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NSF-KITP-11-267

Banishing AdS ghosts with a UV cutoff

Tomás Andrade and Donald Marolf

Department of Physics, UCSB, Santa Barbara, CA 93106, USA

Thomas Faulkner

KITP, Santa Barbara, CA 93106, USA

Abstract

A recent attempt to make sense of scalars in AdS with “Neumann boundary conditions” outside

of the usual BF-window −(d/2)2 < m2l2 < −(d/2)2 + 1 led to pathologies including (depending

on the precise context) either IR divergences or the appearance of ghosts. Here we argue that

such ghosts may be banished by imposing a UV cutoff. It is also possible to achieve this goal in

certain UV completions. An example is the above AdS theory with a radial cutoff supplemented by

particular boundary conditions on the cutoff surface. In this case we explicitly identify a region of

parameter space for which the theory is ghost free. At low energies, this theory may be interpreted

as the standard dual CFT (defined with “Dirichlet” boundary conditions) interacting with an extra

scalar via an irrelevant interaction. We also discuss the relationship to recent works on holographic

fermi surfaces and quantum criticality.
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I. INTRODUCTION

AdS/CFT relates a set of Conformal Field Theories to gravitational theories in AdS [1–3].

Interesting field theory dynamics follows from simple relevant deformations of these CFTs.

The inclusion of multi-trace deformations has lead to many results [4–8], and in particular

to recent attempts to drive a theory across a quantum phase transition [9–12]. In addition,

the role of multi-trace deformations in the holographic renormalization group has recently

been emphasized in [13, 14] (see also [15]). As a result, one would like to have as complete

an understanding as possible of which multi-trace deformations are allowed, and when they

can lead to useful dynamics.

Linear scalars in AdS offer a good starting point for such analyses. Within the BF

window−(d/2)2 < m2l2 < −(d/2)2+1 there are two possible boundary conditions preserving

conformal invariance [16], often called the standard and alternate quantizations [6]. These

fixed points are characterized by the existence of a single trace operator with dimensions

d/2 + ν and d/2 − ν respectively, where ν2 = m2l2 + (d/2)2. From the bulk perspective,

it is natural to think of these as generalized Dirichlet and Neumann boundary conditions

respectively. There are many other boundary conditions that do not preserve conformal

invariance but which correspond to multi-trace deformations of the aforementioned choices

[4, 5]. For example, when it is relevant, the double trace deformation leads to an RG flow

between the alternative and standard theories with the former being a UV fixed point and

the later an IR fixed point.

The obstruction to playing these games for ν > 1 (outside the BF window) is that the

existence of the alternative fixed point would require an operator whose dimension is below

the unitarity bound (i.e., d/2 − ν < d/2 − 1). It is thus natural to suppose that only the

standard fixed point exists in this regime. The details were studied in [17] which largely

confirmed this picture, though it should be remarked that the exact issued identified at

the supposed alternative fixed point was not the existence of a ghost but, instead, an IR

divergence and an associated null mode. Nevertheless, ghosts do appear when this theory

is deformed in various ways, including in both choosing the boundary metric to enact an

IR cut-off1 and the addition of double-trace operators. It is thus hard to make sense of this

1 By taking it to be a cylinder [17], de Siter space, or anti-de Sitter space [18].
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fixed point and, indeed, at first glance it may also seem hard to make sense of double trace

deformations of the standard fixed point.

This result seems at odds with recent discussions of holographic fermi surfaces and quan-

tum criticality [9, 19]. The reason for concern can be abstracted as follows to the setting of

a scalar in AdS. Suppose that we couple the CFT in standard quantization to a propagating

boundary scalar field. Consider:

S ′ = S
(std)
CFT +

1

2

∫
ddx

(
−κ (∂Φ)2 − λΦ2 + . . .

)
+ Sint , Sint = g

∫
ddxÔΦ (1)

where SCFT denotes the action of the dual CFT which contains an operator Ô of dimension

∆ = d/2 + ν. Note that the BF window corresponds to 0 < ν < 1. The free operator

dimension of Φ is (d− 2)/2 (based on power counting using a canonical kinetic term) from

which the dimension of g is 1 − ν; thus the interaction term is relevant for 0 < ν < 1.

In this case we can ignore the kinetic term in the IR and integrate out Φ (treating it as

non-propagating). This fixes Φ = (g/λ)Ô and upon substitution in the action one finds

S ′ = S
(std)
CFT +

∫
ddx

g2

2λ
Ô2, (2)

which is just a double trace deformation of the CFT in standard quantization. Furthermore,

sending λ → 0 corresponds to the UV fixed point, which is the alternative quantization.

