Title

Modeling and Analysis of Switched-Capacitor Converters With Finite Terminal Capacitances

Permalink

https://escholarship.org/uc/item/8tm7f4cf

Authors

Zhu, Yicheng
Ye, Zichao
Pilawa-Podgurski, Robert CN

Publication Date

2023
DOI
10.1109/tpel.2023.3313562

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
(C) 2023 IEEE

IEEE Transactions on Power Electronics

Modeling and Analysis of Switched-Capacitor Converters With Finite Terminal Capacitances

Y. Zhu
Z. Ye
R. C. N. Pilawa-Podgurski

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Modeling and Analysis of Switched-Capacitor Converters with Finite Terminal Capacitances

Yicheng Zhu, Graduate Student Member, IEEE, Zichao Ye, Member, IEEE, and Robert C. N. Pilawa-Podgurski, Senior Member, IEEE

Abstract

In pre-existing analytical models of switchedcapacitor (SC) converters, the input and output capacitances $\left(C_{\mathrm{in}}\right.$ and $C_{\text {out }}$) have long been assumed to be infinitely large so that the input and output can be modeled as ideal voltage sources. However, in practice, the terminal capacitances can be insufficient to ensure ideal input and output behaviors due to space and cost constraints. This paper reveals that finite terminal capacitances can have considerable effects on the output impedance ($R_{\text {out }}$) and overall efficiency of SC converters. A general modeling and analysis methodology is proposed for $S C$ converters to characterize the effects of finite terminal capacitances quantitatively. A 2-to-1 SC converter prototype is specially designed to verify the proposed general output impedance model. The relative error between the modeling results and the experimental measurements is less than 8%, which demonstrates the excellent accuracy of the proposed model. It is revealed that the insufficiency in $C_{\text {in }}$ can lead to a considerably higher $R_{\text {out }}$ and harm the overall efficiency. On the contrary, decreasing $C_{\text {out }}$ can counter-intuitively help reduce $R_{\text {out }}$, which contributes to both higher efficiency and higher power density, although this benefit comes at the cost of a larger output voltage ripple. In addition, $C_{\text {out }}$ has a stronger effect on $R_{\text {out }}$ in the slow switching region, while $C_{\text {in }}$ is more influential in the fast switching region, especially around the knee of the output impedance curve, which is the typical operating point of SC converters. Several design guidelines are provided based on these findings. Further discussions are provided to explain how to apply the proposed general output impedance model to arbitrary SC topologies.

Index Terms-Circuit modeling, input capacitance, output capacitance, output impedance, switched-capacitor converters.

I. INTRODUCTION

Compared with traditional magnetic-based power converters, switched-capacitor (SC) converters have been demonstrated to have great potential of achieving higher power density and more effective switch utilization [1], [2]. Therefore, they are widely used in various applications, including CMOS integrated power conversion [3]-[6], consumer electronics [7], power amplifier [8], data center power delivery [9], and automotive systems [10]-[12], ranging from DC-DC [13] to DC/AC-AC [14]-[17] conversions.

Although pre-existing models [18]-[23], analyses [24]-[30], and control [31], [32] of SC converters assume input and/or output to be ideal voltage sources, as illustrated in Fig. 1(a), practical implementations of SC converters involve input and output capacitors ($C_{\text {in }}$ and $C_{\text {out }}$) to stabilize the terminal voltages, as shown in Fig. 1(b). Theoretically, if $C_{\text {in }}$ and

[^0]

Fig. 1: General steady-state model of an SC converter. (a) Idealized input and output. (b) Practical input and output. ($L_{\mathrm{p}(\mathrm{in})}$: the parasitic source inductance)
$C_{\text {out }}$ are much larger than the flying capacitor $\left(C_{\text {fly }}\right)$ (i.e. $C_{\text {in }}, C_{\text {out }} \geqslant 10 C_{\text {fly }}$) the input and output can be regarded as ideal voltage sources. However, in practical applications, the sizes of $C_{\text {in }}$ and $C_{\text {out }}$ are usually constrained by space and cost and thus can be insufficient to ensure ideal input and output behaviors. Fig. 2 illustrates the schematic drawing of a 2-to-1 SC converter with finite terminal capacitances, with the simulated output impedance curves with different terminal capacitances presented in Fig. 2(b). As shown in Fig. 2(b), the output impedance curve can significantly deviate from the ideal scenario when the terminal capacitances are insufficient.

Although terminal capacitances can have considerable effects on the output impedance, there is currently no analytical tool that is able to characterize their effects quantitatively. The selection of $C_{\text {in }}$ and $C_{\text {out }}$ in the design of SC converters is mainly based on engineering experiences and trial and error. However, since the die area is typically limited and valuable in integrated circuits such as CMOS converters, quantitative optimizations should be performed to find out the best combination of flying capacitances and terminal capacitances to achieve the lowest output impedance within the limited area. This indicates a need for a general analytical tool to characterize the effects of terminal capacitances in SC converters, which can help practicing engineers and researchers achieve the optimum converter size and performance.
This paper expands upon our earlier conference publication [33] with more detailed analyses, enriched design guidelines, and further explanations for the applicability of this work to arbitrary SC topologies. In this paper, a general modeling and analysis methodology for SC converters is proposed to characterize the effects of finite $C_{\text {in }}$ and $C_{\text {out }}$. Section II explains the derivation of the proposed general output impedance model in detail. In Section III, a 2-to-1 SC converter pro-

Fig. 2: Output impedance of a 2-to-1 SC converter with different terminal capacitances. (a) Schematic drawing of the 2-to-1 SC converter. (b) Output impedance curves with different C_{in} and $C_{\text {out }}$. $\left(C_{\text {fly }}=10 \mu \mathrm{~F}, R_{\mathrm{on}}=10\right.$ $m \Omega$)
totype is specially designed for model verification, and the modeling results agree well with experimental measurements with less than 8% relative error. To facilitate analysis, the proposed model is approximated by using Taylor expansion in Section IV-A to obtain a simpler mathematical form. Based on the proposed model, it is revealed in Section IV-B that the insufficiency of $C_{\text {in }}$ can lead to a significant increase in output impedance, while smaller $C_{\text {out }}$ can counter-intuitively help reduce the output impedance and achieve higher efficiency, although this benefit comes at the cost of a larger output voltage ripple. It is also revealed in Section IV-C that the parasitic source inductance and the deadtime can have a nontrivial impact on the output impedance in the slow and fast switching regions, respectively. Based on the above findings, Section IV-D provides several design guidelines. Further explanations for the applicability of the proposed model to arbitrary SC topologies are given in Section V.

II. General Output Impedance Model of SC Converters With Finite Terminal Capacitances

A. Circuit Model

In a general circuit state (or phase) k, an SC topology can be viewed as an $R C$ network and represented as the circuit model shown in Fig. 3. It consists of an equivalent resistance R_{k} and an equivalent capacitance C_{k} connected in series. With suitable (topology-dependent) R_{k} and C_{k} parameters, this general expression can capture any arbitrary SC topologies. The method of calculating the model parameters R_{k} and C_{k} for arbitrary SC topologies will be provided in Section V-A.

As illustrated in Fig. 3, two cases should be considered due to the finite input capacitance. The SC converter can be represented as Fig. 3(a) when the input terminal is connected

Fig. 3: Complete circuit model of an SC converter with finite C_{in} and $C_{\text {out }}$. (a) Case 1: the input terminal is connected to the source. (b) Case 2: the input terminal is grounded.

Fig. 4: Simplified circuit model of an SC converter with finite $C_{\text {in }}$ and $C_{\text {out }}$. (a) Case 1: the input terminal is connected to the source. (b) Case 2: the input terminal is grounded.
to the source and as Fig. 3(b) when the input terminal is grounded. As conventionally done in topology analysis, the second-order circuit model shown in Fig. 3 can be further simplified as the first-order model illustrated in Fig. 4. First, due to the existence of the parasitic source inductance $L_{\mathrm{p}(\mathrm{in})}$ and the high-frequency operation of SC converters (SC converters typically operate above the critical switching frequency to reach the fast switching limit (FSL) [18]), it can be assumed that the input current ripple is sufficiently small so that $V_{\text {in }}$ and $L_{\mathrm{p}(\mathrm{in})}$ together can be regarded as a constant current source I_{in}. Second, since the output voltage ripple is typically designed to be small compared to the average DC output voltage, the ripple on the output current through the resistive load can also be ignored. In addition, some loads are inherently inductive and behave like current sources. Thus, the load can be modeled as a constant current source $I_{\text {out }}$.

B. Calculation of Output Impedance

By definition, the resistive output impedance $R_{\text {out }}$ accounts for all conduction losses and charge sharing losses in an SC converter. Therefore, $R_{\text {out }}$ can be calculated with the average conduction loss $P_{\text {loss }}$ as

$$
\begin{equation*}
R_{\mathrm{out}}=\frac{P_{\mathrm{loss}}}{I_{\mathrm{out}}^{2}} \tag{1}
\end{equation*}
$$

Note that $P_{\text {loss }}$ is the power loss averaged in one switching cycle and thus can be expressed with the summation of the energy losses over all phases as

$$
\begin{equation*}
P_{\mathrm{loss}}=f_{\mathrm{sw}} \sum_{k} E_{k} \tag{2}
\end{equation*}
$$

where f_{sw} is the switching frequency. E_{k} represents the energy loss in phase k and can be calculated as

$$
\begin{equation*}
E_{k}=\int_{0}^{T_{k(\mathrm{eff})}} R_{k} i_{k}^{2}(t) d t \tag{3}
\end{equation*}
$$

in which i_{k} is the current through R_{k} in phase k and $T_{k(\mathrm{eff})}$ is the effective duration of the phase k. Since there is no forced
freewheeling operation in SC converters during the deadtime, the effective duration of phase k is

$$
\begin{equation*}
T_{k(\mathrm{eff})}=T_{k}-t_{\mathrm{d}} \tag{4}
\end{equation*}
$$

where T_{k} is the duration of phase k and t_{d} is the deadtime.

