
UCLA
UCLA Electronic Theses and Dissertations

Title
An Application of Reinforcement Learning Techniques in Traditional Pathfinding

Permalink
https://escholarship.org/uc/item/8tm550mr

Author
Brown, Britney

Publication Date
2022

Supplemental Material
https://escholarship.org/uc/item/8tm550mr#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8tm550mr
https://escholarship.org/uc/item/8tm550mr#supplemental
https://escholarship.org
http://www.cdlib.org/


 

 

 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

 

An Application of Reinforcement Learning Techniques  

in Traditional Pathfinding 

 

 

 

A thesis submitted in partial satisfaction 

of the requirements for the degree 

Master of Applied Statistics 

 

 

by 

 

 

Britney Shaohan Brown 

 

 

2022



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Britney Shaohan Brown 

2022 



 ii 

ABSTRACT OF THE THESIS 

 

An Application of Reinforcement Learning Techniques in Traditional Pathfinding 

 

by 

 

Britney Shaohan Brown 

Master of Applied Statistics 

University of California, Los Angeles, 2022 

Professor Yingnian Wu, Chair 

 

 

Modern-day navigation relies on pathfinding algorithms to determine the shortest 

distance between two locations. These algorithms search graphs robustly, starting at an initial 

node and analyzing adjacent positions connecting to the destination. Even though this technique 

consistently finds optimal routes, pathfinding is dependent on prior knowledge of a given 

environment. Reinforcement learning is a branch of machine learning capable of achieving 

similar results through efficient exploration, data collection, and exploitation. A form of artificial 

intelligence, reinforcement learning focuses on understanding the environment through 

incentives and penalties to make optimal decisions, eventually leading to desired target 

convergence. This research trains three model-free reinforcement learning techniques, advantage 

actor-critic (A2C), proximal policy optimization (PPO), and deep Q-network (DQN) on custom 

maze environments. In comparison with Dijkstra’s algorithm, a standard pathfinding approach, 

results indicate that DQN can find analogous routes, especially when pre-trained with expert-

guided behavior to reach these optimal solutions in a time-efficient manner.   
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1 Introduction 
In this day and age, it is near impossible to get lost due to global positioning and navigation 

systems that map us wherever we need to go. Navigational apps have become so advanced that we 

can personalize travel experiences, getting directions to avoid toll roads, accident sites, and even red-

light cameras. While the detailed routing algorithms for these applications are kept secret, 

pathfinding techniques remain at the core, determining the shortest distance between two locations 

and cornering the market in optimal graph search.  

However, pathfinding algorithms rely heavily on prior knowledge of a deterministic 

environment. This is not the case for most real-world applications, such as instantaneous navigation, 

which contains unknown obstacles and is stochastic by nature. Without providing the exact location 

of targets and barriers for a pathfinding algorithm, it is unable to determine the optimal path and is 

therefore rendered useless in a dynamic environment. Therefore, this research aims to leverage the 

advancements in artificial intelligence to test the applicability and efficiency of standard 

reinforcement learning algorithms in optimal path routing. In an attempt to combat the limitations of 

pathfinding, these reinforcement learning agents will be trained to solve a maze without prior 

knowledge of the limitations or goals of the environment.   

The following research will generate custom maze environments with OpenAI Gym to test 

three reinforcement learning algorithms: advantage actor-critic (A2C), proximal policy optimization 

(PPO), and a deep Q-network (DQN). The on-policy PPO and off-policy DQN approaches 

successfully converged on an optimal path comparable to a common pathfinding approach, Dijkstra’s 

algorithm. Finally, using an expert policy inspired by the resulting movements of this pathfinding 

method, research shows that using behavioral cloning to train a DQN agent not only solves the maze 

but also optimizes movement and training time.  
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2 Pathfinding 
Imagine traveling to an unfamiliar city, tired from a long flight and in search of a decent 

coffee shop. While it is entirely possible to start at one end of town and test every possible path 

in hopes of finding an establishment, this method is exhaustive and time-consuming. Thanks to 

modern-day technological resources, a more convenient method relies on digital mapping 

services to reach destinations safely and efficiently. These systems typically rely on pathfinding, 

a computer algorithm that finds the shortest distance between two points. This application is 

loosely related to the shortest path problem within graph theory, which identifies paths 

dependent on specific criteria such as speed or difficulty. Pathfinding is not only crucial in 

navigating complex road systems and obstacles but also in other worldwide necessities such as 

routing IP network protocols, understanding optimal flight agendas, determining autonomous 

robotic controls, and even modeling the spread of infectious diseases.  

2.1 Dijkstra’s Algorithm 
In 1956, pathfinding secured its place in computer programming and routing history 

when Dutch software engineer Edsger Wybe Dijkstra developed a well-known algorithm for 

finding the shortest distance between nodes (Richards). The eponymously named Dijkstra’s 

algorithm eliminates the use of traversal algorithms such as the Bellman-Ford algorithm which 

exhaustively searches every possibility, including impossible routes, to eventually determine the 

shortest path. On the other hand, Dijkstra’s algorithm simplifies complex routing problems by 

utilizing dynamic programming to dissect smaller, solvable sub-problems and create optimal 

substructures for a combined ideal solution. 
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As described in “Towards Shortest Path Computation using Dijkstra’s Algorithm,” this 

approach performs a recursive operation that labels nodes binarily and stores the relationship 

with predecessor nodes in a priority queue to determine the absolute shortest path between an 

initial starting node and a target node (Makariye, 2017). Dijkstra’s algorithm begins by selecting 

the initial node and storing the distance to every directly neighboring node. At this point, all 

nodes that cannot be reached in a single step are placed at the bottom of a priority queue. 

Dijkstra’s then labels the initial node as “visited” and selects the nearest node for further 

investigation. The total distance to the initial node is then recalculated for every “unvisited” 

neighbor of this newly selected node. These distances are compared to the original, previously 

determined values; the smaller of the two distances is then saved in the priority queue, which 

now represents a visiting order for all remaining nodes. After the queue updates, the current node 

then transitions to a “visited” state and a new, unvisited node is selected from the top of the 

priority queue. Dijkstra’s algorithm recursively visits nearest neighbors until the target node is 

chosen from the list of unvisited nodes. At the end of this process, the optimized path is found 

through the stored order of predeceasing nodes in the priority queue.  

 

Figure 1: Dijkstra's Algorithm  
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Above is an example of Dijkstra’s algorithm locating the shortest path from initial node 

A to target node E. Although E is unreachable from A directly, the distances to neighboring 

nodes are stored in the priority queue and updated recursively. After evaluating distances through 

B, C, and D, the algorithm reveals the shortest path from A to the target E is through node D.  

 

Figure 2: Dijkstra's Optimal Route 

However, Dijkstra’s algorithm bases its search on a weighted, non-negative, and acyclic 

graph (Huang et al.). Unlike the example above, these factors are not found in realistic 

representations of navigational and global positioning systems due to an assortment of unknown 

obstructions and inconsistences. To remain relevant in modern technological advances, 

pathfinding approaches need to adapt routes quickly and effectively for dynamic obstacles. 
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3 Reinforcement Learning 
“What we want is a machine that can learn from experience.” 

~ Alan Turing, the father of artificial intelligence, in 1947 

 

Since the conception of machine learning (ML) in the 1950s, the field has further 

developed into three primary varieties including supervised, unsupervised, and reinforcement. In 

supervised learning, the goal is to create a model that accurately describes a labeled dataset, 

allowing for proper categorization and subsequent prediction of new data (Hayes). On the other 

hand, unsupervised learning focuses on the underlying structure of an unlabeled dataset, utilizing 

the relationships between datapoints and their respective characteristics (Bhatt). Both task-driven 

supervised and data-driven unsupervised learning are commonly used for classification as well as 

prediction. Finally, unlike these two ML branches, reinforcement learning specializes in 

interacting and gathering data from an unknown environment- observing consequences, 

maximizing rewards, and learning appropriate behaviors.    