That is, for 0 < ν < 1 we may construct the alternate quantization from a good theory by

starting with (1), dropping the kinetic terms (setting κ = 0) and sending λ→ 0. The mode

Φ, which is being integrated over, plays the role of an operator in S
(alt)
CFT with dimension

d/2 − ν (from power counting with respect to the coupling term after setting [g] = 0). It

also enacts the Legendre transformation which relates the two theories [6].

Let us attempt to continue these arguments to ν > 1. It is no longer valid to integrate

out Φ due to the importance of the kinetic terms. Indeed, since g → 0 in the IR we find

the low energy theory is a CFT decoupled from a free scalar field. The regime where one

might expect to obtain a good theory is κ > 0 (so that the decoupled scalar sector is ghost

free). On the other hand, any λ should be allowed as λ < 0 simply induces condensation of

the field 〈Φ〉 6= 0 without pathology, at least so long as appropriate higher order interaction

terms (such as Φ4) are present2.

2 Note that this condensation will have a residual effect on the CFT through an irrelevant interaction.
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Unfortunately, it turns out that ghosts appear even for κ > 0 [17]. This may be seen by

examining the two-point function of Φ which, using large-N factorization (see for example

[19]), is given by

GΦ(p) =
1

−κp2 − λ− g2GO(p)
. (3)

Here GO is the two point function of O in the interacting CFT. Conformal invariance

fixes GO = cν(p
2)ν (where p2 = −ω2 + ~p2) and the condition that the spectral density

Im GO(ω + iε, ~p) be positive for ω > 0 further requires cν sin(πν) > 0. Let us now examine

GΦ for potential ghosts. For simplicity, we restrict to the case 1 < ν < 2 (where cν < 0),

though we expect similar results for larger ν. This case was studied explicitly in [17], which

showed that ghosts arise for all values of λ and κ (though we discuss only κ > 0 here). For

λ > 0 there is always a tachyonic pole with p2
? > 0. Expanding GΦ(p ≈ p?) around this

pole one can show that it has a negative residue. For λ < 0 there are now two poles, which

for large enough λ merge and move into the complex plane. In the real case one of these

two poles is a ghost while the other is a non-ghost tachyon. As usual, the complex case

necessarily contains a ghost.

On the other hand, it is clear that no ghost is present for g = 0. Studying the change in

the corresponding pole perturbatively in g would not have indicated the presence of ghosts.

This suggests that the ghosts correspond to new poles that enter from p =∞ and thus that,

at least in some sense, they are a UV issue. Indeed, since the coupling between the CFT

and Φ is governed by an irrelevant interaction we expect to run into problems at energy

scales above:

p > Λg = (g/κ1/2)1/(1−ν). (4)

One can show that the ghost found using (3) for κ > 0 always satisfies |p?| > NνΛg where3

Nν = (−νcν)−
1

2(ν−1) is a number which depends only on ν. So it is natural to expect that

cutting off (or appropriately modifying) the theory at p > NνΛg will banish our ghosts.

The purpose of the present paper is to construct examples in which this can be demon-

strated precisely. But let us first comment on some related examples already known in the

literature. The low energy theory for the fermions analyzed in [20–22] and identified in [19]

was given by an action similar to (1). The free fermion plays the role of our free scalar above,

3 This explicit bound corresponds to the value of p/Λg which maximizes the expression κp2 + g2GO(p),

associated with the case λ = 0.
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and the relativistic CFT above is replaced by the strongly coupled theory dual to AdS2×R2

(or an interesting generalization thereof)4. Although the details are different, there were

again two interesting cases distinguished by conditions analogous to the cases 0 < ν < 1

and ν > 1 above. In the former case the fermion kinetic terms could be ignored and the

theory describes a non-Fermi liquid without a well defined quasiparticle. In the later case

the kinetic terms could not be ignored, resulting in a low energy Fermionic quasiparticle

different from, but similar to, a Landau Fermi Liquid. For the case with a quasiparticle

excitation it seems likely that the low energy effective action in [19] leads to a propagator

with ghost-poles. However, the saving grace in this case is the presence of a natural UV

cutoff. Recall that the full background considered in [20–22] was just the extremal Reissner

Nordstrom charged black hole. This background can be thought of as a domain wall solution

between AdS4 and AdS2 × R2, with the transition happening at an energy scale µ set by

the chemical potential. This µ provides an effective UV cutoff on the AdS2 × R2 theory.

The kinetic terms (analogous to κ) and g were computed in [22] and one may check that

they satisfy Λg & µ. As a result, the above prediction of ghosts (based on analyzing the low

energy action) is not reliable and one must instead consider the full RG flow.

