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Abstract

I develop a number of mathematical models for the study of prion phenotype
propagation in S. cerevisiae. Prion proteins underlie a host of non-Mendelian phenotypes
in yeast and several fatal, neurodegenerative diseases in mammals, most notably bovine
spongiform encephalopathy (“mad-cow disease”) and Creutzfeldt-Jakob disease in
humans. Two fundamental questions guide this work:

1. How does the infectious prion form of a protein initially occur?

2. Once present, how do the infectious prion “aggregates” persist and amplify across
multiple generations of cell division?

A significant body of literature addresses Question 2, and so I begin with a review of
this literature and then develop two new models in an attempt to better address in vivo
cellular conditions (Chapters 2 and 3). I then return to Question 1, expanding upon a
Markov chain formulation of the problem developed in the literature and implement a
memory-efficient, numerical solver for the estimation of the time scale of “spontaneous
nucleation” (Chapter 4). Taken together, this work is (to my knowledge) the most
comprehensive, stochastic treatment of the yeast prion phenotype system and is the first
to permit prion strain coexistence, qualitatively match biological experiments on Hsp104
knock-out mutants, and suggest nucleation size differences between prion strains.
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Chapter 1

Introduction

1.1 Prion Biology
The central dogma of molecular biology describes the transfer of information via

nucleic acids (DNA). It has been summarized as “once (sequential) information has
passed into a protein, it cannot get out again,” [12, 11]. This is perhaps what puzzled
biologists so much when they first studied scrapie, a disease infecting sheep. It was
concluded in [1] that the disease-causing agent “is likely to be of an unusual nature,”
citing experimental evidence showing that the agent could amplify without containing
nucleic acid.

The resolution to this paradox was first suggested by a mathematician; in [24],
Griffith detailed a number of plausible mechanisms for the self-replication of a protein
conformation. Griffith’s protein-only hypothesis was later validated by Prusiner [36] in
work that would eventually earn him the Nobel Prize in Physiology or Medicine [21]. In
this work, Prusiner also coined the term prion, short for “proteinacious infectious agent.”

The mechanism underlying prion diseases is rooted in protein folding; while proteins
are comprised of various amino acids, their function is determined by the 3-dimensional
shape the protein obtains when chemical bonds are formed between the amino acids. The
resulting shape is understood to correspond to an optimal configuration, in the sense
that it minimizes free energy as a function of possible bonds [4]. Thus, it will require
energy to change the bonds, making the configuration particularly stable. Proteins can
misfold, however, and there is a host of cellular machinery dedicated to either eliminating
or refolding these aberrations [31].

In a prion disease, enough misfolded protein has aggregated into a sufficiently stable
structure to resist the efforts of this machinery. That is, the “cooperative” aggregate
structure is believed to be somehow more energetically favorable than the normal
monomer form. In mammals, these aggregates form amyloid plaques, which is also
characteristic of Alzheimer’s, Parkinson’s, and other so-called amyloid diseases [26].
What makes prion diseases particularly devastating, and possibly distinct from the other
amyloid diseases, is that these aggregates are infectious1 – not only do they resist efforts

1There are a number of superficial similarities between amyloid diseases and prion diseases. In fact, it is
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to refold or degrade, but they actively promote the conversion of correctly-folded protein
into the misfolded state [37]. Thus, analogous to a virus, the prion aggregates repurpose
healthy protein to spread the abnormal form. However, a single aggregate can only
convert protein at a limited rate; the actual spread of the disease state comes from the
fragmentation of the aggregate into smaller aggregates, which can each independently
continue converting protein [32]. The fragmentation is believed to be caused by a failed
attempt by the cellular repair machinery to repair the protein [8].

(a) [psi−] (prion-free)
yeast colony

(b) [PSI+] (prion-infected)
yeast colony

Figure 1.1: Yeast prions can be engineered with pigments, allowing visual inspection of the
infection (images provided by the Serio lab2).

On the other hand, a growing body of literature points to prion proteins as being an
essential tool for a number of biological functions. Certain plants, for example, exhibit a
phenomenon known as vernalization where they flower only after certain weather events
have occurred. The proteins involved in this process bear many structural similarities to
known prion proteins [5, 7]. Other “prion-like” proteins have also been been implicated
in long-term memory formation in both Aplysia (sea slugs) and Drosophila (fruit flies)
[39, 20]. Thus, prion “behavior” may not simply be an accident of nature, but rather a
selected-for trait providing a mechanism for proteins to dynamically change their function.

Non-mammalian prion proteins have been most studied in S. cerevisiae, i.e. brewer’s
yeast. Yeast biologists have long observed a phenotype of S. cerevisiae termed [PSI+]
that behaved in a non-Mendelian fashion [8]. It was eventually determined that the protein
responsible, Sup35, was exhibiting a prion-like conformation. The Sup35/[PSI+] system
is now considered the yeast analog to mammalian PrP/PrPu�u�, the protein (and its prion
conformation) underlying Creutzfeldt-Jakob disease (humans), scrapie (sheep), and
bovine spongiform encephalopathy (cattle). Intriguingly, Sup35 is involved in translation
termination; when [PSI+] is expressed, stop-codon read-through occurs, leading to the
expression of what was previously believed to be nonsense “junk” DNA. However, [PSI+]
cells have been shown to have higher fitness in certain, stressful environments, thus

becoming increasingly less controversial to claim that the former is simply a special case of the latter (e.g.
[3, 22]), especially in light of a recent study with circumstantial evidence for the infectivity of Alzheimer’s
disease [29]. Nonetheless, until the “infectivity” criterion can be clinically proven this connection will
remain at best conjecture.

2http://mcb.arizona.edu/people/tserio

http://mcb.arizona.edu/people/tserio
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[PSI+] may actually be a survival strategy allowing the yeast to express “back-up” genes
that aren’t normally expressed [42, 25].

In yeast, the Hsp104 chaperone protein is known to serve a crucial role in the protein
repair machinery – this protein’s under or over-expression is capable of eliminating the
presence of prions in the yeast colony [8, 30]. The understood mechanism is that Hsp104
physically fragments the aggregates. When it is completely suppressed, aggregates no
longer fragment and are unable to multiply. They are then asymptotically diluted in
concentration to undetectable levels as the colony grows. When Hsp104 is over-expressed,
the aggregates are rapidly fragmented into very small polymers. There is evidence for a
minimal, stable aggregate size [9]: when aggregates have fewer incorporated proteins than
this number, the aggregates rapidly disassociate and the constituent proteins refold into
the normal monomer form. Thus, the over-expressed chaperone fragments the aggregates
until they are no longer stable, effecting the same outcome. Biologists have yet to identify
a naturally-occurring mammalian analog to Hsp104, although it is known that Hsp104
does amplify mammalian PrPu�u� fragmentation [14].

Prion proteins have another surprising property: they admit more than one infectious
conformation. Both mammalian PrP and yeast Sup35 have a number of strains [41].
These different strains still aggregate, but the respective aggregates are now competing
with each other for healthy protein to convert. These strains are characterized by different
kinetic rates as well as physiological measures, such as time-to-onset of symptoms [41].
In yeast colonies, it is actually possible to have different strains dominating in different
spatial regions of the plate (or “weaker” strains competing against prion-free regions). In
the engineered strains, this manifests visually as heterogeneous regions (sectors) of the
colony with differing shades of pink [2].

This combination of biological features provides for a rich mathematical modeling
opportunity. We now summarize the existing mathematical literature, then outline our
own research program.

1.2 Mathematics of Nucleated Polymerization

1.2.1 Background
The nucleated polymerization model (NPM) is a mathematical model formally

introduced in Nowak et al. [35] and validated in Masel, Jansen, and Nowak [34] that
describes the concentration of prion proteins over time. While not the first mathematical
model of prion aggregation and replication3 it has emerged as the canonical framework
from which to quantitatively study prions.

The NPM incorporates a number of biochemical assumptions. First, normal protein is
synthesized at rate 𝛼. Second, concentrations are diluted at rate 𝜇 due to cell division.
Third and fourth are the assumptions governing the dynamics of prion aggregates.

3See [17] for a review of other early attempts. As previously mentioned, the first model [24] actually
predated a biological understanding and predicted the mechanism of prion diseases. As such, the modeling
of prion diseases within a mathematical framework is an early success of mathematical biology.
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In this model, prion aggregates are treated as linear fibers; as such, these fibers may
lengthen or shorten. In the lengthening reactions, which are called aggregation events,
protein monomers are incorporated into existing fibers at rate 2𝛽 – the factor of two is
to explicitly indicate that either end of the fiber may add a monomer. The shortening
reactions, which are called fragmentation events, are a binary fission of the aggregate.
It is assumed that a cellular chaperone binds (at rate 𝛾) to a junction between bound
proteins and fragments the aggregate into two. Letting Ψu� denote an aggregate of size 𝑖
and 𝑋 a protein monomer, these reactions are summarized by the chemical equations

𝑋 + Ψu�−1
2u�
−−→ Ψu�

u�
−→ Ψu� + Ψu�−u�⏟⏟⏟⏟⏟

u�=1,2,…,u�−1

. (1.1)

The first two biochemical assumptions are represented by

𝑋 u�↼−−⇁u� ∅ and Ψu�
u�
−→ ∅. (1.2)

It is additionally assumed that fibers must be of a certain minimum size, which is
denoted 𝑛, for nucleation size. If a fragmentation event yields an aggregate Ψu� with 𝑖 < 𝑛,
then this model assumes that the aggregate immediately disassociates into its monomer
constituents, e.g. Ψu� −→ 𝑖𝑋. This is the assumption that gives the nucleated polymerization
model its name.

1.2.2 Discrete Size Model
Following [34], let 𝑥(𝑡) = [𝑋](𝑡) (the time-varying concentration of protein monomer)

and 𝑢u�(𝑡) = [Ψu�](𝑡) (the time-varying concentration of aggregates of size 𝑖). Then, the
law of mass action yields an infinite-dimensional system of ordinary differential equations
(ODE)

𝑥′ = 𝛼 − 𝜇𝑥 − 2𝛽𝑥 ∑
u�≥u�

𝑢u� + 𝛾𝑛(𝑛 − 1) ∑
u�≥u�

𝑢u�, (1.3)

𝑢′
u� = −2𝛽𝑥(𝑢u� − 𝑢u�−1) − 𝜇𝑢u� − 𝛾(𝑖 − 1)𝑢u� + 2𝛾 ∑

u�>u�
𝑢u�, (1.4)

where 𝑢u�(𝑡) = 0 for 𝑖 < 𝑛. Masel, Jansen, and Nowak [34] then observed that this
infinite-dimensional ODE system admits an exact moment closure. Defining 𝑦(𝑡) =
∑u�≥u� 𝑢u�(𝑡) and 𝑧(𝑡) = ∑u�≥u� 𝑖𝑢u�(𝑡), one obtains

𝑥′ = 𝛼 − 𝜇𝑥 − 2𝛽𝑥𝑦 + 𝛾𝑛(𝑛 − 1)𝑦, (1.5)
𝑦′ = −(𝜇 + 𝛾(2𝑛 − 1))𝑦 + 𝛾𝑧, (1.6)
𝑧′ = 2𝛽𝑥𝑦 − 𝜇𝑧 − 𝛾𝑛(𝑛 − 1)𝑦. (1.7)

The authors completed their mathematical analysis with a local stability analysis,
in which the “disease-free” fixed point (𝑦 = 𝑧 = 0) is locally stable if 𝑅 =

2u�u�u�
u�(u�+u�u�)(u�+u�(u�−1)) < 1 and the “endemic” fixed point (𝑦, 𝑧 ≠ 0) is locally unstable. If
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𝑅 > 1 the stability is exchanged. Due to the conservation law (𝑥 + 𝑧)′ = 𝛼 − 𝜇(𝑥 + 𝑧)
embedded in the dynamics, all orbits are globally attracted to a 2-dimensional manifold
(where 𝑥 + 𝑧 = 𝛼/𝜇). Thus, although [34] provided only a local analysis, their results can
be made global by application of the Poincaré-Bendixson theorem to the “trapping region”
0 < 𝑛𝑦 < 𝑧 < 𝛼/𝜇.

1.2.3 Continuous Size Model
The NPM was later simplified in a series of papers [38, 18, 23]. The discrete size of

the aggregates was relaxed, allowing for sizes of any real, positive number. In a scaling
argument, [16] demonstrated that the resulting dynamics were equivalent in the limit of
large average aggregate sizes. Instead of considering 𝑢u�(𝑡), one instead considers ̃𝑢(𝑠, 𝑡)
which satisfies

̃𝑥′ = 𝛼 − 𝜇 ̃𝑥 − 2𝛽 ̃𝑥 ∫
∞

u�
̃𝑢(𝑠, 𝑡) d𝑠 + 𝛾𝑎2 ∫

∞

u�
̃𝑢(𝑠, 𝑡) d𝑠, (1.8)

𝜕 ̃𝑢
𝜕𝑡 = −2𝛽 ̃𝑥𝜕 ̃𝑢

𝜕𝑠 − 𝜇 ̃𝑢 − 𝛾𝑠 ̃𝑢 + 2𝛾 ∫
∞

u�
̃𝑢(𝑠′, 𝑡) d𝑠′, (1.9)

where ̃𝑢(𝑎, 𝑡) = 0 for some 𝑎 > 0. This version admits an exact moment closure as well;
defining ̃𝑦(𝑡) = ∫∞

u� ̃𝑢(𝑠, 𝑡) d𝑠 and ̃𝑧(𝑡) = ∫∞
u� 𝑠 ̃𝑢(𝑠, 𝑡) d𝑠, one obtains

̃𝑥′ = 𝛼 − 𝜇 ̃𝑥 − 2𝛽 ̃𝑥 ̃𝑦 + 𝛾𝑎2 ̃𝑦, (1.10)
̃𝑦′ = −(𝜇 + 2𝛾𝑎) ̃𝑦 + 𝛾 ̃𝑧, (1.11)
̃𝑧′ = 2𝛽 ̃𝑥 ̃𝑦 − 𝜇 ̃𝑧 − 𝛾𝑎2 ̃𝑦. (1.12)

The same papers [38, 18, 23] also provided the first global stability results on the
NPM (either continuous or discrete), finding a Lyapunov function when 𝑅 = 2u�u�u�

u�(u�+u�u�)2 < 1
and using a semi-group argument for 𝑅 > 1. Prüss and Pujo-Menjouet [38] additionally
connected the NPM to the SEIS (susceptible-exposed-infected) compartment model from
mathematical epidemiology via a change of variables, which equivalently provides the
same global results. The SEIS model’s dynamics are fully characterized by the “basic
reproductive number” [19], and this connection provides the useful interpretation of the
NPM constant 𝑅 as this number.

This connection to the SEIS model is not limited to the continuous-size relaxation;
though not otherwise noted in the literature, the discrete equivalent is provided below (left
column), alongside the continuous transformation (right column).

𝛼
𝜇𝑆(𝛾𝑡) = 𝑥(𝑡) 𝛼

𝜇
̃𝑆(𝛾𝑡) = ̃𝑥(𝑡) (1.13)

𝛼
𝜇𝐸(𝛾𝑡) = 𝑧(𝑡) − (𝑛 − 1)𝑦(𝑡) 𝛼

𝜇
̃𝐸(𝛾𝑡) = ̃𝑧(𝑡) − 𝑎 ̃𝑦(𝑡) (1.14)

𝛼
𝜇𝐼(𝛾𝑡) = (𝑛 − 1)𝑦(𝑡) 𝛼

𝜇
̃𝐼(𝛾𝑡) = 𝑎 ̃𝑦(𝑡) (1.15)



6

1.2.4 Asymptotic Size Density
Finally, [18, 23] provided analysis of the size density itself. In particular, at

steady-state with 𝑅 > 1, the size density satisfies

0 = − (𝜇
𝛾 + 𝑎)

2 𝜕 ̃𝑢
𝜕𝑠 − 𝜇

𝛾 ̃𝑢 − 𝑠 ̃𝑢 + 2 ∫
∞

u�
̃𝑢(𝑠′) d𝑠′. (1.16)

Differentiating Equation (1.16) with respect to 𝑠 yields a linear, 2nd order ordinary
differential equation which is solved by Laplace transform. The solution was first
provided in [18], where

lim
u�→∞

̃𝑢(𝑠 + 𝑎, 𝑡) = ( lim
u�→∞

̃𝑦(𝑡)) 𝑠(2 ̃𝜁 + 𝑠)
̃𝜁3 exp (−𝑠(2 ̃𝜁 + 𝑠)

2 ̃𝜁2 ) , (1.17)

and ̃𝜁 = 𝑎 + 𝜇/𝛾.
My first contribution to the literature, Davis and Sindi [13], was a closed-form

expression for the discrete size density, which satisfies at steady-state

0 = − (𝜇
𝛾 + 𝑛) (𝜇

𝛾 + 𝑛 − 1) (𝑢u� − 𝑢u�−1) − 𝜇
𝛾𝑢u� − (𝑖 − 1)𝑢u� + 2 ∑

u�>u�
𝑢u�. (1.18)

One may derive an ordinary differential equation by considering the probability
generating function 𝑓 (𝑥) = ∑u�≥u� 𝑢u�𝑥u�. The solution is readily found up to quadrature,
then expanded in a Taylor series about 𝑥 = 0 and integrated term-by-term. Doing so, one
obtains

lim
u�→∞

𝑢u�+u�−1(𝑡) = ( lim
u�→∞

𝑦(𝑡)) 𝑖(2𝜁 + 𝑖 − 1)
𝜁2(𝜁 − 1)

Γ(𝜁2 + 1)
Γ(𝜁2 + 𝑖 + 1)

(𝜁(𝜁 − 1))u� , (1.19)

where 𝜁 = 𝑛 + 𝜇/𝛾 and limu�→∞ 𝑦(𝑡) is found by the moment-closure. This derivation is
now reproduced in its entirety4 from [13].

We begin by defining 𝑣u� = limu�→∞ 𝑢u�+u�−1(𝑡)/𝑦(𝑡). These {𝑣u�} will satisfy the 2nd order,
linear recurrence relation

0 = (𝜁2 + 𝑖 + 2) 𝑣u�+2 − (2𝜁2 − 𝜁 + 𝑖 − 1) 𝑣u�+1 + (𝜁2 − 𝜁) 𝑣u�, (1.20)

with 𝜁 > 2, 𝑣0 = 0 and 𝑣1 = 2
1+u�2 .

We construct 𝑓 (𝑥) = ∑∞
u�=0 𝑣u�𝑥u�; from (1.20), 𝑓 (𝑥) will satisfy

𝑓 ′(𝑥) + (𝜁2

𝑥 + 2
1 − 𝑥 − 𝜁(𝜁 − 1)) 𝑓 (𝑥) = 2

1 − 𝑥 , (1.21)

4With permission from Davis, Jason K., and Suzanne S. Sindi, Applied Mathematics Letters 40, 2015.
Copyright (2015) by Elsevier. (RightsLink Order #4066170090924). The co-author listed in this publication
directed and supervised research which forms the basis for the dissertation.
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which has solution

𝑓 (𝑥) = 2(1 − 𝑥)2

𝑥u�2 eu�(u�−1)u� ∫
u�

0
𝑠u�2

(1 − 𝑠)3 e−u�(u�−1)u� 𝑑𝑠. (1.22)

To find a closed form solution to our recurrence, we need only find the power series
for 𝑓 (𝑥). We begin by expanding 1/(1 − 𝑠)3 as an infinite sum and exchanging the order of
summation and integration:

𝑓 (𝑥) = (1 − 𝑥)2

𝑥u�2 eu�(u�−1)u�
∞
∑
u�=0

(𝑛 + 2)(𝑛 + 1) ∫
u�

0
𝑠u�2+u�e−u�(u�−1)u� 𝑑𝑠. (1.23)

The integral in (1.23) may be integrated by parts repeatedly, forming a convergent, infinite
series:

𝑓 (𝑥) = (1 − 𝑥)2 eu�(u�−1)u�

𝑥u�2

∞
∑
u�=0

(𝑛 + 2)(𝑛 + 1)
∞
∑
u�=1

(𝜁(𝜁 − 1))u�−1 Γ(𝜁2 + 𝑛 + 1)
Γ(𝜁2 + 𝑛 + 𝑘 + 1)

𝑥u�2+u�+u�

eu�(u�−1)u�

= (1 − 𝑥)2
∞
∑
u�=0

(𝑛 + 2)(𝑛 + 1)
∞
∑
u�=1

(𝜁(𝜁 − 1))u�−1 Γ(𝜁2 + 𝑛 + 1)
Γ(𝜁2 + 𝑛 + 𝑘 + 1)

𝑥u�+u�.

(1.24)

We then substitute 𝑚 = 𝑛 + 𝑘 into the inner summand and reverse the order of summation:

𝑓 (𝑥) = (1 − 𝑥)2
∞
∑
u�=0

(𝑛 + 2)(𝑛 + 1)
∞
∑

u�=u�+1
(𝜁(𝜁 − 1))u�−u�−1 Γ(𝜁2 + 𝑛 + 1)

Γ(𝜁2 + 𝑚 + 1)
𝑥u�

= (1 − 𝑥)2
∞
∑
u�=1

[
u�−1
∑
u�=0

(𝑛 + 2)(𝑛 + 1) Γ(𝜁2 + 𝑛 + 1)
Γ(𝜁2 + 𝑚 + 1)

(𝜁(𝜁 − 1))u�−u�−1] 𝑥u�.
(1.25)

The inner sum has a closed form in terms of gamma functions,

u�−1
∑
u�=0

(𝑛 + 2)(𝑛 + 1) Γ(𝜁2 + 𝑛 + 1)
Γ(𝜁2 + 𝑚 + 1)

(𝜁(𝜁 − 1))u�−u�−1

= 𝜁u�(𝜁 − 1)u�+1 Γ(𝜁2 + 1)
Γ(𝜁2 + 𝑚 + 1)

+ (1 + 𝑚 − 𝜁), (1.26)

which is readily verified by induction.
To arrive at the coefficients for 𝑥u� in the power series of 𝑓 (𝑥), we expand (1 − 𝑥)2 and

simplify:

𝑣u� =

⎧{{{
⎨{{{⎩

0 𝑚 = 0
2/(1 + 𝜁2) 𝑚 = 1
[2(𝜁 − 1)(2𝜁 + 1)]/[(𝜁2 + 1)(𝜁2 + 2)] 𝑚 = 2
𝑚(2𝜁 + 𝑚 − 1) Γ(u�2)

Γ(u�2+u�+1)𝜁
u�(𝜁 − 1)u�−1 𝑚 ≥ 3.

