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were mapped against hg19 followed by variant calling using GATK. The genome variants
were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs)
were called using GenomeSTRIP and LUMPY. We identified potential causative sequence
alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes.
For 57 of these pedigrees the observed genotype was consistent with the initial clinical diag-
nosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven
pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), includ-
ing 4 pedigrees with causal variants in more than one IRD gene within all affected family
members, one pedigree with intrafamilial genetic heterogeneity (different affected family
members carrying causal variants in different IRD genes), one pedigree carrying a dominant
causative variant present in pseudo-recessive form due to consanguinity and one pedigree
with a de-novo variant in the affected family member. Combined atypical and large structural
variants contributed to about 20% of cases. Among the novel mutations, 75% were detected
in Mexican and 50% found in European American pedigrees and have not been reported in
any other population while only 20% were detected in Pakistani pedigrees and were not pre-
viously reported. The remaining novel IRD causative variants were listed in gnomAD but
were found to be very rare and population specific. Mutations in known IRD associated
genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European Ameri-
can pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathol-
ogy in these three populations was similar to that observed in other populations worldwide.
This study revealed a spectrum of mutations contributing to IRD in three populations, identi-
fied a large proportion of novel potentially causative variants that are specific to the corre-
sponding population or not reported in gnomAD and shed light on the genetic architecture of
IRD in these diverse global populations.

Author summary

The study was performed to identify the underlying cause of inherited retinal degenera-
tion (IRD) in 409 individuals from 108 families. Primarily, these families were recruited
from three different geographic regions: Mexico, Pakistan and European Americans from
the United States. Blood samples were collected from all individuals for genome analysis.
This analysis detected causative variants in 61 out of the 108 pedigrees. A total of 93 gene
variants were found in the 61 families. Among these, 54 were previously reported as causa-
tive variants and the remaining 39 have not been reported in IRD pedigrees. Interestingly,
54% of these novel variants were not listed in gnomAD. In addition to these findings,
complex causative genotypes were observed in 20% of pedigrees. Overall, causative vari-
ants were detected in 63% Mexican, 60% Pakistani and 45% European American pedi-
grees. This study revealed the distribution of IRD causative variants in pedigrees with
diverse ethnic and geographic backgrounds.

Introduction

Inherited retinal degenerations (IRDs) are a group of diseases, which result in dysfunction or
progressive degeneration of retinal cells causing a profound bilateral loss of vision. IRDs are
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relatively rare. It is currently estimated that IRDs affect 1 in 3000 individuals [1]. Significant
heterogeneity has been reported in the phenotype of IRD patients with a wide variation in the
age of onset, rate of progression, severity of the disease, and clinical symptoms. Variants in the
same gene may also lead to marked diverse phenotypes as well as result in different patterns of
inheritance. Currently, at least 271 genes are known to be associated with IRD [2].

Retinal disease genes have been identified previously by linkage analysis, homozygosity
mapping, and sequencing the coding regions of several genes associated with genetic and
genomic markers. The subsequent development of targeted screening panels for pathogenic
variants in known IRD genes greatly improved genetic diagnosis but failed to identify novel
variants and novel genes involved in IRD [3-5]. Gene arrays to selectively capture and
sequence candidate genes are reported to result in the identification of mutations in 60%-70%
of IRD patients [3, 5, 6]. Advances in whole-exome sequencing (WES) enabled the identifica-
tion of causal variants associated with Mendelian diseases in known or novel genes efficiently
[7, 8]. Nevertheless, about 30%-40% of cases remain unresolved. Further, while the majority of
studies conducted so far focused on selected populations, the genomic architecture of IRD in
certain populations remains unknown.

The affordable cost structure of whole-genome sequencing in recent years [9-13] has
enabled the analysis of all genes including their untranslated regions and provided opportuni-
ties to identify causal variants in patients with IRDs with broad genetic and phenotypic hetero-
geneity. Utilizing these advances in the current study, we present the genetic analysis of IRD in
108 pedigrees. These pedigrees are mainly from three populations: the understudied popula-
tions from Pakistan (Punjab province) and Mexico as well as the well-studied European Amer-
ican population (individuals of European ancestry from North America). Analysis of these
pedigrees revealed atypical sequence alterations and provided a glimpse of the genetic architec-
ture of IRD in these distinctly diverse global populations.

Results

Pedigrees analyzed

Whole-genome sequence data were obtained on 404 subjects from 108 unrelated pedigrees
with a diagnosis of inherited retinal dystrophy. The study cohort included pedigrees from
Mexico (35), Pakistan (15), Ashkenazi Jewish (2), India (2), and USA (European ancestry)
(54).

The pattern of inheritance was observed to be recessive in 76 pedigrees, dominant in 25,
and X-linked in 7. However, after completing the analysis, the pattern of inheritance was cor-
rected in 4 pedigrees based on the causative mutations detected. One pedigree with multiple
consanguineous marriages (RF.197.0113) was originally classified as recessive but determined
to be dominant with a pseudo-recessive pattern of inheritance. Similarly, two pedigrees RF.
VI123.0514 and RF.VI153.0216 were originally classified as dominant and recessive respec-
tively but mutations in X-linked genes were identified as the underlying cause of the pheno-
type. One pedigree originally classified as dominant (RF.VI116.1215) was re-classified as
recessive.

