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NONLINEAR RESONANCE FOR DUFFING'S DIFFERENTIAL EQUATION

Loren P. Meissner o :

University of California
- - .~ Berkeley, Californie

. Jenuary, 1965

ABSTRACT
| Some sufficient conditions are givén for the ex:latencé and -
" uniqueness of solutions to the problem Py = Q¢ = A * ¥y = O vhen -

a solution Yo haaA'been‘foimd for A = 0:. i.e., Qyy = O+ These

conditions are applied to the Duffing problem,

P« Py{0) + ¥(8) + 8 + y(0) « cos 6,

’

¥("/2) = 0, Dpy(0) = O,

in two separate areas: first to prove the existence ¢of a sequence

of solutions tending to the solution of the "reduced" problem, ¥ = O,

in spite of the failure of the standard singular perturbation approach,

: i .
and second to rigorously show the nature of .the principal solutions

near several low-ofder resonances (‘y near 1), including the divergence

of the solutions into two separate branches in a region of resonance.

Detailed quantitdtive information 1s presented concerning solutions

of the Duffing problem for various values of B and Yy (parﬁicula.rly in

the reglon 0<ps1, 0S5y $ 1) and the numerical procedure for obtaining

these results is described. Data is given to substantiate the theoretical

results by (a) illustrating the behavior of solutions for small values.

of v, end (b) exhibiting the solution and the divergence into branches ..

in low-order resonance regions.




I undertook' a scrutimr of those intervals; and succeeded in describing the

behavior of the solutions along the i‘ringes of resonance. These descriptive
M

g results 'beca.me the point of departure for the theoretical investigation o
.. @escribed here. : | - A "

The most recent studies of the puffing_problem which have 'beenfreported

in the literature are those of Struble and his essociates (References 1,2).

Struble writes = .' o .
| i

(1.2) . % +_n2x - B = BF, cos A ¢

‘which is 'the, same as Eq. (l‘.l) when the following substitntions are made:

(1.3) e z At ._’= x/n' 'y = nax/éF ; Bo= ;‘63'4 Ff,/n6

"'he work of Struble is directed pa.rticularlv to the periodic and almost-
periodie solutions in theﬁne;rl;—linear case, ]BI small. Here ) _on the “':T
other hand, we shall consider the more general nonlinear pro‘blem although we

shall be interested in finding out how large lﬁl can be before our ny'potheses

i /
} /

" fail. , /

Results in two sepa;rate e:reas -are reported here; both of these are based h

~on the genersal .theo'rem of dhapter II: We .shoyr the existence of = sequence of |

va.l,des of ‘y.tending. to zero snch that tne corresponding sequence of' solunions

_ tends 't;o the~solution i‘or 'y =' 0, in spite of the fact thajb. vy=0 -is an |
~accumulation point forr the resons.nt regions. We also show rigorously the

ns.ture of the. principal solutions near ‘the low-order resonances . (‘y near l)

including the divergence of the solutions into two sepe.rate branches in a |

i

region of resona.nce. :

natl



II. 'NONLINEAR PROBLEMS CONTAINING A PARAMETER

A. A General Theorenm o

“’-‘;:’- R Consider the problem Py = 0, where y is an element (to be found)

e

" SRR of a Be.nach space F, and P is an operator (in genera.l nonlinear) which

maps some subset of 5‘ into J. Suppose that P has the following form. .

.(2.1)’ | P=Q-%-1I
where I is the identity on J, and & 15 a scalar. Suppose tha.t 8’
solution y, has been found for 8 =0: i.e., Qo = 0. _

The following tifeorem gives some (sufficient) conditions for the
existence and uniqueness of soluti-ons to the’ problem Py = O where & is

‘not necessarily zero. In the statement of " this theorem, DP(yo) is the

..Frechet derivative (see Appendix I or Liusternik, Reference 5 , page 183)' T

>of P at Yo and we vrite S(yqs1) = {y lly ¥dl: s r) A
Theorem 1l: Given the problem Py = 0, with P Q-5- I y let y,
l be the solution for & = 0 (i.e., Qy, = 0), and'let A be the eigenva.lue |

of 9Q(y,) which 1s closest to 6. Assume that DQ(yo)"lf exists, and that

for all ¥ € S(y,,r) ' ‘,

(e2) loatr) + o2l = A,

where A = 1/(2 . '1); assume also that & is such that

SR ‘ | e 2 - -
o (2.3) Ay - (1+ | l) - lIpa(y,) lyJI ST -
VThe remainder of this chapter is devoted to a proof of Theorem l.
| In the i‘ollowing chapters , ‘this theorem is a.pplied to the study of the
o o harmonic resonances of the Duffing problem. " Two separate areas of
/ " 7. application are given. for resonance of 1ow-order, the theoren is

used as the basis for estimates of the allowable variation 1in '8 under

Then there exists one and only one solution of Py = . 0 in S(YO,r) | : e




' which the existence of connected solut;ions can be a.sserted, for the
high-order cases, the theorem is used to derive the- exiatence of a

" sequence of "non- resonant" solutions tending to. Yo 2”*

B. Proof of Theorem 1

1. Preliminary Lemmas

In all of the following lemmas, J is a Banach space and € 18
- a subset of & which conta.ins S(yo,r)
| Lemma 1: Let T 'be an operator which maps 5 into 5{ For

all y(l), y(a) € S(y ,v), it 18 true that

B ‘-,_(2.“,) | IITy(a) 'I‘y(l)" s sup (IIDT(y)ll ¥ e s(voxr)l.p Ily(a) - V(l)"

... Proof: . This _lemma is based on the "Mean Va.lue Theorem for Ba.nach
" Space" (see Appendix I or Liueternik, Ref. 3, pa.ge 186 £, ) which

" asserts that R e R L

~

| - (2.5) "Ty(a) - Ty(l)“ s gup ["DT(;)HF € C(y(a),y(l)n : "Y(a) - Y.(l)"-:‘

| where f‘(y(a) y(l)) = {c - y(2) + (1 - c) . y(l) Oscs 1] The

" lemma follows 1nnnediate1y since C(y(z),y(l)) < S(Yo’r)

. Lemma 2 2: 1 I020(H) s L/r for all § € S(yo,r), and 1f DT(Yo) = 0,
- then I1y(®) S (1) 5 1 - 142) - (2| “gor a1l y(l), ¥@) e (v .

o, ' .M’ ‘Comparing Lemma 1, we see that it is ‘sufficient to show i

s that

(2.6) sup (IIDT(y)lI ¥ € 8(yyr)} s L. ‘ IR
: Applying Lemma 1 to oT, we obtain in particular for y € S(yo,r) S j*"..

‘_<a.z_> loxts) -wm)u s o tuoem(y)u es(yo,rn uy you

"v




into F, with S(yo,r) c €. 12, zor a1 y(2), y(2) ¢ S(yo,r), 1t is

»' (2.8) . | "Ty(e) Ty(l)" 5Ly /Il:r(a) -y(l)“ o -!.x.

‘ - (2.10) ' Ty‘: -f" ﬂP(yo)-l ° Py- +'Y. ‘ L . | ;'

but by hypothesis, the first factor on the right does not exceed L/r
and the second does nort: exceed r. Since DT(yo) = 0,-'{Lemna 2 is proved.

.Lemm§. 2‘;, If T =A° B+ C, where A is a 1inear opérator, then

'Dm(y) =Ae DB(y) + 0¢(y). If C is 1inear, then DC(y) e C. IfCis

" & constant operator then DC(y) = O.

Progf. All of these statements follow directly from the definition

of the Frechet derivative (see Appendix I or Kantorovich, Ref. &,

pages 160 ££.). -

Lemma bk: (Fixed Point Theorem): Let T be an operatcr which maps e

l
’ '-.;"‘ '

true that

" with L.< 1, and i

~

(2.9) - Moy = vl 52 - 1) « x,

" then there is one and only one point ¥ in S(yo,r) such that Ty = ¥.

Proof': This theorem depends upon the "Contraction mapping

principle" applied to S(yo,r) (see Appendix I or Liusternik, Ref. 3,

mgeon).

We shall apply the foregoing lemmas to the opera.tar ‘1‘ which is

deﬁned as follows :

1

The sequénce {yo, Tyor C[Qyo, seoy TKS'O, «o+}, where T is given by
Eq. (2.10), is called the "Abbreviated Newton Iteration method"
(Kantorovich, Ref. 4, pageé 180 f£). Since bP(yo)'l' is a linear

. 1 ! — - . —
operator, it is clear that Ty =y implies Py = O. This scheme differs
' /
| /
L il )




from the ordinary Newton method in that z’L)P"l is taken at y, through-
out instead of being redeﬁned for each step &t Tnyof This. ma.kes the
Abbreviated method somewha.t simpler to analyze, althcmgh not necessa.rily.
easier to compute. -/'\
| If the conditiéns of Lemm & are satisfied, it 1is further true
that the iterative application of Eq. (2.10) gives a sequence which -
in fact converges to the fixed point of T. However, the actual con- -
structienf‘ of solutions is not essentlal in the argument of this chapter. |

The folidwing lemmzi applies the Fixed Point Theorem to the
Abbreviated Newton Iteration operator defined by Eq. (2 10).

Lemma 5: Assume that Iy i)P(yo) -1 exists, ‘and that for a.ll

y € S(yo,r) it is true that

1

() R R T

_-'where A= 1/(2 1. Assume also that A + N, S+, where

Hea2) e lfoemvdl ,

Then there is one and o'nJy.one sol'dtion of Py = 0 in S(yo,r)‘ |

| Proof: The first hypothesis of the Fixed Point Theorem follows
from Lemmas 2 and 3: “DQT(§)|| = |IPg o 2P ;A; hence, ta.king

'Lfr = A with A =;.l/.'e r)we heve L = . The secorld-hypothesis also holds |

'

since

(2.13)  lye = vl =ITo s Bydl =no s r=% *r=(1-1) =

since (1 - L) =%. Hence, there is a unique fixed point y of T in
S(yo',r) But I 1s linear so Py =

3 Remark. ‘I’his Lemma may be compared with certain theorems in the:

" literature (especially Kantorovich, Ref. 1&, page 167 ) » which give _

T TR T T T T

&

L2 P b e R e

’\ - "'v.




2
e

conditions for the convergence of Newton's method. I have chosen a
slightly weaker but considerably simpler formuJationf;hich is adequate
here. Note especially that the first assumption 1nv}.(9p‘].vea an estimate
of [Py © 02P(y)ll instead of [T )l + I0?P(y)ll. In the Duffing problem,.it
is sometimes necessary to take advantage of the inequality
ITg o 02p(y)l s liTgl + llop(y)ll. |
Lemma 5 is actually a simple special case of the following lemma
which gives closer existence conditions and wider uniqueness conditions
when yo is a good approximation to the aoluﬁion: i.e., vhen 1, 1is
small. _ |
Lemma Sa: Assume that I'o = DP(yo)~L exists, and that for all

!

¥ € 8(y,,r) 1t is true that

(2.14) | (18 oﬂ’-P(?)II = A. | o
Assume also that A - n s £, vhere 1o = Ty o Pyl . If

(2.15) 1V -bm)<2Aar<iHaV(1- k),

then theére is one and only one solution of Py = O in S(¥gsr)e
Proof; Take L = Ar in Lemma 2. Since : 2 My % O, clearly Ar < 1
by the last hypothesis and so the first condition of the Fixed Point
_Theorem (Lemma L) is satisfied. |

But the last hypothesis also gives

(2.16) |2ar - 1] <V(1 -4 m)
b a2 - b Ar+1<1- by
Ar? - r <..- Mo

(1-4r) - r> 1o

80 that the second condition of Lemms 4 also holds inasmch as L = A r

t

-

e ————— —

[



=N

S

PR

.»‘(2-17) oP(y,) = Da(y,) - 5+ I..

'-',:(2.18)- o 2ye) ¥ =N ¥

K Thus, “the eigenvalues of DP(y ) are.of the form™ ( N - &) for all -

1is 'close‘r~to A than to any other ei'genvalue' of DQ(yo).'_ Then_ -

.or on (- F), "t..hen'

2, Effect of the Parameter o ‘ A VI
#

One impdrtant assumption in Thepreni 1 is the ?aéistence of the.

. & H
" inverse of DP(yo). Thus, we must see for which velues of 8, if any, .

~ the operator DP(y,) is singular. We note (by ‘Lemma 3) that

" Now let A be an eigenvalue of 9Q(yo), 80 that for some eigenﬁmction

¥ (which must also satisfy the boundary conditions)

2y 'f
Cit

oP(y,) v = (A - 8) + vy S

eigenvalues A of DQ(y,), and DP(y,) is. singular when & is eq_ual to

?