3.1 Definitions 
This section contains a brief high-level overview of reinforcement learning (RL) 

notations and descriptions to provide the necessary background for the following concepts and 

algorithms. Beginning with a dive into Markov Decision Processes (MDPs), this section will also 

cover the use of policy, value, quality, and advantage functions as well as how these functions 

can be estimated using the Bellman equation. This section also covers the architecture of a 

reinforcement learning episode as well as the discounted reward used to motivate learning. 

 



 6 

3.1.1 Markov Decision Process 
A Markov Decision Process (MDP) is a stochastic, discrete-time control process that 

provides the mathematical framework of reinforcement learning algorithms. An extension of 

Markov chains, MDPs allow a decision maker to choose actions that maximize rewards within a 

given environment. For each step, this decision maker must choose an available action and the 

MDP reacts by moving to a new state and producing a positive or negative reward. This process 

creates a state transition function where each next state is dependent on the current state and 

action alone, satisfying the Markov property of conditional independence.  

Therefore, every MDP can be broken into four main components: states, actions, rewards, 

and transitions. The notation 𝑆 represents the set of finite states describing the current 

environment while 𝐴(𝑠) symbolizes every possible action for a given state. The reward, written 

as 𝑟 = 𝑅(𝑠, 𝑎), is a function that provides a real value to denote the consequence of choosing a 

certain action at the current state. Finally, the transition model 𝑃(𝑠!|	𝑠, 𝑎) describes the 

probability of transitioning to a new state 𝑠′ when selecting action 𝑎 at current state 𝑠. This 

transition model represents all possible combinations of 𝑠, 𝑎,	and 𝑠′ for the environment.  

3.1.2 Policy Function 
A policy function defines how an agent behaves, detailing which action to perform in 

each state. These policies are either deterministic 𝑎 = 	𝜋(𝑠) or stochastic 𝑎 = 	𝜋(𝑎|𝑠). 

Deterministic policies indicate what action to take for a given state while stochastic policies are 

functions containing a random probability for action selection (Del Pra). Therefore, a 

deterministic policy can be viewed as a special stochastic policy containing an exclusive 

probability of 1 for one of the actions and 0 for the remaining options.  
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3.1.3 Episode 
An episode is a sequence of observed states and actions construed through timesteps, 

which vary from 0 to a finite or infinite end value. For every timestep 𝑡, an agent observes the 

given state 𝑠" ∈ 𝑆 and takes an action 𝑎" ∈ 𝐴. The agent then obtains a reward 𝑟"	and transitions 

to a new state 𝑠"#$ selected by the state transition model 𝑃(𝑠"#$|	𝑠" , 	𝑎"). Finally, the new state 

𝑠"#$ becomes the current state 𝑠" and this loop continues until the agent reaches a terminal state 

in which all actions receive a reward of 0 to represent the end of an episode (Zychlinski).  

Figure 3: Standard Reinforcement Learning Architecture 

 

3.1.4 Discounted Return 
Using the rewards from each timestep 𝑡, a long-term cumulative reward, known as the 

return 𝐺", is calculated at the end of each episode. In addition to the immediate positive or 

negative reward for every timestep, 𝑟", a discount factor 𝛾 ∈ [0	, 1)	is used to determine the 

importance of each state (Del Pra). This discounted return is denoted as follows:  

𝐺" =	𝑟" +	𝛾𝑟"#$ +	𝛾%𝑟"#% + 𝛾&𝑟"#& +⋯ =	9𝛾'𝑟'

(

')*

 

Equation 1: Discounted Return 

(1) 

If the discount factor is 0, RL agents only consider the current reward, seeking immediate 

rewards rather than choosing a less-rewarding action that leads to a significantly larger reward 
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later in the episode (Jones). If the discount factor approaches 1, an RL agent heavily considers 

the consequences of current actions in hopes of greater long-term rewards (Torres). For example, 

imagine two students with respective discount factors near 0 and 1. The first might party one 

night, being forced to spend all weekend catching up while the later would study during the 

week, earning a homework-free, party weekend. Similarly, most RL algorithms select larger 

discount factors to create agents that are heavily inspired by future rewards.  

3.1.5 Value and Advantage Functions 
The state-value function, denoted simply as the value function 𝑉(𝑠), measures the overall 

expected return 𝐺". Starting at the current state 𝑠",	the agent performs N timesteps, which 

represents the total number of states until reaching the terminal state and ending the episode. 

Similarly, the action-value function, also known as the quality function 𝑄(𝑠), measures the 

expected long-term return when the agent performs action 𝑎 at current state 𝑠. 

The difference between the state-value and action-value functions is subtle. At 𝑛 = 0, the value 

𝑉(𝑠) reward 𝑟*	is the expected reward when the agent is in state 𝑠, before the agent performs any 

action (Zychlinski). The quality 𝑄(𝑠) reward 𝑟* is the expected reward after playing an action. 

This distinction is important when measuring the advantage function 𝐴(𝑠, 𝑎), which 

demonstrates if a certain action is a good or bad decision. Essentially, this function measures the 

advantage of selecting particular actions compared to others when an agent is in a fixed state.  

𝑉(𝑠) = 	𝔼	[𝐺"	|	𝑠"] = 	𝔼 ?9𝛾'𝑟'

(

')*

@ 

Equation 2: State-Value Function 

(2) 

𝑄(𝑠, 𝑎) = 	𝔼	[𝐺"	|	𝑠" = 𝑠, 𝑎" = 𝑎] = 	𝔼 ?9𝛾'𝑟'

(

')*

@ 

Equation 3: Action-Value Function 

(3) 
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3.1.6 Bellman Equation 
The Bellman equation is used to get an estimate for both value functions by breaking 

them into two parts: the immediate reward and the discounted value of the next step, which is 

chosen with the transition model P (Torres). Rather than finding the cumulative sum over the 

remaining timesteps, the Bellman equation simplifies this calculation, optimizing a discrete-time 

solution using dynamic programming (Tanwar). Here, the Bellman equation is expressed in 

terms of both the state-value and action-value functions respectively: 

𝑉(𝑠) = 𝑅(𝑠) + 	𝛾 9 𝑃(𝑠!|𝑠)𝑉(𝑠!)
+!∈	.

	 

Equation 5: Bellman Equation (State-Value Function) 

(5) 

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 	𝛾 9 𝑃(𝑠!|𝑠, 𝑎)𝑄(𝑠!, 𝑎!)
+!∈	.

 

Equation 6: Bellman Equation (Action-Value Function) 

(6) 

In addition, this equation is used to determine the maximum of the action-value function, which 

is also referred to as the optimal quality function 𝑄∗(𝑠, 𝑎): 

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 	𝛾 9 𝑃(𝑠!|𝑠, 𝑎)max
0!

𝑄∗(𝑠!, 𝑎!)
+!∈	.

	 

Equation 7: Optimal Quality Function 

(7) 

Subsequently, selecting the action that maximizes 𝑄∗(𝑠, 𝑎) results is the optimal policy 𝜋∗(𝑠): 

𝜋∗(𝑠) = 	𝑎𝑟𝑔	max
0	∈	1

𝑄∗(𝑠, 𝑎)	 

Equation 8: Optimal Policy 

(8) 

3.2 Reward System 
Reinforcement learning is well-suited for sequential decision problems, such as 

navigating a maze, since the ultimate goal is finding the optimal sequence of actions that 

𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) = 	𝔼[𝑟(𝑠, 𝑎) − 𝑟(𝑠)] 
Equation 4: Advantage Function 

(4) 
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maximize long-term gains (Hayes). In 1972, Stanford professor Walter Mischel and his graduate 

researcher Ebbe Ebbesen conducted a delayed gratification study in which a child is presented 

with two options: either a small, immediate reward or a better, larger reward if they choose to 

wait an extended period. Researchers typically offered one marshmallow as the immediate 

reward and told participants that waiting for 15 minutes would result in two marshmallows, 

rather than just one. Some children would choose the initial treat while others decided to delay 

their gift, opting for the larger reward. The latter, reward maximization, is how RL algorithms 

are taught to learn.  

