sensitive in
CHASM and Noah. Two of the soil parameters, porosity
and hydraulic conductivity (K) also vary significantly at
ARM-CART. Porosity in the Noah model is insensitive,
while BATS1e hydraulic conductivity is insensitive. At the
Cabauw site, there is an obvious difference in how the
displacement height behaves in the BATS1e and BATS2
models (sensitive at B1 and insensitive at B2). Another
large difference is shown for rsmin, sensitive in three of the
models and very insensitive for the Noah model, which is
also the case for the Clapp and Hornberger ‘‘b’’. At the
Illinois site, large discrepancies are seen in how the BATS1e
and BATS2 sensitivities compare for poros and hydcond.
The Reserva Jaru site is also inconsistent in sensitivities for
the soil parameters; porosity is sensitive for BATS1e and
BATS2, but insensitive for the Noah model. The opposite is
true for the hydraulic conductivity parameter. The Tucson
site shows the most intermodel variability in sensitivity,
most likely attributable to the difficulty of most LSS to
represent semiarid processes. The fveg is again sensitive in
all models; however, the roughness length shows high
variability between models. CHASM and BATS2 are in-
sensitive to this parameter, but BATS1e and the Noah model
are sensitive. Interestingly, these are also the two models
that performed the best at the semiarid site. Displacement
height does not appear to be important at the Tucson site,
but minimum stomatal resistance is sensitive in three of the
models (not the Noah model). For the soil parameters,
porosity is sensitive in all models, while hydraulic
conductivity is only sensitive in BATS1e. The Clapp and
Hornberger ‘‘b’’ parameter is sensitive within all models at
the Tucson site.
5.3.2. Models With Similar Structure
[55] Because BATS 2 constitutes a development of

BATS 1e by modification of the vegetation module, all of

Table 8. Similar ‘‘Physical Meaning’’ Parameters Chosen for Across Model Sensitivity Analysis

Parameter Name

Parameter Physical MeaningAnalysis CHASM BATS 1e BATS 2 Noah

fveg fvegm vegc vegc n/a fractional vegetation cover
rough z0v rough rough z0 roughness length
displa n/a displa displa n/a displacement height
rsmin rcmin rsmin rsmin rcmin minimum stomatal resistance
poros n/a xmopor xmopor maxsmc soil porosity
hydcond n/a xmohyd xmohyd satdk soil hydraulic conductivity
b n/a bee bee b Clapp and Hornberger ‘‘b’’ parameter
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Figure 5. Global multicriteria sensitivity of parameters with similar ‘‘physical meaning’’ across models.
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Figure 6. Global multicriteria sensitivity of common parameters between Bats 1 and Bats 2 models.
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the BATS 1e parameters appear in the BATS 2 model, and
we can safely assume that the parameters common to these
models (25 in total) are intended to have the same physical
meaning. On the other hand, in the previous analysis the use
of the K-S probability value as a sensitivity index is only
justified as a proxy, because of the differences in model
structure –different parameterizations, and different types
of parameter interactions. We can also include the analysis
of the initial soil moisture conditions for both models
because the soil submodel is essentially the same.
[56] A graphical summary of the global sensitivity, at the

five different sites, for the common 22 parameters and 3
initial conditions at the five sites is presented in Figure 6.
The actual values of the sensitivity indices (the median of
the Kolomogorov-Smirnov statistic) and the ranking of the
sensitivity levels are presented in Table 9. The most
interesting difference between the models is in the behavior
of the initial soil moisture content and the depths of the soil
layers, despite the fact that the soil submodel structure is
basically the same.
[57] Of the parameters related to the vegetation model

the vegetation fraction (vegc) is highly sensitive for both
models at all the sites. The same occurs with the rough-
ness length except for the BATS 2 at the Tucson site. The
leaf area index (xla) and the Clapp and Hornberger ‘b’ are
also very sensitive for both models at all sites. The root
fraction (rootf) is sensitive at all sites for the BATS 1 but
is not sensitive for the BATS 2 at the ARMCART and
Tucson sites. Those two sites, interestingly, are the ones
with higher moisture constraints. The vegetation and soil

