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Fast Estimation of Multivariate Spatiotemporal Hawkes
Processes and Network Reconstruction

Baichuan Yuan, Frederic P. Schoenberg, Andrea L. Bertozzi

June 4, 2023

Abstract

We present a fast and accurate estimation method for multivariate Hawkes processes, a
type of self-exciting point process that is widely used in seismology, criminology, finance, and
many other areas. There are two major ingredients. The first is an analytic derivation of the
likelihood-based estimation, which directly computes exact maximum likelihood estimates of
the nonparametric triggering density. We develop it for the multivariate case and add reg-
ularization to improve stability and robustness. The second is a moment-based method for
background rate and triggering matrix estimation, which is extended here for the spatiotempo-
ral case. Our method combines them together in an efficient way and we prove the consistency
of this new approach. Extensive numerical experiments, with synthetic data and real-world
social network data, show that our method substantially improves the accuracy, scalability
and computational efficiency of prevailing estimation approaches. Moreover, it greatly boosts
the performance of Hawkes process-based models on social network reconstruction and helps
to understand the spatiotemporal triggering dynamics over social media.

1 Introduction
The Spatiotemporal Hawkes (ST-Hawkes) process has been widely used to model and forecast clus-
tered point process data in the study of earthquakes [32], crimes [28], invasive species [5], terrorist
attacks [34], infectious disease [38], and finance [3]. These models, which are characterized by a
triggering density describing how the occurrence of one event may spark future events nearby, have
contributed to the rise of predictive policing [33], resulting in real-world impacts on the crime rate
in Los Angeles [29]. Recently, multivariate Hawkes processes, which can incorporate accompanying
information on each event such as the type of crime or magnitude of an earthquake, have been the
subject of significant research in the areas of criminology [27], finance [3], neuroscience [8], and
text analysis [12]. Applications include network reconstruction [24, 16, 18, 42, 25], causal inference
[1, 14, 6] and social media cascade modeling [21, 15].

Much of this recent research has been fueled by advances in the nonparametric estimation of
Hawkes processes, and in particular by the landmark work of Marsan and Lengliné [26], who de-
tailed a method for estimating the triggering in a ST-Hawkes process by assuming the triggering
density to be a step function and then estimating the step heights via maximum likelihood estima-
tion (MLE). Such nonparametric estimation methods allow the triggering density to be estimated
without assuming a particular parametric form which may be subject to misspecification or over-
fitting, which can be very serious problems, especially in social science applications [42]. Instead,
the data drive the estimation of the triggering density, and this is especially attractive for use
with the large data sets that are increasingly becoming available in applications. Unfortunately,
however, a major limitation of current nonparametric estimation methods is their computational
complexity and lack of speed, as existing methods are mainly based on maximum likelihood estima-
tion (MLE) [35], or variants such as EM-type algorithms [41, 26], which are typically non-convex
problems without closed form solutions. For applications to crimes or to social media, for instance,
catalogs of millions of spatiotemporal events are often the subject of study, and each calculation
of the likelihood function with N events requires at least O(N2) time. In such situations, the
estimation of the triggering density using existing methods can be infeasible. As a result, it is
important to develop better alternatives to current MLE-based methods [38].

Recent developments in the nonparametric estimation of the Hawkes process provide new in-
sights for this problem, including an analytic method for computing the MLE of the triggering
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density in the special case where the adjacency matrix is invertible [40], and generalized moments
methods (GMM) for the estimation of the triggering matrix [1]. In this paper, we propose a new,
highly computationally efficient, scalable nonparametric estimator for ST-Hawkes processes, based
on a blend of these recent ideas with modern advances in the regularization and inversion of sparse
matrices.

The structure of this paper is as follows. We first review background material in Section 2. In
Section 3.1, we extend the analytic formula for the MLE of the step heights in the triggering density
[40] to the multivariate spatiotemporal case and in Section 3.2 we greatly improve the stability
of the resulting estimator using regularization. We next extend the cumulant-based estimators of
[1] to the multivariate spatiotemporal case and derive GMM estimators of the triggering matrix
in this context in Section 3.3. We then combine the MLE estimators with GMM estimators, we
obtain a scalable, computationally efficient estimator, and we prove its consistency under general
conditions in Section 3.4. The computational complexity of our approach is analyzed in Section
3.5. The performance of this estimator is inspected using a variety of synthetic and real social
network datasets in Section 4, where we show that the proposed estimator has a computation
complexity linear in the number of events N , allowing one to explore applications to large data
sets with millions of events, and is shown to outperform current state-of-the-art methods in terms
of both accuracy in network reconstruction and computation time. Finally, we conclude and discuss
important directions for future research in Section 5.

2 Background on Multivariate Hawkes Processes and their
Nonparametric Estimation

In this section, we review multivariate Hawkes processes and review previous research on their
estimation methods, focusing especially on MLE and GMM.

A point process [11, 10] is a σ-finite collection of points {τ1, τ2, ...} occurring in some metric
space. While the definitions and results below can be extended quite readily to other spaces, we
will assume for simplicity throughout that the metric space is a bounded interval [0, T ] in time or a
bounded interval B× [0, T ] in space-time. A temporal or spatiotemporal point process is typically
modeled via its conditional intensity, λ(t) or λ(s, t), which represents the infinitesimal rate at
which points are accumulating at the particular location in time or space-time, given information
on all points occurring prior to time t. Simple point processes are uniquely characterized by their
conditional intensity [11]; for models for non-simple point processes, see [36].