(1.27)
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1.2.5 Numerical Evaluation of the Transient Dynamics
This review of the NPM is now concluded with a few remarks on its numerical

solution. First, mammalian prion diseases are characterized by a long “lag-time” between
the introduction of an aggregate and noticeable symptoms [10, 28], which then progress
rapidly – thus any good mathematical model must necessarily exhibit multi-scale behavior
and stiff dynamics, making its numerical solution challenging and potentially requiring
the use of implicit methods. These features are depicted in Figures 1.2 and 1.3. Second,
although the continuous-size model may admit a more convenient asymptotic analysis,
the PDE has the form of an advection equation with global dependencies, which presents
a number of challenges related to the choice of discretization. On the other hand, the
discrete model offers a straight-forward approach and efficient implementation via the
inversion of a lower-triangular matrix at every time-step. The inverse operator may even
be written in a matrix-free form, further reducing its memory footprint. As such, when
calculation of transient behavior is required, it is recommended to consider only the
discrete model. Due to the moment-closure, one can solve to numerical precision any
truncation of the full [𝑛, ∞) size-density.

A numerical implementation in C is provided for the discrete system5 that
leverages the SUNDIALS [27] software suite. A non-dimensionalized and transformed
representation of the system is solved for, which is described below. Though an
implementation for the continuous NPM is not provided, I offer a few simplifications that
may be useful in the development of a solver or additional analysis.

Discrete NPM

Rather than solving for (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), a more fundamental quantity is the average
displacement: a non-negative, non-dimensional measurement defined by

𝑊(𝑡) = 𝑧(𝑡)
𝑦(𝑡) − 𝑛. (1.28)

Further scaling 𝑥(𝑡) = u�
u�𝑋(𝛾𝑡), 𝑦(𝑡) = u�

u�𝑌(𝛾𝑡), and 𝑧(𝑡) = u�
u�𝑍(𝛾𝑡), one may instead

solve the ODE system

𝑋′ = 𝑟 (1 − 𝑋) + 𝑛(𝑛 − 1)𝑌 − 𝑏𝑋𝑌, (1.29)
𝑌 ′ = (𝑊 − (𝑛 − 1 + 𝑟)) 𝑌, (1.30)
𝑊 ′ = 𝑏𝑋 − 𝑊(𝑊 + 1), (1.31)

with non-dimensional constants 𝑟 = u�
u� and 𝑏 = 2u�u�

u�u� . The size density {𝑢u�(𝑡)} is
additionally mapped to a probability mass over the natural numbers by defining

𝑓u�(𝛾𝑡) = 𝑢u�+u�−1(𝑡)/𝑦(𝑡), (1.32)
5The code is located in the Git repository http://www.github.com/jasondark/dissertation in

the folder dnpm.

http://www.github.com/jasondark/dissertation
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such that
𝑓 ′
u� = −𝑏𝑋(𝑓u� − 𝑓u�−1) − (𝑖 − 1 + 𝑊)𝑓u� + 2 ⎛⎜

⎝
1 −

u�
∑
u�=1

𝑓u�⎞⎟
⎠

. (1.33)

The numerical implementation solves (𝑋, 𝑌, 𝑊, 𝑓1, 𝑓2, … ) for the requested time
intervals. Using parameter values from [41], typical solutions are plotted in Figures 1.2
and 1.3.
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0
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1

𝛾𝑡

𝑋
(𝛾

𝑡)

0 0.05 0.1
0

0.005

0.01
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𝑌(

𝛾
𝑡)

0 0.05 0.1
0

200

400

𝛾𝑡

𝑊
(𝛾

𝑡)

Figure 1.2: (u�, u�, u�) vs u�u� (non-dimensionalized time) with u� = 96.25, u� = 3 × 105, and u� =
5 (values from [41]) with u�0 = 1 − 10−4, u�0 = 10−4/u�, and u�0 = 0 corresponding to the
spontaneous conversion of 0.01% of the protein into minimum-sized aggregates.

0 50 100 150 200 250
0

0.05
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𝑖

𝑓 u�(
𝛾

𝑡)

𝛾𝑡 = 1 × 10−4

𝛾𝑡 = 3 × 10−4

𝛾𝑡 = 5 × 10−4

𝛾𝑡 = 7 × 10−4

0 100 200 300 400 500
0
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0.01

𝑖

𝑓 u�(
𝛾

𝑡)

𝛾𝑡 = 1 × 10−2

𝛾𝑡 = 2 × 10−2

𝛾𝑡 = 3 × 10−2

𝛾𝑡 = 4 × 10−2

Figure 1.3: Time evolution of the probability density with parameters from [41] and initial
conditions as in Figure 1.2. Note the initial fast-traveling wave (corresponding to rapid
incorporation of protein monomers by the new aggregate), followed by a slower convergence
to the asymptotic density.

Though this transformation is not utilized, there exists a transformation that reduces
the system even further and may be useful for other analysis. Define

𝑣u� = 𝑖
u�

∑
u�=1

𝑓u� −
u�

∑
u�=1

𝑗𝑓u�. (1.34)

Then 𝑣0(𝑡) ≡ 𝑣1(𝑡) ≡ 0 and for 𝑖 > 1,

𝑣′
u� = −𝑏𝑋(𝑣u� − 𝑣u�−1) − (𝑖 + 𝑊)𝑣u� + 𝑖(𝑖 − 1). (1.35)
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The {𝑓u�} are recovered by the relation 𝑓u� = 𝑣u�+1 − 2𝑣u� + 𝑣u�−1.

Continuous NPM

Rescaling as in the discrete version, with the equivalent non-dimensional parameters,
one obtains the moment-closed system

𝑋′ = 𝑟 (1 − 𝑋) + 𝑎2𝑌 − 𝑏𝑋𝑌, (1.36)
𝑌 ′ = (𝑊 − (𝑎 + 𝑟)) 𝑌, (1.37)
𝑊 ′ = 𝑏𝑋 − 𝑊2. (1.38)

Defining again
𝑓 (𝑡, 𝑥) = ̃𝑢(𝑡, 𝑥 + 𝑎)/ ̃𝑦(𝑡), (1.39)

and
𝑣(𝑡, 𝑥) = 𝑥 ∫

u�

0
𝑓 (𝑡, 𝑦) d𝑦 − ∫

u�

0
𝑦𝑓 (𝑡, 𝑦) d𝑦, (1.40)

(as originally suggested in [18]), one arrives at the PDE

𝑣u� = −𝑏𝑋𝑣u� − (𝑥 + 𝑊)𝑣 + 𝑥2. (1.41)

This more canonical representation may be solved by characteristics, for example. The
distribution 𝑓 (𝑡, 𝑥) is recovered by the relation 𝑓 (𝑡, 𝑥) = 𝑣u�u�(𝑡, 𝑥).

1.3 Motivation and Goals
Prion diseases are universally fatal in mammals, and in addition to their health

impact, there are considerable economic costs associated with the bovine form (“mad
cow disease”) of these transmissible spongiform encephalopathy (TSE) diseases [40].
Understanding, preventing, and treating TSEs is an important goal in its own right, but
these diseases are also symptomatically linked to other protein misfolding diseases such
as Alzheimer’s and Parkinson’s diseases [6].

To aid our understanding, we look towards simpler, model organisms to study
and understand the nature of prion disease. While experiments in transgenic mice
have validated the protein-only mechanism of these diseases [43], yeast also have
their own class of prion diseases. Interestingly, some yeast colonies have the ability to
cure themselves of the prion infection [33, 15] – ultimately we wish to understand the
underlying causes effecting this outcome, as well as ways to prevent prion diseases in the
first place.

In order to do so, we appeal to mathematical modeling. However, as reviewed, the
existing models have been developed and validated under in vitro observations. As such,
they have been unable to recreate a number of important physiological characteristics,
including strain coexistence and variable phenotype induction rates (where a yeast colony
does not necessarily become [PSI+] after having prions introduced). Furthermore,
by virtue of the in vitro assumptions, little work has been done on mathematically
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understanding the origin of the prion conformation – that is, once an infectious
conformation of a prion protein arises in a population it may spread via the understood
mechanisms of nucleated polymerization, but what governs the spontaneous nucleation of
the first prion aggregate?

In Chapter 2, I incorporate the Hsp104 chaperone into a model of nucleated
polymerization, which yields the first mathematical model permitting prion strain
coexistence. While it suggests a possible mechanism for variable phenotype induction,
it occurs in a regime where stochastic, “mesoscopic” effects are also necessarily present.

Thus, in Chapter 3 I develop the first stochastic model of prion phenotype induction
and provide evidence that prion strains not only have different biochemical rate
parameters, but different minimum stable sizes. (An observation previously unconsidered
in the literature.)

In Chapter 4, I review the coagulation literature and highlight challenges in modeling
the nucleation time of a prion aggregate. I derive a number of product-form distributions
for the asymptotic distributions of proteins and compute moments of nucleation time
distributions under a variety of assumptions. Lacking biological data to validate our
models, I conclude with a falsifiable hypothesis of the nucleation mechanism.

Finally, Chapter 5 outlines future work, with an emphasis on further generalizing the
stochastic models I have developed to better model in vivo prion phenotype propagation. I
also outline the development of general purpose software for solving the chemical master
equation, inspired by my work in computing nucleation time from Chapter 4.
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Enzyme Limited Nucleated
Polymerization Model (Journal Article)

This chapter originally published as “Davis, J. K., & Sindi, S. S. (2016). A
mathematical model of the dynamics of prion aggregates with chaperone-mediated
fragmentation. Journal of Mathematical Biology, 72(6), 1555-1578.” Reprinted in
accordance with the Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/) with only minor formatting changes.

The co-author listed in this publication directed and supervised research which forms
the basis for the dissertation.

2.1 Abstract
Prions are proteins most commonly associated with fatal neurodegenerative diseases

in mammals but are also responsible for a number of harmless heritable phenotypes in
yeast. These states arise when a misfolded form of a protein appears and, rather than be
removed by cellular quality control mechanisms, persists. The misfolded prion protein
forms aggregates and is capable of converting normally folded protein to the misfolded
state through direct interaction between the two forms.

The dominant mathematical model for prion aggregate dynamics has been the
nucleated polymerization model (NPM) which considers the dynamics of only the normal
protein and the aggregates. However, for yeast prions the molecular chaperone Hsp104
is essential for prion propagation. Further, although mammals do not express Hsp104,
experimental assays have shown Hsp104 also interacts with mammalian prion aggregates.

In this study, we generalize the NPM to account for molecular chaperones and develop
what we call the enzyme-limited nucleated polymerization model (ELNPM). We discuss
existence, uniqueness and stability of solutions to our model and demonstrate that the
NPM represents a quasi-steady-state reduction of our model. We validate the ELNPM by
demonstrating agreement with experimental results on the yeast prion [PSI+] that could
not be supported by the NPM. Finally, we demonstrate that, in contrast to the NPM, the
ELNPM permits the coexistence of multiple prion strains.
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2.2 Introduction
The central dogma of molecular biology stipulates that phenotypes, an organism’s

expressed states, are determined by genotypes, the vertically transmitted DNA [11].
However, the link between genotype and phenotype is not always this direct. Today
we understand that a number of phenotypes are determined epigenetically, without a
change to the nucleotide sequence of DNA [20]. In 1965, a number of yeast phenotypes
were found to violate the laws of Mendelian inheritance and were thus inconsistent
with DNA-based transmission [10]. Further experimental studies demonstrated that the
phenotypic states were not the function of the underlying DNA but were the function
of a misfolded (prion) protein [44]. As such, the phenotypes were transmitted by the
proteins themselves. This phenomenon of “protein only inheritance,” also called the prion
hypothesis, has over time gone from highly controversial to commonly accepted [43].
Today, nearly a dozen proteins in yeast have been shown to be able to behave as prions
[29]. Of course, prions extend far beyond yeast. In mammals, prions are associated with
a number of irreversible fatal neurological diseases such as Creutzfeldt-Jakob disease,
fatal familial insomnia, chronic wasting disease and bovine spongiform encephalopathy.
Mammalian prion diseases have varying modes of transmission and have been shown to
be able to pass from one species to another. At present, all mammalian prion diseases
are the result of a single protein, PrP [1]. In addition, prion diseases are closely related to
other protein misfolding diseases such as Parkinson’s, Huntington’s, Alzheimer’s diseases
[4, 27, 3].

Although humans are vastly different from yeast, the dynamics of prion proteins in
both hosts is quite similar. Both mammals and yeast have cellular machinery dedicated
to identifying and removing misfolded proteins [31] – prion proteins are capable of
evading such protective mechanisms and transmitting their misfolded (prion) state to other
normally folded proteins. Prion proteins aggregate into complexes which act as templates
for initiating further misfolding of normally folded protein. These aggregated complexes
may also fragment into smaller units, each of which can template further misfolding [39,
43]. Finally, in order to spread the prion state to a colony or throughout a tissue, prion
aggregates must be transmitted to other cells. In yeast colonies, prion aggregates are
transmitted from mother to daughter cells during cell division [42, 13]. In mammalian
prion diseases, PrP aggregates are thought to be transmitted extracellularly [9]. For other
mammalian neurodegenerative diseases, there is a growing body of evidence suggesting
neuron to neuron propagation of the misfolded proteins [3].

Many mathematical models have been developed to study the dynamics of prion
aggregates primarily in the context of the mammalian host [30, 35, 21, 6]. Tanaka
et al. [41] applied these mathematical models to the [PSI+] prion in yeast. However,
experimental studies of [PSI+] have shown that the molecular chaperone Hsp104 is
essential for fragmentation, and recent studies have demonstrated that Hsp104 acts
in a rate limiting fashion with respect to fragmentation [36, 13]. We also note that
fragmentation is important not only for efficient conversion of normal protein by
providing more templates, but also to ensure there are sufficiently many templates
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to allow efficient transmission; thus an accurate model of fragmentation is essential
to understanding the in vivo dynamics of prion aggregates. As such, to accurately
model prion aggregates in yeast, the dynamics of Hsp104 and its interaction with prion
aggregates must be considered.

Further, modeling Hsp104 will lend insight to more general prion and protein
misfolding disorders. Although no chaperones are known to be involved in mammalian
prion dynamics, prion amplification in mammals necessarily requires aggregate
fragmentation [30]. In addition, while mammals do not express Hsp104, recent in
vitro work demonstrates that engineered mutants of Hsp104 suppress the toxicity of
misfolded protein aggregates associated with mammalian neurodegenerative disorders
[25]. At present, no mathematical model exists which considers the dynamics of protein
aggregates in the presence of a chaperone mediating fragmentation.

In this study we develop a mathematical model of prion dynamics where
fragmentation requires the interaction of Hsp104 with aggregated proteins. In Sections
2 and 3 we provide the mathematical background and analysis of our model, which we
call the Enzyme-Limited Nucleated Polymerization Model (ELNPM). In Section 4 we
illustrate the necessity of including enzyme-limited fragmentation by demonstrating
important experimental properties of [PSI+] that are not described by previously
published mathematical models. We also demonstrate that in contrast to models which
consider only the prion aggregates, interactions with the enzyme Hsp104 permit stable
co-existence of multiple prion strains. In Section 5 we provide a summary and concluding
remarks.

2.3 Mathematical Models of Prion Aggregate
Fragmentation

We develop our model of enzyme-mediated fragmentation by considering the key
biochemical processes involved in the dynamics of prions. We first discuss the dynamics
included in previous mathematical formulations and then detail the additional features
necessary to depict interactions between enzymes and aggregates. Finally, we demonstrate
that through a series of assumptions, consistent with the yeast prion [PSI+], our system
of infinite ordinary differential equations can be analyzed with a 5-dimensional system of
differential equations which approximates the full system dynamics.

2.3.1 Prion Aggregate Dynamics
While the biochemical processes depicted differs between prion model formulations

[30, 35, 21, 6], in all cases aggregates change size through conversion and fragmentation.
That is, a prion aggregate increases in length by actively converting and incorporating
normal (healthy) protein monomers. Typically, aggregates are assumed to be linear fibrils
and, as such, conversion of normal protein can only take place on one of the fibril ends.
Aggregates may also fragment into 2 smaller aggregates, each of which now act as a
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template to convert additional protein. It is often assumed that any aggregates smaller
than the minimum stable size, 𝑛0, immediately disassociate into healthy prion monomers
(see Figure 2.1).

Such models are referred to as nucleated polymerization models (NPM); mathematical
formulations of the NPM were first introduced and subsequently validated by Nowak et al.
[32] and Masel, Jansen, and Nowak [30]. This model is so-named due to the assumption
that there is a minimum “stable” size of a prion aggregate (a nucleus). The spontaneous
formation of such an initial nucleus (or seed, as it is also called) is the time-limiting step
in prion disease initialization, but once seeded, the disease progresses primarily by the
processes of conversion, fragmentation and transmission.

Figure 2.1: Nucleated Polymerization Model: Conversion and Fragmentation (u�0 = 2).
Conversion of healthy protein (circles) lengthens the aggregate (squares), which may in turn
fragment. If a daughter fragment is smaller than the stable nucleus size (u�0), it is immediately
disassociated into healthy protein monomers.

The NPM equations are derived from the Law of Mass Action applied to a minimal set
of kinetic rate equations. Masel, Jansen, and Nowak [30] give them as

𝑠′ = 𝛼u� − 𝜇u�𝑠(𝑡) − 2𝛽𝑠(𝑡)
∞
∑
u�=u�0

𝑢u�(𝑡) + 𝛾(𝑛0 − 1)𝑛0

∞
∑
u�=u�0

𝑢u�(𝑡), (2.1)

𝑢′
u� = −2𝛽𝑠(𝑡)[𝑢u�(𝑡) − 𝑢u�−1(𝑡)] − [𝜇0 + 𝛾(𝑚 − 1)]𝑢u�(𝑡) + 2𝛾

∞
∑

u�=u�+1
𝑢u�(𝑡), (2.2)

where 𝑠(𝑡) denotes the concentration of healthy protein and 𝑢u�(𝑡) the density
of aggregates of size 𝑚. Many authors [21, 35, 17] have studied the more
analytically-tractable equations that come from a continuous relaxation of aggregate sizes:

𝑠′ = 𝛼u� − 𝜇u�𝑠(𝑡) − 2𝛽𝑠(𝑡) ∫
∞

u�0
𝑢(𝑡, 𝑥) + 𝛾𝑥0

2 ∫
∞

u�0
𝑢(𝑡, 𝑥), (2.3)

𝜕𝑢
𝜕𝑡 = −2𝛽𝑠(𝑡)𝜕𝑢

𝜕𝑥 − [𝜇0 + 𝛾𝑥]𝑢(𝑡, 𝑥) + 2𝛾 ∫
∞

u�
𝑢(𝑡, 𝑦) 𝑑𝑦. (2.4)

Though it is known that this latter system converges weakly to the former in the limit
of large average aggregate size under very general assumptions [15, 14], we choose to
generalize the discrete model for simplicity.

In adapting this prion model to yeast, we identify the kinetic parameters as
representing the following physical quantities:
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• 𝛼u� the basal rate of transcription of Sup35,

• 𝜇u� the decay (or dilution) rate of Sup35,

• 𝑛0 the minimum stable aggregate size (aggregates of size smaller than 𝑛0
immediately disassociate into soluble Sup35),

• 𝜇0 the decay (or dilution) rate of aggregated protein,

• 𝛽 the rate of conversion of healthy protein (from the end of a prion filament), and

• 𝛾(𝑚 − 1) the fragmentation rate of a prion aggregate of size 𝑚.

2.3.2 Enzyme-Mediated Fragmentation
We now draw attention to an underlying assumption in these equations that we will

modify: for the mammalian prion PrP, it was assumed that the fragmentation rate is an
intrinsic function of the aggregate size itself. However, with yeast prion systems, it has
been demonstrated that fragmentation requires the additional presence of heat-shock
protein 104 (Hsp104) [36]. Its under- or over-expression can eliminate prion aggregates
entirely [7]. Additionally, over-expressing Sup35 results in a translational shift in the
aggregate-size density [13] – the model equations of Masel, Jansen, and Nowak [30] do
not admit such behavior (see Section 2.5.3), suggesting the possibility of a rate-limited
fragmentation mechanism rooted in the Hsp104 interactions.

Though yeast prion systems have been studied with the NPM [41], we believe the
impact of Hsp104 to be nonnegligible and explicitly consider the Hsp104 concentration
and dynamics. We assume a prion aggregate of size 𝑖 has 𝑖 − 1 sites to which a hexamer
(the active unit) of Hsp104 can bind and subsequently fragment – we denote such an
aggregate with 𝑗 bound hexamers as 𝑋u�,u�. We note that there are actually (u�−1

u� ) unique
configurations of bound Hsp104 that 𝑋u�,u� could refer to, but the proposed kinetic equations
will best be described by the amount of Hsp104 bound, not their configuration. We use
standard terminology for the enzyme kinetics (parameters 𝑘on and 𝑘off), and for simplicity,
we do not model the formation of Hsp104 hexamers from monomers explicitly. We
additionally define 𝛼ℎ and 𝜇ℎ for Hsp104 similarly as 𝛼u� and 𝜇u� for Sup35. Lastly, while
we write the dilution rates 𝜇u�, 𝜇ℎ, and 𝜇0 separately, we will take them as all equal to the
rate of growth of the yeast cell in our numerical experimentation. We now propose our
generalization in the form of the following kinetic relations (and illustrate in Figure 2.2).

Translation and Dilution

∅
u�u�↼−−−−⇁u�u�

Sup35, ∅
u�ℎ↼−−−−⇁u�ℎ

Hsp104, ∅ ←−−u�0
𝑋u�,u�,

Aggregation (Polymerization/Coagulation)

Sup35 + 𝑋u�,u� −−→
2u�

𝑋u�+1,u�,
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(a) Nucleated Polymerization Model (stochastic fragmentation)

(b) Enzyme-Limited Polymerization Model (mechanistic fragmentation via Hsp104 chaperone)

Figure 2.2: NPM is based on a random breaking of the prion aggregate (stars), while our model
introduces the Hsp104 enzyme (hexagons) that mechanistically fragments the aggregate. Healthy
Sup35 (squares) are converted by the ends of the prion aggregate in both models; proteins
undergoing conversion are represented with pentagons to demonstrate the active change in
conformation.