albedos are not sensitive. Thus it can be said that the
sensitivity behavior of the vegetation submodel parameters
is similar in the two models, despite the fact that the
vegetation submodel is the one with the main changes in
structure.
[58] The picture is different with the soil-related param-

eters where the behavior of the parameter sensitivity varies
significantly from site to site within the two different
models. Porosity (xmopor) is the most sensitive parameter.
It is sensitive at all the sites with the BATS 1 and only at
Cabauw, Reserva Jaru, and Tucson for the BATS 2. Hy-
draulic conductivity (xmohyd) is only sensitive at two sites
(although different ones) for both models. The soil suction
(xmosuc) is sensitive at all sites except Cabauw for the
BATS 2, while is not sensitive for Cabauw and the
ARMCART in the BATS 1. The parameter related to
the thermal conductivity of the soil (skrat) is sensitive for
all sites within BATS 1, but is only sensitive for the Tucson
site in BATS 2. The thickness of the upper soil layer is also
very sensitive across all sites in BATS 1, while only at
ARMCART and Cabauw in BATS 2. The depth of the root
layer (deprv) is sensitive for both models at the Illinois,
Reserva Jaru, and Tucson sites. Associated with the soil are
also the initial moisture states for the three soil layers. The
most sensitive state is the upper layer water content (ssw)
which is sensitive at all sites for the BATS 1 while only
sensitive at the ARMCART and Cabauw for the BATS 2.
The root zone initial water content (rsw) is again more
sensitive for the BATS 1, with three sites, while only
sensitive at one (Tucson) for BATS 2.

Table 9. Ranking of Global Sensitivity Indices at Different Sites for the BATS 1e and BATS 2 Modelsa

Sensitive Parameters

ARMCART Cabauw Illinois Reserva Jaru Tucson

BATS 1e
1 vegc 0.0000 vegc 0.0000 vegc 0.0000 vegc 0.0000 rough 0.0000
2 rough 0.0000 rough 0.0000 rough 0.0000 rsmin 0.0000 depuv 0.0000
3 displa 0.0000 rsmin 0.0000 xla 0.0000 xla 0.0000 deprv 0.0000
4 bee 0.0000 xla 0.0000 deprv 0.0000 depuv 0.0000 xmopor 0.0000
5 depuv 0.0001 depuv 0.0000 rootf 0.0000 deprv 0.0000 xmosuc 0.0000
6 rootf 0.0025 rootf 0.0000 xmosuc 0.0000 rootf 0.0000 xmohyd 0.0000
7 ssw 0.0028 xmopor 0.0000 bee 0.0000 xmosuc 0.0000 skrat 0.0000
8 xla 0.0036 bee 0.0000 xmopor 0.0001 ssw 0.0000 ssw 0.0000
9 skrat 0.0065 skrat 0.0000 depuv 0.0008 rsw 0.0029 tsw 0.0000
10 xmopor 0.0143 ssw 0.0000 displa 0.0014 rough 0.0175 rsmin 0.0003
11 displa 0.0042 ssw 0.0086 xmopor 0.0347 rsw 0.0009
12 xmohyd 0.0064 skrat 0.0195 skrat 0.0466 rootf 0.0011
13 rsw 0.0077 solour 0.0434 bee 0.0040
14 sai 0.0163 xla 0.0043
15 albvgl 0.0357 vegc 0.0110

BATS 2
1 vegc 0.0000 vegc 0.0000 vegc 0.0000 vegc 0.0000 rsmin 0.0000
2 rough 0.0000 rough 0.0000 rough 0.0000 xla 0.0000 xla 0.0000
3 displa 0.0000 rsmin 0.0000 xla 0.0000 xlai0 0.0000 xlai0 0.0000
4 xla 0.0000 depuv 0.0000 xlai0 0.0000 fc 0.0000 fc 0.0000
5 xlai0 0.0000 bee 0.0000 fc 0.0000 rootf 0.0000 xmopor 0.0000
6 fc 0.0000 xmopor 0.0002 rootf 0.0000 xmosuc 0.0000 xmosuc 0.0000
7 depuv 0.0000 rootf 0.0003 xmohyd 0.0000 rsmin 0.0002 skrat 0.0000
8 bee 0.0000 seasf 0.0004 bee 0.0000 skrat 0.0015 tsw 0.0000
9 ssw 0.0206 ssw 0.0029 tsw 0.0000 xmopor 0.0024 rsw 0.0002
10 xmohyd 0.0246 xla 0.0045 xmosuc 0.0001 bee 0.0137 vegc 0.0025
11 xmosuc 0.0327 xlai0 0.0045 seasf 0.0008 rough 0.0838 bee 0.0063
12 fc 0.0045 rsmin 0.0013 tsw 0.0880 deprv 0.0077
13 skrat 0.0067 displa 0.0057 deprv 0.0962
14 deprv 0.0107