Hawkes processes are typically characterized via their conditional intensities. We refer read-
ers to [11, 7] for details about these concepts. For a simple temporal Hawkes process [19], the
conditional intensity of events at time t can be written

λ(t) = µ+K

t∫
0

g(t− t′)dN(t′), (1)

where µ > 0, is the background rate, g(v) ≥ 0 is the triggering density satisfying
∫∞

0
g(v)dv = 1

which describes the conductivity of events, and the constant K is the productivity, which is typi-
cally required to satisfy 0 ≤ K < 1 in order to ensure stationarity and subcriticality [19].

A multivariate temporal Hawkes process is conveniently viewed as a sequence of temporal point
processes indexed by u = 1, ..., U , where each subprocess Nu has conditional intensity

λu(t) = µu +
∑
tk<t

Kuk,u guk
(t− tk), (2)

and the N points of the entire process may conveniently be labelled (tk, uk), for k = 1, ..., N , where
tk indicates the time of point k, and uk indicates the index dictating to which subprocess the point
belongs. The idea behind equation (2) is that the triggering density guk

and productivity Kuk,u

may depend on the index of the point tk.
In the model (2), µu is the background rate, indicating the rate at which points of mark u occur,

absent any other prior events. For simplicity, one traditionally assumes a uniform background rate
in time. K ∈ RU×U is the triggering matrix, where Ku,v is the expected number of events of index
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v that are triggered by one event of index u. This triggering effect, in this temporal-only case, is
closely related to Granger causality [17]. In fact, subprocess u does not Granger-cause subprocess
v if and only if Ku,v = 0 [14]. Similarly, for stationarity and subcriticality, K needs to satisfy
‖K‖ < 1, where ‖K‖ is the spectral norm of K.

In nonparametric estimation of g, one typically assumes that each subprocess has the same
piecewise-constant triggering densities guk

(t) = g(t) which control how quickly the rate λu(t)
returns to its baseline level µu after an event occurs. One can estimate the parameters µ = (µu)u,
K, and the triggering densities g via MLE [31] or minimize a regression loss [8]. Here we focus on
the MLE approach. The log-likelihood function of the intensity function (2) becomes

l =

N∑
k=1

log(λuk
(tk))−

U∑
u=1

∫ T

0

λudt. (3)

One can directly maximize this function using off-the-shelf optimization methods or the EM-type
algorithm proposed in [41]. See [42] for details about the derivation of the EM-type algorithm for
ST-Hawkes processes. Another MLE-based approach, based on their analytic derivation of MLE,
is first proposed in [40] for the univariate case (U = 1). They found that one can solve the MLE
problem via solving linear equations in g and two additional linear equations for the background
rate µ and productivity K. However, for the multivariate case, the coefficients of these equations
depend on the triggering matrix K and it is no longer a linear system. Also, there is the problem
of stability when the matrix of the linear system is singular or nearly singular. The inversion of
the matrix is a major problem [40] in its implementation in practice, and in Section 3.2 we present
the solution to this problem via regularization.

Another kind of estimation methods [1, 4] is based on GMM using cumulants of Hawkes pro-
cesses. Define R = (I−KT )−1, where I is the identity matrix. As an alternative to the moments,
the first, second and third cumulant of Hawkes process Λ, C and Γ have the following relationships
[1] with R

Λ(i) = Λi =

U∑
m=1

Rimµm, (4)

C(i, j) = Cij =

d∑
m=1

ΛmRimRjm, (5)

Γ(i, j, k) = Γijk =

d∑
m=1

(RimRjmCkm +RimCjmRkm + CimRjmRkm − 2ΛmRimRjmRkm). (6)

Here Rim = R(i,m). Although the definition and numerical estimations of the cumulants are
different for the ST case, the above formulas still hold because the spatial information can be
viewed as “marks” of the temporal point process.

The idea of GMM is to estimate the cumulants numerically from the data and then obtain the
triggering matrix KT = I − R−1 by minimizing the approximation error of the cumulants with
some scaling coefficient κ

L(R) = (1− κ)‖R�2ĈT + 2(R� (Ĉ −RL̂))RT − Γ̂c‖22 + κ‖RL̂RT − Ĉ‖22. (7)

Here � is the Hadamard product and Γ̂c = Γ̂(i, i, k). Given the estimated R̃, we also have
µ̃ = R̃−1Λ̃ from the cumulants equation (4). This provides a fast estimation procedure for both
µ and K. But it does not estimate the triggering density, which plays an important role in the
dynamics of the point process. In applications such as stochastic declustering [43], it is necessary
to estimate triggering densities from the data. Some other moment-based methods [4] can estimate
both of them at the cost of high computation time.

3 Proposed Methods for Multivariate ST-Hawkes
In this section, we define multivariate ST-Hawkes processes and derive a fast estimation method
via extending and combining the two approach (MLE and GMM) discussed above. We recommend
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interested readers to check [35, 39] which provide comprehensive reviews of ST point processes.
The focus of our method is to reduce the computational burden of the inference as well as improve
the model estimation accuracy. Our motivation is from the application of network reconstruction.
Previous studies have shown the ability of Hawkes process models to uncover the underlying con-
nections between nodes (such as social media users [42], neurons [8], email users [16] and crime
[24]). It is essential to develop a scalable method because one often encounters data sets with
thousands of nodes (large U) and millions of associated ST events (very large N).