Enzyme Kinetics
Hsp104 + 𝑋u�,u�

u�off(u�+1)
↼−−−−−−−−−−−−−−−−⇁
u�on(u�−u�−1)

𝑋u�,u�+1,

Fragmentation (with unspecified probability 𝜅(𝑚, 𝑛; 𝑖, 𝑗))

𝑋u�,u� −−→
u�u�

⎧{{{
⎨{{{⎩

𝑋u�,u� + Hsp104 + 𝑋u�−u�,u�−u�−1 𝑚, 𝑖 − 𝑚 ≥ 𝑛0

𝑚Sup35 + (𝑛 + 1)Hsp104 + 𝑋u�−u�,u�−u�−1 𝑚 < 𝑛0, 𝑖 − 𝑚 ≥ 𝑛0

𝑋u�,u� + (𝑗 − 𝑛)Hsp104 + (𝑖 − 𝑚)Sup35 𝑚 ≥ 𝑛0, 𝑖 − 𝑚 < 𝑛0

𝑖Sup35 + 𝑗Hsp104 𝑚, 𝑖 − 𝑚 < 𝑛0.

The key unknown in our model is the density of configurations of bound Hsp104,
which is incorporated into the fragmentation kernel 𝜅(𝑚, 𝑛; 𝑖, 𝑗). Typically, all
fragmentation sites in an aggregate are taken to be equally likely [30, 35, 21]:

u�−(u�−u�)
∑
u�=0

𝜅(𝑚, 𝑛; 𝑖, 𝑗) = 1
𝑖 − 1. (2.5)
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Furthermore, we require total Sup35 and Hsp104 to be conserved across
fragmentation events, which corresponds to

u�−1
∑
u�=1

u�−1
∑
u�=0

𝑚𝜅(𝑚, 𝑛; 𝑖, 𝑗) = 𝑖
2 and

u�−1
∑
u�=1

u�−1
∑
u�=0

𝑛𝜅(𝑚, 𝑛; 𝑖, 𝑗) = (𝑗 − 1)/2. (2.6)

We claim that

𝜅(𝑚, 𝑛; 𝑖, 𝑗) = 1
𝑖 − 1

(u�−1
u� )(u�−u�−1

u�−u�−1)

(u�−2
u�−1)

= 1
𝑗

(u�−1
u� )(u�−u�−1

u�−u�−1)

(u�−1
u� )

(2.7)

is the natural choice, which follows from taking each (u�−1
u� ) configuration of 𝑋u�u� to be

equally likely, which in turn corresponds to enzyme binding acting on a faster time-scale
than conversion and fragmentation (refer to the Supplemental Materials for the argument).

2.3.3 Enzyme-Limited Nucleated Polymerization Model
With the biochemical processes defined, we are now able to formally derive our

enzyme-limited nucleated polymerization model (ELNPM). We define 𝑠(𝑡) as the
concentration of soluble Sup35, 𝜂(𝑡) as the concentration of aggregates, 𝑧(𝑡) as the
concentration of bound Sup35 (𝑧(𝑡) ≥ 𝑛0𝜂(𝑡)), ℎ(𝑡) as the concentration of unbound
Hsp104, and 𝑧u�(𝑡) as the concentration of bound Hsp104. Using [𝑆] to denote the
concentration of chemical species 𝑆, these definitions correspond to 𝑠(𝑡) = [Sup35](𝑡),
ℎ(𝑡) = [Hsp104](𝑡), and

𝜂(𝑡) =
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑢u�u�(𝑡), 𝑧(𝑡) =
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑖𝑢u�u�(𝑡), 𝑧u�(𝑡) =
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗𝑢u�u�(𝑡), (2.8)

where we have let 𝑢u�u�(𝑡) = [𝑋u�u�](𝑡). Let us define a new quantity 𝑝(𝑡) by the relation
𝑧u�(𝑡) = 𝑝(𝑡)[𝑧(𝑡) − 𝜂(𝑡)] and apply the Law of Mass Action to our proposed kinetic
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equations. We obtain

𝑠′(𝑡) = 𝛼u� − 𝜇u�𝑠(𝑡) − 2𝛽𝑠(𝑡)𝜂(𝑡) + 𝛾(𝑛0 − 1)𝑛0𝜂(𝑡)
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗
𝑖 − 1

𝑢u�u�(𝑡)
𝜂(𝑡) (2.9a)

ℎ′(𝑡) = 𝛼ℎ − 𝜇ℎℎ(𝑡) + [(𝑘off + 𝛾)𝑝(𝑡) − 𝑘onℎ(𝑡)(1 − 𝑝(𝑡))] (𝑧(𝑡) − 𝜂(𝑡))

+ 𝛾(𝑛0 − 1)(𝑛0 − 2)𝜂(𝑡)
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗(𝑗 − 1)
(𝑖 − 1)(𝑖 − 2)

𝑢u�u�(𝑡)
𝜂(𝑡)

(2.9b)

𝜂′(𝑡) = −(𝜇0 + 𝛾𝑝(𝑡))𝜂(𝑡) + 𝛾𝑝(𝑡)𝑧(𝑡) − 2𝛾(𝑛0 − 1)𝜂(𝑡)
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗
𝑖 − 1

𝑢u�u�(𝑡)
𝜂(𝑡) (2.9c)

𝑧′(𝑡) = 2𝛽𝑠(𝑡)𝜂(𝑡) − 𝜇0𝑧(𝑡) − 𝛾𝑛0(𝑛0 − 1)𝜂(𝑡)
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗
𝑖 − 1

𝑢u�u�(𝑡)
𝜂(𝑡) (2.9d)

𝑝′(𝑡) = 𝑘onℎ(𝑡)(1 − 𝑝(𝑡)) − (𝑘off + 𝛾)𝑝(𝑡) + 𝑝(𝑡)2 − 2𝛽𝑠(𝑡)𝜂(𝑡)𝑝(𝑡)
𝑧(𝑡) − 𝜂(𝑡)

+ 𝛾(𝑛0 − 1)(𝑛0 − 2)𝜂(𝑡)
𝑧(𝑡) − 𝜂(𝑡)

⎛⎜
⎝

∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗
𝑖 − 1

𝑢u�u�(𝑡)
𝜂(𝑡) − 1

𝑝(𝑡)
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗(𝑗 − 1)
(𝑖 − 1)(𝑖 − 2)

𝑢u�u�(𝑡)
𝜂(𝑡)

⎞⎟
⎠

.

(2.9e)

We note that 𝑢u�u�/𝜂 defines a probability mass function for the joint random variable
(𝐼, 𝐽) over {(𝑖, 𝑗) ∶ 0 ≤ 𝑗 < 𝑖, 𝑖 ≥ 𝑛0}, thus the sums may be interpreted as an expected
value. In the interest of obtaining a simple set of equations, we approximate

𝔼 [ 𝐽
𝐼 − 1] ≈ 𝔼[𝐽]/𝔼[𝐼 − 1] = 𝑧u�/(𝑧 − 𝜂) = 𝑝 (2.10)

and
𝔼 [ 𝐽(𝐽 − 1)

(𝐼 − 1)(𝐼 − 2)] ≈ 𝔼[𝐽]2/𝔼[𝐼 − 1]2 = 𝑝2. (2.11)

The error of this approximation is on the order of the inverse square of the average
aggregate size, a size which is typically large by assumption [35, 21, 15]. (This analysis
is provided in the Supplemental Materials.)

Making these substitutions, we obtain the enzyme-limited, nucleated polymerization
model (ELNPM):

𝑠′(𝑡) = 𝛼u� − 𝜇u�𝑠(𝑡) − 2𝛽𝑠(𝑡)𝜂(𝑡) + 𝛾𝑝(𝑡)(𝑛0 − 1)𝑛0𝜂(𝑡) (2.12a)
ℎ′(𝑡) = 𝛼ℎ − 𝜇ℎℎ(𝑡) + [(𝑘off + 𝛾)𝑝(𝑡) − 𝑘onℎ(𝑡)(1 − 𝑝(𝑡))](𝑧(𝑡) − 𝜂(𝑡)) (2.12b)
𝜂′(𝑡) = −[𝜇0 + 𝛾𝑝(𝑡)(2𝑛0 − 1)]𝜂(𝑡) + 𝛾𝑝(𝑡)𝑧(𝑡) (2.12c)
𝑧′(𝑡) = 2𝛽𝑠(𝑡)𝜂(𝑡) − 𝜇0𝑧(𝑡) − 𝛾𝑝(𝑡)𝑛0(𝑛0 − 1)𝜂(𝑡) (2.12d)

𝑝′(𝑡) = 𝑘onℎ(𝑡)(1 − 𝑝(𝑡)) − (𝑘off + 𝛾)𝑝(𝑡) − 𝑝(𝑡) (2𝛽𝑠(𝑡)𝜂(𝑡)
𝑧(𝑡) − 𝜂(𝑡) − 𝛾𝑝(𝑡)) , (2.12e)

and marginal density equations

𝑑𝑢u�
𝑑𝑡 = −2𝛽𝑠(𝑡)[𝑢u�(𝑡) − 𝑢u�−1(𝑡)] − [𝜇 + 𝛾𝑝(𝑡)(𝑚 − 1)]𝑢u� + 2𝛾𝑝(𝑡)

∞
∑

u�=u�+1
𝑢u�(𝑡). (2.13)



24

Figure 2.3: Plot of steady-state u�u� = u�u�+u�0−1/u� with parameter values chosen from [41],
appropriately modified to match the steady-state, effective fragmentation rate with the paper’s
constant rate.

We note that these equations may alternatively be derived by prescribing the binomial
form 𝑢u�u�(𝑡) = (u�−1

u� )𝑝(𝑡)u�[1 − 𝑝(𝑡)]u�−u�−1𝑢u�(𝑡), then finding the unique 𝑝(𝑡) that preserves
Hsp104 conservation across fragmentation events.

We further observe that the systems (𝑠, {𝑢u�}) and (𝑠, 𝜂, 𝑧) are identical to that of
the original NPM [30], except the constant fragmentation rate 𝛾 has been replaced
by the time-varying quantity 𝛾𝑝(𝑡). This provides the interpretation of 𝑝(𝑡) as the
measure of how effectively the system is fragmenting at a given time. Furthermore, this
formulation suggests a quasi-steady-state interpretation of our approximation, since
now every aggregate is always bound with Hsp104 proportionally as 𝑝(𝑡); that is, the
enzyme binding reaches equilibrium before any conversion or fragmentation events
occur. We finally note that the first 2 terms in Equation (2.12e) reflect a Michaelis-Menten
simplification of the enzyme kinetics [37]; however, since Hsp104 off-binding results in a
change in the amount of binding substrate with probability 𝛾/(𝛾 + 𝑘off), we may view the
last term as the correction to preserve Hsp104 conservation.

Before detailed analysis of the ELNPM, we briefly examine the qualitative form
of the aggregate size distribution. In Figure 2.3 we plot a typical equilibrium solution
to Equation (2.13), where we have defined 𝑥u� = 𝑢u�0−1+u�/𝜂 to be the corresponding
probability mass function over the natural numbers. As expected, given the asymptotic
similarity of our system to [30] (in that 𝛾𝑝(𝑡) presumably converges to a fixed �̃�), the
equilibrium size density is of the same distribution.
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2.4 Analysis of the ELNPM
We first prove a few results on existence and uniqueness for this system and then

provide a non-dimensionalized, transformed system we will use to study stability. We
analytically demonstrate the stability of the disease-free state and derive conditions which
will ensure aggregate persistence.

2.4.1 Existence and Uniqueness of Solutions
Theorem 1. Trajectories of Equation (2.12) remain invariant under a bounded, “feasible”
subset of the non-negative cone ℝ5

+.

Proof. Let us define the feasible subset to be the set of all (𝑠, ℎ, 𝜂, 𝑧, 𝑝) where 𝑠, ℎ, 𝜂, 𝑧 ≥ 0
and 0 ≤ 𝑝 ≤ 1, with the further restriction that 𝑧 ≥ 𝑛0𝜂, 0 ≤ 𝑠 + 𝑧 ≤ 𝛼u�/𝜇0, and 0 ≤
ℎ + 𝑝(𝑧 − 𝜂) ≤ 𝛼ℎ/𝜇0. For analytical convenience, and in line with typical parameter
regimes, we assume 𝜇0 ≤ 𝜇u�, 𝜇ℎ and u�

2u� < u�u�
u�u�

.
Now consider the violation of any single constraint. It is straight-forward to show

𝑠′∣u�<0, ℎ′∣ℎ<0, 𝜂′∣u�<0, 𝑝′∣u�<0 ≥ 0. Similarly, 𝑝′∣u�>1 ≤ 0. Next, (𝑧 − 𝑛0𝜂)′∣u�<u�0u� = 2𝛽𝑠𝜂 −
𝜇0(𝑧 − 𝑛0𝜂) − 𝑛0𝛾𝑝(𝑧 − 𝑛0𝜂) ≥ 0, which also demonstrates the non-negativity of 𝑧 since
𝑧 ≥ 𝑛0𝜂 ≥ 0. Writing 𝜇u�/𝜇0 = 1+𝜖/𝜇0, we have (𝑠+𝑧)′∣u�+u�>u�u�/u�0

= 𝛼u�−𝜇0(𝑠+𝑧)−𝜖𝑠 ≤ 0.
With a similar approach, we also find (ℎ + 𝑝(𝑧 − 𝜂))′∣ℎ+u�(u�−u�)>u�ℎ/u�0

≤ 0.

Theorem 2. Solutions satisfy the existence and uniqueness criteria within the invariant,
feasible region.

Proof. With the exception of the u�
u�−u� term in 𝑝′, the derivatives are polynomial in the

dependent variables, which yields continuous partial derivatives. Considering now this
last term, 𝑧 ≥ 𝑛0𝜂 in our feasible region so we have 0 ≤ u�

u�−u� ≤ 1
u�0−1 ≤ 1. This term’s

partial derivatives are also continuous in this region; let 𝑞(𝜂, 𝑧) = 𝜂/(𝑧 − 𝜂). Then, 𝑧/𝜂 =
1 + 1/𝑞 and

𝑞u� = 𝜂′

𝑧 − 𝜂 + 𝜂(𝑧 − 𝜂)′

(𝑧 − 𝜂)2 = 𝜂′

𝜂 𝑞 + 𝑧′ − 𝜂′

𝜂 𝑞2

= 𝑞(𝑞 − 1) (𝜇0 + 𝛾𝑝(2𝑛0 − 1) − 𝛾𝑝(1/𝑞 + 1))
+ 𝑞2 (2𝛽𝑠 − 𝜇0(1 + 1/𝑞) − 𝛾𝑝𝑛0(𝑛0 − 1))

= (𝑞 − 1) (𝑞𝜇0 + 𝑞𝛾𝑝(2𝑛0 − 1) − 𝛾𝑝(𝑞 + 1))
+ 𝑞 (2𝑞𝛽𝑠 − 𝜇0(1 + 𝑞) − 𝑞𝛾𝑝𝑛0(𝑛0 − 1)) ,

(2.14)

and

𝑞u� = − 𝜂
(𝑧 − 𝜂)2 𝑧′ = −𝑞2 𝑧′

𝜂 = −𝑞2 (2𝛽𝑠 − 𝜇0(1 + 1/𝑞) − 𝛾𝑝𝑛0(𝑛0 − 1))

= −𝑞 (2𝑞𝛽𝑠 − 𝜇0(1 + 𝑞) − 𝑞𝛾𝑝𝑛0(𝑛0 − 1)) .
(2.15)

Thus, 𝑞, 𝑞u�, 𝑞u� are continuous in our region, even as 𝜂 → 0+. This establishes existence
and uniqueness.
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2.4.2 Non-Dimensionalized Equations
We now reduce the ELNPM equations to non-dimensional form,

𝑠′ = 𝐴u�(1 − 𝑠) − 𝐵𝑠𝜂 + (𝑛0 − 1)𝑛0𝑝𝜂 (2.16a)
ℎ′ = 𝐴ℎ(1 − ℎ) + 𝑟 [(𝜔 + 𝑛0 − 1) (𝑘−1𝑝 − 𝑘1ℎ[1 − 𝑝]) + (𝑛0 − 1)(𝑛0 − 2)𝑝2] 𝜂 (2.16b)
𝜂′ = (𝜔 − 𝐴0/𝑝 − 𝑛0 + 1) 𝑝𝜂 (2.16c)
𝜔′ = 𝐵𝑠 − 𝑝(𝜔 + 1)𝜔 (2.16d)

𝑝′ = 𝑘1ℎ(1 − 𝑝) − 𝑘−1𝑝 − 𝑝 ( 𝐵𝑠
𝜔 + 𝑛0 − 1 − 𝑝) (2.16e)

where we have replaced 𝑧(𝑡) by the displacement of the average aggregate size from the
minimum size 𝜔(𝑡) = 𝑧(𝑡)/𝜂(𝑡) − 𝑛0 ≥ 0. We have scaled time by 𝛾, 𝑠(𝑡) and 𝜂(𝑡) by
𝛼u�/𝜇u� and ℎ(𝑡) by 𝛼ℎ/𝜇ℎ, and used the following non-dimensional constants

𝐴u� = 𝜇u�/𝛾, 𝐴ℎ = 𝜇ℎ/𝛾, 𝐴0 = 𝜇0/𝛾, 𝐵 = 2𝛼u�𝛽
𝛾𝜇u�

,

𝑘−1 = (𝑘off + 𝛾)/𝛾, 𝑘1 = 𝑘on𝛼ℎ
𝛾𝜇ℎ

, 𝑟 = 𝛼u�/𝜇u�
𝛼ℎ/𝜇ℎ

.
(2.17)

All subsequent analysis will done with respect to these non-dimensional equations. We
note that by construction 𝑘−1 > 1 and by assumption, 𝐵 > 1.

2.4.3 Asymptotic Behavior of ELNPM
With the nondimensional equations established, we next consider the asymptotic

behavior of the ELNPM. We call any trajectory satisfying limu�→∞ 𝜂(𝑡) = 0 disease-free;
otherwise, we call the prion state persistent. [35] observed that an appropriate
transformation could reduce the NPM equations to the standard SEIS model of
mathematical epidemiology – a model which is governed entirely by a single parameter
𝑅0 (the basic reproductive number). If 𝑅0 < 1, the only equilibrium is disease-free and is
globally stable. If 𝑅0 > 1, a unique endemic equilibrium appears and exchanges stability
with the disease-free state; that is, the endemic equilibrium is asymptotically globally
stable [28]. Applying the transformation from Prüss et al. [35], our 𝑅0 will vary in time
through its dependence on 𝑝(𝑡):

𝑅0(𝑝) = 𝐵/𝑝
(𝐴0/𝑝 + 𝑛0 − 1)(𝐴0/𝑝 + 𝑛0) . (2.18)

It is convenient to think of the quantity 𝑅0(𝑝(𝑡)) = 𝑅u� as the effective reproductive
number of the disease system, where typically 𝑅u� < 𝑅0. Though 𝑝(𝑡) appears to always
converge to a fixed steady-state value, it does so in a non-trivial way making it difficult to
provide a Lyapunov analysis. Instead, we provide a local analysis of the disease-free state
and offer numerical evidence in support of 𝑅0(𝑝disease-free) determining global stability.
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Disease-Free Steady State

At a disease-free equilibrium, we have 𝜂 = 0 and subsequently, 𝑠 = ℎ = 1. Thus, we
need only study solutions to

0 = 𝐵 − 𝑝𝜔(𝜔 + 1)

0 = 𝑘1(1 − 𝑝) − 𝑘−1𝑝 + 𝑝2 − 𝐵𝑝
𝜔 + 𝑛0 − 1.

(2.19)

This system has 5 solutions in general, though we shall show there is only a single
solution inside our feasible region.

Theorem 3. There is a unique solution to Equation (2.19) in our feasible region of
trajectories.

Proof. We may write 𝑝 = 𝑝(𝜔) = 𝐵/[𝜔(𝜔 + 1)]; then 𝜔 satisfies

0 = 𝑓 (𝜔) = 𝐵2(𝑛0 − 1) − 𝐵(𝑛0 − 1)(𝑘1 + 𝑘−1)𝜔 − [𝐵2 + 𝐵𝑘−1𝑛0 + {1 + (𝐵 − 1)𝑛0}𝑘1]𝜔2

[−𝐵(𝑘1 + 𝑘−1) + 𝑘1(2𝑛0 − 1)]𝜔3 + 𝑘1(𝑛0 + 1)𝜔4 + 𝑘1𝜔5.
(2.20)

Since u�1
u�1+u�−1

< 1 < 𝐵, we observe 2 sign changes in the coefficients of 𝑓 (𝜔), implying 0 or
2 real roots by Budan’s theorem [2]. We may also write 𝜔 = 𝜔(𝑝) = −1/2 + √1/4 + 𝐵/𝑝.
Since 𝑝 < 1, we have 𝜔 > 𝜔min = −1/2 + √1/4 + 𝐵. However, 𝑓 (0) = 𝐵2(𝑛0 − 1) > 0,
𝑓 (𝜔min) = −u�2

2 (2𝐵 + (𝑘−1 − 1)(2𝑛0 − 3 + √1 + 4𝐵)) < 0, and limu�→∞ 𝑓 (𝜔) > 0. Thus, by
sign analysis we have an infeasible root 𝜔 ∈ (0, 𝜔min) and a feasible root 𝜔 > 𝜔min.

We now establish local stability criteria of this root; let 𝑝0 and 𝜔0 be the unique
solution to Equation (2.19).

Theorem 4. The unique disease-free equilibrium is locally stable when 𝑅0(𝑝0) < 1 and
unstable when 𝑅0(𝑝0) > 1.

