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ABSTRACT OF THE DISSERTATION

Efficient Algorithms for the Analysis of Hi-C Contact Maps

by

Abbas Roayaei Ardakany

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2019

Dr. Stefano Lonardi, Chairperson

This dissertation deals with the analysis of high-throughput chromatin conformation cap-

ture (Hi-C) data. Hi-C experiments provide genome-wide maps of chromatin interactions

and has enabled Life Scientists to investigate the role of the three-dimensional structure

of genomes in gene regulation and other essential cellular functions. Several studies have

confirmed the existence of fundamental 3D structural features of different scales that are

stable across cell types and conserved across species, e.g., topological associating domains

(TADs) and chromatin loops.

The research presented here is articulated around three main topics on the analysis

of contact maps, namely (1) the detection of TADs, (2) how to compare two maps, and

(3) how to detect chromatin loops. The detection of TADs has become a critical step

in the analysis of Hi-C data, e.g., to identify enhancer-promoter associations. First, we

present East, a novel TAD identification algorithm based on fast 2D convolution of Haar-

like features, that is as accurate as the state-of-the-art method based on the directionality

index, but 75-80× faster.
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Another fundamental problem in the analysis of Hi-C data is to compare two con-

tact maps derived from Hi-C experiments to identify the functional differences. Detecting

similarities and differences between contact maps is critical in evaluating the reproducibility

of replicate experiments and identifying differential genomic regions with biological signifi-

cance. Due to the complexity of chromatin conformations and the presence of technology-

driven and sequence-specific biases, the comparative analysis of Hi-C data is analytically

and computationally challenging. Second, we present a novel approach called Selfish for the

comparative analysis of Hi-C data that takes advantage of the structural self-similarity in

contact maps. We define a self-similarity measure to design algorithms for (i) measuring

reproducibility for Hi-C replicate experiments and (ii) finding differential chromatin inter-

actions between two contact maps. Extensive experimental results on simulated and real

data show that Selfish is more accurate and robust than state-of-the-art methods.

Regulatory elements at large genomic distances can engage in gene regulation by

making direct physical contacts to their target genes or loci bringing distant loci in close

spatial proximity of each other forming chromatin loops. These long-range interactions

form complex regulatory networks that need to be carefully studied. Analyzing chromatin

interactions between regulatory elements and genes at high resolution using high-throughput

chromosome conformation capture method Hi-C, can provide fundamental insights into the

spatial organization of chromosomes and its effect on gene regulation. Third, we present a

new method Mustache to detect significant chromatin interactions genome-wide. Mustache

robustly finds chromatin pairs of loci that interacts significantly compared with the expected

interaction. We show that detected interactions are biologically supported by running a wide
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range of experiments. The experiments indicate that these interactions are associated with

contacts between promoters and enhancers, promoters to promoters, mediated by different

proteins and are stable between cell types.
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Chapter 1

Introduction

This dissertation describes research on the analysis of High-throughput Chromo-

some Conformation Capture (Hi-C) data. Specifically, it introduces efficient and accurate

algorithms for the detection of local genome structures at different scales and the compar-

ative analysis of Hi-C data.

Recent studies have revealed that genomic DNA in eukaryotes is not arbitrarily

packed into the nucleus. The chromatin has a well organized and regulated structure in ac-

cordance to the stage of the cell cycle and environmental conditions [43, 48]. The chromatin

structure in the nucleus plays a critical role in many essential cellular processes, including

regulation of gene expression and DNA replication [17, 16, 50, 54]

Therefore, it is of great importance to systematically study the 3D conformation

of the chromatin and how its folding is associated to specific cell function and the transcrip-

tional control of genes. Historically, the spatial organization of the genome had been studied

by conducting fluorescent in situ hybridization (FISH), which are low-throughput, time con-
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suming experiments. As a consequence these study were limited to a few genomic loci, in a

few dozens cells at once, and limited in spatial resolution. Newer and more advanced super-

resolution microscopy approaches such as STORM and PALM have enabled Life Scientists

to look into more detailed structures of chromatin at an much higher resolution [4].

Despite these remarkable technical advancements, microscopy-based approaches

are limited in different aspects. First, they can be carried out only for a limited number

of loci, thus they do not allow a genome-wide analysis of chromatin structure. Second,

observed folding patterns cannot be directly translated to genomic loci, which substantially

limits its integration with other genomic data [31]. Proximity ligation techniques, which are

variations of the chromosome conformation capture (3C) experiment [14], were introduced

to experimentally quantify chromatin interactions between different genomic loci in the

genome [53]. 3C works by randomly cross-linking genomic loci in close physical proximity

in the nucleus.

3C was followed by many derivative techniques (4C, 5C, ChIA-PET, Hi-C), which

all start with a similar set of steps, even though they differ by the way the ligation product

is measured and quantified. Chromosome conformation capture-on-chip (4C) identifies the

interaction of unknown DNA regions with a locus of interest [58]. Chromosome confor-

mation capture carbon copy (5C) detects all interactions in a given region. It generates a

library of any ligation products which are then analyzed by next-generation sequencing for

a given region of interest (typically no greater than 1Mb) [19].
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Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) combines chro-

matin immunoprecipitation (ChIP) with 3C to determine long-range genome-wide chro-

matin interactions [25].

Hi-C is considered the least biased method for discovering genome-wide chromatin

interactions [36]. In Hi-C, after the initial restriction enzyme digestion as it is done in 3C, (1)

the ends of fragments are filled by biotinylated nucleotides, (2) the blunt-end fragments are

ligated, (3) the ligated DNA is sheared and (4) the marked fragments (chimeric products)

are enriched by a streptavidin pull-down step. The resulting DNA (chimeric) fragments

are then paired-end sequenced to find the corresponding interacting loci of each fragment

(Figure 1.1).

Figure 1.1: Overview of Hi-C experiments. Cells are first cross-linked using formaldehyde.
This results in segments of DNA which are in close spatial proximity linked together. Then
the chromatin is digested by a restriction enzyme and the ends are biotinylated. Then
the blunt-end fragments are ligated, the ligated DNA is sheared and the marked fragments
(chimeric products) are enriched by a streptavidin pull-down step. The resulting DNA
(chimeric) fragments are then undergo a paired-end sequencing to find the corresponding
interacting loci of each fragment (source [36]).

Each paired-end read represents a potential interaction between its two correspond-

ing loci. The frequency of interactions between two fragments of DNA can be translated to

the proximity of those fragments in 3D space. In the last step, interaction frequencies are
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binned into equal-sized regions forming contact maps. In a Hi-C contact map (or interaction

matrix ) A, each entry A(i, j) represents the number of times segments i and j are observed

together in a DNA proximity ligation experiment. Larger values of A(i, j) indicate closer

loci i and j in 3D space inside the nucleus. The average size of each bin is directly propor-

tional to the sequencing depth of the experiment. Higher coverage of sequencing provides

more accuracy in detecting longer chromatin interactions, less noise, and higher resolution.

The first Hi-C study provided chromatin interactions at a 1Mb resolution [36], which was

improved to 40kb [17] and later to 1kb resolution [50].

The genome structure is thought to be organized hierarchically. Each chromo-

some occupies its own “territory”: intra-chromosomal interactions occur significantly more

frequent than inter-chromosomal interactions. Inside each chromosome territory, the orga-

nization of genomic regions is not random and is associated to the transcriptional activity of

the cell. Transcriptionally active regions interact with other active regions more frequently

when compared to inactive regions which tend to interact to other inactive regions [67].

Active regions, termed as compartment A, contain higher levels of gene density, chromatin

accessibility and active histone modifications while inactive regions, termed as compartment

B tend to be gene depleted and contain heterochromatin.

With the decreasing cost of Hi-C experiments and the higher availability of Hi-C

data for different cell types in diverse conditions, there is a growing need for reliable and

robust measures to systematically compare contact maps to discover similarities and differ-

ences.
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The analysis Hi-C data presents computational and analytical challenges which are due

to technology-driven and sequence-specific biases. Technology-driven biases include non-

uniform sequencing depth, cross-linking conditions, circularization issues, and restriction

enzyme biases [46, 11, 59]. Sequence-specific biases include GC content of trimmed ligation

junctions, sequence uniqueness, and nucleotide composition [64].

For instance, it is well-known that contact maps produced as a result of replicate

experiments can contain significant difference solely due to these biases, which could be

falsely interpreted as biological differences if these biases are not accounted for [66]. Several

normalization methods have been developed to compensate for these biases and improve

the reproducibility of Hi-C experiments, e.g., [36, 64, 34, 32]. While several computational

methods have been proposed to extract statistically significant contacts from normalized

contact maps [50, 1, 6, 52], their performance is still not entirely satisfactory due to the

inherent complexity, inter-dependency and unaccounted biases in chromatin interaction

data.

In this dissertation, we developed a set robust and efficient methods to analyze

Hi-C data. By conducting an extensive set of experiments we showed that our methods

outperform the state-of-the-art methods for the analysis of Hi-C data both on simulated

and real Hi-C datasets. In Chapter 2, we present a novel TAD calling algorithm called East

(for ”efficient and accurate summed-area-table-based TAD calling”) that takes advantage

of fast 2D convolution. Experimental results show that East is as accurate in detecting

TADs as the DI method [17], which is considered the state-of-the art. East is however,

75-80× faster than DI.
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In Chapter 3, we present a new comparative method Selfish (for ”discovery of

differential Chromatin Interactions via a Self-Similarity measure”) for the analysis of Hi-C

data based on the notion of self-similarity [55]. We show that our self-similarity measure is

robust to biases and does not need complex and computationally intensive normalization

steps, such as MA [20] or MD [59].

In Chapter 4, we introduce Mustache (for ”multi-scale detection of statistically

significant interactions”) for genome-wide detection of significant chromatin interactions

(loops). Mustache uses a scale-space representation of the contact map to model chromatin

loops produced by interacting of chromatin segments with different sizes. We show that

Mustache detects the majority of chromatin loops detected by HICCUPS [50], as well as

new biologically significant loops which HICCUPS fails to capture.

