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Both the science and the everyday practice of detecting a lie rest on the same assumption:
hidden cognitive states that the liar would like to remain hidden nevertheless influence
observable behavior. This assumption has good evidence. The insights of professional
interrogators, anecdotal evidence, and body language textbooks have all built up a sizeable
catalog of non-verbal cues that have been claimed to distinguish deceptive and truthful
behavior. Typically, these cues are discrete, individual behaviors—a hand touching a mouth,
the rise of a brow—that distinguish lies from truths solely in terms of their frequency
or duration. Research to date has failed to establish any of these non-verbal cues as a
reliable marker of deception. Here we argue that perhaps this is because simple tallies
of behavior can miss out on the rich but subtle organization of behavior as it unfolds over
time. Research in cognitive science from a dynamical systems perspective has shown
that behavior is structured across multiple timescales, with more or less regularity and
structure. Using tools that are sensitive to these dynamics, we analyzed body motion data
from an experiment that put participants in a realistic situation of choosing, or not, to lie to
an experimenter. Our analyses indicate that when being deceptive, continuous fluctuations
of movement in the upper face, and somewhat in the arms, are characterized by dynamical
properties of less stability, but greater complexity. For the upper face, these distinctions
are present despite no apparent differences in the overall amount of movement between
deception and truth. We suggest that these unique dynamical signatures of motion are
indicative of both the cognitive demands inherent to deception and the need to respond
adaptively in a social context.

Keywords: deception, non-linear measures, Dynamical Systems Theory, embodiment, recurrence quantification

analysis, multiscale entropy analysis, body and facial movements, time series analysis

INTRODUCTION
The keystone of “dynamical cognition” is the intimate relation-
ship between mental and motor processes. Rather than the mind
being limited to abstract computation, encapsulated from the
body and its interactions with the environment, the connections
between cognition, action, and perception are tightly intertwined
(Port and Van Gelder, 1995; Riley et al., 2012). Consider the
interlocked rhythms of speech and gesture, where hand and arm
movements are timed to coincide with the articulation of words
and phrases during communication. The exact timings suggest
that information carried in gesture subserves the transmission of
meaning, with both arising from the same underlying cognitive
processes (McNeill, 1996). Such a relationship counters notions
that the path between cognition and movement is one of dis-
crete, sequential steps, where instructions to act are handed down
from a central executive. Instead, cognition and action formed a
coupled system that co-varies in systematic ways.

The connection between thought and action also suggests
that hidden cognitive processes can be revealed in the dynam-
ics of movement, such as those that occur during deception.
Indeed, deception likely elicits unique cognitive demands that
vary markedly from truthful communication (Vrij et al., 2010).
By definition, deception requires mental partitioning of what is
and what is not the case, and an intentional effort to convince

listeners of the latter. In addition, it often occurs face-to-face,
where a large array of motor cues are available, from movements
of the hands and eyes, to facial movements and changes in articu-
latory patterns. Given this mind–body relationship, the possible
consequences on deceptive behavior have not gone unstudied.
However, overwhelming focus has been placed on discrete indi-
vidual behaviors that can be noted and counted by human
observers (e.g., see Vrij et al., 1996; Hill and Craig, 2002). In
doing so, the dynamics of how movements are patterned across
time have not been examined, and may in part explain why detec-
tion reliability in existing studies remains quite low (Bond and
DePaulo, 2006).

Here, we take a different tack by examining the moment-by-
moment temporal dependencies that reside in patterns of motion.
At this more granular level, we are able to provide a dynamical
systems account of deceivers’ continuous movements in natu-
ralistic contexts. By examining how fluctuations of movement
are structured in time, new insights can be had about the man-
ner in which mental dynamics are expressed in bodily dynamics.
These insights are particularly relevant for evaluating existing
studies based on an implicit assumption that deception nega-
tively interferes with normal processes of communication. Such
an assumption leads to explanations that are typically couched in
terms of greater processing load, whereby attentional resources
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are presumably diverted away from, or overly committed to,
the control of action (Ekman and Friesen, 1972; DePaulo, 1992;
DePaulo and Friedman, 1998; Vrij et al., 2008). A consequence
is that normal behavior is believed to be impaired in some way,
often evidenced by decreases in movement frequency and dura-
tion (DePaulo et al., 2003; Porter and ten Brinke, 2010; Vrij et al.,
2010).

From a dynamical systems perspective, this conclusion is based
on a relatively coarse relationship between mind and body. As
will be discussed further in the following section (“Complexity
in Movement Variability”), increases or decreases in movement
can serve only as gross indicators of how the cognitive and motor
systems are indeed impaired. Rather, what is most telling are the
structural properties of stability and complexity that are derived
from the fine-grained changes in movement variability. It is here
that the influences of deception might be more directly revealed.
We hypothesize that the outcome may not be one of impairment,
but instead a reorganization of behavior over time that is better
able to flexibly respond to the changing demands in deceptive
contexts. Although we provide additional justification for this
claim (see section “Adaptive Responding During Deception”), it
is important to note that our arguments can only be, at present,
speculative. Nonetheless, combining existing cognitive accounts
of deception and deception detection with further exploration
of dynamics may be a fruitful avenue of investigation. We will
argue that dynamics may hold great promise in distinguishing
deception from truth, as well as in understanding the underlying
cognitive processes during deception.

We examine such possibilities by reanalyzing the bodily
dynamics of participants in a deception experiment performed by
Eapen et al. (2010). They designed two scenarios to elicit decep-
tion in participants who believed they were taking part in a study
of mathematical ability and balance. Throughout the experiment,
29 points on the body, head, and on the face were rapidly sampled
in three-dimensional space every 5 ms1.

In the first scenario, participants performed two math tests,
and were offered a £5 reward if they performed better on the
second test. Crucially, only they knew how well they actually per-
formed on the second test, but since the difficulty was calibrated
carefully, we could be confident that they performed worse.

As part of the second scenario, participants witnessed a lap-
top being accidently dropped by a junior investigator. In fact,
the accident was staged and purposefully occurred while the
senior researcher was out of the room. Later, the senior researcher
returned, found his laptop not working, and asked the partic-
ipant if anything had happened to it. Part of the participants’
motivation to lie was the demeanor of the experimenters. The
senior researcher was brusque and unpleasant throughout, but
the junior researcher was very friendly toward the participant and
expressed anxiety that she would be found out.