We consider a multivariate ST-Hawkes process with a spatially isotropic triggering density
g(x, y, t) – i.e., g(x, y, t) = g(r, t), r =

√
x2 + y2 (g is only a function of time and distance). For

each subprocess u = 1, ..., U , the conditional intensity characterizes the multivariate ST-Hawkes
process and is defined by

λu(x, y) = µu(x, y) +
∑
tk<t

Kukug(dk, t− tk) (8)

with events (tk, xk, yk, uk), k = 1, ..., N from B × [0, T ] and dk =
√

(xk − x)2 + (yk − y)2. The
current MLE-based methods such as the EM-type algorithm [41, 42] are not well-suited for large-
scale problems due to its O(N3) computational complexity [1]. Also, in many applications, it is
difficult to determine the appropriate triggering density g(r, t). Our proposed method has a linear
O(N) complexity and learns triggering densities directly from data. Specifically, we estimate
g(r, t) nonparametrically from MLE andK, µ from GMM. This combined method gives a fast and
complete estimation of the ST-Hawkes process.

3.1 ST Triggering Density Estimation
We extend the analytic method, first proposed in [40] for the univariate temporal case, to the case
of multivariate ST Hawkes processes.

First, we derive it for the multivariate temporal Hawkes process (2). Assuming that µ andK are
given, the variables here are only the piece-wise triggering density g(t) =

∑Nt

m=1 gm1t∈(τm,τm+1)

with Nt grids Um = {t | t ∈ (τm, τm+1)},m = 1, ..., Nt in time. Maximizing the log-likelihood
function will give us the estimation of triggering density g(t). The log-likelihood function (from
(3))

l =

N∑
k=1

log(λuk
(tk))−

U∑
u=1

(µuT +

Nt∑
m=1

gmδm

N∑
k=1

Kuku) (9)

is concave w.r.t {gm}m, and we take the derivative w.r.t. gm

0 =
∂l

∂gm
=

∑
(tj−ti)∈Um

Kuiuj

λuj
(tj)
−

U∑
u=1

N∑
i=1

Kuiuδm, (10)

where δm = τm+1−τm. We define the following notation λ = {λuj (tj)}j ,A(k, j) =
∑
tj−ti∈Uk

Kuiuj ,

β = {gm}m and b = {∑U
u=1

∑N
i=1Kuiuδm}m. Then we have a matrix representation of equation

(10)
0 = A(1/λ)− b. (11)

Here 1/λ is the element-wise reciprocal. The solution of (11) gives an estimation of λ. Further,
equation (2) can be rewritten as

λ = µ+ATβ. (12)

Solving this equation given λ from the solution of (11) provides the estimation of β.
Now we focus on the multivariate ST-Hawkes process with a piecewise-constant ST triggering

density g(r, t). We simply assume a uniform background rate µu(x, y) = µu. It has the following
conditional intensity function for each subprocess u = 1, ..., U

λu(x, y, t) = µu +
∑
tk<t

Kuku

Nt∑
m=1

Nr∑
n=1

gmn1tk−t∈(τm,τm+1)1dk∈(rn,rn+1). (13)

Here dk =
√

(xk − x)2 + (yk − y)2 and g is defined on a 2-D Nr × Nt grids with Vn = {dk | dk ∈
(rn, rn+1)}, n = 1, ..., Nr in distance and Um = {tk | tk ∈ (τm, τm+1)},m = 1, ..., Nt in time. The
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log-likelihood function of this intensity function is [37]

l =

N∑
k=1

log(λuk
(xk, yk, tk))−

U∑
u=1

∫∫
B

∫ T

0

λu(x, y, t)dtdxdy.

=

N∑
k=1

log(λuk
(xk, yk, tk))−

U∑
u=1

(µu|B|T +
∑
m

∑
n

gmnδm 4n
N∑
k=1

Kuku) (14)

where |B| is the area of B, δm = τm+1 − τm and 4n = π(r2
n+1 − r2

n).
Assuming that µ and K are given, the only variable here are {gmn}m,n. Maximizing the log

likelihood function will give us the estimation of the triggering density g. Since (14) is concave,
we take the derivative of equation w.r.t gmn

0 =
∂l

∂gmn
=

∑
(tj−ti)∈Um,dij∈Vn

Kuiuj

λuj
(xj , yj , tj)

−
U∑
u=1

N∑
i=1

Kuiuδm4n, (15)

with dij =
√

(xi − xj)2 + (yi − yj)2. In the same manner, we define λ = {λuj
(xj , yj , tj)}j ,

A(k(m,n), j) =
∑
tj−ti∈Um,dij∈Vn

Kuiuj
, β = (gmn)k(m,n) and b = (

∑U
u=1

∑N
i=1Kuiuδm4n)k(m,n)

with the index k(m,n) = Nr(m − 1) + n. Then we obtain the matrix representation of (15) and
(13) as

0 = A(1/λ)− b. (16)

λ = µ+ATβ. (17)

Finally we can estimate β via solving the above linear equations separately.

3.2 Regularization for Linear System
In many applications, we often encounter an ill-conditioned or singular matrix A in (16) and
(17) even with a careful selection of the 2-D grids Um and Vn [40]. The direct inverse A−1b
(or pseudo inverse (ATA)−1AT b) often gives meaningless results due to overfitting. In order to
solve the linear equations in a stable and robust fashion, we use regularization procedures to find
meaningful approximate solutions.

