
UCLA
UCLA Electronic Theses and Dissertations

Title
An Application of Reinforcement Learning Techniques in Traditional Pathfinding

Permalink
https://escholarship.org/uc/item/8tm550mr

Author
Brown, Britney

Publication Date
2022

Supplemental Material
https://escholarship.org/uc/item/8tm550mr#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8tm550mr
https://escholarship.org/uc/item/8tm550mr#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

An Application of Reinforcement Learning Techniques

in Traditional Pathfinding

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Applied Statistics

by

Britney Shaohan Brown

2022

© Copyright by

Britney Shaohan Brown

2022

 ii

ABSTRACT OF THE THESIS

An Application of Reinforcement Learning Techniques in Traditional Pathfinding

by

Britney Shaohan Brown

Master of Applied Statistics

University of California, Los Angeles, 2022

Professor Yingnian Wu, Chair

Modern-day navigation relies on pathfinding algorithms to determine the shortest

distance between two locations. These algorithms search graphs robustly, starting at an initial

node and analyzing adjacent positions connecting to the destination. Even though this technique

consistently finds optimal routes, pathfinding is dependent on prior knowledge of a given

environment. Reinforcement learning is a branch of machine learning capable of achieving

similar results through efficient exploration, data collection, and exploitation. A form of artificial

intelligence, reinforcement learning focuses on understanding the environment through

incentives and penalties to make optimal decisions, eventually leading to desired target

convergence. This research trains three model-free reinforcement learning techniques, advantage

actor-critic (A2C), proximal policy optimization (PPO), and deep Q-network (DQN) on custom

maze environments. In comparison with Dijkstra’s algorithm, a standard pathfinding approach,

results indicate that DQN can find analogous routes, especially when pre-trained with expert-

guided behavior to reach these optimal solutions in a time-efficient manner.

 iii

The thesis of Britney Shaohan Brown is approved.

Tao Gao

Mark S. Handcock

Yingnian Wu, Committee Chair

University of California, Los Angeles

2022

 iv

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 PATHFINDING .. 2

2.1 DIJKSTRA’S ALGORITHM .. 2

3 REINFORCEMENT LEARNING .. 5

3.1 DEFINITIONS ... 5

3.1.1 Markov Decision Process .. 6

3.1.2 Policy Function ... 6

3.1.3 Episode ... 7

3.1.4 Discounted Return ... 7

3.1.5 Value and Advantage Functions ... 8

3.1.6 Bellman Equation .. 9

3.2 REWARD SYSTEM .. 9

3.3.1 Epsilon Greedy Strategy .. 11

3.3.2 Epsilon Decay .. 11

3.4 MODEL-BASED ALGORITHMS ... 12

3.4.1 Model Predictive Control ... 13

3.4.2 Disadvantage ... 14

3.5 MODEL-FREE ALGORITHMS ... 14

3.5.1 On-Policy Methods .. 14

3.5.1.1 Policy Gradient .. 15

3.5.1.2 Trust Region Policy Optimization .. 16

3.5.1.3 Actor-Critic .. 17

3.5.1.3.1 Advantage Actor Critic ... 19

3.5.1.3.2 Proximal Policy Optimization .. 19

 v

3.5.2 Off-Policy Methods .. 20

3.5.2.1 Q-Learning ... 20

3.5.2.2 Value Function Approximation .. 21

3.5.2.3 Deep Q-Networks ... 21

3.6 IMITATION LEARNING ... 24

4 EXPERIMENT ... 25

4.1 CUSTOM ENVIRONMENT ... 25

4.1.1 OpenAI Gym .. 26

4.1.2 Obstacle Generation .. 27

4.1.3 Maze Environment .. 27

4.1.4 Visualization .. 29

4.2 TRAINING .. 29

4.2.1 Dijkstra’s Algorithm .. 30

4.2.2 On-Policy Algorithms .. 31

4.2.3 Off-Policy Algorithms ... 31

4.2.4 Behavioral Cloning ... 32

4.3 RESULTS .. 33

4.3.1 A2C vs. PPO .. 34

4.3.2 DQN vs. DQN w/ Behavioral Cloning .. 35

5 CONCLUSION ... 37

5.1 CONTRIBUTION ... 37

5.2 LIMITATIONS .. 38

5.3 FUTURE WORK ... 39

APPENDIX .. 41

REFERENCES ... 42

 vi

LIST OF FIGURES

Figure 1: Dijkstra's Algorithm .. 3

Figure 2: Dijkstra's Optimal Route ... 4

Figure 3: Standard Reinforcement Learning Architecture .. 7

Figure 4: Actor-Critic Algorithm .. 18

Figure 5: Deep Q-Network Algorithm .. 23

Figure 6: Behavioral Cloning Architecture ... 24

Figure 7: Visual Representation of an Undirected Graph ... 25

Figure 8: Initial Maze before Action .. 28

Figure 9: Initial Maze after Action ... 28

Figure 10: Custom Maze Environments ... 29

Figure 11: Total Training Steps (in thousands) .. 33

Figure 12: A2C vs. PPO ... 34

Figure 13: DQN vs. Dijkstra ... 36

 vii

LIST OF EQUATIONS
Equation 1: Discounted Return ... 7

Equation 2: State-Value Function ... 8

Equation 3: Action-Value Function .. 8

Equation 4: Advantage Function .. 9

Equation 5: Bellman Equation (State-Value Function) .. 9

Equation 6: Bellman Equation (Action-Value Function) ... 9

Equation 7: Optimal Quality Function .. 9

Equation 8: Optimal Policy ... 9

Equation 9: Quality Function Update ... 13

Equation 10: Softmax Policy .. 15

Equation 11: Gaussian Policy ... 15

Equation 12: Discounted Return Estimate .. 15

Equation 13: Policy Parameter Update ... 16

Equation 14: TRPO Objective Function ... 17

Equation 15: Kullback-Leibler (KL) regularization ... 17

Equation 16: Temporal Difference Update ... 17

Equation 17: Temporal Difference Update ... 18

Equation 18: Critic Neural Network Weight Update .. 18

Equation 19: Actor Policy Parameter Update ... 18

Equation 20: Advantage Value using Estimated State/Action Values ... 19

Equation 21: PPO Probability Ratio ... 19

Equation 22: Clipped Policy Ratio ... 20

Equation 23: Q-Learning Update .. 21

Equation 24: Action-Value Neural Network Weight Update ... 21

Equation 25: DQN Loss Function ... 22

 1

1 Introduction
In this day and age, it is near impossible to get lost due to global positioning and navigation

systems that map us wherever we need to go. Navigational apps have become so advanced that we

can personalize travel experiences, getting directions to avoid toll roads, accident sites, and even red-

light cameras. While the detailed routing algorithms for these applications are kept secret,

pathfinding techniques remain at the core, determining the shortest distance between two locations

and cornering the market in optimal graph search.

However, pathfinding algorithms rely heavily on prior knowledge of a deterministic

environment. This is not the case for most real-world applications, such as instantaneous navigation,

which contains unknown obstacles and is stochastic by nature. Without providing the exact location

of targets and barriers for a pathfinding algorithm, it is unable to determine the optimal path and is

therefore rendered useless in a dynamic environment. Therefore, this research aims to leverage the

advancements in artificial intelligence to test the applicability and efficiency of standard

reinforcement learning algorithms in optimal path routing. In an attempt to combat the limitations of

pathfinding, these reinforcement learning agents will be trained to solve a maze without prior

knowledge of the limitations or goals of the environment.

The following research will generate custom maze environments with OpenAI Gym to test

three reinforcement learning algorithms: advantage actor-critic (A2C), proximal policy optimization

(PPO), and a deep Q-network (DQN). The on-policy PPO and off-policy DQN approaches

successfully converged on an optimal path comparable to a common pathfinding approach, Dijkstra’s

algorithm. Finally, using an expert policy inspired by the resulting movements of this pathfinding

method, research shows that using behavioral cloning to train a DQN agent not only solves the maze

but also optimizes movement and training time.

 2

2 Pathfinding
Imagine traveling to an unfamiliar city, tired from a long flight and in search of a decent

coffee shop. While it is entirely possible to start at one end of town and test every possible path

in hopes of finding an establishment, this method is exhaustive and time-consuming. Thanks to

modern-day technological resources, a more convenient method relies on digital mapping

services to reach destinations safely and efficiently. These systems typically rely on pathfinding,

a computer algorithm that finds the shortest distance between two points. This application is

loosely related to the shortest path problem within graph theory, which identifies paths

dependent on specific criteria such as speed or difficulty. Pathfinding is not only crucial in

navigating complex road systems and obstacles but also in other worldwide necessities such as

routing IP network protocols, understanding optimal flight agendas, determining autonomous

robotic controls, and even modeling the spread of infectious diseases.