WGS sequence analysis

Analysis of sequence data identified 202 female and 202 male subjects consistent with our rec-
ords and validated relationships based on identity by descent (IBD) mapping analysis. The
total number of reads obtained on each individual ranged from 765 million to 1,903 million, of
which 78% ~ 95% were detected as appropriately mapped reads indicating the high quality of
sequence data. Analysis using GATK best practice pipeline identified 30,071,475 single
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nucleotide variants (SN'Vs) in total, including 23,409,845 single nucleotide polymorphisms
(SNPs) and 6,661,630 INDELs. The number of variants in each sample ranged from 3.77 to
4.84 million SNVs. A total of 18,301,653 known and 11,769,822 novel (based on dbSNP147)
SNVs were observed in 404 subjects. Among the total number of identified SNV, 21,026,019
(70%) were identified as very rare SNVs (allele frequency < 0.001). The rare and moderate/
possibly disease-causing SNVs included 186,501 (0.61%) while only 53,101 (0.18%) of them
were predicted to be deleterious/probably damaging.

(i) Small variants (SN'Vs and small INDELs). 3.77 to 4.84 million SNVs including
~850,000 small INDELSs were detected from autosomes in every individual and no outliers or
plate biases were observed. Similarly, no outliers were observed in the X and Y chromosome data.
The heterozygous and homozygous ratios were normal on autosomes as well as sex chromosomes
in each female and male sample. Among the total SNVs observed, 112,335 (0.37%) were anno-
tated as missense variants. These include 79,428 (71%) known and 32,907 (29%) novel variants.

(ii) Copy Number Variants (CNVs). We observed a total of 56,299 CNVs including
25,357 deletions, 13,223 duplications, and 17,719 insertions in 404 samples. More than half of
the CNVs, 29,142 (52%) were found to be common as they were found in more than 30 sam-
ples. The CNV calling software (GenomeStrip) detected CNVs with lengths greater than
1000bp. In our analysis, we identified CNVs ranging from 1000bp to 313,600bp. The CNVs
were called with a quality score, and those <1 were classified as likely false positives.

(iii) EXAC Z score distribution in Retina genes. ExAC database has constraint Z scores
for 18,225 genes. In our analysis, we included 271 retinal disease-associated genes from the
RetNet database [2] and 58 other possible candidate genes associated with IRD based on their
expression in relevant cells and function. Among these were 311 genes listed in the ExAC data-
base including 183 recessive, 75 dominant, 9 X-linked genes, and 44 undefined genes. Positive
Z scores indicated increased variation intolerance and therefore these 311 genes had fewer var-
iants than expected. Autosomal dominant/X-linked IRD related genes were highly conserved
and sequence alterations in these genes have among the highest Z-scores. Therefore, we used
Z-scores to prioritize the candidate variants for dominant and X-linked related genes but not
for recessive genes.

Causative variants detected in IRD associated genes

Analysis of WGS variants identified 93 causative variants (88 SNVs and 5 CNVs) in 61 of the
pedigrees (57%). 89 of these causative variants include 35 novel and 54 previously reported
variants detected in 45 known IRD genes in 59 pedigrees (Tables 1, 2, 3, 4 and S1). In two addi-
tional pedigrees, 4 novel mutations were identified in 2 newly classified novel IRD associated
genes, AGBL5 and IFT88 [10, 14].

(i) Novel potentially causative variants detected in known IRD genes. In 22 pedigrees
(9 Mexican, 4 Pakistani and 9 European American), 26 rare, potentially pathogenic novel (not
previously reported as causative) variants in 17 different known IRD genes were identified as
likely causative mutations. Seven of these pedigrees also have 8 previously reported mutations
in known IRD genes. Among the variants detected, 9 were homozygous (in 8 pedigrees), 21
compound heterozygous (in 10 pedigrees), 2 dominant acting heterozygous (in 2 pedigrees),
and 2 were X-linked variants (in 2 pedigrees) (Table 1). Five of these variants were nonsense,
15 missense, 9 frameshift, and 5 intronic splice altering variants. Sanger sequencing analysis of
all available family members confirmed co-segregation of candidate variants with IRD (Fig 1).

Pedigrees with variants of uncertain significance (VUS). Among the novel potentially causa-
tive variants observed in Table 1 and Fig 1, five variants found in RAX2 (p.Arg79Glin in
RF.176.0113), PEX6 (p.Arg876Trp in PKRDO38 and p.Gly862Val in RF.FO.1293), DRAM2
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Mexican

A\, Pedigree: RF.RA.0914
Gene: SDCCAGS

B. Pedigree: REVI106.0514
Gene: EYS

C. Pedigree: RFVI116.1215

Gene: CRB1

D. Pedigree: RF.VI145.1215
Gene: USH2A

E. Pedigree: REVI3.0514
Gene: IMPG2

F. Pedigree: RFVI147.0116
Gene: MAPKAPK3

H. Pedigree: RFVI109.0210
Gene: CNGB1

G. Pedigree: RF.GA.0613
Gene: ADAM9

. Pedigree: REVI123.0514

Gene: RPGR

Variant-1: ¢.481C>T; Variant-1: ¢.9460_9461dupAA; Variant-1: ¢.2098A>G; Variant-1: ¢.11955G>A Variant-1: ¢.666+2T>G Variant-1: ¢.245G>A; Variant-1: c.985G>A; Variant-1: c.875-2A>G Variant-1: ¢.159_160insTAA;
p.GIn161* p.Asn3154Lysfs*53 Pp.Arg700Gly PpTrp3985* p.Arg82GIn p.Gly329Arg p.Asn53_Asn5dinsTer
Variant-2: ¢.5928-2A>G Variant-2: ¢.2843G>A; Variant-2: ¢.5528C>T;
p.Cys948Tyr p.Pro18asLeu
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Pakistani European American
J. Pedigree: RF.278.0113 K. Pedigree: RF.142.0113 L. Pedigree: RF.176.0113 M. Pedigree: PKRD038 N. Pedigree: RF.F515.0110 Q. Pedigree: RF.5.0112
Gene: ADAM9 Gene: CNGB1 Gene: RAX2 Gene: PEX6 Gene: PDE6B Gene: EYS