In an initially unknown environment, reinforcement learning agents interact and explore 

their surroundings. They gather valuable information by implementing a combination of random 

and informed actions. The environment responds accordingly, giving the agent delayed feedback 

through rewards. These rewards can be positive to enforce desired behavior, negative to 

emphasize the severity of mistakes, or zero to represent neutral action choices. This reward 

system allows for full comprehension of long-term rewards and consequences. Rather than 

making the best stand-alone decision in the moment, agents learn a sequence of actions that 

maximize the overall reward, therefore gaining the capability of sequential decision making.  

3.3 Exploration-Exploitation Dilemma 
Imagine someone moving to a new town. They would need to explore restaurants in the 

area before determining which places have the best food and quality service, eventually 

exploiting this knowledge by continuously going to their favorite restaurants. If this person stops 

searching for new restaurants after finding one place, they may never find another restaurant 

with amazing food and excellent service. The same dilemma occurs for RL agents, which have 

two goals when interacting with an environment: exploration and exploitation.  
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The success of many reinforcement learning agents is entirely dependent on their 

exploration strategy. If an agent performs the best action for every iteration, it is likely that they 

never explore the entire environment. By limiting the state space in such a manner, the agent 

never learns about the rewards and consequences of each possible action, regardless of its effect 

on the long-term expected return. On the other hand, if the agent only makes random choices, it 

will never learn a sequence of optimal actions. Therefore, the solution is to combine the ability to 

explore and train on environmental information while exploiting this knowledge to make better 

decisions and narrow exploration where greater rewards are more likely.  

3.3.1 Epsilon Greedy Strategy 
The solution to this suboptimal performance is an exploration vs exploitation trade-off 

such as epsilon greedy (𝜀-greedy) action selection. Under this strategy, a random action is chosen 

with probability 𝜀 while the “greedy” action, which is the action that maximizes 𝑄(𝑠, 𝑎), is 

chosen with probability 1 − 	𝜀. While this may lead to short-term losses, this strategy allows for 

the agent to collect enough information to make the best, informed decision for the future.  

3.3.2 Epsilon Decay 
The 𝜀-greedy strategy allows an agent to select the best action at almost every step, with 

a small probability ϵ of selecting a random action. Since higher epsilon values 𝜀 leads to more 

exploratory agents, many RL methods implement an epsilon decay. By steadily decreasing 𝜀 

over a training period, environmental exploration is highly encouraged in early iterations but 

surpassed by exploitative actions to optimize the action-value function 𝑄2(𝑠" , 𝑎"). In other 

words, as confidence in the learned policy increases, epsilon decay ensures that exploitation 

becomes a priority over continued exploration. 
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3.4 Model-Based Algorithms 
In most real-world problems where reinforcement learning is applied, the state transition 

model 𝑃(𝑠!|	𝑠, 𝑎) and reward function 𝑅(𝑠, 𝑎) are unknown. A RL agent must explore the 

environment to obtain accurate knowledge of the MDP dynamics, sampling actions to build an 

estimate of the optimal action-value function 𝑄∗(𝑠, 𝑎) and subsequent best policy 𝜋∗(𝑠). This 

approach is known as model-based reinforcement learning. 

Within these algorithms, environment exploration learns a model to plan optimal 

controls, simulate new episodes, and obtain the best sequence of actions. During training, these 

algorithms interact with the environment and build a virtual transition model without waiting for 

an environmental response. Since most models behave linearly, this model-based process only 

requires a few samples to effectively learn MDP dynamics.  

Every model-based algorithm begins with the initialization of the action-value function 

𝑄(𝑠, 𝑎) and a parametric model 𝑚(𝑠, 𝑎). Two of the most common parametric models to 

represent MDP dynamics are the Gaussian Process and Gaussian Mixture Model. The first makes 

predictions using the Gaussian distribution while the second is a probabilistic model that 

assumes the data is a mixture of multiple Gaussian distributions with unknown parameters (Del 

Pra).  

Using the base quality function 𝑄(𝑠, 𝑎) and model 𝑚(𝑠, 𝑎), the algorithm then loops 

through the following three stages: acting, model learning, and planning. In the first stage, the 

base policy 𝜋*(𝑎" , 𝑠") selects and performs an action in the environment, collecting observations 

{𝑠" , 𝑎" , 𝑠"#$} at each timestep. From these sample trajectories, stage two begins with a 

supervised learning algorithm which trains the model to minimize the least square error between 

the model’s predicted state and the environment’s sample trajectory. Finally, the planning stage 
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uses the parametric model and a random state-action sample to predict the next state and reward, 

updating the policy and repeating this process N times until reaching a terminal state: 

𝑄(𝑠, 𝑎) ← 	𝑄(𝑠, 𝑎) + 	𝛼 J𝛾max
0
𝑄(𝑠!, 𝑎) − 𝑄(𝑠, 𝑎)K 

Equation 9: Quality Function Update 

(9) 

Once this loop is complete, the agent is theoretically able to utilize the updated model to perform 

explicitly in the real environment, even though it only used sample trajectories to train.  

3.4.1 Model Predictive Control 
Unfortunately, the model-based approach described above is vulnerable to drifting since 

the base policy is usually too small to cover the entire environment before small errors lead to 

uninformed predictions (Del Pra). This drift occurs when the sample trajectory finds itself in 

states that the model has yet to encounter, making it impossible for the planning stage to find the 

optimal controls. The solution is to continuously sample and fit the model throughout training, 

instead of only learning the model at the start of the algorithm. This continuous feedback from 

the real environment is known as model predictive control.  

After the initial acting, model learning, and planning stages are complete, model 

predictive control moves onto a fourth stage: execution. In this stage, the algorithm takes a 

predicted action 𝑎 given the current state 𝑠, and the resulting new state 𝑠! is appended to the 

trajectory dataset. In the next phase, dataset update, the algorithm alternates between either the 

learning or planning stage for the remainder of training. This process allows the algorithm to refit 

the model, optimizing the entire trajectory and allowing corrective measures for repeated states 

(Del Pra).  
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3.4.2 Disadvantage 
In both the root model-based approach and the model predictive control evolution, an 

optimal policy is found using a pre-determined model, whether or not it reflects the true 

mechanisms of the environment. If the model is inaccurate, then there is a large risk of the agent 

learning unwanted or useless behaviors. Therefore, to create an agent that can functionally 

operate in a complex, real-world environment, model-free reinforcement learning methods are 

used to combat the cons of estimating MDP environment dynamics.  

3.5 Model-Free Algorithms 
In model-free reinforcement learning, the optimal policy 𝜋∗(𝑠) is obtained through direct 

interactions with the environment. Instead of learning a virtual model of environment dynamics, 

the agent optimizes the policy by maximizing the expected discounted return 𝐺". One unique 

aspect of model-free agents is that they learn efficient state-action pairs without understanding 

what each observation and action attributes to within the environment. For example, an agent 

might learn that selecting action 1 has the best reward but is unaware that this action directly 

correlates to moving south, out of a blocked-in corner of a maze. Fortunately, even without 

correlating action to real-world motion, model-free algorithms are more than capable of building 

effective learning agents. Within the model-free algorithm umbrella, there are two main 

varieties: on-policy and off-policy, also known as policy-based and value-based respectively. 

The difference in these two approaches is dependent on how information is gathered.  