Finally, Chapter 5 concludes the dissertation by summarizing the main findings of

the research and discusses possible directions for extending this work.
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Chapter 2

Calling Topologically Associating

Domains

2.1 Introduction

Topological associating domains (TADs) are large, megabase-sized contiguous local

chromatin interaction domains that have a high average interaction within and a low average

interaction with their surrounding regions. Because of the role that TADs play in cellular

functions they have been widely explored since their discovery [69]. TADs are stable across

different cell types and highly conserved across species [17]. TADs tend to interact with each

other in a tree-like structure and form a hierarchy of domains-within-domains (metaTAD),

which can scale up to the size of chromosomes. metaTADs show correlation with genetic and

epigenomic features. TAD boundaries are enriched for the insulator binding protein CTCF,

housekeeping genes, transfer RNAs and histone modifications [17, 23]. More importantly,
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enhancers tend to interact with gene promoters within the same TAD [33]. Disruption

of TAD boundaries can affect the expression of nearby genes and lead to developmental

disorders or cancer [42].

Several methods have been developed to identify TADs genome-wide [24]. Dixon

et al. were the first group to identify and define TADs [17]. In their seminal work, they

proposed an identification method based on the directionality index (DI) which measures

the frequency of interaction of a genomic locus with a fixed-sized neighborhood. Drastic

changes of the DI score are expected at TAD boundaries where the region tends to have a

high rate of both upstream and downstream interactions.

Filippova et al. [23] introduced a single parameter, two-step dynamic programming

method for detection of TADs. Assuming that there exist a few characteristic resolutions

across which TADs are similar, they identify a set of non-overlapping domains that are

persistent across the resolutions.

Crane et al. [12] proposed a method based on the insulation index (IS). For each

chromosome segment, IS score is the average number of interactions that cross the segment

in a pre-specified size neighborhood. Given that interactions tend to be isolated within

TADs, IS local minima are expected to occur at TAD boundaries. The IS score can be

computed efficiently by sliding a window across the diagonal of the contact matrix and

computing the average number of interactions that fall inside the window.
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Chen et al. [10] translated the TAD identification problem into a graph segmentation/clustering

problem. In this method, domains at different scales are identified by running the spectral

graph cuts algorithm recursively until the connectivity of the graph reaches some predefined

threshold.

In a Hi-C contact map, segments that are close in genomic 1D distance tend to

form dense areas which can be seen as isolated high frequency blocks along the matrix

diagonal, namely, TADs. TADs have high intra-frequency within and low inter-frequency

with their neighboring blocks. The aim is to identify TADs efficiently and accurately.

We propose an algorithm called East that utilizes rectangular Haar-like features

[62] and dynamic programming to identify TADs. Genomic regions are scored based on

an objective function that measures their likelihood of containing a TAD with respect to

the characteristics mentioned above. We use Haar-like features to describe such a scoring

function.

2.2 Summed area table and Haar-like features

A Haar-like feature is a set of adjacent rectangular regions each of which has a

certain weight. Weights of rectangular regions indicate certain characteristics of a partic-

ular area of the image. By convolving Haar-like features, i.e., by computing the weighted

sum of pixel values for a particular location, we obtain a value that represents how well a

region (window) satisfies the characteristics we are looking for. To compute the weighted

sum efficiently we use the summed area table.
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A summed area table (SAT), also known as integral image in computer vision, is a data

structure used for efficiently calculating the sum of values in a rectangular region. By

precomputing the summed area table one can obtain the sum of values in any arbitrary

rectangular region using only a constant number of operations. SAT was first introduced

to computer graphics in 1984 by Frank Crow [13] and later to computer vision in 2001 by

Lewis [62] in a popular face detection framework called Viola-Jones. The value of a point

(x, y) in a summed area table ASAT is the sum of all pixels above and to the left of that

point in the original grid A, including the (x, y) point itself.

ASAT(x, y) =
∑

x′≤x, y′≤y
A(x′, y′)

Since the value of each point in the SAT can be computed based on the values of

neighboring points, the formula can be rewritten as

ASAT(x, y) = A(x, y) +ASAT(x− 1, y) +ASAT(x, y − 1)−ASAT(x− 1, y − 1)

Given the summed area table, computing the sum of values in an arbitrary size

rectangular region can be done in O(1) time (see Figure 2.1).

2.3 TAD objective function

To score TADs we need to define a function f that quantifies the quality of an

arbitrary region along the matrix diagonal with respect to the following properties

1. The average frequency inside the region must be “high”

2. The average frequency with the neighborhood must be “low”
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Figure 2.1: If the summed area table ASAT is available, computing the sum of values in any
rectangular region takes O(1) time.

3. The average frequency between start and end segments of the region must be higher

than the average frequency inside the region

The last property derives from the fact that TADs are the result of a compact

locality or loop formation in the chromatin. To explain the design of the objective function

f we refer to Figure 2.2, where different colors indicates different weighting. The area in

green color is the region we expect to have a high frequency of interaction (intra-frequency),

as opposed to the area in red where lower frequency is expected (inter-frequency). The

corner region which is colored in blue in Figure 2.2 has a higher weight in order to account

for the last property in the list above. Using the SAT data structure, function f can be

computed as follows.

f([i, j]) =
CDEF � − α · (ABGH� − CDEF �) + β · IDJK�

N

where CDEF �, ABGH� and IDJK� represent the sum of pixel values inside the rectan-

gular regions CDEF (defined by interval [i, j]), ABGH and IDJK respectively, which can
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be computed in O(1) time from the SAT of the interaction matrix A. Parameters α and

β are dataset-independent, and they can be determined experimentally. Parameter N is a

normalization factor discussed in subsection 2.5.1.

Figure 2.2: Objective function f . (LEFT) Representation of a TAD of size 2w. High inter-
action frequency expected inside the TAD’s domain (green) while low interaction frequency
is expected between the TAD and surrounding domains (red) (RIGHT) Coordinates of
Haar-like representation of a TAD.

2.4 Finding the optimal set of domains

Given a n × n interaction matrix A, the problem of TAD identification is an

optimization problem aimed at identifying the set of contiguous non-overlapping domains

for which the ∑
di∈D

f(di)

is maximized, where D = {di|di = [si, ei]} is a set of non-overlapping intervals, i.e., ej < si

or ei < sj for i6=j.
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We use dynamic programming to solve this optimization problem. The optimal solution

OPT (i) for the sub-problem [1, i] can be expressed by following recurrence relation

OPT (i) = max
0≤k≤i−1

{OPT (k) + f([k + 1, i])}

By gradually increasing the size of the sub-problem and keeping track of the set

of extracted domains, the optimal set of TADs for the entire interaction matrix can be

computed. As we grow the size of the sub-problem, for each bin i, we need to find the

optimal location to break the sub-problem [1, i] into a sub-problem [1, k] and a domain

d = [k+1, i]. The overall time-complexity is O(n2), where n is the number of bins/segments.

If we do not allow TADs to be larger than L, the optimal break point for a sub-

problem [1, i] can always be found in the interval [max{i − L, 0}, i − 1]. Therefore, the

overall time complexity decreases to O(nL).

Theorem 1 () Let D∗ = {[a1, a2], [a2, a3], . . . , [as−1, as]} be an optimal set of domains for

the interaction matrix A for which ∑
di∈D∗

f(di)

is maximized. Then,

OPT ∗(n) = OPT (n)

where

OPT∗(i) = max
max{i−L,0}≤k≤i−1

{OPT ∗(k) + f([k + 1, i])}
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Proof. We prove the theorem by induction. For the base case OPT ∗(a1) = OPT (a1) = 0.

Now, suppose OPT ∗(ai−1) = OPT (ai−1) then we have

OPT ∗(ai) = OPT ∗(ai−1) + f([ai−1 + 1, ai])

= OPT (ai−1) + f([ai−1 + 1, ai])

= OPT (ai) for k = ai−1

where k satisfies the inequality max{ai − L, 0} ≤ k ≤ ai − 1.

2.5 Experimental results

We performed the analysis on Hi-C data for two mouse cell types (cortex and

embryonic stem cell), and one human cell type (embryonic stem cell) at bin resolution of

40kb. The Hi-C data was obtained from [17].

2.5.1 Parameter settings

In addition to α, β and L, East relies on two additional parameters. The first is

the minimum quality threshold τ that is used to filter out low-quality TADs. If we assume

that TAD quality scores are distributed according to a Gaussian distribution, we define the

threshold τ = µ−σ where µ and σ are the mean and standard deviation of the distribution

of scores. Observe that parameter τ can be computed from the analysis of the dataset.

The second parameter is the normalization parameter N for the function f . Since

the quality measure f is proportional to the sum of interactions inside the domains, f

grows as the TAD size increases. Figure 2.3 illustrates how the sum of interactions inside a

domain grows as the size of the TAD increases for the three datasets used in the experimental
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results below and for a synthetic interaction matrix. In the synthetic data, the number of

interactions was set to be inversely proportional to the genomic distance. For purpose of

comparison, the sum of interactions is normalized by the sum of the largest domain.
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Figure 2.3: Growth of the quality measure f as the size of the TAD increases on the three
datasets used in the experimental results and for a synthetic interaction matrix (see text).

Observe that the curve for the mouse embryonic data roughly matches the curve

for the synthetic data. This suggests that the average interaction frequency of two loci in

the mESC dataset is inversely proportional to their genomic distance. The growth function

of the synthetic data can be estimated by (n/L)1.2 where L is the largest domain size we

are evaluating.

Also observe the hESC and mouse cortex curves are slightly different from the curve

for the synthetic data, and they can be estimated by (n/L)1.36 and (n/L)1.4 respectively.

We experimentally determined that as the curves diverge from the curve for the synthetic

data, the normalization factor needs to adjusted accordingly. We set N = n0.4, N = n0.43

and N = n0.38 for hESC, mESC and mouse cortex, respectively. Parameters α and β were

optimized experimentally to values α = 0.2 and β = 0.2, and they are dataset-independent.
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2.5.2 Comparison with existing methods

Based on the availability and popularity of TAD calling methods, we decided

to compare East with the directionality index method [17], insulation score method [12]

and multiscale method in [23]. We hereafter refer to these methods as DI, INS and MR

respectively.