In both scenarios the participant was given the means, motive,
and the opportunity to spontaneously lie to the experimenter.
About 60% did so in each case. Eapen et al. found that while lying,
compared to telling the truth, participants tended to move less.

1This study was originally published as a proceeding article for the Cognitive
Science Society. Face data results were not included in the original report.

This conclusion was based on overall movement displacement
across all motion points on the body. It echoes previous findings
in the literature, albeit with a more refined, automated analy-
sis. Here, we aim to extend these findings in two critical ways.
First, by introducing two non-linear measures used in the bio-
logical and physical sciences that provide a novel analysis of the
motor dynamics of deception. Second, by considering the theo-
retical implications that such characterizations of behavior have
on the responsiveness of the cognitive system during deception.
To better serve these goals, we turn next to an area of dynamical
systems research that strongly motivates the current approach.

UNRAVELING THE DYNAMICS OF MOVEMENT
COMPLEXITY IN MOVEMENT VARIABILITY
Even with the most basic types of control, the motor system faces
the problem of how to constrain multiple and redundant bodily
degrees of freedom in producing coherent, functional behaviors
(Bernstein, 1967; Dickinson et al., 2000; Turvey, 2007). Given the
countless physiological, contextual, and environmental interac-
tions that are undoubtedly at play, assemblies of behavior cannot
be captured by simple linear measures of more or less move-
ment (Newell, 1998; Harbourne and Stergiou, 2009; Riley et al.,
2012). Rather, the interactions are expressed as a process of self-
organization, whereby the coordination of the musculoskeletal
and nervous systems, coupled with ever-changing environmental
demands, lead behavioral repertoires into stable response modes.
To be maximally adaptive, movements should not stay fixed in
any one mode, but must be able to rapidly transition to new sta-
ble modes of organization (Kelso, 1995; Port and Van Gelder,
1995; Riley and Turvey, 2002; Van Orden et al., 2003; Halley and
Winkler, 2008). These transitions are the hallmark of complex-
ity, expressed as short- and long-term dependencies in movement
stability and instability.

The complexity exhibited in motor control also sheds new light
on the influences of cognitive demand during processing tasks, an
issue that is pertinent to deception. Despite the paucity of exam-
ples that can be drawn from the deception literature, this is offset
by the extensive research involving the self-organization of pos-
tural control under dual-task conditions. The dual-task context
is similar in form to deception, where one is trying to balance
both what is true and what is a lie. In these postural dual-task
designs, intentions and cognitive demands act to shape behavior
in meaningful, albeit subtle ways. In a typical set-up, partici-
pants attempt to maintain an upright stance while performing
cognitive tasks presented visually or auditorily, and that can vary
in attentional and processing demands. The resulting outcomes
suggest that there is no one-to-one correspondence between the
cognitive constraints and how movements are expressed, such as
saying that increased task difficulty leads to degraded movements
(Riley et al., 2005; Fraizer and Mitra, 2008). Even when atten-
tional resources are heavily drawn upon, the behavioral system
does not necessarily break down, as would be the case if cogni-
tive and motor processes were separate components competing
for a limited pool of resources (e.g., as proposed in limited capac-
ity theories, see Woollacott and Shumway-Cook, 2002; Schmidt,
2003; Schmidt and Lee, 2005, for review). Rather, because these
cognitive and motor processes are tightly coupled, new solutions
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as to how to optimally redistribute resources are more quickly
realized and expressed. Put simply, the cognitive system is not just
breaking down or being overwhelmed, but is reorganizing dynam-
ically in response to a new situation. How this might be relevant
for deception in considered next.

ADAPTIVE RESPONDING DURING DECEPTION
Deception makes heavy demands on cognitive resources (see
Vrij et al., 2011 for discussion). The truth also seems to be
spontaneously activated with a lie, requiring additional effort
to overcome (Osman et al., 2009; Duran et al., 2010). It is
thought that performing concurrent tasks with deception, such
as controlling one’s body movements, will leave fewer resources
available for successful deceptive performances (Leal et al., 2008).
With less to work with, the movements of deceivers will become
impaired in some way, whether it is an overall decrease in ani-
mation or overly controlled movements that appear rigid and
unnatural (Zuckerman et al., 1981; Vrij et al., 1996; DePaulo
and Friedman, 1998). However, from a dynamical systems per-
spective, this impairment interpretation does not necessarily
reflect how the cognitive and motor systems are actually oper-
ating. Instead, the contextually and socially rich environment
in which deception occurs provides a myriad of constraints
that allow for the adaptive and functional reorganization of
movement.

This view is inspired by Interpersonal Deception Theory
(IDT), in which emphasis is placed on deceivers’ ability to adapt
within real-time interaction (Buller and Burgoon, 1996; Burgoon,
2005; Burgoon and Qin, 2006). Here, intentional and motiva-
tional factors allow deceivers to better regulate their behavior,
doing so in a way that is highly responsive to their communication
partner. According to this account, and the account considered
here, deceptive displays of movement may not be driven by lim-
ited cognitive resources per se (i.e., impairment), but by the
larger context. There is an important caveat however, in that IDT
claims that resulting movements are largely under strategic con-
trol. We remain agnostic on this conclusion. Rather, our focus is
on the reorganization of underlying “micro-behaviors” that are
not intentionally controlled, and that may suggest a more subtle
level of adaptivity. These movements are a non-conscious conse-
quence of being on the ready in a situation that requires quick
thinking and responsiveness in averting suspicion or detection.
Finding greater complexity in the deceptive movements would
support such a claim. Of course, if deceptive behavior has less
complexity than honest behavior, doubt would be cast on our
hypothesis and support would be lent to the impairment posi-
tion. By adopting a dynamical systems approach, we can test these
predictions.

We employed two measures used in the motor control liter-
ature, as well as the cognitive sciences more broadly. These two
measures, recurrence quantification analysis (RQA) and multi-
scale entropy analysis (MSE), provide complementary insights
into the structure (as opposed to the amount) of variability exhib-
ited in motor behavior. They do so by quantifying patterns of sta-
bility and complexity of body movement, expressed as time series
of marker positions in a motion capture system. In the sections
that follow, we first turn to a more detailed, albeit introductory,

tutorial of the conceptual and technical underpinnings of RQA
and MSE (section “Quantifying the Structure in Time”). In the
section “Extending an Analysis of Spontaneous Deception,” we
outline the methodology from Eapen et al. (2010), and detail our
analytical approach for reinterpreting the collected data, target-
ing the undifferentiated movements of the arms, head, and upper
face. To draw distinctions between deceptive and truthful behav-
ior, we then contrast a displacement measure of movement (a
traditional summary approach) with the RQA and MSE results
(section “Results and Interpretation”). Finally, we return to the
theoretical and diagnostic potential of the current research in the
discussion (section “Discussion”).