C. Model Derivation

As indicated by (1)-(3), to calculate the output impedance, we need to find the explicit expression of i_{k} in all phases based on the first-order simplified model shown in Fig. 4 as

$$
\begin{equation*}
i_{k}(t)=\left(I_{0 k}-I_{\mathrm{f} k}\right) e^{-\frac{t}{\tau_{k}}}+I_{\mathrm{f} k} \tag{5}
\end{equation*}
$$

where $I_{0 k}$ and $I_{\mathrm{f} k}$ are the initial value and forced component of i_{k} in phase k, and τ_{k} represents the time constant of the equivalent circuit. τ_{k} and $I_{\mathrm{f} k}$ can be expressed as

$$
\left\{\begin{array}{l}
\tau_{k}=R_{k} C_{k(\mathrm{eff})} \tag{6}\\
I_{\mathrm{f} k}=p_{k} I_{\mathrm{out}}
\end{array}\right.
$$

in which $C_{k(\text { eff })}$ is the effective capacitance and p_{k} is a dimensionless ratio. In the two cases illustrated in Fig. 4, for an m-to- n SC converter, $C_{k(\text { eff })}$ and p_{k} can be given as

Case 1: $\left\{\begin{array}{l}C_{k(\mathrm{eff})}=1 /\left(\frac{1}{C_{k}}+\frac{1}{C_{\mathrm{in}}}+\frac{1}{C_{\mathrm{out}}}\right) \\ p_{k}=\frac{C_{k(\mathrm{eff})}}{C_{\mathrm{in}} C_{\mathrm{out}}}\left(C_{\mathrm{in}}+\frac{n}{m} C_{\mathrm{out}}\right)\end{array}\right.$
Case 2: $\left\{\begin{array}{l}C_{k(\mathrm{eff})}=1 /\left(\frac{1}{C_{k}}+\frac{1}{C_{\text {out }}}\right) \\ p_{k}=\frac{C_{k(\mathrm{eff})}}{C_{\text {out }}}\end{array}\right.$
Substituting (2)-(7) into (1) yields

$$
\begin{equation*}
R_{\mathrm{out}}=\hat{R}_{\mathrm{out}}+\sum_{k} R_{k} p_{k}\left(2 a_{k}-p_{k} f_{\mathrm{sw}} T_{k(\mathrm{eff})}\right) \tag{8}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\hat{R}_{\mathrm{out}}=\frac{1}{2 f_{\mathrm{sw}}} \sum_{k} \frac{\hat{a}_{k}^{2}}{C_{k(\mathrm{eff})}} \operatorname{coth}\left(\frac{T_{k(\mathrm{eff})}}{2 \tau_{k}}\right) \tag{9}\\
\hat{a}_{k}=a_{k}-p_{k} f_{\mathrm{sw}} T_{k(\mathrm{eff})}
\end{array}\right.
$$

in which a_{k} is the ratio of the transferred charged in phase k to the total delivered charge in a switching cycle. A detailed derivation of (8) is provided in Appendix A. The definition and calculation of a_{k} can be found in [18].

With ideal input and output, $C_{k(\text { eff })}$ and p_{k} become $C_{k(\mathrm{eff})}=C_{k}$ and $p_{k}=0$, so that

$$
\begin{equation*}
R_{\mathrm{out}}=\hat{R}_{\mathrm{out}}=\frac{1}{2 f_{\mathrm{sw}}} \sum_{k} \frac{a_{k}^{2}}{C_{k}} \operatorname{coth}\left(\frac{T_{k(\mathrm{eff})}}{2 \tau_{k}}\right) \tag{10}
\end{equation*}
$$

which is the same as has been derived in [22].

III. Model Verification

In this section, a 2-to-1 SC converter prototype is designed to investigate the influence of terminal capacitances on the output impedance quantitatively. The accuracy of the proposed general model is verified by comparing the modeling results

Fig. 5: Schematic drawing of the 2-to-1 SC converter prototype.

Fig. 6: Photograph of the 2-to-1 SC converter prototype. (a) Overall view. (b) Top view with key components annotated.
with circuit simulations and experimental measurements from 2-to-1 SC converter prototype.

A. Experimental Setup

Figures 5 and 6 present the schematic drawing and photograph of the 2-to-1 SC converter prototype for model verification, with the main components listed in Table I. The test condition is $V_{\mathrm{in}}=24 \mathrm{~V}$ and $I_{\text {out }}=1 \mathrm{~A}$. The input and output voltages are measured with digital multimeters Keysight 34405A and 34401A, respectively, and the output current $I_{\text {out }}$ is measured by the E-load Rigol DL3031.

For the 2-to-1 SC converter shown in Fig. 6, the topologydependent parameters in the output impedance model are $C_{k}=C_{\mathrm{fly}}, R_{k}=2\left(R_{\mathrm{on}}+R_{\mathrm{CS}}\right)+\mathrm{ESR}_{\mathrm{C}(\mathrm{fly})}, a_{k}=\frac{1}{2}$, and $T_{k}=\frac{1}{2 f_{\mathrm{sw}}}(k=1,2)$, where C_{fly} is the flying capacitance, $R_{\text {on }}$ is the on-state resistance of the GaN HEMT $\mathrm{Q}_{1}-\mathrm{Q}_{4}$, R_{CS} is the value of current sense resistors $R_{\mathrm{CS} 1}-R_{\mathrm{CS} 4}$, and $\mathrm{ESR}_{\mathrm{C}(\mathrm{fy})}$ is the ESR of C_{fly}. The reason why $R_{\mathrm{CS} 1}-R_{\mathrm{CS} 4}$ are added in series with the GaN switches will be explained in the following section.

B. Experiment Design Considerations

There are two key considerations to achieve effective model verification:

1) Ensure accurate parameter acquisition. Since the precision of the predicted results is dependent on not only the correctness of the model itself but also the accuracy of the circuit parameters, we should ensure that the circuit parameters will not deviate from the nominal values provided

TABLE I: Component list of the 2-to-1 SC converter prototype

Component	Part number	Parameters
GaN HEMT Q1-Q4	GaN Systems GS61004B	$100 \mathrm{~V}, 16 \mathrm{~m} \Omega\left(@ 25{ }^{\circ} \mathrm{C}\right)$
Current sense resistor $R_{\mathrm{CS} 1}-R_{\mathrm{CS} 4}$	KOA Speer SLN5TTEDR200D	$200 \mathrm{~m} \Omega, 7 \mathrm{~W}, 75 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Flying capacitor C_{fy}	KEMET C2220C474J5GACTU	$\mathrm{C} 0 \mathrm{G}, 50 \mathrm{~V}, 0.47 \mu \mathrm{~F} \times 8$
Input and output capacitors $C_{\text {in }}$ and $C_{\text {out }}$	KEMET C2220C474J5GACTU	$\mathrm{C} 0 \mathrm{G}, 50 \mathrm{~V}, 0.47 \mu \mathrm{~F} \times 2-\times 40^{*}$
Gate driver	Analog Devices LTC4440	80 V, high-side
LDO voltage regulator	Texas Instruments LP2985AIM5-6.1/NOPB	$2.5-16 \mathrm{~V}$ input, 6.1 V output
Bootstrap diode	Infineon BAT6402VH6327XTSA1	40 V , Schottky diode

* Measurements are performed with various terminal capacitances.
in the manufacturers' datasheets during the measurement due to temperature variation, voltage bias, etc. There are two categories of variation-prone circuit parameters in the model: a) capacitances: $C_{\text {fly }}, C_{\mathrm{in}}$, and $C_{\text {out }}$, and b) resistance: $R_{\text {on }}$ and $\mathrm{ESR}_{\mathrm{C}(\mathrm{fy})}$.

KEMET C2220C474J5GACTU is a Class 1 capacitor with C0G dielectric that can maintain high capacitance stability over a wide range of operating temperature and voltage bias and has extremely low ESR and ESL. Therefore, we select it for $C_{\text {fly }}, C_{\mathrm{in}}$, and $C_{\text {out }}$, so that the variation in the capacitances can be minimized and $\mathrm{ESR}_{\mathrm{C}(\text { fly })}$ can be ignored (i.e. $\mathrm{ESR}_{\mathrm{C}(\mathrm{fy})} \approx 0$).

The on-state resistance of switching devices can vary significantly due to the changes in operating conditions (e.g. junction temperature, drain-to-source current, gate-to-source voltage, etc.). The on-state resistance of GaN HEMTs is particularly hard to accurately capture due to the dynamic onstate resistance phenomenon [34], [35].