Variant-1: ¢.1144T>G; p.Phe382Val

Varaint-1: ¢.2397_2498delAT; p.lle833Serfs*18
Variant-2: ¢.2493-2A>G

Variant-1: ¢.236G>A; p.Arg79Gin

Variant-1: ¢.2626C>T; p.Arg876Trp

Variant-1: ¢.992+1G>A

Variant-2: c. 1927_1948
delAACATCTACCAGAACCTGAACCTGAACC;
P.Asn643Glyfs*7

Variant-1: ¢.6714delT;
p.lle2239Serfs*17
Variant-2: ¢.1982T>A;

p.Leu661*
Variant-3: ¢.1951_1969 P
delCGGCAGCACGAGCACGTGA;
p.Arg651Serfs*3
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European American
P. Pedigree: RETI.0989 Q. Pedigree: RF.MU.0388 R. Pedigree: RF.CU.1195 S. Pedigree: REMA.031 T. Pedigree: RF.FO.1293 U. Pedigree: RF.H.0506 V. Pedigree: RF.AG.0991
Gene: BEST1 Gene-1: CNGB1 Gene: CRX Gene: RPGR Gene: PEX6 Gene: DRAM2 Gene: IFT140
Variant-1: ¢.116T>C; Variant-1: ¢.2029C>T; p.Arg677Cys Variant-1: ¢.263A>G; Variant-1: ¢1377-1378delCT; Variant-1: c.1947delG; Variant-1: ¢.677dupA; Variant-1: ¢.410G>A;
p.Phe39Ser Variant-2: ¢.1217G>A; p.Trp406* p.Lys88Arg p.Valdsovalfs*3 p.lle650Serfs*10 pTyr226erfs*2 p-Arg137Gin
Variant-2: C572_574delGTC; Variant-2: ¢.2626C>T; Variant-2: ¢.737T>C; Variant-2: ¢.1295T>G;
p.Cys191leufs*a14 .I.D p.Arg876Trp p.Leu246Pro p.leud3zArg
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Fig 1. Pedigrees with novel mutations. The segregation analysis of 22 pedigrees showed 26 rare potentially pathogenic novel variants along with 8 previously reported
mutations in 17 IRD associated genes. These include 9 homozygous, 21 compound heterozygous, two dominant acting heterozygous, and two X-linked variants.
Pedigrees A-I are Mexican, J-M are Pakistani and N-V are European American. The asterisk indicates the availability of whole-genome sequencing data.

https://doi.org/10.1371/journal.pgen.1009848.9001

(p.Leu246Pro in RF.H.0506) and IFT140 (p.Argl37GIn in RF.AG.0991) are listed in CinVar as
VUS.

Further analysis of the IRD pedigrees with these five VUS did not detect additional poten-
tially causative variants in known or novel genes that are sufficient to cause disease. Future
experimental evaluation of novel potentially pathogenic causative variants and VUS, and
detection of these variants in additional unrelated IRD cases will provide evidence for an
appropriate classification of their clinical relevance.

(ii) Previously reported mutations detected in known IRD genes. Thirty-five previously
reported mutations in 18 known IRD genes were identified in 25 pedigrees (Table 2 and Fig
2). These pedigrees include 8 Mexican, 3 Pakistani, 14 European American including two of
Ashkenazi Jewish origin and one Indian. Seven frameshift, 17 missense, 7 premature stop
codon mutations, and 4 splice site altering changes were observed. Ten homozygous (in 9 ped-
igrees), 6 dominantly acting heterozygous (in 6 pedigrees), 2 X-linked (in 2 pedigrees) and 17
compound heterozygous mutations (in 8 pedigrees) were found in these 25 pedigrees
(Table 2).

This analysis detected USH2A variants as the underlying cause of disease in eight different
pedigrees. Among these, only one was a novel variant while the remaining 15 were reported
previously (Tables 1 and 2). The targeted mutation screening performed prior to WGS on a
subset of cases did not include all currently known IRD genes nor cover all variants in a given
gene; our current WGS screening resulted in the identification of variants in known genes in
this set of pedigrees.
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Mexican

A. pedigree: RFVI127.0514
Gene: USH2A
Variant-1: ¢.12575G>A;

B. Pedigree: RFVI1148.1215
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Fig 2. Pedigrees with previously reported mutations. The segregation analysis revealed 35 previously reported mutations that were identified in 25 pedigrees. There
were seven frameshift, 17 missense, seven premature stop codon mutations, and four splice site altering changes. Of these ten are homozygous, six dominant
heterozygous, two X-linked, and 17 compound heterozygous mutations found in these pedigrees. Pedigrees A-H are Mexican, I-K are Pakistani and L-V are European
American, W-X are Ashkenazi Jewish and Y is Indian. The asterisk indicates the availability of whole-genome sequencing data.

https://doi.org/10.1371/journal.pgen.1009848.9g002

(iii) Structural Variants detected in known IRD genes. Five different pedigrees carried
novel structural variants. These included one pedigree with dominant macular degeneration
and the remaining four with recessive retinal degeneration. Of the recessive pedigrees, two had
the novel structural variants in the homozygous state, one carried a previously reported non-
sense mutation and one a previously reported frameshift mutation (Table 3 and Fig 3). Three
of these pedigrees are European American while one each is Mexican and Pakistani.