In detail, we use the Tikhonov regularization method [30] with its analytic solution. For
example, with the regularization, solving (16) becomes this minimization problem

min
x
‖Ax− b‖2 + ‖Γx‖2 (18)

for Tikhonov matrix Γ = αI. This is essentially an L2 regularization, giving preference to solutions
with smaller norms. L1 regularization will typically give a sparse solution with many zero entities.
It does not work here due the fact that each element in x = 1/λ is positive and nonzero. Further
one could use the iterative solution of (18) or other Tikhonov matrices to guarantee smoothness
if the underlying vector is believed to be mostly continuous. Instead of this, for the estimation of
the triggering density, we smooth g with the following post-processing approach.

In addition, we assume that the triggering density is separable in space and time [32]. As a
result, we can decompose the triggering density g(r, t) into the spatial triggering density f(r) and
temporal triggering density h(t) – i.e., g(r, t) = f(r)h(t). If we reshape the NrNt-by-1 vector β
as a Nr-by-Nt matrix B, then estimating the spatial and temporal triggering density becomes the
following unmixing problem

min
f≥0,h≥0

‖B − fh‖2. (19)

Here B is a nonnegative matrix based on the definition of g(r, t) (triggering density function), f
is a nonnegative Nr-by-1 vector and h is a nonnegative 1-by-Nt vector. This is, in fact, a rank-
one nonnegative matrix factorization (NMF) [22] B = fh and we solve it using singular value
decomposition (SVD). Finally, we use a Gaussian moving average filter to smooth f and h to
obtain the estimation of piecewise-constant triggering densities. This is based on our assumption
that g is smooth and can reduce the variance of our estimations. Our numerical experiments
show that the regularization procedure described above leads to stable and robust estimations for
synthetic and real-world data sets.
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3.3 Triggering Matrix Estimation
In previous sections, we estimate the triggering density with the assumption that both µ and K
are given. In the univariate case, one can remove this assumption by adding two additional linear
equations [40]. However, in multivariate case, because matrix A is depend on matrix K, solving
µ, K and g simultaneously is no longer a linear problem.

In order to solve this problem, we extend the cumulants (4), (5), (22) to the ST case for a fast
estimation of µ and K. For a ST-Hawkes process with U sub-processes, we define its first, second
and third cumulant as [11]

Λidtdxdy = E(dN i
t,x,y), (20)

Cijdtdxdy =

∫
τ,a,b∈R3

(E(dN i
t,x,ydN

j
t+τ,x+a,y+b − E(dN i

t,x,y)E(dN j
t+τ,x+a,y+b), (21)

Γijkdtdxdy =

∫
τ ′,a′,b′∈R3

∫
τ,a,b∈R3

(E(dN i
t,x,ydN

j
t+τ,x+a,y+bdN

k
t+τ ′,x+a′,y+b′)

+ 2E(dN i
t,x,y)E(dN j

t+τ,x+a,y+b)E(dNk
t+τ ′,x+a′,y+b′)

− E(dN i
t,x,ydN

j
t+τ,x+a,y+b)E(dNk

t+τ ′,x+a′,y+b′)

− E(dN i
t,x,ydN

k
t+τ,x+a,y+b)E(dN j

t+τ ′,x+a′,y+b′)

− E(dN j
t+τ,x+a,y+bdN

k
t+τ ′,x+a′,y+b′)E(dN i

t,x,y)). (22)

Here 1 ≤ i, j, k ≤ U and τ , a and b are variables corresponding to t, x and y.
Cumulants can be numerically estimated from the ST data of events from each subprocess

Zi = (tk, xk, yk)k, i = 1, ..., U on the ST bounded area B × [0, T ]. Here we simply assume that B
is a rectangular with length X and width Y . We obtain the following the estimation formulas for
(20), (21) and (22)

Λ̂i =
1

TXY

∑
τ,a,b∈Zi

=
N i
T,X,Y

TXY
, (23)

Ĉij =
1

TXY

∑
τ,a,b∈Zi

(N j

a+X̃,b+Ỹ ,τ+H
−N j

a−X̃,b−Ỹ ,τ−H − 8X̃Ỹ HΛ̂j), (24)

Γ̂ijk =
1

TXY

∑
τ,a,b∈Zi

(N j

a+X̃,b+Ỹ ,τ+H
−N j

a−X̃,b−Ỹ ,τ−H − 8X̃Ỹ HΛ̂j)×

(Nk
a+X̃,b+Ỹ ,τ+H

−Nk
a−X̃,b−Ỹ ,τ−H − 8X̃Ỹ HΛ̂k)

− Λ̂i

TXY

∑
τ ′,a′,b′∈Zk

∑
τ,a,b∈Zj

(2H − |τ − τ ′|)+(2X̃ − |a− a′|)+(2Ỹ − |b− b′|)+

+ 64(HX̃Ỹ )2Λ̂iΛ̂jΛ̂k (25)

via numerical approximations of the cumulants (see the Appendix B.3 in [1] for more details)
on [−X̃, X̃] × [−Ỹ , Ỹ ] × [−H,H] assuming that the support of the triggering density is within
this region. One also needs to symmetrize the approximated cumulants via (Ĉij + Ĉji)/2 and
(2 ∗ ˆΓiji + ˆΓjii)/3 because Γiji = Γiij and Cij = Cji. Finally we can plug the approximated
cumulants into (7) to estimate µ and K. The error function (7) is a non-convex polynomial and
similar to the loss function of a multilayer neural network. As a result, stochastic gradient descend
(SGD) with acceleration (e.g. Adam [20] or AdaGrad [13]) can be used to minize the error function.
The normalization term κ is κ =