Proof. The eigenvalues of the localized Jacobian will satisfy

0 = (𝐴u� + 𝜆)(𝐴ℎ + 𝜆)(𝑝0(𝜔0 + 𝑛0 − 1) − 𝐴0 − 𝜆)

×
⎡
⎢⎢⎢
⎣

𝜆2 + (2𝜔0𝑝0 + 𝑘1 + 𝑘−1 − 𝑝0 + 𝐵
𝜔0 + 𝑛0 − 1) 𝜆

+ 𝑝0(1 + 2𝜔0) (𝑘−1 + 𝑘1 − 2𝑝0 + 𝐵
𝜔0 + 𝑛0 − 1) + 𝐵𝑝0𝜔0(𝜔0 + 1)

(𝜔0 + 𝑛0 − 1)2 .

⎤
⎥⎥⎥
⎦

(2.21)

Of the five roots, the first 2 are clearly negative. The quadratic factor will also admit 2
stable roots: we see that its quadratic and linear coefficients are strictly positive and now
show that the constant term is as well. If 𝑘1 > 0, then 𝑘1 + 𝑘−1 − 2𝑝0 > 2(1 − 𝑝0) > 0. If
not, then consider 𝑝′ at 𝑝 = 𝑘1:

𝑝′ < 𝑘1(1 − 𝑘1) − 𝑘−1𝑘1 + 𝑘2
1 = 𝑘1(1 − 𝑘−1) < 0. (2.22)
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Figure 2.4: Non-dimensionalized plots of aggregate density over time with varying u�0 = u�0(u�0).
The system is initialized with a 10−9 perturbation of aggregated protein from an otherwise healthy
initial state.

So, 𝑝(𝑡) < 𝑘1 for all time, implying 𝑝0 < 𝑘1 and 𝑘1 + 𝑘−1 − 2𝑝0 > 𝑘−1 − 𝑝0 > 1 − 𝑝0 > 0.
Finally, the remaining root will be negative when 𝑝0(𝜔0 −𝑛0 +1)−𝐴 < 0. Substituting

𝜔0 = −1/2 + √1/4 + 𝐵/𝑝0 and simplifying, our expression reduces to

𝑅0(𝑝0) = 𝐵/𝑝0
(𝐴0/𝑝0 + 𝑛0)(𝐴0/𝑝0 + 𝑛0 − 1) < 1. (2.23)

We support this claim numerically in Figure 2.4, where we vary 𝑅0(𝑝0) across a range
of parameters (described in Table 2.1). We observe that when 𝑅0(𝑝0) > 1, there appears
to be an attractive endemic equilibrium.

Endemic Steady State

The local instability of the disease-free equilibrium yields a persistent disease state;
however, the numerical experimentation in Figure 2.4 suggests further that there is an
attractive, endemic equilibrium. Generally speaking, steady-state solutions to our system
will be solutions of a quintic polynomial in 5 variables, thus preventing closed-form
descriptions of such states. However, one can parameterize these values in terms of a
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fixed (but unknown) value ̃𝑝 corresponding to 𝑝 = ̃𝑝:

̃𝑠 = (𝐴0/ ̃𝑝 + 𝑛0 − 1)(𝐴0/ ̃𝑝 + 𝑛0)
𝐵/ ̃𝑝 (2.24a)

ℎ̃ = 1 − 𝑟(𝐴u�/𝐴ℎ)(1 − ̃𝑠) ̃𝑝 (1 − 1
𝐴0/ ̃𝑝 + 2𝑛0 − 1) (2.24b)

�̃� = (𝐴u�/𝐴0) 1 − ̃𝑠
𝐴0/ ̃𝑝 + 2𝑛0 − 1 (2.24c)

�̃� = 𝐴0/ ̃𝑝 + 𝑛0 − 1, (2.24d)

where ̃𝑝 satisfies
0 = 𝑘1ℎ̃(1 − ̃𝑝) − 𝑘−1 ̃𝑝 + ̃𝑝2 − 𝐵 ̃𝑠 ̃𝑝

�̃� + 𝑛0 − 1. (2.25)

We note that this quadratic is uniquely invertible within our feasible region, which yields
the recursive relation

2 ̃𝑝 = (𝑘−1 + 𝑘1ℎ̃ + 𝐵 ̃𝑠
�̃� + 𝑛0 − 1)

− √(𝑘−1 + 𝑘1ℎ̃ + 𝐵 ̃𝑠
�̃� + 𝑛0 − 1)

2
− 4𝑘1ℎ̃.

(2.26)

Incidentally, if we suppose 𝑘1ℎ + 𝑘−1 ≫ u� ̃u�
ũ�+u�0−1 , 𝑘1ℎ, then we obtain

̃𝑝 = 𝑘1ℎ
𝑘1ℎ + 𝑘−1

+ 𝑂 ( 1
(𝑘1ℎ + 𝑘−1)2 ) . (2.27)

We draw attention to the similarity between Equation (2.27) and what would be the
Michaelis-Menten value for ̃𝑝.

Our feasible region requires 𝑠, ℎ, 𝜂, 𝜔 > 0; ̃𝑠 and �̃� are always positive, while �̃� >
0 ⟹ ̃𝑠 < 1 ⟹ 𝑅0( ̃𝑝) > 1. This also gives us ℎ̃ > 0, since we typically assume
𝛼ℎ ≤ 𝛼u� ⟹ 𝑟(𝐴u�/𝐴ℎ) ≤ 1, which implies

ℎ̃ > 1 − (1 − ̃𝑠) ̃𝑝 (1 − 1
𝐴0/ ̃𝑝 + 2𝑛0 − 1) > 0. (2.28)

Thus, we will have endemic equilibria when Equation (2.26) has solutions satisfying
𝑅0( ̃𝑝) > 1. Based on considerable numerical studies, we conjecture that this solution
uniquely exists and is globally asymptotically stable when 𝑅0(𝑝0) > 1.

2.5 Discussion
Formulating the ELNPM allows us to consider aspects of prion aggregate dynamics

that cannot be explained by prior mathematical approaches that neglected the role of the
Hsp104 chaperone in fragmentation. We first demonstrate that the NPM is a limiting case
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of the ELNPM and comment on implications of the ELNPM to the larger question of
the appearance of prion strains in a population. We then demonstrate that the ELNPM
is the first model capable of supporting two experimentally observed phenomena. First,
the ELNPM is the first model capable of reproducing shifts in the aggregate densities
associated with increases in synthesis of Sup35. Finally, we demonstrate that the binding
kinetics of Hsp104 in the ELNPM allows the possibility of multiple co-existing prion
strains. Intriguingly, the co-existence of multiple strains is thought to be crucial towards
understanding the transmission of prion diseases between species [8].

2.5.1 The NPM is a Limiting Case of ELNPM
Our moment-closed ELNPM model, Equations (2.9), is nearly identical to the original

NPM model but with a time-varying, effective fragmentation rate 𝛾𝑝(𝑡) instead of the
constant 𝛾. When 𝑝(𝑡) → ̃𝑝, the dynamics of ELNPM will mirror that of the NPM with
𝛾 replaced by 𝛾 ̃𝑝. As such, it is convenient to think of the NPM as a quasi-steady-state
approximation of the full enzyme kinetics we have considered in our model. We
informally used this observation in Section 2.4.3 to motivate (but not prove) global
stability based on known results of the NPM system.

We plot in Figure 2.5 𝑝(𝑡) over the same parameters in Figure 2.4 and note that
– since yeast has a doubling time of roughly 90 minutes [22] – 𝑝(𝑡) will not reach its
asymptotic value for a few cell-divisions. As such, even though the NPM represents a
quasi-steady-state approximation it may not represent the aggregate dynamics during the
early cell divisions following the introduction of prion aggregates.

2.5.2 Transient Fragmentation Efficiency May Impact Prion
Stability

Although the NPM may be viewed as an asymptotic simplification of the ELNPM, we
remark that the differences in transient behavior may provide insight into the underlying
stochastic dynamics that arise when a single prion seed is introduced into a healthy yeast
colony. The ELNPM predicts an initial fragmentation rate that can be larger or smaller
than the asymptotic rate – this is because the availability of enzyme (Hsp104) is much
larger than the availability of substrate (binding sites) in this initial configuration. (See
Figure 2.5.)

Since aggregate amplification is essential to spreading a prion disease these
transient fragmentation rates may impact prion stability. For example, a higher
transient fragmentation rate for a prion strain with low 𝑅0 would represent a barrier to
successful “seeding” of the prion state than would otherwise be predicted by a constant
fragmentation rate. This provides a plausible mechanism for the removal of an initial
prion aggregate appearing in a population and therefore the low frequency of spontaneous
appearance of the prion state.
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Figure 2.5: u�(u�) over time with varying u�0 = u�0(u�0); parameters are the same as in Figure 2.4.
The transient fragmentation efficiency may be higher (for small u�0) or lower (for large u�0) than
the asymptotic efficiency.

2.5.3 Hsp104 Acts as a Rate Limiter for Fragmentation
We noted in Section 2.3 that the NPM does not admit translational shifts in the

aggregate density as a function of increasing synthesis of the prion protein (𝛼u�), we now
formally demonstrate this is the case. Let us revisit the quantity 𝑢u�(𝑡), the density of
aggregates of size 𝑚. We write 𝑥u� = 𝑢u�+u�0−1/𝜂 – this quantity defines a probability
mass function that is independent of the amount of aggregated protein. In our rescaled
variables, we have

𝑥′
u� = −𝐵𝑠(𝑥u� − 𝑥u�−1) − 𝑝(𝑚 + 𝜔 + 1)𝑥u� + 2𝑝 − 2𝑝

u�−1
∑
u�=0

𝑥u�. (2.29)

Davis and Sindi [12] gave a closed-form for 𝑥u� at steady-state:

𝑥u� = 𝑚(2𝜁 + 𝑚 − 1) Γ(𝜁2)
Γ(𝜁2 + 𝑚 + 1)

𝜁u�(𝜁 − 1)u�−1, (2.30)

where 𝜁 = u�
u�ũ� + 𝑛0.

The size distribution’s dependence on 𝛼u� can only occur through its relationship
with the steady-state fragmentation efficiency ̃𝑝. This is fixed in the NPM, thus the size
distribution will not change in response to changes in 𝛼u�. This is in contradiction to the
experimental results described by Derdowski et al. [13]. Since our model does allow ̃𝑝
to vary as a function of the kinetic parameters, we are able to numerically investigate
qualitative shifts in the distribution. We demonstrate these shifts in Figure 2.6, which
are in qualitative agreement with the experiments of Derdowski et al. [13]. As such,
experimental evidence supports that fragmentation can not be purely a function of the
number of available fragmentation sites and must depend on the amount of Hsp104 in the
system.
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Figure 2.6: Theoretical shifts in the steady-state concentration of aggregate size distributions
{u�u�u�} by increasing the synthesis of normal protein (u�u�). Left, u�u�u� = u�u�u�u�−u�0+1 from the
NPM. Though u�u� is invariant to u�u�, u� does have a dependency, resulting in the small changes in
scaling. Right, u�u�u� from our ELNPM. Both the scaling and translation are affected by u�u�. Initial
kinetic parameters are as in Figure 2.3.

2.5.4 Prion Extinction and Hsp104 Expression Levels
Beyond translational shifts in aggregate size distribution, the [PSI+] prion phenotype

in yeast has been shown to be very sensitive to the amount of Hsp104 in the system [23,
16, 38]. Our mathematical formulation correctly captures the dependency of all prions to
the under-expression of Hsp104. In contrast, and in agreement with recent experimental
studies [26], over-expression of Hsp104 does not necessarily drive prions to extinction.

First, sufficiently high concentrations of guanidine hydrochloride GdnHCl have been
shown to severely disrupt the fragmentation process by inactivating Hsp104 [18, 5]. Since
fragmentation is halted the total number of aggregates will not change and aggregates
will eventually be lost through dilution in the population due to cell division. Over time
the population will be cured of the prion disease as the fraction of cells with aggregates
approaches zero.

Quantitatively, we treat the inactivation of Hsp104 as letting 𝑘on → 0. In the limit,
we’ll obtain 𝑝′ = −𝑘1𝑝 + 𝑝2 − u�u�u�

u�+u�0−1 < − u�u�u�
u�+u�0−1 ≤ 0 ⟹ 𝑝 → 0+. With 𝑝 = 0, we have

𝜂′ = −𝐴0𝜂 ≤ 0 ⟹ 𝜂 → 0+, which corresponds to the elimination of prion aggregates.
We demonstrate this in Figure 2.7.

While earlier studies seemed to indicate over-expression of Hsp104 could cause
loss of the prion state [7], more recent experimental evidence indicates that Hsp104
over-expression is not sufficient to drive prions to extinction [26]. In our formulation
over-expressing Hsp104 drives 𝑝 → 1. This is readily demonstrated by assuming 𝑘1ℎ =
1/𝜖 ≫ 1 and rescaling time by this quantity; then 𝑝′ = 1 − 𝑝 + 𝑂(𝜖). However, as is
experimentally, this alone is not mathematically sufficient to cure the prion state.

Consider an endemic state with 𝑅0( ̃𝑝) = u�/ũ�
(u�0/ũ�+u�0)(u�0/ũ�+u�0−1) > 1. Depending on
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Figure 2.7: Hsp104 production is up-regulated or Hsp104 is deactivated after 3 hours, both by
a factor of 104. The new system in either case is unable to stably support the presence of prion
aggregates with our engineered parameters.

the other kinetic parameters, 𝑅0 may be either increasing or decreasing with respect to ̃𝑝
– prion extinction would only occur if 𝑅0(1) < 1. Specifically, sgn(𝑅′

0(𝑝)) = sgn(𝐴2
0 −

(𝑛0 − 1)𝑛0𝑝2). If 𝐴0 > 𝑛0 − 1, 𝑅0 is always increasing and extinction is impossible under
our model. This is consistent with the belief that there are other (unmodeled) factors
more likely to contribute to prion phenotype loss [33, 26]; nonetheless, we do provide
an engineered parameter set (described in Table 2.1) that demonstrates prion extinction by
maximizing fragmentation efficiency in Figure 2.7. We additionally plot the dependence
of 𝑅0 on 𝛼ℎ in this parameter set as well as the original set we’ve used in Figure 2.8.

2.5.5 Stability of the Coendemic Prion Strains
Up until this point we have considered the aggregates of a single prion species;

however, a prion protein is capable of adopting a host of misfolded confirmations each
of which is capable of the biochemical processes of conversion of normal protein and
fragmentation [39, 42, 43]. That is, [PSI+] or PrPSc does not refer to a single prion
phenotype, but many related ones, each characterized by different pathology (implying
different kinetic parameter values). These distinct prion states are referred to as prion
“strains.”

Biologists have observed multiple coexisting strains [40, 34], but there has been
limited mathematical modeling of multiple prion strains. Previously, Tanaka et al. [41]
considered the NPM, under the continuous relaxation of aggregate sizes, with 𝑛0 = 1
and demonstrated that if two strains were present then, asymptotically, one strain would
dominate and drive the other to extinction. The outcome was determined by the strain
which had maximized 𝛽𝛾 (which is proportional to the reproductive number in the case
of continuous-size, 𝑛0 = 1 NPM). Since level curves of 𝛽𝛾 represent a set of measure
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Figure 2.8: The reproductive number u�0 as a function of u�ℎ. Prion strains will only be driven to
extinction by Hsp104 over-expression if limu�ℎ→∞ u�0(u�ℎ) < 1.

0 in parameter space, realistically this prevents asymptotic prion strain coexistence. By
coexistence, we mean that there exists 𝑖 ≠ 𝑗 such that limu�→∞ 𝜂u�(𝑡), 𝜂u�(𝑡) > 0 when
𝜂u�(0), 𝜂u�(0) > 0 (where 𝜂u� is the concentration of aggregates of strain 𝑖).

We now generalize the ELNPM to include multiple prion strains, each capable of
converting the same normal protein. Because aggregation is based on conversion to a
particular prion strain conformation, we consider an aggregate as consisting of misfolded
protein of a single strain. We write the equations for 𝑘 strains with similar constants as
before, but scale time by Γ = ∑u�

u�=1 𝛾u� and write Γu� = 𝛾u�/Γ:

𝑠′ = 𝐴u�(1 − 𝑠) − 𝑠
u�

∑
u�=1

𝐵u�𝜂u� +
u�

∑
u�=1

Γu�(𝑛u� − 1)𝑛u�𝑝u�𝜂u� (2.31a)

ℎ′ = 𝐴ℎ(1 − ℎ) + 𝑟
u�

∑
u�=1

[(𝜔u� + 𝑛u� − 1) (𝑘u�,−1𝑝u� − 𝑘u�,1ℎ[1 − 𝑝u�]) + (𝑛u� − 1)(𝑛u� − 2)Γu�𝑝2
u� ] 𝜂u�

(2.31b)
𝜂′

u� = [Γu�𝑝u�𝜔u� − 𝐴u� − (𝑛u� − 1)Γu�𝑝u�] 𝜂u� (2.31c)
𝜔′

u� = 𝐵u�𝑠 − Γu�𝑝u�(𝜔u� + 1)𝜔u� (2.31d)

𝑝′
u� = 𝑘u�,1ℎ[1 − 𝑝u�] − 𝑘u�,−1𝑝u� − 𝑝u� ( 𝐵u�𝑠

𝜔u� + 𝑛u� − 1 − Γu�𝑝u�) . (2.31e)

Because our mathematical formulation also requires the molecular chaperone Hsp104,
this opens up the possibility for an alternative pathway to prion strain coexistence – rather
than out-compete solely on conversion 𝛽 and fragmentation 𝛾, a second strain may
be more efficient at sequestering Hsp104 (𝑘on/𝑘off). Increasing this ratio improves the
strain’s own fragmentation efficiency, as well as decreases the other strain’s efficiency by
decreasing the amount of available Hsp104.

It is helpful to think of prion strain competition and coexistence in terms of the
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(a) No stable coexistence (b) Region of stable coexistence

Figure 2.9: Different parameter regimes exhibit fundamentally different behavior with respect to
coendemic stability. The labeled regions denote the surviving strain, and gray regions denote areas
of mutual coexistence. Refer to Table 2.1 for the parameter values

reproductive numbers described in Section 2.4.3. Intuitively, the strain with the highest
reproductive number will dominate and drive others to extinction. As already stated,
this is exactly what [41] observed – however, recall that with the NPM, the reproductive
number is fixed, so there will not be any dependency on the kind of or number of strains
present. Our model, however, has an effective reproductive number dependent on the
current fragmentation efficiency. In terms of strain-specific constants, this number is
given by

𝑅u�(𝑝u�) = 𝐵u�/𝑝u�
(𝐴u�/𝑝u� + 𝑛u� − 1)(𝐴u�/𝑝u� + 𝑛u�)

. (2.32)

The fragmentation efficiency of strain 𝑖, 𝑝u�, is dependent on the current concentration of
soluble Sup35 and free Hsp104 (Equation (2.31e)), which in turn depend on all of the
strains’ concentrations. As such, the reproductive numbers of the strains are coupled to
one another. These nonlinear, secondary interactions make analytic determinations of
coexistence difficult. However, we are able to numerically demonstrate coexistence of
prion strains (Figure 2.9).

Remarkably, Figure 2.9b demonstrates that strain coexistence is possible for
parameters lying in a non-zero area of parameter space. We note that, in contrast to prior
models, this type of coexistence is biologically feasible because is it robust to small
perturbations in parameter space. Thus, our numerical studies demonstrate that strains
with different reproductive numbers (in isolation) can coexist. Further, at the coendemic
state each strain’s “cooperative” reproductive number is different from their isolated value,
but equal to each of the other strains’ cooperative numbers.

We choose 2 specific parameter sets from Figure 2.9b and plot of their steady-state,
cooperative size densities in Figure 2.10a and concentration of aggregated Sup35 in each
strain over time in Figure 2.10b.
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(a) Steady-state aggregate densities (b) Concentration of Sup35 in aggregates

Figure 2.10: Plots of a specific parameter set admitting asymptotically stable, coendemic behavior.
We note that the size densities and aggregated protein take on distinct values, despite very similar
reproductive numbers.

2.6 Conclusion
In this work we successfully developed a mathematical formulation of aggregate

dynamics where fragmentation occurs through the molecular chaperone Hsp104. We
demonstrate that, under certain restrictions, our model reduces to a numerically tractable
form which we call the Enzyme-Limited Nucleated Polymerization Model (ELNPM).
By including chaperone-mediated fragmentation, this work represents an important step
towards a more complete understanding of prion and protein misfolding in vivo.

We derived a unique disease-free steady-state of the ELNPM and analyzed its stability.
We demonstrated that the ELNPM supports experimentally observed results such as
shifts in the aggregate-size distribution with increasing Sup35 synthesis and response
to over- and under- expression of Hsp104. Additionally, it represents a first step towards
quantifying prion strain coexistence.

While the ELNPM successfully describes the effects of varying amounts of Sup35
and Hsp104 in the system, we note that there are factors common to enzyme-substrate
kinetics that were not included in our model. First, in many biochemical systems there
is evidence of cooperation between binding sites [31]. Since there is no evidence of
interaction between binding sites for Hsp104, we have modeled binding events as purely a
function of the free enzyme and available binding sites.

Second, by assuming that 𝑘off was large we were able to assume that for an aggregate
consisting of 𝑖 Sup35 monomers with 𝑗 sites bound by Hsp104, all possible configurations
of bound Hsp104 are equally likely (see the Supplemental Material). Since under normal
expression Hsp104 is observed to be only minimally bound to [PSI+] aggregates [26], we
interpret this to indicate that 𝑘off must indeed be large relative to 𝑘on. Third, we considered
a generalization of the uniform fragmentation kernel which corresponds to equality in
fragmentation at all binding sites. Together, these three assumptions allowed the use of
analytical approaches previously employed in the analysis of the NPM to demonstrate
existence, uniqueness and asymptotic stability of the disease-free steady-state.

