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High-throughput sequencing has given us unprecedented insight into the 

regulatory networks that govern enhancer selection and transcription in mammalian 

cells, but many open questions remain as to how the mechanics of transcriptional 

regulation correspond to biological outputs such as gene expression and downstream 
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signaling. In this dissertation, I address the nature of enhancer selection and 

transcriptional regulation in the context of CD4+ T cell signaling in two parts. The 

first study describes an algorithm and database that together enable the use of Global 

Run-On Sequencing (GRO-Seq) data, an experimental data type that reveals the 

kinetics of transcription in the nucleus, for high dimensional analysis of enhancers and 

other transcriptional regulatory units. The tool developed allows for both the 

quantification of nascent RNA and the integration of other sequencing data types into 

analysis of GRO-Seq data, thus facilitating the use of GRO-Seq as an experimental 

assay of transcriptional behavior. The second study looks at enhancers and 

transcriptional regulation in a particular biological context: activation of CD4+ T cell 

by ligands of varying affinity. Using flow cytometry as well as several high-

throughput sequencing methods, I found that CD4+ T cells reflect the strength of T 

Cell Receptor signaling both at the population level and the single-cell level, resulting 

in graded gene expression profiles for a subset of genes crucial for CD4+ T cell 

activation. Together, these studies represent an advance in our understanding of 

enhancer biology, particularly in the context of CD4+ T cell activation. 



1 

INTRODUCTION 

 
Transcription in mammalian cells is a highly regulated process, with the 

expression of any given gene requiring the integration of multiple signaling cues1. 

Enhancers are one component of the transcriptional regulatory network. Unlike gene 

promoters, enhancers are regions of the genome that are able to regulate transcription 

from a distance, acting to increase or decrease transcriptional activity at target genes 

by looping into close proximity with promoters and recruiting components of 

transcriptional complexes2. Many individual enhancers have been identified since the 

first cellular enhancer was discovered over 30 years ago3, but with the advent of high-

throughput sequencing, our ability to locate and characterize enhancers has increased 

tremendously. Crucially, Heintzman et al4 described a particular pattern of histone 

methylation that acts as a signature for enhancers genome-wide, making it possible to 

map the enhancer landscapes of a variety of cells and organisms by looking for 

regions with high enrichment of H3K4 mono- and di-methylation (H3K4me1/2) and 

low enrichment of H3K4 tri-methylation (H3K4me3).  

This genome-wide mapping of enhancers associated with specific chromatin 

signatures has led to the recognition that enhancers are distinct from cell type to cell 

type5, even when gene expression is not. These enhancers serve as important binding 

sites for many transcription factors (TFs), and thus they provide an essential means by 

which cell-type-specific gene expression programs are established and maintained5-7. 

The precise mechanisms by which enhancers are selected and activated in each cell 

type remain to be determined, but recent studies propose a hierarchical model in which 
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lineage determining TFs bind to their specific motifs, thereby opening chromatin to 

form primed enhancers that can subsequently be bound and activated by signal-

dependent TFs in a cell-type-specific manner8,9. This model, in which lineage-specific 

factors are responsible for defining a large proportion of available enhancers, explains 

how similar signaling pathways can result in different downstream binding profiles for 

widely expressed signaling factors like Nuclear Factor kappa B (NF-kB)10 and the 

Glucocorticoid Receptor (GR)11. 

Notably, surveying the enhancer landscape by ChIP-Sequencing for histone 

marks has proven a remarkably sensitive assay for differences between cell types. 

Initial reports detailed differences between cells derived from different tissues5,7, but 

recent studies have found many differences between the enhancer repertoires of 

closely related types of cells, such as Th1 and Th2 CD4+ T cells12, and even between 

the same cells in different conditions, such as untreated and lipopolysaccharide-treated 

macrophages13,14. 

These differences in enhancer landscapes between cells raise an interesting 

possibility: we could target these cell-type-specific and context-dependent enhancers 

in order to modulate gene expression within a particular subtype of cells. Such a 

targeted modulation of gene expression, called enhancer therapy15, would be valuable 

in treating tissue-specific autoimmune diseases such as type 1 diabetes, where 

recognition of self-antigen precipitates the T cell mediated destruction of beta cells in 

the pancreas16. Any therapies that address these pathogenic immune responses to self 

must find a balance between allowing the disease to progress uncontrolled and 
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systemic immune suppression. In the case of type 1 diabetes, for example, 

Cyclosporine A universally suppresses lymphocytes and thus effectively reverses 

autoimmunity initially17, but can lead to frequent infections and renal toxicity18 at 

doses high enough to maintain suppression19. The ideal treatment would affect only 

the autoreactive cells that are inappropriately responding to beta cells20. The promise 

of enhancer therapy thus becomes extremely powerful, as we could limit the effect of 

treatment to the subset of pathogenic cells, leaving the rest of the immune system 

unharmed. 

The complex regulatory behavior and therapeutic potential of enhancers make 

them an important frontier of genomic research. In the following two chapters, I 

explore enhancer functionality from two directions. First, I present an algorithm and 

database architecture designed to aid the analysis of a unique type of RNA sequencing 

data, which allows us to measure expression levels of enhancer RNA (eRNA) as well 

as gene transcripts genome-wide. Second, I present an application of enhancer 

analysis, and demonstrate how understanding the enhancer landscape of CD4+ T cells 

informs our understanding of the behavior of the cell population.   

 

Part 1: GRO-Sequencing for nascent transcripts 

In Chapter One, I address a high-throughput sequencing method derived from 

RNA-Sequencing called Global Run-On sequencing (GRO-Seq)21. Briefly, GRO-Seq 

takes advantage of a nuclear run-on reaction to tag nascent RNAs as they are 

assembled by RNA Polymerase II. These tagged nascent transcripts are then 
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sequenced, giving a real-time picture of transcription within the cell. Whereas RNA 

sequencing measures expression levels of stable, spliced RNA species, GRO-Seq 

returns data on rates of active transcription, both of coding and non-coding RNA 

species. For example, GRO-Seq has been used to characterize transcription antisense 

to gene promoters genome-wide21, to identify previously unannotated long intergenic 

non-coding RNA22, and to parameterize models of co-transcriptional splicing at the 3’ 

ends of genes23. At enhancers, GRO-Seq was used to demonstrate extensive 

bidirectional transcription at enhancers genome-wide22. The transcripts generated at 

enhancers, called enhancer RNA (eRNA), prove remarkably sensitive measures of 

enhancer activation: they are responsive to estrogen treatment in MCF7 cells22, are 

correlated with increased binding of transcription factors FoxA1 and the androgen 

receptor in LNCaP cells24, and are tightly linked to nearby gene expression changes in 

response to pro-inflammatory treatment of macrophages13. Further emphasizing the 

importance of GRO-Seq in understanding transcriptional activity at enhancers, a 

systematic analysis of the relationship between enhancer marks and enhancer activity 

using a logistic regression model comprising twenty-four histone marks plus GRO-

Sequencing data found that eRNA was the single most predictive indicator of 

enhancer activity, with eRNA synthesis as measured by GRO-Seq being significantly 

associated with increased expression of nearby genes in multiple cell types25. 

Thus, GRO-Seq offers a unique window into the dynamics of enhancer 

selection and activation. However, GRO-Seq presents new challenges for data 

analysis. Unlike traditional RNA-Sequencing data, the regions of interest derived from 
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GRO-Seq are largely unannotated. Thus, it proves difficult to determine based on the 

sequenced short reads what constitutes a single, contiguous transcript in the original 

cellular context. Prior to Vespucci26, the algorithm described in Chapter One, analyses 

of GRO-Seq experiments often relied on counting tags around regions of interest such 

as gene bodies, promoters, or enhancers identified by histone marks13,21,24. A Hidden 

Markov Model for transcript identification was developed22, but it was optimized for 

recovery of RefSeq27 genes and microRNAs, and was not well not suited for analysis 

of GRO-Seq transcripts at enhancers. 

The algorithm presented in Chapter One is designed to address both annotated 

genes and smaller non-coding regions simultaneously by mapping contiguous regions 

of transcription into Euclidean space and stitching over gaps in short read data in a 

context-dependent manner. The algorithm is integrated into a relational database 

architecture that further aids analysis of GRO-Seq data by allowing the user to execute 

arbitrary queries over both GRO-Seq and other data types such as ChIP-Sequencing 

data, an advancement over the prevailing standard of storing sequence data in flat files 

that are difficult to integrate across data type and experiment. Thus, the algorithm and 

database system described significantly increase our ability to analyze GRO-

Sequencing data, giving us increased insight into the dynamics of the enhancer 

networks that are key to gene expression regulation. 

 

Part 2: Analyzing the enhancer landscape in CD4+ T cell activation 



!

!

6 

While Chapter One describes a method for improving our ability to assay and 

analyze enhancers genome-wide, Chapter Two focuses on an application of enhancer 

analysis to gain insight into a particular biological system. CD4+ T cells are an 

important component of the adaptive immune response to infection. They respond to 

antigen presented in the peripheral lymphoid tissues, and subsequently can 

differentiate into several different effector phenotypes28. While CD4+ T cells express 

a wide variety of signaling-responsive receptors, the key receptor for the recognition 

of antigen is the T cell receptor (TCR). The TCR of a CD4+ T cell binds to peptides 

presented by antigen presenting cells (APCs) such as dendritic cells and 

macrophages29,30. APCs patrolling a variety of tissues internalize proteins and process 

them to yield short sequences of amino acids that are presented on the cell surface, 

bound to molecules encoded by the Major Histocompatibility Complex (MHC)31. The 

activation of CD4+ T cells via the TCR, then, depends on the ternary complex formed 

by the TCR, the MHC, and the peptide presented in the MHC32, and requires that a 

given TCR can precisely fit the particular combination of peptide and MHC being 

presented33. 

Robust adaptive immune responses thus rely on a set of available TCRs that 

can recognize a wide variety of pathogenic peptide-MHC (pMHC) complexes but not 

the self-antigens that are also routinely processed and presented in MHC molecules34. 

The TCR is generated in a manner analogous to immunoglobulin generation in B cells, 

such that precursor cells in the thymus undergo a series of gene segment 

rearrangements that result in a great diversity of unique TCRs28,35. The possibility that 



!

!

7 

T cells are generated with TCRs that recognize self-antigen is mitigated by an affinity-

based maturation process in the thymus that deletes cells with self-reactive TCRs36. 

The process of semi-random TCR generation followed by thymic selection results in 

on the order of 106 unique TCR sequences in the human body37. The traditional model 

of T cell signaling held that each one of these TCRs recognized a single pMHC 

complex38,39. However, given the number of amino acid sequences that must be 

recognized for robust immunity, the traditional model has been revised to suggest that 

at least some subset of the approximately 106 unique TCRs are cross-reactive to 

varying degrees, and able to respond to a set of peptide-MHC complexes34,40,41. 

Each of the three components of the interaction can therefore lead to changes 

in signaling efficiency in the CD4+ T cell. TCR sequence38,42, genetic differences in 

MHC32,43, and the peptide being presented44 all have effects on the kinetics of the 

pMHC-TCR interaction. Many of the kinetic parameters of this interaction have been 

measured or computed45-47: association time, dissociation time, interaction half-life, 

and binding constant (KD)48-54; dwell time of the pMHC-TCR interaction48,53; 

enthalpy, entropy, heat capacity, and free energy53,54; peptide-MHC complex binding 

affinity46,55-57; adhesion frequency58; density of complex formation49; and relative 

localization of complexes to the center of the immunological synapse59. Nonetheless, 

the precise relationship between the kinetics of the pMHC-TCR interaction and the 

strength of TCR signaling are still controversial, with any given kinetic parameter 

unable to explain all observations of relative signaling strength downstream of the 

TCR45,47,48,53. We could harmonize the differing results by saying that the relevance of 
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each of the kinetic parameters depends on the TCR, pMHC, and cellular context in 

question, but advances in our ability to measure kinetic parameters at naturally 

occurring pMHC-TCR interactions will likely be required before this question can be 

addressed in full49,58.  

The measurement of and relevance of these kinetic parameters are confounded 

by the fact that, in addition to the affinity of the pMHC-TCR interaction, the 

frequency of the interaction affects downstream signaling strength45-47,60. Increasing 

the dose of an antigenic peptide increases signaling output of the T cell population, but 

this effect is highly dependent on the affinity of the pMHC-TCR interaction32,43,53,59,61-

64. The precise relationship between dose and affinity is still controversial, however; 

some models indicate dose and affinity are non-interchangeable parameters on the 

strength of the pMHC-TCR interaction60,65, but another shows that dose and affinity 

are additive at least with respect to cell division time66. 

Regardless of the kinetic details, the affinity and frequency of the pMHC-TCR 

interaction have significant effects on downstream signaling in the T cell. (Although 

“affinity” is sometimes used to refer specifically to dissociation rate over association 

rate [koff/kon]45, I use “affinity” here to refer collectively to the strength of signaling, 

regardless of which kinetic parameters are involved. This is also sometimes referred to 

as the “potency” of TCR signaling.) High-affinity binding of the pMHC-TCR complex 

results in inflammatory responses at a lower concentration of antigen, increased 

Interleukin 2 (IL2) production, increased IFNγ production, and increased 

proliferation32,43,44,56,61,67-69, whereas lower affinity interactions can lead to incomplete 
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phosphorylation of downstream signaling complexes50,70, anergy68,70-73, TCR 

antagonism50,51,55,61,63, unstable helper phenotype74, reduced cytolytic activity75, 

impaired memory formation65,76, or thymic escape of autoreactive cells77. Different 

groups report different phenotypes resulting from low-affinity engagement depending 

on the TCR and the experimental conditions, but in each case distinct T cell 

phenotypes emerge dependent on the affinity or dosage of TCR engagement. 

Downstream of the TCR, recognition of the pMHC complex is translated into 

multiple signaling pathways. The TCR itself is a heterodimer with a transmembrane 

domain containing multiple immunoreceptor tyrosine-based activation motifs 

(ITAMs)78. Upon TCR stimulation, two Src family tyrosine kinases, Lck and Fyn, 

phosphorylate the tyrosine residues of the ITAMs79, resulting in the recruitment of 

Zap70, a tyrosine kinase80. Zap70 can phosphorylate a number of substrates, including 

LAT and SLP76, two adapter proteins that build a larger molecular complex called the 

signalosome.  The signalosome in turn activates PLCγ1, which is upstream of the 

protein kinase C (PKC) and Ras pathways, as well as of calcium mobilization. The 

primary PKC in T cells, PKCθ, initiates signaling that leads to the translocation of the 

pro-inflammatory transcription factor NF-kB into the nucleus78. Ras activation begins 

a series of sequential phosphorylations that activate the mitogen-activated protein 

kinase kinase (MEK) and subsequently the extracellular-signal-regulated kinase 

(ERK), culminating in the activation of the AP-1 transcription factor family. AP-1 

comprises heterodimers assembled from proteins of the Fos, Jun, and ATF 

transcription factor families81, and requires both TCR and co-stimulatory signaling82 
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for activation. The last of the three key pro-inflammatory transcription factors, NFAT, 

sits downstream of the increase in intracellular calcium, as the calcium-calmodulin-

regulated phosphatase calcineurin dephosphorylates NFAT, allowing it to translocate 

to the nucleus and activate target genes78,83. 

The effect of the affinity and frequency of the pMHC-TCR interaction on the 

TCR signaling cascade has been studied extensively in thymocytes, T cell precursors 

that develop in the thymus. In thymocytes, where signaling above a certain threshold 

leads to negative selection of cells and signaling below a certain threshold leads to 

death by neglect, the T-cell-specific protein Themis enforces the threshold for positive 

selection by recruiting the negative regulator SHP1 in response to low-affinity 

signaling but not high-affinity signaling84. Similarly, thymocytes leverage the son of 

sevenless (SOS) positive feedback loop upstream of the Ras pathway to force 

commitment to TCR signaling once initiated, resulting in localization of 

phosphorylated ERK and other Ras pathway members to the cell membrane in 

positively-selected thymocytes but not negatively-selected thymocytes85-87. 