QUANTIFYING THE STRUCTURE IN TIME
Human cognition is driven by many factors, all of which must
work together in a coherent, integrated fashion. This multiscale
characteristic is a hallmark of a complex, dynamical system. In
such systems, subtle fluctuations of behavior may reveal transi-
tions between stable behaviors, strategies, or states. If a system
transitions frequently, this may reflect the buildup and break-
down of constraints over system elements as new potentials for
movement are formed. Sticking to a single strategy will work
against an individual when vigilance is required. These frequent
transitions between strategies or states, then, maximize the poten-
tial for adaptive responding. To capture this underlying stability
and complexity, a number of non-linear measures have been
developed to quantify these properties (Seely and Macklem, 2004;
Dale et al., 2011).

The first of the two measures employed here, RQA, makes use
of a method called “phase-space reconstruction” to capture geo-
metric properties of how a system evolves in time (Eckmann et al.,
1987; Webber and Zbilut, 1994; Marwan et al., 2007). As will
be explained below, a measure of stability can be derived based
on how often a system revisits various regions within its phase
space. In essence, more visits to the same region of phase space
represents greater stability. The second measure, MSE, provides
an assessment of system complexity as variation in sequences of
observations in a time series, measured across different tempo-
ral window sizes (Costa et al., 2005; Gao et al., 2007). Rather
than phase-space reconstruction, this measure is based on sam-
ple entropy, which is computed over coarse-grained versions of
the original series. The result offers insights into meaningful com-
plexity, where less complexity is a system with too few or excessive
transitions across stable states, and is either locked into a lim-
ited number of behavioral repertoires, or devolves into stochastic
noise. An example of a system with less complexity can be seen in
the movements of young children who are first learning to walk
(Newell, 1998). Their movements are often rigidly fixed or seem-
ingly random, both conditions that suggest a lack of motor con-
trol in adapting to changing situational demands. Taken together,
RQA and MSE may serve as powerful new tools for assessing
non-linear changes in movement. In the next section, we flesh out
the details of these methods in simple, qualitative terms2.

2For a more technical treatment of each approach, we recommend Riley and
Van Orden (2005), Dale et al. (2011), and Marwan et al. (2007) for RQA, and
Costa et al. (2005) for MSE.
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RECURRENCE QUANTIFICATION ANALYSIS
As already touched upon, the idea of phase space is criti-
cal to RQA. It is worth carefully explaining the concept of a
“phase space,” and how it is reconstructed from a time series.
A phase space is defined by the variables (i.e., dimensions) that
govern a dynamical system. For example, velocity and angle
of the arms are necessary variables in explaining movement
coordination, just as temperature and pressure are necessary
variables for defining a thermodynamic system. Because these
variables are time varying and directional, temporal succession
over them produces a “behavioral trajectory” in a system’s phase
space. By examining the shape of the trajectory, it is possible
to identify dynamic stabilities and instabilities as they emerge.
One problem with this approach is that many state variables
are unknown or cannot be measured. Another problem is the
need to perform complex mathematics over a set of differential
equations (e.g., integrating velocity vectors associated with state
variables). To compensate, a solution is to reconstruct a phase
space from time-lagged copies of a single time series of behav-
ioral change. As originally observed by Takens (1981), a single
state variable will be tightly coupled with all other state vari-
ables and thus is able to “stand in” for those that are unknown
(Marwan, 2003; Stephen et al., 2009). Once plotted in high
dimensional space, these surrogate variables are able to estimate
the topography of system organization. Put simply, by analyzing
just one behavioral time series, we can “reconstruct” the phase
space.

Figure 1 provides an illustrative example of phase space recon-
struction, as well as how RQA makes use of this space to derive

measures that describe a system’s behavior. To begin, in (A), a
univariate time series of movement fluctuation, xk, is shifted by
any number of time steps (horizontal bars) to produce new time-
delayed copies, xk + 1 and xk + 2, of the original series. The number
of copies (i.e., embedding dimensions) is inferred to be the number
of dimensions in which the system is really operating. These are
limited to three for current purposes. The resulting vectors are
then plotted in temporal order, with the first three time points,
enclosed in colored boxes, plotted in (B), and with all hypothet-
ical points plotted in (C). The result is a phase space trajectory
that, from visual inspection, tends to pass through regions previ-
ously visited at earlier points in time. It is the proximity of these
recurrent points that is crucial to RQA. Recurrent points, partic-
ularly sequences of recurrent points, indicate that the system is
in a preferred region of its state space, i.e., an attractor. In the
top inset of (C), the Euclidean distance between two points, say at
ti = 45 and tj = 85, fall within a predetermined threshold radius
that defines a narrow region of space. When this occurs, it is sim-
ply plotted in what is known as a recurrence plot, shown in (D; left
panel). Using the same logic, sequences of points that fall within
the threshold radius are also captured: bottom inset of (C). Thus,
the corresponding diagonal in (D; left panel) can be interpreted as
follows: the system at time points; tj = 49, tj = 50, tj = 51, is also
where the system was at points; ti = 22, ti = 23, ti = 24; a stable
region.

A complete (albeit hypothetical) recurrence plot is shown in
(D; right panel). Properties of this plot provide the basis for all
RQA measures. Here, we focus on just two: percent recurrence and
determinism. The first is simply the percentage of filled points

FIGURE 1 | Schematic illustration of the basic procedure of recurrence quantification analysis using a hypothetical example.