To tackle this challenge, we add a high-precision current sense resistor (KOA Speer SLN5TTEDR200D) in series with each GaN switch to dominate the branch resistance. The current sense resistor can maintain high thermal stability (75 $\left.\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$ and has a much higher resistance $\left(R_{\mathrm{CS}}=200 \mathrm{~m} \Omega\right)$ than the GaN switch ($R_{\text {on }}=16 \mathrm{~m} \Omega @ 25^{\circ} \mathrm{C}$). As a result, the branch resistance can be stabilized by the current sense resistor against the variation in $R_{\text {on }}$. In addition, the cascaded bootstrap circuit with LDOs [36] is selected to drive the GaN switches since it can ensure stable gate drive voltage $V_{\text {drive }}$ and minimize the variation in $R_{\text {on }}$ resulting from the change in $V_{\text {drive }}$.
2) Minimize the proportion of switching loss. The proposed output impedance model can only capture the conduction losses and charge sharing losses in the SC converter. Therefore, to achieve effective model verification, we need to ensure that the converter operates in the conduction-loss-dominant condition, and the switching loss takes up only a small proportion of the total loss. Meanwhile, the converter needs to operate above 1 MHz to reach FSL. Therefore, we use GaN switches with small output capacitance and low gate charge and set the external gate resistance as 0Ω to minimize the overlap loss.

C. Experimental Results

Figs. 7 and 8 show the comparison between the output impedances predicted by the proposed model (Model), simulated by PLECS (Sim.), and measured from the converter
prototype (Expt.). Figs. 7(c) and 8(c) present the relative error of the modeling results with respect to the experimental measurements that is calculated by

$$
\begin{equation*}
\text { Relative error }=\frac{R_{\text {out(Model) }}-R_{\text {out(Expt.) }}}{R_{\text {out(Expt.) }}} \times 100 \% \tag{11}
\end{equation*}
$$

where $R_{\text {out(Model) }}$ and $R_{\text {out(Expt.) }}$ are the output impedance predicted by the model and measured from the prototype, respectively.

As can be seen in Figs. 7 and 8, the modeling results are in excellent agreement with the circuit simulations and the experimental measurements. The relative error of the modeling results with respect to the experimental measurements is less than 8% for various $C_{\text {in }}$ and $C_{\text {out }}$ within $100 \mathrm{kHz}-2 \mathrm{MHz}$ switching frequency range, covering the slow switching limit (SSL) and FSL. This indicates excellent accuracy of the proposed general output impedance model and its applicability in a wide range of switching frequency.

It should be noted that the relative error grows higher when the switching frequency increases. This is mainly due to the increase in the switching loss resulting from higher switching frequency. In addition, the relative error rises dramatically as the switching frequency decreases when C_{in} is small. This results from the undesired oscillation between $L_{\mathrm{p}(\mathrm{in})}$ and C_{in}, which will be further explored in Section IV-C.

IV. Effect Analysis of Terminal Capacitances

With the general model derived and verified in Sections II and III, we will use it to explore the effect of finite terminal capacitances on the output impedance of SC converters in this section.

A. Model Approximation by Taylor Expansion

Although the general output impedance model is accurate within a wide range of switching frequency, it can be too complex to provide intuitive engineering insight. The existence of the hyperbolic function $\operatorname{coth}(x)$ makes it hard to handle mathematically. Therefore, to facilitate analysis, we approximate (8) with Taylor expansion to obtain a simplified mathematical form. Inspired by the concepts of SSL and FSL [18], we perform model approximation in the slow and fast switching regions separately, and name the obtained models as slow switching model (SSM) and fast switching model (FSM), respectively.

Fig. 7: Output impedance of the SC converter with various $C_{\text {in }}$. ($C_{\text {out }}=$ $5 C_{\text {fly }}$) (a) Comparison between the output impedances predicted by the proposed model (Model) and simulated by PLECS (Sim.). (b) Comparison between the output impedances predicted by the proposed model (Model) and measured from the prototype (Expt.). (c) Relative error of modeling results with respect to experimental measurements calculated with (11).

For simplicity, here we perform the approximation to the model of the 2-to-1 SC converter prototype presented in Section III as an example. Note that this approximation technique is applicable to arbitrary SC topologies. To simplify calculation, we set $R_{\mathrm{CS}}=0 \Omega$ and assume negligible capacitor ESR and deadtime t_{d}. In the following examples in Sections IV-A and IV-B, $C_{\mathrm{fly}}=10 \mu \mathrm{~F}, R_{\mathrm{on}}=10 \mathrm{~m} \Omega$.

Using Taylor expansion, we can approximate the output impedance model given in (8) for a 2 -to-1 SC converter as

$$
\begin{cases}R_{\mathrm{SSM}}=\left(b+\frac{c}{s}\right) R_{\mathrm{on}}, & s<s_{\mathrm{c}} \tag{12}\\ R_{\mathrm{FSM}}=\left(2+\frac{d}{s^{2}}\right) R_{\mathrm{on}}, & s \geqslant s_{\mathrm{c}}\end{cases}
$$

Fig. 8: Output impedance of the SC converter with various $C_{\text {out }}$. $\left(C_{\mathrm{in}}=\right.$ $5 C_{\text {fly }}$) (a) Comparison between the output impedances predicted by the proposed model (Model) and simulated by PLECS (Sim.). (b) Comparison between the output impedances predicted by the proposed model (Model) and measured from the prototype (Expt.). (c) Relative error of modeling results with respect to experimental measurements calculated with (11).
where

$$
\left\{\begin{array}{l}
s=8 f_{\mathrm{sw}} R_{\mathrm{on}} C_{\mathrm{fly}}, s_{\mathrm{c}}=\frac{1+k_{\mathrm{in}} / 2+k_{\mathrm{out}}}{\sqrt{3}} \tag{13}\\
k_{\mathrm{in}}=\frac{C_{\mathrm{fly}}}{C_{\mathrm{in}}}, k_{\mathrm{out}}=\frac{C_{\mathrm{fly}}}{C_{\mathrm{out}}} \\
b=2-\frac{\left(1+k_{\mathrm{in}} / 2\right)^{2}}{\left(1+k_{\mathrm{in}}+k_{\mathrm{out}}\right)^{2}}-\frac{1}{\left(1+k_{\mathrm{out}}\right)^{2}} \\
c=\frac{\left(1+k_{\mathrm{in}} / 2\right)^{2}}{1+k_{\mathrm{in}}+k_{\mathrm{out}}}+\frac{1}{1+k_{\mathrm{out}}} \\
d=\frac{\left(1+k_{\mathrm{in}} / 2\right)^{2}+1}{3}
\end{array}\right.
$$

TABLE II: Maximum relative errors of the approximated SSM and FSM in (12) with various $C_{\text {in }}$ and $C_{\text {out }}$

$k_{\text {in }}^{-1}$ or $k_{\text {out }}^{-1}$	10	7	5	4	3	2	1	0.5	0.25
$C_{\text {in }}=k_{\text {in }}^{-1} C_{\text {fly }}, C_{\text {out }}=10 C_{\text {fly }}$	7.40%	7.27%	7.25%	7.18%	6.91%	7.32%	7.44%	10.6%	15.1%
$C_{\text {out }}=k_{\text {out }}^{-1} C_{\text {fly }}, C_{\text {in }}=10 C_{\text {fly }}$	7.40%	6.89%	6.51%	6.06%	5.84%	4.95%	3.00%	1.52%	0.58%

Fig. 9: Comparison between the precise model in (8) and the approximated SSM and FSM in (12). $\left(C_{\text {in }}=C_{\text {out }}=10 C_{\text {fly }}\right)$
in which s is a dimensionless product of the switching frequency f_{sw} and the time constant $R_{\mathrm{on}} C_{\text {fly }}$ and is defined as the normalized switching frequency. Parameter s_{c} is the critical normalized frequency that marks the boundary between SSM and FSM, and $k_{\text {in }}$ and $k_{\text {out }}$ are the ratios of $C_{\text {fly }}$ to $C_{\text {in }}$ and $C_{\text {out }}$, respectively. The detailed derivation of (12) is given in Appendix B.

Fig. 9 shows the comparison between the precise model given in (8) and the approximated models (SSM and FSM) shown in (12). Table II lists the maximum relative errors of the approximated model with various C_{in} and C_{out}. From Fig. 9, we can see that the maximum relative error always appears at the critical frequency s_{c}. Table II shows that SSM and FSM can approximate the precise model within 8% relative error except for the cases with extremely small C_{in}.

In the slow switching region that ensures complete charge transfer, we have $s \ll 1$ which yields the SSL in (14). When the switching frequency is sufficiently high so that the current through $C_{\text {fly }}$ is almost constant in each phase, $s \gg 1$ and therefore yields the FSL in (14).

$$
\begin{cases}R_{\mathrm{SSM}} \approx R_{\mathrm{SSL}}=\frac{c}{s} R_{\mathrm{on}}, & s \ll 1 \tag{14}\\ R_{\mathrm{FSM}} \approx R_{\mathrm{FSL}}=2 R_{\mathrm{on}}, & s \gg 1\end{cases}
$$

When the terminal capacitances are sufficiently large so that the input and output can be regarded as constant voltage sources, $k_{\text {in }}$ and $k_{\text {out }}$ are approximately zero so that we get $R_{\mathrm{SSL}}=\frac{1}{4 C_{\text {fly }} f_{\mathrm{sw}}}$ and $R_{\mathrm{FSL}}=2 R_{\mathrm{on}}$, which is expected and well-known.

B. Effect of Finite Terminal Capacitances

In this section, we first evaluate (12) to analyze the effect of terminal capacitances qualitatively, then perform quantitative analysis with numerical calculations, and finally explore the physical origins for these effects with circuit simulations.