In this way, the action (1) may generally be taken to model the IR regime of a domain

wall flow between two different scale invariant fixed points. The low energy theory then

naturally comes with a cutoff Λ; the scale where the domain wall begins to deviate from

the IR fixed point. So long as we start with a good theory in the UV, we expect the full

theory to be ghost-free. But it is easy to engineer models in which the IR fixed point has a

field satisfying ν > 1 (for the appropriately defined ν) subject to an irrelevant double-trace

deformation. In this case our discussion above implies that the low-energy effective kinetic

terms and the low energy coupling will satisfy Λg & Λ.

The problem of the existence of negative norm states can be studied systematically on

a case by case basis. Here we take a much simpler approach and study the AdS theory

with a radial cutoff. This problem is then a simple generalization of the analysis in [17]

whose results will confirm the above intuition. This in turn increases one’s confidence in the

theories studied in [9, 11, 12, 19].

4 The generalization of fermions to scalars in the extremal charged black hole background was considered

in [9, 11, 12] and a similar discussion applies.
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The plan of this paper is as follows: In section II we introduce a simple ‘reference’ system

involving a free scalar on the Poincaré patch of AdS subject to a specific radial cut-off. While

this is not equivalent to a UV cut-off (since arbitrarily high momenta along the boundary

are still allowed), it corresponds to a non-trivial (and non-local, see e.g. [14]) deformation

of an appropriate dual CFT defined by removing the radial cut-off. This theory is easy to

study and ghost-free, but it is ill-defined at the quantum level due to an IR divergence in the

two-point function (of the sort seen in [23], [17]). Section III then studies a two-parameter

family of (quadratic) deformations of our reference theory. It was shown in [17] that, without

the radial cut-off, these deformations remove the IR divergence but also introduce ghosts.

Nevertheless, we show that (at least in a certain regime of parameter space) the ghosts

may be banished by imposing a suitably strong radial cut-off. We close with some final

discussion in section IV, which in particular shows that the models of section III suffice to

give a ghost-free UV-modified version of all models studied in [17] for which a certain UV

coupling is positive.

II. REFERENCE SYSTEM WITH RADIAL CUTOFF

As stated above, the explicit model that we will study is that of a scalar field φ on

(Poincaré) AdSd+1. We impose a radial cut-off at some r = r0 in coordinates associated

with the metric

ds2 =
dr2

r2
+

1

r2
ηijdx

idxj. (5)

In particular, we take r ∈ (r0,∞) and note that r =∞ is the Poincaré horizon. We focus on

the mass range 1 < ν < 2 . For the moment, we analyze only a specific choice of boundary

conditions discussed below. While this will turn out to lead to an ill-defined quantum theory,

it is easy to study and will be of use in section III as a convenient reference system about

which to deform.

To facilitate contact with the case r0 = 0 (no cut-off), we write the action in a form that

parallels the r0 = 0 action for Neumann boundary conditions (see [17]),

IRef = I0 +

∫
∂M

√
γ

[
ρµ∂

µφφ− ∆−
2
φ2 +

1

4(ν − 1)
γij∂iφ∂jφ

]
, (6)

where I0 = −1
2

∫
M

√
g[gµν∂µφ∂νφ + m2φ2], ∆− = (d/2− ν), ∂M denotes the surface r = r0

and ρµ is the unit normal to this surface (we denote the normal derivative by ∂ρ below).
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The boundary conditions must be chosen to make IRef stationary. Varying (6) with respect

to φ we obtain the boundary condition5

∂ρφ = ∆−φ+
1

2(ν − 1)
2γφ at r = r0. (7)

Noting that ∂ρφ = r∂rφ, 2γφ = r220φ and that at small r the field φ has the asymptotic

expansion

φ = rd/2−ν(φ(0) + r2φ(1) + r2νφ(ν) + . . .) with φ(1) =
1

4(ν − 1)
20φ

(0), (8)

we can readily verify that (7) reduces to φ(ν) = 0 in the limit r0 → 0. Here 20 is the

D’Alembertian associated with the flat boundary metric, i.e. 20 = ηij∂i∂j.

Using the prescription of [24], we can read off the inner product associated with the action

(6), including necessary contributions from the boundary kinetic terms on ∂M . We take the

bulk Klein-Gordon current associated with a pair of solutions φ1, φ2 to be

jbulkµ =
i

2
φ∗1
↔
∂µ φ2, (9)

and introduce a corresponding boundary current

jbndyj =
i

2
φ∗1
↔
∂ j φ2, (10)

where A
↔
∂ B = A∂B − B∂A and the index j ranges only over boundary directions. The

renormalized inner product is then simply

(φ1, φ2) = (φ1, φ2)bulk −
1

2(ν − 1)
(φ1, φ2)bndy, (11)

where (φ1, φ2)bulk, (φ1, φ2)bndy are given by introducing some surface Σ with boundary ∂Σ at

r = r0, contracting the currents (9), (10) with either the normal nµ to Σ or the normal nµ∂

to ∂Σ within the surface r = r0, and integrating over Σ or ∂Σ using the volume measure

induced by (5).