Frontiers in Psychology | Cognitive Science March 2013 | Volume 4 | Article 140 | 4

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Duran et al. The dynamics of deception

given the number of possible points, calculated according to the
equation3,

RR = 1

N2

N∑

i, j = 1

Ri, j,

that counts all points between the two time series, (i, j), that
fall within a predetermined radius. The latter, determinism, is
the percentage of points that fall on diagonal lines, where diag-
onal lines indicate continuous sequences of repeating movements
at different time points 4. This is computed as a ratio between
diagonal sequences and overall recurrence,

DET =
∑N

l = lmin
lP(l)

∑N
i, j Ri, j

,

where P(l) = {li; i = 1, . . . , Nl} is the frequency distribution of
all lengths of diagonal lines. Determinism is thus derived from
basic recurrence, and is especially relevant for the current study.
Specifically, it provides an intuitive measure of overall move-
ment stability. However, as discussed earlier, determinism does
not necessarily have a straightforward correspondence with sys-
tem complexity. Movements that are highly predictable, occurring
at regular, unchanging intervals, will exhibit high determinism,
but are not complex. Likewise, movements characterized by ran-
dom noise will show low determinism, but again are void of
meaningful complexity. To identify what is meaningful, a suite
of entropy-based measures has been developed that are based

3See the excellent resource http://www.recurrence-plot.tk/rqa.php by Norbert
Marwan for these and other quantifications.
4RQA also produces 11 additional measures that capture further dynamical
properties of the recurrence plots, such as averaged diagonal length and length
of the longest diagonal line. These measures may provide new directions for
analysis, but for current purposes of examining general stability, we focus on
a parsimonious set of variables.

on the degree of repetitiveness in a time series. One measure in
particular, MSE, provides a powerful technique for assessing com-
plexity over multiple spatiotemporal scales in a single series, a
method we turn to next5.

MULTISCALE ENTROPY
MSE is a two-step process, with the first step being the computa-
tion of sample entropy over a univariate time series. As previously
stated, sample entropy is a measure of regularity, and captures, as
Richman and Moorman (2000) observe, “the rate generation of
new information.” This new information is related to the degree
to which sequences of some length (m) in a time series remain
similar after the sequence length is extended by an additional
time point (m + 1). Figure 2, adapted from Costa et al. (2005),
is presented to help conceptually ground what is meant by the
given definition. A relevant pattern constitutes a short sequence of
consecutive points, represented here as sequences of two points.
This pattern is tallied as it repeats in the time series. For exam-
ple, the consecutive values at t = 2 and t = 3 are a candidate
pattern of interest (enclosed by box), and can be seen to repeat
starting at t = 10 and at t = 27, as they occur within a simi-
lar range (or threshold radius; designated by horizontal dashed
lines). This brings the total tally count to three. What needs to be
determined is whether these two-point sequences can be extended
by a similar, consecutive point. Returning to the original pat-
tern in Figure 2, this value corresponds to t = 5 (marked by red
arrow), and is only extendable at the t = 28 location (marked by

5It should be noted that RQA also produces an entropy measure based on
recurrence plots. This measure is derived from the number of diagonal lines of
different lengths, with a greater number indicating greater entropy. However,
results can sometimes be difficult to interpret if long diagonal lines are present
with many smaller lines. Such a system would be considered highly entropic,
yet the presence of long diagonals indicates high stability. The MSE measure
allows for a more straightforward interpretation of entropy and complexity.
Furthermore, by turning to a measure outside of RQA, we can ensure that the
observed patterns are not limited to the RQA-based analysis.

FIGURE 2 | Schematic illustration of the procedure for computing sample entropy [adapted from Costa et al. (2005)].
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green arrow), resulting in a tally of two three-point sequences.
After repeating this process over all possible patterns, the natu-
ral log of the ratio between the final two-point and three-point
tallies is computed. The result is sample entropy (a conditional
probability), where greater values indicate that there are more
two-point sequence patterns that cannot be extended by a similar
third point; thus, there are a greater number of unique patterns,
i.e., more information, greater complexity, and less regularity.

Although not immediately obvious, this measure has a fun-
damental problem in that higher entropy values also scale with
increasing amounts of random noise (Costa et al., 2005). In
other words, if there is less repetitiveness in a signal, it may
not necessarily be due to complexity. One way to solve this
problem is to evaluate how sample entropy changes over var-
ious spatiotemporal scales of the time series. Motor behavior
is composed of a number of interacting elements that must
come together to perform a task. Although these elements are
closely bound and depend on each other for expression, each
has its own intrinsic frequency that, when combined, produce
organized structure across multiple spatiotemporal scales. The
reader may ask: “What elements, what scales?” The relevant ones
could be the various structures (head, torso, arms, etc.), cognitive
processes (e.g., memory, language, etc.), and even finer-grained
scales of neural organization. It is obvious that any organized
cognitive performance, such as deception, is grounded in such
an array of elements and processes. Yet, even without making
any commitments about the physical or cognitive constraints
on the system, this coherent self-organization is a fundamen-
tal characteristic of a dynamical process (Bar-Yam, 2004). Thus,
a complex system reveals new information (complexity) across
scales of decreasing frequency, whereas a random signal (void
of underlying element interactions) will show less and less new
information.

To produce a range of scales, the second step of MSE, the
original time series is divided into non-overlapping windows of

increasing sizes (i.e., coarse-graining). The values in each win-
dow are then averaged and replotted as a new point in a reduced
series, producing a new time series, calculated by the following
equation

y(τ)
j = 1/τ

jτ∑

i = (j − 1)τ + 1

xi, 1 ≤ j ≤ N/τ.

Here, the original time series, X1, . . . , XN , is divided into non-
overlapping windows of length τ, with the datapoints in each

window averaged to produce y(τ)
j . An example of this process is

shown in Figure 3 with an original time series of x1, . . . , x12 that
is reduced by a scale of 2 (τ = 2), to y1, . . . , y6, and then by a scale
of 3 (τ = 3), to z1, . . . , z4. In actual time series, which are com-
prised of thousands of points, reduction continues to a scale of 9
(τ = 9). These resulting scales correspond to signals of lower and
lower frequencies. Finally, sample entropy is computed for each
new reduced series and plotted with scale increasing along the
x-axis (Figure 3B). The resulting curves are then used to compare
relative differences between groups, an issue we return to when
comparing deceptive and truthful movements in the following
section.

EXTENDING AN ANALYSIS OF SPONTANEOUS DECEPTION
OVERVIEW OF EAPEN ET AL. (2010)
To apply these dynamical techniques to deception, data captured
during an interaction between a participant and two experi-
menters are explored here 6. To ensure recordings were of natu-
ral spontaneous behavior, participants were told their behaviors
would be captured while they took part in a study supposedly
examining the relationship between mathematical ability and

6This experiment was conducted under the permission of the UCL Research
Ethics Committee.

A B

FIGURE 3 | In (A), the original time series, x1–12 (scale 1), is reduced

by a lower-order scale to produce new time series, y1–6 (scale 2)

and z1–4 (scale 3). Although not shown, this continues to scale 9.