3.5.1 On-Policy Methods 
With on-policy algorithms, actions are selected based on the best policy at the time of 

decision making. At each timestep, information from said actions are then used to continuously 
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improve the policy and value function 𝑉(𝑠). This method guarantees convergence on an optimal 

policy 𝜋∗ that performs the best action for each observational state.   

3.5.1.1 Policy Gradient 
Policy gradient is the baseline of all on-policy methods. It aims to find a vector of 

parameters 𝜃 that maximize the value function 𝑉(𝑠, 𝜃) under a parametric policy 𝜋(𝑎, |𝑠, 𝜃). The 

Softmax policy is typically used for discrete actions since the function can convert the output 

into a distribution of probabilities, as seen below with the ∅(𝑠, 𝑎) vector representing the current 

state-action selection:  

𝜋(𝑎|𝑠, 𝜃) = 	
𝑒∅(+,0)"7

∑ 𝑒∅(+,0#)"7(
8)$

 

Equation 10: Softmax Policy 

(10) 

On the other hand, the following Gaussian policy is used if the action space is continuous:  

𝜋(𝑎|𝑠, 𝜃) = 	
1

√2𝜋𝜎
𝑒9

(09:)$
%;$  

Equation 11: Gaussian Policy 

(11) 

While policy gradient traditionally uses the Softmax or Gaussian policies shown above, 

any deterministic or stochastic policy differentiable with respect to 𝜃 can be used as the 

parametric policy 𝜋(𝑎|𝑠, 𝜃) to choose an action, generating a sequence of observations (𝑠, 𝑎, 𝑟) 

and recalculating the total long-term discounted reward 𝐺": 

𝐺" =	 9 𝛾89"9$	𝑟8

<

8)"#$

 

Equation 12: Discounted Return Estimate 

(12) 

These observations are also used to update the vector of parameters 𝜃" in a traditional gradient 

descent process with a preselected learning rate 𝛼 > 0:  
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𝜃"#$ = 𝜃" + 	𝛼∇7𝑉(𝑠, 𝜃) = 	𝜃" + 	𝛼𝐺"∇7 ln 𝜋(𝑠"|𝑠" , 𝜃)	 
Equation 13: Policy Parameter Update 

(13) 

When the algorithm converges, the result approximates the optimal policy 𝜋∗. In addition, the 

simplicity of learning a vector of parameters 𝜃 in policy gradient avoids an exponential growth in 

computational energy and memory usage in the case of a sizeable environment or action space.  

However, one of the largest disadvantages with the policy gradient method is high 

variance, which can lead to vastly different results for identical training runs (Del Pra). The 

standard solution is to utilize the advantage function 𝐴(𝑠, 𝑎)	which compares the chosen action 

to the average action at any given state (Karunakaran). When 𝐴(𝑠, 𝑎) is positive, this indicates 

that the agent’s chosen action resulted in a good reward, so the policy updates accordingly by 

increasing the probability of selecting this particular action. Using the same logic, a bad action 

shows a negative advantage value and the policy updates with a subsequent reduction in 

probability. Unfortunately, it is common for this advantage function approach to have noisy 

estimates since the value function 𝑉(𝑠) and policy have separate neural networks. The step size 

drastically effects the learning ability of a neural network’s line search to determine the direction 

for optimization. If the size is too small, expected convergence time increases, but if the size is 

too large, the learning process over-fluctuates and never converges (Karunakaran).  

3.5.1.2 Trust Region Policy Optimization 
Therefore, when using the advantage function to reduce gradient variance, it is highly 

recommended to implement Trust Region Policy Optimization (TRPO). Instead of an ineffective 

line search strategy for 𝑉(𝑠), this approach constructs a circular evaluation region using the step 

size as the radius (Karunakaran). Within this trust region, the algorithm searches for a local 

maxima and uses this particular point to determine the direction of the next trust region. This 

dynamic approach ensure that the new, updated policy is not significantly different from the 
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previous policy, controlling for potential divergence. The TRPO algorithm aims to maximize the 

following objective subject to the Kullback-Leibler (KL) regularization below: 

𝐸=~27%&' X
𝜋'?@	7(𝑎|𝑠)
𝜋ABC	7(𝑎|𝑠)

𝐴ABC	7(𝑠, 𝑎)Y	 

Equation 14: TRPO Objective Function 

(14) 

𝐸=~27%&'Z𝐷DE\\\\\]𝜋ABC	7(. |𝑠), 𝜋'?@	7(. |𝑠)_` 	≤ 	𝛿 
Equation 15: Kullback-Leibler (KL) regularization 

(15) 

This KL constraint penalizes the new policy for diverging but typically adds unnecessary 

computational overhead, so the TRPO is generally passed over for a simpler actor-critic 

implementation known as proximal policy optimization.   

3.5.1.3 Actor-Critic 
Unlike policy gradient which only optimizes the policy, the actor-critic method estimates 

and updates both the policy and value function. However, the main difference between these two 

methods is how they combat the high variance in the vector of parameters 𝜃. Policy gradient uses 

the advantage function while actor-critic algorithms use temporal difference (TD) error which is 

the subtraction of a baseline 𝑏(𝑠) from the total discounted return 𝐺":  

𝛿	 = 	𝐺" 	− 	𝑏(𝑠) 
Equation 16: Temporal Difference Update 

(16) 

In actor-critic algorithms, the critic is an estimate of a value function, such as the state-

value function 𝑉d(𝑠, 𝑤), and is found through a neural network containing a vector of weights 𝑤 

(Yoon). This estimated value function 𝑉d(𝑠, 𝑤)	represents the baseline function 𝑏(𝑠). The actor of 

actor-critic algorithms then updates the direction of the policy according to suggestions from the 

critic. 
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Within each episode, the actor observes the given state and takes an action based on the 

current policy 𝜋(𝑎, |𝑠, 𝜃). The estimated baseline function 𝑉d(𝑠, 𝑤)	then uses the reward 𝑟 and 

next state 𝑠! outputs to calculate the temporal difference for that timestep: 

𝛿	 ← 	𝑟 + 𝛾𝑉d(𝑠!, 𝑤) −	𝑉d(𝑠, 𝑤)	 
Equation 17: Temporal Difference Update 

(17) 

This resulting error is then used to update the weights for the critic’s estimated baseline function 

𝑉d(𝑠, 𝑤)	as well as the actor’s policy parameters 𝜃, which are shown below respectively. As noted 

here, actor-critic algorithms typically have different step sizes 𝛼@ and 𝛼7 for the separate weight 

and parameter updates: 

𝑤	 ← 	𝑤 + 𝛼@𝛽𝛿∇@𝑉d(𝑠, 𝑤)	 
Equation 18: Critic Neural Network Weight Update 

(18) 

𝜃	 ← 	𝜃 + 𝛼7𝛽𝛿∇7 ln 	𝜋(𝑎, |𝑠, 𝜃) 
Equation 19: Actor Policy Parameter Update 

(19) 

This dual update loop continues for each step within an episode until reaching a terminal 

state. Once an episode is complete, the updated policy parameters 𝜃 and state-value function 

𝑉d(𝑠, 𝑤)	are initialized for the next training episode. The figure below represents an episodic 

training loop for actor-critic algorithms:   

 

Figure 4: Actor-Critic Algorithm 
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3.5.1.3.1 Advantage Actor Critic 
The most common expansion of the base actor-critic method is the advantage actor critic. 

Instead of estimating the state-value function, this approach utilizes the advantage function 

𝐴(𝑠, 𝑎) to compare actions at the current state. The advantage function is rewritten below in 

terms of Bellman’s relationship between the estimated action and state values:  

𝐴(𝑠" , 𝑎") = 	 𝑟"#$	 + 	𝛾𝑉F(𝑠"#$) − 𝑉F(𝑠")	 
Equation 20: Advantage Value using Estimated State/Action Values 

(20) 

There are two variants of the advantage actor critic: A3C and A2C. In asynchronous 

advantage actor critic (A3C), there are multiple agents in parallel environments training 

independently to update the global value function (Yoon). In A2C, only one agent is used in a 

singular environment. While asynchrony is thought to have improved performance through 

regularization or enhanced exploration, empirical results reveal that both approaches have similar 

results (Mnih et al.) with A2C reigning supreme in terms of computational efficiency.  