East, DI, INS and MR were ran on an Intel Core-i7 2.7GHz CPU with 16GB of

memory. For the DI method we ran the experiments with posterior marginal probability

threshold 0.99 and up/downstream span size of 2Mb (default parameters according to [17]).

For the INS method, we set the insulation delta span to 200kb and the insulation square

size to 500kb. For the MS method, we set the highest resolution parameter to 0.5.

In our experiment we investigated the enrichment of epigenetic characteristics of

chromatin near the TAD boundaries. Although the mechanism behind the formation of

TADs and their role in gene regulation are not fully understood, multiple studies have

shown that some proteins and histone marks are enriched at the TAD boundary regions,

implying that these boundaries play a role in gene transcription. As it was done in other

studies [23, 57, 10], we can therefore use these genomic markers to evaluate the quality of

the computed TADs.

To produce enrichment plots, we used each method to determine the boundary

locations of TADs. Then, the frequency of each marker was calculated in 10kb bins in a

window of 1Mb centered at the TAD boundaries. Each plot show the distribution of specific

markers for each tool in the region centered at the TAD boundaries.
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For mouse cortex and stem cells we evaluated the enrichment of transcription factor CTCF,

promoter related marks RNA Polymerase II and H3K4me3, and enhancer-related histone

modification H3K27ac. This marker data was collected from [56]. For human stem cells

we assessed the enrichment of CTCF near TAD boundaries. The CTCF data was obtained

from [35].

Figure 2.4 shows that CTCF binding sites are almost twice as enriched near the

TAD boundaries than the surrounding regions, suggesting that TAD boundaries are asso-

ciated with insulator genomic regions and their mediator protein CTCF. Figure 2.5 and

Figure 2.6 show that promoter marks RNA Polymerase II and H3K4me3 peak within the

TAD boundaries for both mouse cortex and embryonic stem cells. Observe in Figure 2.7

that histone modification mark H3K27ac is highly enriched around TAD boundaries in

mouse embryonic stem cells but not in mouse cortex cells. Also observe in Figure 2.8 that

enhancer marks are highly depleted around TAD boundaries in mouse cortex cells but not

in mouse embryonic stem cells.

Overall, observe in Figures 2.4-2.8 that the blue curve for East is almost always

higher than the other three tools, suggesting that our tool generates TADs with very ac-

curate boundaries. The closest competitor is DI (green curve), but East is significantly

faster than DI.

We compared the running time of East with that of DI, MS and INS on Hi-C

data for human embryonic stem cells, mouse embryonic stem cells and mouse cortex [17].
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Figure 2.4: CTCF enrichment in human embryonic stem cells, (left) mouse embryonic stem
cells (center) and mouse cortex cells (right).
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Figure 2.5: H3K4me3 enrichment in mouse embryonic stem cells (left) and mouse cortex
cells (right).

Table 3.1 shows that East and INS are comparable in speed, MS is 10-14× slower, DI is

75-80× slower.

Figure 2.9 illustrates the size distribution of TADs for all four methods for the

human embryonic stem cells. The numbers of TADs extracted by East, DI, MS and INS

are 2229, 2429, 12427 and 4708 respectively. Observe that East and DI roughly produce

the same size distribution.

In summary, these experimental results show that while East can identify the

TAD boundaries as accurately as the best method (DI), but it is much more time efficient.
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Figure 2.6: polII enrichment in mouse embryonic stem cells (left) and mouse cortex cells
(right).

-500kb boundary 500kb
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

A
v
e
ra

g
e
 #

 p
e
a
k
s
 p

e
r 

1
0
k
b

EAST

DI

MS

INS

-500kb boundary 500kb
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

A
v
e
ra

g
e
 #

 p
e
a
k
s
 p

e
r 

1
0
k
b

EAST

DI

MS

INS

Figure 2.7: H3K27ac enrichment in mouse embryonic stem cells (left) and mouse cortex
cells (right).

2.6 Conclusion

In this chapter, we introduced an efficient algorithm called East, to accurately

identify topological associating domains in chromatin from interaction matrices obtained

from high-throughput chromosome conformation capture (Hi-C). East can be downloaded

from https://github.com/ucrbioinfo/EAST.
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Figure 2.8: Enhancer enrichment in mouse embryonic stem cells (left) and mouse cortex
cells (right).

hESC mESC Cortex

East 58s 50s 48s
INS 52s 44s 42s
DI 4,721s 3,845s 3,628s

MS 762s 545s 520s

Table 2.1: Running time of East, INS, MS and DI on the three datasets used in this work.

We performed a comparative evaluation of East on Hi-C data for human stem cells, mouse

stem cells and mouse cortex cells. We showed that our algorithm extracts TADs as ac-

curately as the state-of-the art. TADs identified by East show substantial enrichment of

various epigenetic modification factors at their boundaries, confirming similar findings in

previous studies. By comparing the running time of East with the other published meth-

ods, we showed that our method is very time efficient. For a given Hi-C dataset, the only

parameter in East that might need to be tuned by the user is the normalization factor for

which we have given some guidance in Subsection 2.5.1.

The framework we presented here for TAD identification is based on fast 2D-

convolution of Haar-like features. We believe that this framework could be adapted to
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Figure 2.9: Comparison of the distribution of TAD size.

other chromatin feature detection problems such as chromatin loops [50]. We also plan to

extend our work to efficiently identify chromatin features at arbitrary scales.
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Chapter 3

Discovery of Differential

Chromatin Interactions via a

Self-Similarity Measure

3.1 Introduction

Recent studies have revealed that genomic DNA in eukaryotes is not arbitrarily

packed into the nucleus. The chromatin has a well organized and regulated structure in ac-

cordance to the stage of the cell cycle and environmental conditions [43, 48]. The chromatin

structure in the nucleus plays a critical role in many essential cellular processes, including

regulation of gene expression and DNA replication [17, 16, 50, 54].

Technological and scientific advancements in genome-wide DNA proximity liga-

tion (Hi-C) have enabled life scientists to study how chromatin folding regulates cellular
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functions [36, 8, 9, 27]. The analysis of Hi-C led to the discovery of new structural fea-

tures of chromosomes such as topologically associating domains (see chapter 2) [17, 69] and

chromatin loops [50, 7].

With the decreasing cost of Hi-C experiments and the higher availability of Hi-

C data for different cell types in diverse conditions, there is a growing need for reliable

and robust measures to systematically compare contact maps to discover similarities and

differences. However, the comparative analysis of Hi-C data presents computational and

analytical challenges due to presence of technology-driven and sequence-specific biases.

Technology-driven biases include sequencing depth, cross-linking conditions, circularization

length, and restriction enzyme sites length [46, 11, 59]. Sequence-specific biases include

GC content of trimmed ligation junctions, sequence uniqueness, and nucleotide composi-

tion [64]. For instance, it is well-known that contact maps from replicate experiments can

contain significant differences solely due to these biases, which could be falsely interpreted

as biological differences if these biases were not accounted for [66]. Several normalization

methods have been developed to compensate for these biases and improve the reproducibil-

ity of Hi-C experiments, e.g., [36, 64, 34, 32]. While several computational methods have

been proposed to extract statistically significant differences in normalized contact maps

[50, 1, 6, 52], their performance is still not entirely satisfactory due to the inherent com-

plexity, inter-dependency and unaccounted biases in chromatin interaction data.

There are two major domains of application for the comparative analysis of Hi-C

contact maps. The first application domain is focused on quantifying the reproducibility

of Hi-C biological/technical replicate experiments [66]. For instance, [65] defined a repro-
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ducibility measure based on the stratum-adjusted correlation coefficient statistic defined on

the unique spatial features of Hi-C data. Their method HiCRep (i) reduces the effect of

noise and biases by applying a 2D averaging filter on the data, (ii) addresses the distance-

dependence of Hi-C data by stratifying the data with respect to the genomic distance,

(iii) calculates a Pearson correlation coefficient for each stratum, and (iv) aggregates the

computed stratum-specific correlation coefficients using a weighted average.

In the same application domain aimed at quantifying reproducibility or concor-

dance of contact maps, [61] presented a method called GenomeDISCO to measure the

differences between smoothed contact maps. GenomeDISCO represents contact map as a

graph, where each node represents a genomic locus and each edge represents an interaction

between two loci. Edges are weighted by the normalized frequency of the corresponding

pairs of loci. GenomeDisco executes iteratively the two following steps: (i) traverses the

graph using random walks, which has the effect of denoising (smoothing) the data, (ii)

computes the normalized difference between smoothed contact maps using the L1 distance

between two contact maps.

The second application domain is aimed at finding statistically significant dif-

ferences between contact maps for cells in different states (tissues, developmental states,

healthy/diseased, time-points, etc). It is well-known that chromatin interactions that are

mediated by specific protein can have distinct frequencies in different cell types or in differ-

ent cell conditions [47, 26]. Differences in chromatin interactions can be associated with cell

type-specific gene expression or mis-regulation of oncogenes or anti-oncogenes [39, 53, 30].
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[63] proposed the first method to discover differences in Hi-C contact maps. The authors

used a simple fold-change of the normalized local interactions to discover that estrogen

stimulation significantly impacts chromatin interactions in MCF7 cells. Building on this

idea, [16] proposed a method that (i) quantile-normalizes contact maps to compensate for

the bias induced by different sequencing depth, and (ii) determines the significance of nor-

malized differences between two contact maps (augmented by feature vectors representing

epigenetic signals) using a Random Forest model. Their method can (i) determine whether

the epigenetic signal is predictive of changes in interaction frequency and (ii) discover which

epigenetic signals are most predictive of changes in higher-order chromatin structure.

[59] developed a non-parametric method to account for between-datasets biases.

They used locally weighted polynomial regression to fit a simple model trained on the

difference between the two datasets. Based on the assumption that the majority of the

interactions should be relatively unchanged among similar Hi-C datasets and by centering

the average difference to zero, loci which are far from the average are considered potentially

significant differential interaction.