(A) A 1.6Mb deletion in EYS segregating with IRD. Analysis of the WGS of two affected (II:1
& II:2) and one unaffected sibling (II:3) from a Mexican pedigree RF.V196.0210 (Fig 3A1)
revealed a novel, 1.6 Mb homozygous deletion on chromosome 6 (Chré:
£.65,994,849_67,582,755del) in both affected members. This deletion was not observed in the
unaffected sibling. The deleted region encompasses the exons 1 to 12 and 5’-untranslated
region of the EYS gene implicated in recessive retinal degeneration (Fig 3A2). PCR amplifica-
tion of exons 1 to 12 of EYS in this pedigree revealed the loss of exons in II:1 and II:2
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Fig 3. Pedigrees with copy number variations (CNVs). Five unique structural variants were identified in EYS, LCA5, CERKL, PRPH2, and CNGB3 in five different
pedigrees, one with dominant macular degeneration and four with recessive retinal degeneration. (A1) 1.6Mb homozygous deletion Chr6: g.65,994,849_67,582,755del is
segregating with recessive retinal degeneration in a Mexican pedigree RF.V196.0210. (A2) The schematic diagram depicting a 1.6Mb homozygous deletion Chr6:
€.65,994,849_67,582,755del encompassing the exons 1 to 12 and about 1.6Mb of 5’-untranslated region of the EYS gene. (A3) PCR amplification of EYS exons 1, 6, and
11 detected the presence of expected size product in unaffected individuals (I:1, I:2, II:3) whereas the presence of PCR product was not observed in two affected
individuals (I:1 and II:2). (A4) Amplification with primers flanking the deleted region followed by sequencing revealed the junction point in individual II:1 due to the
1.6Mb deletion. Examination of the sequence flanking the junction point detected paralogous repeat sequences on both sides of the deleted region (blue and yellow
boxes). (B1) In a consanguineous Pakistani pedigree RF.277.0113, a 110Kb homozygous deletion in LCA5 (chré6: g.80,205,052_80,315,592del) segregated with the
phenotype. (B2) The novel 110Kb homozygous deletion includes 1 to 4 exons of LCA5. (B3) PCR amplification showed the absence of exon 1 to 4 of LCA5 in both
affected individuals while exon 5 is present in all family members. (B4) Amplification with primers flanking the deletion resulted in the generation of the fragment with
deletion. Sequencing this PCR product revealed the presence of paralogous repeat sequences flanking the junction point in affected individuals. Sequence marked with
yellow and blue rectangles represent the paralogous sequence on both sides of the deleted region. (C1) A previously reported heterozygous stop mutation CERKL p.
Arg257* and a novel heterozygous large 22.8 Kb deletion (Chr2: g.182,456,422_182,479,267del) on chromosome 2, which includes exon 2 of CERKL are observed in
trans configuration in the proband of RE.T.8.11. (C2) The schematic diagram shows the 22.8Kb deletion which includes ~10.3Kb of intron 1 and exon 2 (243bp) and
12.3Kb of intron 2 of CERKL gene. (C3) The WGS reads mapped to the deleted region showed decrease in read depth. (C4) Electropherogram showing the sequence of
junction fragment generated by amplification with primers flanking the deletion revealed the specific boundaries of the deletion that includes exon 2 of CERKL. (D1)
The segregation analysis revealed a heterozygous 33Kb deletion on chromosome 6 (Chr6: g.42,643,442_42,676,411del) segregating with the disease. (D2) A cartoon
depicting the deleted region which includes two different genes: exons 39 and 40 of UBR2 and exons 2 and 3 of PRPH2 present in opposite orientation (D3) Analysis of 7
affected and 15 unaffected members using qPCR confirmed the presence of the heterozygous deletion on chromosome 6 in affected members and not in unaffected
relatives. (E1) A set of compound heterozygous deletions including a novel 7Kb deletion (Chr8: g.87,616,103_87,623,431del) and a previously known 7bp deletion p.
Arg274Valfs*13 in CNGB3 gene were observed in RF.M.0592 pedigree with a single affected individual. (E2) The novel 7Kb heterozygous deletion (Chr8:
2.87,616,103_87,623,431del) (Pink rectangle) includes coding exon 15 of CNGB3. (E3) qPCR analysis confirmed the presence of the heterozygous deletion of CNGB3
exon 15 in II:1, which was inherited from the mother (I:2). The asterisk indicates the availability of whole-genome sequencing data.

https://doi.org/10.1371/journal.pgen.1009848.9g003
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(Fig 3A3). Amplification with primers flanking the deleted region followed by sequencing
showed the overlapping of paralogous repeat sequences and deletion of in-between 1.6 Mb
regions (Fig 3A4) in the affected members.

(B) LCA5 gene deletion in a pedigree. A 110Kb homozygous deletion in LCA5 (Chré:
£.80,205,052_80,315,592del) was identified in a consanguineous Pakistani pedigree
RF.277.0113. This homozygous deletion includes 1 to 4 exons of LCA5. PCR amplification and
sequencing of the deleted region using primers located in the flanking sequence identified spe-
cific boundaries of the deletion and its segregation with LCA in RF.277.0113 (Fig 3B).

(C) A 22.8Kb deletion in the CERKL gene. In pedigree RF.T.8.11, a previously reported non-
sense mutation p.Arg257" in the CERKL gene was identified in the heterozygous state by
exome sequence analysis in the proband I:1 who was adopted (53). Whole-genome sequence
analysis of this individual identified a large novel heterozygous 22.8 Kb deletion (Chr2:
g.182,456,422_182,479,267del) on chromosome 2 (Fig 3C). Analysis of the samples of his two
offspring established the compound heterozygous nature of the nonsense variant and the large
deletion in the affected individual. The 22.8 Kb chromosome 2 deletion includes the entire
coding sequence of exon 2 (243 bp) and about ~10.3 Kb of intron 1 (Chr2:
g.182,456,422_182,468,805del) and 12.3 Kb of intron 2 (Chr2: g.182,468,565_182,479,267del)
of the CERKL gene. The nonsense change is predicted to truncate the protein or result in non-
sense-mediated decay (NMD) of the transcript [53]. The deletion of 22.8 Kb sequence encom-
passing exon 2 of CERKL may also result in the formation of a truncated protein due to coding
region frameshift or the transcript may undergo NMD. Both sequence alterations detected in
the CERKL gene in this individual are predicted to lead to the loss of functional protein; null
mutations in CERKL have been established as the underlying cause of IRD [55, 56].