Themis and SOS are critical for suppressing low-affinity signals and 

amplifying high-affinity signals in thymocytes, resulting in thresholding behavior, but 

it is unclear to what extent these pathways are relevant to peripheral T cell signaling88. 

Loss of Themis does not have the same deleterious effects on peripheral T cells as it 

does on thymocytes84, and SOS has been shown by one group to be disposable for 

peripheral T cell activation89. Nevertheless, TCR signaling even in peripheral T cells 

is traditionally thought to be a digital process90, meaning that signaling downstream of 
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the TCR is either all-on or all-off. In other words, a given T cell must either be 

committed to a full response or to no response. This switch-like behavior can be 

observed in both thymocytes and peripheral T cells via extracellular markers such as 

CD6985,87, ERK pathway component localization85-87, NF-kB activation91, NFAT 

localization92,93, proliferation94, and cytokine production93,95. According to the digital 

model of T cell activation, any observed differences between high-affinity and low-

affinity activation states would be attributed to greater frequencies of T cells 

responding at the population level, rather than per-cell variability94-97, since any given 

T cell can only be all-on or all-off. Still, some aspects of the TCR response have been 

described as analog, or varying in proportion to the strength of signaling. These analog 

responses can be observed beginning with the most proximal signaling steps 

downstream of the TCR. With low-affinity ligands, the ITAMs of the CD3ζ chain are 

incompletely phosphorylated50,70,85,98,99, resulting in partial Zap70 activation85,86. 

Further, low-affinity interactions are more dependent on recruitment of the tyrosine 

kinase Lck, perhaps due to the incomplete phosphorylation of intracellular 

ITAMs88,100. High-affinity interaction results in increased intracellular calcium 

concentrations101, higher expression of the transcription factor IRF4102,103, and 

decreased cell division time66. It is unclear how these analog components of the TCR 

response fit in to a digital model. 

In Chapter Two, I address the controversy between digital and analog TCR 

responses by subjecting CD4+ T cells to pMHC interactions of differing affinities and 

at different doses. I use a well-characterized model system for studying the affects of 
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ligand affinity on CD4+ T cell activation, the transgenic AND mouse. The AND 

mouse is a mouse strain with a transgenic TCR such that CD4+ T cells all carry the 

same TCR104. This TCR recognizes the pigeon cytochrome c (PCC), along with a set 

of similar cytochrome c peptides from other organisms42-44. The kinetic parameters of 

the TCR’s interaction with many cytochrome c peptides as presented by MHC have 

been measured and described56,67. By presenting the AND TCR with peptides of 

varying affinity at several doses, I show first that there is room for an analog response 

within the digital TCR model, such that for any given peptide and dose, the CD4+ T 

cell is all-on or all-off, but the degree to which the T cell is activated in the all-on 

response varies in an analog fashion with respect to the strength of TCR signaling. 

Further, I compare enhancer landscapes and gene expression profiles downstream of 

the TCR, giving new insight into the global chromatin landscape downstream of the 

TCR. Surprisingly, the activation kinetics of the CD4+ T cell populations yield graded 

gene expression profiles, but the changes in gene expression are achieved by 

leveraging a pre-existing enhancer landscape. Thus, potential enhancer therapies 

directed at CD4+ T cells could target enhancer activation, rather than enhancer 

establishment, to inhibit pro-inflammatory signaling. 

 

Together, the studies presented in these two chapters represent advances in our 

understanding of enhancers as regulatory elements as well as our understanding of the 

genomics of T cell biology. 
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CHAPTER ONE 
 
 
 

Vespucci: a system for building annotated databases of nascent transcripts 
 
 

 
 

Global run-on sequencing (GRO-seq) is a recent addition to the series of high 

throughput sequencing methods that enables new insights into transcriptional 

dynamics within a cell. However, GRO-sequencing presents new algorithmic 

challenges, as existing analysis platforms for ChIP-seq and RNA-seq do not address 

the unique problem of identifying transcriptional units de novo from short reads 

located all across the genome. Here, we present a novel algorithm for de novo 

transcript identification from GRO-sequencing data, along with a system that 

determines transcript regions, stores them in a relational database, and associates them 

with known reference annotations. We use this method to analyze GRO-sequencing 

data from primary mouse macrophages, and derive novel quantitative insights into the 

extent and characteristics of non-coding transcription in mammalian cells. In doing so, 

we demonstrate that Vespucci expands existing annotations for mRNAs and lincRNAs 

by defining the primary transcript beyond the polyadenylation site. In addition, 

Vespucci generates assemblies for un-annotated non-coding RNAs such as those 

transcribed from enhancer-like elements.   Vespucci thereby provides a robust system 

for defining, storing, and analyzing diverse classes of primary RNA transcripts that are 

of increasing biological interest.  
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INTRODUCTION 

High-throughput sequencing has opened up a new window into transcriptional 

biology and the complex regulatory networks that define RNA and DNA interactions. 

Global run-on sequencing (GRO-seq) 1 is a recent addition to the series of sequencing-

based methods that holds particular promise for understanding real-time 

transcriptional behavior.  GRO-seq captures a point-in-time snapshot of active 

transcription genome-wide and returns data on the position, length, and orientation of 

nascent transcripts. 

This sequencing technique is now being employed to inspect the nature of 

transcriptional regulation in a number of experimental conditions 1-4. The capture of 

nascent transcripts in each of these conditions reveals a variety of RNA species 

beyond the standard set derived from genes encoding proteins and microRNAs, 

including enhancer RNA (eRNA), long intergenic RNA (lincRNA) 2, and promoter-

associated RNA 1,5. GRO-seq thus offers unprecedented insight into the generation of 

a vast repertoire of non-coding transcripts that are of potential functional significance. 

The data collected, however, is both immense and unique; each experiment 

yields tens of millions of strand-specific short RNA reads across the entire genome. 

This new sequencing method presents a new algorithmic challenge, as the peak-calling 

and exonic RNA identification techniques developed for other sequencing methods do 

not address the particular output of GRO-seq. Unlike ChIP-seq, peaks are not the 

primary unit of output, and, unlike RNA-seq, nascent transcripts can be anywhere, so 
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relying on previously annotated regions such as NCBI Reference Sequence (RefSeq) 6 

or microRNA genes is insufficient.  

To take full advantage of this novel data, regions beyond existing annotations 

must be considered. Units of transcription must be inferred de novo from the short 

read output of GRO-sequencing experiments. Existing analysis of GRO-seq data relies 

largely on adaptations of RNA-sequencing analysis techniques, with expression levels 

calculated from tag counts over gene bodies, promoters, or other explicitly defined 

genomic regions 1-4,7. New transcripts can be identified using software such as 

Cufflinks 8, but these rely on assumptions optimized for spliced RNA. For example, 

Cufflinks is optimized for paired-end reads; expects uniform density for a given 

transcript (whereas GRO-seq can reveal pausing and other biologically-relevant 

deviations from uniformity); and aims to accommodate large gaps (introns) in reads 

that result from splicing rather than from transcriptional breaks. In short, Cufflinks and 

similar exon-focused algorithms are not suited to distinguish between the sorts of 

small and closely spaced regulatory elements that GRO-sequencing reveals.  

Hah et al. have developed a Hidden Markov Model (HMM) for identification 

of regions of transcription specifically within GRO-seq data 2. The software 

demarcates transcripts using a two-state model, calling regions either “transcribed” or 

“un-transcribed,” and thus is able to identify transcripts from GRO-sequencing short 

reads de novo. However, the HMM is optimized to accurately retrieve transcript 

boundaries as defined by RefSeq, resulting in the loss or merging of many of the 

shorter, non-coding RNA transcripts that GRO-sequencing reveals. Further, because 
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the software relies on flat files for processing and storage, it is difficult to integrate the 

called transcripts with other types of genomic data, including expression levels from 

each individual GRO-sequencing experiment and co-occurring peaks from ChIP-

sequencing data. 

Here, we provide an algorithm for de novo identification of unified transcripts 

from GRO-seq data, along with an implementation that determines transcript regions, 

stores them in a relational database, and associates them with known reference 

annotations according to two-dimensional genomic overlap. Crucially, this method 

captures transcript boundaries as defined by RefSeq while maintaining the ability to 

identify non-coding RNAs at a high resolution and even retaining information about 

relative transcript abundance. Further, transcript identification feeds into a database 

that makes downstream integration of other datatypes feasible.  

Using this system, we were able to gain new insight into the types of nascent 

RNAs being generated inside primary murine macrophages. While the ENCODE 

Project has begun the process of characterizing mature RNA species 9, there is very 

little known about the extent and distribution of nascent RNAs, which, unlike mRNAs 

observed in traditional RNA-sequencing, include a number of transient RNA species 

that nonetheless play roles in the regulation of gene expression 1,10-13. Of particular 

interest are the vast numbers of non-coding RNAs recently found to be derived from 

transcription of active enhancers 14,15.  The finding that at least some of these eRNAs 

contribute to enhancer function provides impetus for developing computational tools 

to define the sites of initiation of these species and their length.  Importantly, while the 
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start and termination sites of transcripts related to mRNA-encoding genes and 

lincRNAs have for the most part been established by conventional RNA sequencing 

studies, this information is virtually non-existent for eRNAs. Furthermore, the 

ENCODE consortium estimates that the human genome contains hundreds of 

thousands of enhancers 16, the majority of which are selected in a cell-specific manner.  

Therefore each GRO-seq experiment in a new cell type results in the identification of 

tens of thousands of previously unannotated eRNAs that are derived from transcription 

of cell specific enhancers.  To address this challenge, we developed Vespucci as a 

computational method to systematically and quantitatively define discreet nascent 

transcripts from short sequencing reads obtained in GRO-seq experiments.   By tuning 

parameters for specific types of transcripts, Vespucci returns accurate calls for primary 

mRNAs, while also deconvoluting complex patterns of transcription from enhancer-

rich regions of the genome.  Using Vespucci, we provide evidence that many nascent 

mRNA transcripts extend well beyond RefSeq annotated termination sites.  In 

addition, Vespucci predicts approximately twice as many non-coding transcripts as 

were identified by other systems like the Hah et al. HMM. These findings demonstrate 

the value of Vespucci in integrating disparate data types in order to characterize the 

variety of RNA species observed. 

The Python and PostgreSQL code, as well as a pre-loaded Amazon AMI, have 

been made available for implementation and expansion by interested researchers. 

 

METHODS 
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Technical details 

The current implementation allows sample types and database schema to be 

split easily by cell type, such that the merging of transcripts is confined to a single cell 

type. Still, GRO-sequencing runs from multiple cell types can be easily merged 

together if desired. 

The current codebase assumes a PostgreSQL 9.2 database installation; Python 

2.7+; and Django 1.2+ with psycopg2 for database access. The codebase is hosted on 

Github at https://github.com/karmel/vespucci, and includes scripts to build both the 

transcript and the annotation databases. Instructions are included within the repository. 

In addition, a pre-loaded Amazon EC2 small instance image is available with 

instructions at https://github.com/karmel/vespucci.  

 

Cell culture 

Primary cells were isolated from 6-8 week-old C57Bl/6 mice. All studies were 

conducted in accordance with the UCSD Institutional Animal Care and Use 

Committee. Thioglycollate-elicited macrophages were isolated by peritoneal lavage 3-

4 days following peritoneal injection of 2.5 ml thioglycollate. Cells were plated in 

RPMI medium 1640 and 10% fetal bovine serum, washed after adherence and again 

fed with fresh medium. The following day fresh medium containing 0.5% fetal bovine 

serum was added to the cells and serum starvation was carried overnight 

 

GRO-seq library preparation 
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Briefly, GRO-sequencing takes advantage of a nuclear run-on reaction to 

incorporate tagged UTP into ongoing transcript synthesis by RNA polymerase. RNAs 

that incorporate the tagged nucleotides can subsequently be extracted and sequenced, 

producing a genome-wide library of nascent RNAs. Thus, in contrast to traditional 

RNA-sequencing, in which mature, stable RNAs are collected, GRO-sequencing 

returns short read data for RNAs in the act of being transcribed. 

Global run-on 1 and library preparation for sequencing 17 were done as 

described. The protocol was performed as described in Wang et al. 3  

 

Previously published GRO-seq data 

Four of the replicates were previously published under GSE48759 4. The GEO 

Accession codes are: GSM1183906 - GSM1183908 and GSM1183914. The MCF-7 

GRO-seq data is available under GSE27463 2, Accession codes GSM678535 - 

GSM678540; and GSE45822 12, Accession codes GSM1115995 - GSM1115998. 

 

Read mapping and ChIP-Seq data analysis 

Reads were mapped to the mm9 genome using Bowtie2 18 with the default 

alignment options (specifically, the command bowtie2 –no-unal –x). 

H3K4me1 and input data were taken from GSE21512 7, Accession codes 

GSM537986 and GSM537988. MCF-7 H3K4me2 data and input were taken from 

GSE24166 19, Acession codes GSM594606 and GSM594608. Peaks were called using 

HOMER 7 using the command findPeaks and the options -nfr -style histone. 
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Case study counts 

The SQL queries used to generate the counts for the analysis of transcription in 

macrophages are included as a Supplementary File. 

 

 

RESULTS 

Defining a transcript 

Principles 

As with most next-generation sequencing-based methods, GRO-seq relies on 

short (35 - 100 base-pair) reads. For the purposes of this study, we assume each 

individual read is mapped to the canonical genome of the organism in question with a 

standard aligner such as Bowtie 20. Any given uniquely-mappable read, then, can be 

placed into one-dimensional space with a definitive coordinate consisting of 

chromosome, strand, start of read, and end of read (Figure 1a).  

The location of each short read does not alone describe the relevant units of 

transcription in the genome; overlapping sets of short reads must be computationally 

merged so that they represent the extents of biologically relevant transcripts, which 

here we take to mean linear segments of DNA that are transcribed into continuous 

RNA sequences by RNA polymerase II 9. Once merged into continuous units, the 

count of short reads mapping to a given unit (transcript) can be used to approximate 

the relative expression level of the transcript 21. 
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A primary challenge in any short read RNA sequencing application is 

determining how to merge the fragments into unified transcripts. Each type of 

sequencing presents unique challenges in this regard; in the case of mRNA-seq, for 

example, methods have been developed that are designed to identify exon junctions 

8,22. GRO-seq reads, in contrast, are expected to extend through intragenic regions, and 

further are expected to exist widely both in intergenic regions and in regions antisense 

to annotated transcripts 1. 

There are numerous patterns of GRO-seq data that are important to identify 

computationally. For example, promoter-associated RNA transcripts are generated at 

the promoters of genes, antisense to the genic transcript 1 (Figure 1b). Any algorithm 

addressing GRO-seq needs to identify these RNAs as distinct units, overlapping with 

but not part of either genic transcripts or nearby eRNAs. Similarly, eRNAs are 

generated bi-directionally at enhancers 23, and any algorithm must identify each strand 

of eRNA as a separate but contiguous unit (Figure 1c). 

Notably, some transcripts appearing in GRO-seq data seem “obvious” to 

separate when viewed in the UCSC browser, as with Figures 1b and 1c. However, 

these cases are the minority, and, further, any such “obvious” separation is ad hoc and 

risks inconsistency when performed manually; in Figure 1d, for example, most 

observers would not separate the transcript, but existing annotation data from RefSeq 

indicates there is in fact an important boundary corresponding to a coding sequence. 