Unlike other methods which assume independence among pairwise interactions

(which holds true only for low resolution Hi-C) [18] presented a method that takes into

account the dependency of adjacent loci in higher resolutions. Based on the fact that

interacting neighboring loci are known to be inter-dependent, structural differences can be

detected by observing the differences in a neighborhood of the corresponding loci pair. In

contrast, random noises tend to affect singular pairwise interactions only. By considering a

three-dimensional space in which the x and y are the coordinates of the genomic loci and z
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is their pairwise interaction frequency, the authors define a chromatin interaction between

two conditions to be differential when the intensity of the majority of k-nearest neighbors

of (x, y) exhibit a significant change.

In this work, we address three major weaknesses of these existing methods for

the comparative analysis of contact maps, namely, a) ignoring the inter-dependency of

chromatin interactions, b) requiring a pre-processing (normalization) step based on a flawed

assumption that biases between two contact maps can be accurately modeled and c) being

extremely computationally demanding for the analysis of high-resolution Hi-C data. We

present new comparative methods for the analysis of Hi-C data based on the notion of

self-similarity [55]. We show that our self-similarity measure is robust to biases and does

not need complex and computationally intensive normalization steps, such as Minus vs.

Average (MA) [20] or Minus vs. Distance (MD) [59]. In the first part of the paper, we show

that our self-similarity measure can be used as a tool to quantify the reproducibility of Hi-C

biological/technical replicate experiments. In the second part, we show that our measure

can also be employed for finding statistically significant differences between Hi-C contact

maps. Although existing methods for comparing contact maps vary widely, they all share

the following assumption. Given two contact maps that are expected to be similar (e.g.,

technical replicates of the same biological experiment) it is possible to devise (or train) a

common underlying model can faithfully represent both. We believe that this approach is

fundamentally flawed, because the inherent biases present in the Hi-C data are very hard

to model and completely eliminate. Here we propose to use the intrinsic self-similarity

structure in contact maps to avoid dealing with the modeling problem.
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In the application domain of object detection in complex visual data, the notion

of self-similarity was first introduced by [55]. The idea of self-similarity on images can be

explained as follows. [55] showed that given two images of a certain object, the most relevant

correlations between them are not necessarily the raw values of pixels (or an underlying

model describing those pixel values) but the internal organization of self-similarities of local

regions at similar relative geometric positions. Given two images of the same object, the

relation between these local self-similarities tend to be more preserved than the similarities

between the images.

3.2 Self-similarity and reproducibility

As said, existing methods for measuring the reproducibility of Hi-C experiments

compute correlations or distances between normalized interaction frequencies of loci pairs,

which is error-prone due to technology-driven and sequence-specific biases. Here we show

that this comparison can be done indirectly by using self-similarity.

When we compare two contact maps that are expected to be similar, e.g. for two

technical replicates of the same biological experiment, we expect to have similar internal

layout of interactions. More precisely, given two contact maps A and B for two replicates,

if we observe more chromatin interactions in block α than in block β in contact map A,

we expect to have more chromatin interactions in block α than block β in contact map

B as well, for several local choices of α, β. In other words, to measure similarity we do

not need to depend on the absolute number of interactions in each contact map, rather we

can rely on pairwise comparison between many local interactions. Here we claim that the
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Boolean vectors representing binary comparison between local interactions encode enough

information to define a similarity measure that can be used to quantify reproducibility for

contact maps.

Henceforth, a Hi-C contact map is a N×N matrix where entry (i, j) in the matrix

denotes the frequency of interaction between locus (or bin) i and locus (or bin) j in the

genome. First, we slide a square block of size N/k × N/k along the main diagonal of the

contact map using a stride of N/2k so each pair of adjacent blocks overlap by half of their

size. For each position of the sliding block, we compute the sum of interaction frequencies

inside the block. We store these sums in vector B, which has 2k components. Then, we

compare all
(
2k
2

)
pairs of block sums, and set the matrix C(s, t) = I(Bs > Bt) for all choices

of (s, t) ∈ {1, . . . , 2k} × {1, . . . , 2k}, where I is the indicator function.

We claim that the matrix C is a compact representation of the interaction distri-

bution along the main diagonal of the contact maps, which is robust to noise and biases

(thus does not require normalization) because it relies on comparing entities that belong to

the same contact map, and not across maps. We compute the similarity S(A,B) between

contact map A and B as follows

S(A,B) = e−c‖CA−CB‖2

= e
−c

√∑
(s,t)∈{1,...,2k}2 [CA(s,t)−CB(s,t)]2

where c is a constant, CA is the Boolean matrix for contact map A, CB is is the Boolean

matrix for contact map B. The value of k should be chosen so that the size of the result-

ing blocks N/k is sufficient large to enclose important chromatin structures (e.g., TADs).

Parameters c and k are determined experimentally.
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3.3 Self-similarity and differential chromatin interactions

For the accurate detection of differential chromatin interactions (DCI), we need to

be able to distinguish true differences (which might have biological relevance) from differ-

ences caused by biases or other artifacts in the data. Since there is no ground truth for DCIs

between cell types, conditions or developmental stages, there is no possibility of learning

from real examples. The only differences that can be trusted are those that significantly

exceed the differences observed between biological replicates. For this reason, we can also

employ our self-similarity metric in a method for finding DCIs between two Hi-C contact

maps. In our self-similarity representation described below, each interaction frequency is

represented by a series of comparison between its surrounding local regions.

We first observe that DCIs have locality properties. If contact map A and B have

a DCI at coordinate (i, j), this is not only reflected in the interaction difference of A(i, j)−

B(i, j) but also in the neighborhood of (i, j). We call impact region the neighborhood

affected by the DCI. We call impact radius the size of the neighborhood being affected,

which is proportional to the magnitude of the DCI. We argue that what determines the

statistical significance of a DCI in a particular location (i, j) does not only depend on the

statistical significance of the difference A(i, j)−B(i, j) but also on the statistical significance

of the difference between their region centered at (i, j). Isolated locations that have the

large interaction frequency differences are often not significant and are likely to be due to

noise or other artifacts.

To incorporate locality information in our self-similarity representation, each in-

teraction A(i, j) is represented by a linear combination of its neighboring interactions. To
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Figure 3.1: Our self-similarity metric for representing chromatin interactions is obtained
by first convolving a contact map with a set of Gaussian filters with radii {r1, r2, . . . , rn}.
The shade represents the intensity of the convolution for different radii. In this example,
a sharp frequency change can be observed between radius r2 and r3 in contact map A but
not in contact map B. This difference can indicate a potential DCI.

penalize interactions which are progressively farther from (i, j), we weight these local inter-

actions via a Gaussian filter centered at (i, j) (see Figure 3.1 for an example). By gradually

increasing the size of the Gaussian filter, we capture impact regions with larger and larger

radii. We denote with GArk the matrix resulting from the convolution between a Gaussian

filter with radius rk and the contact map A. We first compute GArk for a set of n radii

{r1, r2, . . . , rn}, and collect them in vector ΓA as follows

ΓA(i, j) = (GAr1(i, j), GAr2(i, j), . . . , GArn).

It is well-known that interactions in Hi-C contact maps are more frequent when

the pairs of interacting loci are closer in genomic distance due to random polymer interac-

tions driven by one-dimensional genome proximity. To compensate for the amplification of

contact frequency due to proximity, we Z-normalize the interaction frequencies in A with

respect to their genomic distances along each diagonal d as follows.
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Â(i, j) =
A(i, j)− µd

σd

where d = |j − i|, and µd, σd are the average and the standard deviation along the diagonal

d, respectively.

If (i, j) is not a DCI between A and B, we expect vectors ΓÂ(i, j) and ΓB̂(i, j) to

exhibit similar trends along their components, because they represents aggregate interaction

frequency in gradually increasing neighborhood centered at (i, j). If (i, j) is a DCI with

impact radius r, we expect to observe a significant difference between the k-th Gaussian

representations of that interaction, where k is the index of the radius rk closest to r. Due

to biases in the interaction frequencies across different contact maps, the difference between

the two feature vectors ΓÂ and ΓB̂ cannot be directly used to indicate the significance of

a change. We address this issue by take advantage of self-similarity, i.e., by using local

comparison of local regions in contact maps.

According to [44], the Gaussian filter scale r must be distributed exponentially

between the inner (r1) and outer (rn) scale limits (impact radii) rn = r0s
n, in order to

maintain a uniform change of information between successive levels of Gaussian filtering.

For 5kb resolution data, we set r0 = 7, s = 2 and n = 10.

Inspired by the work of [41], instead of using Γ to define the behavior of interaction

frequency across a set of impact regions, we use the first order derivative of Γ with respect

to impact radius r, which can be estimated by the difference Grk+1
−Grk .

dΓ

dr
(i, j, k) ≈ ∆Γ(i, j, k) = Grk+1

(i, j)−Grk(i, j)
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By computing the first order derivative for various choices of the impact radii, we carry

out a comparison of local contact map regions (Grk+1
− Grk). Figure 3.2 shows the first

order derivatives of ΓÂ and ΓB̂ and the difference between them for the DCI reported

later in Figure 3.8. Observe the sharp change between the derivatives at radius r2 which

corresponds to a DCI with that radius.

Figure 3.2: The first order derivatives ∆ΓA and ∆ΓB and the difference between them for
the DCI reported later in Figure 3.8. A large difference between ∆ΓA and ∆ΓB at radius
r2 indicates the presence of a potential DCI.

In the last step of our algorithm, we compute the mean µ and standard deviation σ

for the normal distribution fitted on the difference of the first order derivatives ∆ΓA−∆ΓB

for each radius rk. Then, we compute the p-value P kA,B(i, j) for location (i, j) and radius rk

as follows

P kA,B(i, j) = Pr

(
X >

(
dΓA
dr

(i, j, k)− dΓB
dr

(i, j, k)

))
where X ≈ N(µ, σ).
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From the set of k p-values for each index (i, j), we choose the smallest p-value of the

difference between two contact maps A and B at that index, as follows.