1) Qualitative analysis. In the SSM of (12), when $C_{\text {in }}$ becomes smaller, $k_{\text {in }}$ increases so that c becomes greater, resulting in higher $R_{\text {SSM }}$. Conversely, with smaller $C_{\text {out }}$, $k_{\text {out }}$ increases so that c becomes smaller, contributing to lower $R_{\text {SSM }}$. It is favorable, although counter-intuitive, that decreasing $C_{\text {out }}$ can help reduce the output impedance since this will contribute to both higher power density and higher efficiency. But note that this benefit comes at the cost of a larger output voltage ripple. $C_{\text {out }}$ should still be sufficiently large to satisfy any ripple constraint.

In the FSM of (12), the coefficient d is only dependent on $k_{\text {in }}$ while it is independent of $k_{\text {out }}$. This indicates that $C_{\text {out }}$ has little effect on $R_{\text {FSM }}$. By inspection, we can predict that reducing $C_{\text {in }}$ will lead to higher $R_{\text {FSM }}$.
2) Quantitative analysis. Figs. 10 and 11 show quantitative comparisons of the output impedance of 2-to-1 SC converters with different terminal capacitances. To generalize the analysis, Figs. 10 and 11 are plotted with the normalized switching frequency s in (13) ($s=8 f_{\text {sw }} R_{\text {on }} C_{\text {fly }}$), with the output impedance normalized to the FSL impedance as $R_{\text {out }} / R_{\text {FSL }}$ ($R_{\text {FSL }}=2 R_{\text {on }}$). It can be observed that smaller $C_{\text {in }}$ leads to higher output impedance, while the output impedance becomes lower when $C_{\text {out }}$ is smaller.

As has been predicted in the qualitative analysis, $C_{\text {out }}$ has no influence on the output impedance in the fast switching region. Instead, $C_{\text {in }}$ exhibits a greater effect in this region, especially around the knee of the output impedance curve. Since SC converters typically operate around the knee point, $C_{\text {in }}$ should be carefully designed to avoid the undesired increase in the output impedance due to insufficient C_{in}. These findings are consistent with those from the qualitative analysis and the experimental results presented in Figs. 7 and 8.

In addition, it can be observed in Fig. 7 that $C_{\text {in }}=3 C_{\text {fly }}$ is sufficient to approximate an ideal input. However, further reduction in $C_{\text {in }}$ can cause a significant increase in the output impedance, which harms efficiency. On the contrary, smaller $C_{\text {out }}$ can always help reduce the output impedance. Moreover, in the slow switching region, $C_{\text {out }}$ exhibits a stronger influence on the output impedance than C_{in}. For example, Fig. 10(b) shows that reducing $C_{\text {in }}$ to $0.25 C_{\text {fly }}$ can increase $R_{\text {out }}$ by a factor of 1.5, while it is presented in Fig. 11(b) that reducing $C_{\text {out }}$ to $0.25 C_{\text {fly }}$ can decrease $R_{\text {out }}$ by a factor of 0.3 .
3) Physical origins. Fig. 12 compares the simulated waveforms of the 2-to-1 SC converter with large and small input capacitances, assuming ideal output. Fig. 12 shows that with smaller C_{in}, the voltage difference seen by $C_{\mathrm{fly}}\left(V_{\mathrm{C}(\mathrm{in})}-\right.$

Fig. 10: Effect of $C_{\text {in }}$ on output impedance. (Assuming ideal output) (a) Normalized output impedance $R_{\text {out }} / R_{\mathrm{FSL}}$ with various C_{in}. (b) Ratio of $R_{\text {out }}$ to the output impedance with ideal input and output $R_{\text {out (ideal) }}$.

Fig. 12: Comparison of simulated waveforms between large and small $C_{\text {in }}$ cases. (Assuming ideal output, $C_{\text {fly }}=10 \mu \mathrm{~F}, f_{\mathrm{sw}}=1 \mathrm{MHz}, I_{\text {out }}=5 \mathrm{~A}$)

TABLE III: Comparison between the RMS and peak-to-peak values of the simulated $i_{\mathrm{C}(\mathrm{fly})}$ waveforms between large and small $C_{\text {in }}$ cases (Assuming ideal output, $C_{\text {fly }}=10 \mu \mathrm{~F}, f_{\mathrm{sw}}=1 \mathrm{MHz}, I_{\text {out }}=5 \mathrm{~A}$)

	$C_{\text {in }}$	$100 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$
$i_{\mathrm{C}(\text { fly })}$	$5 \mu \mathrm{~F}$		
RMS value	6.18 A	6.49 A	6.84 A
Peak-to-peak value	28.6 A	34.0 A	40.6 A

$\left.V_{\mathrm{C}(\text { out })}-V_{\mathrm{C}(\mathrm{fly})}\right)$ becomes much larger. This results in a higher peak value of $i_{\mathrm{C}(\mathrm{fly})}$ in the case 1 shown in Fig. 4. As a result, the RMS value of $i_{\mathrm{C}(\mathrm{fly})}$ becomes higher when C_{in} is smaller, which leads to greater loss and higher output impedance.

Fig. 13 presents a similar comparison of output impedance

Fig. 11: Effect of $C_{\text {out }}$ on input impedance. (Assuming ideal output) (a) Normalized output impedance $R_{\text {out }} / R_{\text {FSL }}$ with various $C_{\text {out }}$. (b) Ratio of $R_{\text {out }}$ to the output impedance with ideal input and output $R_{\text {out(ideal) }}$.

Fig. 13: Comparison of simulated waveforms between large and small $C_{\text {out }}$ cases. (Assuming ideal input, $C_{\text {fly }}=10 \mu \mathrm{~F}, f_{\mathrm{sw}}=1 \mathrm{MHz}, I_{\text {out }}=5 \mathrm{~A}$)

TABLE IV: Comparison between the RMS and peak-to-peak values of the simulated $i_{\mathrm{C}(\mathrm{fly})}$ waveforms between large and small $C_{\text {out }}$ cases (Assuming ideal input, $C_{\text {fly }}=10 \mu \mathrm{~F}, f_{\mathrm{sw}}=1 \mathrm{MHz}, I_{\text {out }}=5 \mathrm{~A}$)

	$100 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$5 \mu \mathrm{~F}$
RMS value	6.07 A	5.95 A	5.81 A
Peak-to-peak value	28.2 A	30.7 A	32.7 A

between the 2 -to- 1 SC converter with large and small output capacitances, assuming ideal input. As listed in Table IV, the RMS value of $i_{\mathrm{C}(\mathrm{fly})}$ becomes lower with smaller $C_{\text {out }}$. This is because the output voltage $\left(V_{\mathrm{C}(\mathrm{out})}\right)$ is able to follow $V_{\mathrm{C}(\mathrm{fly})}$ more rapidly when $C_{\text {out }}$ is smaller. Consequently, $i_{\mathrm{C}(\mathrm{ffy})}$ drops

Fig. 14: Effect of $L_{\mathrm{p}(\mathrm{in})}$ on the output impedance of the 2-to-1 SC converter prototype. ($C_{\text {in }}=0.5 C_{\text {fly }}, C_{\text {out }}=5 C_{\text {fly }}$) (a) Output impedance with small and large L_{in}. (b) Simulated waveforms of I_{in} with small and large L_{in}. $\left(f_{\mathrm{sw}}=100 \mathrm{kHz}\right)$
faster and thus has a lower RMS value, which contributes to less loss and lower output impedance.
In summary, reducing $C_{\text {in }}$ exacerbates the imbalance of capacitor voltages between the two cases of Fig. 4, which increases the RMS value of $i_{\mathrm{C}(\mathrm{fly})}$. On the contrary, decreasing $C_{\text {out }}$ accelerates the charge sharing processes, thus resulting in a lower RMS value of $i_{\mathrm{C}(\mathrm{fly})}$. This accounts for the opposite effects of C_{in} and $C_{\text {out }}$ on the output impedance of SC converters. Experimental corroboration of the above simulation analyses and theoretical findings is provided in Appendix C.

C. Other Practical Considerations

1) Resonance between $L_{\mathrm{p}(\mathrm{in})}$ and C_{in}. As shown in Fig. 14(a), it is observed both in simulation (Sim.) and experiment (Expt.) that, with low C_{in}, there will be an undesired increase in the output impedance in the slow switching region when $L_{\mathrm{p}(\mathrm{in})}$ is small. This phenomenon is due to the resonance between $L_{\mathrm{p}(\mathrm{in})}$ and C_{in}, and can be explained as follows.

As $C_{\text {in }}$ becomes smaller and smaller, the resonant frequency of $L_{\mathrm{p}(\mathrm{in})}$ and C_{in}, which can be given as $f_{\mathrm{r}(\mathrm{in})}=$ $\frac{1}{2 \pi \sqrt{L_{\mathrm{p}(\text { in })} C_{\mathrm{in}}}}$, gradually decreases. When the switching frequency approaches $f_{\mathrm{r}(\mathrm{in})}$, the input current $I_{\text {in }}$ will start to oscillate largely between positive and negative values, as illustrated in Fig. 14(b). Such oscillation can dramatically increase the input voltage ripple and therefore augment the voltage difference seen by $C_{\text {fly }}$, thus leading to higher RMS value of $i_{\mathrm{C}(\mathrm{fly})}$ and higher output impedance.