3.5.1.3.2 Proximal Policy Optimization 
Proximal policy optimization (PPO) defines the following probability ratio 𝑟(𝜃)	between 

the current and next policy:  

𝑟(𝜃) = 	
𝜋'?@	7(𝑎|𝑠)
𝜋ABC	7(𝑎|𝑠)

 

Equation 21: PPO Probability Ratio 

(21) 

Similar to the policy gradient approach, this objective function is unstable; if the appropriate step 

size is not selected, convergence may never occur. Therefore, PPO implements a hyperparameter 

𝜖 to constrain the policy ratio to a small interval [1 − 𝜖, 1 + 𝜖]. This clipped policy ratio 

minimizes the possibility of large policy divergence and guarantees eventual convergence, 

allowing for stable training and reproducibility:  
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𝐽GEHI(𝜃) 	= 	𝔼Z𝑚𝑖𝑛(𝑟(𝜃)𝐴jABC	7(𝑠, 𝑎), 𝑐𝑙𝑖𝑝(𝑟(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴jABC	7(𝑠, 𝑎))` 
Equation 22: Clipped Policy Ratio 

(22) 

However, if an environment has sparse rewards, it is entirely possible that PPO converges 

but is unable to solve the environment. In this unfortunate case, PPO operates with little to no 

learning signal unless it randomly reaches the goal. Since this on-policy approach performs a 

gradient update at the end of each episode, this rare occurrence is not sufficient for the policy to 

teach the agent to consistently find the goal state. Therefore, a higher entropy coefficient for PPO 

agents is typically used to inspire more random actions (AurelianTactics). Entropy directly 

effects the unpredictability of chosen actions and enhances exploratory behavior to increase the 

possibility of finding the goal more often during training (Xin et al.).  

3.5.2 Off-Policy Methods 
In off-policy algorithms, the focus is to approximate the optimal state-value 𝑉(𝑠) or 

action-value 𝑄(𝑠) functions (Del Pra). With this value-based approach, an agent may 

deliberately choose an action that acts against the known optimal action at the time of decision 

making. This explorative nature allows an off-policy agent to further interact with the 

environment to determine if sub-optimal, short-term actions lead to greater long-term rewards.  

3.5.2.1 Q-Learning 
Q-learning is a common model-free, off-policy reinforcement learning algorithm that uses 

a table 𝑄2(𝑠" , 𝑎") to store the quality function’s resulting values for all possible state-action pairs. 

To initialize this Q-table, each state-action value is set to a small random number, except for 

terminal states which are set to zero to represent episode completion. For each timestep, an action 

is performed and the sequence of observations (𝑠, 𝑎, 𝑟, 𝑠!) is used to iteratively update the prior  

𝑄2(𝑠" , 𝑎") values using an expansion of the Bellman equation which contains a fixed learning rate 

𝛼 and a discount rate 𝛾 to control the effect of new information: 
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𝑄!(𝑠, 𝑎) = (1 − 𝛼) ∗ 𝑄(𝑠, 𝑎) + 	𝛼(𝑟 + 𝛾	𝑄(𝑠!, 𝑎𝑟𝑔𝑚𝑎𝑥 𝑎!: 𝑄(𝑠!, 𝑎!))) 
Equation 23: Q-Learning Update 

(23) 

As seen above, the updated Q-table 𝑄!(𝑠, 𝑎) is a weighted average of the current and new 

Q-values. The latter is the sum of the immediate reward 𝑟 and the expected discounted reward 𝑄 

after choosing the optimal action. Once each state-action pair is sufficiently visited through an 

exploration strategy and incrementally updated, the optimized table converges to represents the 

expected discounted reward 𝐺" for every action 𝑎 performed in state 𝑠 (Van de Kleut, “The 

Mathematical Foundations of Reinforcement Learning”).  

3.5.2.2 Value Function Approximation 

The value function approximation method estimates the optimal policy 𝜋∗(𝑠) by 

iteratively approximating a parametric action-value function 𝑄d(𝑠, 𝑎, 𝑤) with a neural network 

containing a vector of weights 𝑤 (Del Pra). For each iteration within an episode, the current 

state-action pair reveals an environmental reward 𝑅(𝑠, 𝑎) and new state 𝑠!. These outputs are 

then used to update the weight parameters using gradient descent: 

∆𝑤 = 	𝛼 r𝑅(𝑠, 𝑎) + 	𝛾𝑄d(𝑠!, 𝑎!, 𝑤) − 𝑄d(𝑠, 𝑎, 𝑤)s ∇@𝑄d(𝑠, 𝑎, 𝑤)		 

Equation 24: Action-Value Neural Network Weight Update 

(24) 

3.5.2.3 Deep Q-Networks 
In reinforcement learning, it is rare to have an environment with small, discrete spaces for 

both the action and state space, which are required for Q-learning. Instead, the more likely 

scenario is that one or both spaces are continuous. Unfortunately, the time it takes to reach 

convergence for a massive Q-table in such environments is a significant technical challenge 

(Choudhary) which can be combatted with more advanced algorithms such as Deep Q-Networks 

(DQNs). Similar to the value function approximation approach, DQN replaces the state-action 

table with a deep neural network.  
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In “Deep Q-Learning with Neural Networks”, Van de Kleut explains that Q-Learning, 

𝑄2(𝑠" , 𝑎") is a function over state-action pairs in the form of 𝑆	 × 𝐴	 → ℝ. In DQN, the action 

space is limited to low-dimensional discrete actions so the Q-table can be rewritten as 𝑄2(∙, 𝑎"), 

detailing 𝐴	continuous functions in the form 𝑆 → ℝ. In DQN, the neural network estimates the 

Q-table by corresponding each 𝐴 output node to a differentiable function approximator 

𝑄7(𝑠" , 𝑎") for every action 𝑎". In addition, since 𝑄2(∙, 𝑎") is continuous over S, similar states 

(𝑠 ≈ 𝑠!) will have similar Q-values 𝑄2(𝑠, 𝑎) 	≈ 𝑄2(𝑠!, 𝑎) so nearby states 𝑠"! improve alongside 

current states 𝑠", allowing for generalization of unobserved and untrained states.  

In the deep neural network, the estimates for 𝑄2(𝑠" , 𝑎") will eventually converge as the 

environmental response (𝑠" , 𝑎" , 𝑟" , 𝑠"#$) is used to repeatedly update the parameters 𝜃 with 

respect to the following loss function: 

𝐿(𝜃) = 	z𝑄7(𝑠" , 𝑎") 	− 𝑟" + (1 −	𝑑")𝛾maxJ()*
𝑄7(𝑠"#$, 𝑎"#$)|

%
		 

Equation 25: DQN Loss Function 

(25) 

However, when updating these parameters 𝜃, the predictions for other state-action pairs 

also change. On any given step, if 𝜃 is modified to reflect a higher estimate, then the update for 

the next estimate will also be higher. This leads to a runaway effect where every current state 

influences the next state’s prediction until bootstrapping target values from the 𝑄7 training 

network leads to uncontrollable predictions for all 𝑄7(𝑠" , 𝑎")	estimates. DQN utilizes two 

techniques to minimize this instability and improve learning: target networks and replay buffers. 

To reduce the runaway effect of bootstrapping dynamic targets from a model in training, 

DQN stores an identical copy of the 𝑄7 network, denoted as the target network 𝑄79. This target 

network only synchronizes parameters with 𝑄7 every 𝑛7 timesteps, so 𝑄79	parameters remain the 

same between each synchronization (Van de Kleut, “Deep Q-Learning with Neural Networks”). 
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These infrequent updates generate target values for the 𝑄7 network to minimize loss with a 

stable constant.    