2.1 Dijkstra’s Algorithm
In 1956, pathfinding secured its place in computer programming and routing history

when Dutch software engineer Edsger Wybe Dijkstra developed a well-known algorithm for

finding the shortest distance between nodes (Richards). The eponymously named Dijkstra’s

algorithm eliminates the use of traversal algorithms such as the Bellman-Ford algorithm which

exhaustively searches every possibility, including impossible routes, to eventually determine the

shortest path. On the other hand, Dijkstra’s algorithm simplifies complex routing problems by

utilizing dynamic programming to dissect smaller, solvable sub-problems and create optimal

substructures for a combined ideal solution.

 3

As described in “Towards Shortest Path Computation using Dijkstra’s Algorithm,” this

approach performs a recursive operation that labels nodes binarily and stores the relationship

with predecessor nodes in a priority queue to determine the absolute shortest path between an

initial starting node and a target node (Makariye, 2017). Dijkstra’s algorithm begins by selecting

the initial node and storing the distance to every directly neighboring node. At this point, all

nodes that cannot be reached in a single step are placed at the bottom of a priority queue.

Dijkstra’s then labels the initial node as “visited” and selects the nearest node for further

investigation. The total distance to the initial node is then recalculated for every “unvisited”

neighbor of this newly selected node. These distances are compared to the original, previously

determined values; the smaller of the two distances is then saved in the priority queue, which

now represents a visiting order for all remaining nodes. After the queue updates, the current node

then transitions to a “visited” state and a new, unvisited node is selected from the top of the

priority queue. Dijkstra’s algorithm recursively visits nearest neighbors until the target node is

chosen from the list of unvisited nodes. At the end of this process, the optimized path is found

through the stored order of predeceasing nodes in the priority queue.

Figure 1: Dijkstra's Algorithm

 4

Above is an example of Dijkstra’s algorithm locating the shortest path from initial node

A to target node E. Although E is unreachable from A directly, the distances to neighboring

nodes are stored in the priority queue and updated recursively. After evaluating distances through

B, C, and D, the algorithm reveals the shortest path from A to the target E is through node D.

Figure 2: Dijkstra's Optimal Route

However, Dijkstra’s algorithm bases its search on a weighted, non-negative, and acyclic

graph (Huang et al.). Unlike the example above, these factors are not found in realistic

representations of navigational and global positioning systems due to an assortment of unknown

obstructions and inconsistences. To remain relevant in modern technological advances,

pathfinding approaches need to adapt routes quickly and effectively for dynamic obstacles.

 5

3 Reinforcement Learning
“What we want is a machine that can learn from experience.”

~ Alan Turing, the father of artificial intelligence, in 1947

Since the conception of machine learning (ML) in the 1950s, the field has further

developed into three primary varieties including supervised, unsupervised, and reinforcement. In

supervised learning, the goal is to create a model that accurately describes a labeled dataset,

allowing for proper categorization and subsequent prediction of new data (Hayes). On the other

hand, unsupervised learning focuses on the underlying structure of an unlabeled dataset, utilizing

the relationships between datapoints and their respective characteristics (Bhatt). Both task-driven

supervised and data-driven unsupervised learning are commonly used for classification as well as

prediction. Finally, unlike these two ML branches, reinforcement learning specializes in

interacting and gathering data from an unknown environment- observing consequences,

maximizing rewards, and learning appropriate behaviors.

3.1 Definitions
This section contains a brief high-level overview of reinforcement learning (RL)

notations and descriptions to provide the necessary background for the following concepts and

algorithms. Beginning with a dive into Markov Decision Processes (MDPs), this section will also

cover the use of policy, value, quality, and advantage functions as well as how these functions

can be estimated using the Bellman equation. This section also covers the architecture of a

reinforcement learning episode as well as the discounted reward used to motivate learning.

 6

3.1.1 Markov Decision Process
A Markov Decision Process (MDP) is a stochastic, discrete-time control process that

provides the mathematical framework of reinforcement learning algorithms. An extension of

Markov chains, MDPs allow a decision maker to choose actions that maximize rewards within a

given environment. For each step, this decision maker must choose an available action and the

MDP reacts by moving to a new state and producing a positive or negative reward. This process

creates a state transition function where each next state is dependent on the current state and

action alone, satisfying the Markov property of conditional independence.

Therefore, every MDP can be broken into four main components: states, actions, rewards,

and transitions. The notation 𝑆 represents the set of finite states describing the current

environment while 𝐴(𝑠) symbolizes every possible action for a given state. The reward, written

as 𝑟 = 𝑅(𝑠, 𝑎), is a function that provides a real value to denote the consequence of choosing a

certain action at the current state. Finally, the transition model 𝑃(𝑠!|	𝑠, 𝑎) describes the

probability of transitioning to a new state 𝑠′ when selecting action 𝑎 at current state 𝑠. This

transition model represents all possible combinations of 𝑠, 𝑎,	and 𝑠′ for the environment.

3.1.2 Policy Function
A policy function defines how an agent behaves, detailing which action to perform in

each state. These policies are either deterministic 𝑎 = 	𝜋(𝑠) or stochastic 𝑎 = 	𝜋(𝑎|𝑠).

Deterministic policies indicate what action to take for a given state while stochastic policies are

functions containing a random probability for action selection (Del Pra). Therefore, a

deterministic policy can be viewed as a special stochastic policy containing an exclusive

probability of 1 for one of the actions and 0 for the remaining options.

 7

3.1.3 Episode
An episode is a sequence of observed states and actions construed through timesteps,

which vary from 0 to a finite or infinite end value. For every timestep 𝑡, an agent observes the

given state 𝑠" ∈ 𝑆 and takes an action 𝑎" ∈ 𝐴. The agent then obtains a reward 𝑟"	and transitions

to a new state 𝑠"#$ selected by the state transition model 𝑃(𝑠"#$|	𝑠" , 	𝑎"). Finally, the new state

𝑠"#$ becomes the current state 𝑠" and this loop continues until the agent reaches a terminal state

in which all actions receive a reward of 0 to represent the end of an episode (Zychlinski).

Figure 3: Standard Reinforcement Learning Architecture

3.1.4 Discounted Return
Using the rewards from each timestep 𝑡, a long-term cumulative reward, known as the

return 𝐺", is calculated at the end of each episode. In addition to the immediate positive or

negative reward for every timestep, 𝑟", a discount factor 𝛾 ∈ [0	, 1)	is used to determine the

importance of each state (Del Pra). This discounted return is denoted as follows:

𝐺" =	𝑟" +	𝛾𝑟"#$ +	𝛾%𝑟"#% + 𝛾&𝑟"#& +⋯ =	9𝛾'𝑟'

(

')*

Equation 1: Discounted Return

(1)

If the discount factor is 0, RL agents only consider the current reward, seeking immediate

rewards rather than choosing a less-rewarding action that leads to a significantly larger reward

 8

later in the episode (Jones). If the discount factor approaches 1, an RL agent heavily considers

the consequences of current actions in hopes of greater long-term rewards (Torres). For example,

imagine two students with respective discount factors near 0 and 1. The first might party one

night, being forced to spend all weekend catching up while the later would study during the

week, earning a homework-free, party weekend. Similarly, most RL algorithms select larger

discount factors to create agents that are heavily inspired by future rewards.

3.1.5 Value and Advantage Functions
The state-value function, denoted simply as the value function 𝑉(𝑠), measures the overall

expected return 𝐺". Starting at the current state 𝑠",	the agent performs N timesteps, which

represents the total number of states until reaching the terminal state and ending the episode.

Similarly, the action-value function, also known as the quality function 𝑄(𝑠), measures the

expected long-term return when the agent performs action 𝑎 at current state 𝑠.

The difference between the state-value and action-value functions is subtle. At 𝑛 = 0, the value

𝑉(𝑠) reward 𝑟*	is the expected reward when the agent is in state 𝑠, before the agent performs any

action (Zychlinski). The quality 𝑄(𝑠) reward 𝑟* is the expected reward after playing an action.

This distinction is important when measuring the advantage function 𝐴(𝑠, 𝑎), which

demonstrates if a certain action is a good or bad decision. Essentially, this function measures the

advantage of selecting particular actions compared to others when an agent is in a fixed state.

𝑉(𝑠) = 	𝔼	[𝐺"	|	𝑠"] = 	𝔼 ?9𝛾'𝑟'

(

')*

@

Equation 2: State-Value Function

(2)

𝑄(𝑠, 𝑎) = 	𝔼	[𝐺"	|	𝑠" = 𝑠, 𝑎" = 𝑎] = 	𝔼 ?9𝛾'𝑟'

(

')*

@

Equation 3: Action-Value Function

(3)

 9

3.1.6 Bellman Equation
The Bellman equation is used to get an estimate for both value functions by breaking

them into two parts: the immediate reward and the discounted value of the next step, which is

chosen with the transition model P (Torres). Rather than finding the cumulative sum over the

remaining timesteps, the Bellman equation simplifies this calculation, optimizing a discrete-time

solution using dynamic programming (Tanwar). Here, the Bellman equation is expressed in

terms of both the state-value and action-value functions respectively:

𝑉(𝑠) = 𝑅(𝑠) + 	𝛾 9 𝑃(𝑠!|𝑠)𝑉(𝑠!)
+!∈	.