In (B), sample entropy is computed for these new lower frequency time
series and plotted as a function of scale, from 1 to 9 [adapted from
Costa et al. (2005)].
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body sway. In reality, two critical recording periods were captured
when the experiment was apparently at an end: one regarding
their performance on a math test and the other regarding an
accident they witnessed.

An amiable female experimenter welcomed participants. Soon
after, a male experimenter entered and acted in a cold and
unpleasant manner7. The male experimenter placed a laptop on
the edge of a table and told the female experimenter, “I’ve got
that report of yours on my laptop. Remind me about it at the
end.” Participants donned a body motion tracking shirt and hat
and were calibrated before being seated at a computer to take part
in a math test. The test consisted of two stages of 30 multiplica-
tion questions with three multiple choices. Pilot testing indicated
people scored ∼75% correct.

After the first stage, the male experimenter excused himself
while the female experimenter explained what the second stage
would entail. She told them what we had found and hoped to con-
tinue to find was that standing improves math ability, purposely
violating good experimental practice to give the impression that
it was normative to perform well on the second stage. In addi-
tion, participants were offered £5 if they performed better. They
were also told that since they were standing they would be unable
to reach the keyboard, so it was also their task to mentally
keep track of approximately how many they calculated correctly,
but not to voice this. That is, they were encouraged to claim
they performed better on the second stage and they were aware
there was no way to verify their claim. At this point the female
experimenter accidentally knocked the laptop to the floor. She
quickly expressed relief saying, “Thank God the cameras were off,”
implying that only she and the participant were witnesses to the
accident.

The second block was initiated as the male experimenter re-
entered the room. The block was designed to become increasingly
difficult over time, such that the absolute difference between the
three multiple choices was smaller on all trials in comparison
to the first stage and that the time to respond was gradually
reduced with each successive trial. All participants in a norming
test performed worse on the second stage.

After completing the math test, participants were asked a base-
line question (“Did you feel the second stage took more or less
time to complete?”) and a critical question (“Did you feel you
performed better on the first or the second test?”). The responses
to these two questions, from the onset of their reply, consti-
tute the neutral and critical recording periods for the math test.
Participants who claimed to have performed better were paid
the additional £5. Participants were then thanked for taking part
and asked to remain in the kit while the male experimenter

7A reviewer raised the interesting point that had we used different gender
roles, our results would have been quite different, citing Wraga et al. (2006)
as support. Although this is an intriguing possibility, our aim was to set up
a social situation that draws upon social norms about lying and honesty, and
correct behavior between participants and experimenter. The goal was to rely
upon these schemas of social interaction to elicit a higher rate of spontaneous
deception. Had we used other gender roles in doing so, we might expect the
rates of deception to decrease. Nevertheless, we believe that the roles used here
adhere to reasonable expectations about social interaction and are optimized
for the current research question.

took a backup of the data onto his laptop. During this time, the
neutral (“Did the math experiment run ok?”) and critical laptop-
accident questions (“My computer doesn’t seem to be working.
Did you see anything happen?”) were posed to the participant and
recorded.

CAPTURING MOVEMENT
A Vicon Nexus body motion tracker captured three-dimensional
movement at 200 Hz by recording near-infrared reflections from
20 plastic markers attached to a tight-fitting shirt and cap. An
additional nine markers were attached around the face, on the
back of each hand and on the tips of each index finger. Marker
positions were captured with an accuracy of 0.1 mm in terms of
position in space (Figure 4).

MOVEMENT DISPLACEMENT
We focus here on undifferentiated movements of the arms, head,
and upper face. These regions have been targeted in decep-
tion research as being especially relevant for detection purposes
(Ekman and Friesen, 1969, 1972; Vrij et al., 1996, 1997; Hill and
Craig, 2002; DePaulo et al., 2003; Jensen et al., 2010; Hurley and
Frank, 2011). In the majority of these previous studies, partic-
ipants are asked to rate the frequency, duration, or functional
purpose of the movements, such as whether the movement has
communicative intent (e.g., gestures used to emphasize verbal
statements) or is unintentional (e.g., a “leakage” cue flashed
across the face). In the current work, we avoid the assumptions
needed to make these distinctions, evaluating only the rhythmic
sequences of movement over time.

As mentioned, the output of the motion tracker system is
in three-dimensional coordinate positions across multiple body
markers; and as such, we need to convert position to a single-
dimensional measure of movement displacement. To begin, we
first averaged the three-dimensional coordinate positions of body
markers within each region of interest. For the arms, this includes
six points distributed across right/left forearms, hands, and wrists;
for the head, five points distributed across the top, right/left,
and back/front; and for the face, five points distributed across
the eyes and nose, thus minimizing influences from speech
articulation.

FIGURE 4 | Marker placement for body, head, and face, reconstructed

with an accuracy of 0.1 mm using Vicon Nexus motion tracking

software.
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Averaging produces a single vector of coordinate positions for
each region. Change in movement displacement was computed
over windows of 250 ms, equivalent to 20 time steps (based on
a sampling rate of 200 Hz). For arms and head, this was done
by averaging the Euclidean distances between contiguous (x, y, z)
coordinate positions in the moving window. A sample time series
is shown in Figure 5. For the face, a slight modification was made
based on the observation that movements of the face will co-vary
with movements of the head. To remove this influence, Euclidean
distances were computed between each face point and a compos-
ite head position, and then averaged in the moving window of
20 time steps.

PARAMETER SELECTION
The generated displacement time series were normalized (mean
zero and standard deviation of one) and used for the RQA
and MSE analyses. It should be noted that although the move-
ments here differ from those typically used in the motor control
literature, they are still amenable to non-linear analyses and inter-
pretation. Various types of movements have been assessed using
a similar approach; for example, changes in the angular veloc-
ity of hand movements (Stephen et al., 2009), and movement
displacement in the video recordings of facial/head movements
(D’Mello, 2011). The main requirement for these analyses is a
movement signal that is thought to be generated by a complex

A

B

C

FIGURE 5 | Time series of movement displacement (based on Euclidean distance) for arms (A), head (B), and upper face (C) for a deceptive responder

in the math-test condition.
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system. However, the parameters for RQA and MSE still need to
be uniquely specified for signal source in order to avoid spurious
or unaccounted structure.