Another common method for mitigating training instability is the use of replay buffers, 

also known as experience replay. This technique reuses past observations to avoid catastrophic 

forgetting, which is the unfortunate situation when 𝜃 updates lead to unlearning since decreasing 

loss for the current training samples can increase loss for older training samples (Van de Kleut, 

“Deep Q-Learning with Neural Networks”). By storing previous transitions (𝑠" , 𝑎" , 𝑟" , 𝑠"#$) in a 

replay buffer, 𝜃 updates with a sample batch, rather than just the most recent transition. This 

process not only avoids forgetfulness but also reduces overfitting and increases the likelihood of 

convergence. For further improvement, more advanced exploration strategies are applied to 

increase the proportion of episodes that reach the goal. With more successful runs stored in the 

replay buffer, DQN is more likely to converge on an optimal policy.   

With a target network and experience replay, DQN is significantly more efficient than the 

generic off-policy Q-learning algorithm, especially when the action or observation space is large. 

Here is a visual representation of the DQN training loop described above: 

 

 

Figure 5: Deep Q-Network Algorithm  
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3.6 Imitation Learning 
Reinforcement learning achieves optimized results in many fields such as robotics, text 

mining, financial trading, and even healthcare. However, these successes generally occur after 

millions of iterations and extensive computational power since RL agents are far from perfect 

during initial training. Due to the unpredictability of visited state spaces, an agent often makes 

mistakes, learning to behave poorly and performing inadequately in the specified environment.  

Unlike computer simulations, humans rarely learn from scratch. We learn to walk by 

watching our parents, holding their hand, and relying on their guidance, eventually 

understanding the physical motions necessary to walk by ourselves. If we were told to walk 

without knowing what walking is, it would take a significantly longer time to learn. 

For RL agents, a process known as imitation learning provides an expert to assist agents 

in “walking”, helping them learn through demonstrations and guidance. This approach rewards 

through examples, rather than assuming an agent explores an environment efficiently enough to 

obtain a decent policy (“Imitation Learning”). Agents learn good behavior even if rewards are 

sparse or inaccurately represent the true objectives of an environment. Behavioral cloning is a 

subclass of imitation learning that uses a set of expert demonstrations to build an expert-imitating 

policy. This pre-trained policy is then used as the initial parametric policy for an RL agent to 

build upon. With these expert demonstrations, agents can quickly learn the general rules of an 

environment, narrowing focus on optimizing the task at hand. 

 

 

Figure 6: Behavioral Cloning Architecture 
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4 Experiment 
To begin testing the efficiency of reinforcement learning algorithms compared to 

traditional pathfinding, several custom environments will be generated using OpenAI Gym. To 

mimic the routing capabilities of navigational applications, these environments will represent a 

system of buildings and roads. While navigation is typically represented by multi-directional 

graphs, as seen in Figure 1, this research will focus on maze environments, otherwise known as 

undirected graphs. Unlike Dijkstra’s algorithm which chooses neighboring nodes to find the 

target, RL agents will use a predefined reward system to learn which boundaries to avoid and 

which paths to take, eventually building a graph in which a path can be optimized.    

 

Figure 7: Visual Representation of an Undirected Graph 

Finally, this section will train and compare the convergence results and optimal actions found by 

three reinforcement learning agents and Dijkstra’s pathfinding algorithm.  

4.1 Custom Environment 
One of the largest challenges in training reinforcement learning agents for real-world 

scenarios is finding virtual environments that accurately represent the complexities of reality. In 

December of 2015, investors such as Elon Musk, Sam Altman, and Microsoft pledged over one 

billion US dollars to form OpenAI, an organization dedicated to sharing patents and research 
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with the general public, freely collaborating with worldwide researchers and institutions 

(Markoff). On the 27th of April the following year, the organization released a beta version of 

OpenAI Gym, a platform designed to expand reinforcement learning capabilities (Gershgorn).  

Through a simple interface and general-intelligence benchmark for a wide variety of 

simulated environments, Gym began to set the standard for reproducible environments in AI 

research publications (Gershgorn). This toolkit is generally used to develop and compare 

algorithms on a collection of pre-made environments with enormous state or action spaces, such 

as Atari video games and simulated robotics (Brockman). This research utilizes Gym’s capability 

to create custom maze environments with building-like obstacles to test the efficiency of 

reinforcement learning algorithms verses current pathfinding standards in navigation. 

4.1.1 OpenAI Gym 
For customized maze scenarios, each environment must first inherit the base class 

gym.Env which encapsulates the arbitrary dynamics of both partially and fully observed 

environments (Brockman). In the initialization of any environment, a user must define the 

action_space and observation_space. These two variables must be of Gym’s space class and are 

typically a one-dimensional discrete type or a n-dimensional box type (Pocs). For this particular 

use case, the action space is discrete with a length of four to represent the four possible directions 

of movement: north, south, west, and east. The observation space is defined by the more 

complex box type with a matrix containing bounded values to represent the four potential maze 

objects: free space, obstacle, agent, or goal.  

Using the defined action space as an input, the step method takes a step in the 

environment and returns a tuple of information in the following order: next observation, numeric 

reward, terminal state flag, and an optional dictionary of user-specified information (“API”).  
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The terminal state flag is a Boolean value that lets the agent know whether the environment’s 

end state has been reached (Pocs), prompting the reset method to restart the environment, 

returning the agent to the initial starting point. 

4.1.2 Obstacle Generation 
Drawing inspiration from mazelab, a customizable framework for gridworld 

environments (Zuo), this project builds and stores four mazes of varying difficulty to train RL 

agents. Scikit-image, an open-source Python package for image processing, contains a 

random_shapes function that is used to generate two-dimensional numpy arrays with rectangular 

shapes of random sizes, quantities, and overlap. Once coerced into a binary format, these arrays 

are used to represent the free spaces and obstacles of a maze. Then, a final check guarantees an 

agent can move from the initial starting point to the end point without crossing an obstacle. This 

𝑛	 × 	𝑛	array is then piped into the custom Gym environment described above.  

4.1.3 Maze Environment 
The infrastructure for the basic maze is built using a custom abstract base class. Within 

this class are two abstract methods size and make_objects which respectively return the 

dimensions of the maze and the list of defined objects. The size, 𝑛	, is extracted from the above 

numpy array while the maze objects are built using a custom data class defining data properties 

such as an object’s name, value, RGB tuple, impassable Boolean value, and position. The value, 

and position are used to define the location of a maze object within the environment. For 

example, the agent takes on the value 2 at [1,1] while free spaces and obstacles are represented 

by 0 and 1 respectively. Therefore, the numeric characterization of the upper left side of the 

maze environment is: 
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}

1 1 1 1
1 2 0 0
1 0 0 1
1 0 0 1

~ 

Figure 8: Initial Maze before Action 

During training, the agent chooses an action by selecting a value ranging from 0 to 3, 

representing the four different directions it can take: north, south, west, and east. Using this 

chosen action, Von Neumann neighborhood motion determines the direction of travel within the 

matrix such as [1,0], which portrays a movement one unit south. This motion defines a tentative 

new position for the agent which is then checked for validity in terms of a free space rather than 

an obstacle. If the selected action results in moving to an impassable obstacle, the current step is 

marked as invalid, and the agent’s position remains the same. However, if the agent’s move is 

valid, the position updates and is parsed through to the environment. For example, if the agent 

chooses valid action 1, the agent will move south in the environment: 

}

1 1 1 1
1 0 0 0
1 2 0 1
1 0 0 1

~ 

Figure 9: Initial Maze after Action 

The final portion of the step function assigns a reward using a custom predefined system. 