Thus, it is useful to have an algorithmic interpretation that provides a standardized 
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analysis and additionally can appeal to existing annotation data if available (Figure 

1d). 

If there are no existing annotations from which to scaffold the current 

transcript identification, the algorithm must have a standard means of interpreting the 

short read data that is likely to reflect the biological reality of the transcriptional data. 

To this end, the present implementation makes several assumptions based on the 

expected behavior of RNA polymerase: first, that regions that are tiled without gaps 

by short reads from a single sequencing run are most likely continuously transcribed; 

and second, that gaps corresponding with a great disparity of read counts per base-pair 

likely represent breaks in the path of RNA polymerase, with differently regulated 

transcripts on either side. (Figure S1a shows a schematic of how differential density 

might yield separate transcripts, and Figure 1e shows an example of this in real GRO-

sequencing data, where transcription along each strand in the displayed region is split 

into two separate transcripts due to differential coverage.) 

These two principles— that overlapping reads should be merged and that 

disparity in the density of reads may warrant separation of otherwise close 

transcripts— motivate the design of the algorithm described below. 

 

Implementation 

Given the size of GRO-seq datasets, with every sample yielding at least tens of 

millions of reads, any algorithm must be implemented within a framework that is 

easily maintained and extended, and it must process data quickly enough to be useful 
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in a laboratory setting. Further, the transcript identification system must be architected 

such that new samples can be incrementally added to the full set of data without 

requiring re-processing of all data. To this end, we have developed a Python codebase 

that processes mapped short read files from GRO-seq experiments into continuous 

transcript units, determines relative expression levels on a sample-by-sample basis, 

and stores the data in a PostgreSQL relational database that allows for complex 

coordinate-based queries over the transcriptional data. 

The procedure relies on two key parameters: 

• DENSITY_MULTIPLIER: scaling factor to relate density to base-pairs 

(see step 4 below; default: 10,000). Intuitively, this is the number of base-

pairs over which density is considered, so that a difference in one tag per 

DENSITY_MULTIPLIER base-pairs equates to a one base-pair gap in 

genomic distance. 

• MAX_EDGE: maximum allowed distance in two-dimensional space 

between proto-transcripts to be stitched together (see step 5 below; default: 

500).  

The selection of values for these two parameters depends heavily on the 

desired use case. The larger the value of DENSITY_MULTIPLIER, the more density 

matters as compared to distance in base-pairs, and the larger the value of 

MAX_EDGE, the more likely distant transcripts are to be merged into single units. 

Thus, if the user desires to focus on large transcripts and genes, she might choose a 

low value for DENSITY_MULTIPLIER and a large value for MAX_EDGE. On the 
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other hand, if the user desires to focus on small transcripts and ncRNA, she might 

choose a high value for DENSITY_MULTIPLIER and a small value for 

MAX_EDGE. The selection of the default values of these parameters, and the values 

used for the data in this study, are discussed below under ‘Parameter Selection.’ 

Once these parameters are set, the processing of reads into transcripts proceeds 

as follows for each strand of each chromosome (Figure 2a): 

 

1. Given a mapped tag file (in BAM or SAM 24 format), each tag is reduced 

to its genomic coordinates and loaded into a database table. The tables are 

designed such that the dataset for each sample is stored in a separate table. 

2. Once loaded, the tags from a single sample are merged, but no analysis of 

density is attempted. Although individual tag boundaries are not 

maintained in the merged format, the count of reads and number of gaps 

between the reads that are merged are tracked for expression level 

comparisons later. 

3. The set of unified transcripts from a single sample are then merged with 

transcripts from all existing samples. 

4. Using the stored tag counts and the genomic coordinates of the merged 

read, each proto-transcript is mapped as a horizontal line segment in two 

dimensional space, with the start and end serving as the coordinates along 

the x-axis, and the density (tags in all runs per base-pair) as the coordinate 

along the y-axis. Density is scaled by a parameter 
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(DENSITY_MULTIPLIER); a higher multiplier increases the relative 

importance of density as compared to position. 

5. A second stage of merging begins over the two-dimensional space 

according to the algorithm described below and the MAX_EDGE 

parameter. At this stage, several optimization checks filter out proto-

transcripts that are likely noise, such as those that have fewer than one tag 

per sample on average.  

6. Transcripts are associated with annotation databases as described in Part 2 

below. 

7. Transcripts are scored. Any scoring algorithm could be implemented here, 

but currently two are included:  

o A standard reads per kilobase per million tags (RPKM) score 

assignment 

o A custom, length-sensitive algorithm: 

  Score = RPKM * log100[max(1, length – 200)] 

This custom score has several modifications as compared to RPKM that 

make it more sensitive to certain kinds of transcripts: 

1. Very short transcripts (less than 200bp) are set to a score of zero. 

This reduces noise from overlaps of several reads that get stitched 

together, and from technical artifacts. 
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2. Long transcripts are handicapped. There are many long transcripts 

with low levels of transcription that are nonetheless interesting 

(Figure S1b). RPKM alone has a tendency to decrease with 

transcript length (Figure S2a), and thus it is difficult to filter out 

short, noisy transcripts without losing long transcripts for which we 

accept lower levels of transcription. To address this problem, the 

custom score scales the RPKM by the log of the length of the 

transcript, thereby leveling out the scores of very long transcripts 

(Figure S2b). We use a logarithm with base 100 here in order to 

ensure that the score scales only minimally over the extremely wide 

range of transcript lengths.  

 

Note that the choice of using the RPKM or the custom score depends largely 

on use case; if transcripts less than 200bp long are of particular interest, as might be 

the case if one were studying pause-release mechanisms using GRO-seq 25, then it 

would be advisable to use unmodified RPKM instead of the custom score. 

When the processing is complete, the derived transcripts can be easily queried, 

annotated, and associated using a relational database for storage (Figure 2b). 

 

Algorithm 

In order to stitch together continuous proto-transcripts in a density-aware 

manner, we first map the proto-transcripts in two-dimensional space: along the x-axis 
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is the start and stop, in zero-indexed base-pairs of the read, and the y-axis represents 

the mean density of short reads over all samples (Figure 2a(4)). In order to relate base-

pairs distance to read density, the density is scaled by the DENSITY_MULTIPLIER. 

This graphical representation allows us to define the distance between any two 

transcripts as simply the Euclidian distance in this density-base-pair plane (Figure 

2a(5)).  

Arguably, it is not necessary to relate density and base-pair distance in this 

manner, and an alternate distance formula could consider separate thresholds for the 

differences in densities and positions of two proto-transcripts. However, such a 

distance function would not account for the biologist’s intuition that the closer two 

transcripts are, the more likely they are to be a single unit, even if there is a density 

difference that might at a greater positional difference warrant separation of two 

transcripts. In other words, the difference allowed between densities of two proto-

transcripts when merging is dependent upon the base-pair distance between the two, 

and thus considering the Euclidian distance is preferable to a binary threshold that 

treats density and base-pairs independently. 

With a distance function thus specified, we can define our algorithm for 

merging proto-transcripts into transcripts: 

1. We define a graph in which every node is a proto-transcript, and a pair of 

nodes is connected by an edge if and only if the distance between the two 

proto-transcripts is less than or equal to the parameter MAX_EDGE. 

2. Connected components in this graph represent merged proto-transcripts. 
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3. Merged proto-transcripts can then be recast as intervals spanning the 

minimal base-pair start and the maximal base-pair end. Overlapping 

intervals are merged. 

At the end of this procedure, we have produced a set of continuous, non-

overlapping transcripts that can be stored, annotated, and so on, as seen in Figure 2a(5) 

– Figure 2a(7). 

A naive algorithm would be quadratic, comparing every node to every other. 

However, in practice, nodes are ordered, and it is only necessary to consider nodes 

within a distance of MAX_EDGE. Thus, the algorithm can be practically implemented 

in linear time with respect to the number of proto-transcripts. In the current 

implementation, we take advantage of the geometric query space in PostgreSQL to 

limit the search for neighboring proto-transcripts to a distance of MAX_EDGE. 

 

Annotating a transcript 

Using known RefSeq 

The procedure described above can proceed naively– that is, based entirely on 

two-dimensional distance between transcripts and without awareness of existing 

annotations. In practice, it is useful for the implementation of the algorithm to respect 

the existing boundaries of genes as annotated by RefSeq, as this allows tag counts and 

computed expression values to be relevant in the context of the existing literature on 

gene body based expression comparisons. 
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Thus, the current implementation of the algorithm makes two important 

allowances for RefSeq genes. In the first, the allowed distance between proto-

transcripts that is traversed during the two-dimensional merging in step 5 can be 

increased within the boundaries of known RefSeq genes such that gaps are more likely 

to be covered within genes. This extra allowance increases the likelihood that long, 

low-expression transcripts are recognized as single units rather than a series of small, 

gapped transcripts. 

The second heuristic applied to the identification of previously annotated 

transcripts addresses the continuation of transcription past the traditional transcription 

termination site. In GRO-seq data, we see clearly that transcription does not always 

stop at the point corresponding to the annotated gene end, but rather continues on for 

some distance (Figure 1d). In these cases, we may want to be able to compare GRO-

seq expression counts in genes to the measurements made in previous RNA expression 

studies, and thus force a separation between tags falling within RefSeq boundaries and 

those that extend beyond the boundaries, even if the signal is continuous according to 

the general rules of merging outlined above. Vespucci can be configured either to 

force the transcript to be segmented according to RefSeq boundaries (lower blue track 

in Figure 1d), so that comparisons can be made to more traditional expression data, or 

to assemble the transcript regardless of the annotated RefSeq boundaries (upper blue 

track in Figure 1d), so that the full nascent transcript can be analyzed. In the case 

where segmentation along RefSeq boundaries is forced, the post-gene transcript is 
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linked via an index to its preceding gene transcript, and we have used this option in 

Vespucci in the case study analyses below. 

 

Annotation from known databases 

In addition to segmentation according to known annotations like RefSeq, it is 

useful to be able to associate the known annotations with the transcripts that overlap in 

genomic space. Thus, the current implementation includes logic not only to define 

transcripts according to RefSeq boundaries, but also to associate RefSeq identifiers 

with overlapping transcripts strand-specifically. Similarly, we provide logic and data 

to make associations with non-coding RNA as identified by the Functional RNA 

Project 26. 

 

Arbitrary data types 

The representation of transcripts in terms of genomic coordinates gives power 

beyond associating with existing annotations. Arbitrary data types, such as peaks 

identified in individual ChIP-sequencing experiments, repeat regions, conservation 

scores, and ESTs could all be represented in terms of genomic coordinates and used to 

annotate transcripts, either within the existing framework, or ad hoc. There are many 

examples included in Supplemental SQL Queries that collectively demonstrate that the 

power of the current system is its ability integrate expression data across many 

samples with multiple types of annotative or associative data based on genomic 

location and distance quickly and easily. 
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A case study– transcription in macrophages 

Transcriptional profiling accomplished by the ENCODE project has revealed 

that about three-quarters of the genome is transcribed across fifteen human cell lines 9. 

Using GRO-seq data from five biological replicates, we analyzed the characteristics of 

transcription in murine thioglycollate-elicited macrophages using Vespucci, with the 

intent of characterizing the extent of transcription in a particular primary cell type 

under unstimulated conditions.  

 

Parameter selection  

In order to optimize the selection of the MAX_EDGE and 

DENSITY_MULTIPLIER parameters, we took advantage of previously published 5’-

GRO-seq data 10, which identifies nascent RNA with a 5’ 7-methylguanylated cap. 

The 5’-GRO-seq method thus produces peaks that identify transcription initiation sites 

of nascent RNAs genome-wide. The data available was in RAW 264.7 cells, which are 

a macrophage cell line, and thus were expected to be compatible with the primary 

macrophage GRO-seq data. Because 5’-GRO-seq identifies transcript initiation sites, 

we would expect transcripts identified by Vespucci to have maximally one 5’-GRO-

seq peak; having more than one would be an indicator that the Vespucci transcript had 

merged together multiple separate units. Conversely, having zero 5’-GRO-seq peaks 

within a Vespucci transcript could indicate that noise was falsely assembled into a 

transcript, that a continuous transcript was divided into many transcripts, or that the 
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two sequencing techniques differ in sensitivity. We desired therefore to select 

parameters that would maximize the rate at which identified transcripts corresponded 

with exactly one 5’-GRO-seq peak. Further, in order to avoid advantaging parameters 

that achieved this higher rate by greatly reducing the total number of transcripts, we 

added a penalty for the rate at which transcripts were identified with more than one 5’-

GRO-seq peak. The resultant metric, which we labeled the Initiation Recapture Rate 

(IRR), is defined as: 

IRR = (transcripts with one 5’-GRO peak - transcripts with more than one 5’-GRO peak) 
   total transcripts 

We then tested values of MAX_EDGE in the range of 100 – 5,000, and found 

that the maximum IRR was achieved at a MAX_EDGE of 500 (Figure S1c). Then, 

holding MAX_EDGE constant at 500, we tested values of DENSITY_MULTIPLIER 

in the range of 1,000 – 100,000, and found that the maximum IRR was achieved at 

10,000 (Figure S1d). Thus, we selected a MAX_EDGE of 500 and a 

DENSITY_MULTIPLIER of 10,000 for the current study and as the default 

parameters. Notably, as discussed below, these values perform well when used with 

human MCF-7 data as well, implying that the currently selected values are applicable 

to a variety of experimental datasets. 

 

Identification of RNA species 

We proceeded to analyze the murine macrophage GRO-seq data with a 

MAX_EDGE of 500 and a DENSITY_MULTIPLIER of 10,000. Using these values, 

we see 11% of the sense strand (294,363,940/2,620,345,972 bp) and 11% of the 
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antisense strand (282,540,749 /2,620,345,972 bp) being actively transcribed in basal 

conditions.  

These regions of transcription across the genome can then be inspected further. 

Using the unstimulated data, the total number of transcripts passing the minimal 

threshold to progress from proto-transcripts into the secondary transcript database is 

84,076; of these, 34,743 (41%) had a score (as defined by the custom method 

described in step 7 of the procedure above) of at least 1. The score threshold best 

suited for analysis depends heavily on intent; if the user is interested in transcripts that 

are transient or have low expression, setting a lower threshold at the risk of 

introducing some noise may be advised. On the other hand, the Hidden Markov Model 

described by Hah et al. 2 resulted in only 22,893 transcripts in a human cell line; if the 

user desires a comparable high-threshold analysis with annotated regions making up 

~50% of the transcripts identified, a higher score threshold can be used. 

Of these ~35,000 transcripts, only 8,742 (25%) overlapped with RefSeq genes 

such that the gene was at least half transcribed. A further 1,573 (5%) overlapped with 

RefSeq genes (same-strand) but covered less than half of the gene. 8,079 (23%) 

transcripts overlapped with annotated ncRNA (Figure 3a). 

The remaining 21,916 transcripts (63%) were not annotated by RefSeq or the 

ncRNA.org database. These unannotated transcripts comprised a large proportion of 

the total. Of the unannotated set of transcripts, 12,042 (55%) were within 1 kilobase 

(kb) of a RefSeq transcript, of which 5,216 (43%) were specifically within 1kb of an 

active RefSeq transcription start site (TSS), antisense the RefSeq transcript, and thus 
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warranted labeling as promoter-associated RNA. 2,955 transcripts (25%) were 

antisense of transcribed RefSeq transcript bodies; these include intragenic enhancers 

and long ncRNA (Figure S2c). 