-one.of the eigenvalues of DQ(yo)

We use this fact to estimate the norm of I'y = DP(yo)'l. We
know (see Halmos, Ref. 5, page 182) that this norm does not exceed

the largest eigenva.lue of I‘o, which is t‘ne reciprocal of the smallest

eigenvalue of DP(y,): 4s in the__statement of Theorem 1, assume that &

(2.9) .IiI‘OII s1/ |8 - >~|. - = | |

Lerma 6: 'If y is an element of I , and R is ‘ar‘x'qperé.t'oz" on 3’ ;

(2.20) |, 'yl_l’ s(1+ ,Is:? )“'l).‘.‘ ~|15Q(vo>'_l A il
v Wl = (%[5 - ,II’?Q‘(/’”io)"l:fF_'RII. o

A
4

Y




: Proof:.
(221) Il 0 « oalvoll - loatyg)™ s o
c < KA
o + &l %I, * oalyoll - noa(yorl au.n | ;
:
llf‘ ° QQ(yo)" = “Po e (DP(YO) + 8 . I)" k
/
' | /
but I’y 15 a 11near operator: o
(2.22) [0y o DRy )l = lITg o OP(y,) + 8 ¥ Lol
| | . = IlI+8v-P°I| : .
o o slgl + 8] - el < o
51+ [8]/]5 « | '
: R ¥
Y Lemma 7 1 @, = 0, then : |
(2.23) o & Byl 5 (1+ [55]) + Tol - oty wdl - |-
Proof: Ve aﬁply Lemma 6 to y = Py,:
(22 I, - pvdl %+ [gR]) - oty o Pyou ;'
'But-Pyo Qyo_s.yoandeo.aogoPyo:-a yo. o ;
(2.25) IIDQ(yo) 1o Pyoll = ISI loalyg)™L yollo- .
' 3. Completibn of Theorem 1
' We see that the hypothesis of 'I'heorem 1 satisfies the requi.rements
By of Lemma 5, with ;' B
(2.26) ija=(1+ |35 X]) Ao,
= la o) . ls Ilna(yo) vole




,(2.50_)_ Iy e 2PR(F) s a

The first of these statements follovs from Lemma 6 with R = DQQ(i);

however, i1t must be realized that we haxe used two names for,the same
%

. object. According to Lemma 3, the second-order derivative is inde- -

pendent of 5: ‘ ~ L | _; -

(2.27) " -~ 9?p(§) = D(0Q(¥) - N ¢ I) = D%Q(¥).

The second statement is the same as Lemma 7, since 7o = I ° Pyoll.

- The last hypethesis’of Theorem 1 gssures us that A » o S + .

A variant of Theorem 1 is useful in case Yo is an approximate,
rather : than an exact solution for & = 0. Assume that "del S €. The

effect of this modification appears only in Lemma 7 There, and in

the last hypothesis of Theorem 1, the factor

e D 4

(2.28) Isl uoq<yo BRI

may be changed to

@®) (sl - uog<y0>'"l voll + ¢ - loayg)=2 -

which is an estimate for HDQ(yo)’l o Pyou when laydl 5 €.

10 _

We note'that the uniqueness of the solution (1f it exists) depends o

only upon the Lipschitz condltion. ir -

for all 7 & 8(yo;r), with A = 1/r, ve may teke r5 slightly smaller than

 r without violating (2. 30) in S(yo,r' ), then Lemma 2 is satisfied w1th
L=Ar< Ar = 1. The last part of the proof of the Fixed Point Theorem.

. (see Appendix) then shows that there is at most one solution in S(yo,r )--

o

R
.




III, THE ‘ODD-HARMONIC SOLUTTONS OF THE ~
DUFFING PROBLEM '

A. Operator Form of the buffing Problem . i

- For Duffing's differential equation:
(3 1) 42 22y(8) + y(e) +p - y5(e) =cosf, ~ . IR
'with boundary conditions y(7/2) = 0; Dy(0) = o', ‘we: seek harmonic
“; 0 . solutions; i.e., solutions of the form [
(3.2) y(e) = Z ay €o8 k9 + 2 b, sin k 6.
R . ko"—'O‘o . '
Because of the odd symmetry of Eq. (51) the sine coefficients
by are all zero and the second boundary condition is automatica.lly

o Hoo o
..satisifed. The first 'boundary condition further implies that the even- IR
* j: numbered cosine coefficients are. also zero, 80 that Eq. (3 2) reduces -

\‘ ' ‘t - ‘_ : v. - : . t )

. to the odd-cosine form

[ . . T

T ] R . t A . . 2 A . .
* .- The folléwing 1ntegral equation is equivalent to Eq. (3.1) with the

e . given boundary conditions:

g e "(3.x+) SRR ‘&(e) + fg/a

dtg f 2 [l‘f(tl)"*‘ﬁ_'," 3’5("‘1) - 9°3 ﬁl-]. -dtl_=_,°°':t o
This equation may be rewritten in operator form. Let us firs]t

)

" define the special operatore J and G'
|

G Cay(e) - ﬁ"’?‘aﬁé f;l_l s
| v (3;5b) : G y‘(e_)':u, (y(g))3 /f L

E _A,‘,n-'v.

. | The use of these Opera.tors allows us/to write Eq, (3 1,,) 5 n the me S

YA

L Py 0, where




(3.6) Py=<>+y+J(y+p+ Gy - cos).

Now let the "constant operator" cos be defined by: g’ég ¥y = cos.
_ >

In other words, cos is an operator which maps any ﬁziﬁtion Y into the

e

cosine function. Also, let I be the identity operatar. Now Eq. (3.6)

becomes:
(3.7) P=-72'I+Jo(I+B-G-gg§).

It should be noted that the operator P contains two pé.ré.meters, ‘y-‘
and B » which have not yet been specified. . For given values of ¥ and B‘,
P is a (nonlinear) mapping of the space £2 [0, 7/2] 1into itself.

It is obvious that the operator P ;s'of the form studied in

Chapter II, with d = '72 - 'yoa and

(3.8) Q= -‘Yoa cI+J°(I+p+0 -”gg’s‘).

AN

Also, we have the Frechet derivative )

(3.9 PAyg) = =¥Z T+ T o (I+6-06xp))
{

0G(y,) ¥(8) =3 « (yo(6))2 - ¥(8),

and the second-order derivative
(3.9a) 9%Q(§,) = B+ I 026(y,)
0°G6(y,.) = 6y, +y
Yo) V1 ¥2 = 6y, V1 * ¥

B. High-Order Resonance

We consider first the situation in case ¥, = 0. Then the

problem Qy = O corresponds to the "reduced equation"

L]
- e S ——————————— T

-

= we



(3200 Yo(8) + B + yo3(6) = cos 0

type, in particular for prdblems in which the order of the differential

Y
‘not surprised to find, as a result of computation studies, indications

CGal ) e = ox) 90

sT/2) S0, (o) =0 |

A solution of this problem for B = 1 1s shown in Table-h 2 (Chapter IV).

The standard "singular perturbation" theory for equations of this

equation changes by 2 fory = 0, has been elucidated by Wasow (Ref. 6,
see also Cesari, Ref. 7, pp 195 £f). Except in a certain case which

he calls "parametrically irregular”, Wasow concludes that the solution

of the differential equation converges to y, on an. interval containing

y = O Checking Wasow's hypotheses as applied to the Duffing problem,

we find that Eq. (3. l) is "parametrically irregular", so that we are

_ that there may be arbitrarily small values of Yy for which there is no
~ solution close to y,. These are values of Y for which DP(y,) is nearly

singular and the theory of the previous chapter cannot be used to assert §':v?

l'

the existence of solutions.

Thlus, for the Duffing problem a different approach must be adOpted.

V[In spite of the fact that as 7y -90 there are infinitely many regiOns of

13 -

[

resonance , we find that these regions are separated by "valleys" which :

may be characterized, for instance, by the fact that>HDP(yo)'l ° PyJI is

small. We shall apply Theorem 1 to shdw that a sequence of values of 7Y

. can be chosen from these "valleys", in such a way that as Yy =0 via the

!

‘;_chosen sequence, the corresponding sequence of solutions'tends to yb.

We introduce the auxiliary function q (9) which has the property L JTJ

, i

(compare Eq. (3. 9)) that PR _1 S ;:fa}‘j 1ffﬂ ﬂ_;";'_"

+o

1




~¢\‘
= 2}
O

9.__“ fallP]

‘where N = Ilyo / q ll

" of Eq. (3.1) 1n S(yo,T) for y = ¥+

(3.17) u+]

(3'18) ’ |l6 ¢ B "i 7 q'}{‘: = IIIJQ(yO)‘l ° Deq(i)“ ‘_ : =

14

Theorem 2: For the problem of Eq. (3.1) let B be fixed and let

¥, be defined by Eq. (3.10). Assume thst B is such that the following

. . . ‘\‘
" hypotheses hold, where - er

(3.12) .'ww)=1+3-p-y§w%

(1). There exist r and A = 1/2r such that for all ¥ € S(yo,r)

(53 leee-F/al Al

(iéi)é There exist: constants .31 and a, such that for 0 s e snf2 -

(3.24) 0 ° O<al<q'(6)<_a2. '

-y

(111)' The constants A, 8y, a8, Mo satisfy

. - -

- (3.15) + (ag" /315)'n <1 /

/‘ *

~ e

/

' Then there is an infinite sequence of values {'Yl, ‘72,'7 ; +ee) tending

3

to zero, and a corresponding sequence of solutions [yl, Yo, y_s, ees}

. i :
" where y,(is the solution of Eq. (3.1) fory = v,, such that y, tends

$0 yo+ Furthermore, y, is unique in that there is no other solution
. : L . " : - ] i .

Proof: We only need to show the existence of a sequence (‘Yv] such

' that for b = 'yva (v=1,n2,3, ...) B N . i

)2 - Tl s (o / b

for some &) and ap which satisfy assumptions (11) and (iii) The

T rema.ining hypotheses of Theorem 2 imply those of Thearem 1, since

Ivo / 'l = Iatye) 3 « g,

t

CO T JO E R
l - : 1
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"~ as applied to the definition of Q, Eq. (3/8) '

Eq's. (3 5, 3.9) since ,‘yo =0, as follows'

' ational" fdiffereni;.’m.a.l equation

15

as may be verified from Eq. (3.9) or by direct -use of the. definition

of the Frechet derivative (Appendix 1 or Liusternik, yRef . 3, page 185)
W ¥ :

The crucial point in Eq. (3.17) is clearly the choice of & such
that 18 - )\.l is not too small. Here A is defined, as in Theorem 1, as

the eigenvalue of DQ(y,) which is closest to ® ,-so that in Lemma 6 we

can use the estimate of Eq. (2.19): _ . ;

'MJ&;/W?XL

We theréfore turn to an investigation of the eigenvalues of DQ(yo) .

1. Eigenvalues of the Variational Differential Equation.

We seek those values of A for which there exists a non'brivial 11
/ "o

,solution y of - / / ' o " By

/

i . 4

. L ,’ N
(3.29) : D?(vo)‘y'= Aoy

:/ . . ' < - ;
(coﬁxpare Eq. (2.18)). 'The seme eque:bion' may be written, in view of
! .
| o
<3.ao'_) 1/2 ty [*2 (‘1+ 3.8 yo?-(ta))  ig) atp = 3(6).
/ .

and so the‘ problem is equivalent to finding eigenvalues of the va.ri- :

[

‘

() aBA8) + (13- 5 - y2(0)) - ¥(6) =

y("/2) = 0, Dy(0) = 0.

To this. problem we may apply "Sturm's first camparison theorem". ( Ince,

Ref. 8, p..' 228). As before, let | N

1

(5.22) ¢w¥=1?3dﬁf&f@l




AT, ¢
.nl .

16

. and assume that 0 < a1 <'q'(8) < a, for 0 59 s 1r/2. ‘Let ¢ = a/;\?-

and J.et f(t) =q (>\.2 . t) for 0 S t S'lr/é . )C"), and consider the fol-
.1 ! '
3 S ’

-¥ !

K

—

lowing pro'blem'

Dzy(t) + 2(t) - y(t) =

(3-23)
| 7(0) =1; Dv(0) = 0. »

' . Y ) 4
We see that y('"/é « A2) = 0 if and only if A is an eigenvalue of Eq. (3.21)
The Sturm-Lionville theory- (Ince, Ref. 8, page 232) assures us that -
there are an infinite ‘z'm'mber of eigenvalues )\J of Eq. (3 21)'whi¢h'may

»
+ 4

. -, _ _
be labeled 80 that there are exactly § zeroes of the solution of Eq. (3.21)
in the interval 0 280 = '"/2. ' : ' ‘ ‘
We apply the Comparison Theorem to Eq. (3.23), replacing f(t) in
l‘

by each of the constants 8y and ) and conclude tha.t }‘J can be bounded

4

as follows:
(3.24) .. . =l ca < 2,
| Co (22 YT (g2

We apply the same theorem in a different way to obtain a lower
‘bound for (Ay.- Ay,;). Comparing Eq. (3.23) with the following problem:

Py(s) ey - ¥(8) = 0,

(3.25)
y("f - 2fd=0, Dy(0) =

‘we conclude that.the next zero of Eq. (3.25) to the right of (‘“’/é . )\ )),

is to the left of the next zero of Eq. ( 3 23)
) .

N[H

(5.26) (m/2 kf) * (vr/af) < tn2 >~J+

A little algebra applied to Eq.. (3;26) gives the conclusion
- - 1 / % . 3 [I e
(3.27) Ny o= AgedL > al /2 ‘ 32,

e e —




I
nr‘g\_ :

The estimates of Eq.'s (3.24) and (3.26) hold for each ' : (§ =1, 2, 3, «+s)-

. . By Eq (3.2#), Ay Oas j-w. For any fixed J, we may take

P

A

e
T3

G (328) L 8= (yrag) f
50 lthlat we may teke A = A, and | »

@) s
| 18 - A = 30y - Agiy)

—

.

and we obtain with the aid of Eq.'s (3.24) and (3.27)the following
eétimate;f |
e L Ls e, L3 42 2w

| (3.30)  (1+ |525]) ol <Gvy @7 ke ) - e

This is a strict inequality; hence, if j is large enough we may drop the

¢

first "1" on the right and replace (2_j-l)2 by hje, leaving

(3.31) (1 g% sl <oyt /b -0

1
|
|

 for all sufficiently large j, if '8 is chosen in accordance with Eq;,(3.28).