‖Γ̂c‖22
‖Ĉ‖22+‖Γ̂c‖22

based on the thery of GMM [1]. The ratio between the
support of the triggering density and the ST bounded area B × [0, T ] matters for the consistency
of the GMM [1]. Usually for specific applications such as social network reconstruction, B × [0, T ]
is much larger than the support of the triggering density, which guarantees the consistency of the
GMM estimation.
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3.4 Consistency Guarantee
The consistency of the estimation is only considered in separate cases for MLE [31] or GMM [1].
Our method, as a combination of GMM and MLE, is not covered by the previous theories. Here we
show that the MLE estimation for only certain parameters is consistent, given the other parameters
are estimated consistently.

First, as background, note that in [31] Ogata shows the MLE of the full vector of parameters is,
under quite general conditions, consistent. Also, if only some of the parameters are to be estimated
and others, such as in this instance K and µ, are known exactly, then again one may consider the
parameter vector to be only those parameters being estimated, and again [31] implies the estimated
ones will be consistent. However, we are considering the case where K and µ are not known but
are estimated consistently, and then the other parameters are estimated by MLE. To the best of
our knowledge, this case has not been studied previously, and the result does not immediately
follow from the theorems in [31]. We show that β̂ will be consistent in this case. We will assume
the same assumptions as in [31, 1]. While the proof does not follow directly from the theorem, it
can be proven in the same manner essentially.

Let Θ denote the full vector of parameters, including K and µ. Let Θ0 denote the true value
of Θ. Let U denote a neighborhood of Θ0. Let K ′ and µ′ denote the GMM estimates of K and
µ. Let Θ = (K,µ,β), where β is the vector of other parameters estimated by MLE. Let K̂, µ̂,
and β̂ be the MLEs of these parameters. We want to show that β̂ → β in probability as T →∞.
Let L denote the loglikelihood divided by T . Thus L depends on T but we will suppress this here.
Let Θ1 denote the supremum over U c of L, i.e. the MLE outside of U .

The sketch of the proof goes like this. L(Θ1) → E(L(Θ1)) and L(Θ0) → E(L(Θ0)), where
this convergence is in probability as T → ∞ and is uniform in Θ. And E(L(Θ0)) > E(L(Θ1)).
Therefore, since (K ′, µ′) are ultimately in U , for sufficiently large T , E(L(Θ0)) and therefore L(Θ0)
are also maximized within L with probability going to 1.

In other words, the proof is consist of four steps

• We are given that (K ′, µ′)→ (K, µ) in probability as T →∞. Thus, ultimately (K ′, µ′) are
in U with probability going to 1.

• We know that, for sufficiently large T , there exists ε > 0 so that |E(LT (Θ))−supΘ/∈U E(LT (Θ))| >
ε/2. This follows from the assumptions in [31], particularly the assumption that λ is uni-
formly bounded away from 0.

• L(Θ)→ E(L(Θ)) in probability, uniformly.

• Therefore,

P (β̂ /∈ U) = P (sup
Uc

L(Θ) ≥ sup
U
L(Θ)) ≤ P (L(Θ1) ≥ L(Θ0)) (26)

≤ P (L(Θ1)− E(L(Θ1)) ≥ δ) + P (E(L(Θ1))− E(L(Θ0))) > −2δ) + P (E(L(Θ0))− L(Θ0) ≥ δ)
(27)

< ε/2 + 0 + ε/2 = ε. (28)

3.5 Computational Complexity
The state-of-the-art cumulants-based method (NPHC) [1] for temporal triggering density estima-
tion has a complexity of O(NU2 +NiterU

3), where Niter is the number of iterations. Our method
has a similar complexity O(NU2 + NiterU

3 + (NrNt)
3) as NPHC since the calculation time of

spatialtemporal cumulants is just a constant multiple of temporal cumulants. The additional cal-
culation for triggering density estimation is usually neglectable because Nr, Nt are small constants
and A is usually sparse. For EM-type algorithm (EM) [23], the complexity is O(NiterN

3U2) [1].
With some clever implementation or in some special cases (e.g. temporal Hawkes process with an
exponential triggering density), one can reduce this to O(N2) or better.

Our method outperforms EM when N � U . Moreover, in many cases, we find that our method
is even faster than NPHC. This seems impossible since our method needs to process spatial data in
addition to the timestamp. However, for ST data, there are many event pairs that are close in time
(within the support of the temporal triggering density) while spatially separated from each other
(not in the support of the spatial triggering density). Temporal-only model such as NPHC will
calculate these events pairs during the estimation of cumulants. This might cause false positives
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in causal inference. Our method, on the other hand, uses spatial information to exclude these
events. It seems that, for a majority of data sets we examined, this effect is very significant and
our method can be several time faster than NPHC.

4 Numerical Examples
In this section, we compare our method (we call it STHC—ST Hawkes cumulants—throughout this
section) with other popular estimation methods for multivariate Hawkes processes on various data
sets. For a thorough comparison, we consider both simulation data and real-world social network
data. First, we simulate multiple synthetic data sets with different sizes, triggering matrices and
triggering densities. These data sets with ground-truth information allow us to examine different
methods in detail. Then for real-world applications, we further evaluate the performance of these
methods on the task of network reconstruction for multiple location-based social network check-
in data sets. Moreover, our method directly estimates spatial and temporal triggering densities,
which provides a useful tool for the study of ST dynamics among these check-in events. All the
experiments are conducted on a single machine with a NVIDIA 970 GPU (4 GB memory), 4-core
Intel i7-6700K CPU (4.20 GHz), and 16 GB of RAM.