Of the 21,916 unannotated transcripts, 9,874 (45%) were greater than 1kb 

away from any RefSeq transcript, and were thus labeled as distal transcripts. It has 

been established that enhancer elements in the genome are marked by unique histone 

methylation patterns 27,28— namely, high levels of H3K4me1 and H3K4me2 but low 

levels of H3K4me3— and further are actively transcribed, generating transcripts 

(eRNAs) 23. To assign putative labels for distal transcripts, peaks called by HOMER 7 

from H3K4me1 ChIP-sequencing in unstimulated macrophages were loaded into the 

database and queried. 6,211 (63%) of the distal transcripts overlapped with H3K4me1 

peaks and were labeled eRNA. 

The remaining 3,663 transcripts— 37% of distal transcripts and 13% of all 

transcripts— had no label. Closer inspection of this subset revealed that 867 of the 

unannotated distal transcripts were within 2kbp of a H3K4me1 peak. Interestingly, 

many of these appeared to be regions of transcription between clusters of enhancers 

(Figure 3b), or enhancer-associated RNA extending far past the range of the histone 

mark (Figure 3c). Taken together, these results imply that the amount of transcription 

attributable to enhancers is greater than currently accounted for by analyses looking 

only at regions directly overlapping associated histone marks. 

In addition to these general categories of unannotated transcripts, there were 

some transcripts in this remainder set that were intriguing anomalies. For example, 
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there was a 100kbp+ region directly downstream of RefSeq gene Gm14461 on 

chromosome 2 that exhibited active transcription, but was entirely unannotated by 

RefSeq, ncRNA.org, or known mouse expressed sequence tags (ESTs) (Figure 3d). 

Transcription throughout this region was not continuous (Figure 3d, inset), and further 

there were several stretches of repeats that prohibited unique mapping of tags. Thus, 

the region was segmented into numerous blocks of transcription. Nonetheless, the 

identification of such regions demonstrates the importance of closer inspection of 

GRO-sequencing data for the purposes of finding uncharacterized transcripts, as well 

as the value of the database described here in building these types of transcripts from 

merged units. 

 

Transcription does not stop at RefSeq termination sites 

Particularly interesting to us was the set of transcripts that continued past the 

annotated 3’ ends of RefSeq transcripts. Closer inspection of this subset revealed that 

the vast majority (7,346; 84%) of the ~8,700 expressed RefSeq transcripts did not 

terminate at the annotated Transcription Termination Site (TTS), but instead continued 

for some length afterward (Figure 1d). The expression levels of these post-gene RNAs 

were well correlated with the RefSeq transcripts they followed (Figure 4a), but the 

lengths of the post-gene RNAs were not determined by the lengths of the associated 

RefSeq transcripts (Figure S3a) or the expression level of the associated RefSeq 

transcripts (Figure 4b, S3b).  
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We next sought to determine why 16% of the expressed RefSeq transcripts did 

not continue past the annotated TTS. Of the 1,396 RefSeq transcripts with no 

associated post-gene transcripts, 157 (11%) were labeled as rRNA rather than mRNA 

by RefSeq. The remaining mRNA had significantly lower expression levels than the 

set of RefSeq transcripts with post-gene RNA (Figure 4c, S3c), and indeed 

transcription of these genes often did not reach the annotated TTS at all (Figure 4d). 

Given this difference in expression level, we next filtered the set of ~8,700 

expressed RefSeq transcripts down to the set of 6,913 mRNA transcripts that don’t 

stop before the annotated 3’ end of the gene (84% of the 8,231 expressed RefSeq 

mRNAs). Remarkably, 6,305 (91%) of this set had associated post-gene RNA, 

indicating that the annotated TTSs of RefSeq genes greatly underestimate the extent of 

RNA transcription at these sites.   

 

Confirming results in human cells 

In order to confirm the extensibility of the results obtained in the macrophage 

data, we used Vespucci to analyze human GRO-sequencing data from MCF-7 cells 

from two separate studies 2,12. We used the same parameter values in order to ensure 

that the default values selected were not applicable only to murine data. In the human 

cell line, a higher percentage of transcripts were unannotated than in the mouse cells 

(Figure S2d). The distribution of types of unannotated transcripts was surprisingly 

similar between the two MCF-7 cell studies (Figure S2e, left versus right panels). 

Fewer transcripts were called as eRNA as compared to the murine data; this is most 
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likely due to the fact that there is relatively little histone data available in MCF-7 cells, 

and the publicly available H3K4me2 data used here 19 was less deep than the mouse 

H3K4me1 data used above. A larger fraction of the human unannotated transcripts 

remained unassigned to a known category of RNA. Manual inspection of these 

transcripts revealed that many overlapped with LINE, SINE, and LTR elements 

identified by the RepeatMasker database (Repeat Library 20120124, accessed at 

http://www.repeatmasker.org). We used Vespucci to annotate the remaining 

transcripts that overlapped with LINE elements, and found that more than half of the 

remaining transcripts occurred at LINE elements. This corroborated recent reports of 

widespread transcription at retrotransposons being associated with oncogenesis 29-31. 

As a whole, these results indicated that both the default parameter values set in 

Vespucci and the analysis performed for mouse macrophages above could be repeated 

in data from multiple cell types, species, and labs. 

 

Benchmarking Vespucci 

RefSeq Benchmarking 

The two exceptions made for RefSeq annotations noted above allow for 

consistency with the widely maintained standard of counting tags over RefSeq 

regions. We compared the shared set of RefSeq transcripts identified by Vespucci to 

those identified by the analyzeRNA method available in the HOMER 7 software 

package (Figure 5a), and found a high degree of correlation (r = .92). There are two 

systematic differences that account for the tag count discrepancies between the two 
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datasets: HOMER sums tags for each RefSeq transcript separately, whereas Vespucci 

stitches over overlapping genes and isoforms and assigns the total tag count for the 

longest joined transcript to each associated RefSeq transcript (Figures 5b and 5c); and 

HOMER does not require continuity across long transcripts, and consequently counts 

tags that are missed by Vespucci when genes are too sparse to be adequately stitched 

together (Figure 5d). Notably, these discrepancies primarily affect transcripts that are 

difficult to interpret using GRO-sequencing data, as it is unclear how to divide up tag 

counts across overlapping transcripts (Figures 5b and 5c) or long, low-level transcripts 

(Figure 5d). Thus, with these two exceptions made for RefSeq transcripts, Vespucci 

produces transcripts comparable to existing annotations and methods of analysis. 

 

Benchmarking against a Hidden Markov Model 

Hah et al. 2 describe an HMM that determines regions of transcription from 

GRO-seq data using a two-state model. In order to assess the relevance of the 

transcripts found by Vespucci to those found by the Hah et al. HMM, we trained an 

HMM using the macrophage GRO-sequencing data described above. Parameters were 

optimized based on the prescribed procedure for the HMM, which relies on the sum of 

two errors: (1) the fraction of RefSeq transcripts that are broken apart by the called 

GRO-seq transcripts (Figure S4a), and (2) the fraction of GRO-seq transcripts that 

merge two or more RefSeq transcripts (Figure S4b). Using these criteria, the minimum 

summed error (12.7%) was achieved with a negative log transition probability of 100 

and a shape parameter of 5. These parameters were used in the model compared 
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directly to Vespucci, though similar results were achieved using the parameters 

selected by the optimization performed by Hah et al. (200 and 5, respectively). 

We calculated the Vespucci’s summed error according to the procedure used 

for the Hah et al. HMM, and found the error to be 1.8%, or one-sixth of the 

comparable error for the HMM. This lower error serves to underline the advantage of 

using RefSeq boundaries to inform transcript identification, as it prevents Vespucci 

from breaking apart or merging together known regions of transcription. Notably, if 

Vespucci is used with the same parameters but without any prior knowledge of RefSeq 

regions, the summed error is about three times that of the optimized Hah et al. HMM 

(37.2%). This highlights both the advantage Vespucci gains by integrating with 

existing databases, and the fact that the default parameter set is designed to avoid 

over-merging unannotated regions of transcription. If a user desires to retrieve RefSeq 

transcripts without prior knowledge of RefSeq, a larger MAX_EDGE parameter may 

be used to achieve a lower error. With the macrophage data and no assumption of 

RefSeq boundaries, Vespucci with a MAX_EDGE parameter of 5,000 yielded a 

summed error rate of 12.2% (Figure S4c), just below that achieved with the Hah et al. 

HMM. 

Given the designed use of Vespucci, the real question of performance comes 

with transcript calling over unannotated regions of transcription. Whereas Vespucci 

identifies 24,428 transcripts above a threshold score of 1 that do not overlap same-

strand with a RefSeq transcript, the HMM identifies 9,374. Closer inspection of this 

discrepancy reveals that the HMM is more likely to merge together transcripts 
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Vespucci calls as separate (Figure 5e), and less likely to call transcripts when GRO-

seq expression levels are low (Figure 5f). Further, we compared the calls made by 

Vespucci and the HMM to the previously published 5’-GRO-seq data 10, and Vespucci 

more accurately captured the multiplicity of short transcripts associated with distinct 

transcripts than the HMM (Figures 5e and 5f). To quantify this merging or missing of 

transcripts by the HMM, we calculated the same two error rates described above for 

the HMM as compared to Vespucci, and found that 35.4% (7,026) of the HMM 

transcripts are broken up by Vespucci transcripts, whereas 1.3% (451) of Vespucci 

transcripts are broken up by HMM transcripts. Notably, changing the parameters of 

the HMM might result in higher sensitivity identification of transcripts, but only at the 

expense of reliable calling of RefSeq genes. 

 

 

DISCUSSION 

GRO-sequencing reveals transcriptional dynamics at a genome-wide scale and 

thus has the power to give unique and novel insight into the regulation of cellular 

processes. Taking full advantage of this new data source requires combining disparate 

data sets and identifying within them transcripts of interest. The system introduced 

here makes this possible by providing a framework for analyzing GRO-sequencing 

data at both a general level and in great detail. Further, Vespucci allows for easy 

integration of many different types of sequencing data, which, when taken together, 

greatly increase the information gained from each single data type. 
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In this study, we apply Vespucci to annotate nascent RNA transcripts defined 

by GRO-sequencing data obtained from primary mouse macrophages and a human 

breast cancer cell line. This analysis yields a comprehensive list of contiguous nascent 

transcription units derived from both promoters and enhancers throughout the genome.  

The Vespucci output provides genomic location, score, nearest gene, and expression 

level in various sequencing runs of interest. By enabling the quantification of GRO-

sequencing data, we add it to the set of sequencing-based methods that can be reliably 

leveraged to investigate a wide array of biological questions. In the current study, we 

demonstrate the use of Vespucci to identify novel transcripts of interest, such as the 

long non-coding transcript near Gm14461, and characterize the length and expression 

values of enhancer-associated RNAs.   As each cell type contains a specific 

complement of enhancers that specify its identity and functional potential, Vespucci 

will be a valuable tool for annotation of cell-specific eRNAs. In addition, Vespucci 

quantifies the extent of nascent transcription beyond the annotated 3’ ends of genes 

defined by the site of polyadenylation. This information may be useful in evaluating 

mechanisms and regulation of transcriptional termination.  

One shortfall of the current system is that the parameter defining acceptable 

gap distance between reads associated with the same transcript must be set 

heuristically, dependent upon the needs of the user. Ideally, the parameters to identify 

transcriptional units from reads would be set to minimize errors against a gold 

standard of transcriptional units. At this time, no such standard for GRO-sequencing 

data exists. In the current study, we were able to approximate a gold standard using 5’-
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GRO-sequencing data, and thus with Vespucci we hope to take the first step towards 

defining such a gold standard by providing a method and a framework for transcript 

identification. 

Vespucci extends beyond GRO-sequencing data, too; once the database is set 

up, it is straightforward to add data from ChIP-sequencing runs, external databases, 

known motifs, single nucleotide polymorphisms, or any other data of interest that can 

be expressed within genomic coordinate space. In the current study, we demonstrated 

the integration of data on retrotransposons with the use of LINE data in analyzing 

MCF-7 cells. Similarly, one might integrate data on repeat regions and mappability; it 

is possible to load in genomic coordinates of regions of the genome that preclude 

uniquely mapped reads, and then allow the merging of transcripts to automatically 

ignore those regions. In the current implementation, we do not include this 

functionality, as it was found to yield too many spurious results. However, if a 

particular application prefers inclusiveness in transcript merging, automatically 

covering across repeat regions can be incorporated into the system. This is just one 

example of the extensibility of the system, demonstrating that Vespucci allows for 

integration of many types of genomic data and sequencing samples, making more 

feasible analyses that cut across the whole breadth of samples and datasets available to 

a lab. 

 

SUPPLEMENTARY DATA 
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Supplementary Data are available at NAR Online: Supplementary Figures 1–4 

and Supplementary SQL Query File 1. 
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Figure 1.1: GRO-sequencing reveals transcriptional dynamics in great detail, but 
can be difficult to interpret.  

A. Short reads from GRO-sequencing experiments (red) can be mapped back to 
the reference genome (black) and assigned a genomic coordinate that includes 
chromosome, strand, starting base-pair, and ending base-pair.  

B. Promoter-associated RNA (paRNA) overlaps with the 5’ end of the Tmbim6 
gene, antisense to the gene itself.  The blue bar indicates the transcript that has 
been identified for Cstb itself, and the leftmost green bar shows the extent of 
the paRNA.  

C. Enhancer RNA (eRNA) appears in GRO-sequencing samples (top track) as bi-
directional transcripts centered on the binding sites of transcription factors 
(middle track) and marked by H3K4me1 (bottom track).  

D. Transcription can continue past the 3’ ends of annotated RefSeq transcripts, 
making the exact boundary of relevant transcripts difficult to identify. At the 
Mmp12 locus, manual interpretation could lead to differing interpretations of 
where to mark transcript boundaries, either including or excluding the run-off 
at the 3’ end of the gene, and thus it is important to have a consistent, 
algorithmically determined interpretation. Here, we show that Vespucci is able 
to either respect the RefSeq boundary (lower blue track), or to identify the 
entire nascent transcript (upper blue track).  

E. Neighboring transcription regions can have very different read densities. Two 
transcripts are identified along the sense strand, denoted by the blue bars at the 
top. These two transcripts are close in terms of base-pair distance (363bp 
apart), but they differ in terms of read-per-base-pair densities, and therefore are 
kept as two separate transcripts.
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Figure 1.2: Stepwise procedure for assembly of transcripts by Vespucci.  

A. (1) Each sample, mapped to the reference genome, is reduced to its genomic 
coordinates and loaded into a separate database table. (2) Short reads from a 
single run are merged (separated by chromosome). (3) The merged proto-
transcripts from each individual run are merged with proto-transcripts from 
other runs. The number of tags from each different run is stored. (4) The proto-
transcripts from (3) are plotted in two-dimensional space, with location in 
base-pairs along the x-axis and the density in tags per base-pair along the y-
axis. Note that the density is scaled according to a parameter, 
DENSITY_MULTIPLIER, that defines the relationship between the two units 
of measurement (base-pairs and tags per base-pair). (5) The proto-transcripts in 
two-dimensional space are then merged according to a MAX_EDGE parameter 
that operates as the maximal allowed Euclidian distance from the rightmost 
edge of each transcript. The merged transcript here is considered a continuous 
unit of transcription by Vespucci. (6) These transcripts can then be associated 
with known RNA species from RefSeq and ncRNA databases based on 
genomic coordinates. (7) Transcripts are then scored according to a custom 
algorithm or reads per kilobase per million (RPKM). 

B. Database schema showing the Vespucci transcript table structure, major 
columns, and related entities. An asterisk indicates a has-many relationship, 
and ID fields contain references to related tables. 
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Figure 1.3: Vespucci enables the identification and quantification of numerous 
RNA species in macrophages.  