Ve may avoid all smaller values of j and begin with
(3'52“) ‘ '712 = 5l = T}E(xj + )‘j+1):
2 o

72 = 82 = %(XJ.;]_ + 7\J+2)J

O.'.,

for sufficiently large j. The smaller values of J satisfy a similar theorem

in which assumption (iii) is replaced by the more complicated expression

i
!
i

obtained from the right-hand side of Eq. (3.30).
Coy - 2. Effect of the Parameter B Upon the High-Order Resonances . i

The hypotheses of Theorem 2 depend only upon § and upon Yoo But

- Yo ;@Iturn depends 6nly upon B, since it is the solution of the algebraic




Q. . , : o - - N 18

st 5

equation °

(3.33) v(6) £ B + y(8) = cos 6, o

and for sny,givsn'value of 6 the solution can be found;by solving this
cubic equation.‘ |

‘ _ For.B.% o, we.can obtain more information a priori. In this case,
we can'clearly find a; such that 0<a< q'(6) (in fact &y Z 1 for é > 0)
and assumption (11) can alvays be satisfied. The follow1ng steps show

that in this case we can satisfy assumption (i) as well by taking

(3-3#)_ o r<dlydl 4 %—f(llyoll v omf3e). .
This implies the following: ' - ',/ S .

f t

(3.35) R 3 ilyoll)?. <_%r(lllvyo||2 T‘?‘lb B . -
re + r“yoﬂ- < Ial/lé é}'
_é_%(“yo“ + r). < 5— r = A ‘ | . .
SR 168 (v + D/all <A

If B is neaxr zero, we may take r quite largeiin Eq. (3.3&) and hence A
is quite‘small*wslso q' stsys close to 1 s0 ap and aj are nearl& equsl;
" thus, (aau/al3 1 and n = Hyoﬂ Accordiingly, hypothesis (ili) of
| Theorem 2 is easily satisfied. In Chapter IV, same computations are made -
: ito determine the largest value of g for which assumption (111)‘holds.

i

/ . ) .
C., Low-Order Resonance

Theorem 1, besides’forming a basis for the proof of Theoren 2,

'is also useful in quantitative studies of the solutions of the Duffing

- problem for particular values of the parameters. -

A T
§ i
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e, v

[
" If we let Yo be some parsmeter value (other than 0) for which
the solution is known, end let Q be defined (by Eq. (3 8)) as ‘the
l
basic operator which we have been considering, with 'y = Yo» then Theorem 1
asserts (under certain conditions) the existence of a certain interval

of wvalues of v for wh’ich one and only .one solution exists in a neighbor-

hood of the solution for y,. It may be possible to extend this interval

by choosing a new value of Yo for which we have (by Theorem 1) existence
and uniqueness of a solution, and obteining & new interval for this

new 'y Very 1ittle can be said a priori about such a procedure, partly

because the Opera.tor Q, and, hence, a.lso the eigenvalue N, depends upon

Y, in a way which is difficult to predict. 'I'he numerica.l studies whlch

are reported in Chapter IV are devoted largely to a quantitative study
\

~of this procedure, including the choice of "sta.rting va.lues" for ‘yo a.nd

the corresponding "known solutions.

~
;-

" wen >
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IV. NUMERICAL STUDIES OF NONLINEAR RESONANCE

'A. Discretization of the Duffing Prohlem

For numerical work, it is necessary to replace ﬁhe Duffing problem

by & related prdblem whose solution can be obtained by a finite procedure.

A fairly common practice is to restrict attention to a finite number of

" points in the interval of interest and to replace all derivatives by,

finite-difference approximations. But when periodic solutions are being
studiezﬂ it is often advantageous to transform the problem by assuming

a solution in the form of a Fourier series, and to cbtain the finite

‘related ("discretized") problem by truncating the eeries." This technique,

of course, extends to the case in which solutions are assumed to be

representable in any given series form; the discretization is easier j

when the basic functions are orthogonal, because the "best" repre- -
sentation in a given number of terms is then obtained by simple truncation
K] . v
It is necessary, when this technique is:used,vto depermine the
effect of the transformation upon all parts of the problem << in particular,

{ v
upon derivatives and integrals and upon nonlinear operations. In many

cases - including the case of sine-cosine series representations - 4if-

ferentiation and integration have a Very simple form consisting of easy
operations upon the individual coefficients of the series. Some of thei

very simplest nonlinear operations can also be perfcrmed‘directly upon

- the coefficients: Tfor example, the coefficients of the series, obtained

by multiplying two given Fourier series, can be expressed in terms of
the coefficients'of the two given series. ' For more complicated nOnL

linear operations, however, it may be necessary to transform the problem

/
back into the original space by a Fourier/synthesis transformation, o,

A
o




then to perform the indicated nonlinear operation G, and finally to

perform a Fourier analysis o' upon the result. ThusJéthe nonlinear

operation G is replaced by a mapping G¥ of the spaceébi Fourier co-
efficientis into itself according to the formﬁla_G* % ;* o G o &; As
usual, the composition of operators is from right to 1eft

We shall now consider in detail the process of £ransforming the
Duffing problem from a space of functions defined on the real interval

[0, ﬂ/2] into & space whose elements consist of sequences of nunbers"

which are the coefficients of the series cbtained by representing the

functions. of the original space as a Fourier series. As we have seen
in Eq. (3.3), the boundary conditions in our case allew us to ignore

all of the sine terms émd all of the even-numbered cosine terms.

' ) . : t
1. The 0dd-Cosine Hilbert Space : K

The following symbbls conform to a system of notation developed
by Professbr R. J. DeVogelaere {(Ref. 9). The closed real intérval
[0, W/Q] is called E,vénd the set of all positive integers ;sngalledcn.
v,v ..

Equation (3.3) is rewritten as follows:

% P | ,
(h1) .yE(e)’; Sge Yo [kl + cos (2k - 1) 6. | (6 e'E)

" 2 | | TP
If Zygp (¥ [K])° <o, then the sequence of coefficients {yy [k]: k € w}

is an element of a Hilbert space 3&5: and Eq. (4.1) defines a complete

sxgthesistperation,T which is a mapping fﬁoﬁ é;w to a function space
é?E:which contains yg end which is a subset of'&e [0, W/QJ; Specifically,
we define the space G;E as thé image'under‘T of Eﬂn' Thus, each function
Vg € agE:has a fepresentation in the form given by Eif (k.1), The anélzsié
operation T-l can be written, accofding to the theory of general Fourier

i
t
N

expansions (see Rudin, Ref. 10, pageldh) as follows:

PR
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2 wbd=If yE(e>-cos(ak-1>e-de- o (kew)

o . & _
a. The Duffing Problem in Hilbert space. Using this notation,

we have in the function space JE the special operatoi's Jp and G‘E as
. ‘i& v
in Eq. ( 5 5): - 3

() - g yE(9)=f/ oo [Tl
GEyE(e>= (yE(e» . eem

Equa.’tion ( 3.6) becomes

(1&.1&) 'PE- Yg ® ,-72, *Yyg+Jg° .(,yE + ) - OF YE '-“.co;s)
ané.,' using SéEE YE = COS: : o S o i
‘The Frechet derivative at ¥y is. also written:

(1*6) QPE(;E) =2 IE + JE °~ (IE +B . QGE(;E)): |
where DG'E(YE) yE 3 (yE) * ¥g :

We now define the corresponding operators in the Hilbert: space

.3’ w? by means of the mappings T and 'r l'_. The operator By is defined

as follows:
(k) . By= 1 o'_PE-o T o i o
. - so that, if yg = T Y, We have _ - )

(13».8) | By Y = Tfl ° PE ° T Yoy = T-l ° PE yE.

~ We also define I, as the identity'pn--}m, and Jp = T°1 e Jg° T,

e S R e w1




25.

Gy = ’r'l o Gg e T, and cos = 1‘1 ° cosE o T 80 that €oS, Y = cosw,
where 9g, 18 the - sequence {1 0, 0, 0, .:.}s Thus, i

& -.-

[}

(h9) P, = 'r',lo[-wz'IE+JE (I +B GE-cos)loﬂ:
= Tt dyo (Gy+ B Gy - o8 ).
0f particulsr importance is the form assumed by J:

-1

(1&.10) J'w Yo = z_"l ° J‘E © T Yy =T ° JE:YES

g yE(e) =f /2 dtp ftztzk% ¥y [K] + cos (2x - 1) - tll dtl

¥

ka ¥, [k f /2 atp f‘"2 cos (2k « 1) - tl dtl

- l ) ' f * L] ) .
= Zkem mz yﬂ_) [k] COS (21! - l) | a; , :1(9 € E)

(o o) 6] = =2y, [x]. (kew

The Frechet derivative at ?m has the following form:

(k21)  DR(Y) = 4P + Ty + dy o (Ip *+ B DGu(¥p))-

b. Discretization in the Hilbert Space: Let m be a fixed integer

larger than 1. We define the following two finite sets of integers::
) : : ’ | _ I

(ka2) | N=1{0,1, ce, m = 1]/_

. and the sample function Hy from N into E:

;

/
/

(v13)  Bglal= an/2m \ (aem

- Let the sampled function spade :7(1\3 consist of functions yy defined on the

set of points (Hy [nl:: ni e N} , ‘which lis'vth‘e-sgme as the set of points

RPN g N <




'

(0, m/2 m, +.., (m - 1) /2 n}. Let the finite-dimensional yector

space 3}{ consist of sefquences of the form (yK [l], '..., v [m]}.

' Figure k.1 shows the relations betwéen the twg% "{nfinite" spaces

3[ E and 30, » and the two "finite" spaces .7 y and 3‘ K- The arrows indicate

operators which map ‘one of the spaces into ‘another. 'I’he definitions of

these operators are summarized in Table 4.1. A close inspection of
this table shows some redundancy, in particular, ¥=1 o0 ¢, 7/1* = py ° 'i"l,

" ‘and o= p o Y. Also, because w* oY= Iy, 1t follws (from the defis
nition @=9Y ogt) that 7 o ¢ = ot |

H _.The vector space F g 18 particularly well suited for coaputationai' '

work. In this space we have the operator-

(4.14) - - Pg DK o By o ¢K . o : | .

1]

PK ° T‘l ° PE o"F"o ¢K

o

In particular, for the Duffing problem,

(4.15) Py = -"12 cIx+Jdg e (Ixg+B - Gy - gggK),
where IK is the (m X m) 1d.entify matrix; JK 1s the constant diagonal

matrix (ef. Eq. (3 18)) ' '

(h.16) I [k, xel=0 L for k1 * k2,

1
(2« x1 - 1)%

for X1 = k2; (k1, X2 € K)

and for an;‘r‘-yK, cosg yx = cosg = {1, 0, 0, ..., O}. The nonlinear

opefator GK is interpreted via the relation

v

2k,

.

ir/\ "

' gaT)

\3-_/‘ o

e




4. " f
- VECTOR
SPACE -
SAMPLED
FUNCTION
SPACE

/

FIGURE 4.1

RELATIONS BETWEEN FINITE
AND INFINITE SPACES -

pe

sy o
33

[ R

25

HILBERT SPACE

o g .

T A

et




- T ' RS,
— . )
- Table L.1 Operators Involved in Discretization )
' {1
g ) Symbél Name o SRS Definition
¢ Complete Synthe'sris - yE(G) = 3 eon ya) [x] - cos (2k - 1) 6 (e e E)
- ', vl Complete Analysis Yo [k] = ll: fE y(6) - cos (2x - 1) 6 @ (x € @)
\ Lo f"inite Synthesis ) yl\"'[n] = 2 e k ¥k [k] - cos (2k - 1) Hy [n]" (ne N)
of . - Finite Analysis* | yg (Kl = 25 gy [n] - ygn] - cos (2k - 1) By [n] (k € K)
¥ Mixed Synthesis yE(G) = &y e K Yk [x] - cos (2k - 1) 6 _(_9 e E)
e * . ¢f : Mixed Analy51s ' YK(.k) = %IE : yE(G) - cos (2k - 1) 0 & (k £ K)
P Truncation . o ovgdk) = ye(k) L | _(k; K)
Ok Eongation . y(k) =yc(k)  for ke K, yw(k) . 0 for k s(m - K) )
RPN o Restriction R YN. [n] = yg(#y [n])
I  ¢ L '_Int_erpolafion ' ¢ 'yN = Y o gt ¥y
- ¥Note: WN [O] =1/m; wy [n] = 2/m for n # 0. )
N - N
~ O\




;!. :/ | o o7-
[ '

(k1) Gy =y °'GE'° ¥ - ‘ : ,

. =w1' o”¢oGNop'o“l/ Y
1 : =O’1."’G'N°O’

That is, in order to form Gk Yg, the "finite synthesis" operator yy = ¢ Yg

- , ! _ . .

is performed, then Gy yy is calculsted at all of the poinmts Hy [n] = n Tfen
(n € N), and finally Gy yk 1s obtained by "finite analysis" of from G‘N -

The Frechet derivative is given by
(4.18)  oP(yx) = 92 + I+ Jg o (Ig + B+ DGylyg))-

Being a linear ‘transformation on a finite-dimensional vector space, clearly
OP(vx) must have a matrix representation. We have seen how to represent

Ix and Jg, but the representation of DGK(yK') as a matrix is not obvioﬁ‘ .