	

Equation 5: Bellman Equation (State-Value Function)

(5)

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 	𝛾 9 𝑃(𝑠!|𝑠, 𝑎)𝑄(𝑠!, 𝑎!)
+!∈	.

Equation 6: Bellman Equation (Action-Value Function)

(6)

In addition, this equation is used to determine the maximum of the action-value function, which

is also referred to as the optimal quality function 𝑄∗(𝑠, 𝑎):

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 	𝛾 9 𝑃(𝑠!|𝑠, 𝑎)max
0!

𝑄∗(𝑠!, 𝑎!)
+!∈	.

	

Equation 7: Optimal Quality Function

(7)

Subsequently, selecting the action that maximizes 𝑄∗(𝑠, 𝑎) results is the optimal policy 𝜋∗(𝑠):

𝜋∗(𝑠) = 	𝑎𝑟𝑔	max
0	∈	1

𝑄∗(𝑠, 𝑎)	

Equation 8: Optimal Policy

(8)

3.2 Reward System
Reinforcement learning is well-suited for sequential decision problems, such as

navigating a maze, since the ultimate goal is finding the optimal sequence of actions that

𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) = 	𝔼[𝑟(𝑠, 𝑎) − 𝑟(𝑠)]
Equation 4: Advantage Function

(4)

 10

maximize long-term gains (Hayes). In 1972, Stanford professor Walter Mischel and his graduate

researcher Ebbe Ebbesen conducted a delayed gratification study in which a child is presented

with two options: either a small, immediate reward or a better, larger reward if they choose to

wait an extended period. Researchers typically offered one marshmallow as the immediate

reward and told participants that waiting for 15 minutes would result in two marshmallows,

rather than just one. Some children would choose the initial treat while others decided to delay

their gift, opting for the larger reward. The latter, reward maximization, is how RL algorithms

are taught to learn.

In an initially unknown environment, reinforcement learning agents interact and explore

their surroundings. They gather valuable information by implementing a combination of random

and informed actions. The environment responds accordingly, giving the agent delayed feedback

through rewards. These rewards can be positive to enforce desired behavior, negative to

emphasize the severity of mistakes, or zero to represent neutral action choices. This reward

system allows for full comprehension of long-term rewards and consequences. Rather than

making the best stand-alone decision in the moment, agents learn a sequence of actions that

maximize the overall reward, therefore gaining the capability of sequential decision making.

3.3 Exploration-Exploitation Dilemma
Imagine someone moving to a new town. They would need to explore restaurants in the

area before determining which places have the best food and quality service, eventually

exploiting this knowledge by continuously going to their favorite restaurants. If this person stops

searching for new restaurants after finding one place, they may never find another restaurant

with amazing food and excellent service. The same dilemma occurs for RL agents, which have

two goals when interacting with an environment: exploration and exploitation.

 11

The success of many reinforcement learning agents is entirely dependent on their

exploration strategy. If an agent performs the best action for every iteration, it is likely that they

never explore the entire environment. By limiting the state space in such a manner, the agent

never learns about the rewards and consequences of each possible action, regardless of its effect

on the long-term expected return. On the other hand, if the agent only makes random choices, it

will never learn a sequence of optimal actions. Therefore, the solution is to combine the ability to

explore and train on environmental information while exploiting this knowledge to make better

decisions and narrow exploration where greater rewards are more likely.

3.3.1 Epsilon Greedy Strategy
The solution to this suboptimal performance is an exploration vs exploitation trade-off

such as epsilon greedy (𝜀-greedy) action selection. Under this strategy, a random action is chosen

with probability 𝜀 while the “greedy” action, which is the action that maximizes 𝑄(𝑠, 𝑎), is

chosen with probability 1 − 	𝜀. While this may lead to short-term losses, this strategy allows for

the agent to collect enough information to make the best, informed decision for the future.

3.3.2 Epsilon Decay
The 𝜀-greedy strategy allows an agent to select the best action at almost every step, with

a small probability ϵ of selecting a random action. Since higher epsilon values 𝜀 leads to more

exploratory agents, many RL methods implement an epsilon decay. By steadily decreasing 𝜀

over a training period, environmental exploration is highly encouraged in early iterations but

surpassed by exploitative actions to optimize the action-value function 𝑄2(𝑠" , 𝑎"). In other

words, as confidence in the learned policy increases, epsilon decay ensures that exploitation

becomes a priority over continued exploration.

 12

3.4 Model-Based Algorithms
In most real-world problems where reinforcement learning is applied, the state transition

model 𝑃(𝑠!|	𝑠, 𝑎) and reward function 𝑅(𝑠, 𝑎) are unknown. A RL agent must explore the

environment to obtain accurate knowledge of the MDP dynamics, sampling actions to build an

estimate of the optimal action-value function 𝑄∗(𝑠, 𝑎) and subsequent best policy 𝜋∗(𝑠). This

approach is known as model-based reinforcement learning.

Within these algorithms, environment exploration learns a model to plan optimal

controls, simulate new episodes, and obtain the best sequence of actions. During training, these

algorithms interact with the environment and build a virtual transition model without waiting for

an environmental response. Since most models behave linearly, this model-based process only

requires a few samples to effectively learn MDP dynamics.

Every model-based algorithm begins with the initialization of the action-value function

𝑄(𝑠, 𝑎) and a parametric model 𝑚(𝑠, 𝑎). Two of the most common parametric models to

represent MDP dynamics are the Gaussian Process and Gaussian Mixture Model. The first makes

predictions using the Gaussian distribution while the second is a probabilistic model that

assumes the data is a mixture of multiple Gaussian distributions with unknown parameters (Del

Pra).

Using the base quality function 𝑄(𝑠, 𝑎) and model 𝑚(𝑠, 𝑎), the algorithm then loops

through the following three stages: acting, model learning, and planning. In the first stage, the

base policy 𝜋*(𝑎" , 𝑠") selects and performs an action in the environment, collecting observations

{𝑠" , 𝑎" , 𝑠"#$} at each timestep. From these sample trajectories, stage two begins with a

supervised learning algorithm which trains the model to minimize the least square error between

the model’s predicted state and the environment’s sample trajectory. Finally, the planning stage

 13

uses the parametric model and a random state-action sample to predict the next state and reward,

updating the policy and repeating this process N times until reaching a terminal state:

𝑄(𝑠, 𝑎) ← 	𝑄(𝑠, 𝑎) + 	𝛼 J𝛾max
0
𝑄(𝑠!, 𝑎) − 𝑄(𝑠, 𝑎)K

Equation 9: Quality Function Update

(9)

Once this loop is complete, the agent is theoretically able to utilize the updated model to perform

explicitly in the real environment, even though it only used sample trajectories to train.

3.4.1 Model Predictive Control
Unfortunately, the model-based approach described above is vulnerable to drifting since

the base policy is usually too small to cover the entire environment before small errors lead to

uninformed predictions (Del Pra). This drift occurs when the sample trajectory finds itself in

states that the model has yet to encounter, making it impossible for the planning stage to find the

optimal controls. The solution is to continuously sample and fit the model throughout training,

instead of only learning the model at the start of the algorithm. This continuous feedback from

the real environment is known as model predictive control.

After the initial acting, model learning, and planning stages are complete, model

predictive control moves onto a fourth stage: execution. In this stage, the algorithm takes a

predicted action 𝑎 given the current state 𝑠, and the resulting new state 𝑠! is appended to the

trajectory dataset. In the next phase, dataset update, the algorithm alternates between either the

learning or planning stage for the remainder of training. This process allows the algorithm to refit

the model, optimizing the entire trajectory and allowing corrective measures for repeated states

(Del Pra).

 14

3.4.2 Disadvantage
In both the root model-based approach and the model predictive control evolution, an

optimal policy is found using a pre-determined model, whether or not it reflects the true

mechanisms of the environment. If the model is inaccurate, then there is a large risk of the agent

learning unwanted or useless behaviors. Therefore, to create an agent that can functionally

operate in a complex, real-world environment, model-free reinforcement learning methods are

used to combat the cons of estimating MDP environment dynamics.

3.5 Model-Free Algorithms
In model-free reinforcement learning, the optimal policy 𝜋∗(𝑠) is obtained through direct

interactions with the environment. Instead of learning a virtual model of environment dynamics,

the agent optimizes the policy by maximizing the expected discounted return 𝐺". One unique

aspect of model-free agents is that they learn efficient state-action pairs without understanding

what each observation and action attributes to within the environment. For example, an agent

might learn that selecting action 1 has the best reward but is unaware that this action directly

correlates to moving south, out of a blocked-in corner of a maze. Fortunately, even without

correlating action to real-world motion, model-free algorithms are more than capable of building

effective learning agents. Within the model-free algorithm umbrella, there are two main

varieties: on-policy and off-policy, also known as policy-based and value-based respectively.

The difference in these two approaches is dependent on how information is gathered.

3.5.1 On-Policy Methods
With on-policy algorithms, actions are selected based on the best policy at the time of

decision making. At each timestep, information from said actions are then used to continuously

 15

improve the policy and value function 𝑉(𝑠). This method guarantees convergence on an optimal

policy 𝜋∗ that performs the best action for each observational state.