(D) A large structural change involving two genes. Clinical evaluation of eight affected indi-
viduals in a four-generation pedigree (C790) led to the diagnosis of autosomal dominant mac-
ular degeneration (MD) with no non-ocular abnormalities co-segregating with the MD
phenotype (Fig 3D1). Analysis of WGS of five affected members and seven unaffected mem-
bers revealed a heterozygous 33 Kb deletion on chromosome 6 (Chr6:
g.42,643,442_42,676,411del) in affected members and not in unaffected relatives. This deletion
included two adjacent genes present in opposite orientation: exons 39 and 40 of UBR2 and
exons 2 and 3 of PRPH2 (Fig 3D2). Segregation analysis of 7 affected and 15 unaffected mem-
bers using qPCR confirmed the segregation of the chromosome 6 deletion with the phenotype
(Fig 3D3). The PRPH2 gene alterations including loss of function mutations have been impli-
cated in dominant MD [57] and other retinal dystrophies, while the UBR2 gene is not associ-
ated with IRD or any other pathological condition.

In addition to the large deletion, two affected (IV:3 & IV:6) and one unaffected (IV:5) oft-
spring of an affected female (III:3) were observed to carry a rare heterozygous potentially path-
ogenic variant ¢.659T>G, p.Phe220Cys (Allele frequency in gnomAD = 0.00002) in the
rhodopsin gene. While samples of the parents of these individuals were not available for
genetic analysis, the novel rhodopsin variant ¢.659T>G, p.Phe220Cys was not detected in
either maternal grandparents (II:1 & II:2) suggesting the possible paternal (III:4) inheritance
of this variant in the three siblings (IV:3, IV:5 & IV:6). Further, this variant was not detected in
the rest of the pedigree excluding the possible involvement of ¢.659T>G, p.Phe220Cys as the
variant responsible for IRD pathology in the rest of the extended pedigree. The two affected
individuals IV:3 and IV:6 have both the large deletion encompassing UBR2 and PRPH2 and
the ¢.659T>G in the rhodopsin gene. The impact of having both sequence alterations in these
individuals is unknown.

(E) Compound heterozygous deletions in CNGB3. Whole-genome sequence analysis of pedi-
gree RF.M.0592 with a single affected individual identified a novel 7Kb heterozygous deletion
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(Chr8: ¢.87,616,103_87,623,431del) and an additional previously known 7bp heterozygous
indel (c.819_826del CAGACTCC) in CNGB3 gene that results in p.Arg274Valfs*13 [54]. The
frameshift mutation was inherited from the father while the large deletion was inherited from

the mother (Fig 3E).

Moreover, our analysis identified deletions and sequence alterations in non-coding regions
with either unknown impact or yet to be annotated. As state above, experimental and analysis
approaches will need to be developed to validate this class of potential disease-causing

mutations.

(iv) Atypical genotypes observed in IRD pedigrees.
ical causal variants in 7 pedigrees including four pedigree
one European American and one of India origin (Table 4

Analysis of the WGS identified atyp-
s from Mexico, one from Pakistan,
and Fig 4).
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G. Pedigree: RF.K.0216
Gene-1: PRPH2
Variant-1: ¢.4224C>T; p.Arg142Trp
Gene-2: ROM1
Variant-2: ¢.339dupG; p.Leu114Alafs*9

Fig 4. Segregation analysis of pedigrees with atypical genotypes. A-D: Mexican pedigrees with atypical mutations. A. RF.VI13.0707 pedigree with a de-novo mutation
in IMPDH]I; B. RE.VI104.0514 pedigree with a homozygous nonsense mutation in C2orf71 was detected in generation II while a previously reported homozygous splice
site mutation in the CLN3 gene was observed in proband in the IV generation demonstrating the involvement of two different genes in IRD pathology in different
generations. C. RF.VI157.0216 pedigree with mutations in genes OPNISW and TOPORS associated with dominant color blindness and retinitis pigmentosa; D. RF.
VI111.0514 pedigree with novel heterozygous causative mutation in PRPF8 and a known mutation in PRPF31, each sufficient to cause dominant IRD, were observed in
monozygotic affected twins; E. RF.197.0113 consanguineous pedigree from Pakistan with a previously known dominant acting mutation in PRPF3 segregated in a
pseudo-recessive pattern; F. RF.M.1111 an European American pedigrees with causative variants in more than one known IRD genes were observed to segregate with
disease. A homozygous mutation in PDE6G and a hemizygous mutation in OPNILW were observed in Pedigree RE.M.1111. G. RF.K.0216 Indian pedigree with a
heterozygous PRPH2 mutation that is sufficient to cause retinal dystrophy and an additional mutation in ROM1 that can lead to digenic RP along with the PRPH2

variant. The asterisk indicates the availability of whole-genome sequencing data.

https://doi.org/10.1371/journal.pgen.1009848.9004
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Fig 5. Haplotype of parents and the proband constructed with variants flanking the de-novo variant detected in the IMPDH]I gene in RF.VI13.0707

pedigree (Fig 4A).