When an agent chooses an invalid position, it is assigned a -0.1 reward, which acts as 

punishment for this unwanted behavior. If the agent selects a valid position but has yet to reach 

the goal, it is assigned a smaller punishment, -0.001, which validates a good action while 

encouraging the agent to reach the goal quicker. Finally, once the agent reaches the goal, it 

receives a large reward, 10, and the Boolean terminal state flag switches to done. With this 

reward system, an efficient agent would consistently receive a total return slightly under 10.  
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Figure 10: Custom Maze Environments 

4.1.4 Visualization  
With the above environment mechanics, Gym’s render method is then used to transform 

the numpy arrays into a readable format. The agent is set to start in the upper left corner with the 

goal placed in the bottom right corner. Finally, the following maze environments, generated with 

varying difficulty levels, are built and ready to train RL agents in the following section:  

 

 

 

 

 

4.2 Training 
This section details the set-up and training for learning agents operating in the maze 

environments above. Since model-based algorithms tend to prioritize maximizing rewards by 

performing actions irrespective of consequences, this research will focus on model-free 

algorithms that learn the consequences of their actions through experience. For the on-policy side 

of the model-free spectrum, both the A2C and PPO methods are used while DQNs are the only 

off-policy method explored in the navigation-inspired maze environments.  

To find the most optimal path in the maze environments, our research implements 

Dijkstra’s algorithm. Through built-in functions, this pathfinding algorithm will result in an array 

of optimal actions that will be used as a comparable baseline. These results are also analyzed to 

build expert demonstrations to enhance learning through behavioral cloning.  
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4.2.1 Dijkstra’s Algorithm  
SciPy, the free and open-source Python library for scientific and technical computing, 

contains a 2-D sparse array package, scipy.sparse, that stores compressed sparse row matrices. 

The two-dimensional impassable array from the predefined gym environment, which represents 

obstacles through TRUE/FALSE values, is compressed from its original 𝑀 ×𝑁 matrix shape 

into a flat array of 𝑀 ∗ 𝑁 nodes. For example, a 20 × 20 matrix with a [1,1] starting point will 

be flattened into a 1-D array of length 400 with node ID 21 acting as the initial point. From here, 

all free nodes, as defined by the FALSE values of the impassable array, are analyzed for 

potential movement. For every selected free node, every possible motion including north [-1,0], 

south [1,0], west [0,-1], and east [0,1] is evaluated and, if the move results in a transition to a 

passable node, the information is stored in a compressed sparse row matrix. This matrix contains 

all allowable movements as defined by the restrictions of the given gym environment. 

Following the construction of this matrix of motions, the built-in dijkstra function of the 

SciPy csgraph module performs Dijkstra’s algorithm using Fibonacci heaps 

(“scipy.sparse.csgraph.dijkstra”). The index for the compressed graph is set to search the initial 

starting point only, performing Dijkstra’s algorithm and creating a predecessor array of the 

shortest path. Using this exact order of nodes to travel, appropriate actions are determined by 

taking the difference between the coordinates of a node and its predecessor, matching the [x, y] 

result to an allowable movement in the M*N x M*N compressed sparse row matrix.  

This results in an array of the optimal order of north, south, east, and west actions an 

agent should take to reach the target in the quickest amount of time.  
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4.2.2 On-Policy Algorithms 
To implement A2C and PPO algorithms, this project utilizes the stable_baselines3 

module, which is based in PyTorch, an open-source machine learning framework. To comply 

with the existing functionality of this resource, the first step in training each algorithm involves 

wrapping the custom maze scenario in a dummy vectorized environment. This step also assists in 

training agents in multiple independent environments to increase training efficiency.  

In training these agents, the policy, discount factor, learning rate, and entropy coefficient 

must be set for optimal training. For both agents, the selected policy is MlpPolicy, which is a 

multi-layer perceptron, a special deep neural network. The definitions and effect of the discount 

factor, learning rate, and entropy hyperparameters are defined in Chapter 3. 

4.2.3 Off-Policy Algorithms 
Unlike the above on-policy algorithms, the DQN agent is built using TensorFlow. 

Utilizing Keras, a neural network is constructed to approximate the state-value function. For this 

environment, the network is a sequential model with the input layer representing the observation 

space. The singular hidden layer uses a rectified linear unit (ReLu) activation function while the 

output layer has a linear activation and consists of four nodes, one for each possible movement. 

Note that the same neural structure is also used in the DQN’s target network. 

As described in Chapter 3, the DQN agent uses an epsilon greedy policy to combat the 

exploration-exploitation dilemma. The agent also uses the built-in SequentialMemory function of 

Keras to build a replay buffer that stores previous states, actions, and rewards. An Adam 

optimizer, which is based on adaptive estimation of first-order and second-order moments, is 

used to perform stochastic gradient descent. 
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4.2.4 Behavioral Cloning 
Although the off-policy DQN agent proves to be successful as described below in section 

4.3, this research decided to further improve the agent using behavioral cloning, a form of 

learning through imitation. This method uses a set of expert demonstrations to build a policy for 

learning agents to mimic. This pre-trained policy was loosely built by the results of Dijkstra’s 

algorithm, which were a sequence of south and east movements, an efficient approach that never 

spends time moving away from the target.  

Through the analysis of these results, a custom expert policy is built using the Keras 

policy class as a baseline. The unique select action feature of this policy selects a south or east 

action randomly, but the probability of choosing either action is dependent on the prevalence and 

location of this action in the optimal Dijkstra’s sequence. For example, if an agent must avoid an 

obstacle by moving south, the expert policy is more likely to recommend this motion. The action 

selection feature is also instructed to make random choices to ensure the policy explores other 

paths in hopes of finding a sequence similar or better than the shortest path found by Dijkstra’s.  

After training the Dijkstra expert policy for 5000 steps to construct a functioning 𝑄7 

network, the weights are saved and loaded in to an untrained DQN learning agent with the same 

parameters defined in section 4.2.3 above. Since the 𝑄7 network is pretrained to move towards 

the target by taking south and east actions, this untrained agent’s primary focus is on finding the 

optimal sequence of these actions, rather than exploring how each motion reacts to the reward 

system. Therefore, the DQN learning agent requires significantly less training steps to reach 

convergence. 
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4.3 Results 
As shown in the table below, some agents had to train significantly longer than others to 

accommodate the complexity of each maze. Note that the asterisk represents an agent that 

converges on a singular path resulting in the maximum 9.967 reward, as found by Dijkstra’s 

algorithm. These training steps are in thousands, for example in maze 0, the A2C agent trained 

for 50,000 steps while the expert DQN trained in 1,000 steps. On average, A2C requires 65 

thousand training steps to reach the goal while the successfully trained PPO agents only used 

about 50 thousand training steps. Both the DQN and pre-trained DQN learning agents solved 

each maze in approximately 35 thousand and 2.5 thousand training steps respectively.  

 
Figure 11: Total Training Steps (in thousands) 

 

For all four maze samples, A2C reaches the target but fails to converge while PPO can 

only converge for the three simpler mazes. In contrast, the DQN agent is consistent at solving 

every maze and even improves training efficiency when implementing behavioral cloning 

through Dijkstra’s expert policy. Therefore, after training each agent for every maze, results 

indicate that the off-policy, pre-trained DQN method is most effective in terms of time and 

accuracy. Below are detailed descriptions and comparisons of each agent’s training results.  
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4.3.1 A2C vs. PPO 

The A2C agent on the left requires at least 50K training steps before learning to move 

towards the goal. However, once it reaches the goal, it fails to converge on an optimal sequence, 

making random movements leading away from the target. This graphic shows A2C struggling to 

locate the end goal, even after hours of training. Therefore, this implementation and associated 

hyperparameters indicate that A2C is not the best method to replace pathfinding.   