Beyond Hsp104, other enzymes have been identified as important players in the
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Table 2.1: A table of values used for the plots. In all cases, u�u� = 0.0154 u�M min−1, u�0 = u�1 =
u�2 = … = 5, and u�u� = u�ℎ = u�0 = u�1 = u�2 = … = 0.0077 min−1

Figures 𝛼ℎ (𝜇M min−1) 𝛽 (𝜇M−1min−1) 𝛾 (min−1) 𝑘on (𝜇M−1min−1) 𝑘off (min−1)
2.3, 2.6, 2.8 0.002567 6.0 0.00294 0.20000 2.00000

2.4, 2.5 0.00142 - 0.00294 0.15964 2.93706
2.7 4.16503 × 10−6 0.216456 0.0421667 81.8524 4.38533
2.8 - 0.216456 0.0421667 81.8524 4.38533
2.9a 0.002567 (6.0,6.0) (0.00294,0.00294) (0.2,-) (2.0,-)
2.9b 0.002567 (6.0,8.0) (0.00294,0.002) (0.2,-) (2.0,-)
2.10 0.002567 (6.0,8.0) (0.00294,0.002) (0.2,0.21567) (2.0,2.0)

dynamics of prion aggregate fragmentation [24, 38]. As such, our mathematical
formulation may be taken as the representing collective impact of enzymes on
fragmentation. However, compared to the other enzymes, Hsp104 occurs in the lowest
molecular number [19] and is thus likely to represent a rate limiting step. In addition,
we have evaluated our model by comparison to experimental results on the [PSI+] prion
which has shown to have greatest sensitivity to Hsp104 [23]. Lastly, again note that the
form of Hsp104 is a hexamer [16] – we have assumed the kinetics of hexamer formation
are not relevant to the aggregate dynamics.

In addition to including additional biological complexities, in future studies we plan to
investigate global asymptotic stability and explore the conditions underlying prion strain
coexistence.

2.7 Derivation of ELNPM

2.7.1 Full Model
We examine the full kinetics implied by the rate equations in Section 2.3.2, where

we consider each possible configuration of bound Hsp104 separately. We define 𝑢u�(u�) to
be the density of aggregates of size 𝑖 with Hsp104 configuration 𝑏, where 0 ≤ 𝑏 < 2u�−1

and 𝑏’s binary expansion is taken to reflect the states of possible fragmentation sites: a
0 appearing in the location of an unbound site, and a 1 in the location of a bound site.
Let 𝑐u� denote the Hamming weight of 𝑏, or the number of 1’s appearing in the binary
expansion of 𝑏. Finally, we assume that fragmentation occurs at a rate proportional to
the amount of bound Hsp104 and that the resulting daughters are uniformly distributed
amongst the possible configurations. Thus, for 𝑢u�(u�), fragmentation occurs with rate 𝛾𝑐u�
into daughter aggregates with probability 1/𝑐u�. Finally, let 𝑏1 ⊗𝑏2 denote the bit-wise and



38

of integers 𝑏1 and 𝑏2 and 𝛿(𝑥) = 1 if 𝑥 = 0 and 1 otherwise. Then,

𝑑𝑢u�(u�)
𝑑𝑡 = −2𝛽𝑠(𝑡)𝑢u�(u�) + 𝛽𝑠(𝑡) [𝑢u�−1,(u�)𝛿(𝑏 ⊗ 2u�−2) + 𝑢u�−1,(u�/2)𝛿(𝑏 ⊗ 1)] − (𝛾𝑐u� + 𝜇0)𝑢u�(u�)

+ 𝛾
∞
∑

u�=u�+1

2u�−u�−1−1
∑
u�=0

[𝑢u�(u�+2u�−1+2u�u�) + 𝑢u�(u�+2u�−u�−1+2u�−u�u�)]

− 𝑘onℎ(𝑡)

⎡
⎢⎢⎢⎢⎢
⎣

(𝑚 − 1 − 𝑐u�)𝑢u�(u�) − ∑
u�′ s.t.

u�u�′=u�u�−1
u�′⊗u�=u�′

𝑢u�(u�′)

⎤
⎥⎥⎥⎥⎥
⎦

+ 𝑘off

⎡
⎢⎢⎢⎢⎢
⎣

∑
u�′ s.t.

u�u�′=u�u�+1
u�′⊗u�=u�

𝑢u�(u�′) − 𝑐u�𝑢u�(u�)

⎤
⎥⎥⎥⎥⎥
⎦

.

(2.33)

We now sum over every 𝑏 < 2u�−1 such that 𝑐u� = 𝑗, only assuming symmetry in the
aggregate configuration densities (𝑢u�(u�) = 𝑢u�(u�′) where 𝑏′ is the reversed bitstring of 𝑏).
We write 𝑢u�u� = ∑

u� s.t. u�u�=u�
𝑢u�(u�) and carefully count bitstrings and simplify to obtain

𝑑𝑢u�u�
𝑑𝑡 = −2𝛽𝑠(𝑡) [𝑢u�u� − 𝑢u�−1,u�] − (𝛾𝑛 + 𝜇0)𝑢u�u�

+ 2𝛾
∞
∑

u�=u�+1

u�−(u�−u�)
∑

u�=u�+1
∑
u� s.t.

u�<2u�−1
u�u�=u�

∑
u�′ s.t.

u�′<2u�−u�−1
u�u�′=u�−u�−1

𝑢u�(u�+2u�−1+2u�u�′)

− 𝑘onℎ(𝑡) [(𝑚 − 𝑛 − 1)𝑢u�u� − (𝑚 − 𝑛)𝑢u�,u�−1] + 𝑘off [(𝑛 + 1)𝑢u�,u�+1 − 𝑛𝑢u�u�] .
(2.34)

We simplify the remaining recovery term with a claim: since conversion effectively
biases Hsp104 configurations towards the center of the aggregate, a relatively fast enzyme
off-binding will restore the configuration distribution to approximate uniformity. Let us
proceed by formally assuming 𝑢u�(u�) = 𝑢u�(u�′) if 𝑐u� = 𝑐u�′. Then (2.34) reduces to

𝑑𝑢u�u�
𝑑𝑡 = −2𝛽𝑠(𝑡) [𝑢u�u� − 𝑢u�−1,u�] − (𝛾𝑛 + 𝜇0)𝑢u�u� + 2𝛾

∞
∑

u�=u�+1

u�−(u�−u�)
∑

u�=u�+1

(u�−1
u� )(u�−u�−1

u�−u�−1)

(u�−1
u� )

𝑢u�u�

− 𝑘onℎ(𝑡) [(𝑚 − 𝑛 − 1)𝑢u�u� − (𝑚 − 𝑛)𝑢u�,u�−1] + 𝑘off [(𝑛 + 1)𝑢u�,u�+1 − 𝑛𝑢u�u�] .
(2.35)

2.7.2 Reduced Equations
Equipped with these assumptions, let us define the moments of our aggregate density:

𝜂 =
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑢u�u�, 𝑧 =
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑖𝑢u�u�, 𝑧u� =
∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗𝑢u�u�. (2.36)
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Then,

𝑑𝑠
𝑑𝑡 = 𝛼u� − 𝜇u�𝑠(𝑡) − 2𝛽𝑠(𝑡)𝜂(𝑡) + 𝛾(𝑛0 − 1)𝑛0

∞
∑
u�=u�0

u�−1
∑
u�=1

𝑗
𝑖 − 1𝑢u�u�(𝑡) (2.37)

𝑑ℎ
𝑑𝑡 = 𝛼ℎ − 𝜇ℎℎ(𝑡) − 𝑘onℎ(𝑡)[𝑧(𝑡) − 𝜂(𝑡) − 𝑧u�(𝑡)] + (𝑘off + 𝛾)𝑧u�(𝑡)

+ 𝛾(𝑛0 − 1)(𝑛0 − 2)
∞
∑
u�=u�0

u�−1
∑
u�=1

𝑗(𝑗 − 1)
(𝑖 − 1)(𝑖 − 2)𝑢u�u�(𝑡)

(2.38)

𝑑𝜂
𝑑𝑡 = −𝜇0𝜂(𝑡) + 𝛾𝑧u�(𝑡) − 2𝛾(𝑛0 − 1)

∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗
𝑖 − 1𝑢u�u�(𝑡) (2.39)

𝑑𝑧
𝑑𝑡 = 2𝛽𝑠(𝑡)𝜂(𝑡) − 𝜇0𝑧(𝑡) − 𝛾(𝑛0 − 1)𝑛0

∞
∑
u�=u�0

u�−1
∑
u�=0

𝑗
𝑖 − 1𝑢u�u�(𝑡) (2.40)

𝑑𝑧u�
𝑑𝑡 = −(𝜇0 + 𝛾 + 𝑘off)𝑧u�(𝑡) + 𝑘onℎ(𝑡)[𝑧(𝑡) − 𝜂(𝑡) − 𝑧u�(𝑡)]

− 𝛾(𝑛0 − 1)(𝑛0 − 2)
∞
∑
u�=u�0

u�−1
∑
u�=1

𝑗(𝑗 − 1)
(𝑖 − 1)(𝑖 − 2)𝑢u�u�(𝑡)

(2.41)

While simplified, we still lack moment-closure. However, we note that the unclosed
terms are of a very particular form, motivating a discrete transformation of 𝑢u�u�. Define

𝑣u�u� =
u�−1
∑
u�=u�

( u�
u�)

(u�−1
u� )

𝑢u�u�. (2.42)

Then,

𝑣u�,0 =
u�−1
∑
u�=0

𝑢u�u�, 𝑣u�,1 =
u�−1
∑
u�=1

𝑗
𝑖 − 1𝑢u�u�, 𝑣u�,2 =

u�−1
∑
u�=2

𝑗(𝑗 − 1)
(𝑖 − 1)(𝑖 − 2)𝑢u�u�, (2.43)

and more generally,

𝑑𝑣u�u�
𝑑𝑡 = −2𝛽𝑠(𝑡) [𝑣u�u�(𝑡) − (1 − 𝑛

𝑚 − 1) 𝑣u�−1,u�] − 𝜇0𝑣u�u�(𝑡)

− 𝛾(𝑚 − 𝑛 − 1)𝑣u�,u�+1(𝑡) + 2𝛾
∞
∑

u�=u�+1
𝑣u�,u�+1(𝑡)

− 𝑛 [(𝑘onℎ(𝑡) + 𝑘off + 𝛾)𝑣u�u�(𝑡) − 𝑘onℎ(𝑡)𝑣u�,u�−1(𝑡)] .

(2.44)

This recurrence is 2nd order in 𝑛, so we see that it is ill-posed. We can argue 1
boundary condition without additional assumptions: since 𝑣u�,u�+1 ≤ 𝑣u�u� by construction,
and prion aggregates biologically must have an upper size limit, we have limu�→∞ 𝑣u�u� = 0.
We are now left to find 1 more condition to make the problem well-posed.
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2.7.3 Approximation
We perform the same non-dimensionalization as in Equations (2.16a)-(2.16e), writing

again 𝜔(𝑡) = 𝑧(𝑡)/𝜂(𝑡) − 𝑛0 and 𝑝(𝑡) = 𝑧u�(𝑡)/[𝑧(𝑡) − 𝜂(𝑡)]:

𝑠′ = 𝐴u�(1 − 𝑠) − 𝐵𝑠𝜂 + (𝑛0 − 1)𝑛0

∞
∑
u�=u�0

𝑣u�,1 (2.45)

ℎ′ = 𝐴ℎ(1 − ℎ) + 𝑟 ⎡⎢
⎣
(𝜔 + 𝑛0 − 1)(𝑘−1𝑝 − 𝑘1ℎ[1 − 𝑝])𝜂 + (𝑛0 − 2)(𝑛0 − 1)

∞
∑
u�=u�0

𝑣u�,2
⎤⎥
⎦
(2.46)

𝜂′ = (−𝐴0 + 𝑝(𝜔 + 𝑛0 − 1))𝜂 − 2(𝑛0 − 1)
∞
∑
u�=u�0

𝑣u�,1 (2.47)

𝜔′ = 𝐵𝑠 − 𝑝(𝜔 + 1)𝜔 + (𝑛0 − 1)(2𝜔 + 𝑛0) ⎛⎜
⎝

1
𝜂

∞
∑
u�=u�0

𝑣u�,1 − 𝑝⎞⎟
⎠

(2.48)

𝑝′ = 𝑘1ℎ(1 − 𝑝) − 𝑘−1𝑝 + 𝑝2 − 𝐵𝑠𝑝
𝜔 + 𝑛0 − 1 + (𝑛0 − 1)(𝑛0 − 2)

𝑝𝜂(𝜔 + 𝑛0 − 1)
⎛⎜
⎝

𝑝
∞
∑
u�=u�0

𝑣u�,1 −
∞
∑
u�=u�0

𝑣u�,2
⎞⎟
⎠

.

(2.49)

Written in this way, it becomes clear that enforcing ∑∞
u�=u�0

𝑣u�,u�+1 = 𝑝 ∑∞
u�=u�0

𝑣u�,u�
will yield moment closure. Interpreting 𝑢u�u�/𝜂 as a probability mass and (𝐼, 𝐽) as a joint
random variable modeling aggregate size and bound Hsp104, we write 𝑝 = 𝔼[𝐽]/𝔼[𝐼 −1]
and ultimately understand the nature of our approximation to be the validity of the
approximations

𝔼 [ 𝐽
𝐼 − 1] ≈ 𝔼[𝐽]

𝔼[𝐼 − 1], (2.50)

and

𝔼 [ 𝐽(𝐽 − 1)
(𝐼 − 1)(𝐼 − 2)] ≈ ( 𝔼[𝐽]

𝔼[𝐼 − 1])
2

. (2.51)

Consider the 2nd order Taylor expansion of an arbitrary function 𝑓 (𝑥, 𝑦) about ( ̄𝑥, ̄𝑦):

𝑓 (𝑥, 𝑦) ≈ 𝑓 ( ̄𝑥, ̄𝑦) + (𝑥 − ̄𝑥)𝑓u�( ̄𝑥, ̄𝑦) + (𝑦 − ̄𝑦)𝑓u�( ̄𝑥, ̄𝑦)

+ 1
2 [(𝑥 − ̄𝑥)2𝑓u�u�( ̄𝑥, ̄𝑦) + 2(𝑥 − ̄𝑥)(𝑦 − ̄𝑦)𝑓u�u�( ̄𝑥, ̄𝑦) + (𝑦 − ̄𝑦)2𝑓u�u�( ̄𝑥, ̄𝑦)]

(2.52)

Treating 𝑋 and 𝑌 as random variables and ̄𝑥 and ̄𝑦 as their means, then

𝔼[𝑓 (𝑋, 𝑌)] ≈ 𝑓 ( ̄𝑥, ̄𝑦) + 1
2 (𝑓u�u�( ̄𝑥, ̄𝑦)Var[𝑋] + 2𝑓u�u�( ̄𝑥, ̄𝑦)Cov[𝑋, 𝑌] + 𝑓u�u�( ̄𝑥, ̄𝑦)Var[𝑌]) .

(2.53)
In our case 𝑋 = 𝐽 , ̄𝑥 = 𝑧u�/𝜂, and 𝑌 = 𝐼 − 1, ̄𝑦 = 𝑧/𝜂 − 1. Let ̄𝑢 = 𝑧/𝜂; for

Approximation (2.50), we have 𝑓 (𝑥, 𝑦) = 𝑥/𝑦 and

𝔼 [ 𝐽
𝐼 − 1] = 𝑝 + 1

̄𝑢2 (𝑝Var[𝐼 − 1] − Cov[𝐽, 𝐼 − 1]) + 𝑂(1/ ̄𝑢3). (2.54)
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For Approximation (2.51), we have 𝑓 (𝑥, 𝑦) = u�(u�−1)
u�(u�−1) and

𝔼 [ 𝐽(𝐽 − 1)
(𝐼 − 1)(𝐼 − 2)] = 𝑝2 − 𝑝(1 − 𝑝)

̄𝑢

+ Var[𝐽] − 4𝑝Cov[𝐽, 𝐼 − 1] + 3𝑝2Var[𝐼 − 1] − 2𝑝(1 − 𝑝)
̄𝑢2

+ 𝑂(1/ ̄𝑢3).

(2.55)

Assuming the variances are dominated by the average aggregate size, we have error
terms in the first approximation of 𝑂(1/ ̄𝑢2) and 𝑂(1/ ̄𝑢) in the second; when multiplied
against the terms’ coefficients, we obtain 𝑂(1/ ̄𝑢2) in either case.
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Chapter 3

Stochastic Models of Nucleated
Polymerization

3.1 Introduction
The appearance of the [PSI+] prion phenotype, referred to as induction, is rare and

depends on the particular prion strain. The mathematical model developed in Chapter 2,
which explicitly considered the role of a molecular chaperone in the prion fragmentation
process, provides a potential explanation for this variability in [PSI+] induction [10,
17]: the transient, variable fragmentation rate may under- or over-perform relative to the
asymptotic fragmentation rate, permitting phenotype extinction when it would otherwise
be stable [4].

However, the derivation of our enzyme-limited generalization of nucleated
polymerization requires large numbers of enzyme binding sites, which in turn requires
a large amount of aggregated protein. Because the regime of interest for [PSI+] induction
is for (initially) small concentrations of aggregated proteins, the dynamics need to be
validated with a stochastic model. That is, while models derived from the law of mass
action and quasi-steady assumptions (such as those described in Chapters 1 and 2) tend to
be fairly robust with respect to their assumptions [16], one can imagine a single aggregate
in vivo per chance fragmenting prematurely, rather than asymptotically amplifying into an
endemic infection.

As has been established in earlier chapters, the probability a single aggregate amplifies
into a full prion “infection” is mediated by the presence and concentration of the Hsp104
chaperone. In order to study this probability, I reformulate the nucleated polymerization
dynamics as a Markov chain and solve the corresponding chemical master equation. I
then use the solution to to generalize strain stability from the deterministic framework and
endow this stability with a probabilistic interpretation.
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3.2 Intuition
Let us assume that biological observations roughly correspond to asymptotic behavior.

Thus, we are interested specifically in the event that a prion strain (with basic reproductive
number 𝑅0 > 1) capable of endemic “infection” fails to do so due to the unmodeled,
mesoscopic effects. To appreciate how these dynamics influence this outcome, we revisit
the continuous-size, moment-closed nucleated polymerization model [15, 9, 7] (reviewed
in Chapter 1), where

𝑥′(𝑡) = 𝛼 − 𝜇𝑥(𝑡) − 2𝛽𝑥(𝑡)𝑦(𝑡) + 𝛾𝑎2𝑦(𝑡),
𝑦′(𝑡) = −(𝜇 + 2𝛾𝑎)𝑦(𝑡) + 𝛾𝑧(𝑡),
𝑧′(𝑡) = 2𝛽𝑥(𝑡)𝑦(𝑡) − 𝜇𝑧(𝑡) − 𝛾𝑎2𝑦(𝑡).

(3.1)

The parameters and their meaning are summarized in Table 3.1. The system will be
initialized with a small amount of prion aggregate, mirroring a spontaneous “nucleation”
event or the seeding of a cell with pre-existing aggregated protein, such that 𝑥(0) = u�

u�(1 −
𝜖), 𝑦(0) = u�

u�
u�
u� , and 𝑧(0) = u�

u�𝜖.

Table 3.1: Parameters of the Nucleated Polymerization Model

𝛼 rate of transcription of protein monomer
𝜇 rate of volume dilution due to cell division
𝛽 rate of monomer aggregation by an aggregate end
𝛾 rate of polymer junction fragmentation
𝑎 minimum stable size of prion aggregate
𝜖 initial percentage of aggregated protein

By initializing the total Sup35 concentration 𝑥(𝑡) + 𝑧(𝑡) at its steady-state value 𝛼/𝜇,
one variable may be eliminated. We additionally replace 𝑧(𝑡) with the displacement of
the average size from the minimum size 𝜔(𝑡) = 𝑧(𝑡)/𝑦(𝑡) − 𝑎 to obtain the reduced
two-dimensional system

𝑦′(𝑡) = (𝛾𝜔(𝑡) − (𝜇 + 𝛾𝑎)) 𝑦(𝑡) (3.2)

𝜔′(𝑡) = 2𝛽 (𝛼
𝜇 − (𝜔(𝑡) + 𝑎)𝑦(𝑡)) − 𝛾𝜔(𝑡)2. (3.3)

The system is fully non-dimensionalized with the choice of variables

𝑡 = 𝜏
𝜇 + 𝛾𝑎, (3.4)

𝑦(𝑡) = 𝛼
𝜇𝑎𝑌(𝜏), (3.5)

𝜔(𝑡) = (𝑎 + 𝜇
𝛾) 𝑊(𝜏), (3.6)
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Figure 3.1: The scaled concentration u�(u�) and displacement u�(u�) versus (dimensionless) time
u� with u�(0) = 0.01, u�(0) = 0, and u� = 1.5. Note that u� ′(u�) remains negative (and more
generally, u�(u�) remains small) for increasingly large u� as u�0 → 1+.

which yields

𝑌 ′ = (𝑊 − 1)𝑌, (3.7)
𝑊 ′ = 𝑅0 (1 − (1 + 𝜅𝑊) 𝑌) − 𝑊2, (3.8)

where, in addition to 𝑅0 = 2u�u�u�
u�(u�+u�u�)2 , one last dimensionless constant 𝜅 = 1 + u�

u�u� has been
defined.

Several solutions to this scaled system are plotted in Figure 3.1. Clearly, independent
of the concentration 𝑌(𝜏), we see that 𝑌 ′(𝜏) < 0 when 𝑊(𝜏) < 1 (see Equation (3.7)
and Figure 3.1, left inset) . Thus, if the system is initialized with a small perturbation of
sufficiently small aggregates (e.g. 𝑌(0) = 𝜖 and 𝑊(0) < 1), then there is instantaneously
a further decrease of concentration. If 𝜖 is to be interpreted as to correspond to a single
aggregate, 𝑌(𝜏) for the regime 0 < 𝜏 < 𝑊−1(1) must be interpreted in a population-level
or frequentist sense – that is, out of many phenotype-inducing experiments, at least
some of them failed (despite a prion strain with 𝑅0 > 1). Given this population-level
understanding, it is of interest to quantify the probability that an individual experiment
fails, i.e. that a prion fails to amplify into an infection.