https://doi.org/10.1371/journal.pgen.1009848.g005

(A) Analysis of a Mexican pedigree RF.VI13.0707 with one affected and four unaffected mem-

bers available for the study detected a de-novo novel heterozygous potentially pathogenic
variant ¢.940A>G, p.Lys314Glu in the IMPDHI gene associated with autosomal domi-
nant RP (Fig 4A). The clinical changes observed in the affected individual are consistent
with IMPDH1 associated retinitis pigmentosa with marked macular atrophy (SIA Fig).
Analysis of the WGS data of the proband, parents and the unaffected sibling using identi-
cal by descent (IBD) segment analysis established the genetic relatedness and verified the
provided family structure. Examination of the haplotypes of parents and the proband that
were constructed using variants in the region encompassing the IMPDH1 gene confirmed
the shared haplotype between parent and offspring (Fig 5). However, the absence of the
novel ¢.940A>G, p.Lys314Glu in the IMPDH]1 variant in either parent was noted estab-
lishing the c.940A>G change as a de-novo variant (Fig 5) and suggesting it as the possible
underlying cause of IRD in this patient. The maternal great grandfather (I:2) and grand
uncle (IL:1) of the patient were reported with vision loss but it is not known if they had a
clinical phenotype of RP nor was genotyping of these individuals possible.

(B) The WGS variants data set of three affected members (II:3, II:4, and IV:1) and three unaf-

fected members (III:1 and III:2 and IV:2) of a four-generation Mexican pedigree RF.
V1104.0514 was analyzed. WGS analysis identified two potentially pathogenic variants in
two separate genes in affected individuals from different generations. Two affected sib-
lings I1:3 and I1:4 were observed to carry a homozygous nonsense variant ¢.2950C>T; p.
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Arg984* in C2orf71, which has previously been reported as a mutation causing recessive
RP [58, 59]. However, this mutation was detected only in the heterozygous state in the
affected male IV:1 as well as in his unaffected father. Further analysis of sequence variants
revealed an additional previously reported homozygous splice site mutation c.125+5G>A
(c.140+5G>A) in the CLN3 gene in IV:1, but not in other affected members II:3 and II:4
[60]. This variant was also observed in the heterozygous state in his unaffected parents
III:1 and IIT:2. Both C20rf71 and CLN3 gene variants segregated with disease in separate
branches of the RF.VI104.0514 pedigree (Fig 4B). Patient IV:1 was examined at the age of
10 years with a report of lipofuscinosis, which is consistent with the CLN3 mutation
detected [66]. The age of onset in all three affected members IV:1, II:3, and II:4 is reported
to be during early childhood (4-5yrs). But the fundus images of II:3 and II:4 at a younger
age are not available. Individuals II:3 and II:4 who are currently in their 80s are likely
affected with recessive RP due to the C2o0rf71 mutation (S1F to S1H Fig) while IV:1 has
subtle macular changes due to the CLN3 variant. Best-corrected visual acuities were only
20/200 and 20/100 at the age of 10 years and the patient was noted to have major mood
disturbance as well as a very serious change in personality leading to a referral to a
neurologist.

In the RF.VI157.0216 Mexican pedigree with a single affected member, the WGS analysis
revealed the presence of two pathogenic novel heterozygous pathogenic variants in two
different genes OPN1SW (c.74A>G, p.GIn25Arg; Chr 7) and TOPORS (c.2554_2557del-
GAGA, p.Glu852GlInfs*13; Chr 9) associated with dominant color blindness (Tritenopia)
and dominant retinitis pigmentosa respectively [67-69]. The age of onset of IRD in the
proband (II:2) was between 6-7 years. This patient is diagnosed with Marfan syndrome
and multiple sclerosis and reported color deficiency since the age of 17 years. While the
color deficiency is consistent with the involvement of OPNISW mutations, the retinal
degeneration phenotype in this individual is consistent with the phenotype associated
with TOPORS (Fig 4C).

RF.VI111.0514 Mexican pedigree includes affected fraternal twins and an affected grand-
parent. WGS analysis of the affected twin sisters (III:4 & III:5) and their unaffected sibling
(III:2) identified novel heterozygous damaging variant in PRPF8 (c.6949T>A; p.Phe2317Ile,
Chr 17) and a known heterozygous PRPF31 (c.866_879del GGAAAGCGGCCCGG;
p-Arg289Profs*30, Chr 19) mutation in affected twins and not in their unaffected sibling
[32]. Sanger sequencing further confirmed these findings (Fig 4D). Either of these muta-
tions are sufficient to cause the RP phenotype observed in affected members (S1I Fig). The
presence of macular cysts and the retinal phenotype observed in affected twins is more con-
sistent with the phenotype associated with PRPF31 than with PRPF8. The paternal grandfa-
ther (I:1) is reported to be affected with IRD, while the clinical status of the father (II:3) is
unknown.

A large Pakistani pedigree, RF.197.0113 with 5 consanguineous marriages, and eight
affected members available for the study was analyzed. Considering recessive inheritance,
the WGS data of individuals IV:6, V:1, V:5, V:8, V:9 and VI:1 for homozygous potentially
damaging variants shared between affected members and not present in unaffected mem-
ber did not reveal candidate causative variants segregating with the disease. Subsequently,
considering the dominant inheritance, the WGS variants of six individuals were filtered
for potentially damaging heterozygous variants shared by all affected members and absent
in the homozygous or heterozygous state in unaffected members. The latter analysis also
did not identify candidate variants segregating with the disease. Further filtering for all
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potentially damaging variants present in either a heterozygous or homozygous state
detected a previously reported adRP-associated variant, c.1481C>T, p.Thr494Met in the
PRPF3 gene in five affected members in the heterozygous state, in three in the homozy-
gous state and none of the unaffected relatives. Analysis of all members of this pedigree
for this variant revealed the segregation of the c.1481C>T PRPF3 with the disease in the
pedigree RF.197.0113 in a pseudo-recessive pattern due to the consanguinity (Fig 4E).