3.5.1.1 Policy Gradient
Policy gradient is the baseline of all on-policy methods. It aims to find a vector of

parameters 𝜃 that maximize the value function 𝑉(𝑠, 𝜃) under a parametric policy 𝜋(𝑎, |𝑠, 𝜃). The

Softmax policy is typically used for discrete actions since the function can convert the output

into a distribution of probabilities, as seen below with the ∅(𝑠, 𝑎) vector representing the current

state-action selection:

𝜋(𝑎|𝑠, 𝜃) = 	
𝑒∅(+,0)"7

∑ 𝑒∅(+,0#)"7(
8)$

Equation 10: Softmax Policy

(10)

On the other hand, the following Gaussian policy is used if the action space is continuous:

𝜋(𝑎|𝑠, 𝜃) = 	
1

√2𝜋𝜎
𝑒9

(09:)$
%;$

Equation 11: Gaussian Policy

(11)

While policy gradient traditionally uses the Softmax or Gaussian policies shown above,

any deterministic or stochastic policy differentiable with respect to 𝜃 can be used as the

parametric policy 𝜋(𝑎|𝑠, 𝜃) to choose an action, generating a sequence of observations (𝑠, 𝑎, 𝑟)

and recalculating the total long-term discounted reward 𝐺":

𝐺" =	 9 𝛾89"9$	𝑟8

<

8)"#$

Equation 12: Discounted Return Estimate

(12)

These observations are also used to update the vector of parameters 𝜃" in a traditional gradient

descent process with a preselected learning rate 𝛼 > 0:

 16

𝜃"#$ = 𝜃" + 	𝛼∇7𝑉(𝑠, 𝜃) = 	𝜃" + 	𝛼𝐺"∇7 ln 𝜋(𝑠"|𝑠" , 𝜃)	
Equation 13: Policy Parameter Update

(13)

When the algorithm converges, the result approximates the optimal policy 𝜋∗. In addition, the

simplicity of learning a vector of parameters 𝜃 in policy gradient avoids an exponential growth in

computational energy and memory usage in the case of a sizeable environment or action space.

However, one of the largest disadvantages with the policy gradient method is high

variance, which can lead to vastly different results for identical training runs (Del Pra). The

standard solution is to utilize the advantage function 𝐴(𝑠, 𝑎)	which compares the chosen action

to the average action at any given state (Karunakaran). When 𝐴(𝑠, 𝑎) is positive, this indicates

that the agent’s chosen action resulted in a good reward, so the policy updates accordingly by

increasing the probability of selecting this particular action. Using the same logic, a bad action

shows a negative advantage value and the policy updates with a subsequent reduction in

probability. Unfortunately, it is common for this advantage function approach to have noisy

estimates since the value function 𝑉(𝑠) and policy have separate neural networks. The step size

drastically effects the learning ability of a neural network’s line search to determine the direction

for optimization. If the size is too small, expected convergence time increases, but if the size is

too large, the learning process over-fluctuates and never converges (Karunakaran).

3.5.1.2 Trust Region Policy Optimization
Therefore, when using the advantage function to reduce gradient variance, it is highly

recommended to implement Trust Region Policy Optimization (TRPO). Instead of an ineffective

line search strategy for 𝑉(𝑠), this approach constructs a circular evaluation region using the step

size as the radius (Karunakaran). Within this trust region, the algorithm searches for a local

maxima and uses this particular point to determine the direction of the next trust region. This

dynamic approach ensure that the new, updated policy is not significantly different from the

 17

previous policy, controlling for potential divergence. The TRPO algorithm aims to maximize the

following objective subject to the Kullback-Leibler (KL) regularization below:

𝐸=~27%&' X
𝜋'?@	7(𝑎|𝑠)
𝜋ABC	7(𝑎|𝑠)

𝐴ABC	7(𝑠, 𝑎)Y	

Equation 14: TRPO Objective Function

(14)

𝐸=~27%&'Z𝐷DE\\\\\]𝜋ABC	7(. |𝑠), 𝜋'?@	7(. |𝑠)_` 	≤ 	𝛿
Equation 15: Kullback-Leibler (KL) regularization

(15)

This KL constraint penalizes the new policy for diverging but typically adds unnecessary

computational overhead, so the TRPO is generally passed over for a simpler actor-critic

implementation known as proximal policy optimization.

3.5.1.3 Actor-Critic
Unlike policy gradient which only optimizes the policy, the actor-critic method estimates

and updates both the policy and value function. However, the main difference between these two

methods is how they combat the high variance in the vector of parameters 𝜃. Policy gradient uses

the advantage function while actor-critic algorithms use temporal difference (TD) error which is

the subtraction of a baseline 𝑏(𝑠) from the total discounted return 𝐺":

𝛿	 = 	𝐺" 	− 	𝑏(𝑠)
Equation 16: Temporal Difference Update

(16)

In actor-critic algorithms, the critic is an estimate of a value function, such as the state-

value function 𝑉d(𝑠, 𝑤), and is found through a neural network containing a vector of weights 𝑤

(Yoon). This estimated value function 𝑉d(𝑠, 𝑤)	represents the baseline function 𝑏(𝑠). The actor of

actor-critic algorithms then updates the direction of the policy according to suggestions from the

critic.

 18

Within each episode, the actor observes the given state and takes an action based on the

current policy 𝜋(𝑎, |𝑠, 𝜃). The estimated baseline function 𝑉d(𝑠, 𝑤)	then uses the reward 𝑟 and

next state 𝑠! outputs to calculate the temporal difference for that timestep:

𝛿	 ← 	𝑟 + 𝛾𝑉d(𝑠!, 𝑤) −	𝑉d(𝑠, 𝑤)	
Equation 17: Temporal Difference Update

(17)

This resulting error is then used to update the weights for the critic’s estimated baseline function

𝑉d(𝑠, 𝑤)	as well as the actor’s policy parameters 𝜃, which are shown below respectively. As noted

here, actor-critic algorithms typically have different step sizes 𝛼@ and 𝛼7 for the separate weight

and parameter updates:

𝑤	 ← 	𝑤 + 𝛼@𝛽𝛿∇@𝑉d(𝑠, 𝑤)	
Equation 18: Critic Neural Network Weight Update

(18)

𝜃	 ← 	𝜃 + 𝛼7𝛽𝛿∇7 ln 	𝜋(𝑎, |𝑠, 𝜃)
Equation 19: Actor Policy Parameter Update

(19)

This dual update loop continues for each step within an episode until reaching a terminal

state. Once an episode is complete, the updated policy parameters 𝜃 and state-value function

𝑉d(𝑠, 𝑤)	are initialized for the next training episode. The figure below represents an episodic

training loop for actor-critic algorithms:

Figure 4: Actor-Critic Algorithm

 19

3.5.1.3.1 Advantage Actor Critic
The most common expansion of the base actor-critic method is the advantage actor critic.

Instead of estimating the state-value function, this approach utilizes the advantage function

𝐴(𝑠, 𝑎) to compare actions at the current state. The advantage function is rewritten below in

terms of Bellman’s relationship between the estimated action and state values:

𝐴(𝑠" , 𝑎") = 	 𝑟"#$	 + 	𝛾𝑉F(𝑠"#$) − 𝑉F(𝑠")	
Equation 20: Advantage Value using Estimated State/Action Values

(20)

There are two variants of the advantage actor critic: A3C and A2C. In asynchronous

advantage actor critic (A3C), there are multiple agents in parallel environments training

independently to update the global value function (Yoon). In A2C, only one agent is used in a

singular environment. While asynchrony is thought to have improved performance through

regularization or enhanced exploration, empirical results reveal that both approaches have similar

results (Mnih et al.) with A2C reigning supreme in terms of computational efficiency.

3.5.1.3.2 Proximal Policy Optimization
Proximal policy optimization (PPO) defines the following probability ratio 𝑟(𝜃)	between

the current and next policy:

𝑟(𝜃) = 	
𝜋'?@	7(𝑎|𝑠)
𝜋ABC	7(𝑎|𝑠)

Equation 21: PPO Probability Ratio

(21)

Similar to the policy gradient approach, this objective function is unstable; if the appropriate step

size is not selected, convergence may never occur. Therefore, PPO implements a hyperparameter

𝜖 to constrain the policy ratio to a small interval [1 − 𝜖, 1 + 𝜖]. This clipped policy ratio

minimizes the possibility of large policy divergence and guarantees eventual convergence,

allowing for stable training and reproducibility:

 20

𝐽GEHI(𝜃) 	= 	𝔼Z𝑚𝑖𝑛(𝑟(𝜃)𝐴jABC	7(𝑠, 𝑎), 𝑐𝑙𝑖𝑝(𝑟(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴jABC	7(𝑠, 𝑎))`
Equation 22: Clipped Policy Ratio

(22)

However, if an environment has sparse rewards, it is entirely possible that PPO converges

but is unable to solve the environment. In this unfortunate case, PPO operates with little to no

learning signal unless it randomly reaches the goal. Since this on-policy approach performs a

gradient update at the end of each episode, this rare occurrence is not sufficient for the policy to

teach the agent to consistently find the goal state. Therefore, a higher entropy coefficient for PPO

agents is typically used to inspire more random actions (AurelianTactics). Entropy directly

effects the unpredictability of chosen actions and enhances exploratory behavior to increase the

possibility of finding the goal more often during training (Xin et al.).