For RQA, the critical parameters correspond to time delay,
embedding dimension, and radius for determining whether two
points in phase space are sufficiently close (with radius expressed
as a percentage of the standard deviation of a normalized time
series). Following Shockley (2005) and Shockley et al. (2003),
we selected parameter values by first conducting RQA on four
randomly selected time series across multiple embedding dimen-
sions, along a range of delay and radius parameter values. Using
a surface plot, we plotted the recurrence rate (y-axis) from
each analysis, for each embedding dimension, as a function of
delay (x-axis) and radius (z-axis). This produces multiple three-
dimensional landscapes of valleys and peaks corresponding to
recurrence rates that rise or fall depending on parameter value
combinations. The optimal parameters are those that are in the
flat regions of each series landscape, thus ensuring that the val-
ues are stable and not reflecting idiosyncratic change (i.e., small
increases or decreases in the selected embedding dimension, time
delay, and radius would have little effect on recurrence rates). It
is also typical to select values that produce an overall recurrence
percentage around 5% and that avoid ceiling effects in determin-
ism. As such, we settled on an embedding dimension of three, a
delay of eight, and radius of 15% for all analyses8.

For MSE, parameter selection is more straightforward. Here,
we followed the precedent of Costa et al. (2005) in setting
the parameters corresponding to sample entropy and coarse-
graining. As described in the previous section, we began with
two-point sequences that were extended by a third point. We also
used a threshold radius of 15%, which like RQA, sets the bound-
ary of whether time points are considered similar, and is expressed
as a percentage of time series standard deviation. Coarse-grained
versions of the original series, in which sample entropy was com-
puted, were reduced by a factor of 2–9 (retaining the original
series with a factor of one). This is depicted in Figure 39.

PARTICIPANTS
Data from 28 participants were analyzed in this study (18 females
and 10 males, mean age 22.5 years old). Most participants were
consistent in how they responded between the math-test and
laptop-accident conditions, either lying in both or telling the
truth in both. However, six participants split their responses
between conditions, telling a lie in one and the truth in another.
Also, due to some data loss with the Vicon motion tracking
system, movements for six participants were unavailable in the
accident condition and unavailable for one participant in the
math-test condition. In the end, for all analyses, there were 26
deceptive time series (combined across the math-test and laptop-
accident conditions; 16 participants; 3 males and 13 females),

8The “max norm” method was also used to compute distance between vectors
in the reconstructed phase space (Marwan, 2003). Shockley (2005) offers an
excellent summary of these issues, and is available as an open access chapter
online here: www.nsf.gov/sbe/bcs/pac/nmbs/chap4.pdf
9In general, the setting of these specific parameters does not adversely affect
the general pattern of results, which hold across a range of these values.

and 21 truthful time series (combined across the math-test
and laptop-accident conditions, 17 participants; 5 males and 12
females).

DATA PREPARATION
Responses in the math-test and laptop-accident conditions were
combined for all analyses. This combination was done partly for
purposes of generalizability, as the structure of movements associ-
ated with deception should be somewhat consistent across similar
contexts, thus bolstering claims of detectability. The other reason
is more pragmatic, as limitations in statistical power for the RQA
and MSE analyses warranted combination. This is often a conse-
quence of using previously collected datasets, particularly sets that
involve naturalistic, and somewhat noisy, expressions of behavior.
As such, our claims are somewhat limited (an issue we address
in the Discussion), but nevertheless, the goals of introducing
non-linear measures to the deception literature and relating these
measures to the underlying cognitive processes involved in decep-
tion are still intact. It should be noted, however, that the pattern
of results presented here in fact holds in each case of deception
separately.

STATISTICAL APPROACH
For the displacement and RQA determinism results, differences
between deception and truth, across neutral and critical ques-
tions, were analyzed using linear mixed effects models. Given that
participants sometimes contributed to both or only one of the
deceptive responses across conditions, participant and condition
variables were entered as random factors in the model to con-
trol for associated random variance. Also, because the error term
in this model class is not amenable to traditional F-test meth-
ods for computing a p-statistic, an MCMC method was instead
used for estimating statistical significance (see Pinheiro and Bates,
2000; Baayen et al., 2008). Next, for MSE curves, differences
between relevant groups were analyzed by generating intercept
and slope coefficients for each participant’s time series data, using
a curve-fitting model with linear fit. The resulting coefficient
terms were then compared across deceptive and true responses
using a two-sample t-test.

RESULTS AND INTERPRETATION
In this section, we begin with the results of movement dis-
placement, an aggregate measure of magnitude change that has
traditionally been used in analytic approaches that average over
time series. We then turn to our two non-linear measures, RQA
and MSE, that may be useful in capturing additional information
about movement dynamics.

DISPLACEMENT RESULTS
Separate analyses were conducted on the arms, head, and upper
face regions 10. In comparing deception with truth, the neutral

10For these and subsequent analyses, the total N for each comparison var-
ied slightly between body regions due to dropped recordings with the Vicon
motion tracking system. For arms, there were 26 deceptive and 20 truth time
series; for head, there were 23 deceptive and 21 truth time series; and for face,
there were 25 deceptive and 20 truth time series.
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questions showed no statistically significant differences across
all three motion regions. However, for critical questions, the
movements of the arms and head reveal significantly less dis-
placement in deception than the truth; for arms, B = 0.264,
p = 0.022; for head, B = 0.121, p = 0.038. There are no sta-
tistically significant differences in displacement for face move-
ments. And for all regions, there were no significant differences
between neutral and critical questions for deception or truth
(see Figure 6).

For critical questions, we replicated the basic effect found by
Eapen et al. (2010), who found less movement for deception

across all motion points. Here, using a slightly different opera-
tionalization of displacement, decreases were isolated to the arms
and head. This finding may suggest that participants are seek-
ing to minimize incriminating behaviors by clamping down on
their movements. Conversely, the null finding for the face sug-
gests that the generated movements are much more subtle and
spontaneous, and the same control exhibited over the arms and
head is not possible. But this may be because the wrong level of
movement has been examined, leaving open the possibility that
non-linear measures offer a more sensitive means of identifying
differences between conditions.