(F) A consanguineous European American pedigree RF.M.1111 (Fig 4F) with an affected
male with a diagnosis of typical retinitis pigmentosa and an unaffected brother were ana-
lyzed by WGS of the two siblings (IV:1 and IV:2) and parents (III:1 and III:2). Analysis of
variants in these individuals detected a homozygous novel c.69dupC, p.Arg24Glnfs*6 vari-
ant in PDE6G segregating with retinitis pigmentosa phenotype. In addition, IV:1 carried
the hemizygous variant in OPNILW (c.814G>A, p.Val272Met) gene on the X chromo-
some inherited from the mother (III:2). The clinical symptoms reported in the affected
individual are more consistent with severe RP phenotype associated with PDE6G muta-
tions; color vision was not tested in this individual.

(G

~

In the RF.K.0216 pedigree (Fig 4G) from India, two previously known dominant muta-
tions, one in PRPH2 (c.424C>T, p.Argl42Trp) [61, 64, 70] and another in ROM1
(c.339dupG, p.Leull4Alafs*9) [65, 71] were observed in a patient with a diagnosis of cen-
tral areolar choroidal dystrophy (CACD) with onset in the 5™ decade and mild central
vision loss consistent with the phenotype associated with the p.Argl42Trp mutation in
PRPH?2 [72]. The impact on this patient of the additional ROMI mutation p.
Leul14Alafs*9 mutation is unknown.

In summary, a novel de-novo causative variant c.940A>G, p.Lys314Glu in the IMPDH1
gene associated with autosomal dominant RP was observed in one pedigree (RF.VI13.0707);
and a previously known dominant mutation in PRPF3 (c.1481C>T) was detected in
RF.197.0113 in a pseudo-recessive pattern due to multiple consanguineous marriages. In addi-
tion, potentially pathogenic variants in two independent genes both segregating with the dis-
ease and each sufficient to cause pathology were detected in four out of the 7 pedigrees with
atypical genotypes. Besides these 7 pedigrees, we previously reported the identification of
mutations in two independent genes as the underlying cause of IRD in separate branches of a
pedigree by WGS in a European American pedigree [11].

(v) Variants described in recently demonstrated novel IRD genes by our group. WGS
sequence analysis detected potentially pathogenic candidate causative variants in genes previously
not associated with IRD segregating with disease in two pedigrees in this cohort and we have
reported these findings earlier [10, 14]. Our genetic and functional evaluation of these genes estab-
lished the involvement of AGBL5 and IFT88 in causing IRD in the two unrelated pedigrees [10, 14].

(vi) Classification of Clinical Phenotypes based on WGS analysis findings. The initial
clinical diagnosis of pedigrees spanned a broad spectrum including RP in 18, cone dystrophy
in 1, macular dystrophy in 1, Leber congenital amaurosis (LCA) in 2, Usher syndrome in 2,
with the majority (37) having unclassified retinal degeneration (S1 Table). Re-evaluation of
clinical data in the context of our genetic analysis findings lead to the reclassification of clinical
phenotypes in our cohort: RP in 45 pedigrees, cone dystrophy in 7, LCA in 3, congenital sta-
tionary night blindness in 1, and macular dystrophy, nephronophthisis, Ceroid lipofuscinosis,
choroideremia and Usher syndrome in one family each (S1 Table).

(vii) IRD Causative mutations detected in three populations studied. (A) Analysis of
pedigrees from Mexico. In the current study, WGS analysis of 35 pedigrees with recessive

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009848 October 18, 2021 18/35


https://doi.org/10.1371/journal.pgen.1009848

PLOS GENETICS WGS analysis of pedigrees revealed ethnographic genetic architecture of IRD in 3 populations

104 IRD Pedigrees

v Y '

Mexican 35 Pakistani 15 European American 54

WGS Analysis: lllumina HiSeq; Mapping-hg19; Variant calling-GATK

Unresolved Mutations Unresolved Mutations Unresolved Mutations
13 (37%) Detected 6 (40%) Detected 30 (55%) Detected
22 (63%) 9 (60%) 24 (45%)
Known Novel Known Novel Known Novel
58%  42% —» 1CNV! 40%  60%—» 1CNV 59%  41% —» 3CNV
| ™ G N
| SNV in gnomAD* | | SNV in gnomAD* | l SNV in gnomAD* |
No Yes No Yes No Yes
75% 25% 20% 80% 50% 50%
PR —— e - =t Doz : Sisiamms H :
| Population** | | Population** | | Population** |
¥ ¥ ¥
European South Asian European, African

) ) '
7N

61 (57%) pedigrees resolved
and 47 (43%) unresolved

*SNVs listed in gnomAD database
**The population in which the variant was reported in gnomAD database

Fig 6. Summary of findings and population distribution of novel mutations detected in Mexican, Pakistani and European American pedigrees.
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retinal dystrophy excluding STGD1 detected 18 previously reported and 13 novel (42%) causa-
tive mutations in known IRD genes in 22 pedigrees (63%) leaving the remaining 13 pedigrees
unresolved (Fig 6). Nine (75%) of the 12 novel mutations involving SNVs observed in cases
from Mexico were not listed in the gnomAD database while the remaining are reported only
in the Latino population as very rare variants (Tables 1, 2, 3, 4 and 5). Mutations in USH2A are
the most frequent cause of recessive retinal degeneration in this population with four pedigrees
from the current study (RF.VI1148.1215, RF.VI145.1215, RE.VI129.0714, and RF.V1127.0514)
and two additional pedigrees from our previous studies with causative mutations in USH2A
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Table 5. Summary of findings and population distribution of mutations detected in three major cohorts

analyzed.