3.5.2 Off-Policy Methods
In off-policy algorithms, the focus is to approximate the optimal state-value 𝑉(𝑠) or

action-value 𝑄(𝑠) functions (Del Pra). With this value-based approach, an agent may

deliberately choose an action that acts against the known optimal action at the time of decision

making. This explorative nature allows an off-policy agent to further interact with the

environment to determine if sub-optimal, short-term actions lead to greater long-term rewards.

3.5.2.1 Q-Learning
Q-learning is a common model-free, off-policy reinforcement learning algorithm that uses

a table 𝑄2(𝑠" , 𝑎") to store the quality function’s resulting values for all possible state-action pairs.

To initialize this Q-table, each state-action value is set to a small random number, except for

terminal states which are set to zero to represent episode completion. For each timestep, an action

is performed and the sequence of observations (𝑠, 𝑎, 𝑟, 𝑠!) is used to iteratively update the prior

𝑄2(𝑠" , 𝑎") values using an expansion of the Bellman equation which contains a fixed learning rate

𝛼 and a discount rate 𝛾 to control the effect of new information:

 21

𝑄!(𝑠, 𝑎) = (1 − 𝛼) ∗ 𝑄(𝑠, 𝑎) + 	𝛼(𝑟 + 𝛾	𝑄(𝑠!, 𝑎𝑟𝑔𝑚𝑎𝑥 𝑎!: 𝑄(𝑠!, 𝑎!)))
Equation 23: Q-Learning Update

(23)

As seen above, the updated Q-table 𝑄!(𝑠, 𝑎) is a weighted average of the current and new

Q-values. The latter is the sum of the immediate reward 𝑟 and the expected discounted reward 𝑄

after choosing the optimal action. Once each state-action pair is sufficiently visited through an

exploration strategy and incrementally updated, the optimized table converges to represents the

expected discounted reward 𝐺" for every action 𝑎 performed in state 𝑠 (Van de Kleut, “The

Mathematical Foundations of Reinforcement Learning”).

3.5.2.2 Value Function Approximation

The value function approximation method estimates the optimal policy 𝜋∗(𝑠) by

iteratively approximating a parametric action-value function 𝑄d(𝑠, 𝑎, 𝑤) with a neural network

containing a vector of weights 𝑤 (Del Pra). For each iteration within an episode, the current

state-action pair reveals an environmental reward 𝑅(𝑠, 𝑎) and new state 𝑠!. These outputs are

then used to update the weight parameters using gradient descent:

∆𝑤 = 	𝛼 r𝑅(𝑠, 𝑎) + 	𝛾𝑄d(𝑠!, 𝑎!, 𝑤) − 𝑄d(𝑠, 𝑎, 𝑤)s ∇@𝑄d(𝑠, 𝑎, 𝑤)		

Equation 24: Action-Value Neural Network Weight Update

(24)

3.5.2.3 Deep Q-Networks
In reinforcement learning, it is rare to have an environment with small, discrete spaces for

both the action and state space, which are required for Q-learning. Instead, the more likely

scenario is that one or both spaces are continuous. Unfortunately, the time it takes to reach

convergence for a massive Q-table in such environments is a significant technical challenge

(Choudhary) which can be combatted with more advanced algorithms such as Deep Q-Networks

(DQNs). Similar to the value function approximation approach, DQN replaces the state-action

table with a deep neural network.

 22

In “Deep Q-Learning with Neural Networks”, Van de Kleut explains that Q-Learning,

𝑄2(𝑠" , 𝑎") is a function over state-action pairs in the form of 𝑆	 × 𝐴	 → ℝ. In DQN, the action

space is limited to low-dimensional discrete actions so the Q-table can be rewritten as 𝑄2(∙, 𝑎"),

detailing 𝐴	continuous functions in the form 𝑆 → ℝ. In DQN, the neural network estimates the

Q-table by corresponding each 𝐴 output node to a differentiable function approximator

𝑄7(𝑠" , 𝑎") for every action 𝑎". In addition, since 𝑄2(∙, 𝑎") is continuous over S, similar states

(𝑠 ≈ 𝑠!) will have similar Q-values 𝑄2(𝑠, 𝑎) 	≈ 𝑄2(𝑠!, 𝑎) so nearby states 𝑠"! improve alongside

current states 𝑠", allowing for generalization of unobserved and untrained states.

In the deep neural network, the estimates for 𝑄2(𝑠" , 𝑎") will eventually converge as the

environmental response (𝑠" , 𝑎" , 𝑟" , 𝑠"#$) is used to repeatedly update the parameters 𝜃 with

respect to the following loss function:

𝐿(𝜃) = 	z𝑄7(𝑠" , 𝑎") 	− 𝑟" + (1 −	𝑑")𝛾maxJ()*
𝑄7(𝑠"#$, 𝑎"#$)|

%
		

Equation 25: DQN Loss Function

(25)

However, when updating these parameters 𝜃, the predictions for other state-action pairs

also change. On any given step, if 𝜃 is modified to reflect a higher estimate, then the update for

the next estimate will also be higher. This leads to a runaway effect where every current state

influences the next state’s prediction until bootstrapping target values from the 𝑄7 training

network leads to uncontrollable predictions for all 𝑄7(𝑠" , 𝑎")	estimates. DQN utilizes two

techniques to minimize this instability and improve learning: target networks and replay buffers.

To reduce the runaway effect of bootstrapping dynamic targets from a model in training,

DQN stores an identical copy of the 𝑄7 network, denoted as the target network 𝑄79. This target

network only synchronizes parameters with 𝑄7 every 𝑛7 timesteps, so 𝑄79	parameters remain the

same between each synchronization (Van de Kleut, “Deep Q-Learning with Neural Networks”).

 23

These infrequent updates generate target values for the 𝑄7 network to minimize loss with a

stable constant.

Another common method for mitigating training instability is the use of replay buffers,

also known as experience replay. This technique reuses past observations to avoid catastrophic

forgetting, which is the unfortunate situation when 𝜃 updates lead to unlearning since decreasing

loss for the current training samples can increase loss for older training samples (Van de Kleut,

“Deep Q-Learning with Neural Networks”). By storing previous transitions (𝑠" , 𝑎" , 𝑟" , 𝑠"#$) in a

replay buffer, 𝜃 updates with a sample batch, rather than just the most recent transition. This

process not only avoids forgetfulness but also reduces overfitting and increases the likelihood of

convergence. For further improvement, more advanced exploration strategies are applied to

increase the proportion of episodes that reach the goal. With more successful runs stored in the

replay buffer, DQN is more likely to converge on an optimal policy.

With a target network and experience replay, DQN is significantly more efficient than the

generic off-policy Q-learning algorithm, especially when the action or observation space is large.

Here is a visual representation of the DQN training loop described above:

Figure 5: Deep Q-Network Algorithm

 24

3.6 Imitation Learning
Reinforcement learning achieves optimized results in many fields such as robotics, text

mining, financial trading, and even healthcare. However, these successes generally occur after

millions of iterations and extensive computational power since RL agents are far from perfect

during initial training. Due to the unpredictability of visited state spaces, an agent often makes

mistakes, learning to behave poorly and performing inadequately in the specified environment.

Unlike computer simulations, humans rarely learn from scratch. We learn to walk by

watching our parents, holding their hand, and relying on their guidance, eventually

understanding the physical motions necessary to walk by ourselves. If we were told to walk

without knowing what walking is, it would take a significantly longer time to learn.

For RL agents, a process known as imitation learning provides an expert to assist agents

in “walking”, helping them learn through demonstrations and guidance. This approach rewards

through examples, rather than assuming an agent explores an environment efficiently enough to

obtain a decent policy (“Imitation Learning”). Agents learn good behavior even if rewards are

sparse or inaccurately represent the true objectives of an environment. Behavioral cloning is a

subclass of imitation learning that uses a set of expert demonstrations to build an expert-imitating

policy. This pre-trained policy is then used as the initial parametric policy for an RL agent to

build upon. With these expert demonstrations, agents can quickly learn the general rules of an

environment, narrowing focus on optimizing the task at hand.

Figure 6: Behavioral Cloning Architecture

 25

4 Experiment
To begin testing the efficiency of reinforcement learning algorithms compared to

traditional pathfinding, several custom environments will be generated using OpenAI Gym. To

mimic the routing capabilities of navigational applications, these environments will represent a

system of buildings and roads. While navigation is typically represented by multi-directional

graphs, as seen in Figure 1, this research will focus on maze environments, otherwise known as

undirected graphs. Unlike Dijkstra’s algorithm which chooses neighboring nodes to find the

target, RL agents will use a predefined reward system to learn which boundaries to avoid and

which paths to take, eventually building a graph in which a path can be optimized.