FIGURE 6 | Mean Euclidean distance displacement (every 250 ms)

for motion regions corresponding to the arms, the head, and

the upper face (combined for math-test and laptop-accident

conditions). Standard error plotted for each bar. Dark bars

are participants who lied during the critical phase; white bars are
those who told the truth. Bars are grouped according to neutral
question (“Did the math experiment run ok?”), and critical questions
(math performance + laptop scenario). ∗p < 0.05.
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Another issue that is evident from Figure 6 is the lack of sig-
nificant differences between the neutral and critical questions. Yet
the direction of mean values for neutral questions is very simi-
lar to that of the critical. Given that the neutral questions always
preceded the critical in the experimental setup, participants who
cheated on the math test or who were witnesses to the exper-
imenter dropping a computer, may anticipate that a follow-up
question will be asked that requires deception (such as being
asked about their performance or why the computer was bro-
ken). Thus, their response behavior during the neutral question
may indicate a preparation to lie that is ultimately expressed when
a deceptive response is required. Whether the behavioral system
was poised to react in this way is difficult to interpret from move-
ment magnitude alone. Again, non-linear measures may prove
useful in clarifying this issue.

RECURRENCE QUANTIFICATION ANALYSIS RESULTS
For each motion region of interest, measures of percentage recur-
rence, and determinism were generated based on recurrence plots
for deceptive and true responses (Figure 7). The recurrence rate
for all analyses were within 4–8%, and did not differ between
comparisons of deception vs. truth, or neutral vs. critical ques-
tions. However, determinism rate did show statistically significant
differences between groups, most notably in upper face move-
ments, with less determinism in deception than in the truth,
B = 0.126, p < 0.05 (Figure 8). There was also marginally less

determinism in deception with arm movements, B = 0.135, p =
0.09; but for head movements, no statistically significant dif-
ferences were found. There were also no significant differences
within neutral questions, and in comparison with the critical
questions.

The trend for all regions is for less determinism for the criti-
cal questions during deception. This is most safely concluded for
the upper face, with some cautious support for arm movements.
Even so, this is suggestive that stability, as assessed by determin-
ism, decreases in deception. Although it may be tempting to draw
the conclusion that less movement causes a drop in determinism,
the results of the upper face indicate otherwise, as no differences
were found with displacement (based on the previous analysis). In
other words, movement displacement appears to be independent
of the influences driving determinism. That is, the non-linear
dynamics of the motion reveals new detail about the act of decep-
tion that is unavailable to the oft-used frequency counts of more
or less movement in prior research.

As with displacement, the pattern of determinism between
deceptive and truthful responses was also similar for neutral and
critical questions. That is, there were lowered levels of deter-
minism when participants both anticipated and expressed a lie.
However, although there is decreased determinism/stability, it is
not necessarily characterized by meaningful complexity. Before
considering what a decrease in stability might mean in a deceptive
context, we interpret the results alongside the MSE analysis.

FIGURE 7 | For upper face movements, mosaic of recurrence plots

for randomly selected subset of deceptive and truthful responses

for critical questions. Deception is shown in the lower panel and truth
in the upper panel. For truth, there is overall higher determinism than
deception, as indicated by the greater percentage of recurrent diagonal
lines. Each plot shown in this array is a reflection of the “recurrences”

of face movements over time; the more points there are, the more the
time series of movements exhibits similar fluctuations. Glancing at the
plots does reveal that Truth plots seems to have more dense
appearance of recurrence structures (for details on method, see
Figure 1). This is quantified using the Determinism percentage shown
in Figure 8.
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FIGURE 8 | Mean percentage of determinism for RQA. Standard error plotted for each bar. ∗p < 0.05.

MULTISCALE ENTROPY ANALYSIS
As a reminder, MSE relies on sample entropy, a measure that
evaluates the repetition of consecutive sequences in a time
series (as opposed to variance). Sample entropy is then plot-
ted over multiple time scales increasing in length, with time
scales derived from the original movement time series. For each
deceptive and truthful response, within each motion region,
an MSE curve is generated and fitted with a linear model. To
compare the relative complexity between groups, the resulting
intercept coefficients for deceptive and truthful responses are
evaluated using two-sample t-tests. In this way, differences across
all scales can be evaluated in one statistic. The slope terms
are also examined to compare differences in the rate by which

complexity increases over scales. Composite slopes are shown in
Figure 9.

For the intercept coefficients, we found statistically significant
differences with the movements of the upper face, t(41) = 1.976,
p < 0.05; and once again marginal statistical significance for the
arms, t(44) = 1.654, p = 0.09. There are no statistically significant
differences for the head. Thus, the pattern for the upper face and
the arms is for greater relative complexity with deception com-
pared to the truth. Next, turning to the rate in which complexity
increases for both deception and truth, there is equivalent gain for
all regions except the head, where the complexity in the truth rises
at a faster rate than deception, t(42) = 2.27, p < 0.05. Here, truth
and deception converge at the larger timescales, and may account
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FIGURE 9 | For critical questions, sample entropy plotted across

increasing scale lengths, i.e., lower frequencies (solid lines). Curve fitting
to individual participant data was conducted using linear fit models for the
three motion regions. The average intercept and slope shown here (dashed

lines). Points represent mean values of sample entropy for each region, with
standard error also plotted. The inset plots in each subfigure correspond to
movements generated while responding to the neutral question. There are
no significant differences between conditions.

for the failure in finding significant differences between deception
and truth. Finally, for neutral questions, complexity was present
in the neutral responses, but as has been evident in the previous
analyses, there were no differences with critical questions.

The findings of greater complexity in deception for the upper
face (and somewhat for the arms), is further qualified when one
examines what happens when the time series for each response
is randomly shuffled while preserving local temporal interdepen-
dencies. Binned sequences of 2000 ms sequences were randomly
shuffled, effectively removing the time-dependent complexity

hypothesized to be present in each series. Based on Figure 10,
the monotonic downward slope indicates that the number of new
structures drops as the length of the window for coarse-graining
increases; thus, there is no new information to be found.

DISCUSSION
Despite a long tradition in seeking out bodily cues of deception,
temporal dependencies in how movement is organized across
time have largely been overlooked. In the current paper, we cap-
tured these dependencies as emergent properties of a complex
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FIGURE 10 | For shuffled time series (randomized across bins of

2000 ms), mean sample entropy and standard error is plotted across

increasing scale lengths (1–10).

system, characterized by structural properties of stability and
complexity. Using two non-linear measures, RQA and MSE, we
found that the movements about the upper face, and somewhat
in the arms, tend to have lower determinism/stability (based on
RQA) and higher complexity (based on MSE). These patterns
suggest greater flexibility in movement responsiveness that would
have remained hidden with a measure of movement displacement
alone, as deceptive and truthful facial movements were shown
to have similar summary statistics (mean and standard error).
Though suggestive, it is important to note that these results are
indeed statistically subtle, based on a convenience sample, and
also show that the neutral and critical contexts are about the same
in most measures within each subject. However, if we take these
results for granted, here we consider some potential theoretical
implications of these dynamical methods.