A. Using a score threshold of 1, the great majority (63%, left panel) of transcripts 
identified are not associated with known RefSeq genes or ncRNA. Of the 
unannotated set (right panel), more than one half are proximal to RefSeq 
genes, with the remainder being distal.  

B. Transcripts are interspersed not only overlapping with the enhancer histone 
mark H3K4me1, but also between enhancers, indicating that complex 
regulatory regions undergo a great deal of active transcription spread over 
many kilobases.  

C. Similarly, transcripts can extend a long distance beyond identifying histone 
marks at enhancers, with this itergenic region showing low levels of H3K4me1 
and GRO-seq signal extending along a single strand for more than 5kb beyond 
an identified H3K4me1 peak.  

D. Vespucci identifies a long, unannotated transcript downstream of Gm14461. 
Vespucci does not merge the entire region, but, with a gap parameter of 100bp, 
separates it into several long regions with many shorter regions interspersed 
throughout. Closer inspection (inset) shows that the boundaries determined by 
Vespucci reflect real discontinuities in the GRO-seq signal that will require 
further study to interpret. H3K4me1 is shown on the lower track to indicate 
that this transcript is methylated at the 5’ end, much as a protein coding gene 
would be. 
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Figure 1.4: Transcription continues past the annotated 3’ ends of most genes.  

A. The expression levels of transcripts immediately following the 3’ ends of 
RefSeq sequences are correlated with those of the preceding RefSeq transcripts 
as measured with Vespucci scores.  

B. The length that transcription carries past the 3’ end has a weak but positive 
correlation with the expression level of the preceding RefSeq transcript as 
measured with Vespucci scores.  

C. 16% of RefSeq transcripts are not found to have post-gene RNA according to 
Vespucci. These RefSeq transcripts tend to have much lower expression levels 
as measured with Vespucci scores than the 84% of transcripts that do continue 
past their annotated 3’ ends.  

D. In addition to having very low expression levels, many of the RefSeq 
transcripts without post-gene RNA are notable in that the transcript called by 
Vespucci does not reach the annotated 3’ end of the gene, as is the case with 
the Ube2w gene here.  

 



Vespucci transcript, + Vespucci transcript, - GRO-seq reads, + GRO-seq reads, -

Ube2w

N
or

m
al

iz
ed

 T
ag

 C
ou

nt
s

a

d

c

b

20 kb

Figure 4 - Glass

Vespucci transcript, + Vespucci transcript, - GRO-seq reads, +

62



!

 

63 

Figure 1.5: Vespucci retrieves RefSeq expression levels without losing non-coding 
RNAs.  

A. RefSeq identifiers can be used to compare the tag counts determined by 
Vespucci at RefSeq genes to the tag counts determined by the HOMER 
software, which uses a gene-centric approach to sum GRO-seq tags over 
known genes.  

B. The correlation between tag counts is generally very good, with deviations 
from the diagonal attributable to three primary categories of transcripts: 
Vespucci does not segment transcripts at alternative isoforms, but returns the 
tags for the whole transcript for each contained isoform. In contrast, HOMER 
tallies tags within the precise boundaries of each isoform, resulting in 
discrepancies between the two methods at shorter isoforms, such as the Spp1 
gene seen here;  

C. as with multiple isoforms, overlapping genes are not segmented by Vespucci, 
and the tag count for the entire transcript covering Macf1 is associated with the 
short gene that is overlapping, D830031N03Rik; and  

D. genes that have very few, dispersed tags that cannot be adequately merged 
yield several smaller transcripts according to Vespucci, whereas HOMER 
implicitly joins them and counts all that fall along the body of the gene 
regardless of continuity of transcription.  

E. The HMM described by Hah et al. identifies transcripts using a two-state 
model that calls regions transcribed (black bars) or untranscribed. The HMM 
identifies many fewer transcripts than Vespucci, in part because it merges 
together transcripts called as distinct by Vespucci. Here, three pairs of bi-
directional RNAs that are identified as two single units by the HMM. The 
bottom track shows data from previously published 5’-GRO-seq, a method that 
detects nascent RNA with a 5’ 7-methylguanylated cap. This method identifies 
start sites of nascent RNAs genome-wide. The data here, from RAW 
macrophages, shows that Vespucci captures more accurately the separately 
initiated transcripts.  

F. Similarly, some transcripts are called by Vespucci at expression levels too low 
for the HMM. Here, a paRNA is identified by Vespucci but not the HMM.  
The bottom track again shows 5’-GRO-seq from RAW macrophages, where 
the paRNA start site can be clearly seen. 
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Figure 1.S1: Principles of Vespucci analysis.  

A. Schematic of read pile-ups, showing regions that are continuously tiled on the 
left and right. These two regions have different densities, with the right having 
a higher read-per-base-pair value than the left. These differences in density can 
advise whether to consider two separate tiled regions as two separately 
regulated transcripts or as a single unit of transcription.  

B. Vespucci takes into account known RefSeq annotations when merging 
transcripts. This allows the unification of genic transcripts that exhibit 
numerous gaps due to low expression levels but are known to be continuous, as 
is the case with the Meaf6 gene here. The blue bar demarcating the transcript 
generated extends the full length of the gene despite gaps in tags.  

C. In order to optimize parameters for the algorithm, we make use of 5’-GRO-seq 
in RAW macrophages. This data identifies transcription initiation sites 
genome-wide, and thus ideally there would be only one start site per Vespucci 
transcript. We thus define an Initiation Recapture Rate (IRR) that measures the 
extent to which Vespucci aligns with the 5’-GRO-seq data at different 
parameter settings. In murine macrophages, Vespucci achieved a maximal IRR 
with a MAX_EDGE of 500 

D. (continued from c) and a DENSITY_MULTIPLIER of 10,000. 
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Figure 1.S2: Vespucci enables the identification and quantification of numerous 
RNA species in macrophages.  

A. RPKM tends to negatively weight long transcripts relative to short transcripts, 
and thus shows a downward slope in relation to transcript length.  

B. The Vespucci score, on the other hand, is based on the log of the length of the 
transcript for longer transcripts, which prevents some of the longer transcripts 
from falling below whatever scoring threshold is set.  

C. Vespucci identifies several different types of transcripts antisense to RefSeq 
genes, including intragenic enhancers (left) that co-localize with the enhancer 
mark H3K4me1; and long non-coding RNA species (right) that overlap 
annotated genes.  

D. In order to demonstrate the extensibility of Vespucci to other species, cell 
types, and experimental hands, we used Vespucci to analyze previously 
published MCF-7 data from two separate studies. In (D), a smaller fraction of 
transcripts identified in each of the MCF-7 studies were annotated by the 
RefSeq or ncRNA databases as compared to murine macrophages.  

E. Closer inspection of the unannotated regions demonstrates that Vespucci 
identifies surprisingly reproducible RNA species in the two MCF-7 studies. A 
smaller proportion of MCF-7 unannotated transcripts than in the murine 
macrophages was marked by enhancer-related histone marks, though this may 
be an artifact of the depth of ChIP-seq data available in these MCF-7 cells. 
Notably, a large proportion of distal transcripts not otherwise marked 
overlapped with LINEs, SINEs, and other repeat-rich elements. This finding 
corroborates previously published research that suggests oncogenesis involves 
the widespread transcription of retrotransposons. 
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Figure 1.S3: Transcription continues past the annotated 3’ ends of most genes.  

A. The lengths of transcripts immediately following the 3’ ends of RefSeq 
sequences are not correlated with the lengths of the preceding RefSeq 
transcripts.  

B. The length that transcription carries past the 3’ end does not correlate well with 
the expression level of the preceding RefSeq transcript as measured with 
RPKM. c. 13% of RefSeq transcripts are not found to have post-gene RNA 
according to Vespucci. These RefSeq transcripts tend to have much lower 
expression levels as measured with RPKM than the 87% of transcripts that do 
continue past their annotated 3’ ends. 
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Figure 1.S4: Hah et al. measure two types of error.  

A. In order to optimize parameters for an HMM, Hah et al. measure the fraction 
of RefSeq transcripts that are broken apart by the called transcripts. Here, 
transcript groups 1 and 2 break apart a RefSeq gene, and would each increment 
the measured error by 1/(number of RefSeq transcripts).  

B. The second type of error Hah et al. measure is the fraction of called transcripts 
that merge together RefSeq genes. Here, transcript groups 1 and 2 run together 
RefSeq Gene A and RefSeq Gene B, and would each increment the measured 
error by 1/(number of called transcripts).  

C. Comparing Vespucci to RefSeq transcripts using the error defined by Hah et 
al. advantages Vespucci because, in the default configuration, Vespucci has 
foreknowledge of RefSeq boundaries when defining transcripts. Here, we built 
transcript datasets using Vespucci without any RefSeq transcript awareness. 
Even with no foreknowledge of RefSeq boundaries, Vespucci achieved an 
error rate equivalent to that of the Hah et al. HMM with a MAX_EDGE of 
5,000. 
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CHAPTER TWO 
 
 
 

Affinity and Dose of TCR Engagement Yield Proportional Enhancer and Gene 
Activity in CD4+ T Cells 

 
 

 
 

Affinity and dose of T cell receptor (TCR) interaction with antigens govern the 

magnitude of CD4+ T cell responses, but questions remain regarding the quantitative 

translation of TCR engagement into downstream signals. We find that while the 

response of CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit 

analog responses proportional to signal strength. Gene expression output reflects TCR 

signal strength, providing a signature of T cell activation. Expression changes rely on 

a pre-established enhancer landscape and quantitative acetylation at AP-1 binding 

sites. Finally, we show that graded expression of activation genes depends on ERK 

pathway activation, suggesting that an ERK-AP-1 axis translates TCR signal strength 

into proportional activation of enhancers and genes essential for T cell function. 
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INTRODUCTION 

The question of how the T cell receptors (TCRs) of CD4+ T cells respond to 

ligands of differing affinities and concentrations with such remarkable specificity is of 

great interest to the study of immunity. The TCR binds to antigen presented by the 

molecules encoded by the Major Histocompatibility Complex (MHC) such that 

strength of the TCR signal in response to a particular peptide-MHC complex (pMHC) 

is dependent on all three components– the antigenic peptide, the MHC, and the TCR 

itself1. Variations in signal efficiency are thus caused by the generated TCR sequence2, 

3, genetic differences in MHC1, 4, and the peptide being presented5. Even small 

differences in the number or affinity of these pMHC-TCR interactions are read by the 

TCR and have important consequences for the nature and extent CD4+ T cell 

activation; high-affinity interactions lead to inflammatory responses at a lower 

concentration of antigen, increased Interleukin 2 (IL2) and IFNγ production, and 

increased proliferation1, 4, 5, 6, 7, 8, 9, 10, whereas lower affinity interactions can lead to 

incomplete phosphorylation of downstream signaling complexes11, 12, anergy9, 12, or 

TCR antagonism6, 11. The precise result of low-affinity engagement varies with 

experimental conditions, but in each case, a cellular phenotype distinct from high-

affinity engagement is produced.  

There exists a well-characterized model system for studying the affects of 

ligand affinity on CD4+ T cell activation: the AND mouse is a strain with a transgenic 

CD4+ T cell TCR13. This TCR recognizes pigeon cytochrome c (PCC) along with 

synthetic and species-variant cytochrome c oligopeptides5, 7, 8. Notably, though many 
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of the peptides differ from PCC by a single amino acid, the effects of TCR recognition 

of the peptides vary greatly. Kinetic parameters and cytokine output of the interaction 

with many cytochrome c peptides and their analogues have been described7, 8.  

Differences in microcluster formation at the membrane have likewise been 

described14. 

These variable responses to ligands of differing affinity are especially 

interesting in the context of the digital TCR response. TCR responses have been 

characterized as digital15—that is, signaling downstream of the TCR is either all-on or 

all-off, such that a given T cell must either be committed to a full response or to no 

response. Previous work has established this switch-like behavior as observable in 

terms of extracellular markers such as CD6916, 17, ERK pathway component 

localization16, 17, 18, NF-kB activation19, NFAT localization20, 21, cell-cycle entry22, and 

cytokine production21, 23. As a result, differences in the magnitude of responses to 

ligands of varying affinity would be attributed to greater frequencies of T cells 

responding at the population level, rather than per-cell variability22, 23, 24, 25. Still, some 

aspects of the TCR response have been described as analog, or varying in proportion 

to the strength of signaling:  CD3zeta chain phosphorylation11, 12, 17, 26, 27; Zap70 

activation17, 18; intracellular calcium concentrations28; expression of the transcription 

factor IRF429, 30; and cell division time31. It is unclear how these analog components of 

the TCR response fit in to a digital model. 

Both the ability of the TCR to discriminate with high resolution between 

ligands and the digital nature of TCR signaling have been extensively studied at the 



 

!

80 

level of signaling. Downstream of the TCR, a number of signaling pathways govern 

the molecular response to engagement. AKT and PKCθ interact at the cell membrane 

and jointly serve to induce nuclear translocation of the pro-inflammatory transcription 

factor NF-kB, which in turn is able to activate target genes32. AP-1, which comprises 

homo- or heterodimers assembled from proteins of the Fos, Jun, and ATF transcription 

factor families33, requires both TCR and co-stimulatory signaling34, and is usually 

activated by the Ras/Raf/Mek/Erk pathway35, 36. At least four feedback loops have 

been identified in thymocytes and peripheral T cells downstream of the TCR15, 37. 

Collectively, these feedback loops serve to enforce a digital response by either 

dampening sub-threshold signaling or amplifying above-threshold signaling, resulting 

in T cell responses that are all-off or all-on respectively.  

Despite these insights into the signaling pathways downstream of TCR 

activation, there is little known about the transcriptional programs that determine the 

distinct phenotypes resulting from high- versus low-affinity stimulation. In this study, 

we address the question of affinity at the level of the chromatin. We take advantage of 

the PCC system to assess the effects of varying the dose and affinity of peptide 

presentation to CD4+ T cells on enhancer formation and gene expression, giving us a 

genome-wide picture of how TCR signaling is able to achieve such highly specific 

responses despite its digital signaling pattern. We find first that the digital/analog 

dichotomy is too simple, and instead CD4+ T cells respond to ligands of varying dose 

and affinity by modulating both the frequency of responding cells and the level of 

activation of responding cells at a single cell level. In other words, activation markers 
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are analog with respect to the strength of TCR signaling when comparing across doses 

and affinities, but for any single dose and affinity, the overall signaling pattern is 

digital for the population of cells. We next show that at the population level, the 

combined effects of analog precision and increasing frequency of responder cells 

produce gene expression patterns that directly reflect the strength of TCR signaling for 

a set of activation signature genes. These gene expression patterns can be used to 

assess CD4+ T cell activation status, and we develop a tool for ranking arbitrary 

CD4+ T cell populations by activation score. Underlying these gene expression 

patterns, we find that the enhancer landscape is largely pre-existing, such that TCR 

engagement results in activation of primed enhancers rather than through selection of 

new enhancers. Finally, we show that the graded activation score and the expression of 

activation signature genes are dependent on the amount of phosphorylated ERK 

activity downstream of the TCR. Together, these results suggest that the degree of 

ERK activation translates the analog TCR signal resulting from varying the dose and 

affinity of TCR engagement into downstream gene expression programs. 

 

 

RESULTS 

The TCR response is analog: quantitative responses to signal strength 

In order to understand the effects of the digital TCR response on the 

transcriptional landscapes of CD4+ T cells, we first sought to characterize the “on-

state” of the TCR response.  CD4+ T cells and CD11c+ antigen presenting cells 
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(APCs) were isolated from AND transgenic mice (Figures S1A, S1B) and co-cultured 

for 24 hours with one of a panel of previously described7, 8 peptides at several different 

doses. Cell activation was then measured at a single cell level using flow cytometry. 