Figure 7: Visual Representation of an Undirected Graph

Finally, this section will train and compare the convergence results and optimal actions found by

three reinforcement learning agents and Dijkstra’s pathfinding algorithm.

4.1 Custom Environment
One of the largest challenges in training reinforcement learning agents for real-world

scenarios is finding virtual environments that accurately represent the complexities of reality. In

December of 2015, investors such as Elon Musk, Sam Altman, and Microsoft pledged over one

billion US dollars to form OpenAI, an organization dedicated to sharing patents and research

 26

with the general public, freely collaborating with worldwide researchers and institutions

(Markoff). On the 27th of April the following year, the organization released a beta version of

OpenAI Gym, a platform designed to expand reinforcement learning capabilities (Gershgorn).

Through a simple interface and general-intelligence benchmark for a wide variety of

simulated environments, Gym began to set the standard for reproducible environments in AI

research publications (Gershgorn). This toolkit is generally used to develop and compare

algorithms on a collection of pre-made environments with enormous state or action spaces, such

as Atari video games and simulated robotics (Brockman). This research utilizes Gym’s capability

to create custom maze environments with building-like obstacles to test the efficiency of

reinforcement learning algorithms verses current pathfinding standards in navigation.

4.1.1 OpenAI Gym
For customized maze scenarios, each environment must first inherit the base class

gym.Env which encapsulates the arbitrary dynamics of both partially and fully observed

environments (Brockman). In the initialization of any environment, a user must define the

action_space and observation_space. These two variables must be of Gym’s space class and are

typically a one-dimensional discrete type or a n-dimensional box type (Pocs). For this particular

use case, the action space is discrete with a length of four to represent the four possible directions

of movement: north, south, west, and east. The observation space is defined by the more

complex box type with a matrix containing bounded values to represent the four potential maze

objects: free space, obstacle, agent, or goal.

Using the defined action space as an input, the step method takes a step in the

environment and returns a tuple of information in the following order: next observation, numeric

reward, terminal state flag, and an optional dictionary of user-specified information (“API”).

 27

The terminal state flag is a Boolean value that lets the agent know whether the environment’s

end state has been reached (Pocs), prompting the reset method to restart the environment,

returning the agent to the initial starting point.

4.1.2 Obstacle Generation
Drawing inspiration from mazelab, a customizable framework for gridworld

environments (Zuo), this project builds and stores four mazes of varying difficulty to train RL

agents. Scikit-image, an open-source Python package for image processing, contains a

random_shapes function that is used to generate two-dimensional numpy arrays with rectangular

shapes of random sizes, quantities, and overlap. Once coerced into a binary format, these arrays

are used to represent the free spaces and obstacles of a maze. Then, a final check guarantees an

agent can move from the initial starting point to the end point without crossing an obstacle. This

𝑛	 × 	𝑛	array is then piped into the custom Gym environment described above.

4.1.3 Maze Environment
The infrastructure for the basic maze is built using a custom abstract base class. Within

this class are two abstract methods size and make_objects which respectively return the

dimensions of the maze and the list of defined objects. The size, 𝑛	, is extracted from the above

numpy array while the maze objects are built using a custom data class defining data properties

such as an object’s name, value, RGB tuple, impassable Boolean value, and position. The value,

and position are used to define the location of a maze object within the environment. For

example, the agent takes on the value 2 at [1,1] while free spaces and obstacles are represented

by 0 and 1 respectively. Therefore, the numeric characterization of the upper left side of the

maze environment is:

 28

}

1 1 1 1
1 2 0 0
1 0 0 1
1 0 0 1

~

Figure 8: Initial Maze before Action

During training, the agent chooses an action by selecting a value ranging from 0 to 3,

representing the four different directions it can take: north, south, west, and east. Using this

chosen action, Von Neumann neighborhood motion determines the direction of travel within the

matrix such as [1,0], which portrays a movement one unit south. This motion defines a tentative

new position for the agent which is then checked for validity in terms of a free space rather than

an obstacle. If the selected action results in moving to an impassable obstacle, the current step is

marked as invalid, and the agent’s position remains the same. However, if the agent’s move is

valid, the position updates and is parsed through to the environment. For example, if the agent

chooses valid action 1, the agent will move south in the environment:

}

1 1 1 1
1 0 0 0
1 2 0 1
1 0 0 1

~

Figure 9: Initial Maze after Action

The final portion of the step function assigns a reward using a custom predefined system.

When an agent chooses an invalid position, it is assigned a -0.1 reward, which acts as

punishment for this unwanted behavior. If the agent selects a valid position but has yet to reach

the goal, it is assigned a smaller punishment, -0.001, which validates a good action while

encouraging the agent to reach the goal quicker. Finally, once the agent reaches the goal, it

receives a large reward, 10, and the Boolean terminal state flag switches to done. With this

reward system, an efficient agent would consistently receive a total return slightly under 10.

 29

Figure 10: Custom Maze Environments

4.1.4 Visualization
With the above environment mechanics, Gym’s render method is then used to transform

the numpy arrays into a readable format. The agent is set to start in the upper left corner with the

goal placed in the bottom right corner. Finally, the following maze environments, generated with

varying difficulty levels, are built and ready to train RL agents in the following section:

4.2 Training
This section details the set-up and training for learning agents operating in the maze

environments above. Since model-based algorithms tend to prioritize maximizing rewards by

performing actions irrespective of consequences, this research will focus on model-free

algorithms that learn the consequences of their actions through experience. For the on-policy side

of the model-free spectrum, both the A2C and PPO methods are used while DQNs are the only

off-policy method explored in the navigation-inspired maze environments.

To find the most optimal path in the maze environments, our research implements

Dijkstra’s algorithm. Through built-in functions, this pathfinding algorithm will result in an array

of optimal actions that will be used as a comparable baseline. These results are also analyzed to

build expert demonstrations to enhance learning through behavioral cloning.

 30

4.2.1 Dijkstra’s Algorithm
SciPy, the free and open-source Python library for scientific and technical computing,

contains a 2-D sparse array package, scipy.sparse, that stores compressed sparse row matrices.

The two-dimensional impassable array from the predefined gym environment, which represents

obstacles through TRUE/FALSE values, is compressed from its original 𝑀 ×𝑁 matrix shape

into a flat array of 𝑀 ∗ 𝑁 nodes. For example, a 20 × 20 matrix with a [1,1] starting point will

be flattened into a 1-D array of length 400 with node ID 21 acting as the initial point. From here,

all free nodes, as defined by the FALSE values of the impassable array, are analyzed for

potential movement. For every selected free node, every possible motion including north [-1,0],

south [1,0], west [0,-1], and east [0,1] is evaluated and, if the move results in a transition to a

passable node, the information is stored in a compressed sparse row matrix. This matrix contains

all allowable movements as defined by the restrictions of the given gym environment.

Following the construction of this matrix of motions, the built-in dijkstra function of the

SciPy csgraph module performs Dijkstra’s algorithm using Fibonacci heaps

(“scipy.sparse.csgraph.dijkstra”). The index for the compressed graph is set to search the initial

starting point only, performing Dijkstra’s algorithm and creating a predecessor array of the

shortest path. Using this exact order of nodes to travel, appropriate actions are determined by

taking the difference between the coordinates of a node and its predecessor, matching the [x, y]

result to an allowable movement in the M*N x M*N compressed sparse row matrix.

This results in an array of the optimal order of north, south, east, and west actions an

agent should take to reach the target in the quickest amount of time.

 31

4.2.2 On-Policy Algorithms
To implement A2C and PPO algorithms, this project utilizes the stable_baselines3

module, which is based in PyTorch, an open-source machine learning framework. To comply

with the existing functionality of this resource, the first step in training each algorithm involves

wrapping the custom maze scenario in a dummy vectorized environment. This step also assists in

training agents in multiple independent environments to increase training efficiency.

In training these agents, the policy, discount factor, learning rate, and entropy coefficient

must be set for optimal training. For both agents, the selected policy is MlpPolicy, which is a

multi-layer perceptron, a special deep neural network. The definitions and effect of the discount

factor, learning rate, and entropy hyperparameters are defined in Chapter 3.

4.2.3 Off-Policy Algorithms
Unlike the above on-policy algorithms, the DQN agent is built using TensorFlow.

Utilizing Keras, a neural network is constructed to approximate the state-value function. For this

environment, the network is a sequential model with the input layer representing the observation

space. The singular hidden layer uses a rectified linear unit (ReLu) activation function while the

output layer has a linear activation and consists of four nodes, one for each possible movement.

Note that the same neural structure is also used in the DQN’s target network.

As described in Chapter 3, the DQN agent uses an epsilon greedy policy to combat the

exploration-exploitation dilemma. The agent also uses the built-in SequentialMemory function of

Keras to build a replay buffer that stores previous states, actions, and rewards. An Adam

optimizer, which is based on adaptive estimation of first-order and second-order moments, is

used to perform stochastic gradient descent.