A. Spectrum

In order to solve the wave equation, we shall use the mode decomposition

φ = eik·xψk(r), (12)

5 The explicit variation is of the form δIRef =
∫
∂M

φδb.c. so that the b.c. plays the role of a source in the

dual theory.
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where ki = (ω, k) and ψk(r) is a radial profile that depends on the eigenvalue of 20, which

we will denote as the “boundary mass”, i.e. m2
bndy := −kiki. This eigenvalue may be used to

classify the modes as (m2
bndy > 0), light-like (m2

bndy = 0) and space-like or tachyonic (m2
bndy <

0). We will also consider the possibility of complex mbndy, and refer to the associated modes

as “complex tachyons” below.

Let us first consider the time-like solutions. In this case, a general mode can be written

ψ = φ(ν)ψ+ + φ(0)ψ−, (13)

where φ(0) and φ(ν) are arbitrary constants and

ψ+ = C−νr
d/2Jν(mbndyr) ψ− = Cνr

d/2J−ν(mbndyr), (14)

with

Cν = 2−νΓ(1− ν)mν
bndy. (15)

Here Jν(x) are Bessel functions of the first kind. The radial profiles (14) oscillate rapidly near

the Poincaré horizon and it can be shown both solutions are plane-wave normalizable with

respect to the inner product (11), see e.g. [17]. Thus time-like modes form a continuum and

exist for all values of r0. The solution is completely specified by noting that the boundary

condition (7) imposes a r0-dependent relation between φ(0) and φ(ν), whose explicit form will

not be important for the moment. The norm of these modes follows from expression (11)

and can be computed by the methods of [17]6. This quantity is positive definite for all r0

and is given by

(φ1, φ2) = (2π)d−1δ(d)(ki1 − ki2) |φ(0)
k1
Cν,k1 + eiπνφ

(ν)
k1
C−ν,k1|2. (16)

As stated above, the coefficients φ(0) and φ(ν) are related by the boundary conditions so that

(16) is fixed up to a normalization constant. Since for r0 → 0 we reproduce the boundary

condition φ(ν) → 0, the UV behavior of (16) is guaranteed to agree with the Neumann result

of [17].

6 Integrating by parts reduces the inner product to a sum of boundary terms at r = r0 and r =∞. But a

self-adjointness argument requires the result to be proportional to a Dirac delta-function, which can come

only from the region near the horizon where the modes are plane-wave normalizeable. It follows that only

the asymptotics near r =∞ are needed to compute the inner product.
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On the other hand, using the boundary condition to express φ(0) in terms of φ(ν) for small

mbndy one finds

(φ, φ)

|φ(ν)|2
≈ 4νΓ(1 + ν)2

(2π)1−d m−2ν
bndy +O(1),

(φ, φ)

|φ(0)|2
≈ 4−νΓ(1− ν)2

(2π)1−d m2ν
bndy +O(1), (17)

which coincide respectively with the Dirichlet and Neumann results for r0 = 0 to leading

order in mbndy. As expected, the leading small momentum behavior is not modified by the

radial cut-off at r0. But the second expression in (17) means that our reference theory suffers

from the same IR divergence in the bulk two-point function identified in [17] for r0 = 0 (this

divergence also appeared in the pure CFT context in [23]). Thus the theory is ill-defined at

the quantum level.

Let us nevertheless complete the mode analysis for this theory. We next consider the

light-like modes, i.e. mbndy = 0, whose general profile is

ψ = Ard/2−ν +Brd/2+ν , (18)

where A and B are arbitrary constants. The boundary condition (7) then implies B = 0.

One can check that light-like modes (18) with B = 0 are normalizable for ν > 1 [17], and

furthermore that (as one may expect from the above IR divergence) these modes are null

directions of the inner product.

Finally, we discuss the tachyonic solutions characterized by m2
bndy := −p2 < 0. By

convention, we restrict ourselves to Re p > 0. With this choice, the normalizable solution

at the Poincaré horizon is

ψT = rd/2Kν(pr), (19)

where Kν(x) is the modified Bessel function of the second kind. The boundary condition

(7) then yields Kν−2(pr0) = 0 which, provided Re p > 0, has no solutions anywhere in the

complex plane [25]. It follows that there are no tachyonic solutions.