In Appendix II, we show tha.t‘

(%.19) © Dolyx) [k, x2] = % g, (il - 1)) + & g% [w(ia + 32 - 1)]
o ' i '
where.K"l= {0,' 1, é, oo, m}, u(3) = min'(].'.j],lavm - 13, tsee Appe’ndi;é II); -

(1+.29) g’K, [(k]'= 2 vy [n] « g% [n] ~ cos‘_(ak)-HN nl. = (x s_-K’__)
Here WN‘- [n] is defined the same way as in Table 4.1, and

(h.21) gy [nl'= 3 gy [n)/3 yy [a], gy [n] C y) [al.

| By analogy %0 o', we may define ¢/ by Eq. (4.20) and write g'xr = c""g’N. |

2. The Computational Procedure. -

'Solutions to the problem Pe ¥k = 0 are obtained by the "(ordinary)

Newton iteration method", as follows:

e K

e M ST T T T

ok, eex)i
P




f(k@y‘y(VU=Tyéﬂ .M%mwn ,BK%0>+W(>

‘ . PR T |

A

' "f.'-"ftf'.where PK and DPK(yK) are defined by Eq's. (h 15, L. 18) Starting, then, L o

:' llfrom yK(o) = 'gl/"' VE or yK(O) cr yN, the following computational steps

V'.'J_'Aare performed a.t ee,ch iteration ‘on the current value of the vector VK
L . .- . RS { R A I w L

‘o Yg 5ol

Gy vy o

D Gy ¥y , .. :
oty =Gy s LT e

;"_‘:.g,KI. 2= 0/1‘ 8.’1\1’3 .b

(a) Solve DPK(YK) nx

o

i

(n) YK= VK"‘ TIK'
o .




S S B. Numerical Results -

The purpose of this section :I.s to present det 1ed quantitative‘

infomation concerning solutions of the Duffing prolilem (Eq. 1.1) for

”lf

various values of the para.meters g and Y (particularly in the region

0 <ps£1,0sYy< l) as well as to describe the procedure by which’
i the numbers were calculated. Data 18 glven to- substantiate the theoretical

y-}presults of the previous chapters i1 in particular (a) to 1llustrate the .

L i"'iassertion of Theorem 2, end (b) to demonstrate rigorcmsly the’ 'behavior ,
of ‘the "principal" branch of ‘the solution in the neighborhood of the - ,
resonances of .low order, = I : o o i
. Theorem 2 assertglthat under certain. coud.itions on B a ‘sequence of :
Values of - 'y exists on which the solution to the Duffing pro‘blem tendg to

_"the solution of the "reduced" problem fory=0. In the firet part of

In the “second part of this section, we start from certain non-

‘- resonance values of .= Yo for vwhich we can assert the uniqueness of the;-.

,f-"solution in a. certain neighborhood of the "reduced" solutioh-. Having

we find from Theorem l an interval -of values of 'y ‘on which the solution

.{-.has a unique connected branch.  We deﬁne & new 'yo 1n this interval and:

J h
S

'{'other side. ) The results >3 such calculations for the-resonsnces of 'f"- SRR
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+, order 5, T, 9, and 11 are reported, and we find in each of these cases

y
. - that 1t is possible to extend the separate branches,\ elorresponding to B ’ :‘.
' ' .' ‘values of 7y which approach the region of resonance fz'f;m above and fram ‘ ’ ‘7" .
R a 'below, until & common value of ¥ 1s xeached for which ‘tvo different o
" solutions are obtained, one being connected to each 'bzl'amch. : o : e
. 1. '-,{ Ry High-Order Resonance ~ . ' o :," | .
: e ;_‘ ‘ ".'1‘. Here ve are dealing with the situs.tion in which a solution is "known '.

for 'y = 0, and we want to make certain assertions about the amount by

| '3 ’i which the solut:lon changes when 'y is changed to a different value. The ;':'(;'
_ . first computa.tional ‘task, then, 18 to obtain this "known solution. | : a
L a. The "reduced" solution:. 7y ='O. Since the machinery'(described' |
: ; " in Section A, paragraph 2) for solving the D&ffing pro'blem in the general

case must be availa‘ble, ‘we can o‘btain the solution cd‘ the reduced equation

by simply putting in ‘\/ - 0. , As a. etsrting value . we use the solubion of

. for kit L kek.

RN

:‘

R : *-,_; *We perform the. 1ters.tion prrocedure of Eq. (u 23) with 'y = o, B' = 1 until ij’,j' e

IInKII < 10"11‘_ ‘The. first;}h components are larger than 10"11" These are
L «,1‘- listed in 'I‘able .2, : ' | f;f

oo e e £y S S T A e e S
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" TABLE 4.2. SOLUTION OF

K 2K-1
b
- 11
- 2 3
3 5
4 7
"5 9
6 11
7 13
8 15
: 9 17
;.. 10 19
L1l 21
12 23
13 25
14 27
15 29
16 - 31
17 33
18 35
19 37
20 39
21 41 .
22 43
23 45
24 47
25 49
26 51
Lo 27 53
§ ' 28 55

WWWwwN
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THE REDUCED EQUATION IS OBTAINED BY SETTING GAMMA=0 IN DUFFING*S

- DIFFERENTIAL EQUATION. THE K'TH COMPONENT OF VY,

_K'TH COMPONENT OF Y

0.72898856416250
-0.05618862750920
0.,01214496257033
-0.00344531646982
0.00111301116134

-0.00038820329000

- 0.00014243895049
~0.00005418104009
0.00002117238511

-0.00000844848240

0.00000342805537

. =0.00000141010665 .
0.00000058667667 . -

- =0.00000024644842
0.00000010438430

. =0.00000004452950

0.00000001911505
-0.00000000825084
0.00000000357890
~0.,00000000155920
0.00000000068199
-0.00000000029936
0.00000000013183

-0.00000000005823

0.00000000002579
-0.00000000001145
0.00000000000510
-0.00000000000227
- 0.00000000000102
-G.00000000000045
0.00000000000020
-=0.00000000000009
'0.00000000000004
~0.00000000000002
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THE REDUCED EQUATION EOR BETA=1.0

LISTED HERE,

IS

THE. COEFFICIENT OF‘COS(ZK—I) IN THE DDD-COSINE FOURIER EXPANSION

OF THE SOLUTION.



ZI- B
S b. The effect of the parameter B.- ‘As owr first task, we set out L
LT %o find velues of § in the range 0 < p 51 for which Theorem 2 holds.
i 7 Since 3 B o y(e) 2 0,:it is obvious tha.t q'(9) 3 l foraall 6ekE= [0, 17/2]
PN '77-"_2_~Therefore, we can estimste [|[1/q/| s 1. Hence,’ assumption (i) will be'
. satisfied if 6 B (llycjl + r) P 1/2 + T, or if ;" :
‘4 . r’:‘-:’ . ‘ | 2 + imammnan ‘ s 0' ' .!.‘ ‘.. . :' E3 K .1‘:'
e 26) | Il - iy so R

Cmeme a1 N e
‘e R

equa.lity. the reaulting quad.ra.tic equation has one positive rea.l root, :

4 aa¢uen'df‘r= %GMJ+J(MJ2+—4)
The values oi‘ llyoll end of r are shown in the first columns of Teble 4.3
i " Assumption (i1) is satisfied with a; = 1, ap = 1+.3 o p ||y||2 For

f.;lAssumption (iii), we estimate Mo by "10 s llyoll since [|1/q4 s l, and
- we use the fact that A= 1/2 r. "  The results are given in the remaining
, [

but thesel estimates (which are undeniably quite conserva.tive) do not - .
_ N _ : '
J_Juatify the value B = 0.2, !

The assumptions of Theorem 2 are used to prove a priori (that is,

a,v,v_tends to 'the solution of the "reduced" problem for y-= 0. On the other :
' - hand, whenv'we actually calculate the solution with ﬁj'a 1.0, .we find a..
set of valnes of v for.which this convergence appea,rs' to be taking place.'j o
: P .""Of courae, we cannot demonstrate ‘the existence of an infinite sequence oi’
'.zl.’ .’T';':;--_-points tending to a certa.in value, merely by exhibiting a ﬁnite ordered )

- This condition obviouely holds for _i' sufficiently small; the largest va.lne R

for which it is true is obtained by replacing the inequality Bign by . L

'""-columns of Table 4.3. It ie clear that the value a = 0.1 is small enough, : :_'

-from an examination of the "reduced" problem only) the existence of 8 L

‘sequence of values of ¥ on which the solution of the Duffing problem =

~ >~} '-)aet oi’ pointe, each one being closer tha.n the previous one to the desired va.lue‘ -
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3.

—,Henee (until closer estimates are. foundi'),v the mssertion of the existence
of the desired infinite sequence for values of B as large as 1.0 must

*P .
be regarded as a conjecture. The calculations (with ﬁ 1.0) for values
-of 'y down to sbout O. 067 are described in the following paragraphs. '

¢. Matrix form of the eigenvalue problem. We recall (cotipare

Eq. (B.él), (3.28)) that the sequence of values of 7y (described in

' Theorem 2) on which the solution of the Duffing problem tends to the

"reduced" solution is to be chosen by taking '72 =X\, for values of N

g ‘which are halﬁv'ay.befween the eigenve.lues of the variational differential

equation. | |
Compa.ring Chapter I, Section B, paragraph 1 with Appendix B, we

see that the matrix which we form at step (f) of the procedure of Eq. (L. 25)

 is suitsble for the calculation of eigenvalues of the va.rla‘bional problem.

We take as yyx the solution which is listed in Table 4.2 and perijorm steps

(a) to (d) and step (£) of the proeedure of';Eq. (L. 23), with"y = 0. The

resulting matrix is symmetric (a.s we see from Eq. (k. 19), since ‘u (k1 - k2)

u (k2 - k1)), and so we can find the eigenvalues by Givens' method (see

. White, Ref. 11, pp 398 ff.).

Table 4.b 1ists @~ the ten ;largest eigenvalues, along with the |

’“rcorresponding values of x,j - (2 - ,jfv- 1)2._ _Furthe‘r values (not listed)

. indicate that the sequence D\.j (2.3 - 1)2] approaches a limit which

. : . i
is close to 1.76746. Corresponding resonant values of ¥ = A2 are givens

by y + (2 - § - 1) = 1.32046.

SOPGE S SUN—

d. Convergence donditions for Newton's Method. We check" the conditions K

of Lemma 5, Chapter 11, for various values of ¥ in order to see whether

. we can assert, for some r, the existence and uniqueness of a solution of .

the Duffing problem in ,the neighborhood S(yo,r) of the solution yo of

. the reduced equation. 4We choose a.bout 20 values of vy between each pair
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=
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Table L.b4

P e

largest Eigenvalues of the Variational Problem

2J=1 ”f.

A

Ny ¢ (24-1)2

s

1
.

~
-1 O\ NN

15 ©
o

2.14292

0.20075°

0.07101
0.03610
0.02182
0.01461

" 0.01046 .
0.00785

0.00612
0.00L90

1.1;6387'. '

0.44803

0.26648 -
0.19001 -

0.14772
0.12085
0.10226
0.08863

0.07820

0.06997

. 2.1k292

1.80655

1.77529

1.76905
1.76760 -
1.76729
1.76T26

1.76729

1.76732
1.76735

" The column headed 2j-1 gives the order of harmonic resonance

'-l‘[

: corresponding 4o the- eigenvalue,xJ

.

.
e .
': 3 A
i 2 .
.
. :
.
s
ve
-
.

-The last column shows ;Ziml“

that XJ approachee a constant multiple of (23-1)'2 o f' o
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_; of eigenvalues. specifically, we take L 13 29“5/.3 for § =1, 2, ceey 199'
- x ' ¥

i 13y The resonsaces are near § = 10,30, 50, +vy 190. we' may think of §/10 ... :;‘,Q_--

e 0-T0 77 as the "order" 6 the resonance, s:t:nce it correspond? to the frequency

“ o of the reeonating ha.nnonic. ' ‘ ‘.;"-, B C f, IR ,\
s Figures 4.2 through h 6 show ‘the main steps’ in this cOmputation. A
Noting" (eompa.re Eq. (3. 9)) that ‘ -',’; R I o
S A ) |
R r_(u,ee) oeP(i) n'yg(e) =65p T oF(0) v (0) s yo0)
L b e see that ‘ o ST
j;;_flj:,".;._~::f” (};.29) llr = naP(y)" = 6 ..| I R B - L
o 56 1pl +lirg e a1l Slden
: V. ‘ !

: o Recalling that I'g = DP(y,)" 1, we see that the norm Ilf‘ ° J'” ‘18 large

B when the smallest eigenvalue of J‘ -1, pP(y,) is near zero. Figure L.2
'f‘shows the 3 or b s;nalleet‘eigenvalues of J°1 o DP(yo_) far the chosen
va.lues of Y. Figure 4.3 shows the corze-spending largest eigenvalues .
of' (I'y e J‘), ‘which are the reciprocals of the values shown in Fig. 4.2
X : In Fig. 14- L, the norm |[I1 ‘o Ji is shown, which is obtained by taking
the absolute value of the eigenvelues of Fig. h.}g. The epecial diamond- S

-".-.‘sha.ped points in Figs. 4.2 - k.4 indicate the values of 7y for which the ‘ B

‘o two largest eigenvalues of 1'" ‘o J are equal in magnitude: 'these are”

the points at which llI"o o Jll 1s local]y smllest.

'Looking no farther then Fig. h.b, one might conjecture the tm: ' Y.
possibility of finding a sequence of values of Yy tend‘ing to zero (moving

*" indefinitely to the left) on which the hypotheses of Lemm 5 are valid; < i

L :,-I"": however, it 18 Mo which saves the day. Figure ll» 5 shows ll'qoll, and ' Lo

o Fig h 6 shcws the product lII"o ] JI[ Il'q°|| from the two previous graphs RER ;
N z I -y
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_multiplied also by the value (independent of ) 6 -
. - as required by Eq. (4.29). Those values of ¥ for whicq the points in

" Fig. 4.6 1ie below the horizontal line at & are the ones for which all

{8l « Clydl + r) o

of the hypotheses of Lemma 5 are satisfied, so that w.efcan gua.ra.ntee the

' ‘v'existence of a unigue solution in a neigh‘borhood of Yo'

The points shovn in Fig. 4.6 are also listed in Table k 7 which

’ " s discussed in the last part of this section.