As expected, for each given peptide and dose, CD4+ T cells followed a digital pattern, 

appearing either all-on or all-off according to extracellular activation markers such as 

CD69 (Figure 1A) and CD25 (Figure S1C). Increasing the peptide dose or affinity 

significantly increased the percent of activated cells in the population (Figure 1B, 1C). 

However, when we compared across peptides and concentrations, it was clear that the 

activation level of the on-state cells was not “all on.” Gating on CD69+ cells, each 

different peptide and different dose of a peptide achieved a different amount of CD69 

per cell (Figure 1D). Gating on CD25+ cells yields similar results, with varying 

amounts of CD25 expressed per cell dependent on both the dose and the affinity of the 

stimulation (Figure 1E). Thus, while under a given condition the CD4+ T cells were 

either on or off as per classical digital signaling, when comparing across a panel of 

conditions, the activation level of the on-state cells is analog with respect to the 

strength of the TCR signal. 

 

Gene expression is graded genome-wide 

In order to understand the effect of this variability genome-wide, we selected 

two peptides—the low-affinity K99A and the high-affinity PCC—and sequenced 

mRNA from CD4+ T cells exposed to both a low and a high concentration. We 

compared the gene expression profiles at 24 hours across five conditions (no-peptide; 
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low-dose, low-affinity (10uM K99A); high-dose, low-affinity (100uM K99A); low-

dose, high-affinity (0.1uM PCC); and high-dose, high-affinity (10uM PCC)), four out 

of five of which displayed some degree of activation as measured by extracellular 

markers such as CD69 or CD25. We used principal component analysis (PCA) to 

determine the primary axes of variation across the approximately 3,000 genes that 

were expressed above ten reads per kilobase per million (RPKM) and at least two-fold 

different between any two conditions. A single principal component explained more 

than 99% of the variance in gene expression changes (Figure S2A).  

The first principal component ranks the samples according to what would be 

expected based on TCR signal strength and extracellular markers such as CD69 and 

CD25 (Figure 2A). As PC1 captured the gene expression changes concomitant with 

increasing activation, we extracted the most positive 10% and most negative 10% of 

the genes along PC1 to determine which genes were important for the axis. The 10% 

of genes contributing the most positive signal to PC1 were increasing in a generally 

graded manner with TCR signal strength across the samples, and the 10% of genes 

contributing the most negative signal were decreasing (Figure 2B; two-tailed p-values 

based on permutation testing of 2.9e-11 and 1.8e-28, respectively).  

Collectively, the most indicative 10% of genes for PC1 provide a 

multidimensional signal for ranking the samples in one dimension according to TCR 

signal strength and activation state of the CD4+ T cell; we therefore call these genes 

“activation signature genes.” Looking more closely at the genes in this group, we see 

many well-documented immune response genes such as Tbx21 (Tbet), Stat1, and TNF 
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(Figure 2C), all of which increase in a graded manner along with TCR signal strength 

at the population level. IRF4, previously reported to increase in expression in an 

analog manner downstream of the TCR on a per-cell basis29, 30, was also among the 

activation signature genes, and showed the same graded response pattern at the 

population level across the conditions (Figure 2D). Gene Ontology analysis yielded 

several enriched gene categories among the activation signature, with the most highly 

enriched group being protein biosynthesis and translation genes (Figure 2E) such as 

Etf1 and Eif3a (Figure S2B). Protein biosynthesis has been previously shown to be 

increased upon T cell activation, and here we see that many of the genes involved in 

increasing translational activity are themselves upregulated in a manner that is 

proportional to the level of activation across the population. Another enriched 

ontological category was molecular chaperone genes that are responsible for protein 

folding and unfolding, including six of the Cct family of chaperones (for example, 

Cct2: Figure S2C) and five heat shock family members (for example, Hsph1) that 

increased with TCR signal strength.  

The graded increase of activation signature genes at the population level 

corresponded with single-cell increases in CD69 and CD25, but it was unclear whether 

analog levels of activation signature genes were widespread. In order to determine 

whether activation signature genes increased on a per-cell basis in more cases, we 

determined the per-cell protein levels of a panel of genes from the activation signature 

set with flow cytometry. Not all increases in mRNA levels were reflected at the level 

of protein (Figure S2D), but for those that were, the increases in mRNA resulted in 
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increases both in the frequency of cells responding (data not shown) and in protein 

levels on a per-cell basis. This exemplified by the expression of Tbet (Figure 2F), 

IRF4 (Figure 2G), CD200 (Figure S2E), Ly6a (Figure S2F), and TNFSF11 (RANKL; 

Figure S2G). Thus, the graded increase in expression of activation signature genes at 

the population level is a reflection of both frequency of responding cells and 

incremental increases in expression levels on a single-cell level for at least a subset of 

genes.  

 

An activation score ranks CD4+ T cell samples by activation status 

Given that PC1 was able to distinguish between the five conditions according 

to activation state, we extracted the genes from the top and bottom of PC1 that were 

consistent across replicates to use as a general-purpose activation score able to 

correctly rank the five conditions by TCR signal (Figure 3A). We compared samples 

from several publicly available datasets, and the activation score was able to 

quantitatively rank conditions within a given experiment set such that activated and 

naïve CD4+ T cells could be distinguished and further that the effects of various 

genetic perturbations of CD4+ T cell responses could be observed. For example, the 

activation score correctly recapitulated the findings that polarized helper subsets of 

CD4+ T cells were more pro-inflammatory than unstimulated cells or induced and 

natural regulatory T cells38 (Figure 3B); that at the population level plate-bound anti-

CD3 and anti-CD28 induced stronger activation signals than APCs plus antigen39 

(Figure 3C); that costimulation was important for achieving higher activation states 
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but checkpoint inhibitors could block this effect40 (Figure 3D); that knockout of 

Trim28, a molecule necessary for optimal IL2 production, diminished CD4+ T cell 

activation status41 (Figure S3A); and that acute LCMV infection produced more robust 

activation in CD4+ T cells than chronic infection42 (Figure S3B).  

In order to test the value of the activation score, we used it to rank naïve CD4+ 

T cells from 39 inbred mouse strains43 (Figure 3E). The activation score quantified the 

variability in the isolated CD4+ T cells according to activation status, revealing that 

the genetic differences between the strains yielded different levels of activity even 

under unstimulated conditions. As would be predicted by known strain phenotypes, 

C57Bl/6 cells were more activated than most strains, while BALB/c mice were less 

activated than most strains. The lupus-prone MRL strain and the type 1 diabetes-prone 

NOD strain had cells that ranked as relatively activated, whereas the type 1 diabetes-

resistant NON strain had a relatively low activation score.  

The strain with the highest activation score, DBA/2, had top-quartile 

expression of more than half of the activation signature genes (p = 7.4e-30 by chi-

squared test). These included a number of immune effectors such as IRF4, CD25, 

IL2Rb, Nfkb1 (p105/p50), and Nr4a1 (Nur77), as well as 17 of 32 genes from the 

protein biosynthesis group and 5 of 12 genes from the molecular chaperone group. 

Differences in the immune phenotypes of the DBA/2 strain, such as resistance to 

malaria, have been largely attributed to B cell-dependent mechanisms44, but the 

activation score here indicates that naïve CD4 T cells from DBA/2 mice are skewed 

toward an activated phenotype. 
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Three of four wild-derived strains had low activation scores: CAST, MSM, and 

WSB mice. All three of these wild-derived strains had bottom-quartile expression of 

the immune effectors Irf1, Irf8, Stat1, Nfkb1, and Tnf, indicating that these CD4+ T 

cells possess a less inflammatory gene expression profile under homeostatic 

conditions. 

Thus, the activation score serves as a widely applicable and quantitative 

measure of CD4+ T cell activity, and can be used to assess the relative activation 

status of a variety of CD4+ T cell samples. We have developed a publically available, 

open source tool (see Materials and Methods) to facilitate the scoring and ranking of 

datasets by interested parties. 

 

Pre-existing enhancers are leveraged to activate genes 

In order to better understand the changes in genome-wide expression patterns 

that occurred with TCR stimulation, we compared enhancer landscapes with and 

without stimulation. We first performed ChIP-sequencing for H3K4me2, a marker of 

primed and active promoters and enhancers45, 46, across the five conditions. By and 

large, the H3K4me2-marked regions across the five conditions were very similar, with 

a comparison of tag counts associated with specific genomic regions under no peptide 

or 1 µM PCC illustrated in Figure 4A. Though there were some enhancers showing at 

least two-fold change in H3K4me2 tag counts across conditions, these regions were at 

the lower end of the tag count range and therefore differences were not significant 
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(Figure 4A, red points). Thus, the gene expression and phenotypic changes seen after 

activation were not due to selection of new signal-dependent enhancers.   

At promoters, H3K4me2 marks were shared across the five conditions, but 

activation signature genes showed spreading of the H3K4me2 mark along the body of 

the gene after TCR stimulation. In contrast, H3K4me2 peaks were narrow and focal 

for the untreated condition at many of these genes. This effect can be seen at CD69 

(Figure S4A) and IRF4 (Figure S4B), resulting in a global increase of the ratio of gene 

body tags to promoter tags at activation signature genes (Figure S4C) but not genes in 

the bottom 10% of PC1 (Figure S4D). This implies that the process of activating these 

genes subsequent to TCR stimulation induces deposition of the dimethyl mark along 

the body of the genes as they are transcribed. 

 

Motif analysis reveals lineage-determining and signal-dependent TFs 

We used de novo motif finding47 to identify lineage-determining transcription 

factors (LDTFs), also known as pioneer factors or master regulators, which establish 

cell-type-specific enhancer landscapes, and determine the available open chromatin 

for subsequent binding of signal-dependent transcription factors (SDTFs)48, 49, 50, 51, 52. 

The top motif was an ETS motif (Figure 4B), capable of being bound by a number of 

ETS factors that are expressed in CD4+ T cells, including Ets1, Ets2, and Elf153. 

These enhancers tend to be shared across similar cells as well as thymic T cell 

precursors47, 54. Similarly, Runx factors play an important role in T cell development55,  
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and correspondingly the Runx family motif was highly enriched among primed 

enhancers.  

Several known motifs for SDTFs were also enriched among the H3K4me2-

marked enhancers (Figure 4C), including an Interferon Regulatory Factor (IRF) motif. 

Although IRFs respond to interferon signaling56, and would not be expected to be 

active in unstimulated cells33, 57, 58, it is possible that the IRF motif is a “memory” of 

states of activation during the development of CD4+ T cells, and indeed IRF motifs 

can be found in several related cell types and multiple stages of thymocyte 

development (Figure S4E), suggesting that the primed enhancers in naïve CD4+ T 

cells are predisposed to act as binding sites for key SDTFs47, 54, 59, 60, 61, 62.  Similarly, 

an AP-1 motif and an NF-κB motif were significantly enriched in primed enhancers 

(Figure 4C), corresponding with the fact that TCR signaling greatly increases activity 

of both of these transcription factors32, 34.  

Given that H3K4me2-marked regions were not substantially changed across 

the five conditions, we next performed ChIP-sequencing for H3K27Ac, a marker for 

active enhancers63, under a stimulated condition (1uM PCC) and the unstimulated 

condition.  In contrast to H3K4me2, a substantial portion of enhancers exhibited 

increases in the H3K27Ac activation mark (Figure 4D). The union set of enhancers 

was enriched for a similar set of motifs as the primed enhancers (Figure S4F, S4G). 

Enhancers that became more active with TCR engagement were highly enriched for 

both AP-1 and NF-κB motifs (Figure 4E), and were more likely to be proximal to 

activation signature genes than would be expected at random (p-value = 2.0e-20 by 
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chi-squared test). These enhancers included, for example, those upstream of Il2ra 

(CD25; Figure 4F) and CD69 (Figure 4G). 

To investigate whether there was a quantitative relationship between TCR 

signal strength and enhancer activation, we performed independent ChIP-Seq for 

H3K27ac in response to both peptides at low and high concentrations. Given the 

prevalence of the AP-1 motif in the signal-responsive enhancers, we analyzed 

H3K27Ac tag counts at AP-1 binding sites genome-wide using publicly available 

ChIP-Sequencing data from in vitro activated TH17 cells58. There was an increase in 

H3K27Ac deposition at AP-1 binding sites that reflected the graded strength of TCR 

signaling (BATF shown in Figure 4H; other AP-1 family members in Figures S4H and 

S4I), indicating that AP-1 binding sites became more active in a graded manner 

corresponding to increasing TCR signaling. Graded changes in H3K27Ac were much 

less pronounced at CTCF binding sites, which occur at enhancers but are also more 

broadly distributed and play roles in establishing boundary elements. 

 

Super-enhancers prime signaling genes 

We next looked at changes in super-enhancers64, 65, 66 upon activation using the 

H3K27Ac mark. Most super-enhancers (approximately 450 out of 700 total) identified 

were shared by both the unstimulated and stimulated conditions. GO analysis of genes 

nearby the shared super-enhancers showed enrichment for leukocyte activation genes 

and Pleckstrin homology genes (Figure 5A), indicating that super-enhancers in CD4+ 

T cells prime genes important for inflammatory signaling. These basally-primed 
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super-enhancers included regions near key T cell genes such as Ets1 (Figure 5B), 

Runx1 (Figure S5A), Ctla4/Icos/CD28 (Figure 5C), and IRF4 (Figure S5B). Notably, 

even though many of the super-enhancers exist prior to stimulation, super-enhancers 

near activation signature genes show an increase in H3K27Ac signal subsequent to 

TCR signaling (Figure 5D).  

118 of the 568 super-enhancers identified after TCR stimulation were not 

identified as super-enhancers in the unstimulated condition. The super-enhancers that 

required TCR signaling were enriched for leukocyte activation genes (Benjamini-

Hochberg adjusted p-value = 4.6e-7) crucial for T cell activation, including Batf 

(Figure 5E), Il2ra (CD25, Figure 5F), Tbx21 (Tbet, Figure 5G), Lag3 (Figure S5C), 

and Stat5b (Figure S5D).  

 

ERK translates TCR signal strength downstream 

The Ras/Raf/Mek/Erk pathway downstream of the TCR activates the AP-1 

transcription factor family through a series of phosphorylation events and 

transcriptional induction of immediate-early genes33, 34. Given the fact that the AP-1 

motif was enriched at enhancers showing increasing activity and the fact that AP-1 

binding sites saw increasing H3K27Ac deposition, we sought to determine whether 

AP-1 and the ERK pathway were relevant to the increasing expression of activation 

signature genes across the conditions. We first compared the level of phosphorylated 

ERK (p-ERK) in each condition using flow cytometry, and found that, like CD69 and 

CD25, the amount of p-ERK in the p-ERK+ cells varied on a per-cell basis in each 
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condition, increasing with TCR signal strength (Figure 6A). As the increasing levels 

of p-ERK paralleled the general pattern of expression of the activation signature 

genes, we assessed binding frequencies of AP-1 factors in the gene promoters of the 

activation signature genes as compared to the bottom 10% of PC1 genes, and found 

that activation signature genes showed a significantly higher frequency of AP-1 

binding (Figure 6B).  

ERK pathway activation and AP-1 binding therefore seemed to correlate well 

with the graded profile of activation signature genes and the increasing activation 

score across the samples. In order to determine whether the gradual increase in ERK 

pathway activation was causal in translating TCR signaling into gradual increases in 

the expression of activation signature genes, we pretreated the CD4+ T cells with a 

low-dose MEK inhibitor (MEKi). MEK inhibition upstream of ERK was capable of 

suppressing p-ERK activity entirely, and titration of MEKi yielded intermediate levels 

of p-ERK on a per-cell basis (Figure S6A).  