Using a pertubation expansion, the length-scale of this mesocopic regime can be
computed and is solely determined by 𝑅0. Suppose 𝑌(0) = 𝜖 ≪ 1 and 𝑊(0) < 1. Then,
for 0 ≤ 𝜏 ≤ 𝑊−1(1), 𝑊(𝜏) is well-approximated by �̃�(𝜏), where

�̃� ′ = 𝑅0 − �̃�2 ⟹ �̃�(𝜏) = √𝑅0tanh ⎛⎜
⎝

√𝑅0𝜏 + arctanh ⎛⎜
⎝

𝑊(0)
√𝑅0

⎞⎟
⎠

⎞⎟
⎠

. (3.9)

�̃�(𝜏) is then inverted to find 𝜏∗ = �̃�−1(1) ≈ 𝑊−1(1):

𝜏∗ = 1
2√𝑅0

log
∣∣∣∣

√𝑅0 + 1
√𝑅0 − 1

×
√𝑅0 − 𝑊(0)
√𝑅0 + 𝑊(0)

∣∣∣∣
≈ 1 − 𝑊(0)

(√𝑅0 − 1)2
+ 𝑂(√𝑅0 − 1)−3. (3.10)



48

100 101 10210−2

10−1

100

101

𝑅0

𝜏∗

Figure 3.2: A plot of u�∗ (the duration of the mesoscopic regime) vs u�0 for u�(0) = 0 and
u�(0) = u�(u�). For 0 < u� < u�∗, random, mesoscopic effects contribute to the overall dynamics of
the aggregate concentration.

This relationship is depicted in Figure 3.2 for 𝑊(0) = 0.
It is clear in both Figure 3.2 and the series approximation in Equation (3.10) that

for 𝑅0 ≫ 1 𝜏∗ is negligable; however, as 𝑅0 → 1+, 𝜏∗ diverges. Thus, the unmodeled
mesoscopic effects persist for increasingly long periods of time as 𝑅0 → 1+. To more
precisely explore the dynamics in this parameter regime, I develop a stochastic model
to capture these mesoscopic effects and recast the formerly qualitative observations as
quantitative probabilities.

3.3 Stochastic Formulation
I next consider the stochastic dynamics of prion aggreagetes within a cell. For

simplicity, protein synthesis and degradation is neglected, fixing the number of proteins
per cell. For S. cerevisiae, estimates on the abundance of prion protein Sup35 range from
103-106 [3, 8]. More generally, the integer parameter 𝑚 is used to denote this number.
Supposing that an aggregate must be of at least size 𝑘 (such that smaller aggregates will
immediately disassociate into their monomer constituents, as described in Chapters
1 and 2 and originally proposed in [14]), the aggregate configuration of a cell ⃗𝑛 =
(𝑛u�, 𝑛u�+1, … , 𝑛u�) describing the number of aggregates of each size 𝑖 (𝑛u�) in a host cell
will belong to the set

𝒩 = { ⃗𝑛 ⪰ 0 ∶ ∑
u�≥u�

𝑖𝑛u� = 𝑚} . (3.11)

A full stochastic description of nucleated polymerization will define continuous-time
transitions of a cell between the states in 𝒩. Assuming that these transitions occur at
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exponential rates will lead to a Markov chain formulation. However, even for moderate
𝑘 and 𝑚, the size of 𝒩 quickly exceeds computational feasibility. This size may be
precisely computed with the use of generating functions [19] – by counting principles,
the size of 𝒩 corresponds to the 𝑚-th coefficient in a Taylor series expansion about 𝑥 = 0
of ∏u�

u�=u�(1−𝑥u�)−1. A few of these values corresponding to lower bounds of estimates of 𝑚
for Rnq1 and Sup35 prion proteins [3] and 𝑘 [17] are tabulated in Table 3.2.

Table 3.2: |𝒩| for various protein abundance u� and minimum stable aggregate size u�. For
sufficiently large u�, varying u� does not affect the leading order magnitude.

Protein 𝑚 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20
Rnq1 265 7.23 × 1014 7.23 × 1014 7.22 × 1014 7.12 × 1014

Sup35 1440 1.86 × 1038 1.86 × 1038 1.86 × 1038 1.86 × 1038

In order to study a stochastic model of these dynamics, we must develop a
computationally feasible and biologically meaningful reduction, as the full system is
numerically intractable. It is here that the previous observation from the continuous
model is leveraged: the primary source of uncertainty in the model is the length of time
that otherwise unmodeled mesoscopic effects perturb the deterministic behavior of the
system. This is most drastic when 𝑅0 ≈ 1, which in turn corresponds to slow amplification
of the disease state. Thus, instead of considering the full aggregate configuration of a
cell, only a single aggregate and its size is considered. This aggregate may successfully
divide or disintegrate before the first cell division event. The former is a necessary (but
not sufficient) condition for the overall stability of a prion strain.

The single absorbing state of the “full model” corresponding to ⃗𝑛 = (0, 0, 0, … ) is
replaced with two labeled absorbing states: extinction, where the single aggregate has
been destroyed, and persistence, where the aggregate has doubled. For now, the possibility
that a “doubled” aggregate’s daughters (or granddaughters, or great-granddaughters, etc)
are destroyed before cell division is neglected, but this simplification is validated with
a full Monte Carlo simulation later (Figure 3.4). If formulated as a Markov chain with
appropriate transition rates, with probability 1 one of these two states is reached. The
arrival, or absorption time of the second, doubled state is of interest – if it occurs before
a separate, uncoupled process corresponding to cell division is activated, then the prion
phenotype has at least persisted across 1 division. This Markov chain is now formulated.

Let 𝑝u�(𝑡) be the probability an undivided host cell has a single aggregate of size 𝑖 at
time 𝑡, and 𝑝0(𝑡) and 𝑝∗(𝑡) be the probability of being in the extinct or persisted states at
time 𝑡, respectively. These probabilities satisfy

𝑝′
0(𝑡) = 𝛾

2(u�−1)
∑
u�=u�

(2𝑘 − 1 − 𝑖)𝑝u�(𝑡),

𝑝′
u�(𝑡) = 2𝛽(𝑚 − 𝑖 + 1)𝑝u�−1 − (𝛾(𝑖 − 1) + 2𝛽(𝑚 − 𝑖))𝑝u�(𝑡) + 2𝛾

u�+u�−1
∑

u�=u�+1
𝑝u�(𝑡),

𝑝′
∗(𝑡) = 𝛾

∞
∑
u�=2u�

(𝑖 − 2𝑘 + 1)𝑝u�(𝑡).

(3.12)
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Writing ⃗𝑝 = (𝑝u�, 𝑝u�+1, … , 𝑝u�)T, this chemical master equation may be more concisely
written u�u⃗�

u�u� = 𝐴 ⃗𝑝, where 𝐴 has appropriate entries and has an upper Hessenberg structure.
The other variables 𝑝0(𝑡) and 𝑝∗(𝑡) are then easily computed by taking a dot-product
with the solution vector ⃗𝑝(𝑡). Being a linear differential equation, ⃗𝑝(𝑡) = eu�u� ⃗𝑝(0) for
some initial condition ⃗𝑝(0), which is taken to be (1, 0, 0, … ). This corresponds to a
“worst-case” where the single aggregate is of minimal size.

The random variable 𝑝∗(𝑇), where 𝑇 is a model of cell division, is now considered.
𝑇 is typically assumed to be distributed as a Γ(𝑠, 𝜃) random variable [1], in which case a
simple calculation yields

𝔼[𝑝∗(𝑇)] = 𝛾 (
∞
∑
u�=2u�

(𝑖 − 2𝑘 + 1) ⃗𝑒u�)
T

[(𝐼 − 𝜃𝐴)−u� − 𝐼] 𝐴−1 ⃗𝑝(0), (3.13)

where { ⃗𝑒u�} are the standard, canonical basic vectors. The quantity 𝔼[𝑝∗(𝑇)] is the
probability that an initial minimally sized aggregate successfully persists and amplifies
into two aggregates at a rate at least that of cell division, which is a necessary condition
for endemic infection.

By construction, 𝐴 is diagonalizable, as is (𝐼 − 𝜃𝐴). While exploiting that
diagonalization is one means of evaluating (𝐼 − 𝜃𝐴)−u�, a simpler and cheaper method
is just to use an integer value for 𝑠 and invert (𝐼 − 𝜃𝐴) 𝑠-times. Using the sample moments
of cell division times published in [1], 𝑠 is chosen to be the nearest integer to the point
estimate within the margin of error and 𝜃 is adjusted to preserve the sample mean. The
rest of this work assumes 𝑠 = 43 and 𝜃 = 1.91, where the units of Γ(𝑠, 𝜃) are minutes.
The mass constant 𝑚 = 78900 is chosen based on the larger estimates of Sup35 abundance
provided by [8] and the minimum size 𝑘 = 5 unless otherwise specifies.

A parameter sweep of 𝔼[𝑝∗(𝑇)] over a range of (𝛽, 𝛾) is plotted in Figure 3.3.1
Point estimates of (𝛽, 𝛾) for various prion strains, computed from data reported by
the Serio lab [6] are also plotted and they exist exactly on the manifold where there is
a sharp transition from probability 0 to probability 1. For 𝛽 significantly smaller or
larger, the overall probability of persisting would be insensitive to vertical shifts in 𝛾 (e.g.
fluctuations in the availability of Hsp104 chaperone). However, the biological systems
exist not only where there is non-binary probability of amplification, but also exactly
where there is sensitivity to the active fragmentation rate. Were the strains to not exist
in this region, then the enzymatic effects modeled in Chapter 2 would not have been
biologically observable. These results are also consistent with the previously reported
stochastic simulation from [6].

Lastly, I verify that neglecting the daughters and granddaughters of the initial
aggregate does not introduce meaningful error with a Monte Carlo simulation. This
simulation tracks any number of aggregates and their sizes starting from a single
minimally-sized aggregate and terminates after a randomly-sampled cell division time.
If there are at least two aggregates at this time the simulation reports a success. This
verification is plotted in Figure 3.4 over the same parameter regime as Figure 3.3.

1The code to perform these calculations is available at https://github.com/jasondark/
dissertation in the persist folder.

https://github.com/jasondark/dissertation
https://github.com/jasondark/dissertation
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Figure 3.3: 𝔼[u�∗(u�)] over a range of (u�, u�), plotted with parameter estimates for [PSI+
strong]

(square) and [PSI+
weak] (triangle). Both strains were assumed to have a minimum stable size of 5

[17].

3.4 Discussion
This work represents the first formal stochastic treatment of nucleated polymerization.

A direct “translation” of the NPM reactions to a stochastic framework would define a
multi-type branching process [11] with a virtually impossible number of types (every
mass-preserving configuration ⃗𝑛, described in Table 3.2). By carefully studying the
deterministic model, a reduced stochastic model was able to be formulated, valid only
in the initial transient dynamics of a single aggregate whose strain has basic reproductive
number 𝑅0 ≈ 1. As demonstrated in Figures 3.3 and 3.4, this region is precisely where
a number of prion strains are believed to exist, making this work immediately relevant to
the study of “seeding” experiments where the prion phenotype is induced from a small
number of initial aggregates.

Additionally, a novel observation is drawn from Figure 3.3. Over-expression of
Hsp104 is known to suppress the rate of [PSI+] induction and stability [2, 12]. However,
as predicted by this stochastic model, the weak strain should actually see an increase in
its induction rate under this scenario, which in turn suggests it would be more stable
to perturbations in the fragmentation rate. This contradiction is resolved by allowing
the weak strain to have a larger minimum size than the strong strain: instead of size 5,
Figure 3.3 is recreated with a minimum size of 15 in Figure 3.5, with the new “corrected”
weak strain estimate plotted as before. This modification places the weak strain back
into agreement with the biology, where elevated amounts of Hsp104 (larger values of
𝛾) eliminate the prion phenotype. While this constitutes a minor mathematical point
(varying an integer parameter), until now the idea that prion strains can have different
minimum sizes was completely unconsidered in the biology community (e.g. [6, 17]),
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Figure 3.4: A replication of Figure 3.3 but with a full Monte Carlo simulation (104 iterations per
point) instead of the approximate Markov chain.

even though previously published gels support this hypothesis. For example, lanes 1 and 2
of Figure 3.6 (where the vertical axis corresponds to aggregate size), originally published
in [13] and reproduced with permission, strongly suggest this difference.

3.5 Appendix: Parameter Estimation
The cell division constants 𝑠 = 43 and 𝜃 = 1.91163 are obtained (and slightly

perturbed) from the values in [1]. For the purposes of converting to and from kinetic rate
constants and stochastic rate constants, the cellular volume of an S. cerevisiae cell is taken
to be 37 𝜇𝑚3 [18]. Finally, the abundance of Sup35 was fixed to 𝑚 = 78900 [8], yielding
kinetic rate estimates

𝛼 = 0.0286665 𝜇M min−1, 𝜇 = 0.00809562 min−1. (3.14)

With respect to the point estimates for the strong and weak [PSI+] phenotypes,
the equilibrium behavior of the deterministic NPM model from Chapter 1 is used
to determine the kinetic rates. It can be shown [15, 5] that the endemic steady-state
concentrations of Sup35, denoted 𝑋, and size 𝑖 aggregates, denoted Ψu�, satisfy

[𝑋] = 𝛼/𝜇
𝑅0

, ∑
u�≥u�0

𝑖[Ψu�] + [𝑋] = 𝛼/𝜇,
∑
u�≥u�0

𝑖[Ψu�]

∑
u�≥u�0

[Ψu�]
= 2𝑛0 − 1 + 𝜇

𝛾. (3.15)

For strong, values from [6] were used, where the percentage of Sup35 in monomer
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Figure 3.5: 𝔼[u�∗(u�)] over a range of (u�, u�), plotted with a parameter estimate for [PSI+
weak]

(square) with a minimum aggregate size of 15 instead of 5.

form and the average aggregate sizes were described approximately as

[𝑋]
[𝑋] + ∑

u�≥u�0

𝑖[Ψu�]
= 0.2,

∑
u�≥u�0

𝑖[Ψu�]

∑
u�≥u�0

[Ψu�]
= 15. (3.16)

For weak, these values were

[𝑋]
[𝑋] + ∑

u�≥u�0

𝑖[Ψu�]
= 0.35,

∑
u�≥u�0

𝑖[Ψu�]

∑
u�≥u�0

[Ψu�]
= 40. (3.17)

These values were then used to solve for the unknown kinetic rates (𝛽, 𝛾).
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Figure 3.6: This figure was originally published in Kryndushkin et al. [13] and reproduced in
accordance with the American Society for Biochemistry and Molecular Biology’s Copyright
and Permission Policy. Figure and caption © 2003 the American Society for Biochemistry and
Molecular Biology. Original caption text: Comparison of the size of Sup35 prion polymers by
SDD-AGE and of the efficiency of UAA nonsense codon read-through in different [u�u�u�+] and
[u�u�u�+

u�u�] variants of the 5V-H19 and PS-5V-H19 strains. Prion variants: W, weak; S, strong.
Lanes: 1, [u�u�u�+

6 ]; 2, [u�u�u�+
1 ]; 3, [u�u�u�+

11]; 4, [u�u�u�+
37]; 5; [u�u�u�+

u�u�−20]; 6, [u�u�u�+
u�u�−7]; 7, [u�u�u�+

u�u�−2];
8, [u�u�u�+

u�u�−1].
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Chapter 4

Spontaneous Nucleation

4.1 Introduction
A rich literature for the mathematical modeling of the prion phenotype exists. This

literature was reviewed in Chapter 1 and expanded upon in Chapters 2 and 3; however, key
to most of this work is the assumption of a minimum stable size to a prion aggregate. The
nucleated polymerization model (NPM) describes the dynamics of aggregates larger than
this size and assumes that aggregates smaller than this size, generated by a fragmentation
event, immediately disassociate into the normal monomer form. Therefore, these models
are necessarily initialized with some preexisting concentration or number of aggregates.
This is akin to growing a yeast colony in a medium already containing prion fibers [16] or
a human consuming BSE-tainted beef [14]. This process is known as induction, where
the primary question of interest is “What are the conditions and initial concentrations
required to induce a prion phenotype?” The NPM and its generalizations provide insight
into this question.

The prion phenotype is also known to occur naturally and spontaneously in a
population. For example, the [PSI+] phenotype occurs spontaneously in S. cerevisiae
at a rate of every million cell divisions [19] with roughly 90 minutes between each cell
division [7]. Creutzfeldt-Jakob disease is a late-onset, neurodegenerative disease (as
are Alzheimer’s and Parkinson’s diseases, if they too are considered prion diseases).
Taken together, it shall be assumed for modeling purposes that spontaneous nucleation,
under normal circumstances, must be an exceedingly rare event. However, the rate of
spontaneous [PSI+] occurrence drastically increases when the yeast cells are exposed
to heat shock [24], and the mammalian diseases are believed to occur due to a somatic
mutation in the protein translation machinery [25]. Thus, a perturbation to the normal
cellular environment significantly increases this rate of nucleation. This process is
specifically referred to as nucleation in order to connect it directly to the NPM: a slow
process gradually assembles increasingly large aggregates out of available protein
monomers until a particle has reached the nucleation size. Then, NPM dynamics operate
on a much faster time-scale. The instantaneous dissolution of small aggregates in NPM is
then understood to be a return to the slower time-scale, which is effectively instantaneous
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relative to the NPM dynamics.
Mathematically, there is a vast literature corresponding to coagulation processes.

More generally, an assembly model is a process that permits both coagulation
(lengthening of aggregates) and fragmentation (shortening of aggregates). Given an
assembly model with some initial condition, the length of time until a sufficiently large
particle is formed is called the nucleation time, and the characterization and efficient
calculation of this nucleation time will be the primary aim of this chapter. Much of the
existing literature focuses on the deterministic regime (e.g. [5, 6, 4, 2, 3]), where there are
enough reactants to treat all quantities as continuous concentrations. However, a number
of recent papers [35, 12] demonstrated that these continuous models fail in their ability
to estimate the nucleation time and instead they propose the use of Markov chains with
appropriate absorbing states as a better, more accurate technique.

I begin with a review of the Markov chain formulation and then detail an
implementation of software I wrote to solve the associated problem. I then comment on
appropriate initial conditions for in vivo modeling of the nucleation problem. This work,
combined with induction model from Chapter 3, permits an investigation into a “two-hit”
model of prion pathogenesis, outlined as future work in Chapter 5.

4.2 Markov Chain Models of Nucleation
The most immediate way to formulate a nucleation model is to specify assembly

rules as biochemical reactions. For example, one can imagine a “proto-aggregate” as a
linear fiber which grows by monomer addition (polymerization) and shrinks by monomer
removal (depolymerization). This is represented by the biochemical reaction scheme

𝑋u� + 𝑋1
u�+

u�−−−⇀↽−−−
u�−

u�+1

𝑋u�+1, (4.1)

with prescribed rate constants {𝑘±
u� }, which is the widely studied Becker-Döring model [5,

4, 2, 35, 12]). A more general scheme, which includes Becker-Döring as a special case, is
the coagulation-fragmentation model [28, 6, 3, 11], which has generalized binary fusion
and fission rules represented by the biochemical scheme

𝑋u� + 𝑋u�−u�
u�u�,u�−u�−−−−→ 𝑋u�

u�u�,u�−u�−−−−→ 𝑋u� + 𝑋u�−u� (4.2)

for each triplet (𝑖, 𝑗, 𝑘) where 1 ≤ 𝑗, 𝑘 < 𝑖 with rate constants {𝑎u�,u�} and {𝑏u�,u�}. It is assumed
that 𝑎u�u� = 𝑎u�u� and 𝑏u�u� = 𝑏u�u�. Much like the nucleated polymerization models from the
previous chapters, these equations have been analyzed under assumptions leading to
differential equations in the time-varying concentrations 𝑥u�(𝑡) for each 𝑋u�, e.g.

𝑑𝑥u�
𝑑𝑡 = 1

2
u�−1
∑
u�=1

𝑎u�,u�−u�𝑥u�𝑥u�−u� − 𝑥u� ∑
u�≥1

𝑎u�,u�𝑥u� + 2 ∑
u�>u�

𝑏u�,u�−u�𝑥u� − 𝑥u�

u�−1
∑
u�=1

𝑏u�,u�−u� (4.3)

for each 𝑖 > 0.
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The issue with this approach, as noted by [35, 12, 11], is that there does not exist
accurate techniques to infer nucleation times from the time-varying concentrations of {𝑥u�}.
To illustrate this point, consider an assembly model with 𝑎u�,u� = 𝑏u�,u� = 1 for all 𝑖, 𝑗 and
initial conditions 𝑥1(0) = 1 and 𝑥u�(0) = 0 for 𝑖 > 1. Let us consider only {𝑥1, … , 𝑥u�}
and determine the time at which a particle 𝑥u� where 𝑖 > 𝑘 first appears. We construct
𝑦 = ∑u�≥1 𝑥u� such that 𝑦′ = 1 − 𝑦(1 + 𝑦/2) and 𝑦(0) = 1. Using this solution, the individual
{𝑥u�} will satisfy

𝑥′
u� = 1

2
u�−1
∑
u�=1

(𝑥u�−u� − 4)𝑥u� + 2𝑦 − (𝑖 + 1 + 𝑦)𝑥u�, (4.4)

Solutions are depicted in Figure 4.1 for {𝑥2, 𝑥3, 𝑥4}. Suppose that 𝑘 = 3 and we are
interested in the time of first appearance of 𝑋4 – in terms of concentrations, what does this
actually mean? If it corresponds to a detectable level of 𝑋4, e.g. 𝑡 = 𝑥−1

4 (𝜖), what is 𝜖?
What is the variance of 𝑡? These are not questions that this ODE formulation can answer.
Instead, one must employ a full stochastic description.
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Figure 4.1: Concentrations of u�2, u�3, u�4 over time under a coagulation-fragmentation assembly
model with u�u�u� = u�u�u� = 1 and u�1(0) = 1, u�u�(0) = 0 for u� > 1.

The most obvious approach is to employ a Monte Carlo method (e.g. the Gillespie
algorithm or tau-leaping) to simulate sequences of the biochemical reactions
corresponding to the assembly model of interest, terminating when a sufficiently large
particle is formed. However, since the nucleation event is assumed to be extremely rare,
these simulations will in turn take an extremely long time to complete. This prevents
the efficient construction of an accurate, empirical distribution of nucleation times. The
framework outlined in [35, 12, 11] instead numerically characterizes the absorption time
of a corresponding Markov chain.
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4.2.1 Nucleation Time as a Linear System
Suppose generally that we have a directed graph with a discrete enumeration of nodes

{0, 1, 2, … } and edges with weights 𝜆u�u� from node 𝑖 to 𝑗, where the weight 𝜆u�u� ≥ 0 is
interpreted as the rate at which a random walker at node 𝑖 transitions to node 𝑗. We define
the total outward rate 𝜆u� = ∑u�≠u� 𝜆u�u�. Any node 𝑘 satisfying 𝜆u� = 0 is said to be an
absorbing state. For any directed graph that is strongly connected, aperiodic, and finite,
all stochastic trajectories will eventually arrive at an absorbing state (if at least one is
present) with probability 1 [10]. Such a chain is depicted in Figure 4.2, with node 0 as
an absorbing state.

u�12

u�23

u�31

u�13

u�32

u�21 u�20

u�30

2

1

3

0

Figure 4.2: A graphical depiction of a Markov chain with an absorbing state labeled “0”.