- e. Remark. The matrix DGK(yK) is close to a diagonal matrix. We

: }sum of two components of the vector g K" But only the first few of

= " these components are signif:l;caxrt ’ a.s shown 1n Table 4.5, and the composition

"7 .of the matrix, shown in.Table b.6, 1s such tha.t these few relatively

e .la.rge components occur only near the diagonal a.nd in the upper corner.

7:" “A very rough approximation to ‘this matrix is obtained by ignoring all

’A»‘r.,:"'ma.tion would give a diagonal mati:ix whose J'th diagonal element equals
G (gon)/(20e g - 1)2,

j_i‘f'-"; components of the vector - -except the first; then,.the matrix is a diagonal

o matrix with all diegonal elements equal t0 0.901. .

- ""'_according to our crude approximation, when 'y2
s This approximation may be compared to the actual values ‘72 )\. y = 1. 767/
TR RN

" values of the off-diagona.l elements.

-"_5 'in some position on the diagonal. Our crude approximation leads us- to

‘ " expect that Fo = DPK(YK)°1 will have & lar g number in the correspondin&

la.rge. However ’ III’O

- Thus, DPK(yK) - '72 « Ig has a zero on the diagonal,.
(19o1)/(2 5 - 1)%.

When ¥ is near one of these, critic'al values, there is a small valu'e".r{.'

b

A'.‘-'f‘position on the diagonal, e.nd this 18 Andeed the ca.se‘ Thus, III‘OH is _._' B

, J11 is much smner, espec:la.lly if the critica.l

The discrepancy is, of’ course, due to-the not insignificant"?“"f"

ey recall (Eq, (4.19)) that the [ki, k2] element of this matrix 16 4 of the 7

For ¥ = 0, DPK(YK) =Jdg ° (IK T DGK(YK)), and our crude approxi-,'h":""-""
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0.00002

'/. - o
’

) !
A

Teble 4.6 Composition of the Matrix DGx(yy)

]
i

—

rer o f
. L ) N

.o

o ':.:

L Sy . O
Loeee L .

++ 4+ + 4+
oo W

+ 4+ 4+ 4+

* -

0 FW

FUDP O
W' o
AU £ N0 O
PEOoOrD

S R DA

s+ + + + +

3

. PR
] [ ] : LN ) ot

.

*

e e s,
. o

u ..

E-FR
W
* D OM +

c ew e

WO

N O

I W+ + 4+

e VI 4+ +

.
.
.
-

. In

(a), the indices of all components of g’x/ are listed as .

" they appear in. the matrix. The effect of ignoring all COme B e

ponents 'beyond the third’ i& shown in (b)

[

-0.00006

« =0.00001 IR
0.00000 - ENCEL A

S

6. S
7< " ves . , o "
8.

9

...’.- et e T

L3




-;‘diegonal element is not t00 near the top, since J multiples the JEE
diagonal eleﬁent by 1/(23,- 1)2. In this case, we c%qpot’estimate
T o 3l at 11 well by ITgl « 9l since ol = 1. &

This difficulty of making close estimates is, of course, one»of
the annoyances‘of numerical analysis. We see it in one of its simpler
forms whenever we are multiplyihg two quects without being able to".

prove in ‘advance that they are nearly orthogonal. We will escountef'
another example in the next section, when we try to estimate
sup (ITg o T3l ¢+ ¥ e Syo 7)) vy computing [Tg o all « (llyol + =),
since we find it very difficult to take advantage of the fact that ;-
has a small "fail" which further reduces the effect of the large element

of [y

2. Low-Order Resonance

‘ We would like to define the "principal branch" of the solution,.
Y 7 varies, in a natural way. Accordingly, we begin by calculating

" the size of the neighborhood sbout the "reduced" solution within which

. the actual solution is unique. If there are any values of ¥ such that

a solution can be shown toiexist.in this neighborhood, then that solution

(which is unique) for such a value of Y will be called the princlpal

solution, If we can then show the existence of & connected branch of ‘.

- the solution as 7y varies, that branch will be called a principal branch"

a. Starting values. We recall the remark made at the end of 4

e Chapter II, that "the uniqueness of a solution (whose existence is known
or can be otherwise assumed) depends only upon the Lipschitz condition.

.Specii‘ically, if To -oP(yo) -1 exists, a.nd 17 for all y € S(yo, r) it is a

(k.30) .- |rg e oP() s,

_ true that




)

i SESee )

) ,,‘ where A < l/r (coﬁpare Lemma 5 of Chepter II), then we conclude that
I022(F)ll = lITo © 0°R(F)| s A and we may take L=A+z<11n Lems 2,

<
,_,p;

- Here T is defined as in Eq. (2.10):
(4.31) Ty =0R(y) e By 4y

As in Chapter II,.we conclude that 'l‘xsetisﬁes a Lipschitz cond.itien ‘
with L < 1, so that T has at most one fixed point and therefore P has
at most one root in S(yqs ¥)- | | - | |

We new wish to apply this revsult.using’ a8 ¥, f.he solutioﬁ ef the
reduced problem (¥ = 0). As in the high-order resonance case , we shall

‘use the estimate (compare Eq. ('4».29)).
(k32)  Iro .o 0%R(P) 56 - lel - 1Ty N+ (g » ),

"where [Ty o J 1s the reciprocal of the smallest eigenvalue of (I" 6 J )'1
SR et DP(yo), and is pictured in Fig. b.4 for p 5 1. We can sa.tisfy

Eq. (L. 30) if we can find a value of r such that

v | (1&.35) 6 . IB‘ ".“Po ° J“ . ("yo“ 4 r) <‘ .i'_'.

.

1

We choose k <;1.(sgy' K = 0.98) and so'lve far 'Ar‘~in the following equation: -
k) o 6+ x.« ¥+ -1;2-) =z RN
X with x = [g] - llI‘ 0 Jﬂ and y = lyoll. £ we write

.” (h.35) | F(r) -2+ k?'~ yor - ®f6x

" e see that Eqs. (k.}lﬁ) and (4.33) are satisfied when F(r) = 0. Tt is

. clear {since x, ¥, and k® are non-negative) that F(r) has a zero between

e e s e s oy, e ¢ 2

"0 and k/N6 x. This value of r is listed in Table L. 7, for the seme 199

vva.lues of 7y discussed earlier in thia section: 1 .e., 'yJ = 15 29146/,5 for

J. "l’ 2) siey 199) andwithsul. ~




€

O~NOCV P WN —~

11
12
13
14
15
16
17
18

20
21
22
23
24
25
26
27
28
29

29
30
31
32
33
34
35
36
37

38 -
39

LY

GAMMA(J)

13.29460
6.64730
4.43153
3.32365

| 2.65892

221577
1.89923
166182

1.47718
1.32946
1.20860

1.10788
'1.02266

0.94961
0.88631
0.83091
0.78204
0.73859
0.69972
0.66473
0.63308
0.60430
0.57803
0.55394
0.53178

0.51133

0.49239

0.47481
0.45843

0.45843
0.44315
0.42886
0.41546

 0.40287

0.39102

0.37985,

0.36929
0.35931
0.34986
0.34089

Y-Y(0)

0.73693
0.75435
0.78476
0.83060
0.89615

 0.98978

1.13276
1.47410

0.81152
0.66136
0.54596
0.45656
0.38684
0.33219
0.28928
0.25571
0.22978
0.21035
0.19675
0.18863
0.18605
0.18937
0.19945
0.21774
0.24664
0.29001
0.35417

0445140

0.63106

0.93195
0.36578
0.27804
0.22246
0.18448
0.15725
0.13706
0.12177
0.11009
0.10125
0.09479

YV VOO

CVTVDOVUVUOV

VOV

R(0)

4.99398
2.28662
1.36996
0.90005
0.60792
0.40379
0.24826
0.12096

0.00888

- 0.07746

0.13176
0.16940
0.19699
0.21800
0.23444
0.24764
0.25842
0.26733
0.27481
0.28120
0.28665
0.24993
0.21119
0.17489
0.14066
0.10821
0.07725
0.04754
0.01886

0.01887

0.00880

0.03298
0.05372
0.07176
0.08761
0.10165
0.11419
0.12546
0.13565

014490

R

1 3.,78601

1.86667
1.20744
0.85732

0.62421 .

0.44143
0.27403
0.05251

0.21229
0420051
0.19311

. 0.18875

0.18653

. 0.18577

0.18599

0.18686 -

0.18822
0.18993
0.18131
0.15851

0.13771°

0.11881
0.10176

- 0.08649

0.07303
0.06129
0.05086
0.04010
0.02069

0.02485
0.03248
0.04110
0.04838
0.05488
0.06085
0.06637
0.07149
0.07625

- 0.08064
0.08470

TABLE: 4.7. EXISTENCE OF PRINCIPAL SOLUTIQN (PAGE 1 OF S)

AXETA(0)

0.36169
0.37433
0.40193
0.45521
0.55783
0.77548
1.38654
11.16711

3.32832
2.60326
2.05584
1.64335
1.33200
1.09636
0.91757
0.78173
0.67884

" 0.60198

0.57281
0.60307
0.65893
0.74993
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0.89139

1.10855

1.44224
1.96339 |
2.81627 "
4.46917

12.20294

17.53804
5.13713

3.02597
2.03234
1.47440
1.12781
0.89833

0.73934

0.62590

0.54374

0.48440



g
=,

J  GAMMA(J}

40
41
42
43

A

45
46
47
48
49

50
51
52
53
54
55
56

57

58
59
60
61
62
63
64
65
66
67
68
69

70

71
72
73

‘T4
75

76
17
78

79

0.33236
0.32426
0.31654
0.30918

" 0.30215

0.29544
0.28901
0.28286
0.27697
0.27132

0.26589
0.26068
0.25567
0.25084
0.24620
0.24172
0.23740
0.23324
0.22922
0.22533
0.22158
0.21794
0.21443
0.21103
0.20773

0420453

0.20143
0.19843

0.19551 .

0.19268

0.18992
0.18725
0.18465

018212

0.17966°
0.17726,
0617493
0.17266
017044
0.16829

Y-Y(0)

0.09054
0.08852
0.08899
0.09253
0.10020
0.11390
0.13706

0.17623 .

0.24373

0436735

0.26561
0.17717
0.13272
0.10631
0.08906

0.07706

0.06832
0.06179
0.05686

0.05319 . .

0.05062
0.04909
0.04874
0.04983
0.05293
0.05916
0.07076
0.09281
0.13814
0.23987

0.20343
0.11492
0.08065
0.06286
0.05215
0.04506
0.04007
0.03640

003365

0.03158

VOVUVOVOVTVOOU 'vv'o'o‘oA

T OOV

R(O)

- 0415334

0.15788
0.13807
0.11890
0.10032
0.08226
0.06468
0.04753
0.03078
0.01436

0.00176
0.01681
0.03045
0.04290
0.05431
0.06482
0.07452
0.08352
0.09189
0.09970

0.10699

0.10893
0.09588

0.08309
0.07055

0.05825
0.04616
0.03427
0.02256
0.01103

0.00035

0.01124

0.02137

0.03082
0.03968
0.04799
0.05582
0.06320
0.07017
0.07676

A
TR

© 0.08506 .

0.07461
0.06467
0.05527
0.04646
0.03830
0.03097
0.02471
0.01963
0.01414

0.01348

0.01982
0.02530
0.03049
0.03544
0.04017
0.04466
0.04891
0.05293
0.05673

0.05922

0.05217
0.04536
0.03879
0.03246
0.02641

0.02071

0.01552
0.01124
0.00820

0.00650
0.01142
0.01584
0.02014
0.02431
0.02831
0.03215
0.03582
0.03933
0.04268

TABLE 4.7. EXISTENCE OF PRINCIPAL SOLUTION (PAGE 2 OF 5)
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A%XETA(O)

0.45874
0.50298
0.57422
0.68803
0.87358
1.18733
1.74329
2.77458
4,78308

T.94256
3.57109
2.09095
1.39127
1.00456
0.76890
0.61499
0.50935
0.43441
0.38030
0.34716
0.37837
0.42784
0.50675
0.63742
0.B6776
1.31211
2.27711
4.64716
11.05415

12.02436
3.85163
1.95165
1.20019
0.8281¢4
0.61677

. 0.48480

0.39680
0.33530

. 10.00623

0.29100



J

80
81
82
83
84
85
86
87
88
89

90
91

92

93
94
95
96

97

98

99
100
101
102
103
104
105
106
107
108
109

110
il1
112
113
114

115

116
117
118
119

GAMMA(J)

0.16618
0.16413
0.16213
0.16018
0.15827
0.15641
0.15459
0.15281
0.15107

0.14938

0.14772

" 0.14609

0.14451

0.14295 -

0.14143
0.13994
0.13849
0.13706
0.13566
0.13429
0.13295
0.13163
0.13034
0.12907
0.12783
0.12662
0.12542
0.12425
0.12310
0.12197

0.12086 -

0.11977
0.11870

011765

0.11662

0.11561.

0.11461
0.11363
0.11267
0.11172

t
i

Y-Y{0)

0.03008
0.02909
0.02867
0.02893
0.03017
0.03295
0.03853
0.04995
0.07661
0.15550

0.15655
0.07307

0.04867

0.03740
0.03103
0.02697
0.02418
0.02216
0.02065

0.01951 . -

0.01865
0.01806

- 0.01773

0.01774
0.01821
0.01944
0.02208
0.02777
0.04205
0.09505

'0.11779

0.04532
0.02926
0.02249

0.01884 -
0.01659 .