It is worth noting that the above analysis is only an example of how the $L_{\mathrm{p}(\mathrm{in})}-C_{\mathrm{in}}$ resonance can affect the input voltage ripple and output impedance of SC converters. Realistic input impedance networks can be more complex and can affect not only the performance but also the stability of power converters. Detailed effect analysis of the resonance between the source impedance and $C_{\text {in }}$ is out of the scope of this paper and can be a good research topic for future works.
2) Effect of deadtime. As shown in Fig. 15(a), at very high switching frequency (i.e. beyond several MHz), a practical deadtime t_{d} of several ns can lead to an unexpected increase in output impedance. This effect can be accurately captured by the proposed model by introducing the effective duration of conduction given in (7).

Fig. 15: Effect of deadtime on the output impedance of the 2-to-1 SC converter prototype. ($C_{\mathrm{in}}=C_{\text {out }}=5 C_{\text {fly }}$) (a) Output impedance with and without deadtime. (b) Simulated waveforms of $i_{\mathrm{C}(\mathrm{fly})}$ with and without deadtime. $\left(f_{\mathrm{sw}}=10 \mathrm{MHz}\right)$

As illustrated in Fig. 15(b), the average value of $i_{\mathrm{C}(\mathrm{fly})}$ in each phase should be the same no matter how long the deadtime is. However, with longer deadtime, the conduction duration of $i_{\mathrm{C}(\mathrm{fly})}$ will become shorter, which leads to a higher RMS value and thus higher conduction loss. This indicates that deadtime is also a factor that impedes increasing f_{sw} in practice, apart from higher switching loss.
3) Multiphase interleaving. As discussed in [21], [27], for integrated SC converters, there is usually no penalty for multiphase interleaving. In multiphase interleaved SC converters, the flying capacitor(s) of one SC converter unit can serve as the terminal capacitor(s) for other units. Therefore, with sufficient interleaved phases, no explicit terminal capacitors are needed so that the majority of die area can be used to implement the flying capacitance.

The application of the proposed output impedance model to multiphase interleaved SC converters is out of the scope of this paper and can be a worthwhile topic for future studies. Discussions on how to capture the effect of interleaving can be found in [21].

D. Design Guidelines

- Size of the input capacitance: Since an insufficient input capacitance can increase the output impedance and harm overall efficiency, $C_{\text {in }}$ should be sufficiently large to ensure an approximately ideal input behavior. In particular, when Class 2 capacitors are used as the input capacitor, special attention should be paid to ensure that $C_{\text {in }}$ is sufficient, since Class 2 capacitors suffer from DC derating with applied input voltage.
- Size of the output capacitance: The output capacitance can be appropriately reduced to achieve both smaller physical size and lower output impedance (i.e. both higher power density and higher efficiency). However, $C_{\text {out }}$ should still be sufficiently large to satisfy the ripple constraint on the output voltage.
- Other practical considerations: 1) In the slow switching region, the resonance between $L_{\mathrm{p}(\mathrm{in})}$ and C_{in} can cause an undesired increase in the output impedance. This can be avoided by ensuring sufficient $C_{\text {in }}$ or operating at a higher switching frequency. 2) At very high switching frequency (i.e. beyond several MHz), a practical deadtime

Fig. 16: Common SC topologies. (a) 4-to-1 series-parallel topology and its equivalent circuit in each phase. (b) 5-to-1 Fibonacci topology and its equivalent circuit in each phase. (c) 4-to-1 doubler topology. (d) 4-to-1 Dickson topology.
t_{d} of several nano-seconds can lead to a considerable increase in the output impedance and therefore can no longer be neglected in the analysis and design of SC converters.
Further quantitative optimizations can be performed to find the best combination of $C_{\mathrm{fly}}, C_{\mathrm{in}}$, and $C_{\text {out }}$ to achieve the lowest output impedance within the given physical space limits and voltage ripple constraints.

V. Application to Arbitrary SC Topologies

In this section, we apply the proposed modeling and analysis methodology to four commonly-used SC topologies: series-parallel, Fibonacci, doubler, and Dickson topologies, as shown in Fig. 16. These four examples are provided here to demonstrate the applicability of this model to arbitrary SC topologies. The set of converters considered in this section is limited to two-phase SC converters operating at 50% duty cycle. In the following examples, for simplicity, all flying capacitors have the same capacitance $C_{\mathrm{fly}}=10 \mu \mathrm{~F}$, and all switching devices have the same on-state resistance $R_{\text {on }}=10$ $\mathrm{m} \Omega$.

A. Model Application to Arbitrary SC Topologies

As has been mentioned in Section II-A, the circuit model shown in Fig. 4 can capture arbitrary SC topologies with suitable topology-dependent parameters. Therefore, the key step of applying the proposed model to an arbitrary SC topology is to obtain the equivalent capacitance C_{k} and equivalent resistance R_{k} in each phase. There are two cases: a) the simple case where C_{k} and R_{k} can be directly acquired by inspection, and
b) the general case where the model parameters have to be carefully derived.

1) Simple case. Apart from the 2-to-1 SC topology, the series-parallel topology is also an example of the simple case. Take the 4 -to- 1 series-parallel topology illustrated in Fig. 16(a) as an example-the model parameters of the series phase (i.e. phase 1) are $C_{1}=\frac{1}{3} C_{\text {fly }}$ and $R_{1}=4 R_{\text {on }}$, and those of the parallel phase (i.e. phase 2) are $C_{2}=3 C_{\text {fly }}$ and $R_{2}=\frac{2}{3} R_{\text {on }}$, which can be obtained from the equivalent circuits shown in Fig. 16(a) by inspection.
2) General case. In more general cases, C_{k} and R_{k} cannot be directly obtained by inspection from the equivalent circuits but have to be carefully derived according to the invariance of the SSL and FSL output impedance.

On the one hand, with ideal input and output, the asymptotic SSL and FSL output impedances of two-phase SC converters have been given in [18] as

$$
\left\{\begin{align*}
R_{\mathrm{SSL}} & =\frac{1}{f_{\mathrm{sw}}} \sum_{i \in \mathrm{caps}} \frac{\left(a_{\mathrm{c}, i}\right)^{2}}{C_{\mathrm{fly}}, i} \tag{15}\\
R_{\mathrm{FSL}} & =2 \sum_{i \in \mathrm{switches}} R_{\mathrm{on}, i}\left(a_{\mathrm{r}, i}\right)^{2}
\end{align*}\right.
$$

in which $C_{\mathrm{fly}, i}$ is the value of flying capacitor $i, R_{\mathrm{on}, i}$ is the on-state resistance of switch i, and $a_{\mathrm{c}, i}$ and $a_{\mathrm{r}, i}$ are the charge multipliers of capacitor i and switch i, respectively.

On the other hand, according to the proposed model, the output impedance of a SC converter with ideal input and output is given by (10). By performing the model approximation introduced in Section IV-A, the asymptotic SSL and FSL

Fig. 17: Output impedance of common SC topologies with various terminal capacitances and comparison between modeling (Model) and simulation (Sim.) results. (a) 4-to-1 series-parallel topology. (b) 5-to-1 Fibonacci topology. (c) 4-to-1 doubler topology. (d) 4-to-1 Dickson topology.
output impedances of (10) can be obtained as

$$
\left\{\begin{array}{l}
R_{\mathrm{SSL}}=\frac{1}{2 f_{\mathrm{sw}}} \sum_{k} \frac{a_{k}^{2}}{C_{k}} \tag{16}\\
R_{\mathrm{FSL}}=2 \sum_{k} R_{k} a_{k}^{2}
\end{array}\right.
$$

The SSL and FSL output impedances in (15) and (16) should be the same, and therefore we get

$$
\left\{\begin{array}{l}
\sum_{k} \frac{a_{k}^{2}}{C_{k}}=2 \sum_{i \in \mathrm{caps}} \frac{\left(a_{\mathrm{c}, i}\right)^{2}}{C_{\mathrm{fly}, i}} \tag{17}\\
\sum_{k} R_{k} a_{k}^{2}=\sum_{i \in \mathrm{switches}} R_{\mathrm{on}, i}\left(a_{\mathrm{r}, i}\right)^{2}
\end{array} .\right.
$$

Splitting (17) into each phase yields

$$
\left\{\begin{array}{l}
C_{k}=a_{k}^{2} /\left(\sum_{i \in \text { caps }} \frac{\left(a_{\mathrm{c}, i}\right)^{2}}{C_{\mathrm{ffy}, i}}\right) \tag{18}\\
R_{k}=\frac{1}{a_{k}^{2}} \sum_{i \in \text { switches }} \delta_{i, k} R_{\mathrm{on}, i}\left(a_{\mathrm{r}, i}\right)^{2}
\end{array}\right.
$$

where $\delta_{i, k}$ equals 1 when switch i is ON in phase k and equals 0 when it is OFF in phase k.

Here, take the 5-to-1 Fibonacci converter illustrated in Fig. 16(b) as an example-we can obtain the model parameters as $C_{1}=\frac{2}{3} C_{\mathrm{fly}}, C_{2}=\frac{3}{2} C_{\mathrm{fly}}, R_{1}=\frac{11}{4} R_{\mathrm{on}}$, and $R_{2}=\frac{16}{9} R_{\mathrm{on}}$. With the C_{k} and R_{k} values, we can calculate the output impedance of SC converters with ideal input and output by substituting (18) into (10).