There are a number of classical derivations (e.g. [21]) for computing the moments
of the more general first-passage time of an arbitrary state. The first-passage time of
an absorbing state is also its absorption time, since by definition the trajectory will
then never leave the state. Making use of the assumption that the state is absorbing, a
simpler argument can be made to characterize this time. Consider a stochastic trajectory
starting at node 𝑖. The functions 𝑓u�(𝑡) and 𝐹u�(𝑡) are the probability density and cumulative
distribution functions of the time 𝑇u� at which the trajectory arrives at node 0, having
started at node 𝑖. Noting that 𝑓0(𝑡) = 𝛿(𝑡), an application of the law of total probability
yields

𝑓u�(𝑡) = ∑
u�≥0

𝜆u�u�
𝜆u�

∫
u�

0
𝑓u�(𝑡 − 𝑠)𝜆u�e−u�u�u� 𝑑𝑠

= ∑
u�≥1

𝜆u�u�
𝜆u�

∫
u�

0
𝑓u�(𝑡 − 𝑠)𝜆u�e−u�u�u� 𝑑𝑠 +

𝜆u�,0
𝜆u�

𝜆u�e−u�u�u�.
(4.5)

The moment generating function 𝑀u�(𝑥) = ∫∞
0 eu�u�𝑓u�(𝑡) 𝑑𝑡 will satisfy

(𝜆u� − 𝑥)𝑀u�(𝑥) − ∑
u�≥1

𝜆u�u�𝑀u�(𝑥) = 𝜆u�,0. (4.6)

Collecting {𝑀u�(𝑥)} for 𝑖 > 0 into the vector �⃗�(𝑥), we obtain the linear equation

(Λ − 𝑥𝐼)�⃗�(𝑥) = Λ ⃗1 (4.7)
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where Λu�u� = 𝜆u� for 𝑖 ∈ ℕ and Λu�u� = −𝜆u�u� otherwise.
This relation can be used to write a closed form for the uncentered moments, since

�⃗�(𝑥) = (Λ − 𝑥𝐼)−1Λ ⃗1 =
∞
∑
u�=0

Λ−u� ⃗1𝑥u� =
∞
∑
u�=0

𝔼[ ⃗𝑇u�]𝑥u�

𝑛!

⟹ 𝔼[ ⃗𝑇u�] = 𝑛! Λ−u� ⃗1 = 𝑛Λ−1𝔼[ ⃗𝑇u�−1], (4.8)

where ⃗𝑇u� ≡ (𝑇u�
1 , 𝑇u�

2 , … ). Rearranging, the following recurrence relation is obtained for
the computation of the uncentered moments:

Λ𝔼[ ⃗𝑇u�] = 𝑛𝔼[ ⃗𝑇u�−1]. (4.9)

By construction, Λ is a weakly diagonally-dominant matrix with at least one row where
the dominance is strict, guaranteeing the existence of an inverse.

4.2.2 Curse of Dimensionality
Returning to the coagulation-fragmentation models of assembly, let us more formally

describe the state space to be endowed with stochastic transitions via the Markov chain.
Consider the set of non-negative, integer-valued vectors

Ωu� = { ⃗𝑛 ∈ ({0} ∪ ℕ)u� ∶
u�

∑
u�=1

𝑖𝑛u� = 𝑚} . (4.10)

Ωu� is the set of all mass-preserving configurations of particle sizes; e.g. Ωu� =
{(𝑚, 0, 0, 0, … ), (𝑚 − 2, 1, 0, 0, … ), … }. Now consider the subset 𝒜u�,u� ⊂ Ωu� such that

𝒜u�,u� = { ⃗𝑛 ∈ Ωu� ∶ ∃ 𝑖 > 𝑘 where 𝑛u� > 0} . (4.11)

For the purposes of nucleation, all ⃗𝑛 ∈ 𝒜u�,u� are equivalent, thus a full,
stochastic description of the nucleation problem will describe transitions between
each ⃗𝑛 ∈ Ωu�\𝒜u�,u� and transitions from those vectors to 𝒜u�,u�. In our formulation
of the nucleation time computation, we were able to omit the “0” state from the
linear system. Therefore, the dimensionality of the nucleation time problem for
coagulation-fragmentation will be ∣Ωu�\𝒜u�,u�∣.

With a counting argument similar to that from Chapter 3, the number of such states
will be the coefficient of 𝑥u� in the Taylor series expansion of ∏u�

u�=1(1−𝑥u�)−1 = ∑u�≥0 𝑎u�,u�𝑥u�.
These coefficients are tabulated in Table 4.1 for nucleation sizes 𝑘 + 1 = 5, 10, 15, 20 and
protein numbers 𝑚 = 265 and 𝑚 = 1140 (estimates for the numbers of Rnq1 and Sup35
proteins in a typical S. cerevisiae cell [8]). For the smaller nucleation sizes, the associated
linear problem is tractable even on commodity computer hardware, provided that care is
taken with the choice of schemes to solve the linear system and the representation of the
linear operator itself.
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Table 4.1: ∣Ωu�\𝒜u�,u�∣ for various u� and u�.

𝑎u�,u� 𝑘 = 4 𝑘 = 9 𝑘 = 14 𝑘 = 19
𝑚 = 265 1.37 × 105 3.16 × 109 5.75 × 1011 1.03 × 1013

𝑚 = 1440 1.04 × 107 2.28 × 1014 1.80 × 1019 5.62 × 1022

4.2.3 A Matrix-Free Method
By restricting the assembly mechanism to binary fusion and fission reactions, it is

ensured that Λ is a sparse matrix. The degree of that sparsity, of course, depends on the
specific allowable transitions: for example, the Becker-Döring matrix will be sparser than
a general coagulation-fragmentation matrix. Nonetheless, sparse storage of the matrix
will increase memory usage of a solver by at least a constant factor, which may push it
beyond the memory capacity of a commodity computer for the parameter regimes of
interest. I instead outline and implement a matrix-free method to computing the action
of Λ on a vector, permitting the use of iterative methods to invert the linear system as well
as enabling a limited number of preconditioners.

First, a natural ordering is imposed over the state space. States with larger particles
will have a higher enumerative index than states with smaller particles. An example of
this ordering is depicted in Figure 4.3. This ordering permits a straight-forward way of
enumerating over entries in the solution vector.

𝑛1

𝑛2

𝑛3

(12, 0, 0)

(0, 0, 4)

(0, 6, 0)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 Non-negative lattice points satisfying
𝑛1 + 2𝑛2 + 3𝑛3 = 12 and their ordering.

Figure 4.3: An example of the “natural ordering” over states u⃗� ∈ Ω12\𝒜3,12.

Second, given a state ⃗𝑛, the assembly model specifies each of its neighbors { ⃗𝑛′} and
the rates at which trajectories transition from ⃗𝑛 to ⃗𝑛′. Thus, as ( ⃗𝑛, 𝑖) is enumerated along
the solution vector, the corresponding enumerative index 𝑖′ for every neighbor ⃗𝑛′ needs
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to be found. Fortunately, by defining the enumerative scheme in this manner, the index of
a state may be written as the sum of several disjoint sets, each whose sizes can in turn be
computed recursively with the same partitioning. This indexing scheme can be written as

ind(𝑛1, 𝑛2, … , 𝑛u�) =
u�u�−1
∑
u�=0

𝑎u�,u�−u�u� +
u�u�−1−1

∑
u�=0

𝑎u�−1,u�−u�u�u�−(u�−1)u�

+ … +
u�2−1
∑
u�=0

𝑎2,u�−u�u�u�−(u�−1)u�u�−1−…−3u�3−2u� + 1.
(4.12)

Each index calculation requires a bounded number of integer operations and is
subsequently cheap relative to the overall cost of matrix multiplication. Taken together,
these three principles allow us to compute the action of Λ on any vector, permitting the
application of iterative methods to solving the linear system. These same principles also
enable the computation of the action of ΛT on a vector so that the solution scheme is not
necessarily limited to transpose-free methods such as TFQMR [26].

4.2.4 Preconditioners for Nucleation
Given the matrix-free representation of the operator and assumption of

high-dimensional solution vectors, we are limited to iterative schemes with small
recurrences. This includes schemes such as BiCGSTAB, TFQMR, and GMRES(k) for
small 𝑘 [26]. Further improvements then come from the selection of preconditioners. The
construction of the enumeration scheme additionally permits some insight into this choice:
since states with larger particles are sorted after states with smaller particles, entries in
Λ corresponding to fission are in the lower-triangular portion of the matrix and those
corresponding to fusion are in the upper-triangular region. Thus, the matrix Λ can be split
such that

Λ = 𝐷 − 𝐿 − 𝑈, (4.13)

where 𝐷 is a positive, diagonal matrix, 𝐿 is a non-negative, lower triangular matrix that
is is solely a function of the fission reactions, and 𝑈 is a non-negative, upper triangular
matrix and solely a function of the fusion reactions.

Insight into the assembly model then translates into insight into effective
preconditioners: if fission is a priori known to be the dominant reaction type, then
|𝐿| ≫ |𝑈| and one should choose a forward Gauss-Seidel or more general forward SOR
preconditioner. Conversely, if fusion is the dominant reaction type, then |𝑈| ≫ |𝐿|
the backward Gauss-Seidel or backward SOR should perform better. The application
of either preconditioner requires only 1 extra matrix-multiply per iteration, but may
quickly recoup that cost in actual use. This is demonstrated this in Figure 4.4, where an
8037-dimensional linear system corresponding to 𝑚 = 100 proteins and 𝑘 = 4 maximum
size is solved for with both Becker-Döring assembly (with 𝑎1,u� = 𝑎u�,1 = 𝜎 and 𝑎u�u� = 0
otherwise and 𝑏u�u� = 1 or 0 similarly) and coagulation-fragmentation assembly (with
𝑎u�u� = 𝜎 and 𝑏u�u� = 1), varied over a range of parameter values to highlight how the
dominant reaction type can suggest a preconditioner.
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Figure 4.4: Each iteration of a preconditioned solve requires 2 matrix multiplications rather than
1. Using the default convergence criteria in Eigen’s BiCGSTAB implementation, the ratio of
the number of matrix multiplies in an unpreconditioned solve to the number of matrix multiplies
in a preconditioned solve is plotted against a varying parameter that roughly corresponds to the
preference of fusion reactions over fission reactions. If this ratio is larger than 1 the preconditioned
solve was more efficient than the unpreconditioned solve. We see that u�u� ≪ 1 or u�u� ≫ 1 is
a good heuristic for the choice of preconditioner in these models of assembly. (A point in the
coagulation-fragmentation plot was omitted where the backward preconditioner failed to converge
within 4 × 8037 iterations at u�u� = 10−1.)

I provide a C++ implementation of the above algorithms that computes an arbitrary
number of moments for the nucleation time in this dissertation’s software repository1.
The software does not yet perform any sort of parallel optimization as it has mainly been
used in parameter sweep explorations, which are themselves embarrassingly parallel.
Nonetheless, the software has allowed the preliminary exploration of the otherwise
computationally difficult nucleation problem at problem sizes larger than previously
published in the literature – such explorations are depicted in Figures 4.6, 4.7, and 4.8.

There are a number of remaining considerations, however, before one can start
drawing biological conclusions from the output of the solver. One such consideration is
detailed in the next section, where the choice of a prior probability density over the state
space is contemplated, since an in vivo cell is likely to have some uncertainty over which
protein-configuration it possesses.

1The code is available at http://www.github.com/jasondark/dissertation in the folder
moment-solver.

http://www.github.com/jasondark/dissertation
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4.3 Initial Conditions of Homogeneous Assembly
(Journal Article)

Reprinted with permission from Davis, Jason K., and Suzanne S. Sindi, Physical
Review E, 93.2, 2016. Copyright (2016) by the American Physical Society. (RightsLink
Order #4062641374387)

The co-author listed in this publication directed and supervised research which forms
the basis for the dissertation.

4.3.1 Abstract
The formation of a stable protein aggregate nucleus is regarded as the rate limiting

step in the establishment of prion diseases. In these systems, once aggregates reach a
critical size the growth process accelerates and thus the waiting time until the appearance
of the first critically-sized aggregate is a key determinant of disease onset. In addition to
prion diseases, aggregation and nucleation is a central step of many physical, chemical
and biological process. Previous studies have examined the first-arrival time at a critical
nucleus size during homogeneous self-assembly under the assumption that at time
𝑡 = 0 the system was in the all-monomer state. However, in order to compare to in vivo
biological experiments where protein constituents inherited by a newly born cell likely
contain intermediate aggregates, other possibilities must be considered. We consider
one such possibility by conditioning the unique ergodic size distribution on sub-critical
aggregate sizes – this “least-informed” distribution is then sampled from to provide
initial conditions. We demonstrate that these initial conditions can lead to significantly
different, averaged waiting times relative to the all-monomer case under various models of
assembly.

4.3.2 Introduction
The self-assembly of particles into aggregates is fundamental to many physical,

chemical, and biological processes [29, 32, 33]. In particular, protein aggregation
is critical for prion diseases which encompass a number of fatal neurodegenerative
diseases in mammals such as Creutzfeldt-Jacob and Kuru in humans, bovine spongiform
encephalopathies (BSE) in cows, scrapie in sheep, and chronic wasting in elk [13, 17]. In
these diseases a misfolded form of the protein appears and forms aggregates. These small
aggregates of misfolded protein are thought to reproduce slowly until reaching a critical
size (nucleation), at which point the aggregates are able more efficiently amplify [18, 20,
15, 22]. As such, a key limiting step in the onset of prion diseases is the waiting time
until the formation of this nucleus, which we will also call the assembly time. Beyond
mammalian diseases, prions have been associated with a number of harmless heritable
phenotypes in yeast [31, 27]. Both the harmless nature of the prions and the experimental
tractability of yeast have made it an ideal model system to study the appearance of prion
disease in vivo, and whose considerations will in turn affect our choice of in silico models.
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Most prior models for computing the waiting times until nucleus formation have
assumed that the initial condition of the stochastic process is the all monomer state.
That is, no aggregates of any kind exist at time 𝑡 = 0. However, in many systems an
individual realization of protein aggregation represents a sample drawn from a preexisting
pool of proteins. Since the experimental system has existed for some time, it is possible
that some aggregates already exist at the start and, as such, the all monomer initial
condition may not be the accurate choice. In particular, since newly born yeast daughter
cells inherit protein constituents from their mothers, it is likely that both monomers
and small aggregates are transmitted. In this manuscript, we take a step towards more
accurate modeling of nucleation in prion diseases by considering protein aggregation
under more realistic initial conditions that we call “least-informed.” We first give an
overview of common models used to study molecular assembly and then establish the
least-informed distribution as a consequence of ergodicity. Lastly, we demonstrate that
the initial condition chosen for stochastic self-assembly problems can have a significant
impact on the expected assembly time.

4.3.3 Modeling Molecular Assembly
Mathematical models of assembly have been studied for nearly a century, and

in particular two systems have received considerable attention: the Smoluchowski
coagulation system [28] and the Becker-Döring equations [5]. The former system (with
its generalization in [6]) models the coagulation (or coalescence) and fragmentation of
polymers consisting of monomeric units, represented by the chemical equations

𝑋u� + 𝑋u�−u�⏟⏟⏟⏟⏟
u�=1,2,…,u�−1

u�+
u�,u�−u�−−−−→ 𝑋u�

u�−
u�,u�−u�−−−−→ 𝑋u� + 𝑋u�−u�⏟⏟⏟⏟⏟

u�=1,2,…,u�−1
, (4.14)

where 𝑋u� denotes a polymer (oligomer) or aggregate of size 𝑖. We refer to this model more
generally as the discrete coagulation-fragmentation model. The Becker-Döring model
restricts the reactions to just monomer polymerization and depolymerization, represented
by the chemical equations

𝑋1 + 𝑋u�
u�+

u�−−−⇀↽−−−
u�−

u�+1

𝑋u�+1. (4.15)

Both models are depicted graphically in Figure 4.5. From these chemical equations,
mathematical equations may be derived with additional assumptions. For example, use
of the Law of Mass Action and the corresponding rate equations have been thoroughly
studied for these models [5, 6, 4, 2, 3]. However, this approximation requires a large
number of particles to be valid and fails to capture mesoscopic effects [12]. When these
effects are non-negligible, one must instead assume a Markov property and obtain a
continuous-time Markov chain. We may then study the first-passage time for the subset
of states containing a sufficiently large polymer (nucleus). For small numbers of particles
or certain asymptotic regimes, these equations are numerically tractable [35, 11], but
in general their high-dimensionality often requires the use of Monte Carlo methods to
estimate distributions.
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(a) Coagulation-Fragmentation Model

+

+

(b) Becker-Döring Model

Figure 4.5: A depiction of 2 models of polymer assembly.

With any differential or stochastic system, however, an initial condition (IC) must
be specified. We observe that in all of the cited works, the IC has exclusively been the
all-monomer state, where all the system’s mass is initially bound in 𝑋1 particles. Though
convenient, it is not realistic for many in vivo processes. Indeed, with our yeast prion
model, cells transfer material from mother to daughter during budding, including partially
formed aggregates [30, 9]. Even within a single cell, these processes of protein assembly
and disassembly are always occurring, even before the “experimental clock” begins. Thus,
we believe it more accurate to think of the IC as being sampled from some distribution of
states which reflects our uncertainty regarding the precise configuration of the polymers.
We will propose one such distribution and demonstrate that it can lead to significant
differences in the first-passage time versus explicitly assuming an all-monomer IC.

4.3.4 Least-Informed Distribution for Stochastic Assembly
Let us define Ωu� = {𝑛 ∶ ∑u�>0 𝑖𝑛u� = 𝑚}, where each 𝑛 ∈ Ωu� defines a state with total

mass 𝑚. A particular model of assembly will induce a directed graph on this set of states
with edges weighted by the rates of transition between states. We require that the directed
graph be strongly connected and aperiodic – this will imply that the corresponding
Markov chain will asymptotically reach a unique ergodic distribution over Ωu� [10].

It is this ergodic distribution that we claim is a more natural source of IC, with
one addition: we condition it on every polymer being of size 𝑘 or less (for some fixed
positive integer 𝑘). We will refer to this conditional distribution as the “least-informed”
distribution (though this label is not intended in a Bayesian sense), since it corresponds
to the claim that the physical system has existed long enough to deviate substantially
from the all-monomer state, but with the knowledge that it has yet to fully assemble a size
𝑘 + 1 (or larger) polymer. We now provide the novel, least-informed distributions for the
constant-rate, coagulation-fragmentation and Becker-Döring models, then demonstrate
differences in the expected assembly time between the least-informed distribution and the
all-monomer IC.

Notation

We use standard notation for the 𝑖th canonical basis vector 𝑒u� and the Kronecker delta
function 𝛿u�u�. We let 𝒫 ∶ [0, ∞) × Ωu� denote the solution to an appropriately-defined
master equation, where 𝒫(𝑡, 𝑛) = Pr[𝑁1(𝑡) = 𝑛1, 𝑁2(𝑡) = 𝑛2, … ] (and the random
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variable 𝑁u�(𝑡) is understood to represent the number of 𝑋u� particles at time 𝑡). The use
of the master equation is convenient since the initial condition is itself a distribution – the
all-monomer IC state corresponds to a point-mass, or degenerate distribution centered
about that state, while our least-informed distribution will be more generally some
non-negative vector with entries summing to 1.

Coagulation-Fragmentation Model

A coagulation-fragmentation model allows polymers of any size to freely coagulate
(or coalesce) as well as fragment into any size. When these rates are assumed to be
constant (size-independent) the reactions are succinctly represented:

𝑋u� + 𝑋u�−u�⏟⏟⏟⏟⏟
u�=1,2,…,u�−1

u�
−→ 𝑋u�

u�
−→ 𝑋u� + 𝑋u�−u�⏟⏟⏟⏟⏟

u�=1,2,…,u�−1
. (4.16)

We assume polymers can coagulate on either end; however, we double-count pairs
(𝑋u�, 𝑋u�−u�) and (𝑋u�−u�, 𝑋u�). Thus, the unordered pair (𝑋u�, 𝑋u�−u�) coagulates at rate 2𝛽 to form
𝑋u�. We define the operators 𝑊±

u�,u� such that 𝑊±
u�,u�𝒫(𝑡, 𝑛) = 𝒫(𝑡, 𝑛±(𝑒u� +𝑒u� −𝑒u�+u�)) and write

the master equation:

𝑑𝒫
𝑑𝑡 = −𝛽

∞
∑
u�=1

∞
∑
u�=1

𝑛u�(𝑛u� − 𝛿u�u�)𝒫 + 𝛽
∞
∑
u�=1

∞
∑
u�=1

(𝑛u� + 1 + 𝛿u�u�)(𝑛u� + 1)𝑊+
u�,u�𝒫

− 𝛾
∞
∑
u�=1

(𝑖 − 1)𝑛u�𝒫 + 𝛾
∞
∑
u�=1

∞
∑
u�=1

(𝑛u�+u� + 1)𝑊−
u�,u�𝒫.

(4.17)

It can be verified by inspection that

𝒫(𝑛) ∝ 1
∏(𝛽/𝛾)u�u�𝑛u�!

(4.18)

is a steady-state solution to (4.17). (For completeness, we derive the normalizing
constant in the Appendix.) Since the ergodic distribution is unique, we conclude that
Equation (4.17) asymptotically converges to this solution. This gives us the least-informed
distribution:

Pr [𝑁 = 𝑛∣𝑁u� = 0 ∀ 𝑖 > 𝑘] = 1
∏u�≤u�(𝛽/𝛾)u�u�𝑛u�!