PA,B(i, j) = min
k∈{1,...,n}

{P kA,B(i, j)}

These p-values PA,B(i, j) are finally fed into the Benjamini-Hochberg algorithm to calculate

the final probabilities [2].

3.4 Results

3.4.1 Reproducibility

We evaluated our reproducibility measure on a Hi-C dataset obtained from [53]

that has a variable total number of interactions and resolution. The dataset consists of

five different cell types hESC (H1), Mesendoderm (MES), Mesenchymal Stem Cell (MSC),

Neural Progenitor Cell (NPC) and Trophoblast-like Cell (TRO). Each cell type has two

biological replicates. All experiments were carried out on a single chromosome (chromo-

some 1 for this work) with resolution 40 kb. According to our experience, parameter c is

dependent on the particular Hi-C protocol used. Parameter k must be chosen such that

the resulting blocks enclose the primary structures of contact maps which are likely to be

preserved between cell types, e.g. TADs. Parameter c has to be set to the largest integer

value such that the computed reproducibility for biological replicates is at least 0.9. For

this dataset, we set k = 100 and c = 5. We compared our method Selfish against two

state-of-the-art reproducibility methods, namely HiCRep [65] and GenomeDISCO [61].
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First, we assessed the effect of the total number of intra-chromosomal interactions cap-

tured by Hi-C experiment on different reproducibility measure. Given two biological repli-

cates, we generated pseudo-replicates by first summing the two Hi-C matrices and then

down-sampling the resulting matrix. Any pair of contact maps which are neither replicates

or pseudo-replicates are called non-replicates. Next, each individual replicate was down-

sampled to a wide range of total interactions (105, 5 × 105, 106, 2 × 106, 5 × 106, 107). For

each of these choices, we computed the pair-wise reproducibility score.

Figure 3.3a-c illustrates the effect of the total number of interactions (which de-

pends on the Hi-C sequencing depth) on the performance of reproducibility measures. A

desirable feature for a reproducibility measure is to produce similarity scores that are invari-

ant from the total number of interactions. Observe in Figure 3.3a-c that Selfish is much

more invariant to the total number of interactions than HiCRep and GenomeDISCO. Both

these latter methods failed to report stable reproducibility scores which are independent

from the sequencing depth.

In the next experiment, we evaluated the effect of binning resolution of Hi-C data

on the reproducibility methods. For this experiment, we used deeply sequenced Hi-C data

of cell type GM12878 from [50]. Again, a desirable property of a reproducibility score is

to be robust to changes in resolution. Figure 3.3d shows that reproducibility scores for

resolutions 5kb, 10kb, 25kb, 50kb and 500kb are very stable for Selfish, whereas HiCRep

and GenomeDISCO scores are resolution-dependent, in particular for GenomeDISCO.

We also tested our reproducibility measure to cluster different cell and tissue types.

Contact maps of fourteen different tissues and two cell types were obtained from [53]. A
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Figure 3.3: Illustrating the effect of the total number of interactions on reproducibility
score of (a) non-replicates, (b) pseudo-replicates and (c) biological replicates. Panel (d)
illustrates the effect of data resolution (bin size) on reproducibility score of two replicates
of cell type GM12878 from [50]

.

visual inspection of Figure 3.4 shows that our reproducibility measure can cluster similar

cell and tissue types. For instance, observe that Selfish correctly clusters the right and

left ventricles, IMR90 and lung as well as hippocampus and cortex together.

These experimental results clearly indicate that Selfish outperforms existing

methods in terms of robustness to changes in sequencing depth and binning size. Both

of these are very desirable features which can significantly simplify Hi-C data analysis in

terms of quality control for reproducibility in replicate experiments.
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Figure 3.4: Clustering of fourteen human primary tissues and
two cell lines obtained from [53]. The dendrograms are com-
puted based on the pairwise similarity calculated using (a)
GenomeDisco, (b) Selfish and (c) HiCRep.

We also compared the average running time of the three methods on two replicates

of GM12878 cell type from [50]. Table 3.1 show that Selfish is by far more efficient than

HiCRep and GenomeDISCO.
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3.4.2 Differential Chromatin Interaction

We compared Selfish to the current state-of-the-art method for detecting dif-

ferential chromatin interaction called FIND [18]. To the best of our knowledge, FIND is

the only DCI detection method which works on high resolution Hi-C data by taking into

account the chromatin interactions inter-dependency. Extensive experimental results in [18]

show that FIND performs better than previously published methods for DCI detection.

We ran Selfish and FIND on Hi-C contact maps for cell types GM12878 and

K562 obtained from [50]. We replicated some of the experiments proposed in [18] in order

to make a fair comparison with FIND. First, we analyzed the enrichment of epigenetic

signals in the neighborhood of detected DCIs as well as the percentage of nearby genes

having significant expression fold changes. We evaluated the enrichment of four important

epigenetic markers, namely the binding of CTCF, POLII and P300, as well as the presence

of histone modification H3K4me3. CTCF is widely recognized as a main driver of chromatin

structure [50, 60]. We computed the enrichment of CTCF differential peaks (i.e., peaks that

are different between two cell types) around detected DCIs. For this part of the analysis

we obtained the FIND’s detected DCIs from [18].

To compute the enrichment of each marker in the neighborhood of the detected

DCIs, we calculated the distance of marker peaks to their closest anchor of DCIs. Figure 3.5

Method 500kb 50kb 25kb 10kb 5kb

HiCRep 6s 636s 1045s 34479s ∗−
GenomeDisco 7s 2989 4933s 30238s 61004s

Selfish 0.75s 85s 184s 345s 474s
∗HiCRep fails to run on 5kb data on a server machine with 256 GB of RAM.

Table 3.1: Average running time of HiCRep, GenomeDisco and Selfish for different choices
of the data resolution
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shows the enrichment of epigenetic markers near DCIs. Observe that CTCF and H3K4me3

are more enriched around the Selfish’s reported DCIs than those detected by FIND, even

though the number of reported DCIs for Selfish is twice as large (30456 vs. 14131).

We also calculated the expression fold change of nearby genes for the two cell

types. We first determined the set of genes which have overlap with any of the detected

DCIs’ anchors. Then we computed the percentage of those genes having an expression fold

change of two or greater. For the set of genes overlapping FIND’s DCIs, 71.46% of them

were over-expressed. For Selfish, 78.78% were over-expressed. This analysis confirmed

that the differences in chromatin structure are strongly associated with the changes in gene

regulation. However, the DCIs detected by Selfish have stronger associations to differences

in gene regulation than FIND. For the gene expression analysis, we used the dataset in

[18]. The expression data was obtained from ENCODE, accession numbers GSE78553 and

GSE78625 for cell types GM12878 and K562 respectively.

To quantify how well the Hi-C data supported the detected DCIs between two cell

types GM12878 and K562, we generated a modified aggregate peak analysis (APA) plots

[50, 49]. The interaction frequencies in contact maps were first Z-normalized along the

diagonals as explained in Methods section. Then, for each detected DCI we calculated the

interaction differences between the contact maps in a ±50Kb neighborhood. By averaging

over all DCIs, we computed the APA plot for differences. The differential APA score, i.e.

the value of the central index in the plot compared to neighboring regions, shows how

different the interactions are at reported DCIs with respect to their expected interaction

frequency with that genomic distance.
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Figure 4.10 shows that Selfish produces the expected Gaussian-shaped plot

around its reported DCIs while the DCIs from FIND failed to generate a similar pattern.

Correspondingly, the computed APA score is higher for Selfish (4.46) compared to FIND

(3.06) suggesting a stronger detection of DCIs. Finally the peak pixel of the APA plot

for FIND (score of 4.17) is not centered on the called DCI pairs suggesting that Selfish

performs better at pinpointing anchor points of chromatin interactions at high resolution.

We also compared the runtime of FIND and Selfish on the 5kb-resolution dataset

described above. FIND failed to run on the whole genome or even on large segments of

contact maps. To compare the efficiency of Selfish and FIND, we computed the average

run-time required to process random contact map segments of 6Mbp. Selfish took an

average of 101.6s. FIND required an average of 12839.6s, about 120x slower than Selfish.

To further investigate the accuracy of detected DCIs we used simulated Hi-C data

generated by the method proposed in [68]. We generated 100 pairs of simulated contact

maps, each of which had known location for DCIs. After running Selfish and FIND on

these simulated datasets, we obtained a p-value for each DCI location for all 100 simulated

pairs of contact maps. Given the p-values and the true locations of DCIs (true positives)

we computed a precision-recall curve for each simulated pair of contact maps. We used

the threshold averaging method proposed by [22] to combine the 100 precision-recall curves

to get the overall performance curve. We thresholded over the ratio of all indices in the

contact map used for computing the precision and recall for each simulated pair. To combine

the curves, we averaged all 100 calculated precision and recall values for each threshold.

Figure 3.7a-c shows the performance of both methods for 2-fold, 5-fold and 10-fold DCIs.
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Figure 3.5: Enrichment of differential transcription factor binding and epigenetic marks
(CTCF, POLII, P300 and H3K4me3) around reported DCIs for (a) cell type GM12878 and
(b) cell type K562.

The vertical and horizontal bars represent the 95% confidence interval for precision and

recall at that threshold respectively.

Selfish performed better than FIND on all fold change settings, confirming the

stronger performance that we observed on real Hi-C data. The performance difference is

most striking for small fold change values, which are more relevant for comparisons of real

Hi-C datasets and yet have a very large effect on gene regulation [28]. It is also important

to note that Selfish’s performance is quite consistent across different samples as indicated

by small confidence intervals.
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Figure 3.6: A modified APA plots for reported DCIs between two cell types GM12878 and
K562 by (a) Selfish and (b) FIND.

Figure 3.7d shows the distribution of distances between false positive DCIs pro-

duced by Selfish and FIND to true DCIs (true positives). To generate this figure we set

the number of returned DCIs equal to the number of true DCIs. Then, for each falsely

detected DCI we calculated its distance to the closest true DCI. These results clearly show

that most of Selfish’s false positives are located in close proximity of true DCIs confirming

their relevance to true differences and their non-random distribution. FIND’s false positive

are instead much farther from true DCIs and are more scattered in the contact map.