aThe number of sensitive parameters may differ from those in Table 7 because of the initial states inclusion.
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[59] In summary it can be said that, paradoxically, the
behavior of the soil-related parameters appears to be more
affected by changes in the vegetation parameterization than
the actual vegetation-related parameters. This is mostly
associated with the sensitivity to the latent heat.

6. Summary, Conclusions, and
Recommendations

[60] A comparison of land surface model sensitivity has
been carried out within a multicriteria framework. To carry
out the comparison, a large number (�50,000) of model
runs were made. The total number of model parameters was
used as a proxy for the level of model complexity. The
BATS 2 model is the model with the highest complexity in
terms of process representation. The analysis reveals that
relationship between level of complexity and overall sensi-
tivity is not straightforward. It is clear that sensitivity is a
function of location, which in the present case is associated
with the forcing variables. When evaluating the number of
sensitive parameters for the models studied, Noah has the
highest sensitivity (largest index), which means the param-
eter interaction is less acute, but is not the model with
highest model complexity. The BUCKET model, although
contains no explicit vegetation parameters, does have sen-
sitivity to its soil parameters at the more humid sites in the
study (Cabauw and Reserva Jaru). The CHASM model also
has a fair number of sensitive parameters for the level of
complexity. BATS2, which includes the more advanced
vegetation parameterization than either the BATS1e or
Noah models, does not necessarily result in a higher number
of sensitive parameters, even for its vegetation parameters.
The increasing complexity of the BATS2 model over the
BATS1e does not necessarily result in a larger number of
identifiable parameters. In fact, the additional complexity in
the BATS2 model may be causing interaction among the
parameters and fewer sensitive parameters. The Noah model
(used in operational weather forecasting) tends to lean more
toward soil sensitivity rather than sensitivity to vegetation
parameters.
[61] The analysis also revealed that several model param-

eters appear to be insensitive regardless of the input data.
This conclusion indicates a reduction in the number of
parameters a modeler need be concerned with at any site,
and will aid in the development of a systematic approach for
defining sensitive and nonsensitive parameters and estimat-
ing those variables which truly influence model simulations.
[62] The analysis also showed that the sensitivity of

parameters with similar physical meaning is tightly related
to the model structure and location. If a particular parameter
is sensitive for a specific model and location, it does not
necessarily follows that the parameter will be sensitive at a
different location, and for a different model.
[63] The added complexity in the vegetation submodel of

the BATS 2, with respect to BATS 1, paradoxically produ-
ces bigger changes in soil-related parameters than in veg-
etation-related ones. The sensitivity to initial moisture states
in the soil is also affected by the change in the vegetation
representation.
[64] Because streamflow was not used as a criterion or

variable in this analysis, few conclusions can be drawn on
the sensitivity of the runoff processes. It is expected this

result may change if streamflow or runoff data were used as
a criterion in a sensitivity analysis.
[65] Results from this sensitivity analysis demonstrate

that the MOGSA procedure provides a useful framework
that takes into account parameter interaction and allows for
multicriteria and single-criterion analysis, irrespective of the
model structure and number of parameters. This work also
supports the concept that there are tradeoffs in model
complexity and that the appropriate level of model com-
plexity should be evaluated for a specific combination of
vegetation and soil types. In a complementary study, Hogue
et al. [2005] have applied the current results to reduce the
‘‘curse of dimensionality’’ in the parameter identification
problem; that is, only the sensitive parameters have been
optimized.
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