/ ∑
u�′

1
∏u�≤u�(𝛽/𝛾)u�′

u�𝑛′
u�!

. (4.19)

We use this distribution to sample initial conditions for the corresponding stochastic
model of assembly and compute the expected first passage-time (𝜇) to any state
containing a nucleus of size greater than 𝑘. This statistic is then compared to that
generated by the all-monomer IC in Figures 4.6 and 4.7.
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Figure 4.6: Non-dimensionalized, expected assembly times (u�u�) of a particle of size at least 5
(u� = 4) over a range of u�/u� with fixed mass u� = 50.
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Figure 4.7: Non-dimensionalized, expected assembly times (u�u�) of a particle of size at least 7
(u� = 6) over a range of u�/u� with fixed mass u� = 30.
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Becker-Döring Model

The Becker-Döring model with constant rate coefficients is described by the chemical
equations

𝑋1 + 𝑋u�
2u�
−−⇀↽−−
2u�

𝑋u�+1. (4.20)

It describes an assembly mechanism where monomers attach (polymerize) to a
polymer-end with rate 𝛽 and detach (depolymerize) with rate 𝛾. Defining the operators
𝑊±

u� 𝒫(𝑡, 𝑛) = 𝒫(𝑡, 𝑛 ± (𝑒1 + 𝑒u� − 𝑒u�+1)), the corresponding master equation is

𝑑𝒫
𝑑𝑡 = −𝛽𝑛1(𝑛1 − 1)𝒫 − 2𝛽𝑛1

∞
∑
u�=2

𝑛u�𝒫 − 2𝛾
∞
∑
u�=2

𝑛u�𝒫 + 2𝛾
∞
∑
u�=1

(𝑛u�+1 + 1)𝑊−
u� 𝒫

+ 𝛽(𝑛1 + 2)(𝑛1 + 1)𝑊+
u� 𝒫 + 2𝛽(𝑛1 + 1)

∞
∑
u�=2

(𝑛u� + 1)𝑊+
u� 𝒫.

(4.21)

One may verify that
𝒫(𝑛) ∝ 2u�1

∏(2𝛽/𝛾)u�u�𝑛u�!
(4.22)

is a steady-state solution to (4.21). Then, as before, we obtain the least-informed
distribution

Pr [𝑁 = 𝑛∣𝑁u� = 0 ∀ 𝑖 > 𝑚] = 2u�1

∏u�≤u�(2𝛽/𝛾)u�u�𝑛u�!
/ ∑

u�′

2u�′
1

∏u�≤u�(2𝛽/𝛾)u�′
u�𝑛′

u�!
. (4.23)

The comparison of this distribution to the all-monomer IC is plotted alongside the
previous Coagulation-Fragmentation comparison in Figures 4.6 and 4.7.

4.3.5 Discussion
We see in Figures 4.6 and 4.7 that when 𝛾 is large relative to 𝛽, there is virtually

no difference between the standard all-monomer IC and our least-informed distribution.
However, that quickly changes, and we further note that the axes are non-dimensionalized
– any small difference between the 2 distributions may be scaled over orders of magnitude
as 𝛽 varies. This is demonstrated by considering the relative difference between the two,
depicted in Figure 4.8.

We also observe that while the all-monomer IC is independent of 𝛽/𝛾, the
least-informed distribution is not. As 𝛽/𝛾 increases, the least-informed IC will become
increasingly biased towards configurations that favor large polymer sizes. While this
allows the coagulation-fragmentation model to always assemble at least as fast as with
the all-monomer IC, we note that it can have adverse effects under Becker-Döring
assembly: if there are no monomers available, then transitions to larger polymers cannot
occur. While this explains the interesting, non-monotonic behavior of the assembly
time (also observed in [35]), it additionally explains why sampling the least-informed
distribution may result in faster or slower assembly times than the all-monomer IC under
Becker-Döring assembly.
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Figure 4.8: Relative difference of expected assembly times under the different IC, (1−u�LI/u�AM)×
100%, of a particle of size at least 5 (u� = 4) over a range of u�/u� with fixed mass u� = 100.

Our analysis demonstrates that the mathematical result is sensitive not only to
the choice of assembly model, but also the choice of IC. We argue that for in vivo
experiments, sampling from the least-informed distribution is more in line with our
physical knowledge. Conversely, for in vitro experiments (where, for example, protein
is heated and denatured), the all-monomer IC may be most appropriate.

We lastly note that our least-informed distribution is but one of many plausible
distributions to sample the IC from. In the case of our yeast system, for example, one
might consider sampling polymer configurations from some appropriately defined
branching process [34, 23] to model the mother-daughter budding aspect. The point
remains, however, that only in very special circumstances should the initial condition
be treated as a known quantity – doing so glosses over important biological or physical
details of the system under study.
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4.3.6 Appendix: Normalization Constants
When specifying the full probability distributions for ergodic assembly we omitted the

normalizing constant which divides out when finding the conditional probability, making
its determination unnecessary. However, we note that there is a convenient form for these
constants in terms of the well-studied family of complete Bell polynomials {𝑌u�(𝑥)},
where 𝑌u� = ∑u�

u�=1 𝐵u�,u� [1].
Recall, Ωu� = {𝑛 ∶ ∑ 𝑖𝑛u� = 𝑚}. We wish to find generally

𝜅u�(𝑥) = ∑
u�∈Ωu�

∏
u�

𝑥u�u�
u�

𝑛u�!
= 𝑌u�(1! 𝑥1, 2! 𝑥2, … , 𝑘! 𝑥u�)/𝑚! , (4.24)
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Letting 𝜌 = 𝛽/𝛾, the Becker-Döring constant would be

1/𝜅u�(1/𝜌, 1/(2𝜌), 1/(2𝜌), … , 1/(2𝜌)) = 𝑁! /𝑌u�(1! /𝜌, 2! /(2𝜌), 3! /(2𝜌), … , 𝑁! /(2𝜌))
(4.25)
and the coagulation-fragmentation constant would be

1/𝜅u�(1/𝜌, 1/𝜌, 1/𝜌, … , 1/𝜌) = 𝑁! /𝑌u�(1! /𝜌, 2! /𝜌, 3! /𝜌, … , 𝑁! /𝜌). (4.26)

Though we were unable to find a closed form for the former expression, we are able
to explicitly find the latter. We begin by writing the probability generating function for
Equation (4.17):

𝑓u� =
∞
∑
u�=2

u�−1
∑
u�=1

(𝑥u� − 𝑥u�𝑥u�−u�) (𝜌 𝜕2𝑓
𝜕𝑥u�𝑥u�−u�

− 𝜕𝑓
𝜕𝑥u�

) . (4.27)

It is clear by inspection that

𝑓 (𝑥) = exp ( 1
𝜌

∞
∑
u�=1

𝛼u�(𝑥u� − 1)) (4.28)

is a steady-state solution, where 𝛼 is a free constant which we will assume for
convergence purposes to satisfy |𝛼| < 1. This constant is a result of disregarding mass
conservation – to restore this property, we will need to recondition our probability density
function.

Let us define 𝑔(𝑥) = 𝑓 (𝑥, 𝑥2, 𝑥3, … ) = ∑∞
u�=1 𝑝u�𝑥u�, where 𝑝u� is (by construction) the

probability associated with a total system mass of 𝑛. Then,

𝑔(𝑥) = exp (− 1/𝜌
1 − 𝛼) exp ( 1

𝜌
1

1 − 𝛼𝑥)

= exp (− 1/𝜌
1 − 𝛼) [1 +

∞
∑
u�=1

1
𝜌u�𝑛! ( 1

1 − 𝛼𝑥)
u�
]

= exp (− 1/𝜌
1 − 𝛼) [1 +

∞
∑
u�=1

1
𝜌u�𝑛!

1
𝛼u�−1(𝑛 − 1)!

𝑑u�−1

𝑑𝑥u�−1
1

1 − 𝛼𝑥]

= exp (− 1/𝜌
1 − 𝛼) [1 +

∞
∑
u�=1

1
𝜌u�𝑛!

∞
∑

u�=u�−1
( 𝑚

𝑛 − 1)(𝛼𝑥)u�−u�+1]

= exp (− 1/𝜌
1 − 𝛼) [1 +

∞
∑
u�=0

(
∞
∑
u�=1

(𝑚 + 𝑛 − 1
𝑛 − 1 ) 1

𝜌u�𝑛!) (𝛼𝑥)u�]

= exp (− 1/𝜌
1 − 𝛼) [1 + 1

𝜌
∞
∑
u�=0

1𝐹1(𝑚 + 1; 2; 1/𝜌)(𝛼𝑥)u�]

= exp (− 𝛼/𝜌
1 − 𝛼) + 1

𝜌 exp (− 1/𝜌
1 − 𝛼)

∞
∑
u�=1

1𝐹1(𝑚 + 1; 2; 1/𝜌)(𝛼𝑥)u�.

(4.29)
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We may now find 𝒫:

𝒫 = ( 𝜕u�1+u�2+…

𝜕𝑥u�1
1 𝜕𝑥u�2

2 …
𝑓 ∣

u�=0
/ ∏ 𝑛u�! ) /𝑝u�

= ( 𝛼u�

𝜌u�1+u�2+… exp (− 𝛼/𝜌
1 − 𝛼) / ∏ 𝑛u�! ) /𝑝u�

= 𝜌 exp(1/𝜌)
1𝐹1(𝑁 + 1; 2; 1/𝜌) × 1

∏ 𝜌u�u�𝑛u�!
.

(4.30)

Thus the identity

𝑌u�(1! 𝑥, 2! 𝑥, … , 𝑛! 𝑥)/𝑛! = 1𝐹1(𝑛 + 1; 2; 𝑥)𝑥e−u�. (4.31)

4.4 Discussion
Having provided a computational framework to compute spontaneous nucleation

times under Markovian assumptions and a set of reasonable initial conditions to endow
the solution with a biological interpretation, we may now begin to apply computational
insights to S. cerevisiae. This application is in its infancy, however, due to the difficulty in
finding and subsequently validating against experimental data. I propose the conclusion of
this line of analysis as future work to be discussed in Chapter 5.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion
The once controversial “prion hypothesis,” the ability of proteins to act as genetic

determinants, has now all but been universally accepted by the biological community [22].
More recently, prions have become viewed as an essential epigenetic switch associated
with the normal functioning of various biological processes [19] instead of solely a
determinant of disease. It should come as no surprise that such an unconventional
biological mechanism also provides a rich mathematical modeling opportunity.

My own contributions to the field, as detailed in this dissertation, constitute a
significant step towards ecologically valid, mathematical modeling of in vivo prion protein
pathogenesis. This work was guided and organized by two fundamental questions:

1. How does the infectious prion form of a protein initially occur?

2. Once present, how do the infectious prion “aggregates” persist and amplify across
multiple generations of cell division?

Chapter 2 detailed the development of the first prion model to incorporate both
the nucleated polymerization assumptions and the known interactions of the Hsp104
chaperone with the prion aggregates. This new model successfully recapitulates known
qualitative behavior with Sup35 over-expression and Hsp104 knock-outs [3]. By explicitly
considering the chaperone concentrations, this is also the first model to permit prion strain
coexistence, which is a particularly exciting result and suggests a number of biological
experiments with respect to the Hsp104 expression that could falsify or confirm the
model.

Next, Chapter 3 provided a stochastic treatment of the initial introduction of a prion
aggregate to an otherwise normal cell. This is the first such fully stochastic model of
nucleated polymerization, made tractable via a number of insights derived from the
deterministic modeling that had been done prior. Coupled with data provided published
by the Serio lab [4, 13], this model also provides the first quantitative evidence for
differing minimal stable sizes between prion strains.
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Lastly, Chapter 4 expanded upon the work of [6, 23, 5] and developed a numerical
solver capable of efficiently characterizing the nucleation time distribution for general
models of assembly. This solver was used to study and ultimately propose a novel set
of initial conditions for the general inference of assembly mechanisms under in vivo
conditions. Notably, while many stochastic processes admit effective approximations
(e.g. [11, 18]), this particular problem of spontaneous nucleation does not lend itself
to these techniques. Thus, my development of a memory-efficient, matrix-free solver
and preconditioners is, at this time, the only means of quantitative exploration of these
assembly models in biologically-valid parameter regimes.

Nonetheless, considerable work remains. By developing the mathematical models and
tools to explore the in vivo dynamics of prion aggregates, I am now positioned to answer,
or at least provide insight into, a number of long-standing, open biological questions.
These questions are outlined in the next section.

5.2 Future Work

5.2.1 Enzyme-Limited Models of Nucleated Polymerization
Chapter 3 detailed the generalization of the nucleated polymerization model (NPM)

to include known chaperone effects on the fragmentation process. It is the first such
model to recapitulate a number of observed but previously unexplained behaviors,
including changes in the aggregate size density and prion strain coexistence [3]. Missing
from the work, however, is a global analysis of the nonlinear dynamics. The potentially
non-monotonic trajectories of the fragmentation efficiency 𝑝(𝑡) make such an analysis
difficult, but the same non-monotonicity also casts doubt on the generalizability of the
local stability results. Thus, I will continue to search the literature for applicable global
stability techniques and look for a Lyapunov function.

With such an analysis, it may be possible to further elucidate the restrictions on prion
strain coexistence as well. Notably, [3] only provided a heuristic understanding of why
strain coexistence is possible and did not provide any algebraic restrictions on the kinetic
parameters. Since prion strains are known to both coexist and compete [17], often with
clinical implications [20], the mathematical determination of such algebraic mechanisms
have immediate relevance to the biology. The first steps towards better understanding
prion strain coexistence include an exhaustive parameter sweep and exploration of a
two-strain system, which can be represented as a 6-dimensional, nonlinear ODE system.
This is sufficiently small so that for any parameter combination, the equilibria and their
local stability is easily calculated. It is expected that insights from the one-strain global
stability argument will generalize to the 𝑛-strain stability in some manner.

5.2.2 A Two-Hit Model of Prion Pathogenesis
Chapter 4 outlined a mathematical framework to explore the spontaneous nucleation

of a de novo prion aggregate. By formulating transient dynamics as transitions on a
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Markov chain between mass-preserving configurations and studying the absorption time
of a “nucleated” state, the problem is recast into the well-studied framework of solving
large sparse linear systems.

The difficulty is in reconciling the numerical experimentation with biological data.
From the work in Chapter 3, it is known that forming an aggregate, while necessary, is not
sufficient to induce a prion phenotype. The aggregate must persist and amplify in vivo;
thus measurements of the spontaneous [PSI+] rate are really a combined measurement of
both the nucleation rate and the persistence probability. Supposing, for convenience only,
that spontaneous nucleation occurs according to a Poisson process characterized by rate
parameter 𝜆 and the measured induction probability is given by 𝑝, note the following:

• 𝜆 is determined by an unknown assembly process ({𝑎u�u�} and {𝑏u�u�} from Chapter 4).

• 𝑝 is determined by a known and well-validated process (nucleated polymerization,
Chapter 3).

• Both 𝜆 and 𝑝 are necessarily dependent on the availability of the Hsp104 (and
related) chaperones through their respective fragmentation dynamics.

Estimates of spontaneous [PSI+] appearance will reflect combined parameter ̂𝑟 =
𝜆𝑝; however, when the fragmentation dynamics are perturbed, both 𝜆 and 𝑝 will respond
yielding ̂𝑟′ = 𝜆′𝑝′. Since the response of 𝑝′ (relative to 𝑝) is governed by a known model,
this permits an indirect study into the nucleation rate, locally quantifying the sensitivity
of 𝜆 to changes in fragmentation efficiency. Equipped with both the value and gradient
information of 𝜆, one can then begin to eliminate plausible assembly mechanisms.

For example, in unpublished work from the Serio lab1, it was found that decreasing
the availability of Hsp104 increases the rate of [PSI+]. The parameter inference from
Chapter 3 shows that decreased Hsp104 also decreases the persistence probability,
implying that the spontaneous nucleation rate 𝜆’ must significantly increase, both to
accommodate the decrease in 𝑝′ and the increase in ̂𝑟′. From Chapter 4, Figures 4.6
and 4.7 suggest than that a monomer restriction on coagulation (Becker-Döring) is
more capable of recapitulating this behavior than no restrictions (the more general
coagulation-fragmentation model).

It is easy enough to make qualitative claims such as these; however, considerable work
is required for quantitative evidence. For an assembly model with a maximum particle
size of 𝑘, there are 𝑘(𝑘 + 1) parameters to infer, in addition to any parameters required for
the computation of the persistence probability 𝑝. To approach this problem in a principled
way, a Bayesian technique will need to be developed in order to propagate uncertainty
from the measurements of ̂𝑟 and the persistence probability into the assembly parameters.
This inference has a number of challenges to be addressed, even ignoring what will likely
be minimal and noisy experimental data: first and foremost, the maximum particle size
𝑘 will itself be unknown, in addition to the 𝑘(𝑘 + 1) unknown parameters associated
with it. Lastly, the dimensionality of the forward problem grows exponentially in 𝑘, thus
computing the evidence in favor of a value of 𝑘 grows exponentially difficult in 𝑘 itself.

1http://mcb.arizona.edu/people/tserio

http://mcb.arizona.edu/people/tserio
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With that caveat, evidence in favor of any particular model of assembly will constitute
completely new work. This work has immediate application to the clinical study of prion
diseases: [6] observed that monomer-only assembly (Becker-Döring) often finds itself
in “pauses” where the monomer population has depleted, preventing the intermediate
particles from further growing. In this case, treating a prion infection by increasing the
cell’s ability to fragment aggregates may worsen the infection by freeing monomers and
allowing particles to lengthen again. Conversely, if aggregates of any size may freely
coagulate (coagulation-fragmentation model), then an increase in fragmentation should
unilaterally improve the infection, due to a decrease in the average length of aggregates.
This speaks to the need to understand the origin of spontaneous nucleation before we can
effectively treat it.

5.2.3 Automated Approaches to Solving the Chemical Master
Equation

Cross-disciplinary communication is one of the largest barriers to effective
mathematical biology. Practitioners on either side use their own domain-specific language,
and these languages in turn influence how we think about and formulate our problems.
Bridging this divide is the key to successful collaboration, and in my work I have come to
appreciate the universality of the chemical equation as a basic unit of communication.

That is to say, chemical reactions like 𝐴 + 𝐵
u�1−−−⇀↽−−−
u�−1

𝐶 can be understood very precisely
by both mathematicians and biologists and thus serves effectively as a “linguistic tool” to
communicate quantitative ideas back and forth. This universality is apparent: virtually
all networks and diagrams in systems biology at least include chemical reactions as a
fundamental component [14].

There exists a rich theory for the deterministic analysis of concentrations of chemical
species governed by such reaction networks, known as deficiency theory [9, 10]. However,
as noted throughout this dissertation (and more prominently noted in [15]), deterministic
models fail when the noise in the system is as fundamental as the mean states themselves.
Work has begun to emerge that finds stochastic analogs to the deterministic theorems (e.g.
[8]), though in practice there remains a significant difficulty in numerically solving such
stochastic formulations.

This was demonstrated in Chapter 4 where considerable effort was invested in
describing the states in the Markov chain, prescribing a meaningful ordering, and
providing a means of evaluating the chemical master equation (CME) operator. While
generalized for all types of binary fission and binary fusion assembly, any sort of
additional modification requires significant alteration. For example, the nucleated
polymerization model does not have only binary fission: the reaction 𝑋u� → 𝑖𝑋1 is possible.
This would require an entirely different implementation of the CME operator. It may also
be reasonable to assume that monomers do not freely assemble. For example, a monomer
may first need to become susceptible, then the susceptible form can be aggregated [2].
This would augment the Becker-Döring model with the reaction 𝑃

u�+−−⇀↽−−
u�−

𝑋1; in addition
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to defining meaningful, rate-limiting constants 𝑘±, an entirely new description of and
enumeration over the state space is needed.

These sorts of changes are relatively minor when solving deterministic representations
but they create an entirely new problem when treated stochastically. With that said,
using very similar techniques from the nucleation time solver in Chapter 4, an automatic
framework for setting up and numerically solving the chemical master equation can be
developed.

Given any family of mass-preserving chemical reactions, one can construct the
stoichiometric matrix: each column represents a unique chemical species involved in
the reactions and each row a chemical reaction. The corresponding matrix entry is the
number of that species produced or consumed by that reaction. Conservation laws are
merely non-negative integer vectors in the nullspace of this matrix. For example, the
Michaelis-Menten enzyme model [12] is given by the chemical equations

𝑆 + 𝐸
u�1−−−⇀↽−−−
u�−1

𝑆𝐸
u�2−−→ 𝑃 + 𝐸. (5.1)

The stoichiometric matrix 𝑅 is

𝑅 =

𝑆 𝑆𝐸 𝑃 𝐸

⎛⎜⎜
⎝

⎞⎟⎟
⎠

−1 1 0 −1
1 −1 0 1
0 −1 1 1

(5.2)

The vectors (1, 1, 1, 0), corresponding to 𝑆 + 𝑆𝐸 + 𝑃 = constant, and (0, 1, 0, 1),
corresponding to 𝑆𝐸 + 𝐸 = constant, are in the nullspace of 𝑅. Taking these two vectors as
a basis, any state describing the numbers of 𝑆, 𝑆𝐸, 𝑃, and 𝐸 can be identified by the linear
combination of these basis vectors. Endowing a natural ordering to the coefficients of the
linear combination, an enumeration over all such states is then defined, just as in Chapter
4. Finally, the mass-action kinetics are easily expressed in the matrix-free application of
the CME operator.

I have developed a number of preliminary programs towards this end, but three open
problems remain:

1. Inspired by the work on assembly, can a heuristic to automatically select an
effective preconditioner based on knowledge of the chemical reaction scheme be
found?

2. Given the high dimensionality of these linear systems, can good subsets of states
for finite state projection (FSP) approximation methods [18, 21, 1] automatically be
discovered?

3. Interesting chemical systems often produce and destroy reactants as part of the
reactions, making the state-space countably infinite. Can the FSP approximations
also accommodate this countably infinite regime?
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Without satisfactory resolutions to all of these questions, a generalized solver will
be of extremely limited use. However, direct numerical solution of the chemical master
equation can drastically out-perform Monte Carlo simulation in certain circumstances
[16] and thus serves as a complementary tool for the simulation-based software packages
(such as [7]).
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