4.1 Synthetic Data
Our synthetic data sets are generated using Algorithm 3 in [42], which is based on the clustering
representation of Hawkes process. We simulate various ST-Hawkes processes and use them to eval-
uate our method (STHC), the state-of-the-art temporal cumulants method (NPHC) and EM-type
Algorithm (EM). The details about the simulation and preprocessing are described in Appendix
A. Here we define some error measurements used in this section.

• Relative error between the estimated triggering matrix K̂ and the ground-truth matrix K:

RelErr(K, K̂) =
1

U2

∑
u,v

(
|Kuv − K̂uv|
|Kuv|

1Kuv 6=0 + |K̂uv|1Kuv=0)

• Mean squared error (MSE) between the estimated triggering densities (temporal ĥ(t), spatial
f̂(r) and combined ĝ(r, t)) and the ground-truth triggering densities (temporal h(t), spatial
f(r) and combined g(r, t)):

MSEr =
1

Nr

Nr∑
i=1

(fi − f̂i)2, MSEt =
1

Nt

Nt∑
i=1

(hi − ĥi)2, MSEβ =
1

NrNt

Nr∑
i=1

Nt∑
j=1

(gij − ĝij)2

Here ĝij = B(i, j) is the discrete estimation of the triggering density on a 2-D grid of size Nt×Nr
and gij are the ground-truth values of the triggering density on the grid. ĥi = ĥ(i) and f̂i = f̂(i)
are from the NMF decomposition of B, and hi = h(i) and fi = f(i) are the ground-truth values
of the temporal and spatial triggering densities on the grid accordingly.

Triggering Density estimation

We first compare our methods with EM in terms of the triggering density estimation accuracy
(NPHC does not estimate triggering densities). The simulation data with 2, 587 events is from a
ST Hawkes process with U = 1, exponential triggering density in time and Gaussian in space. We
get a good estimation of the triggering density f(r) (MSEr = 0.001662), h(t) (MSEt = 0.02876)
in Figure 1 and the overall estimation for β = (gmn)k(m,n) (MSEβ = 0.03400). This is a relatively
small data sets so that we can use EM for ST Hawkes (ST-EM, see [42]) estimation. For ST-EM,
we get f(r) (MSEr = 0.01485), h(t) (MSEt = 0.004058) and β (MSEβ = 0.2533). Our method is
faster (see Table 1) and overall more accurate.
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Figure 1: The estimation results of STHC on U = 1 data. Ground truth spatial triggering density
f(r) as red triangles and estimated triggering density as blue circles (left). Temporal triggering
density h(t) as red triangles and estimated triggering density as blue circles (right).
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Triggering matrix

Then we evaluate the ability of our model to recover the triggering matrix K. This is important
for many applications such as network reconstruction and causal inference. On our existing archi-
tecture, the ST-EM method runs out of memory. Instead, we use EM and NPHC implementations
in the tick package [2] for the following comparisons.

We simulate a ST-Hawkes process with U = 100 and a symmetric K matrix (see Figure 2)
because our network reconstruction data sets mainly have undirected social networks. We achieve
a relative error of 0.1080. In the same setting, we get a relative error of 0.1626 for NPHC and
0.1459 for EM. The improvement in computation time (see Table 1) is significant.

Figure 2: Ground truth K matrix, STHC , NPHC result and EM estimation results (from left to
right).
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Combined estimation

Now we combine the two steps together and give a complete estimation of ST-Hawkes processes.
We simulate a ST-Hawkes process with U = 10 and 179, 176 events in total. From the results
in Figure 3 and Table 1, STHC gives very fast and also accurate estimations (RelErr=0.02901)
comparing to NPHC (RelErr=0.04899) and EM (RelErr=0.03269). We then threshold K̂ with
ε = 0.01 to remove noise. Using K̂, µ̂, we get a good estimation of the triggering density f(r) and
h(t) in Figure 4 with MSEr = 0.002381, MSEt = 0.06664 and MSEβ = 0.1067 while EM has a
much worse MSE (MSEt = 0.9512) since it does not consider spatial information.
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Table 1: The computation time for different methods on synthetic data sets. Here the time is in
second.

STHC NPHC EM
U = 1 0.165528 - 4.643132
U = 10 1.073085 1.093068 4.707377
U = 100 2.608996 4.174796 43.781988

Figure 3: Ground truth K matrix, STHC, NPHC and EM estimation results (from left to right).
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Figure 4: The estimation results of STHC on U = 10 data. Ground truth spatial triggering density
f(r) as red triangles and estimated triggering density as blue circles (left). Temporal triggering
density h(t) as red triangles and estimated triggering density as blue circles (right).
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Combined estimation with different triggering densities

We modify the above U = 10 data set via replacing the ST triggering density with different
functions. We first get accurate estimations of K̃ and µ̃. Given K̃ and µ̃, we then get estimation
of the triggering density in space and time. The results are summerized in Table 2. Specifically, we
consider Pareto triggering density in time (Figure 5a), Uniform triggering density in time (Figure
5b), Power-law triggering density in space (Figure 5c) and Uniform triggering density in space
(Figure 5d). See Appendix A for more details on generating these synthetic data sets.