In our final experiment to assess the performance of two methods, we tested Self-

ish and FIND on a real test case from [5]. Figure 3.8 shows a 2-Mb region around the Brn2

promoter (also known as Pou3f2 ) for mouse embryonic stem cells (ES) and neuronal progen-

itor cells (NPC). Dashed circles show the contact between the Brn2 promoter and an NPC

specific enhancer. Insets show the magnified view of this contact. Observe that the contact

between the promoter and enhancer is strongly present in the NPC cell (Figure 3.8a) in

contrast with the ES cell in which this interaction is weak (Figure 3.8b). The mentioned

contrast shows itself as a subtle but important difference of interactions between two cell

types. The highlighted regions of the epigenetic signals show the difference in the specified

41



Figure 3.7: Precision-Recall curves for Selfish (magenta) and FIND (green) for
(a) 2-fold, (b) 5-fold and (c) 10-fold DCIs. The vertical and horizontal bars
represent the 95% confidence interval for precision and recall at that threshold
respectively. (d) The distribution of distances of FPs to closest TPs.

regions between two cell types. Detected DCIs by Selfish and FIND for q-value < 10−4

are shown in magenta and green squares respectively. Observe that Selfish can identify

this contact region as a DCI between two cell types, but FIND fails to detect it.

3.5 Conclusion

We presented a new approach for comparative analysis of Hi-C data using a novel

self-similarity measure. We showed the utility of our measure by providing solutions to two
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Figure 3.8: A 2-Mb region shown around Brn2 promoter of chromosome 4 of mouse
neural cells (a) ES and (b) NPC. Dashed circles show the contact between the
Brn2 promoter and an NPC specific enhancer. Insets show the magnified view of
this contact.

important problems in the analysis of Hi-C data, namely the problem of measuring repro-

ducibility of Hi-C replicated experiments and the problem of finding differential chromatin

interactions between two contact maps.

We showed that a simple binary comparison operation between blocks in the con-

tact maps can be used to encode the local and global features in a manner that is robust

to the data resolution and sequencing depth. This encoded information is used to build a

feature vector for each contact map, which in turn allows to define a simple but effective
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similarity metric using the distance between their feature vectors. Experimental results

showed that our self-similarity based measure outperformed two state-of-the-art methods

(HiCRep and GenomeDISCO) for measuring reproducibility of replicated Hi-C experiments.

We also introduced a new method for finding differential chromatin interactions

between two contact maps. Selfish is designed based on the idea that each pairwise

chromatin interaction can be represented by its neighboring interactions. Therefore, each

interaction difference reveal itself as a weighted impact on the neighboring interactions.

We capture this impact using a set of gradually increasing Gaussian filters. By extensively

testing Selfish on simulated and real test data we showed that it outperforms the state-

of-the-art DCI detection method FIND both in accuracy and efficiency.
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Chapter 4

Multi-scale Detection of

Statistically Significant

Interactions in Hi-C contact maps

4.1 Introduction

Several studies have proposed methods and models to detect statistically-significant

chromatin interactions from Hi-C or other 3C-based experiments. Proposed methods fall

in two categories.

The first group contains methods that (i) fit statistical/probabilistic models to

the interaction data and (ii) assign p-values to individual interaction bins by comparing

observed values to expected values based on the fitted model. For instance, Fit-Hi-C (i) uses

a monotonic spline as a model for the interaction data with respect to the genomic distance

45



of the interacting loci, then (ii) it estimates the confidence (p-value) of each interaction

using the fitted binomial distribution, and finally (iii) it corrects the computed p-values by

applying a multiple hypothesis testing procedure [1]. Crucial drawbacks of such methods are

that (i) the locality information in the contact map is not taken into account in the modeling,

(ii) all interactions are considered independent, (iii) interactions that are in the vicinity of

a significantly strong interaction are very likely to be significant as well. As a consequence

of (iii), the most significant interactions are likely to cluster in a few local neighborhoods

of the contact maps, making it difficult for scientists to evaluate the significant interactions

genome-wide.

The second group contains methods that use peak-calling to detect statistically

significant interactions by taking advantage of local information in the contact map. For

instance, Rao et al. developed a method called Hi-C Computational Unbiased Peak Search

(HiCCUPS) that detects chromatin loops which can be counted as a certain class of sig-

nificant chromatin interactions [50]. Chromatin loops are created when pairs of genomic

sites that lie far apart along the linear genome are brought into proximity by some pro-

teins. HiCCUPS examines each pixel (interaction bin) in the contact map by comparing

its interaction frequency with the interaction frequencies of its predefined neighborhoods.

The algorithm identifies loops by finding “enriched” pixels, that is, loci pairs whose contact

counts is significantly larger than the contact counts of its four neighborhoods, namely (1)

pixels to its lower-left, (2) pixels to its left and right, (3) pixels above and below, and (4)

a doughnut-shaped region surrounding the pixel of interest (see Figure 4.1). The problem

with this class of methods is that they generally use a fixed size local neighborhood to
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Figure 4.1: HiCCUPS significance test. Peaks are identified by detecting pixels (window’s
center) that are enriched with respect to four local neighborhoods of interactions shown in
blue, yellow, green and black colors (source [50]).

model the background interactions. Therefore, significant interactions which are caused by

proximity of larger segments of DNA (and subsequently reflected as larger enriched regions

of interactions in the contact map) do not meet the local filtering conditions and will not

be recovered by the method.

In this chapter, we present a new method called Mustache that addresses all the

drawbacks mentioned above. We show that Mustache can detect statistically-significant

interactions that are independently supported by other genomic and epigenetic data thus

are likely to have biological relevance. For example, many of the detected interactions

are associated with promoter-enhancer or promoter-promoter contacts, or are enriched for

specific epigenetic markers or are stable across cell types.
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4.2 Scale-Space modeling

Objects in real world, as opposed to idealized mathematical entities such as points

or lines, are composed of a variety of structures at different scales which often makes them

very difficult to detect in the absence of a priori knowledge about their true scales. A way

of addressing this issue is to describe each object at multiple scales, making it possible to

analyze each structure at its own appropriate scale. In our specific problem on contact maps,

significant chromatin interactions are “blob-shaped objects” with a scale that depends on

the size of the interacting DNA fragments.

Scale-space theory is a framework developed by the computer vision community

for multi-scale representation of image data. In scale-space theory, each image is represented

as a set of smoothed images. In order to build a scale-space representation of an image, a

gradual smoothing process is conducted via a kernel of increasing width, producing a one-

parameter (i.e., kernel size) family of images. As the smaller structures in finer scales are

being suppressed by smoothing the image, the larger structures can be captured in coarser

scales (Figure 4.2a).

The most common type of scale-space representation uses the Gaussian kernel

because of its desirable mathematical properties. In particular, the causality property of

Gaussian kernel guarantees that any feature at a coarse resolution scale is caused by exist-

ing feature[s] at finer resolution scales. In other words, this property makes sure that the

smoothing process cannot introduce new extrema in the coarser scales of the scale-space

representation of an image [38].
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The Gaussian-kernel scale-space of an image A(x, y) is a function L(x, y, σ) obtained from

the convolution of a variable-scale Gaussian G(x, y, σ) with the input image, that is

L(x, y, σ) = G(x, y, σ) ∗A(x, y),

where ∗ represents the convolution operation in x and y, and

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2

(more details can be found in [41]).

Blob-shaped objects can be typically detected in an image by finding the strong

responses in the application of Laplacian of the Gaussian operator with an image, that is

∇2 = Lxx + Lyy

Lindeberg showed that the normalization of the Laplacian with the factor σ2

(σ2∇2) provides the true scale invariance required for detecting blob-shaped objects at

different scales [38]. According to [40], the scale-normalized Laplacian (σ2∇2) can be accu-

rately and efficiently estimated by the difference-of-Gaussian (DoG) function. Therefore,

to detect the blob-shaped objects of varying scale, we can look for the scale-space maxima

of the DoG function D(x, y, σ) convolved with the image which can be computed from the

difference of two nearby scales (in a scale-space representation) separated by a constant

multiplicative factor k, that is

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗A(x, y)

= L(x, y, kσ)− L(x, y, σ)
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4.3 Methods

Since a contact map is a special type of digital image, a set of interacting loci pairs

that belong to a region of significant interactions, is a somewhat-circular (blob) structure

at a specific scale in a scale-space representation. The causality property discussed above

guarantees that no artifacts will be introduced due to the application of the Gaussian

operator.

Mustache’s objective is to find blob-shaped regions of interactions with high

statistical significance, i.e., regions with an average interaction significantly greater than

the expected interaction. Due to random polymer interactions driven by one-dimensional

genome proximity, interactions between pairs of loci that are closer in genomic distance

are more frequent than interactions between loci at higher genomic distances. To account

for the amplification of contact frequency due to 1D proximity, Mustache performs a

local z-normalization of the interaction frequencies in the contact map A with respect to

their genomic distances along each diagonal d. More specifically, Mustache re-scales the

interactions by the logarithm of the expected interaction of the corresponding distance, as

follows

Ã(i, j) =
A(i, j)− µdij

σdij
log(1 + µd)

where d = |j − i|, µd is the average interaction on diagonal d, and µdij , σdij (not to be

confused with Gaussian scale σ) are the local average and standard deviation along the

diagonal d, respectively.

Then, Mustache constructs the scale-space representation D of the normalized

contact map Ã. As explained above, in order to compute D(x, y, σ), Mustache convolves
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Figure 4.2: (a) The initial contact map is repeatedly convolved with gradually increasing
Gaussians to produce a scale-space representation of the image (shown on the left). Pairwise
adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images (on
the right); (b) Maxima of the difference-of-Gaussian images are detected by comparing each
pixel to its 3×3×3 neighborhood in (x, y, σ) space (source [41]).

Ã with gradually increasing Gaussians. This process produces a set of smoothed contact

maps separated by a constant factor k in scale-space. Mustache computes the difference

of Gaussians by subtracting pairwise adjacent smoothed contact maps (Figure 4.2).