0.01507
0.01398
0.01316
0.01254

VOVVIVUOVUVVOOUD VOOUVVO

"2 B B * B~ e~ |

R(0)

0.08301
0.08325
0.07349
0.06387
0.05440
0.04504
0.03582
0.02670
0.01769
0.00879

0.00003
0.00855
0.01661
0.02423
0.03146
0.03834
0.04488
0.05111
0.05706
0.06275
0.06818
0.06739
0.05958

' 0.05186

0.04424
0.03669
0.02922
0.02183
0.01450
0.00724

0.00004

0.00697
0.01365
0.02004
0.02615
0.03201
0.03763

0.04302

0.04820

0.05319 -

. - 3

R

" 0.04564

0.04036
0.03521
0.03019
0.02529
0.0205¢4
0.01594
0.01157
0.00762

< 0.00482

0.00347
0.00747
0.01120

. 0.01485

0.01839
0.02181
0.02511
0.02828

0.03133

0.03427
0.03710
0.03296
0.02884
0.02479
0.02083
0.01695
0.01316
0.00947
0.00596

0.00306

0.00203
0.00540

0.00862
0.01176
0.01482
0.01777
0.02063
0.02340
0.02608
0.02867

. TABLE 4.7. EXISTENCE OF PRINCIPAL SOLUTION (PAGE 3 OF 5)

A*ETA{O)

0.25995
0.28231
0.31667

48

0.37021.

0.45760
0.61152
0.91505
1.62461
3.76404%4

16.97923
3.67476
1.63730
0.95234
0.64043
0.47126
0.36846
0.30090
0.25395
0.22005
0.19501
0.21137
0.23596
0.27304
0.33184
0.43302
0.63017
1.09564
2.62412
11.51495

21.60094

3.12018
1.26703
0.71631
0.47836

. 12.04866

C.35244 .

027671
0.22706
0.19246
0.16728



J

120

121
122
123
- | 124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

151

152

153

154

155

156

157

- 158

. 159

GAMMA(J)

0.11079
0.10987
0.10897
0.10809
0.10721
0.10636
0.10551
0.10468
0.10386
0.10306

0.10227
0.10149
0.10072
0.09996
0.09921
0.09848

0.09775

0.09704
0.09634
0.09564
0.09496
0.09429
0.09362
0.09297

0.09232 -
0.09169

0.09106
0.09044
0.08983
0.08923

0.08863
0.08804
0.08746
0.08689

0.08633
0.08577,
0.08522'

0.08468

0.08414
i 0008361.

Y-Y(0)

0.01206 -

0.01171
0.01150
0.01144
0.01160
0.01212
0.01334

0.01612
0.02346
0.05438

0.08529
0.02766
0.01771
0.01381
0.01180
0.01059
0.00978

" 0.00920

0.00876
0.00843
0.00816
0.00796
0.00782
0.00775
0.00779
0.00800
0.00854
0.00986
0.01354
0.03015

0.05925
0.01684
0.01094
0.00879
0.00771
0.00708
0.00666
0.00636
0.00612
0.00594

VTOUVOVVUVOVUVTVVTVOOVYUO

VOV VOV OVOVOUOV

VVVUVOVOO

R(0)

0.05799
0.05660

0.05010

0.04366

0.03727

0.03094
0.02467
0.01844
0.01226
0.00613

0.00005
0.00590
0.01162
0.01711
0.02241
0.02751
0.03243
0.03719

-0.04178

0.04621
0.05050

0.04880"

0.04322

0.03769

0.03220
0.02675
0.02133
0.01596
0.01062
0.00531

0.00004

0.00513
0.01012
0.01495
0.01961
0.02414
0.02851
0.03276
0.03688
0.04087

i
%
.

R

" 0.03118

0.02785
0.02442
0.02105
0.01774
0.01447

0.01127

0.00812
0.00506
0.00224

0.00130

0.00422 -

0.00703

" 0.00977

0.01243
0.01502

0.01754

0.01998
0.02236
0.02467

‘0.02691
0.02410

0.02118
0.01829

- 0.01544

0.01264

- 0.00987

0.00714
0.00446
0.00188

0.00091

0.00347.
0.00595

0.00837
0.01073
0.01302
0.01526

0.01745

0.01958
0.02165

TABLE 4.7. EXISTENCE OF PRINCIPAL . SOLUTION (PAGE 4 0F 5)

AXETA(O)
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0.14843 -

0.16071
0.17904
0.20569
0.24645
0.31425
0.44234
0.73859
1.71863
8.94238

24.,17850
2.42779
0.93616
0.52716
0.35502
0.26447
0.20988
0.17383
0.14844
0.12974
0.11553
0.12534
0.13963
0.15966
0.18923
0.23649
0.32209
0.51212
1.12244
5.90571

23.86183
1.79162
0.68135

0.39007
0.26794

. 0.20311

0.16347
0.13689°

0.11789
0.10368

P
[

i
!

I



J

160
161
162
163
164
165

" 166

167
168
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

190
191
192
193
194
195
196
197
198
169

GAMMA(J)

0.08309
0.08258
0.08207
0.08156
0.08106
0.08057
0.08009
0.07961
0.07913
0.07867

0.07820

" 0.07775
"0.07729
" 0.07685

0.07641
0.07597
0.07554
0.07511
0.07469
0.07427
0.07386
0.07345
0.07305
0.07265
0.07225
0.07186
0.07148;
0.07109
0.07072
0.07034

0.06997
0.06961
0.06924

- 0.06888

0.06853
0.06818,
0.06783
0.06749

' 0.06714
10.06681

Y-Y(0)

0.00579
0.00568
0.00559
0.00553
0.00552
0.00559
0.00581
0.00641
0.00820
0.01681

0.03979
0.01037

0.00701

0.00587
0.00531

"0.00499

0.00478
0.00462
0.00449
0.00439

" 0.00431

0.00424
0.00418
0.00414%4
0.00411

0.00412

0.00420

0.00446

0.00529

0.00964

0.02612 .
0.00656

0.00473
0.00415

. 0.00387

0.00371
0.00360
0.00352
0.00345
0.00339

'v'v'o'ov'o'v'o'_v'v‘v'o'o'u'o'o'o

VOOV TOVOOO

VOV UVUOVOVUVUOV

R{0).

0.04475

0.04289.
.0.03800

0.03316
0.02834

-0,02355.

0.01879
0.01406
0.00936
0.00468

0.00003
0.00454

0.00897.

0.01327
0.01744

0.02150.

0.02544
0.02928
0.03301
0.03665
0.04018
0.03826
0.03391
0.02960
0.02530
0.02104
0.01679
0.01257
0.00837
0.00419

0.00003

0.00407

0.00805

0.01193
0.01571
0.01939

- 0.02297

0.02647
0.02988
0.03321

R

" 0.02368
0.02124

0.01869
0.01616

0.01367

0.01121
0.00878
0.00638
0.00401
0.00169

0.00068
0.00295

© 0.00517
» 0.00733

0.00944
0.01150
0.01352
0.01549

0.01741

0.01930
0.02114
0.01898
0.01672

"'0.01448

0.01227
0.01008
0.00791
0.00577
0.00365
0.00155

0.00054
0.00258
0.00457
0.00652
0.00843

- 0.01030

0.01213
0.01393

0.01568 . .

0.01741

TABLE 4.7. EXISTENCé OF PRINCIPAL SOLUTION (PAGE 5 OF 5)

A¥ETA(O)

0.09270
0.10092
0.11252
0.12834
0.15094
0.18571
0.24576
0.37190
0.75504
3.66571

21.36454
1.29280
0.50163
N.29666
0.20921
0.16168
0.13196
0.11164
0.09687
0.08566

. 0.07688

0.08398
0.09376
0.10681
0.12502
0.15215
0.19701
0.28564
0.53445
2.27937

17.82197

50

0.93633

0.38193
0.23530
0.17037
0.13393
0.11056
0.09428

0.08226

0.07303
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3222
N2,
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L Table 4.7 also lists, for each of these values of 7y, the distance

o+

'.". o Ily yoll » where y 18 a solution of the Duffing problem far the given e

value of ¥, and y, is the "reduced" solution for 7y = 0. For those va.lues .

.5 1.0 . of Y such that ly - Yo“ Sr,yis the "principal” solution. L
SRR, , The last two columns in Table 4.7 list two other quantities. One . .-

of these is the radius of the~neigh'borhood about the actual solution A .

AR RS within which existence and uniqueness can 'be a,sserted according to ERER A
' Lemma 5. The assumption that A - no s 1s obviously sa.tisfied since
| ‘ ‘3'110 = 0. The radius is fonnd’.exactly as in Eq. (4.33) except that on -

. " the right*ha.nd side A= l/2 r; hence, F(r) is re-defined as fo.u.ows.

i (36) F(r) - k2 . y'- r k2/12 x. ,'
o e e Now F(r) has a zero between 0 and k/ \/ x. The quantity in ‘the last

A7l ¥ icolumn of Table 4.7 is the value of A - M, for the reduced solution. .
R Whenever this quantity is less th;n we know that a "principal® solution DA

. '-" ,':f exists. As we noticed earlier, we are unable to estimate this quantity
& B o 'f'precisely In fact, we ﬁnd. a principal" solution in cases where the
"—,_"-estimate& value of A + no 1s as large as 0.89. - ‘ L

b. Extending a principal branch toward a resonance. Now we wish

e to a.pp]y Theoren 1, using as ’yo a value for which a principa.l solution

(1. e., a unique solutiOn in a neighborhood of the "reduced" solution)

<" can be found. We now ‘use yg, to designate the solution corresponding to ‘yo 4 '

‘ instead of’ the "reduced" solution (as before when 'yo = 0 was assumed)

l

- form the matrix DQ(yo) a8 described in Eqs. (3.56 and (3. 57), and steps f

:t‘(a) to (£) of Eq. (3,61) vith-'y Yo+ Let N be the smallest (in magnitude)

“!j eigenvalue of this mtrix. We shal_l restrict our e.ttention to va.'l.ues
[ of 8 between 0 and )\, 80 that A 1s the eigenvalue closest. to 5: thus, we

U o consider the case in which 'y '18 moving from.'yb toward a resonance. o

et e R _. LT T .”’.#A [N . _e. ‘,’!
RN S E TS W PR
Y, . . R PR RIS 1 R




"' the same sign as d since Aq ié non-negative.  Expanding‘the right-hand

52

. (Recall that & = V2 - 702: compare Eq. (3.8)). When.d is between O

and A, we find that 5/(d - A} is negative, s0 that *

o (e ) vt ()

Thus, the main condition of Theorem 1 is the following . ;'~/3

(h38) A (r%f 18] - loalyo)™t vl s %,

where Ag = 1/2 r. -The value of r is calculated (as described in the
preceding péragraph) asA“the radius of the neighbbrhood~about fhe actual
soluxion4Within which existence and uniqueness can be asserted”, and is
listed in the penultimate column of Table L.7. The vector .z = DQ,(yo)"'l

is calculated by solving the linear system: DQ(yo) Z = Yoo

i

The next step is to find the 1argest value of ® such that Theorém 1

is satisfied for all & such that 083 s 8- This value of 8 is a root - -h ‘  f

@

| of the following equation: h
-(4-3.9__) ke (,\-——5)2 JEEE:
C b 02 -40>-ls|=<x-..s>2

2 s.a ® = (X-S)e
where we let 8 =2 « (32 « |2 - Ag) ¢+ sgn (8), and weAndté that s has

éide, we have
(k.40) 2!8.!6:‘),.2-25>»+A82
82 -2 (A+5s) 8+N2=0

The discriminant'of this quadratic equation is (A?l+ 2 ¢« Ao S+ 82 «22)




A

TR ) se e ) #4(2 - A : °~.’rf?2')”

G value of & given by Eq. (k. hi) |

" gr.(e. AN+ B+ 82'). This is always po'sitiv'e, since we have assumed -

" that & has the same sign as A, s0 that the sign of & is, the same as .
‘ ] ' 8 .

that of A. Therefore, there are two rea,]_'.'roorbs: R ,,% :

LN
* -

Ty
{ .
L -

. We must choose the negati\fe sign of the 're,dical in order-to have &
" . between O and )‘.' The values of A, along with the values of 8 obtained

0. from Eq. (4.b1), ere listed in Table 4.8,

We conclude that there is one and only one solution of the Duffing

-problem for all values of & up to this maximum, and we easily see that

'~A.';continuous_1y a.nd.for each value of vy isolate{ within some“neighborhood.

" We say that a "connected branch" of the-solution exists on ‘the inter\(e.lfl

’ "
~ / . L !

]

" We can re-set ’yo to some value nedr the end of this interval and

make another step.’ Designating now 'by ¥o the solution (which has been

’ shown to exist) for the new value of Yo» We egain: form the matrix DQ(yo)
Ao and z, and solve as before in Eqs. (4.39) to (k. l41.) to obtain a new

- We cannot say & priori how far the br.anch can be extended in this

. - can be continued from both sides until & common value of 'y is reached.

For this common value, two diffa'ent solutions are obtained, one on a.