Table 2: Error measures for STHC on U = 10 data sets with different triggering densities.

MSEr MSEt RelErr(K, K̂)
Pareto in time 0.01244 0.0009966 0.02784
Uniform in time 0.01320 1.296× 10−5 0.09306
Power-law in space 0.0003904 0.04463 0.0409
Uniform in space 0.0006231 0.1294 0.04552
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Figure 5: The estimation results of STHC on U = 10 data with different triggering densities.
Ground truth spatial triggering density f(r) as red triangles and estimated triggering density as
blue circles (left). Temporal triggering density h(t) as red triangles and estimated triggering density
as blue circles (right).

(a) The estimation results of STHC on U = 10 data with a Pareto triggering density in time.
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(b) The estimation results of STHC on U = 10 data with a uniform triggering density in time.
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(c) The estimation results of STHC on U = 10 data with a power-law triggering density in space.
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(d) The estimation results of STHC on U = 10 data with a uniform triggering density in space.
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4.2 Location-based Social Network Reconstruction
In many situations, network data are incomplete and it may not be possible to directly observe
the hidden relationships between nodes. Our task of network reconstruction is to uncover the
ground-truth friendship network among social media users using only the information of each
user’s check-ins.

The Gowalla and Brightkite data sets, collected in [9], are both from location-based social-media
websites in which users share their locations by checking in. Gowalla has a “friendship” network with
196,591 users, 950,327 edges, and a total of 6,442,890 check-ins of these users between February
2009 and October 2010. Brightkite’s “friendship” network consists of 58,228 nodes and 214,078
edges, and a total of 4,491,143 check-ins over the period of Apr. 2008 - Oct. 2010. Each check-in
record includes the latitude and longitude coordinates, a user ID and the time (with a precision
of one second). Similar to the Facebook “friendship” network, both the Gowalla and Brightkite
friendship networks are undirected and unweighted. We study several subnetworks (Gowalla-SF,
Brightkite-LA, Gowalla-CHI, and Brightkite-SD) within these data sets; see Appendix B for details.

We model the ST check-ins of each user within a subnetwork as events of one subprocess
within a multivariate ST-Hawkes process. Then we infer relationships between these users (i.e.
infer adjacency matrix) from the triggering matrix K, which uncover the macro-scale causality
between users (subprocesses). Our assumption here is that this causality information reflects
actual friendship connections. We compare our method (STHC) with the state-of-the-art GMM
estimation (NPHC) [1] and the EM-type algorithm (EM) [23] in terms of how well the reconstructed
networks match the ground-truth friendships. With the prior information that friendship networks
are undirected, we first symmetrize the inferred triggering matrix (via K̃ =

(
K̂ + K̂T

)
/2) to

obtain the estimated weighted adjacency matrix. Then the network reconstruction becomes a
binary classification problem with the probability ∝ K̃. Given the ground-truth binary adjacency
matrix, we calculate the corresponding receiver operating characteristic (ROC) curves and the area
under the curve (AUC) to evaluate the results.

The performances of different methods are examined on various subnetworks with different sizes.
Our STHC method consistently outperforms other methods with more than 20% improvement in
terms of the AUC in Figure 6. The improvement is mainly from the ability of our method to exclude
false-positive connections. We show an example of network reconstruction results of Brightkite-SD
in Figure 7. For the computation time (See Table 3), our STHC method scales better than NPHC
in all data sets, as explained in Section 3.5. The EM-type algorithm has the worst scaling due
to its super-linear complexity. Finally, we estimate both spatial and temporal triggering densities
for these subnetworks and plot them in Figure 8. The spatial triggering densities for different
subnetworks have similar shapes with a cut-off around 10−4. This could come from the fact that
the check-in location is usually fixed for a point of interest (POI, such as shop/cafe/gym). The
triggering density also implies that the spatial triggering effects between users have a short radius,
which mainly occur when they visit the same POI. These temporal triggering densities also share
the same trend. The triggering effects only peak a few hours after the event time. This is also
observed in other data sets, such as the insurgency activity in Iraq [23].
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Figure 6: ROC curves of different methods (STHC, NPHC and EM) on subnetworks in Gowalla
and Brightkite data sets. The dashed line (red) is from random guess.
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(c) Brightkite-LA
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(d) Gowalla-SF

Figure 7: Network reconstruction results of different methods on Brightkite-SD, comparing with
the groundtruth adjacency matrix. Here we select a subgraph within the network.
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Table 3: The computation time for different methods on Gowalla and Brightkite data sets. Here
the time is in second.

STHC NPHC EM
Brightkite-SD 0.271304 2.035561 2.252009
Gowalla-CHI 2.978064 3.869652 15.474624
Brightkite-LA 3.976395 7.001311 36.357789
Gowalla-SF 40.754037 76.514422 180.918273
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Figure 8: Estimated patial and temporal triggering densities of our method on Gowalla and
Brightkite data sets. The plot is in log-log scale and we normalize the triggering density for
easy comparison.
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(a) Spatial and temporal triggering densities for Gowalla-CHI
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(b) Spatial and temporal triggering densities for Gowalla-SF
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(c) Spatial and temporal triggering densities for Brightkite-SD
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(d) Spatial and temporal triggering densities for Brightkite-LA
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5 Conclusion
We present a novel inference approach of ST-Hawkes processes and it is the most efficient and
accurate method comparing with other popular estimation approaches, according to the numerical
experiments presented above. Moreover, this approach is successfully applied to network recon-
struction problems and leads to promising applications for the inference of causality and social
connections.