Mustache uses two octaves of scale-space which is achieved by successive dou-

bling of the scale parameter σ. Each octave is divided into s of intervals, such that k = 21/s

[41]. Mustache computes the p-value Pσk(x, y) for each pixel D(x, y, σ = σk) by fitting a

Laplace distribution on each scale of DoG, as follows.

51



Pσk(x, y) = Pr (X > D (x, y, σ = σk))

whereX is distributed according to the Laplace distribution. Mustache uses the Benjamini-

Hochberg procedure to correct for multiple hypothesis testing. In case multiple candidates

are available for one location (at different scales), Mustache will report the one with the

smallest p-value.

After computing the difference-of-Gaussian D(x, y, σ) as explained in the previous

section, Mustache looks for local maxima in D(x, y, σ). Specifically, Mustache compares

each pixel (x, y) to its eight neighbors in the current smoothed image and eighteen neighbors

in the scale above and below (Figure 4.2b). If the value of pixel (x, y) is larger than all the

neighboring pixels then it is selected as a candidate for a significant chromatin interaction

region.

Detected candidates undergo a few filtering steps as described next. In the first

filtering step, Mustache removes candidates that are not local maximum (in 3×3 neighbor-

hood) at least in two consecutive scales, i.e., it discards candidates that are local maximum

at scale σi but not a local maximum at scale σi−1 or σi+1. In the second filtering step, Mus-

tache computes the connected components for all candidate pixels. To compute connected

components Mustache uses 8-connectivity, i.e., a 3 × 3 neighborhood around each pixel.

In each connected component, Mustache keeps a single pixel with the lowest p-value.

In the third filtering step, Mustache filters out candidates that are located in

sparse regions of the contact map. Specifically, it discards interactions whose neighborhood

(with size equal to the interaction scale) contain more than 20% unknown interactions. In
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the fourth and final filtering step, candidates with interaction frequency smaller than two

times the expected frequency (i.e. the interaction mean for the corresponding distance) will

be discarded.

4.4 Experimental results

We compared Mustache to the state-of-the-art loop-calling algorithm HiCCUPS

[50]. All experiments were conducted on Hi-C data for human cell lines GM12878 and K562

obtained from [50] for interactions within 2Mb distance. For HiCCUPS, the results are

directly obtained from [50].

We start by illustrating some case studies, then report on numerical evaluations.

Figure 4.3 shows a few arbitrary locations on chromosome 1, 4 and 12 for GM12878. Mus-

tache’s reported interactions are shown in the lower diagonal matrix using blue circles

(where the radii represent the scale of interactions and their corresponding interacting frag-

ments). HiCCUPS loops are represented by red dots on the upper diagonal matrix. Observe

that Mustache is calling most of the HiCCUPS loops, but it calls additional interactions

which HiCCUPS fails to detect. Also observe that all detected interactions fall inside or on

the boundary of topologically-associating domains (TADs), indicating that reported pairs

of loci are within the same regulatory domain (consistent with the findings in [50]).

Figure 4.3-a shows the reported interactions for both methods for a region of size

∼1Mb on chromosome 1 (GM12878 cell line). Observe that Mustache is calling the five

chromatin loops reported by HiCCUPS as well as four additional interactions. The different

radii of the circles illustrate the scales of the detected interactions, which are the products
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of spatial proximity of DNA segments with different sizes. The organization of detected

interactions is associated with the hierarchical organization of TADs, visually identifiable

in the contact map. Figure 4.3-d shows the reported interactions for both methods for a

region of size ∼1Mb on chromosome 12. Observe that Mustache is detecting five significant

interactions between an enhancer on the border of a TAD (upper-left corner of the shown

contact map) and five additional loci spread out along the domain border, which is likely to

indicate the presence of a super-enhancer. Of these five locations, HiCCUPS detects only

one. Observe that there is one interaction called only by HiCCUPS on the boundary of the

second TAD.

In Figure 4.4 and Figure 4.5 we take a closer look at the panels (a) and (d) of

Figure 4.3. In these figures the contact maps are rotated 45 degrees, so that the main

diagonal is horizontal and the interactions are represented as heat maps. Below the contact

map we reported: (i) genomics coordinates, (ii) gene annotations (genes on the negative

strand are shown in red color), (iii) CTCF motifs and their orientation, (iv) epigenetic

signals SMC3, CTCF, RAD21, H3K4me3 and H3K27ac (v) and Mustache’s detected

interactions shown as arcs (connecting two loci). Interactions detected by Mustache and

HiCCUPS are shown in green. Interactions detected only by Mustache shown in blue.

Interactions detected only by HiCCUPS are shown in red.

Observe in Figure 4.4 that most of the interactions detected only by Mustache

(blue) connect peaks for structural element signals (SCMC3, CTCF and RAD21). As an

example, the Mustache-only interaction denoted by ’*’ is connecting two loci that (i)

have strong peaks in all three structural signals and (ii) correspond to convergent CTCF.
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Figure 4.3: A few examples of Mustache’s and HiCCUPS’ reported interaction. Mus-
tache’s interactions are shown by blue circles (lower triangular) while HiCCUPS loops are
shown by red dots (upper triangular). The outputs of two methods are shown for four dif-
ferent regions of GM12878 cell line, namely, (a) 50.75Mb-51.75Mb on chromosome 1, (b)
67.2Mb-68Mb on chromosome 1, (c) 53.8Mb-55.2Mb on chromosome 4, (d) 12.5Mb-13.4Mb
on chromosome 12.

Taken together, these are strong evidence to support the existence of a chromatin loop [50].

In Figure 4.5, observe the interaction between the very first locus (on the left) with the

five downstream loci. Among these interactions, only one is detected by HICCUPS. Four

of these loci are in proximity of structural signal peaks and two in proximity of histone

modification H3K4me3 and H3K27ac peaks, indicating the presence of a super-enhancer.

To measure the robustness of Mustache and HiCCUPS and the reproducibil-

ity of their detected interactions, we ran the tools on two replicates of GM12878 cell line.
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Figure 4.4: A comparison between Mustache’s and HiCCUPS’ reported chromatin inter-
actions in a region of chromosome 1 for the GM12878 cell line (50.75Mb−51.75Mb). The
contact map is shown on the top. Below the contact map, the figure shows gene annota-
tions for positive (blue) and negative (red) strands, CTCF motifs (and their orientation),
epigenetic signals SMC3, CTCF, RAD21, H3K4me3 and H3K27ac. Arcs indicate inter-
action detected by both Mustache and HiCCUPS (green), only Mustache (blue), only
HiCCUPS (red)

We ran Mustache twice: once by fixing the p-value threshold at 10−1.3, and once by fix-

ing the number of reported interactions to match the number reported by HiCCUPS. We

compared the two output lists by defining two interactions to match if their 7.5kb×7.5kb

neighborhoods overlapped. The overlap between the outputs for the replicates is shown

Figure 4.6a-c. Figure 4.6a is for HiCCUPS, Figure 4.6b is for Mustache (with the same

number of reported interaction as HiCCUPS), Figure 4.6c is for Mustache (using p-value

threshold of 10−1.3). Observe that Mustache is significantly more consistent than HiC-
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Figure 4.5: A comparison between Mustache’s and HiCCUPS’ reported chromatin in-
teractions in a region of chromosome 1 for the GM12878 cell line (12.5Mb−13.3Mb). The
contact map is shown on the top. Below the contact map, the figure shows gene annota-
tions for positive (blue) and negative (red) strands, CTCF motifs (and their orientation),
epigenetic signals SMC3, CTCF, RAD21, H3K4me3 and H3K27ac. Arcs indicate inter-
action detected by both Mustache and HiCCUPS (green), only Mustache (blue), only
HiCCUPS (red)

CUPS in terms of the reported calls between replicates, indicating a more reliable and

reproducible detection methodology. For comparison, we carried out a similar analysis on

two different cell lines, namely K562 and GM12878. Figure 4.6d-f illustrate the overlap of

reported interactions that are conserved across the two cell lines.

Figure 4.7 illustrates the overlap between Mustache’s and HiCCUPS’ reported

interactions. For Mustache, p-value thresholds of 10−1.5 and 10−1 are used for GM12878

and K562 cell lines, respectively. Mustache recovered 70% of HiCCUPS’s interactions

in K562 (Figure 4.7a) and 83% HiCCUPS’s interactions in GM12878 (Figure 4.7b), but
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Figure 4.6: Reported chromatin interactions on two replicates for cell line GM12878 (a-
c), and between two cell lines K562 and GM12878 for methods Mustache and HiCCUPS
(d-f). (a) HiCCUPS’s reported interactions on the two replicates; (b) Mustache’s re-
ported interactions on the two replicates (with the same number of interactions as in (a));
(c) Mustache’s reported interactions on the two replicates (p-value threshold of 10−1.3);
(d) HiCCUPS’s reported interactions on GM12878 and K562, (e) Mustache’s reported
interactions on GM12878 and K562 (with the same number of interactions as in (d)) (f)
Mustache’s reported interactions on GM12878 and K562 (p-value threshold of 10−1.3).

reported many additional chromatin interactions.

To determine whether Mustache’s detected interactions were supported by other

sources of evidence, we carried out a series of experiment using ChIA-PET, HiChIP, ChIP-

seq and ChromHMM data types. In the first experiment, we computed what percentage of

Mustache’s interactions are connecting a known promoter to a known enhancer, as anno-

tated by ChromHMM [21]. More specifically we counted for how many of the interacting

pair of loci, one locus overlaps with a promoter region, and the locus other overlaps with

an enhancer region.

Figure 4.8-a show that 38.2% of Mustache’s interactions in GM12878 and 32.6%

in K562 connect a promoter to an enhancer. In contrast, 37.8% of HiCCUPS’ interactions
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Figure 4.7: Mustache’s and HiCCUPS’s reported chromatin interactions in K562 and
GM12878 cell lines.

in GM12878 and 32.3% in K562 connect a promoter to an enhancer. Observe however

that the absolute number of interactions by Mustache is significantly higher. Similarly,

Figure 4.8-b shows that 16.3% of Mustache’s interactions in GM12878 and 12.6% in K562

connect a promoter to another promoter. In contrast, 16.8% of HiCCUPS’ interactions

in GM12878 and 11.7% in K562 connect promoter to another promoter. But again, the

absolute number of interactions reported by Mustache is significantly higher for those

reported by HiCCUPS.