 32

4.2.4 Behavioral Cloning
Although the off-policy DQN agent proves to be successful as described below in section

4.3, this research decided to further improve the agent using behavioral cloning, a form of

learning through imitation. This method uses a set of expert demonstrations to build a policy for

learning agents to mimic. This pre-trained policy was loosely built by the results of Dijkstra’s

algorithm, which were a sequence of south and east movements, an efficient approach that never

spends time moving away from the target.

Through the analysis of these results, a custom expert policy is built using the Keras

policy class as a baseline. The unique select action feature of this policy selects a south or east

action randomly, but the probability of choosing either action is dependent on the prevalence and

location of this action in the optimal Dijkstra’s sequence. For example, if an agent must avoid an

obstacle by moving south, the expert policy is more likely to recommend this motion. The action

selection feature is also instructed to make random choices to ensure the policy explores other

paths in hopes of finding a sequence similar or better than the shortest path found by Dijkstra’s.

After training the Dijkstra expert policy for 5000 steps to construct a functioning 𝑄7

network, the weights are saved and loaded in to an untrained DQN learning agent with the same

parameters defined in section 4.2.3 above. Since the 𝑄7 network is pretrained to move towards

the target by taking south and east actions, this untrained agent’s primary focus is on finding the

optimal sequence of these actions, rather than exploring how each motion reacts to the reward

system. Therefore, the DQN learning agent requires significantly less training steps to reach

convergence.

 33

4.3 Results
As shown in the table below, some agents had to train significantly longer than others to

accommodate the complexity of each maze. Note that the asterisk represents an agent that

converges on a singular path resulting in the maximum 9.967 reward, as found by Dijkstra’s

algorithm. These training steps are in thousands, for example in maze 0, the A2C agent trained

for 50,000 steps while the expert DQN trained in 1,000 steps. On average, A2C requires 65

thousand training steps to reach the goal while the successfully trained PPO agents only used

about 50 thousand training steps. Both the DQN and pre-trained DQN learning agents solved

each maze in approximately 35 thousand and 2.5 thousand training steps respectively.

Figure 11: Total Training Steps (in thousands)

For all four maze samples, A2C reaches the target but fails to converge while PPO can

only converge for the three simpler mazes. In contrast, the DQN agent is consistent at solving

every maze and even improves training efficiency when implementing behavioral cloning

through Dijkstra’s expert policy. Therefore, after training each agent for every maze, results

indicate that the off-policy, pre-trained DQN method is most effective in terms of time and

accuracy. Below are detailed descriptions and comparisons of each agent’s training results.

 34

4.3.1 A2C vs. PPO

The A2C agent on the left requires at least 50K training steps before learning to move

towards the goal. However, once it reaches the goal, it fails to converge on an optimal sequence,

making random movements leading away from the target. This graphic shows A2C struggling to

locate the end goal, even after hours of training. Therefore, this implementation and associated

hyperparameters indicate that A2C is not the best method to replace pathfinding.

The other on-policy method, PPO, can solve the three easier mazes. However, the

random seed had a significant effect on this ability since identical training runs produced

diverging results if the target was never found in the exploratory stages. In fact, PPO was trained

in parallel environments to increase the chance of the agent hitting the goal and factoring the

reward into the policy. In addition, the average successful PPO agent took more than twenty

minutes to train, suggesting that this method is not a suitable match for pathfinding considering

the significant computational power needed for training with parallel environments.

Figure 12: A2C vs. PPO

 35

4.3.2 DQN vs. DQN w/ Behavioral Cloning
On the other hand, the on-policy DQN is precise and computationally efficient. The agent

does not require multiple parallel environments to reach convergence since the random seed has

little to no effect on its ability to locate the target. In approximately 30 thousand steps, each

DQN agent solves the maze without any prior knowledge of the environment by learning the

consequences of hitting obstacles or wandering aimlessly around the observation space.

Eventually the agent reaches the goal and iteratively builds upon this finding to construct the

shortest distance between two points, something pathfinding algorithms can only do when given

the destination at the start of the algorithm. Therefore, out of these three explored RL techniques,

DQN is the most comparable algorithm to traditional pathfinding.

With an expert to mimic, the same results are found in an average of 2,500 training steps,

taking less than a minute to converge. The Dijkstra expert of this behavioral cloning method

teaches the agent how to move in terms of optimal directions to take, such as south and east. This

pre-training simplifies the learning curve for the DQN agent so it only needs to optimize a route

rather than learning the basic rules of the environment.

Like its successor, the pre-trained DQN agent solves each maze in 34 steps and receives a

consistent 9.967 reward, converging in less than 10% of the original DQN training time.

However, as seen in the graph below, these optimal paths are not the same routes that Dijkstra’s

algorithm found. Since these environments are 20	 × 	20 matrices, there are a limited number of

solutions that reach the target. Even with the exact same reward system, two RL agents can find

different paths depending on the knowledge they accumulated during training; one agent may

choose to hover near obstacles while another might operate in the free space since they receive

the same reward for either approach.

 36

Figure 13: DQN vs. Dijkstra

 37

5 Conclusion
While the advantage actor-critic (A2C) and proximal policy optimization (PPO) agents

failed to reach convergence after tens of thousands of training steps, an off-policy deep Q-

network (DQN) proved successful. This DQN agent not only solved the maze but created a route

comparable to Dijkstra’s algorithm, proving that reinforcement learning can blindly enter an

environment, explore its surroundings, and iteratively build upon this exploration to construct the

shortest distance between two points. Unlike pathfinding, these RL agents build optimal routes

without even knowing of the existence, let alone the location, of the target point.

5.1 Contribution
Reinforcement learning is a great representation of true computer imagination in the field

of artificial intelligence. By learning through trial and error, RL not only performs but

understands what decisions will better solve the problem at hand while simultaneously making

note of wrong behaviors. Similar to video games, RL agents gain rewards for completing side

quests, earning the toolset necessary to complete the main quest. This robust approach showcases

the innate RL ability to make intellectual decisions and establish patterns of behaviors through

dynamic adaptability. Unlike traditional machine learning techniques such as supervised learning

which trains through a set of correct actions, RL uses the consequences of an environment as

signals to iteratively improve positive behavior. Therefore, this research showcases RL’s ability

to capture complex structures with minimal guidance.

In fact, when provided with additional guidance through pathfinding, RL performance

only improves in terms of speed since precision remains the same. Using Dijkstra’s solved maze

as an expert for behavioral cloning, the DQN learning agent found an optimal route comparable

 38

to pathfinding in terms of both training efficiency and sequence of actions. The selected actions

earn the highest reward possible for the environment, similar to the learning agent acting on its

own. These results indicate that using pathfinding to train RL behavior is the quintessential

method for receiving the benefits of pathfinding’s swift computational capabilities and

reinforcement learning’s ability to gather knowledge outside of the main task. This approach not

only connects nodes on a graph, but also understands the rules of an environment to build the

absolute shortest and safest route possible.

5.2 Limitations
Since RL agents connect to their respective neural networks through incentives and

penalties, successful training relies heavily on modifications to accurately represent an

environment. For example, if step sizes are too large, this leads to divergence. In fact, an agent’s

memory can be wiped clean since disastrous forgetting is common when new information erases

knowledge the agent obtained prior.

Another common issue is reinforcement learning agents maximizing rewards without

completing the task at hand. This occurs when the reward system does not account for intricate

details of the environment, creating a rulebook that can never help the agent win the game. For

example, if a dog never gets praised for performing a trick, it will never learn to do it on

command. For the learning process of an RL agent to converge in a reasonable time, going from

randomly exploring the environment to performing sophisticated tasks, the reward system must

be optimized to represent the true mechanics of the environment.

Finally, the current DQN agent can be further optimized with hyperparameter tuning. The

above results were achieved with standard discount factor, entropy, and epsilon parameters.

 39

Without hyperparameter tuning, estimated model parameters generally produce suboptimal

results since they are not capable of truly minimizing the loss function. Therefore, with even less

errors, the agent will likely have better controls for behaviors to reach the computational speed of

simple pathfinding algorithm’s such as Dijkstra’s.

5.3 Future Work
The greatest advantage of a reinforcement learning approach to optimal routing systems

is the accelerated advancement and rapid enhancements within this learning methodology.

OpenAI Gym was released in 2016, and in less than 10 years on the market, it has exponentially

increased the use of RL techniques in optimizing processes, simulations, and even controls for

autonomous systems related to nearly every industry including robotics, automobile, and even

healthcare. Specifically in the navigation industry, machine learning is already being used to

create guidance systems for people to personalize their driving experience to avoid traffic areas

and accident sites. Consequently, it is no big leap to propose a walking navigation app that

specifically benefits from the results of this study.

 When moving to a new city, a lot of people worry about their safety, opting for

convenient locations near their residence or place of work. Most people rely on navigation apps

when going out of these known comfort zones to a new venue, wanting to get there in the least

amount of time. However, there is no guarantee that the shortest route is the safest. Therefore,

reinforcement learning can be used to build a map of safe zones and avoidance areas utilizing

available sources such as criminal reports and social media posts. These RL agents will not only

navigate someone to their destination, but also help them successfully avoid danger zones such

as rowdy bars.