To take the effect of finite $C_{\text {in }}$ into consideration, we need to make further modification to C_{1} (i.e. the C_{k} value in case 1 of Fig. 4). Denote the charge multiplier of C_{in} as $a_{\mathrm{c}, \mathrm{in}}$, which is defined as the ratio of the charge transferred in $C_{\text {in }}$ in one phase to the total charge delivered to the output during a full switching period. For two-phase SC converters operating at 50% duty cycle, the charge transferred in $C_{\text {in }}$ in one phase is

$$
\begin{equation*}
q_{\mathrm{c}, \text { in }}=\frac{T}{2} I_{\mathrm{in}}=\frac{T}{2}\left(\frac{n}{m} I_{\mathrm{out}}\right)=\frac{n}{2 m} q_{\mathrm{out}} . \tag{19}
\end{equation*}
$$

Thus, $a_{\mathrm{c}, \text { in }}$ can be obtained by inspection as

$$
\begin{equation*}
a_{\mathrm{c}, \mathrm{in}}=\frac{n}{2 m} \tag{20}
\end{equation*}
$$

Similar to the flying capacitors, the contribution of the input capacitor to the SSL output impedance is proportional to $a_{\mathrm{c}, \text { in }}^{2} / C_{\mathrm{in}}$ which has the same mathematical form of R_{SSL} in (15). Therefore, compared to the situation with ideal input, due to the existence of finite C_{in}, the contribution of phase 1 (case 1 in Fig. 4) to $R_{\text {SSL }}$ is increased by

$$
\begin{equation*}
f_{1}=1+\left(\frac{a_{\mathrm{c}, \mathrm{in}}^{2}}{C_{\mathrm{in}}}\right) /\left(\sum_{i \in \mathrm{caps}} \frac{\left(a_{\mathrm{c}, i}\right)^{2}}{C_{\mathrm{fly}, i}}\right) \tag{21}
\end{equation*}
$$

This means that we can incorporate the effect of $C_{\text {in }}$ in the model by modifying the C_{1} in (18) with the factor f_{1} as

$$
\begin{equation*}
C_{1}^{\prime}=\frac{C_{1}}{f_{1}} \tag{22}
\end{equation*}
$$

while still mathematically assuming ideal input in the calculation. Note that here we do not assume $C_{\text {in }}$ to be physically infinite but only introduce a mathematical simplification. Additionally, note that since $C_{\text {in }}$ is hard-charged in phase 1 and soft-charged [37] by $L_{\mathrm{p}(\mathrm{in})}$ in phase 2 , it only leads to a greater contribution of phase 1 to $R_{\text {SSL }}$ but has no influence on the contribution of phase 2 to R_{SSL}, which means only C_{1} needs to be modified while C_{2} does not.

To sum up, there are four steps to apply the proposed model to arbitrary SC topologies:
i) calculate the model parameters C_{k} and R_{k} with (18),
ii) modify C_{1} with the factor f_{1} given in (21) as (22),
iii) substitute C_{1}^{\prime} and C_{2} into the case 2 of (3) to calculate $C_{k(\text { eff })}$ and p_{k} for each phase, and
iv) substitute $C_{k(\mathrm{eff})}, p_{k}$ and R_{k} into (8), and calculate $R_{\text {out }}$.

Fig. 17 presents the output impedance of the four SC topologies shown in Fig. 16 with various terminal capacitances. The comparison between modeling and simulation results in Fig. 17 demonstrates the accuracy of the proposed output impedance model in different SC topologies with various terminal capacitances. Note that the proposed output impedance model is widely applicable to arbitrary SC topologies with practical $C_{\text {in }}$ and $C_{\text {out }}$ values but can be inaccurate in extreme scenarios that are not usual in practical applications, such as when $C_{\text {out }}$ is less than $C_{\text {fly }}$.

B. Effect of Terminal Capacitances

As can be observed in Fig. 16, qualitatively speaking, the terminal capacitances exhibit the same effects on output impedance in these common SC topologies as in the 2-to1 SC converter analyzed in Section IV-the insufficiency of $C_{\text {in }}$ leads to higher output impedance while smaller $C_{\text {out }}$ helps reduce output impedance.

Quantitatively speaking, we can notice that $C_{\text {out }}$ is more influential in the slow switching region while $C_{\text {in }}$ has a stronger effect at higher frequency around the knee of the output impedance curve.

It can also be observed that the effect of $C_{\text {in }}$ is weaker in these four SC topologies in comparison with the 2-to-1 SC converter. In the four SC topologies shown in Fig. 17, the output impedance with $C_{\text {in }}=C_{\text {fly }}$ is very close to that with $C_{\text {in }}=10 C_{\text {fly }}$. SC topologies with higher conversion ratio generally have smaller equivalent capacitance $\left(C_{k}\right)$ in the phase where the input terminal is connected to the source (i.e. case 1 in Fig. 4). Given that the output impedance is dependent on the series capacitance of C_{in} and C_{k}, C_{in} needs to be smaller to make the same impact on the output impedance of SC topologies with higher conversion ratio. This is a favorable feature which means that smaller $C_{\text {in }}$ can be sufficient to ensure an approximately ideal input behavior in SC converters with higher conversion ratio.

VI. Conclusions

This paper proposes a general modeling and analysis methodology that is able to characterize the effect of finite terminal capacitances on the output impedance of SC converters. A general output impedance model is derived and verified by
circuit simulations and experimental measurements from a 2 -to- 1 SC converter prototype with less than 8% relative error. It is revealed that larger C_{in} is favorable for efficiency improvement. On the contrary, smaller $C_{\text {out }}$ can help reduce output impedance, which contributes to both higher efficiency and higher power density, although $C_{\text {out }}$ should still be sufficiently large to satisfy the ripple constraint on the output voltage. In addition, $C_{\text {out }}$ is quantitatively more influential in the slow switching region while $C_{\text {in }}$ has a stronger effect on output impedance in the fast switching region, especially around the knee of the output impedance curve where SC converters typically operate. Finally, we demonstrate the applicability of the proposed modeling and analysis methodology to arbitrary SC topologies with four examples of commonly-used SC converters.

This work provides an analytical tool for future investigations, such as design optimizations of SC converters with physical space limits and voltage ripple constraints.

Appendix A

Derivation of the General Output Impedance

 ModelDenote

$$
\left\{\begin{array}{l}
\hat{i}_{k}(t)=\hat{I}_{0 k} e^{-\frac{t}{\tau_{k}}} \tag{23}\\
\hat{I}_{0 k}=I_{0 k}-I_{\mathrm{f} k}
\end{array}\right.
$$

and

$$
\begin{equation*}
\hat{q}_{k}=\int_{0}^{T_{k(\mathrm{eff})}} \hat{i}_{k}(t) d t=\hat{I}_{0 k} \tau_{k}\left(1-e^{-\frac{T_{k(\mathrm{eff})}}{\tau_{k}}}\right) \tag{24}
\end{equation*}
$$

Then

$$
\begin{equation*}
i_{k}=\hat{i}_{k}+I_{\mathrm{f} k} \tag{25}
\end{equation*}
$$

so that the transferred charge in phase k can be calculated as

$$
\begin{equation*}
q_{k}=\int_{0}^{T_{k(\mathrm{eff})}} i_{k}(t) d t=\hat{q}_{k}+I_{\mathrm{f} k} T_{k(\mathrm{eff})} \tag{26}
\end{equation*}
$$

On the other hand, q_{k} and $I_{\text {out }}$ can be expressed as

$$
\left\{\begin{array}{l}
q_{k}=a_{k} q_{\mathrm{out}} \tag{27}\\
I_{\mathrm{out}}=f_{\mathrm{sw}} q_{\mathrm{out}}
\end{array}\right.
$$

where $q_{\text {out }}$ is the total transferred charge to the output in a switching cycle.

Substituting (6) and (27) into (26) yields the relationship between \hat{q}_{k} and $q_{\text {out }}$ as

$$
\begin{equation*}
\hat{q}_{k}=\hat{a}_{k} q_{\mathrm{out}} \tag{28}
\end{equation*}
$$

in which the coefficient \hat{a}_{k} has been given in (9).
Substituting (23) and (28) into (24) yields

$$
\begin{equation*}
\hat{I}_{0 k}=\frac{\hat{a}_{k} q_{\mathrm{out}}}{\tau_{k}\left(1-e^{-\frac{T_{k(\text { eff })}}{\tau_{k}}}\right)} \tag{29}
\end{equation*}
$$

Denote
$\hat{E}_{k}=\int_{0}^{T_{k(\text { eff })}} R_{k} \hat{i}_{k}^{2}(t) d t=\frac{R_{k} \hat{I}_{0 k}^{2} \tau_{k}}{2}\left(1-e^{-\frac{2 T_{k \text { (eff) }}}{\tau_{k}}}\right)$.