Low-dose MEK inhibition decreased the levels of the extracellular signaling 

marker CD69 (Figure S6B), which was in the top 10% of PC1, but this suppression 

was not universal, as CD4, an example of a gene not in the top 10% of PC1, was not 

significantly affected (Figure S6C). In order to see if this preferential suppression of 

activation signature genes was widespread, we performed RNA-seq on the five 

conditions after pretreatment with MEKi at IC50 (0.5 uM). If TCR signaling strength 

upstream of pERK yields graded levels of ERK that are in turn essential for the graded 

levels of activation response genes, then reduction of pERK levels should move each 
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sample downwards in activation score, such that the high-dose, high-affinity case 

looks like the low-dose, high-affinity; the low-dose, high-affinity looks like the high-

dose, low-affinity; and so on.  

Accordingly, MEK inhibition at IC50 decreased expression of activation 

signature genes (Figures 6C, S6D), but, as with extracellular expression of CD69, this 

effect was selective; expression of genes in the bottom 10% was increased or 

unchanged (Figures 6D, S6E). Using the activation score to assess total T cell 

activation status, we found that MEKi shifted each sample down in score (Figure 6E), 

as would be expected if the graded levels of pERK seen with each condition were 

prescriptive of the activation status of the condition. Thus, graded levels of pERK 

downstream of the TCR help to translate the analog activation signal to graded levels 

of enhancer activity and gene expression genome-wide (Figure 6F). 

 

DISCUSSION 

Understanding how CD4+ T cells respond to ligands of different doses and 

affinities is critical to understanding the nature of the adaptive immune response to 

both pathogens and self. Here, we have shown that the traditional model of a purely 

digital TCR response is too simple; on a per-cell basis, stronger TCR signals result in 

higher levels of phosphorylated ERK, a proportional increase in enhancer acetylation, 

and quantitative increases in activation markers such as CD69 and CD25 (Figure 6F). 

As a result of both these single-cell differences and the increasing frequency of 

respondent cells, varying the dose or the affinity of the pMHC-TCR interaction results 
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in a gene expression profile that is graded corresponding to increasing strength of TCR 

signaling. Notably, the predominance of PC1 and the graded gene expression patterns 

together indicate that dose and affinity are not interpreted separately downstream of 

the TCR, but rather overall signaling strength sets the level of activation across the 

population.   

Ranking genes along a primary axis of variation allowed us to extract a set of 

activation signature genes that increase in a graded fashion at the population level 

proportionally to TCR signal strength, and further to establish an activation score that 

can rank arbitrary CD4+ T cell samples by the strength of signaling. The data 

presented here therefore gives us a greater understanding of the CD4+ T cell response 

to ligands of varying concentrations and affinities, and informs our understanding of 

the CD4+ T cell response under many conditions. 

Significant differences in primed enhancers have been demonstrated under 

several stimulating conditions in macrophages, and demonstrate the ability of cells to 

quickly remodel chromatin to initiate particular gene expression programs46, 67. 

Surprisingly, we did not find significant changes in the primed enhancer landscape 

upon TCR activation in CD4+ T cells. Similarly, even the more labile activation mark 

H3K27Ac was largely similar across conditions, with many activation genes marked 

as super-enhancers even before stimulation. While it remains to be seen whether non-

TCR signaling pathways or polarizing conditions induce more dramatic changes, the 

data presented here indicates that the CD4+ T cell enhancer landscape is largely pre-

established, with subsets of H3K4me2-marked enhancers increasing in activity, but 
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little in the way of de novo enhancer establishment. This finding helps to explain the 

speed and plasticity of the CD4+ T cell response68—if all enhancers are primed 

basally, and many are even activated basally, then pro-inflammatory transcription 

factors can bind at established enhancers and initiate new gene expression programs 

with minimal additional transcriptional machinery.  

Both the frequency of AP-1 binding and the level of pERK correlate with the 

strength of TCR signaling and the graded expression of activation signature genes. At 

least one of the feedback loops leading to digital TCR signaling, the son of sevenless 

(SOS) positive feedback loop, exists upstream of ERK, and it has been shown in 

thymocytes that pERK signaling is digital16, 17, 18. Our analog results for pERK can be 

interpreted to support the notion that TCR signaling in thymocytes functions 

differently than TCR signaling in mature T cells. Notably, both Themis and SOS, two 

key components of digital signaling in thymocytes, do not seem to be critical to 

mature T cell signaling69, 70.  

The graded levels of pERK in CD4+ T cells prove important for downstream 

enhancer and gene activity. We have here established a mechanistic link between the 

level of ERK signaling and the expression patterns of activation signature genes by 

using an inhibitor of MEK, upstream of ERK. Low-dose MEK inhibition selectively 

decreased expression of the activation signature genes such that the activation score 

under the inhibited conditions was incrementally decreased. This indicates that the 

analog levels of pERK seen on a per-cell basis are translated at a population level into 

increased enhancer and gene activity, and that “turning down” pERK levels selectively 
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diminishes the activation status of the cells. This finding is of particular interest in 

light of the clinical availability of numerous RAF, MEK, and ERK inhibitors71, 72. Our 

findings suggest that low-dose ERK pathway inhibition could be used to selectively 

decrease the activity of activation signature genes in CD4+ T cells, achieving low-

level immunosuppression without killing T cells or completely removing their ability 

to respond to TCR signaling. Further, the effect of MEK inhibitors on CD4+ T cells 

raises questions about the immunosuppressive effects of using MEK inhibitors in 

cancer treatment, especially as current clinical trials combine MEK inhibitors with 

checkpoint-blockade inhibitors71, 73. 

In sum, this study makes use of a unique model system to dissect the 

transcriptional responses of CD4+ T cells to increasing strength of signaling, and 

demonstrates that analog levels of pERK within the context of digital TCR signaling 

flow downstream to result in graded gene expression profiles and enhancer landscapes 

that can be used to characterize CD4+ T cell signaling at large. 

 

MATERIALS AND METHODS 

Mice 

AND mice on a B10.BR background were received from Dr. Michael Croft7, 8 

and bred in a specific pathogen free facility. All animal experiments were in 

compliance with the ethical standards set forth by UC San Diego’s Institutional 

Annual Care and Use Committee (IUCAC).  
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Cells 

Spleens were extracted and manually digested. CD11c+ cells were isolated 

using Miltenyi Biotec Inc. (San Diego, CA) MACS magnetic cell separation with 

positive selection for CD11c (CD11c, Biolegend, cat. no. 117304). Subsequently, the 

CD11c- splenic fraction was used to negatively select for naïve CD4+ T cells using 

the Miltenyi MACS system with the following antibodies: CD11c (Biolegend, cat. no. 

117304); CD45R (eBioscience, cat. no. 13-0452-86); CD11b (eBioscience, cat. no. 

13-0112-86); CD25 (eBioscience, cat. no. 36-0251-85); CD49b (eBioscience, cat. no. 

13-5971-85); CD69 (eBioscience, cat. no. 13-0691-85); CD8a (eBioscience, cat. no. 

13-0081-86); Ly-6G (eBioscience, cat. no. 13-5931-86); MHC class II (eBioscience, 

cat. no. 13-5321-85); TER-119 (eBioscience, cat. no. 13-5921-85. CD11c+ and CD4+ 

cells were cultured at a ratio of 1:2 in 96-well round-bottom plates for 24 hours, 108 

hours (for proliferation assay), or 3.5 hours (for ERK phosphorylation staining). 

Peptides were added at indicated concentrations with the CD11c+ and CD4+ cells in 

DMEM supplemented with 10% Fetal Bovine Serum. For sequencing experiments, 

CD4+ cells were re-isolated from the culture using the Miltenyi MACS system and the 

same set of antibodies as above less CD25 and CD69. For phospho-ERK staining, 

whole splenic cells were used, rather than purified CD11c+ and CD4+ cells. 

 

Peptides 

Peptides were ordered from Peptide 2.0 (Chantilly, VA) with the following 

amino acid sequences7, 8:  
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PCC – KAERADLIAYLKQATAK 

K99A – KAERADLIAYLAQATAK 

Y97K – ANERADLIAKLKQATK 

K99E – ANERADLIAYLEQATK 

MCC – ANERADLIAYLKQATK 

Lyophilized peptides were resuspended in water, and added at the indicated 

concentrations to the cell cultures. Unstimulated CD4s received an equivalent amount 

of water alone. 

 

Flow cytometry 

Flow cytometry was performed on a LSR II and LSR Fortessa, both from BD 

Biosciences (San Jose, CA). Cells were stained as per manufacturers’ protocols with 

the following antibodies: CD4-APC (eBioscience, cat. no. 17-0042-83); CD4-PE-

Cyanine7 (BioLegend, cat. no. 116016); CD69-FITC (eBioscience, cat. no. 11-0691-

82); CD25-PE (eBioscience, cat. no. 12-0251-82); Valpha11-FITC (BD Pharmingen, 

cat. no. 553222); Vbeta3-PE (BD Pharmingen, cat. no. 553209); CD11c-PE-Cyanine7 

(eBioscience, cat. no. 25-0114-82); IRF4-PerCP-Cy5 (eBioscience, cat. no. 46-9858-

80); Tbet-PE (Santa Cruz Biotechnology, cat. no. SC-21749); CD122-PE (BioLegend, 

cat. no. 105905); Ly6a-APC-Cyanine7 (BioLegend, cat. no. 108125); CD200-APC 

(BioLegend, cat. no. 123809); TNFSF11-APC (BD Biosciences, cat. no. 560296); 

phospho-ERK-Alexa Fluor 488 (Cell Signaling, cat. no. 4344S). Live/dead staining 

was performed using Fixable Aqua (Life Technologies, cat. no. L34957; or Biolegend, 
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cat. no. 423102). Cells were gated on CD4+, Aqua- cells. For phosphor-ERK staining, 

permeabilization was performed using BD Phosflow Perm Buffer III (cat. no. 558050) 

and BD Fix Buffer I (cat. no. 557870). Analysis was performed with FlowJo v10.6 

(Tree Star; Ashland, OR).  

 

Sequencing 

Prior to sequencing, CD4+ T cells were separated from the co-cultured cells 

using Miltenyi MACS negative selection as described above for the initial culturing. 

ChIP-sequencing for H3K4me2 and H3K27Ac in the 1uM peptide treatments was 

performed as described74, with the following modifications: sodium butyrate was used 

to inhibit de-acetylation; and three RIPA and three LiCl washes were performed 

instead of five and one. ChIP-sequencing for H3K4me2 and H3K27Ac across the five 

conditions was performed as described75. RNA-sequencing was performed as 

described, with minor modifications76. 

ChIP-sequencing antibodies used were: H3K4me2 (Millipore, cat. no. 07-030) 

and H3K27Ac (Abcam, cat. no. ab4729 and Active Motif, cat. no. 39135). 

 

MEK inhibitor treatment 

CD4+ T cells, isolated as described above, were pre-treated with 0.5uM 

Promega U0126 (cat. no. V1121) for thirty minutes at 37ºC. CD11c+ cells and 

peptides were subsequently as indicated and cultured in the presence of the inhibitor 

for 24 hours. 
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Analysis 

ChIP-sequencing reads were mapped to the mm10 genome using Bowtie277, 

and RNA-sequencing reads were mapped using STAR78. Default allowed error rates 

were used, and only uniquely mapping reads were used in downstream analysis. Initial 

processing of aligned data and peak calling was performed using Homer47. IDR 

analysis79 for ChIP-sequencing replicates was performed using the homer-idr 

package80. Vespucci81 was used for counting AP-1 tags in gene regions. 

Gene Ontology analysis was done with the DAVID Gene Functional 

Classification tool using the default background82. 

Super-enhancers were called using Homer47, which follows the published 

procedure64, 65, 66 by first stitching together peaks into larger regions and then sorting 

regions by normalized H3K27Ac tag count. Region scores are plotted against rank, 

and a threshold is defined by finding the point at which the tangent to the plotted rank-

scores is one. Regions past that threshold are called super-enhancers. 

Underlying data sets, including RPKM values and peaks, as well as code for all 

analyses described is publicly available at https://github.com/karmel/and-tcr-affinity. 

Analyses were performed using iPython Notebook83. Clustering and PCA was 

performed using the scikit-learn package84. For full execution details and parameters, 

please see the code in the Github repository linked here. 

 

Activation signature scores 
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To generate the list of genes used in the activation signature score, we 

separately ran Principal Component Analysis on two replicates of RNA-Seq data and 

also the combined expression data from both replicates. Genes with an RPKM less 

than 100 in the No Peptide condition or a standard deviation greater than 20% of the 

No Peptide expression level across replicates were then omitted from the target set of 

genes. Remaining genes were sorted along PC1, and genes that were in the top ten 

percent in all three data sets (215) or the bottom ten percent in all three data sets (137) 

were included in the set of activation signature score genes used in analysis.  

To compute the activation signature score, we take the dot product of the 

values of genes along PC1 in the combined RNA-Seq data set and the mean-centered 

expression levels for those genes for each sample in an experimental data set, yielding 

a single scalar score for each experiment. The scores across samples are then scaled by 

the max score, ensuring values are in the range of [-1, 1]. 

The activation signature score tool is described and downloadable here: 

https://github.com/karmel/and-tcr-affinity/tree/master/andtcr/rna/activationscore 

 

Public data 

Publicly available datasets used for the analyses in Figure 3 and Figure S3 is 

available from GEO with the following Accession Codes: GSE14308, GSE32224, 

GSE41866, GSE42276, GSE54938, and GSE60337. AP-1 binding data is from 

GSE39756. For figure S5, the following datasets were used: GSE56456, GSE31233, 

GSE40463, GSE21365, GSE56098, GSE21512. 
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Accession codes 

Raw and processed data are provided in the Gene Expression Omnibus (GEO) 

under accession number GSE69545. 
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Figure 2.1: Both frequency of responding cells and per-cell activation levels 
increase with increasing signal strength. 

A. Purified AND T cells and CD11c+ APCs were co-cultured in the presence of 
indicated peptides at the indicated concentrations for 24h. Flow cytometry was 
then used to phenotype the CD4+ T cells. The histograms show CD69 
expression of CD4+ T cells. The annotated bar indicates the gate used to 
identify CD69+ CD4 cells in subsequent figures.  

B. Gating on CD4+ cells as in 1A, there is a bimodal distribution of CD25 
expression resulting from activating levels of high-affinity (PCC) or low-
affinity (K99A) peptides. The annotated bar indicates the gate used to identify 
CD25+ cells. 

C. The percent of CD4+ cells that are CD69+ (using gate shown in 1A) varies 
with the peptide presented and concentration of the indicated peptide.  

D. The percent of CD4+ cells that are positive for the activation marker CD25 
varies with both peptide and dose. 

E. Gating on CD4+ CD69+ cells (as shown in 1A), the geometric mean 
fluorescence intensity (MFI) of CD69 per cell in each condition varies. 

F. The geometric MFI of CD25, gated on CD4+ CD25+ cells (as shown in 1C), 
varies with peptide and dose.  

(P-values based on Student’s t test; * = p < 0.05, ** = p < 0.01, *** = p < 0.001.) 
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Figure 2.2: RNA-Sequencing reveals graded expression of activation signature 
genes. 

A. Principal component analysis (PCA) of the approximately 3,200 genes that 
changed between any two samples reveals that the primary axis of variation 
(PC1, shown along the x-axis) orders the five conditions by increasing TCR 
signal strength: No Peptide; low-dose, low-affinity (10uM K99A); high-dose, 
low-affinity (100uM K99A); low-dose, high-affinity (0.1uM PCC); and high-
dose, high-affinity (10uM PCC). 