A point that should be stressed is that we make a few model assumptions to simplify the
estimation procedure. To recapitulate, we assume a constant background rate in space and no
boundary effect for events outside the area we studied. For more general spatial background
(inhomogeneous) distribution, one can approximate it using a piece-wise constant function in
space by dividing events into spatial grids. Essentially for each grid, we still have a uniform
background for estimation and then combine them together. For applications on large areas with
an inhomogeneous background, we expect a piece-wise constant or covariate-based background
rate to achieve even better results [40]; and incorporating boundary effects helps to remove bias
in the estimation of the background rate and triggering densities [35]. Moreover, the current
regularization method can be extended to a more general case to utilize the smoothness proprieties
of triggering densities.

Finally, while we are focusing on the general case of multivariate ST-Hawkes processes, the
current method can be very useful for the estimation of univariate models. The regularization
improves the stability and robustness of the analytic method in [40]. This makes it possible to
apply univariate models to the study of large data sets in seismology, epidemiology, and criminology.
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Appendices
A Simulation Data

U = 1 Data
We simulate a univariate ST Hawkes process with K = 1/6, µ = 0.01, T = 2.1e5, X,Y ∈ (0, 10),
σ2 = 0.2 (f(r) = 1

2πσ2 e
−r2/2σ2

) and ω = 10 (h(t) = ωe−ωt). The regularization parameter α = 0.5.

U = 100 Data
Using the same triggering densities, this data set has the following parameters: U = 100, the
background rate µ = (0.01, ..., 0.01). T = 1e5, X,Y ∈ (0, 10), σ2 = 0.2 and ω = 10 with 172, 943
events. Here each yellow pixel is 1/20, cyan pixel is 1/40 and dark pixel is 0 in Figure 2.
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U = 10 Data
With the same densities, the parameters are U = 10, µ = (0.01, ..., 0.01), T = 1e6, X,Y ∈ (0, 10),
σ2 = 0.2, ω = 10 and K is shown in Figure 3. Here each yellow pixel is 1/6 and dark pixel is 0.
The regularization parameter α = 0.55.

U = 10 Data with a Pareto Triggering Density in Time
We keep the same parameters as the U = 10 above. The changes on the densities are on the
temporal density h(t) = (p−1)cp−1/(t+c)p with c = 2 and p = 2.5 and the same spatial triggering
density with σ2 = 0.1. The regularization parameter α = 0.38.

U = 10 Data with a Uniform Triggering Density in Time
Similar to the section above, here we change the temporal densities to be uniform h(t) = 0.1 and
the spatial triggering density with σ2 = 0.1. The regularization parameter α = 0.4. We threshold
the estimated K̃ with ε = 0.01 to remove noise.

U = 10 Data with a Power-law Triggering Density in Space
Similarly, we use the power-law denisity f(r) = 1

(r2+1)2 in space and the exponential triggering
density in time with ω = 10. The regularization parameter α = 0.28. We threshold the estimated
K̃ with ε = 0.02 to remove noise.

U = 10 Data with a Uniform Triggering Density in Space
Given the same parameters as above, we change the spatial density to f(r) = 0.25 and keep the
exponential triggering density in time with ω = 10. The regularization parameter α = 0.36. We
threshold the estimated K̃ with ε = 0.01 to remove noise.

B Gowalla and Brightkite data sets
In this section, we describe the preprocessing procedure for Gowalla and Brightkite data sets.
We focus on various local friendship subnetworks within different U.S. cities, including San Diego
(SD), Chicago (CHI), Los Angeles (LA) and San Fransico (SF). They have diverse network sizes
and spatiotemporal patterns within the same time period.

Brightkite-SD
We study check-ins in SD for Brightkite data set. We use a bounding box (with a north latitude
of 33.1142, a south latitude of 32.5348, an east longitude of −116.9058, and a west longitude of
−117.2824)1 to locate check-ins in SD. We consider “active” users, who have more than 300 check-
ins during the period. This gives us a small subnetwork with 25 “active” users and a total of 13, 760
check-ins in SD.

Gowalla-CHI
We apply the same procedure as in B on the Gowalla check-in data for CHI. The bounding box for
CHI has a north latitude of 42.0229, a south latitude of 41.6446, an east longitude of −87.5245,
and a west longitude of −87.9395. After selecting only active users (with more than 100 check-ins)
users, we have a medium-sized subnetwork with 96 users and 27, 326 check-ins.

Brightkite-LA
We apply the same procedure as in B on the Brightkite check-in data in LA. The bounding box
for LA has a north latitude of 34.34, a south latitude of 33.70, an east longitude of −118.16, and a
west longitude of −118.67. After selecting only active users (with more than 150 check-ins) users,
we have a medium-sized subnetwork with 168 users and 89, 127 check-ins.

1We obtain latitude and longitude coordinates from https://www.flickr.com/places/info.
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Gowalla-SF
We apply the same procedure as in B on the Gowalla check-in data in SF. The bounding box for
SF has a north latitude of 37.93, a south latitude of 37.64, an east longitude of −122.28, and a
west longitude of −123.17. After selecting only active users (with more than 65 check-ins) users,
we have a large subnetwork with 515 users and 102, 673 check-ins.
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