Then substituting (27) and (29) into (30) yields the expression of $\hat{R}_{\text {out }}$ that has been given in (9) as

$$
\begin{equation*}
\hat{R}_{\mathrm{out}}=\frac{f_{\mathrm{sw}} \sum_{k} \hat{E}_{k}}{I_{\mathrm{out}}^{2}}=\frac{1}{2 f_{\mathrm{sw}}} \sum_{k} \frac{\hat{a}_{k}^{2}}{C_{k(\mathrm{eff})}} \operatorname{coth}\left(\frac{T_{k(\mathrm{eff})}}{2 \tau_{k}}\right) \tag{31}
\end{equation*}
$$

Substituting (25) and (30) into (3) yields

$$
\begin{equation*}
E_{k}=\hat{E}_{k}+R_{k} I_{\mathrm{f} k}\left(2 \hat{q}_{k}+I_{\mathrm{f} k} T_{k(\mathrm{eff})}\right) \tag{32}
\end{equation*}
$$

Additively combing (32) over all phases and substituting the summation into (1) and (2) yields the final expression of $R_{\text {out }}$ that has been given in (8) as

$$
\begin{align*}
R_{\mathrm{out}} & =\frac{f_{\mathrm{sw}} \sum_{k} E_{k}}{I_{\text {out }}^{2}} \\
& =\frac{f_{\mathrm{sw}} \sum_{k}^{2} \hat{E}_{k}}{I_{\text {out }}^{2}}+\frac{f_{\mathrm{sw}} \sum_{k} R_{k} I_{\mathrm{f} k}\left(2 \hat{q}_{k}+I_{\mathrm{f} k} T_{k(\mathrm{eff})}\right)}{I_{\text {out }}^{2}} \tag{33}\\
& =\hat{R}_{\mathrm{out}}+\sum_{k} R_{k} p_{k}\left(2 a_{k}-p_{k} f_{\mathrm{sw}} T_{k(\mathrm{eff})}\right) .
\end{align*}
$$

Appendix B

Model Approximation by Taylor Expansion

By Taylor expansion, the hyperbolic function $\operatorname{coth}(x)(x>$ 0) can be approximated as

$$
\operatorname{coth}(x) \approx \begin{cases}\frac{1}{x}+\frac{x}{3}, & 0<x \leqslant \sqrt{3} \tag{34}\\ 1, & x>\sqrt{3}\end{cases}
$$

For simplicity, here we consider a two-phase SC converter with 50% duty ratio and negligible deadtime (i.e. $T_{1(\mathrm{eff})}=$ $T_{2(\mathrm{eff})}=\frac{1}{2 f_{\mathrm{sw}}}$). Substituting (34) into (8) yields the contribution of phase $k(k=1,2)$ to $R_{\text {out }}$ as

$$
\left\{\begin{array}{l}
2 R_{k}\left[p_{k}\left(a_{k}-\frac{p_{k}}{4}\right)+\frac{\hat{a}_{k}^{2}}{4 f_{\mathrm{sw}} \tau_{k}}\right], 0<4 f_{\mathrm{sw}} \tau_{k}<\frac{1}{\sqrt{3}} \tag{35}\\
2 R_{k}\left[a_{k}^{2}+\frac{1}{3} \cdot \frac{\hat{a}_{k}^{2}}{\left(4 f_{\mathrm{sw}} \tau_{k}\right)^{2}}\right],
\end{array}\right.
$$

Substituting the topology-dependent parameters mentioned in Section III-B and additively combing the components in all phases yields the SSM and FSM for the 2-to-1 SC converter that has been given in (12) and (13).

Appendix C
 Experimental Corroboration for the Effect Analysis of Finite Terminal Capacitances

To corroborate the theoretical findings in Section IV-B, this appendix presents and compares three sets of simulated and experimental waveforms shown in Figs. 18-20 with different $C_{\text {in }}$ and $C_{\text {out }}$ values. The experimental waveforms were measured from the hardware prototype presented in Figs. 5 and 6 . Current sense resistor voltages $v_{\mathrm{RCS} 3}$ and v_{RCS} were measured to obtain the current through the flying capacitor $i_{\mathrm{C}(\mathrm{fy})}$ as

$$
\begin{equation*}
i_{\mathrm{C}(\mathrm{fly})}=\frac{-v_{\mathrm{RCS} 3}+v_{\mathrm{RCS} 4}}{R_{\mathrm{CS}}} \tag{36}
\end{equation*}
$$

Fig. 18: Comparison between simulated and experimental waveforms when $C_{\mathrm{in}}=C_{\mathrm{out}}=5 C_{\mathrm{fly}}$. (a) Simulated capacitor voltage waveforms. (b) Experimental capacitor voltage waveforms. (c) Simulated voltage waveforms across current sense resistors. (d) Experimental voltage waveforms across current sense resistors.

Fig. 19: Comparison between simulated and experimental waveforms when $C_{\text {in }}=0.5 C_{\text {fly }}, C_{\text {out }}=5 C_{\text {fly }}$. (a) Simulated capacitor voltage waveforms. (b) Experimental capacitor voltage waveforms. (c) Simulated voltage waveforms across current sense resistors. (d) Experimental voltage waveforms across current sense resistors.

As can be seen in Figs. 18-20, the simulated and experimental waveforms are in excellent agreement. In addition, the waveforms presented in Figs. 18-20 qualitatively match

Fig. 20: Comparison between simulated and experimental waveforms when $C_{\text {in }}=5 C_{\text {fly }}, C_{\text {out }}=0.5 C_{\text {fly }}$. (a) Simulated capacitor voltage waveforms. (b) Experimental capacitor voltage waveforms. (c) Simulated voltage waveforms across current sense resistors. (d) Experimental voltage waveforms across current sense resistors.

TABLE V: Comparison between the RMS and peak-to-peak values of the simulated (Sim.) and experimental (Expt.) $i_{\mathrm{C}(\mathrm{fy})}$ waveforms with different $C_{\text {in }}$ and $C_{\text {out }}$ values

$C_{\text {in }} / C_{\text {fly }}$		5	0.5	5
$C_{\text {out }} / C_{\text {fly }}$		5 (Fig. 18)	5 (Fig. 19)	0.5 (Fig. 20)
RMS value	Sim.	4.40 A	4.73 A	4.33 A
of $i_{\mathrm{C} \text { (fly) }}$	Expt.	4.48 A	4.82 A	4.39 A
Peak-to-peak	Sim.	16.5 A	22.1 A	18.4 A
value of $i_{\mathrm{C} \text { (fly) }}$	Expt.	19.1 A	23.8 A	20.7 A

those in Figs. 12 and 13. The comparison between Fig. 18 and Fig. 19 shows that a smaller $C_{\text {in }}$ leads to a larger voltage difference seen by $C_{\text {fly }}\left(V_{\mathrm{C}(\mathrm{in})}-V_{\mathrm{C}(\text { out })}-V_{\mathrm{C}(\mathrm{fly})}\right)$, which results in higher RMS and peak-to-peak values of $i_{\mathrm{C}(\mathrm{fy})}$ as listed in Table V and thus higher output impedance. Similarly, the comparison between Fig. 18 and Fig. 20 shows that the output voltage ($V_{\mathrm{C}(\text { out })}$) is able to follow $V_{\mathrm{C}(\mathrm{fly})}$ when $C_{\text {out }}$ is smaller. As a results, $i_{\mathrm{C}(\mathrm{fly})}$ drops faster and thus has a lower RMS value as listed in Table V, which contributes to less power loss and lower output impedance.