These results challenge the notion that the demands intro-
duced by deception exclusively deplete attentional resources and
negatively affect the control of movement. That is, rather than
only a breakdown in processing, the dynamic signatures of move-
ment are structured in such a way to permit rapid adjustments
to emerging demands unique to deceptive, social contexts. To
support this claim, we have drawn from a dynamical systems
framework for understanding how non-linear systems come to
exhibit structured behavior. Human motor behavior is often
held up as a primary example, in that patterns of movement
are rapidly formed, maintained, and transformed by the release
or restriction of system-wide degrees of freedom (Turvey, 1990,
2007; Newell, 1998). What results is increased complexity that
speaks to the ability of the motor system to flexibly adjust
and adapt to ever-changing situational demands, much like the
behaviors of a skilled athlete or a child mastering the ability

walk. Such behavior may be necessary in handling the challenges
inherent to deception.

Greater flexibility also appears to be present during the neu-
tral questions prior to the actual deception. This finding may
point to participants who anticipate that they will need to lie.
Although they did not know that they would be put on the
spot about their own guilty behaviors (assuming they cheated
on the math test), or the guilty actions of another (witnessing a
confederate drop a laptop), the possibility of investigative ques-
tioning by the experimenter, as well as the experimenter’s possible
suspicion, was always present. Such a situation would support
an increased need for heightened responsiveness (i.e., adaptive-
ness, see Eapen et al., 2010). One reviewer remarked that this
may instead be a sign of a sluggish system that is incapable of
rapidly adapting to a more local context. Holding up the results
from another perspective, this is a viable interpretation. But one
timescale’s sluggishness may be another timescale’s adaptiveness.
The way in which the dynamic signatures seem to be present (i.e.,
in both neutral and critical questions) suggests adaptiveness at
a longer timescale; while this adaptiveness may force more local
moments to be under the control of these longer timescales. In
other words, the system could be adapting for a future potential
event; and before it happens the situation at hand is subject to this
structure.

It is also revealing that responsiveness was most apparent in
the subtle movements of the upper face. The face has largely
been implicated as a “dynamic canvas” for expressive behavior,
where intentional and unintentional information about mental
states are optimally conveyed (DePaulo, 1992; Rozin and Cohen,
2003). Given that accurate assessments of these states are eas-
ily and rapidly seized upon by outside observers (Ambady et al.,
2000), it is sensible to hypothesize that these movements need
to be particularly flexible in deceptive contexts. Also, unlike the
movements of the body and head, the control of the musculature
around the eyes may also produce a signal that is most appropri-
ate for the non-linear analyses employed here. Both factors may
explain why the reported results were statistically significant for
the face alone.

The rapid and small-scale movements in the face are also
thought to be susceptible to the inadvertent “leakage” of hid-
den emotional states (Hill and Craig, 2002; Ekman and Friesen,
2003). Such leakage forms the basis for the inhibition hypothe-
sis, whereby attempts to conceal true emotions are revealed in
“micro-expressions” of the face that last only tenths of a second
(Ekman, 1992; Ekman and Friesen, 2003). Of the few empirical
studies that directly examine this claim, evidence suggests that
masked negative emotions may elicit the greatest leakage; and that
transitory patterns of emotional states, particularly from negative
to positive emotions, may also be a predictor of deception (Porter
and ten Brinke, 2008; ten Brinke et al., 2011). For the current
study, this raises the interesting possibility that the transitional
nature of momentary emotional states can account for the current
results. However, such transitions are much too coarse-grained to
drive the moment-by-moment millisecond fluctuations that were
analyzed. Also, given the short duration of participants’ interac-
tions with the experimenter, a wide array of changing emotional
states is unlikely. Nevertheless, the role of emotions in the current
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study cannot be discounted. The need to adapt emotional dis-
plays to changing circumstances may very well contribute to the
increased movement complexity found during deception. Such
questions pave a way for future work.

We were limited by certain characteristics of the data, such
as participants that unevenly self-selected into deceptive and
truthful response groups, and who sometimes lied in both
or only one of the math-test and laptop-accident conditions.
Statistical power concerns were also limiting, and required us
to combine the math-test and laptop-accident conditions. There
is also the inescapable fact that statistical effects were some-
what weak. Nevertheless, the upside of the current dataset is
that we could draw conclusions from behavior that possesses
defining characteristics of deception; that is, participants who
deliberately attempted to mislead unsuspecting recipients (a
rarity in laboratory-based studies). The dataset also allowed
us to examine continuously sampled movements as fluctua-
tions over time. Such data are quite rare in the deception
literature, with the exception of a promising line of research
that extracts continuous body movements from video record-
ings (Meservy et al., 2005; Jensen et al., 2010). Although this
research uses participants who were instructed to lie and anal-
yses were based on movement displacement alone, a number
of these variables have proved to be highly effective in detect-
ing deception. When entered into machine learning models,
the classification algorithms produced surprisingly high accu-
racy rates. Given that we show dynamical measures provide
information above and beyond movement displacement, these
additional variables could further improve the accuracy of
classification.

Lastly, the current approach addresses an important debate in
the deception literature concerning the tendency for deceivers to
move less. It is unclear whether fewer movements are caused by
excessive strategic management to the point that deceivers iron-
ically overcompensate (DePaulo et al., 1988; see also Wegner,
2009) or a strategic move to prevent leakage cues (Burgoon,
2005). This is an important distinction for the lie detector. After
all, if the behavior is strategic then its diagnosticity cannot be
relied upon. An important facet of accurate lie detection, then,
is not only discovering those behaviors that give liars away, but
also determining if those behaviors are strategic in an attempt
to minimize irrepressible “tells.” Accordingly, dynamical mea-
sures of stability and complexity might have a great deal of
relevance here. Although people may strategically minimize the
overall magnitude of their movements, the dynamical structure
of these movements are certainly outside of conscious control.
And where a minimization of movement might be considered
unintentional, it does not necessarily have to reflect impairment
on part of the cognitive system. According to a main hypothe-
sis, when the dynamical properties of movements are examined,
what may be expressed are complex patterns of adaptation that
emerge in task-specific ways. There are new and exciting ways to
spot a liar.
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