7 .- '
ot - i B N . B
[ o - e . Vo

Yo . . . ' <, . - L I
. L3 . n . R . . s ot
PR

i

"7 ¥ between Y, and any value of Y such that 92 - ¥,2 1s less than the maximum :

value of &, and thus we extend the connected branch over the new interva.l.

a8 Y varies (with y2 = ‘702 + 8 for these values of ‘8) the solution varies - S

and find its sma.llest eigenvalue, 'which we call A. We also re-evaluate I

"i" "5, 17,9, and 1l. It was found in ea.ch case that the connected branches

RS

" way. For p = 1, the procedure described above has actually been ‘carried - 41

RS R .
- \

out for starting values on’ each side of each of.the resonances of order .

k "_."branch connected to a starting value on ‘one: side of the msonance and the v




'TABLE 4.8 egrsusxon OF PRINCIPAL BRANCH (PAGE 1 OF S)

ORDER
'0e10
© 0620

0.30

"0e40
0.50

1 0460
0470
. 080

"0.90
1.00

"y 120
’ 1.30
1.40
150
1.60
1.70
1.80
1.90
2.00
‘2410
2.20
2.30
2.40
2.50
2.60
2.70

.1 2480

2.90

2090;

3.00
3.10
3.20
3.30
3.40
‘3,44
3.50
3.60
3.70
3.80
3.90

1410

i

! .
i

GAMMA

13.29460
6.64730
4.43153
3.32365
2.65892
2.21577

- 1.89923
 1.66182

1.47718
1.32946
1.20860
1.10788
1.02266
0.94961
0.88631
0.83091
0.78204
0.73859
0.69972
0.66473
0.63308
0.60430
0.57803
0.55394
0.53178

0.51133

0.49239
0.47481

0.45843

0.45843
0.44315
0.42886
0.41546
0.40287
0.39102
0.38647
0.37985
0.36929
0.35931
0.34986
0.34089

ELGENVALUE

-1.7575€ 02
-4.3185€ 01
-1.8632€ 01
=1.0024E 01
-6.0083E 00
-3.7582€E 00

.=2.2412€ 00

-5.0091€E-01

"=1.7029€ 00

~1.3577€ 00
~1.0997€ 00
-9.0147E-01

-7.4581E~-01"

-6.2131E-01
-5.2030E-01

-4.3722€6-01 -
-3.6816E~01

=3.1024€E-01
=2.6126E-01

. =241968E=01

~1.8418€-01
=1.5375€~-01
-1.2787E-01
-1.0607E-01
-8.7732€-02
=T.2604E-02
«6.0026E-02
~4,8020E-02

- =2.6355€E~02

3.8379€-02
4.2125E-02
5.0130€E~02
5.7141€-02

6.3662E~02 -

6.9828E-02
-T.1210E-02
-6.6648E-02
=5.9494E~-02
=5.2869E-02
~4.6736E-02

- =441057€-02

ok
%

INTERVAL

-1'e6637E 02
-3.6898E 01
~1.3844E 01
-6.2184€ 00
~2.9463E 00
-1.3331€ 00
=4.7446€E~01
~1.6566E~02

=2.2498E-01 .

=1.9599€-01
-1.7593E-01

", =1.6113€-01

=1.4937E~-01
-1.3919€~01
~1.2969E-01
-1.2032€-01
=1.1074€E-01

=1.0070£-01

-8.7575€-02

. =7.1341E-02
=5.6187E-02
-4.,2357€-02

-3.0352E-02
-2.0588E-02

=1.3199€-02

-8.0075€-03
-4.5603€E-03
-2.2632E-03
~4.5823€E-04%

5.3142E-04
1.6092E-03
2.9506E~03

' 445428E-03

6.3351£-03
8.2650E-03
-9,0286E-03
-9.9319€-03
~-1.1158€-02
-1.1958€-02

" =1.2279E-02

-1.2100€-02

54



TABLE 4.8. EXTENSION OF PRINCIPAL BRANCH (PAGE 2 OF 5)

ORDER

4.00
4.10
4.20
4.30
4440
4,60
4.70
4.80
4.90
4,94

4,94
5.00
5410

' 5.20
5.30
5440
5450
5460

. 5.64
.. 5.70
5480
5.90
6400
6410
6420
6430
{ 6440
16450
. 6460
. 6470
6.80
6.90

6496

696
7«00
7.10
T7.20
7.30
7.50
T.60
T.70
T74

7.80

7.90

GAMMA

0.33236
0.32426
0.31654
0.30918
0.30215
0.29544
0.28901
0.28286
0.27697
0.27132
0.26912

0.26912
0.26589
0.26068
0.25567

0.25084 .

0.24620

0.24172

0.23740
0.23572
0.23324%
0.22922
0.22533
0.22158

0.21794

0.21443
0.21103
0.20773
0.20453

0.20143

0.19843

- 0419551

0.19268
0.19101

0.19101
0.18992
0.18725
0.18465
0.18212
0.17966
0.17726
0.17493
0.17266
0.17176
0.17044

0.16829

EIGENVALUE

~3.5801€E-02

" =3,0940E~-02

~2.64526-02
~2.2324E-02
~1.8555E-02
~1.5163E-02
~1.2197€-02
-9.7465E-03
-7.8655€-03

~5.9329€E~-03

-4.0158€E~03

3.6442E-03
5.4288E-03
7.7034E-03
9.7516E~03
1.1742€-02
1.3680E-02
1.5557€-02
1.7361E-02
1.8062E-02

-1.7037€-02

-1.5268€-02

~1.3585€E~02
-1.1984E-02

-1.0462E-02
-9.0167€-03
~7.6454E-03
-6.3486F-03
-5+1300E-03
-4,0014E-03
-2.9936E~03

-2.1830E-03

~-1.6457E~03
-1.0133E~03

7.3733E-04
1.2648E~03
2.1730E-03
3.0158€£-03
3.8501E-03
4.6689E-03
5.4662E-03
6.2389E-03

6.9859€-03 .

~7.2715E~03
~6.8314E~03

~6.1193E-03

’ {&'i,h
INTERVAL

~1.1207€6~02
~9.2887E~03

~7.2914E-03.

-5.3639E~03
-3.,6574E~03

. =2.2829E-03
: =1.2903E-03
- =6.6095E~04

~3.1139E-04
~-1.1251E-04
"3 097135-05

3.8568E~05
1.2965E~-04

' 3.8119E-04

7.6262E=-04
1.2714F-03
1.8858F-03
2.5741€-03
3.3004E~-03
3.5930E-03
-3.8645E-03
-4,1618E-03
-4,2601E-03
-4 ,1197E-03
-3.5153€E-03
-2.8410E-03
~2.1484€E-03
-1.4966E-03

. =9.3838E-04
 -5.1140E-04
=2.3146E-04

-8.5411E~05

-2.7392E~-05

' =642911E-06

4.3069E-06

1.9662E-05 -
9.9186E-05 .

2+5199E~04
4.8078E-04
T.T334E-04
"'1.1118€-03
1.4774E-03
1.8511€E~03
=-1.9977E~03
~2.0935E-03
~-2.1680€-03
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TABLE 4.8.' EXTENSION

ORDER

8.00
8.10
8.20
8.30
8.40
8.50
8.60
8.70
8.80
8.90
8.98

. 8.98

9.00
9.10
"~ 9.20
9.30
9.40
- 9450
‘9.70
9.80
9.90
10.00
10.10
-10.20

10.30

10.40
{10.50
10.60
. 10.70
'10.80
" 1090
10.98

'10.98

11.00

A.11.10,

11.20
11.30
11.40
11.50
. 11.60
11.70
11.80
11.84

11.90

GAMMA

0.16618
0.16413
0.16213
0.16018

- 0415827

0.15641
0.15459
0.15281
0.15107
C.14938
0.14805

0.14805
0.14772
0.14609
0.14451
0.14295
0.14143

0.13994
0.13849

0.13706
. 0413566
0.13429

.0.13295

!

0.13163
0.13034

0.12907
/0412783
[ 0412662

0.12425

0.12310
0.12197
0.12108

0.12108
0.12086

0.11977 .

0.11870
0.11765
0.11662
0.11561
0.11461

0.11363

0.11267
0.11229

C 0411172

EIGENVALUVE

~5.4333€E-03

~4.T725€~03
-4.1362E-03
-3.5236€-03
-2.9345E-03
«243692E-03
~1.8298€~03

©=1.3227€-03

~8.7071€E-04
~5.6096€E-04
~2.0524E-04

2.7013E-~0%
3.9741E-04
8.45T6E~04
1.2728E-03
1.6961€E~03
2.1113€E~03
2.5163E~03

2.9104E-03

3.2934E-03

-3.6327€-03
=3.2681E-03

~2.9142E~03

~2.5709€~03

~2.2376E-03

=~1.9141E~03

-1.6002E-03
~1.2959E-03

~ -1.0013€-03
~7.1780E~04

-4.,5038E~-04

=2.,3269E-04
. =1.,4312E-04

T.1532E-05

1.5342E-04

4,06 7T4E~-04
6.5160E-04
8.9333E-04
1.1302€-03
1.3618€E-03
1.5876E-03

1.8080€E-03 -

2.0230€E-03
~2.0722€~03
-1.9465E~03

OF PRINCIPAL BRANCH (PAGE 3 OF S)
e : )

4
R

INTERVAL

~2.1327E-03 !
-1.8535€E-03
~1.5320€-03
~-1.1902€E-03 "

-8.5487€E-04
~5.5281€E-04
-3.0718€E-04
-1.3485€-04
~4.0800E~05

“~8.4743E-06
-4.,3823€E-07

1.4928E-06
4.3396E~06

" 4,0169E-05 .
1.2474E=04
2.5942E-04

4.3431E-04
6.3698E~04
8.5576E-04
1.0800E-03

~1.2930E-03
~1.3346E-03

-1.3138E-03

 =1.1554E-03
~9.7087E-04
~7.7174E-04

~5.7129E-04
-3.8368E-04
-2.2268E~-04
~1.0132E-04
~2.9197E-05

" =3,6525E-06
| =4.2652€E-07

1.7666E-07
1.3095E-06
2.2479E-05
8.0031E-05
1.7287€E-04
2.9176E-04

 4.2727E-04

5.7176E-04
T.1893E-04
8.6295E-04
-9.0885€E~04
*9.14845704

1
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TABLE 4.8.

ORDER

12.00
12.10
12.20
12.30
12.40

" 12.50

12.60
12.70
12.80
12.90

13.00
13.10
13.20
13.30

13.50
13.60
13.70
13.80
13.86
13.90
14.00
14.10
14.20

.14‘30

14.40
14.50
14.60

14.70 .

14.80

" 14.90

15.00
15.10
15.20
15.30

15.40 |

15.50
15.60
1%.70
15.80
15.88
15.90

EXTENSION OF .PRINCIPAL BRANCH (PAGE & QF 5)
: La

t

GAMMA =

0.11079
0.10987

0.10897

0.10809
0.10721
0.10636
0.10551
0.10468
0.10386

0.10306

0.10227
0.10149
0.10072
0.09996
0.09921
0.09848
0.09775
0.09704
0.09634
0.09592
0.09564
0.09496
0.09429
0.09362

0.09297

0.09232
0.09169
0.09106
0.09044

0.08983

0.08923

0.08863
0.08804
0.08746
0.08689

- 0.08633

0.08577

0.08522
0.08468
0.08414
0.08372
0.08361

EIGENVALUE

-1.7411€-03
-1.5407€E-03
~1.3453€E-03
-1,1547€-03
~9.,6868E~-04
~T7.8729E-04
~6.1045E~04
~4,3836E-04%
~2.8101€E~-04

" =1.2078E~04

7.0035€E~-05
2.2647TE-04
3.7877€E~04
5.2866E-04
6.7560E-04
8.1951€~04
9.6034E~04
1.0982€~03
1.2331€E-03

. =1.3039E~03

-1.2513€-03
~1.1218€-03

«9.9507€~-0% -
~-8.,7099E-04

~7.4951E~04
~643057E-04
~5.1412E-04
~4.0011E-04
~2.8855E~04

-1.7966E-04
. =7.5614E-05

3.6688E~05
1.3958&-04
2.4015€E-04
3.3906E-04
4-3617E-04
5.3145E~-04%
6.2493E-04
T.1665E-04
8.0665E~-04
~8.6888E-04
~8.5133E-04

N
B

A

_INTERVAL

~8.9378€E-04

~T7.9204E~04 =
~6.7366E-04

=5.,4556E~-04

~4.1471E-04
‘=2.8880E-04
" =1.7592E-04
. =8.5036E=05

-2.5871E=05

-2.4180E~06 .

5.3195E-07
1.5787E-05
640215€E-05
1.3014E-04
2.1686E-04
3.1331E~04
4.1443E-04
5+«1652E-04
6.1627F-04
~6.T7050FE~-04
-6.6869E-04
~6.46T9E~-04
-5.7554E-04
-4.,9394E-04
-4,0603E-04
~3.1561E-04

«2.2694E-04

=1.4470E-04
-T7.466TE~05
=2.4643E-05

 -2.2578E-06

2.8109€E~07
1.2850E-05
4.9665E-05
'1a0482E~04
1.7055E~04

2.4172E-04

3.1514E~04
3.8860E-04
4.6024E-04

-5.1121E-04

~5.0877E~-04
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TABLE 4.8. EXTENSION OF PRINCIPAL BRANCH (PAGE 5 OF 5)

ORDER

16.00
16.10
16.20
16.30
16.40
16.50
16,60
16.70
. 16.80
16.90

.. 17.00
" 17.10
17.20
17.30
17.40
17.50
. 17.60
17.70
17.80
17.88

17.90

18.00
18.10

18.20 .
18.30

18.40
. 18450
1 18.60
18.70
~ 18.80
18.90

19.00

19.10
19.20
19.30

19.40 |

19.50
19.60
19.70
19.80
19.90

GAMMA

0.08309
0.08258
0.08207
0.08156
0.08106
0.08057
0.08009
0.07961
0.07913
0.07867

0.07820
0.07775
0.07729
0.07685
0.07641
0.07597
0.07554
0.07511
0.07469
0.07435

0.07427

0.07386
0.07345
0.07305
0.07265
0.07225

. 0.07186

0.07148

© 0.07109
0.07072

0.07034

0.06997
0.06961
0.06924
0.06888
0.06853
0.06818
0.06783
0.06749
0.06714

0.06681

EIGENVALUE

~T«6456E-04%
~6.7940E-04
-5.9581E~-04
~5.1378€~04
~4.3320€E-04
-3.5412€E~-04
-2.7648E-04
-2.0025€E-04
-1.2620E-04

~5.2670E-05

2.1351E~05

9.2390E-05.