Next, we compared the performance of Mustache and HiCCUPS using ChIA-

PET and HiChIP data. In this experiment, we assumed that the ChIA-PET/HiChIP

interactions for GM12878 cell line were the ground truth, and computed the number of

these interactions recovered by Mustache and HiCCUPS by running them on Hi-C data

for GM12878 cell line. We used the same matching criteria as in the consistency testing

experiment above. Figure 4.9-a shows the recovery plot for the CTCF ChIA-PET interac-

tions obtained from [29]. The x-axis represents the number of Hi-C chromatin loops called
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Figure 4.8: The number of chromatin interactions detected by Mustache and HiCCUPS
that connect promoters to enhancers and promoters to promoters (according to ChromHMM
chromatin states). The percentage of all interactions called by each method, is reported
above each bar. (a) The number of chromatin interactions detected by Mustache and
HiCCUPS that connect promoters to enhancers in cell lines GM12878 and K562. (b)
The number of chromatin interactions detected by Mustache and HiCCUPS that connect
promoters to promoters in cell lines GM12878 and K562.

by Mustache (blue) and HiCCUPS (red) sorted by their significance. For HiCCUPS the

significance was the median of the q-values for all four local filters. For Mustache, the

significance was the reported p-value. The y-axis represents the percentage of the CTCF

ChIA-PET interactions recovered by each method. HiCCUPS calls 9,484 chromatin loops

in GM12878 cell line. Observe that at the point in which Mustache calls the same number

of loops, it recovers a greater percentage of CTCF ChIA-PET interactions than HiCCUPS.

Also observe that (i) Mustache can continue calling more loops and recovering more and

more CTCF ChIA-PET interactions, (ii) the slope of Mustache’s recovery curve is far from

saturation at the threshold of 9,448 interactions. Figure 4.9b-d shows the recovery plots of

Mustache and HiCCUPS for GM12878 Cohesin HiChIP HiCCUPS loops [45], GM12878

H3K27ac HiChIP Fithichip loops [3] and GM12878 RAD21 ChIA-PET interactions [29].
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Figure 4.9: Mustache and HiCCUPS recovery plots for (a) GM12878 CTCF ChIA-PET in-
teractions (b) GM12878 Cohesin HiChIP HiCCUPS loops, (c) GM12878 H3K27ac HiChIP
Fithichip loops, (d) GM12878 RAD21 ChIA-PET interactions.

Again, it is very clear from Figures 4.9b-d that Mustache recovers a much higher fraction

of validated interactions.

Next, we compared the enrichment of structural markers CTCF, RAD21 and

SMC3 on the anchors of detected interactions for both methods. First, we identified the

unique set of interacting loci for each method. Then, we determined the ratio of the inter-

acting loci that contain one of structural marker listed above. When Mustache was ran

to produce the same number of detected interactions of HiCCUPS, 84.34% of the Mus-

tache’s loci in GM12878 were enriched with RAD21, 84.12% with CTCF and 82.35% with

SMC3. In comparison, the enrichment for HiCCUPS’s interaction was 86.88% for RAD21,

86.93% for CTCF and 85.14% with SMC3. When we ran Mustache loops with a p-value
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threshold of 10−1.3 it produced almost two times the number of interactions, and 74.13%

of the Mustache’s loci in GM12878 were enriched with RAD21, 74.19% with CTCF and

70.67% with SMC3.

To quantify how well the Mustache significant interactions were supported by

the Hi-C data, we used aggregate peak analysis (APA) [50, 49]. To generate APA plots, we

aggregated interaction counts over all detected pairs of loci in a ±50kb neighborhood. The

result is illustrated as a 21×21 heatmap (at 5kb resolution) in which darker color indicates

higher interaction count. A strong dark pixel at the center of the heatmap indicates that

the number of chromatin interactions are much higher at detected loci compared with the

neighboring loci. The sharper is the transition between dark and light pixels, the faster the

interaction frequency decreases as we move away from the loop. For each plot we computed

the APA score, which is the ratio between (a) the value of the center pixel and (b) the

mean of pixels 15− 30kb downstream of the upstream loci and 15− 30kb upstream of the

downstream loci [49]. Since the APA score is computed as the interaction ratio between the

center pixel with a 3×3 neighborhood in the left-bottom corner which contains interactions

with smaller genomic distance than the center’s, the APA score would have a value smaller

than one if the evaluating loci were picked by random. The plots are generated for significant

interactions between loci separated by 150kb to 1Mb.

Figure 4.10 shows APA plots and APA scores on GM12878 and K562 cell lines for

Mustache (p-value 10−1.3) and HiCCUPS. Observe most interactions occur in the central

region of the heatmap with a strong peak at the center, which indicates that HiCCUPS’

and Mustache’s loops are enriched in Hi-C interaction. Observe that while HiCCUPS’

62



Figure 4.10: (a) APA plot for HiCCUPS in GM12878, (b) APA plot for Mustache in
GM12878, (c) APA plot for HiCCUPS in K562 and (d) APA plot for Mustache in K562.

APA scores are higher than Mustache, the APA plot for K562 produced for Mustache

is sharper.

Figure 4.11 shows the genomic distance distribution between the loci of chromatin

interactions detected by Mustache and HiCCUPS. Observe while Mustache detects more

interactions compared with HiCCUPS, the distributions have similar shapes.
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Figure 4.11: Genomic distance distribution between the loci of chromatin interactions de-
tected by Mustache and HICCUPS.

4.5 Conclusion

We presented a new method called Mustache for detecting significant chromatin

interactions in Hi-C data. By taking advantage of a scale-space representation of the contact

map, Mustache can capture chromatin interactions at different scales. Extensive exper-

imental results show that Mustache outperforms HiCCUPS in many aspects, including

speed, the total number of reported interactions, and the fraction of interactions confirmed

by other types of biological evidence.

64



Chapter 5

Conclusions

This dissertation introduced new efficient and accurate algorithms for the analysis

of high throughput chromosome conformation capture data to provide insights into the

functional aspects of the 3D genome organization.

In Chapter 2, we presented an efficient algorithm called East, to accurately iden-

tify topological associating domains in contact maps obtained from Hi-C experiment. The

framework we presented for TAD identification is based on fast 2D-convolution of Haar-

like features. East can be downloaded from https://github.com/ucrbioinfo/EAST. We

performed a comparative evaluation of East on Hi-C data for human stem cells, mouse

stem cells and mouse cortex cells. We showed that East extracts TADs as accurately as

the state-of-the-art methods. TADs identified by East provides substantial enrichment of

various epigenetic modification factors at their boundaries, confirming similar findings in

previous studies. We also showed that East is very time efficient compared to other pub-

lished methods. East is easy to use and for a given Hi-C dataset: the only parameter that
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might need to be tuned by the user is the normalization factor for which we have provided

some guidance.

In Chapter 3, we presented a new approach for comparative analysis of Hi-C data

using a novel self-similarity measure. We showed the utility of our measure by providing

solutions to two important problems in the analysis of Hi-C data, namely the problem

of measuring reproducibility of Hi-C replicated experiments and the problem of finding

differential chromatin interactions between two contact maps.

We showed that a simple binary comparison operation between blocks of interac-

tions in the contact maps can be used to encode the local and global features in a manner

that is robust to the data resolution and sequencing depth. This encoded information is

used to build a feature vector for each contact map, which in turn allows to define a simple

but effective similarity metric using the distance between their feature vectors. Experimen-

tal results showed that our self-similarity based measure outperformed two state-of-the-art

methods (HiCRep and GenomeDISCO) for measuring reproducibility of replicated Hi-C

experiments. We also introduced a new method for finding differential chromatin interac-

tions between two contact maps. Selfish is designed based on the idea that each pairwise

chromatin interaction can be represented by its neighboring interactions. Therefore, each

interaction difference reveal itself as a weighted impact on the neighboring interactions.

We capture this impact using a set of gradually increasing Gaussian filters. By extensively

testing Selfish on simulated and real test data we show that it outperforms the state-

of-the-art method FIND both in accuracy and efficiency. Selfish is publicly available at

https://github.com/ucrbioinfo/Selfish.
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In Chapter 4, we introduced a new method Mustache for detecting statistically

significant chromatin interactions. We compared Mustache with state-of-the-art method

HiCCUPS which is widely accepted as the standard approach for detecting chromatin loops.

Based on the experimental results, we showed that Mustache not only recovers the majority

of chromatin loops reported by HiCCUPS but also discover many more. We showed that

these additional interactions are supported by several other independent epigenetic marks,

thus are likely to be true interaction.

We showed that Mustache can recover more interactions validated by other data

types, such as ChIA-PET and HiChIP. Moreover, Mustache is able to call more chromatin

loops due to its scale invariance, i.e. it can detect significant interactions with varying effect

size in their neighborhood, and robustness to small noises. Furthermore, reported interac-

tions are shown to be associated with contacts between promoters and enhancers/promoters

and conserved between cell types.

Finally, I would like to conclude with some thoughts about the future directions

of my research. In our work on the 3D genome, we have introduced new approaches to

detect local structures of chromatin in different scales as well as a new way of performing

comparative analysis in Hi-C contact maps. Given the necessary tools for analyzing the

Hi-C data, we believe the next step will be studying the link between chromatin folding and

gene regulation. There have been a handful of studies using the 3D chromatin structure

to discover the regulatory effects of a limited number of risk loci. We believe by exploiting

the abundance of extracted information from Hi-C experiment and its successors about

how the chromatin folds, as well as taking advantage of newly introduced experiments such

67



as perturb-seq [15], which evaluates the effect of individual CRISPR based perturbations

on gene function, we can design and implement a general model that incorporates all this

information to estimate the association of chromatin structures with gene regulation.
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