To summarize, our reference theory is ill-defined at the quantum level due to an IR

divergence in the two-point function. This divergence is associated with the presence of null

states (the light-like modes). However, the theory has no negative-norm states. One may

therefore hope that a suitable IR modification will render the theory well-defined without

introducing ghosts. We exhibit a two-parameter family of such deformations in section III

below.
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III. DEFORMED THEORY

We now deform the action (6) by considering I = IRef + Idef with

Idef = −ν
∫
∂M

√
γr2ν

0

[
κ

r2
0

(∂φ)2 + λφ2

]
, (20)

where all the quantities are taken to be tensors with respect to γ. This parametrization of

boundary couplings behaves smoothly in the limit r0 → 0 where it coincides with the usual

notion of multitrace deformations (and in particular with the parametrization of [17]). As

discussed in [17], in the absence of of a radial cut-off (r0 = 0) such deformations always

give rise to ghosts. But below we will see that for any κ > 0 the ghosts may be banished

by taking r0 sufficiently large. Note that stationarity of the deformed action requires the

boundary condition

∂ρφ− (∆− + 2νλr2ν
0 )φ−

[
1

2(ν − 1)
− 2νκr

2(ν−1)
0

]
2γφ = 0 at r = r0. (21)

It should be noted that the deformation term (20) contains a new boundary kinetic term,

so that it modifies the boundary symplectic current. As a result, the total inner product

reads

(φ1, φ2) = (φ1, φ2)bulk −
[

1

2(ν − 1)
− 2νr

2(ν−1)
0 κ

]
(φ1, φ2)bndy. (22)

Below, our main focus will be to find a region in the space of parameters (λ, κ) that is

ghost-free. To do so, we shall concentrate in the tachyonic modes, since, as shown in [17],

time-like and light-like modes necessarily have non-negative norms for all κ > 0 (though the

light-like modes become ghosts for κ < 0). In particular, the light-like modes have strictly

positive norms for all κ > 0 and the two-point function becomes IR finite. Thus it remains

only to analyze the possible tachyons.

A. Existence of Tachyons

We now study the existence of tachyonic solutions as we vary r0 holding fixed λ and κ.

As above, we define p2 = −m2
bndy < 0 and and take Re p > 0 by convention. We may then

write the radial profile of the tachyonic solutions as

ψ = rd/2Kν(pr). (23)

10



Introducing q = pr0, the boundary condition (21) implies

Kν−2(q)

Kν(q)
= κ̂+ λ̂/q2, (24)

where κc = 1

4ν(ν−1)r
2(ν−1)
0

, κ̂ = κ/κc, and λ̂ = λr2
0/κc.

To analyze (24), it is useful to note the following facts. First, the asymptotic form of

Kµ(q) for fixed µ at large |q| is

Kµ(q) =

√
π

2q
e−q
[
1 +

4µ2 − 1

8q
+O(|q|−2)

]
. (25)

Hence, letting q = Reiθ we have for large R

Kν−2(q)

Kν(q)
≈ 1 +

2(1− ν)

R
(cos θ − i sin θ) +O(R−2). (26)

Second, for q ≈ 0 and Re µ > 0, we have Kµ(q) ≈ 1
2
Γ(µ)(1

2
q)−µ. In order to use this

expression for ν − 2 < 0, we note that K−µ(q) = Kµ(q). It follows that for small R we can

write
Kν−2(z)

Kν(z)
≈ 22(1−ν) Γ(2− ν)

Γ(ν)
R2(ν−1){cos[2(ν − 1)θ] + i sin[2(ν − 1)θ]}. (27)

The behavior of the real and imaginary parts of the ratio of the two relevant Bessel functions

is plotted in figures 1(a) and 1(b). With these observations in mind, let us go back to (24).
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FIG. 1: On the left we plot Re Kν−2(q)
Kν(q) vs. R for ν = 1.4, θ = 3/8π. This function is invariant

under θ → −θ. On the right we plot Im Kν−2(q)
Kν(q) vs. R for ν = 1.99, θ = 7/16π. This function

changes sign under θ → −θ. The peak is smaller for smaller values of ν

Let us first show that there are no tachyons at complex momenta for λ > 0. To do so,

we let q = Reiθ with |θ| < π/2, so (24) reads

Re
Kν−2(q)

Kν(q)
= κ̂+

λ̂

R2
cos(2θ), (28)
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Im
Kν−2(q)

Kν(q)
= − λ̂

R2
sin(2θ). (29)

Now, using (26) and the fact – justified by numerics – that Im Kν−2(q)
Kν(q)

has no zeroes or poles

for Re q > 0, we conclude that Im Kν−2(q)
Kν(q)

is bounded and positive definite for 0 < θ < π/2

and negative definite for −π/2 < θ < 0. For λ̂ > 0 and θ 6= 0, the left and right hand side

of (29) have different signs for all R. Thus there are no complex solutions.