1.6205E-04
2.3059E~04
2.9797€-04
3.6422E-04
4.2936E-04
4,9354E~04
5.5635E~04
6.0599E~04
-6.0512E-04
~5.4418E~04
~4.8425E-04
-4.2531€-04

. =3.6735E~04

-3.1062E-04
~2.5419E-04
~1.9896E~04
-1.4470€E~-04

~9.1227€-05
~3.8802E-05

1.3413E-05
6+4420E~-05
1.1455E-04
1.6395E-04

2.1257TE-04 |

2.604TE=-04
. 3.0766E=04

/ 3.5410E-04 -

3.9985E-04
4.4491E-04

INTERVAL

-4.8703E~-04

~4.3437TE~04
~3.7531E-04
-3.1225€-04
~2.4T24E-04
~1.8267€-04
-1.2127€E~-04
=-6.6571E~05
~2.4258E-05

~2.4837€E-06 .

1.8247E-07
1.1434€-05
4.3038€E-05
8. 7490€-05
1.3834E-04
1.9208E~04
2.4675E-04
3.0110E~04
3.5391€~-04
3.9446E-04

. =3.9743E~04
-3.7677€~04

~3.3646E-04%
=2.9224E~04
~2.4550E~04
~1.9751E-04
-1.4917E-04

=~1.0249E-04"

=~5.9456E-05
~2.3781E-05

 =2.8770E-06

1.3712€E~07

"1.0695€-05
3.8168E-05 |
7.4308E-05 ;
1.1415E-04 |
1.5540E-04 °
1.9690E-04"

2.3787€E-04

2.7775E=-04

3.1591€E~04
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other one connected to a starting value on the other side. Thus, we have

a rigorously defined "principal solution" for values of ¥ as small as

',

In Teble 4.8 we show, for seve_ral values of %, "t.he smallest eigen- |

value A, and the magnitude of 6. For y = 0.26911, 0.19101, 0.1480k,

-

*and 0.12107 two solutions are given, one of which is on each of -the
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- V. APPENDIX

( d“? L _ A. Calculus of Operators in Banach Space '3"‘)"-33

Lot
R

A Banach space is ‘a complete normed linear space. The set of

all linear mappings of a Banach space 3 1 in‘to a Banach space J

is in turn a Banach space, and 1s designated by (3‘ - 52)

R . 1. The Frechet Derlvative. .
. This paragraph is based on Liusternik (Ref. 3) and Kantorovich
. (Ref. 4). i-_Let P be an operator (in general nonlinear) which maps .71
into J 2 E If, for a given element ye J 1, there is a linearf operation

He (&’1 - 5’ ) such tha‘b
N ;

(5.1) hw+hy-mw-ammsuw-eumn
where € (llhll) =0 as [|n] «-»o, then P 15 said to be Frechet-differentisble
at ¥y, end H 1s called the Frechet derivative of P at'y. We write:

(52 E=0Hy).

~ Thus, DP(y) is an element of the space (Jl - 5‘2). On the other haxid, :
DP is a (possi’bly nonlinear) mapping from 5{1 into (5"1 - :7'2 If
DP is Frechet differentlable at'z, we call E(DP)(z) the second-order

. Frechet derivative of P at z and write: :_ o ' N 1
(5.3) = . D(DP)(z) = sz(z). - S R

, o vv .- ' Thus, ﬂeP(z) € (,? - (J j2)) . : o | "
- o - The statements made in Lemma 3, Chapter II are veriﬁed by o
- substltutiﬁg the proposed DP(y) for H in the defining equation,

,\Eq. (5. 1) T . _— ‘ Ai’l

In particula.r, the real numbers (suitably normed) form & Banach

Note: H(h) is called the Frechet differential of P at y. - ]




A

. space, and & &ifferentiable function of one real variable is Ffechet-_

; differentiable. We verify from Eq. (5.1) that if p 18 differentidble

E\W

at a, then

S (s p(a) =pla) T

. where Dp(a) denotes the ordinary derivative of p at a.

-~ 2. The Mean Value Theorem for Banach Space.

This pa:agrajh is based on Kantorovich (Ref. 4, p. 161). The

Mean Value Theorem for Banach space states that
(5-5) Uy + ) - =l = U - sup (oR(P: T e oy, v+ ),

where C(y, ¥y + h) denotes the set {¥ + ¢ h: 0 S ¢ $ 1}. To prove this
' theorem, we let x = P(y + h) - P(y). As a corollary of the Hahn-Banach.
theorem, it can be shown (see Liusterhik, Ref. 3, page 98)~that'there

exists a linear functional T defined on F such that NT“ = 1 and

llﬂl We select such a functional .T and define

N

(5.6)  We) =By + c - n)).
{

We find that DF(c) =h « T o D.P(-y'- + c h). Also it is ciear that
(5.7 . mﬂy+m-Pwn Fu)-nm

'f'Applyiﬁg the ordinary Mean Value Theopem’to F;,whiéh is a contiﬁuousA

function of a real variable if P is Frechet -differentiable, we have:

(5.8) 1) - F0) DF((I:)Y-:DF(’c) =h‘l‘o DP(y;tj‘c X h)

h « T o DP(y)

n

 Where y is some element of C(y, y + h). But: .

DRI

e L

S sy g



6
(5.9) Iy + h5 - Byl = lllxi’l =Tx=h-Teo DP(y)
Sind -l IoRl - (8] - o3(s) |
s Il + suppr(): ;e'ccy,.-y + )

1

3. A Fixed-Point Theorem

This paragraph has been compiled from various sources including
i,ius'temik (Ref. 3) and DeVogelaere (Ref. 9).

%et}be a 'comple_te‘metric space, with metric denoted by p(x, ¥).
Let & be a subset of 3‘, and T a mapping of £ into F. Given Yo € g,
write yo = Ty, 1 Tty & & | |

*If there exists r such lthat S(yos 7)€ g, and .1f T satisfies
Lipschitz’ condition with K < 1 on S(yo, r), and 1f p(yo,. Ty,) = (1 ~ K) ir,
then there is one and only one fixed point y, of T in S(yo, r), and S .
lim(yv:v-)oo)-y“. : -

: Proof; One nice proof of this theorem begins with the following

i
lenma:

{

- Lemma: If yy € S(yo 7) for all v < q, and if p < g, then p(yp, yqf)‘ s

'Kp-:;

' Proof:
(5'10) _ D.(Yv; yv-i-l) £ K '-p.(y vels vyv) £ ...s5K . P(YQ; 5’1)'

P(yps ¥g) = p(yps ypr1) + oo + o(ygo1s ¥)

Goel el
B ‘%:pp_(yv' s 1)v'§‘zv=~P < pl¥or 1)

|
i
b

S p(yo, yl) Zv_ p(yo, ) - KP/(l'- X) - |

i

SKP . rv ) : " /

The proof of the Fixed Poixit Theorem is now easy:




(1).

(2).

(3).-

(4).

the lemma that if yy €& S(yo, ) for v < q then o(yo, yq) s r,
3. :

‘For all v, y, & S(yo, 7). Using induction on v, we see by

I

- hence, yy € S(y,, r) for v = gq.

For sufficiently large‘p, and ¢ > p, we find tljxa'.jb p(yp, yq)

can be made arbitrarily small since K°® — O. Thus, we have a

Cauchy sequence which in a complete metric space has a 11#111‘..

We may. call this limit ¥e.

.

The limit point y» is a fixed point of T, since .

P(T Yeor Yoo) BT s Fyuy) * P(¥e2s Yoo)

The fixed pointv;"is unique:

~ Bu

Vo ='T Vo3 then

S p(%sr ) + p(%es Hye1)

which is a.r‘oij‘crafily small for suf_ﬁcienﬁly large v.

im = /

~
1

sixppose that Yo = T ¥, and

v{:'p(yw*, 5';,) = p(Tl Yoo T §oo) £ K_ . p(ym: -y-oo ):."

|

t

(1 -K) + 0(¥s Fo) 50

(1~K)>0end p(¥%s %)

N

2 O Sd P(You s:m) = o' -

6l

e oy

IR R o
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B. Matrix Representation of DG(y) in the Space 3;{
-This information is based on Professor DeVogelspre's lectures
(Ref. 9). ‘ _ o !
_ We abbreviate the notation by writing G instead of G, and §
instead of Gy, also y = yg and ¥ = yy, etc. :(conipare Egs. (4.17, 4.21)).
 Thus, we begin with h o
(5.11) . g =Gy
g = Gy
where G'= g1 o G o ¢g. Since y=o0y, it follows that g = oo Gy= o"rfg—. ‘
We recall the definitions of ¢ and ¢ from Teble k.1, and see that
(5.12) ¥ lal= %y [kl cos ((2 + x - 1) « K [a), ,(neN)

g [kl =zﬁ§' [n] - g [n] » cos ((2 + k - 1\)' . H‘[‘n]) .(k .a'K)

To further shorten the notation, we write

'(5.13) o | c_j[k,_n] = cos (.(;2' . k.-.lj H [:;]" B (keK, ne N)
and‘re-wirite: .qu.l?;(5.1é): | ’ | | ;
L. - L . .
(518)  Fll-Zyld-closl, | mem
g [x]l =2 ;[nl . g [q], ’c [k, nl. _ | ) (x e z.c)'

Now we assert that the operator DG(y) can be represented by the

matrix G/ defined by o . SR o

(5.15) ¢/ [k, wl] = % fkig']//ay k2] o _,-':v(kl,-k2.e K) |

To see ‘bhis, we must show (compare Eq. (5.1)) that
. . . o // . - . .

T
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(5.16) loty + n) - &(y) - 67« all s lall - € (all)-

Looking at the individual elements on the left, we hgve

(5.17)  (6ly +0)) Ial - (a(y)) k1] - S G/ [kl,jiczl cn lel, (de x)

' Here(G(y)) [k1] is a function of all of the variables (y [k2] : k2 € K}

and we see that if we substitute Eq. (5.15) into Eq. (5.17) we obtain

an expression of the familiar form

(5.18) N - R®ny +an13; vee) = Hyy, S Zk SF .'qk :

80 that the condition expressed by Eq. (5.16) is;glearly valid.

Now £rom Eq. (5.14) we see that IR
(5.19) 35 [n]/ 3y [kl = ¢ [k, & ’
% [x] /3 <7l - cleyml (ke new

Now, by the Chain Rule we have:

L (5.20) ! ay [k2] . @‘g‘%‘T‘) @g [n]v %>

dg [n]

L m G- ol a) - (AT (0 b, n).

(k1 k2 e K) |

' Let us write E" [n] = 3g [n] / 3y [n];.then-

(5.21) 3 [xd] / ¥ el = 3, ¥ [al - &/ Tl -c g, ul - C 2, ol.

(Kl, k2 sK)

~ Returning to Eq. (5.13), we see

| (5.22)“‘ o [kl, n] . c [k2, n] = cos ((2 ‘-"' -_1) ;-.Hv[n])-

- cos ((2 - - 1) . [n]),

(kl,kst neN)




e

¥

a7
which, by means of the identity
(5.23) cos a + cosb =% cos (a+b)+% cos”*{(a - D),
may be r_‘eb.uced to the following form:
(5.24) "¢ [1, n] + ¢ [k, nl = % cos (2 + (i - ¥2) - & [n])
| | +% cos (2 « (KL + K -1) « H [n]).
| 7 (K, R EK; neN)
"If we let ' ‘,-' .
s | . | : .
(5.25) -. - CE [k, n] = cos (2+ k + H [n]) ¥ (nenN)
then Eq. (5.21) becomes ; 3
S I L v ' _ - ‘ ‘ i '.
- (5.26)  dg kil /3y [kel=2%= % [n] - g/ [a] - (cE [K1 - k2, n] " :
ot . . : h .
o + CE [K1 + ¥2'- 1, nl), :
A=%2}n§[n] + g’ [n] + CE [11 - k2; n] |
) | B P
+%3, % [n] -g/ [n] . CE[K1+ k2 - 1, nl.. .
l , | - - (kl, k2 € K; n € N)
We now define an even-cosine analysis 6peré:b'ion‘as follows:
(5.27) g’ [kl =2 % [al g/ [n] CE [x, n]. ~ (x € X7) -

~ where X/= {0, 1, 2, ..., m}. The only remaining difficulty is that if

k1l and k2 are elements of K = {1, 2, ..., m} then (kl -~ k2) and

(k1 + X2 - 1) do not always lie within K’; It would, of course, be

' possible to define g’/ [k] by Eq. (5.27) far all k on the larger set -

K/’ ={-em, ..., 0, ..., 2m}. It turns out, however, that the desired '

result can be accomplished even if k is restricted to the smaller set »

U S
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- and the amount of computation is thereby considerably reduced. To ;
) ‘ . ’ ”
this end, we introduce a mapping u from K’/ to K/ whigh has the
is% .
property that | |
(5.28) . CE [u(k), n] = CE [k, n] )
for all k between -2m and 2m. Let
(5.29) w(k) = min (x|, 2m - lx]). . | (x e K’7)

It may be verified that u has the property requn‘ed by Eq. (5.28) and

that p.(k) € K’ when k € K’/. We may thus write

' -'(5._30) og [x1l / By-[kel =4 g’ [u(i1 - 1:2)] + 35 g' [w(xa + k2 - 1)]

(, e ex)

Thus, the assertion of Eq. (4.19) as to the form of DG(y) is verifled.

We note that. ’chis matrix is symmetric , since (k1 - k2) p.(k2 kl)

RS e e
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