The other on-policy method, PPO, can solve the three easier mazes. However, the 

random seed had a significant effect on this ability since identical training runs produced 

diverging results if the target was never found in the exploratory stages. In fact, PPO was trained 

in parallel environments to increase the chance of the agent hitting the goal and factoring the 

reward into the policy. In addition, the average successful PPO agent took more than twenty 

minutes to train, suggesting that this method is not a suitable match for pathfinding considering 

the significant computational power needed for training with parallel environments.  

Figure 12: A2C vs. PPO 
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4.3.2 DQN vs. DQN w/ Behavioral Cloning 
On the other hand, the on-policy DQN is precise and computationally efficient. The agent 

does not require multiple parallel environments to reach convergence since the random seed has 

little to no effect on its ability to locate the target. In approximately 30 thousand steps, each 

DQN agent solves the maze without any prior knowledge of the environment by learning the 

consequences of hitting obstacles or wandering aimlessly around the observation space. 

Eventually the agent reaches the goal and iteratively builds upon this finding to construct the 

shortest distance between two points, something pathfinding algorithms can only do when given 

the destination at the start of the algorithm. Therefore, out of these three explored RL techniques, 

DQN is the most comparable algorithm to traditional pathfinding.  

With an expert to mimic, the same results are found in an average of 2,500 training steps, 

taking less than a minute to converge. The Dijkstra expert of this behavioral cloning method 

teaches the agent how to move in terms of optimal directions to take, such as south and east. This 

pre-training simplifies the learning curve for the DQN agent so it only needs to optimize a route 

rather than learning the basic rules of the environment.  

Like its successor, the pre-trained DQN agent solves each maze in 34 steps and receives a 

consistent 9.967 reward, converging in less than 10% of the original DQN training time. 

However, as seen in the graph below, these optimal paths are not the same routes that Dijkstra’s 

algorithm found. Since these environments are 20	 × 	20 matrices, there are a limited number of 

solutions that reach the target. Even with the exact same reward system, two RL agents can find 

different paths depending on the knowledge they accumulated during training; one agent may 

choose to hover near obstacles while another might operate in the free space since they receive 

the same reward for either approach.  
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Figure 13: DQN vs. Dijkstra 
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5 Conclusion 
While the advantage actor-critic (A2C) and proximal policy optimization (PPO) agents 

failed to reach convergence after tens of thousands of training steps, an off-policy deep Q-

network (DQN) proved successful. This DQN agent not only solved the maze but created a route 

comparable to Dijkstra’s algorithm, proving that reinforcement learning can blindly enter an 

environment, explore its surroundings, and iteratively build upon this exploration to construct the 

shortest distance between two points. Unlike pathfinding, these RL agents build optimal routes 

without even knowing of the existence, let alone the location, of the target point.  

5.1 Contribution 
Reinforcement learning is a great representation of true computer imagination in the field 

of artificial intelligence. By learning through trial and error, RL not only performs but 

understands what decisions will better solve the problem at hand while simultaneously making 

note of wrong behaviors. Similar to video games, RL agents gain rewards for completing side 

quests, earning the toolset necessary to complete the main quest. This robust approach showcases 

the innate RL ability to make intellectual decisions and establish patterns of behaviors through 

dynamic adaptability. Unlike traditional machine learning techniques such as supervised learning 

which trains through a set of correct actions, RL uses the consequences of an environment as 

signals to iteratively improve positive behavior. Therefore, this research showcases RL’s ability 

to capture complex structures with minimal guidance. 

In fact, when provided with additional guidance through pathfinding, RL performance 

only improves in terms of speed since precision remains the same. Using Dijkstra’s solved maze 

as an expert for behavioral cloning, the DQN learning agent found an optimal route comparable 
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to pathfinding in terms of both training efficiency and sequence of actions. The selected actions 

earn the highest reward possible for the environment, similar to the learning agent acting on its 

own. These results indicate that using pathfinding to train RL behavior is the quintessential 

method for receiving the benefits of pathfinding’s swift computational capabilities and 

reinforcement learning’s ability to gather knowledge outside of the main task. This approach not 

only connects nodes on a graph, but also understands the rules of an environment to build the 

absolute shortest and safest route possible. 

5.2 Limitations 
Since RL agents connect to their respective neural networks through incentives and 

penalties, successful training relies heavily on modifications to accurately represent an 

environment. For example, if step sizes are too large, this leads to divergence. In fact, an agent’s 

memory can be wiped clean since disastrous forgetting is common when new information erases 

knowledge the agent obtained prior.  

Another common issue is reinforcement learning agents maximizing rewards without 

completing the task at hand. This occurs when the reward system does not account for intricate 

details of the environment, creating a rulebook that can never help the agent win the game. For 

example, if a dog never gets praised for performing a trick, it will never learn to do it on 

command. For the learning process of an RL agent to converge in a reasonable time, going from 

randomly exploring the environment to performing sophisticated tasks, the reward system must 

be optimized to represent the true mechanics of the environment.  

Finally, the current DQN agent can be further optimized with hyperparameter tuning. The 

above results were achieved with standard discount factor, entropy, and epsilon parameters. 
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Without hyperparameter tuning, estimated model parameters generally produce suboptimal 

results since they are not capable of truly minimizing the loss function. Therefore, with even less 

errors, the agent will likely have better controls for behaviors to reach the computational speed of 

simple pathfinding algorithm’s such as Dijkstra’s.  

5.3 Future Work 
The greatest advantage of a reinforcement learning approach to optimal routing systems 

is the accelerated advancement and rapid enhancements within this learning methodology. 

OpenAI Gym was released in 2016, and in less than 10 years on the market, it has exponentially 

increased the use of RL techniques in optimizing processes, simulations, and even controls for 

autonomous systems related to nearly every industry including robotics, automobile, and even 

healthcare. Specifically in the navigation industry, machine learning is already being used to 

create guidance systems for people to personalize their driving experience to avoid traffic areas 

and accident sites. Consequently, it is no big leap to propose a walking navigation app that 

specifically benefits from the results of this study. 

 When moving to a new city, a lot of people worry about their safety, opting for 

convenient locations near their residence or place of work. Most people rely on navigation apps 

when going out of these known comfort zones to a new venue, wanting to get there in the least 

amount of time. However, there is no guarantee that the shortest route is the safest. Therefore, 

reinforcement learning can be used to build a map of safe zones and avoidance areas utilizing 

available sources such as criminal reports and social media posts. These RL agents will not only 

navigate someone to their destination, but also help them successfully avoid danger zones such 

as rowdy bars. 
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Rather than only learning to avoid impassable building obstacles, the custom 

environments above can expand to simulate danger zones in passable observational states. When 

agents receive the significant penalties, they will not only learn to avoid walking into obstacles 

but also avoid entering dangerous spaces. In addition, these RL agents can be pre-trained with 

pathfinding cloning techniques to quickly learn a baseline route, building a map of the 

environment to be further optimized into the shortest, safe route. With this latest and greatest 

machine learning technology inside a dynamic walking navigation app, users will be able to 

input real-time issues to help the community take evening strolls, go to museums, and eat at local 

restaurants without having to worry about their safety. 
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Appendix 
Code Repository 
The custom environment generation, training, and saved weights for RL policies can be found in 

the code repository through this link:  

https://github.com/bbrown1021/UCLA-MAS-Thesis  

 

Video of Training Results 
To view the solved algorithms, visit this link: 

https://drive.google.com/file/d/1Egpwi1HS9AAGzSfrF6lGIGhYzd4Bsaqc/view?usp=sharing 

The video contains two parts: 

1. A comparison of the optimal, successful routes of Dijkstra’s algorithm as well as the 

original and pre-trained DQN agents. 

2. A demonstration of the pathfinding algorithm and reinforcement learning agents 

performing in each maze environment. Note that each of the RL agents are not being 

trained in real-time, the videos were made using the saved trained policy weights and 

evaluating the agent for five episodes.    
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