Consider now q ∈ R. It is not hard to show that7 the left hand side of (24) ranges

monotonically over (0, 1) as q varies between (0,∞). Thus, for λ > 0, it follows that (24)

has one and only one real solution if κ̂ < 1 (or equivalently, κ < κc) and no solutions

otherwise. Recalling the definition of κc, we conclude that for λ > 0, κ > 0 the spectrum

will be tachyon free when r0 is sufficiently large. Thus, at least in this regime, the resulting

theories are both well-defined and ghost-free.

To make contact with the introduction note that the the condition for a ghost free spec-

trum κ̂ > 1 can be written as:

r−1
0 . κ1/2(ν−1) ≡ Λg (30)

where we have appropriately set g = 1 in the expression (4) for Λg. So as long as the cutoff

energy scale r−1
0 is smaller than Λg the theory is ghost free.

B. Complete Analysis

For completeness, we now analyze the case λ < 0 and also compute the norms of the

tachyons (for both signs of λ). Though our arguments above were largely analytic, we rely

on simple numerics below to establish some general trends.

We begin with the case λ < 0, κ̂ > 1. For real q, it is easy to see that there is one real

tachyon (at some positive q). But numerical investigation shows that there are no complex

solutions; see figure 2(a). On the other hand, due to a new branch of solutions to (28) that

7 This involves using the above expansions to evaluate the LHS of (24) at large and small real z > 0 and

also showing that it is monotonic. Monotonicity follows from positivity of the Wronskian-like quantity

Wν1,ν2 = z(Kν2∂zKν1 −Kν1∂zKν2) for ν1 < ν2. To show positivity of Wν1,ν2 , one uses the Bessel equation

to show that Wν1,ν2 is strictly decreasing for ν1 < ν2 and real z > 0. The argument is completed by

noting that (25) implies Wν1,ν2 > 0 for large z.

12



comes in from infinty at κ̂ = 1, for κ̂ < 1 we find either two real or two complex solutions

depending on the ratio κ̂/λ̂. See figure 3(a).
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FIG. 2: The case κ̂ ≥ 1, λ̂ < 0. We plot numerical solutions of (28) – dashed and dotted lines –

and (29) – solid lines, including both the straight lines along the real axes and the rough circles.

A simultaneous solution to both equations would requires these curves to intersect. Since the

intersection at q = 0 corresponds to the light-like modes already studied (and is not a tachyon),

there is a single real tachyon in each case shown. Figure (a) shows results for λ̂ = −5, ν = 1.4.

Note that (29) is independent of κ̂. For (29) we show κ̂ = 1.2 (dashed curve) and κ̂ = 1 (dotted

curve). Figure (b) shows results for λ̂ = −8, κ̂ = 1.2, ν = 1.4. The structure is similar for all

κ̂ ≥ 1, λ̂ < 0.

It remains to compute the norms of the tachyonic solutions for both λ > 0 and λ < 0

(in cases where they exist). Now, the norm of a complex momentum tachyon necessarily

vanishes due to symmetries. However, since all parameters are real, the momenta of the

complex tachyons come in pairs p?, p
∗
?. The inner product (ψ(p?), ψ(p∗?)) is non-zero, and

diagonalizing the the resulting symplectic structure gives one degree of freedom with positive

norm and a second with negative norm. Thus complex tachyons are necessarily associated

with ghosts and it remains only to analyze real tachyons.

Following [17] we find that for tachyonic solutions of real momentum, the inner product

(22) simplifies to

(φ1, φ2) =
1

2
(ω1 + ω2)(2π)d−1δ(d−1)(~k1 − ~k2)eit(ω1−ω2)〈ψ1, ψ2〉SL. (31)
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FIG. 3: The case κ̂ ≤ 1, λ̂ < 0. We again plot numerical solutions of (28) – dashed and dotted

lines – and (29) – solid lines, including both the straight lines along the real axes and the rough

circles. Simultaneous solutions occur at the intersections. Again, q = 0 corresponds to the light-like

modes already studied (and is not a tachyon). Figure (a) shows results for λ̂ = −0.5 and ν = 1.4.

Solutions of (29) are independent of κ̂, while for (28) the dashed and dotted curves respectively

describe κ̂ = 0.842, 0.844. As suggested by the plot, increasing κ̂ through this range causes the

dashed curve to pinch off and to separate into two pieces (as shown by the dotted curves). Further

increasing κ̂ → 1, the rightmost dotted line moves off to infinity and we recover figures 2(a)) and

2(b). Changing λ̂ appears to simply change the overall scale of the figures as indicated by figure

(b) which shows λ̂ = −0.8, ν = 1.4, and κ̂ = 0.880, 0.883.