B. After ordering the ~3,200 genes used for PCA by their contribution to PC1, we 
extracted the top 10%—that is, the ~320 genes contributing most positively to 
a sample’s PC1 value—and the bottom 10%—that is, the ~320 genes 
contributing most negatively to a sample’s PC1 value. Each group displays a 
clear trend, with the top 10% increasing in expression as signal strength 
increases, and the bottom 10% decreasing in expression. Each blue line 
represents a gene, with reads per kilobase per million (RPKM) normalized 
from 0 to 1 across the five conditions. Significance was determined using 
permutation testing, where the mean difference between genes in the No 
Peptide sample as compared to 10uM PCC was normally distributed over 
randomly generated groups of genes. This normal distribution was compared to 
the top 10% and bottom 10% genes to generate a p-value.  

C. Genes in the top 10% of PC1, termed activation signature genes, include many 
genes previously identified as important to CD4+ T cell activation, such as 
Tbx21 (Tbet), Stat1, and Tnf. Reads per kilobase per million (RPKM) for each 
increases with increasing signaling strength. 

D. Irf4, a transcription factor previously shown to be more highly expressed with 
increasing TCR affinity, shows graded expression across the five conditions. 

E. Gene Ontology (GO) analysis of activation signature genes shows enrichment 
for protein biosynthesis and molecular chaperone genes. P-values shown are 
Benjamini-Hochberg adjusted p-values. 

F. As measured by flow cytometry, the geometric MFI of Tbet in CD4+ cells 
increases on a per-cell basis with increasing signal strength. 

G. Similarly, per-cell protein levels of IRF4 increase with increasing signal 
strength when measured with flow cytometry. 

(P-values based on Student’s t test; * = p < 0.05, ** = p < 0.01, *** = p < 0.001.) 
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Figure 2.3: PC1 can be used to rank arbitrary CD4+ T cell data sets. 

A. An activation score derived from the top and bottom genes along PC1 ranks 
the five conditions according to TCR signaling strength. The score correctly 
captures that 100uM K99A and 0.1uM PCC are very similar in activation 
status. Note that the score ranks samples within an experiment, but is not an 
absolute metric for comparing across experiment groups. 

B. The activation score can be used to compare arbitrary CD4+ T cell data sets. 
Here, activation scores were calculated for microarrays from helper T cell 
subsets, and they demonstrate that naïve cells and native regulatory T cells 
(nTregs) are less classically activated than Th1, Th2, and Th17 polarized 
subsets. 

C. The activation score captures the fact that plate-bound anti-CD3 and anti-
CD28 stimulation of helper T cell subsets results in stronger signaling than 
antigen as presented by APCs. 

D. CD4+ T cells were subjected to a variety of stimulatory or inhibitory 
treatments: anti-CD3 alone, or anti-CD3 with anti-CD28, anti-BTLA, anti-
CD80, anti-CTLA4, anti-ICOS, or anti-PD1. Gene expression profiles at early 
(1h and 4h) and late (20h and 48h) time points yield activation scores in line 
with the characterization of CD28, BTLA, CD80, and ICOS as co-stimulatory, 
and CTLA4 and PD1 as inhibitory. Although it might be expected that anti-
CD80 would have an inhibitory effect, these results are in line with the 
conclusions from the originally published analysis. 

E. Naïve CD4+ splenocytes were isolated from 39 mouse strains. Using the PC1-
derived activation score, we can rank the CD4+ cells from each strain as either 
more or less activated under basal conditions. Using the activation score, we 
recapitulate the finding that C57Bl6 mice have more pro-inflammatory cells 
than BALB/c mice. The highest scoring strain, DBA/2, shows top-quartile 
expression of immune effectors as well as protein biosynthesis genes. 

(P-values based on Student’s t test; * = p < 0.05, ** = p < 0.01, *** = p < 0.001.) 
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Figure 2.4: Primed enhancers are pre-existing, but gain activation markers with 
treatment. 

A. Comparing primed enhancers marked by H3K4me2 peaks reveals strong 
correlation between untreated and treated samples. Normalized tag counts in 
the No Peptide condition are plotted against those in a 1uM PCC condition, 
with red dots coloring those that are more than two-fold up-regulated in the 
1uM PCC condition. The up-regulated enhancers are both few in number and 
low in tag count.  

B. De novo motif finding identifies lineage-determining transcription factor 
(LDTF) motifs among primed enhancers shared by the five conditions. An 
ETS motif is most prominent, and a RUNX motif is likewise highly enriched 
over the randomly selected background. Both ETS and RUNX factors play 
important roles in T cell development. 

C. Among primed enhancers shared by all five conditions, including the untreated 
condition, pro-inflammatory transcription factor motifs are enriched. An IRF 
family motif, AP-1 family motif (represented by BATF), and NFkB motif 
(represented by REL) are all significantly enriched among shared enhancers 
marked by H3K4me2. 

D. Comparing H3K27Ac tag counts at enhancers in No Peptide as compared to 
1uM PCC treatment reveals that many enhancers see increasing H3K27Ac 
deposition upon stimulation. Points in red indicate greater than two-fold 
increase in tags upon treatment. 

E. Enhancers that are more active upon stimulation, as determined by greater than 
two-fold H3K27Ac tags in 1uM PCC treatment as compared to No Peptide, are 
enriched for pro-inflammatory transcription factor motifs. BATF, an AP-1 
family member, and NFkB are most prominent. 

F. Enhancers that are more active with stimulation are enriched near activation 
signature genes, as can be seen with this enhancer upstream of the activation 
signature gene Il2ra (CD25). 

G. Enhancers upstream of the activation signature gene CD69 show an increase in 
H3K27Ac deposition upon treatment with 1uM PCC. 

H. Genome-wide, deposition of H3K27Ac, a marker of transcription factor 
activity, reflects increasing TCR signal strength at the binding sites of AP-1 
family members, including Batf. 
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Figure 2.5: Super-enhancers prime T cell activation genes. 

A. Gene Ontology (GO) analysis of genes nearest to the ~450 super-enhancers 
shared by treated and untreated conditions show enrichment for T cell 
activation genes. P-values shown are Benjamini-Hochberg adjusted p-values.  

B. H3K27Ac marks a large super-enhancer around the lineage-determining 
transcription factor Ets1 in both the No Peptide and 1uM PCC conditions. The 
super-enhancer spans the ~600 kbp region shown. 

C. The ~400 kbp super-enhancer region encompassing Cd28, Ctla4, and Icos is 
marked by H3K27Ac in both treated and untreated conditions. 

D. Despite being heavily marked by H3K27Ac in both untreated and treated 
conditions, shared super-enhancers near activation signature genes show a 
significant gain in H3K27Ac tags in response to stimulation as compared to the 
shared super-enhancers not proximal to activation signature genes. In other 
words, basally primed super-enhancers near activation signature genes see 
significant increases in activity upon stimulation, correlating with increased 
gene expression at the activation signature genes. 

E. Some regions of H3K27Ac deposition required TCR stimulation to pass the 
super-enhancer threshold, as can be seen here at the ~60 kbp region 
encompassing Batf, an AP-1 family member. While H3K27Ac is clearly 
present under basal conditions, there is a substantial increase in enhancer 
activity upon treatment with 10uM PCC.  

F. Il2ra (CD25) shows increased enhancer activity and formation of a super-
enhancer in the treated condition. 

G. Similarly, the region surrounding Tbx21 (Tbet) shows substantial increases in 
activity subsequent to stimulation, resulting in the formation of a super-
enhancer. 

(P-values based on Student’s t test; * = p < 0.05, ** = p < 0.01, *** = p < 0.001.) 
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Figure 2.6: ERK signaling translates TCR signal strength into graded gene 
expression. 

A. ERK phosphorylation is a measure of ERK pathway activity. Flow cytometry 
for phospho-ERK after 3.5 hours of co-culturing shows that, on a per-cell basis, 
increasing signal strength yields increasing levels of phospho-ERK among 
CD4+ phospho-ERK+ cells. 

B. ERK pathway activation is upstream of the transcription factor AP-1. ChIP-
sequencing tags for four AP-1 family members (Batf, cJun, JunB, and JunD) in 
Th17 cells shows that there is an enrichment for AP-1 binding near the 
promoters (plus or minus 1,000 bp from the TSS) of activation signature genes 
(top 10% of PC1) as compared to all genes or the genes in the bottom 10% of 
PC1.  

C. A MEK inhibitor that dampens signaling upstream of the ERK pathway 
preferentially diminishes expression of activation signature genes, as seen in 
the fact that the RPKM of genes in the top 10% of PC1 is significantly reduced 
with treatment. 

D. The reduction of RPKM seen with the activation signature genes is not a 
general effect, as the RPKM of the genes in the bottom 10% of PC1 are not 
significantly affected by MEK inhibitor treatment. 

E. We quantified the effect of MEK inhibitor treatment using the activation 
signature score. Treatment with the MEK inhibitor reduces the activation 
signature score for all samples. 

F. Schematic of the ERK-AP-1 axis. See text for details. 

(P-values based on Student’s t test; * = p < 0.05, ** = p < 0.01, *** = p < 0.001.) 
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Figure 2.S1: CD4+ T cells and APCs were purified from AND mice. 

A. The AND mouse TCR includes the V alpha 11 chain and the V beta 3 chain. 
The great majority of naïve CD4+ T cells extracted from AND mouse spleens 
expressed this pair of TCR chains. Naïve CD4+ T cells were isolated using 
negative selection with the Miltenyi MACS system, as described in the 
methods section. 

B. APCs for peptide presentation were extracted from mouse spleens using 
positive selection for CD11c. The extracted cells were largely positive for both 
CD11c and MHC class II molecules.  
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Figure 2.S2: RNA-Sequencing reveals graded expression of activation signature 
genes. 

A. 99.5% of the variance between the five conditions could be explained with a 
single principal component. 

B. Eif3a, a protein biosynthesis gene, increased in expression with increasing 
TCR signaling strength. 

C. Cct2, a molecular chaperone gene, increased in expression with increasing 
TCR signaling strength. 

D. Not all gene expression changes are reflected in extracellular protein levels. 
Il2rb, an activation signature gene, does not significantly change when 
measured with extracellular flow cytometry. 

E. CD200, an activation signature gene, shows a graded gene expression pattern 
across the five conditions, and this is reflected by extracellular presentation of 
the CD200 molecule as measured by flow cytometry. This plot shows the 
geometric MFI of CD4+ CD200+ cells across the conditions. 

F. Similarly, Ly6a increases in both population gene expression levels and single-
cell protein levels as measured by flow cytometry. This plot shows the 
geometric MFI of CD4+ Ly6a+ cells across the conditions. 

G. The receptor TNFSF11 (RANKL) shows a graded increase in gene expression 
that is reflected in the per-cell levels of extracellular expression of the protein. 
This plot shows the geometric MFI of CD4+ RANKL+ cells across the 
conditions. 

H. (P-values based on Student’s t test; * = p < 0.05, ** = p < 0.01, *** = p < 
0.001.) 
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Figure 2.S3: PC1 can be used to rank arbitrary CD4+ T cell data sets. 

A. The activation signature score was used to quantify CD4+ T cell activation 
status under Trim28 knockout conditions. Loss of Trim28 resulted in a 
lowering of the activation signature score, corroborating the previously 
reported results that the Trim28-deficient cells produced less IL2. 

B. Acute LCMV infection results in a higher activation signature score for CD4+ 
T cells at early time-points, marking the peak of infection before cells begin to 
turn off activation programs. The activation signature score does not reach 
such a high level in a chronic infection model. 
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Figure 2.S4: Primed enhancers are pre-existing, but gain activation markers with 
treatment. 

A. Despite the similarity of enhancer profiles across conditions, the H3K4me2 
mark “spreads” from the transcription start site along the body of genes at a 
subset of genes. This subset is significantly enriched for activation signature 
genes such as CD69, shown here.   

B. Irf4, another activation signature gene, shows a similar spreading of dimethyl 
along the body of the gene after treatment. 

C. Normalized tag counts along the first 4,000 bp of all activation signature genes 
show that, overall, the No Peptide condition shows a narrow peak at the 
transcription start site, but this peak is smoothed out as the dimethyl mark 
spreads along the body of the gene in the treated samples. 

D. The spread of dimethyl seen at activation signature genes is not present at 
genes in the bottom 10% of PC1, where all five conditions show a similar 
pattern of dimethyl deposition across the first 4,000 bp of the genes. 

E. The Interferon Response Family (IRF) motif is enriched in enhancers from 
many cells in the T cell lineage, with motif frequency peaking in thymocytes 
(DN1 through DP). The grey portion of the bars represents mean background 
enrichment of the motif, and the colored section of the bar shows the 
difference in enrichment between the cell type indicated and the background. 
From top to bottom, the cells indicated are: Embryonic stem cells; Lin−Sca-
1+c-Kit+ (LSK) hematopoietic progenitor cells; fetal liver derived double 
negative 1 thymocytes ; fetal liver derived double negative 2a thymocytes ; 
fetal liver derived double negative 2b thymocytes; double negative 3 
thymocytes; double positive thymocytes; Th1 polarized CD4+ T cells; Th2 
polarized CD4+ T cells; Th1 polarized CD4+ T cells from a Stat1 knockout 
model; thioglycollate-elicited macrophages; and the adipocyte-derived 3T3L1 
cell line. 

F. De novo motif finding identifies lineage-determining transcription factor 
(LDTF) motifs among H3K27Ac-marked enhancers shared by the five 
conditions. As with the primed enhancers, the ETS family motif and a RUNX 
motif are highly enriched. 

G. Among activated enhancers shared by all five conditions, pro-inflammatory 
transcription factor motifs are enriched. As in primed enhancers, IRF, NFkB, 
and AP-1 motifs are all enriched in the shared H3K27Ac peaks. 

H. As seen with Batf, deposition of H3K27Ac, a marker of transcription factor 
activity, reflects increasing TCR signal strength at the genome-wide binding 
sites of the AP-1 family member JunB. 

I. Similarly, deposition of H3K27Ac reflects increasing TCR signal strength at 
the genome-wide binding sites of the AP-1 family member cJun. 
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Figure 2.S5: Super-enhancers prime T cell activation genes. 

A. A basally-primed super-enhancer encompasses the Runx1 locus. 

B. Despite being up-regulated in response to treatment, the Irf4 locus has a super-
enhancer even under untreated conditions. 

C. Lag3, a negative regulator of T cell signaling that is up-regulated with 
treatment, sees increased enhancer activity and formation of a super-enhancer 
in treated conditions. 

D. Stat5b, a transcription factor important for T cell signaling, shows increased 
enhancer activity and formation of a super-enhancer in the treated condition. 
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Figure 2.S6: ERK signaling translates TCR signal strength into graded gene 
expression. 

A. Per-cell levels of phospho-ERK as measured by flow cytometry are analog 
with respect to the dosage of MEK inhibitor treatment. For each peptide 
condition, increasing the concentration of the MEK inhibitor gradually reduces 
the geometric MFI of phospho-ERK in the treated cells. 

B. MEK inhibitor treatment at 0.5uM (IC50) results in the preferential reduction 
of activation signature genes. CD69, one of the activation signature genes, 
reflects this decrease in expression level at the protein level, as measured by 
extracellular flow cytometry. 

C. In contrast to CD69, CD4 does not show a change in expression level upon 
treatment with the MEK inhibitor. 

D. For the genes in the top 10% of PC1, MEK inhibitor treatment (green lines) 
results in a decrease of expression as compared to the uninhibited samples 
(blue lines). Each line plots the normalized RPKM of one gene across the five 
samples, either with the MEK inhibitor (green) or without (blue). 

E. In contrast to the top 10%, the genes in the bottom 10% of PC1 are not 
significantly affected by MEK inhibitor treatment, and, if anything, increase in 
expression level rather than decrease. 
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