 40

Rather than only learning to avoid impassable building obstacles, the custom

environments above can expand to simulate danger zones in passable observational states. When

agents receive the significant penalties, they will not only learn to avoid walking into obstacles

but also avoid entering dangerous spaces. In addition, these RL agents can be pre-trained with

pathfinding cloning techniques to quickly learn a baseline route, building a map of the

environment to be further optimized into the shortest, safe route. With this latest and greatest

machine learning technology inside a dynamic walking navigation app, users will be able to

input real-time issues to help the community take evening strolls, go to museums, and eat at local

restaurants without having to worry about their safety.

 41

Appendix
Code Repository
The custom environment generation, training, and saved weights for RL policies can be found in

the code repository through this link:

https://github.com/bbrown1021/UCLA-MAS-Thesis

Video of Training Results
To view the solved algorithms, visit this link:

https://drive.google.com/file/d/1Egpwi1HS9AAGzSfrF6lGIGhYzd4Bsaqc/view?usp=sharing

The video contains two parts:

1. A comparison of the optimal, successful routes of Dijkstra’s algorithm as well as the

original and pre-trained DQN agents.

2. A demonstration of the pathfinding algorithm and reinforcement learning agents

performing in each maze environment. Note that each of the RL agents are not being

trained in real-time, the videos were made using the saved trained policy weights and

evaluating the agent for five episodes.

 42

References
“API.” Gym Documentation, https://www.gymlibrary.ml/content/api/.

“Easy Reinforcement Learning (DQN) with Keras-RL.” Linuxtut, 14 Jan. 2017,

https://www.linuxtut.com/en/e63ade6f21766c7c2393/.

“Imitation Learning.” Principles of Robot Autonomy, Stanford University,

https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_10111213.pdf.

“scipy.sparse.csgraph.dijkstra.” Scipy.sparse.csgraph.dijkstra - SciPy v1.8.0 Manual, The SciPy

Community,

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.dijkstra.html.

Argerich, Mauricio Fadel. “Tutoring Reinforcement Learning.” Medium, Towards Data Science,

19 June 2020, https://towardsdatascience.com/tutoring-reinforcement-learning-

a52186306d6d.

AurelianTactics. “PPO Hyperparameters and Ranges.” Medium, Towards Data Science, 28 July

2018, https://medium.com/aureliantactics/ppo-hyperparameters-and-ranges-

6fc2d29bccbe.

Bhatt, Shweta. “Reinforcement learning 101.” Medium, Towards Data Science, 19 Apr. 2019,

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292.

Brockman, Greg, et al. “OpenAI/Gym.” GitHub, OpenAI, 26 Apr. 2016,

https://github.com/openai/gym/blob/master/gym/core.py.

 43

Causevic, Siwei. “A Structural Overview of Reinforcement Learning Algorithms.” Medium,

Towards Data Science, 13 Aug. 2021, https://towardsdatascience.com/an-overview-of-

classic-reinforcement-learning-algorithms-part-1-f79c8b87e5af.

Choudhary, Ankit. “Deep Q-Learning: An Introduction to Deep Reinforcement LearningAnkit

Choudhary.” Analytics Vidhya, 18 Apr. 2019,

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/.

Del Pra, Marco. “Introduction to Reinforcement Learning.” Medium, Towards Data Science, 2

Nov. 2020, https://towardsdatascience.com/introduction-to-reinforcement-learning-

c99c8c0720ef.

Gershgorn, Dave. “Elon Musk's Artificial Intelligence Group Opens a 'Gym' to Train

A.I.” Popular Science, 27 Apr. 2016, http://www.popsci.com/elon-musks-artificial-

intelligence-group-opens-gym-to-train-ai.

Hayes, Genevieve. “The other type of machine learning.” Medium, Towards Data Science, 24

Dec. 2019, https://towardsdatascience.com/the-other-type-of-machine-learning-

97ab81306ce9.

Huang, Chung-Yang, et al. “Dijkstra Algorithms.” Fundamentals of Algorithms, ScienceDirect

Topics, 2009, https://www.sciencedirect.com/topics/computer-science/dijkstra-

algorithms.

 44

Jones, Tim. “Train a Software Agent to Behave Rationally with Reinforcement

Learning.” Artificial Intelligence, IBM, 11 Oct. 2017,

https://developer.ibm.com/articles/cc-reinforcement-learning-train-software-agent/.

Karunakaran, Dhanoop. “Proximal Policy Optimization(PPO)- a Policy-Based Reinforcement

Learning Algorithm.” Medium, Intro to Artificial Intelligence, 4 Dec. 2020,

https://medium.com/intro-to-artificial-intelligence/proximal-policy-optimization-ppo-a-

policy-based-reinforcement-learning-algorithm-3cf126a7562d.

Markoff, John. “Artificial-Intelligence Research Center Is Founded by Silicon Valley

Investors.” The New York Times, The New York Times, 11 Dec. 2015,

https://www.nytimes.com/2015/12/12/science/artificial-intelligence-research-center-is-

founded-by-silicon-valley-investors.html.

Mischel, Walter and Ebbe B. Ebbesen. “Attention in delay of gratification.” Journal of

Personality and Social Psychology 16 (1970): 329-337.

Mnih, Volodymyr, et al. “Asynchronous Methods for Deep Reinforcement Learning.” ArXiv, 16

June 2016, https://arxiv.org/abs/1602.01783.

Mnih, Volodymyr, et al. “Playing Atari with Deep Reinforcement Learning.” ArXiv, 19 Dec.

2013, https://arxiv.org/abs/1312.5602.

N. Makariye, "Towards shortest path computation using Dijkstra algorithm," 2017 International

Conference on IoT and Application (ICIOT), 2017, pp. 1-3, doi:

10.1109/ICIOTA.2017.8073641.

 45

Nannapaneni, Rajasekhar. “Optimal Path Routing Using Reinforcement Learning.” Dell EMC,

Dell Technologies, 2020, https://education.dellemc.com/content/dam/dell-

emc/documents/en-us/2020KS_Nannapaneni-

Optimal_path_routing_using_Reinforcement_Learning.pdf.

Plappert, Matthias. “Keras-RL: Deep Reinforcement Learning for Keras.” GitHub, GitHub,

2016, https://github.com/keras-rl/keras-rl.

Pocs, Mate. “Beginner's Guide to Custom Environments in OpenAI's Gym.” Medium, Towards

Data Science, 16 Dec. 2020, https://towardsdatascience.com/beginners-guide-to-custom-

environments-in-openai-s-gym-989371673952.

Raffin, Antonin, et al. “Stable-Baselines3: Reliable Reinforcement Learning

Implementations.” GitHub, Journal of Machine Learning Research, 2021,

https://github.com/DLR-RM/stable-baselines3.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

Richards, Hamilton. “Edsger Wybe Dijkstra.” Edsger W. Dijkstra - A.M. Turing Award

Laureate, https://amturing.acm.org/award_winners/dijkstra_1053701.cfm.

Tanwar, Sanchit. “Bellman Equation and dynamic programming.” Medium, Analytics Vidhya, 7

Jan. 2022, https://medium.com/analytics-vidhya/bellman-equation-and-dynamic-

programming-773ce67fc6a7.

Torres, Jordi. “The Bellman Equation.” Medium, Towards Data Science, 24 Sept. 2021,

https://towardsdatascience.com/the-bellman-equation-59258a0d3fa7.

 46

Van de Kleut, Alexander. “Deep Q-Learning with Neural Networks.” AV - Alexander Van De

Kleut, 31 May 2020, https://avandekleut.github.io/dqn/.

Van de Kleut, Alexander. “The Mathematical Foundations of Reinforcement Learning.” AV -

Alexander Van De Kleut, 26 May 2020, https://avandekleut.github.io/q-learning/.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, Joelle Pineau. An

Introduction to Deep Reinforcement Learning.

Xin, Bo, et al. “Exploration Entropy for Reinforcement Learning.” Mathematical Problems in

Engineering, Hindawi, 9 Jan. 2020,

https://www.hindawi.com/journals/mpe/2020/2672537/.

Yoon, Chris. “Understanding Actor Critic Methods.” Medium, Towards Data Science, 17 July

2019, https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f.

Zhang, Yihao. “Deep Reinforcement Learning on 1-Layer Circuit Routing Problem.” IDEALS @

Illinois, 2018, https://www.ideals.illinois.edu/handle/2142/102796.

Zuo, Xingdong. “Mazelab: A Customizable Framework to Create Maze and Gridworld

Environments.” GitHub, GitHub, 2018, https://github.com/zuoxingdong/mazelab.

Zychlinski, Shaked. “The Complete Reinforcement Learning Dictionary.” Medium, Towards

Data Science, 24 Nov. 2019, https://towardsdatascience.com/the-complete-

reinforcement-learning-dictionary-e16230b7d24e.