Here 〈·, ·〉SL is a Sturm-Liouville-like product with an explicit boundary contribution:

〈ψ1, ψ2〉SL = 〈ψ1, ψ2〉bulk + 〈ψ1, ψ2〉bndy, (32)

where

〈ψ1, ψ2〉bulk = − r1−d
0

p2
1 − p2

2

(ψ1ψ
′
2 − ψ2ψ

′
1)
∣∣r=∞
r=r0

, (33)

〈ψ1, ψ2〉bndy = r2−d
0

[
− 1

2(ν − 1)
+ 2νr

2(ν−1)
0 κ

]
ψ1ψ2. (34)

Note that (33) is singular when evaluated in tachyonic solutions that satisfy the boundary

conditions since this fixes a particular value of p. In order to evaluate (33) for a mode with

momentum p0 which lies in the discrete part of the spectrum, we consider two solutions with

momenta p1 and p2 which do not satisfy the boundary conditions, take the limit p1, p2 → p,

14



and impose the boundary condition that sets p = p0 at the end. Applying this procedure to

(33) and taking into account the contribution (34) we obtain

(φ1, φ2) = (2π)d−1ω1δ
(d−1)(~k1 − ~k2)δp1,p2〈ψ1, ψ1〉SL, (35)

〈ψ, ψ〉SL = A

{
(κ̂− 1) + (ν − 1)

[
Kν−1(q)Kν+1(q)

Kν(q)2
− 1

]}
, (36)

where q is given implicitly by (24) and A is the positive quantity

A = 2
p2νr2

0Kν(q)
2

4ν(ν − 1)Γ(ν)2
. (37)

Numerical results indicate that the second term in (36) (including the factor of ν − 1) is

positive for real q and decays monotonically from 1 to 0 as q ranges over (0,∞). The

Kronecker delta in (35) reflects the facts that the tachyonic spectrum is discrete and that

the SL product (36) vanishes when p1 6= p2. Noting that (31) also vanishes for ~k1 6= ~k2,

we conclude that the frequencies must also be equal in order for (36) to be non-zero. Thus

the time-dependent exponentials in (31) cancel, making manifest that the inner product is

conserved. As a consistency check, we note that taking the limit r0 → 0 in (36) reproduces

the result of [17], i.e.

〈ψ, ψ〉SL = −2ν

[
κ(ν − 1) +

λν

p2

]
+O(r0). (38)

We now study (36) for the tachyons found above:

Case λ̂ > 0, κ̂ < 1: in this region we find one real tachyon. Since the second term in (36)

decays monotonically, the maximum of the norm occurs when the value of q that solves (24)

acquires its minimum. For any fixed κ̂ < 1, the value of q(λ̂, κ̂) defined by (24) decreases

monotonically with λ̂, arriving at the minimum when λ̂ = 0, see figure 1(a). Thus if the

norm (36) is negative for λ̂ = 0 and all κ̂ < 1, it is in fact negative everywhere in the region

being considered, i.e κ̂ < 1, λ̂ > 0. To help see that this is indeed the case, we solve (24)

with λ̂ = 0 for κ̂ and insert the result into (36) to obtain:

〈ψ, ψ〉
∣∣∣∣
λ=0

= A
{
Kν(q)

−2[Kν−2(q)Kν(q) + (ν − 1)Kν−1(q)Kν+1(q)]− ν
}
. (39)

Plotting (39) for q > 0 and 1 < ν < 2 shows that it is negative definite, see 4.

Case λ̂ < 0, κ̂ > 1: Here both terms in (36) are positive definite, so there are no ghosts.
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FIG. 4: The left hand side of (39) is plotted as a function of q for ν = 1.1 (solid line), ν = 1.5

(dashed line), and ν = 1.9 (dotted line).

Case λ̂ < 0, κ̂ < 1: We found a pair of complex tachyons that can move to the real axis

for certain values of κ̂, λ̂, As mentioned above the complex ghosts constitute a ghost/non-

ghost pair. In the region in which the tachyons are real, one may show that one (and only

one) of the tachyons is a ghost by using the fact that the norm is given by the derivative of

(24) up to multiplication by a positive definite function8. The norms vanish at the critical

point where the tachyons leave the real axis. At this point we expect logarithmic modes to

appear with the corresponding associated ghosts.

IV. DISCUSSION

Our main point above is that the ghosts found in [17] may, at least in some cases, be

banished by either imposing a suitable low UV cut-off Λg, or by appropriately modifying

the theory on energy scales above Λg. We argued that this is a general property of renor-

malization group flows that approach the IR fixed points of [17] and which start from a

well-defined UV theory, analogous to those analyzed in [9, 11, 12, 19–22].