REFERENCES

[1] M. S. Makowski and D. Maksimovic, "Performance Limits of SwitchedCapacitor DC-DC Converters," in Proceedings of PESC '95-Power Electronics Specialist Conference, vol. 2, 1995, pp. 1215-1221 vol.2.
[2] S. R. Sanders, E. Alon, H. P. Le, M. D. Seeman, M. John, and V. W. Ng, "The Road to Fully Integrated DC-DC Conversion via the SwitchedCapacitor Approach," IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4146-4155, Sept 2013.
[3] J. F. Dickson, "On-Chip High-Voltage Generation in MNOS Integrated Circuits Using an Improved Voltage Multiplier Technique," IEEE Journal of Solid-State Circuits, vol. 11, no. 3, pp. 374-378, 1976.
[4] I. Chowdhury and D. Ma, "Design of Reconfigurable and Robust Integrated SC Power Converter for Self-Powered Energy-Efficient Devices," IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 40184028, 2009.
[5] Y. Yoon, H. Kim, Y. Park, M. Ahn, C. Lee, and J. Laskar, "A HighPower and Highly Linear CMOS Switched Capacitor," IEEE Microwave and Wireless Components Letters, vol. 20, no. 11, pp. 619-621, 2010.
[6] V. W. Ng and S. R. Sanders, "A High-Efficiency Wide-Input-Voltage Range Switched Capacitor Point-of-Load DC-DC Converter," IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4335-4341, 2013.
[7] Dialog Semiconductor, DA9318 Product Brief, 2021. [Online]. Available: https://www.dialog-semiconductor.com/products/ power-management/chargers/da9318
[8] Q. Jin, X. Ruan, X. Ren, Y. Wang, and Y. Leng, "Step-Wave Switched Capacitor Converter for Compact Design of Envelope Tracking Power Supply," IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9587-9591, 2017.
[9] Analog Devices, Inc., High Efficiency, High Density, Switched Capacitor Converter for High Power Applications, 2021. [Online]. Available: https://www.analog.com/media/en/technical-documentation/ design-notes/high-efficiency-density-switched-capacitor-converter.pdf
[10] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, "A New Design Method for High-Power High-Efficiency Switched-Capacitor DC-DC Converters," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 832-840, 2008.
[11] A. C. Baughman and M. Ferdowsi, "Double-Tiered Switched-Capacitor Battery Charge Equalization Technique," IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2277-2285, 2008.
[12] Z. Amjadi and S. S. Williamson, "A Novel Control Technique for a Switched-Capacitor-Converter-Based Hybrid Electric Vehicle Energy Storage System," IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 926-934, 2010.
[13] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "Step-Up DC-DC Converters: A Comprehensive Review of VoltageBoosting Techniques, Topologies, and Applications," IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143-9178, 2017.
[14] On-Cheong Mak and A. Ioinovici, "Switched-Capacitor Inverter With High Power Density and Enhanced Regulation Capability," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 4, pp. 336-347, 1998.
[15] T. B. Lazzarin, R. L. Andersen, G. B. Martins, and I. Barbi, "A 600-W Switched-Capacitor AC-AC Converter for $220 \mathrm{~V} / 110 \mathrm{~V}$ and $110 \mathrm{~V} / 220$ V Applications," IEEE Transactions on Power Electronics, vol. 27, no. 12, pp. 4821-4826, 2012.
[16] R. Barzegarkhoo, H. M. Kojabadi, E. Zamiry, N. Vosoughi, and L. Chang, "Generalized Structure for a Single Phase Switched-Capacitor Multilevel Inverter Using a New Multiple DC Link Producer With Reduced Number of Switches," IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5604-5617, 2016.
[17] S. S. Lee, "Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multilevel Inverter," IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8204-8207, 2018.
[18] M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC-DC Converters," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 841-851, March 2008.
[19] M. Evzelman and S. Ben-Yaakov, "Average-Current-Based Conduction Losses Model of Switched Capacitor Converters," IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3341-3352, July 2013.
[20] J. C. Mayo-Maldonado, J. C. Rosas-Caro, and P. Rapisarda, "Modeling Approaches for DC-DC Converters With Switched Capacitors," IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 953-959, 2015.
[21] K. Kesarwani, R. Sangwan, and J. T. Stauth, "Resonant-Switched Capacitor Converters for Chip-Scale Power Delivery: Design and Implementation," IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6966-6977, 2015.
[22] S. R. Pasternak, M. H. Kiani, J. S. Rentmeister, and J. T. Stauth, "Modeling and Performance Limits of Switched-Capacitor DC-DC Converters Capable of Resonant Operation With a Single Inductor," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1746-1760, Dec 2017.
[23] D. Zheng, Y. Yang, S. Hu, and Y. Deng, "Medium Frequency Output Impedance Limits of Switched-Capacitor Circuits," IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 2156-2168, 2023.
[24] K. D. T. Ngo and R. Webster, "Steady-State Analysis and Design of a Switched-Capacitor DC-DC Converter," IEEE Transactions on Aerospace and Electronic Systems, vol. 30, no. 1, pp. 92-101, 1994.
[25] J. W. Kimball, P. T. Krein, and K. R. Cahill, "Modeling of Capacitor Impedance in Switching Converters," IEEE Power Electronics Letters, vol. 3, no. 4, pp. 136-140, 2005.
[26] J. M. Henry and J. W. Kimball, "Practical Performance Analysis of Complex Switched-Capacitor Converters," IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 127-136, 2011.
[27] H. P. Le, S. R. Sanders, and E. Alon, "Design Techniques for Fully Integrated Switched-Capacitor DC-DC Converters," IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 2120-2131, Sept 2011.
[28] S. Ben-Yaakov, "On the Influence of Switch Resistances on SwitchedCapacitor Converter Losses," IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 638-640, 2012.
[29] C. Cheung, S. Tan, C. K. Tse, and A. Ioinovici, "On Energy Efficiency of Switched-Capacitor Converters," IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 862-876, 2013.
[30] T. McRae and A. Prodić, "Design Oriented Analysis of Switched Capacitor DC-DC Converters," IEEE Open Journal of Power Electronics, vol. 1, pp. 2-13, 2020.
[31] J. Han, A. von Jouanne, and G. C. Temes, "A New Approach to Reducing Output Ripple in Switched-Capacitor-Based Step-Down DC-DC Converters," IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1548-1555, 2006.
[32] S. Tan, S. Kiratipongvoot, S. Bronstein, A. Ioinovici, Y. M. Lai, and C. K. Tse, "Adaptive Mixed On-Time and Switching Frequency Control of a System of Interleaved Switched-Capacitor Converters," IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 364-380, 2011.
[33] Y. Zhu, Z. Ye, and R. C. N. Pilawa-Podgurski, "Modeling and Analysis of Switched-Capacitor Converters with Finite Terminal Capacitances," in 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 178-185.
[34] G. Zulauf, M. Guacci, and J. W. Kolar, "Dynamic on-Resistance in GaN-on-Si HEMTs: Origins, Dependencies, and Future Characterization Frameworks," IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 5581-5588, 2020.
[35] T. Foulkes, T. Modeer, and R. C. N. Pilawa-Podgurski, "Quantifying Dynamic On-State Resistance of GaN HEMTs for Power Converter Design via a Survey of Low and High Voltage Devices," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4036-4049, 2021.
[36] Z. Ye, Y. Lei, W. Liu, P. S. Shenoy, and R. C. N. Pilawa-Podgurski, "Improved Bootstrap Methods for Powering Floating Gate Drivers of Flying Capacitor Multilevel Converters and Hybrid Switched-Capacitor Converters," IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 5965-5977, 2020.
[37] R. C. Pilawa-Podgurski, D. M. Giuliano, and D. J. Perreault, "Merged two-stage power converterarchitecture with softcharging switchedcapacitor energy transfer," in 2008 IEEE Power Electronics Specialists Conference, 2008, pp. 4008-4015.

Yicheng Zhu (Graduate Student Member, IEEE) received his B.Eng. and M.S. degrees with distinction in Electrical Engineering from Tsinghua University, Beijing, China, in 2017 and 2020, respectively. He is currently pursuing his Ph.D. with the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley, CA, USA.

His research interests include circuit topologies, control techniques, and analytical models of highperformance hybrid switched-capacitor converters and their applications in data center power delivery. Mr. Zhu received the IEEE Power \& Energy Society (PES) Outstanding Student Scholarship, the Outstanding Master's Thesis Award of Tsinghua University, the Berkeley Fellowship in 2020, and the 2023 NVIDIA Graduate Fellowship, given annually to $5 \mathrm{Ph} . \mathrm{D}$. students worldwide involved in research that spans all areas of computing innovation. In 2023, he received a Best Paper Award at the IEEE 24th Workshop on Control and Modeling for Power Electronics (COMPEL).

Zichao Ye (Member, IEEE) received the B.S. (with highest honors) and M.S. degrees in electrical engineering from the University of Illinois at UrbanaChampaign, Champaign, IL, USA, in 2014 and 2016, respectively, and the Ph.D. degree in electrical engineering from the University of California Berkeley, Berkeley, CA, USA, in 2020.

His prior works include switched capacitor topology modeling and comparison, compact and efficient floating gate drive power supply design, flying capacitor voltage balancing and efficient data center power delivery. He has coauthored more than 30 journals and conference publications. His research interests include high density and high efficiency power converter design, with specific interests in hybrid and resonant switched capacitor converters and flying capacitor multilevel converters.

Dr. Ye was the recipient of the IEEE Workshop on Control and Modeling of Power Electronics Best Paper Award, in 2017, the IEEE Applied Power Electronics Conference Best Presentation Award, in 2019, and the IEEE Power Electronics Society Ph.D. Thesis Talk Award, in 2021. He was also the recipient of the 2021 David J. Sakrison Memorial Award from the Electrical Engineering and Computer Sciences Department of the University of California Berkeley for completing a truly outstanding piece of dissertation research.

Robert C. N. Pilawa-Podgurski (Senior Member, IEEE) (S'06-M'11-SM'19) was born in Hedemora, Sweden. He is currently an Associate Professor in the Electrical Engineering and Computer Sciences Department at the University of California, Berkeley. Previously, he was an Associate Professor in Electrical and Computer Engineering at the University of Illinois Urbana-Champaign. He received dual B.S. degrees in physics and electrical engineering and computer science in 2005, the M.Eng. degree in electrical engineering and computer science in 2007, and the Ph.D. degree in electrical engineering in 2012, all from the Massachusetts Institute of Technology. He performs research in the area of power electronics, and enjoys snowboarding. His research interests include renewable energy applications, electric vehicles, CMOS power management, high density and high efficiency power converters, datacenter power delivery, and advanced control of power converters.
Dr. Pilawa-Podgurski served as the Student Activities Chair for IEEE Energy Conversion Congress and Exposition 2016 and 2017, and as the Technical Co-Chair for the 4th IEEE Workshop on Wide Bandgap Power Devices and Applications, 2016. From 2014 to 2022, he served the PELS Technical Committee 6 - Emerging Power Electronics Technologies as Awards Chair, Secretary, Vice Chair, and Chair. From 2016-2019 he served as Chair of PELS Technical Committee 2-Power Conversion Systems and Components. From 2014-2019, he served as Associate Editor for IEEE Transactions on Power Electronics, and for IEEE Journal of Emerging and Selected Topics in Power Electronics. From 2018-2023, he was a member of the IEEE ISSCC Power Management Committee.
Dr. Pilawa-Podgurski received the Chorafas Award for outstanding MIT EECS Master's thesis, the Google Faculty Research Award in 2013, and the 2014 Richard M. Bass Outstanding Young Power Electronics Engineer Award of the IEEE Power Electronics Society, given annually to one individual for outstanding contributions to the field of power electronics before the age of 35. In 2015, he received the Air Force Office of Scientific Research Young Investigator Award, the UIUC Dean's Award for Excellence in Research in 2016, the UIUC Campus Distinguished Promotion Award in 2017, and the UIUC ECE Ronald W. Pratt Faculty Outstanding Teaching Award in 2017. He was the 2018 recipient of the IEEE Education Society Mac E. Van Valkenburg Award given for outstanding contributions to teaching unusually early in his career. In 2023, he received the UC Berkeley EECS department Electrical Engineering Outstanding Teaching Award. He is co-author of fifteen IEEE prize papers.

[^0]: Part of this manuscript was presented at the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC) with the same title. This manuscript includes more detailed analyses, enriched design guidelines, and further explanations for the applicability of the proposed model to arbitrary SC topologies.