In addition, we exhibited a simple new class of examples in which the ghosts are banished

by imposing a radial cut-off on the AdS space. As discussed in [14], this corresponds to a

non-local UV modification of the usual CFT dual to bulk AdS. We found a two-parameter

family of such theories corresponding to further quadratic deformations which are ghost-free

8 While this may be checked explicitly using Bessel identities, it also follows from the general relation

between the norm and the residues of the 2-point function.
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in a certain regime of parameter space. In particular, gathering the results found in the

previous sections, leads to the phase diagram shown in figure 5. Here, regions I and II (i.e.

κ̂ > 1) constitute the ghost-free regime. More specifically, in region I there are only time-like

excitations whereas in region II there is a non-ghost tachyon. On the dividing line λ = 0

a light-like mode of zero norm is present with the associated IR divergence in the 2-point

function. The remaining regions contain ghosts: in region III there are two real momentum

tachyons, one of which is a ghosts; in region IV there are two complex tachyons, whose

presence is tied to ghosts, as explained above; finally, in region V there is one real tachyon

with negative norm. Here the dotted line that marks the boundary between the regions with

two real (III) and two complex tachyons (IV) is to be considered very approximate. We have

not investigated this boundary in detail, though the fact that Kν−2(q)/Kν(q) is positive for

q > 0 and vanishes for q = 0 shows that it lies to the right of the λ-axis and terminates at

the origin. For small q we can send the cutoff r0 to zero and the boundary between region

III and IV satisfies λ ∼ −κν/(ν−1).

I

II

III

IV

V

Κ

Λ

FIG. 5: Different regions in parameter space (λ, κ)

It is natural to ask whether a similar simple radial cut-off can banish more general ghosts.

Consider for example the addition of a new term to Idef involving η(2γφ)2 (a p4 term with

coefficient η). The higher order boundary condition will then give rise to additional ghosts.

Our preliminary numerical investigations indicate that for η 6= 0 there are no values of

κ, λ, η, r0 for which the theory is ghost-free, so that the ability to banish ghosts by using a

simple radial cut-off is not generic. However, it is again likely that for at least some values

of the parameters that a more complicated UV modification of the IR fixed point (such as

that associated with RG flow from a good UV theory) that renders the theory ghost-free.
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We conclude by making explicit the sense in which the radial cut-off theories of section

III are UV modifications of a theory with no cut-off. This may be done by comparing the

two point functions of the theories with finite and vanishing r0 in the deep IR, which we take

to mean mbndy = 0. This is in turn equivalent to studying expression (16) for the norms at

small mbndy. We take the cut-off free theory to be given by the same action I = IRef + Idef

with couplings κ̃, λ̃ and r0 = 0. As noted in section III, our parametrization was chosen to

behave smoothly as r0 → 0.

The first two leading order terms in these two-point functions agree if we identify λ̂ =

r2
0λ/κc and κ̂ = κ/κc as r0-dependent functions of λ̃, κ̃ through

λ̂(λ̃, κ̃) =
r2

0

κc

λ̃

1 + r2ν
0 λ̃
≈ 4ν(ν − 1), (40)

κ̂(λ̃, κ̃) =
[r2

0λ̃(1 + ν + r2ν
0 λ̃) + 2κ̃(ν2 − 1)]

2κc(ν2 − 1)(1 + r2ν
0 λ̃)2

≈ 2ν

ν + 1
, (41)

where we have displayed the behavior for large r0. Thus we see that given any κ̃ and any

positive9 λ̃ in the r0 = 0 theory, for large r0 the IR behavior is described by the universal

values κ̂univ = 2ν
ν+1

and λ̂univ = 4ν(ν − 1). Since our analysis holds for 2 > ν > 1 we have

κ̂univ > 1 and λ̂univ > 0. In this sense, subjecting such r0 = 0 theories to a radial cut-off at

large r0 renders them both ghost- and tachyon-free.

The expressions (40) and (41) can be interpreted as RG flows for the couplings λ̂ and κ̂ as

a function of the cutoff r0. Indeed they are solutions to the RG equations of [13, 14] where

the multi-trace couplings (or in the language of [14] the boundary action SB) are truncated

to second order in boundary derivatives. The constant κ̃ and λ̃ are integration constants.

Since the Wilsonian RG equations of [13, 14] are exact, and since the spectrum does not

change under exact RG, the full solutions that include all higher derivative couplings (but

which continue to fix all other couplings to zero in the r = 0 theory) would necessarily

describe radial cut-off theories with ghosts. In this case it is the truncation that leads to a

well-defined ghost-free theory.

9 For λ̃ < 0 the couplings diverge at r−2ν0 = −λ̃, and the theories at each side of the pole are not smoothly

connected as we vary r0.
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