Mexican population:

Number of pedigrees

Origin

Mutation detection rate

Novel IRD mutations

Novel IRD SNVs not in gnomAD
Novel IRD mutations listed in gnomAD
Pakistani population:

Number of pedigrees

Origin

Mutation detection rate

Novel IRD mutations

Novel IRD SNVs not in gnomAD
Novel IRD mutations listed in gnomAD
European American population:
Number of pedigrees

Origin

Mutation detection rate

Novel IRD mutations

Novel IRD SNVs not in gnomAD
Novel IRD mutations listed in gnomAD

35
Native Indian + European
63% (22/35)
42%
75% (never reported before)

Specific to Europeans

15
Asian-Endogamous
60% (9/15)

60%

20% (never reported before)

Specific to South Asians

54
European
45% (24/54)
41%
50% (never reported before)

European and African

Note: Population distribution of novel variants listed in gnomAD database is included in Tables 1, 2, 3 and 4.

https://doi.org/10.1371/journal.pgen.1009848.t005

[4]. Female carriers of RPGR mutations in two pedigrees (RF.VI123.0514 and RF.VI153.0216)
developed retinal degeneration phenotype as reported earlier [73].

(B) Analysis of pedigrees from Pakistan. In this study, we have analyzed 15 consanguineous
Pakistani pedigrees with multiple affected members and identified causative mutations in 9 IRD
genes in 9 pedigrees (60%) while the causative mutations were not detected in 6 pedigrees (40%)
(Fig 6). Among the causative mutations detected in IRD associated genes, 6 are novel (60%) and 4
are previously reported (Fig 6 and Table 5). Four of the 5 novel mutations involving SNVs
detected were reported in gnomAD database as extremely rare variants in South Asians, one in
Europeans and the remaining one (~20%) was not listed (Tables 1, 2, 3, 4 and 5).

(C) Analysis of pedigrees from the United States. Fifty-four pedigrees, which comprise 50%
of the total analyzed in this study are of European ancestry. Causative mutations were detected
in 24 (45%) pedigrees that included 25 known mutations (~59%), 14 novel single nucleotide
changes (SNVs) and 3 novel structural changes (Tables 1, 2, 3, 4 and 5). Seven (~50%) of the
14 novel SNVs in known IRD genes, were not listed in the gnomAD database (Table 5). Two
variants, ¢.722-1G>T in GUCY2D and ¢.1217G>A variant in CNGBI, detected in our Euro-
pean American cohort were reported in the African population at low frequency (gnomAD

database), while the remaining appear to be unique to the European population (Fig 6 and

Table 5).

(D) Pedigrees of Indian ancestry. Two pedigrees recruited in the United States are of Indian
origin in which three previously reported causative mutations were detected (Tables 2 and 4).

(E) Pedigrees of Ashkenazi Jewish ancestry. In this study a previously known homozygous p.
Lys42Glu mutation in DHDDS was detected in two Ashkenazi Jewish pedigrees recruited in

the United States (Table 2).
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Overall, the underlying cause of IRD was identified in about 57% of pedigrees. However,
the rate of causative mutation identification in Mexican (63%), Pakistani (60%) and European
American (45%) pedigrees varied. The number of novel IRD causative mutations detected in
each of these cohorts also varied from about 42% and 41% in both Mexican and European
American pedigrees to 60% in Pakistani pedigrees. Further, among the novel IRD causative
SNVs, 20% of those detected in Pakistani pedigree were not listed in gnomAD database while
50% and 75% of novel SNVs in European American and Mexican pedigrees were not in the
gnomAD database (Table 5).

Discussion

Analysis of the whole-genome sequence of this cohort comprised of 404 individuals from 108
pedigrees with inherited retinal degeneration identified 93 causal variants in 232 individuals in
61 (57%) pedigrees. Among the causative variants detected, 39 (42%) are novel and 54 (58%)
are previously reported variants in 44 well established IRD associated genes and two IRD
genes we recently reported [10, 14]. Although a majority of pedigrees underwent prior screen-
ing for mutations in known genes without success, WGS analysis identified causative variants
in IRD genes. This is primarily due to the limitations in the mutation screening panels used
over the past two decades that did not include many currently known IRD associated genes.
Further, the early version of exome capture probes that did not cover complete coding
sequences. Variants in novel genes or variants in non-coding regions of known IRD genes
with unknown impact or yet to be annotated may contribute to the phenotype in the 47 pedi-
grees that remained unresolved in this study.

The outcomes of the analysis of 108 IRD pedigrees provided insight into the genetic archi-
tecture of IRD. Overall novel mutations were identified in genes known to be associated with
IRD in 36 pedigrees while previously reported mutations were detected in 25 pedigrees. The
majority of the mutations (60%) were missense mutations including stop gain variants, 23%
frameshift, while only 5% were structural variants and 12% were potential splice altering vari-
ants. All the causative CNVs detected in this study were novel. Analysis of the sequence flank-
ing these deletions revealed microhomologies suggesting potential non-homologous end-
joining leading to these deletions (Fig 3). Atypical genotypes were detected in a set of pedigrees
(12%). These included causative mutations in more than one gene that segregated with IRD.
While causative mutation(s) in one gene is potentially sufficient to explain pathology, the
impact of having an additional causative mutation in a second IRD gene is unknown due to
the significant overlap in the phenotype of IRDs. Further, intrafamilial genetic heterogeneity
was observed in one pedigree. Such cases reveal the need for a comprehensive analysis of all
known IRD genes for molecular diagnosis, counseling, and particularly for treatment deci-
sions. In several cases, heterozygous pathogenic variants were also detected in IRD genes in
several cases in addition to the primary causative mutations. A deeper phenotype-genotype
analysis on a larger cohort, in the context of additional pathogenic variants, may provide fur-
ther insight into variation in the IRD phenotype and molecular pathology of IRD. The occur-
rence of de-novo mutations is rare in retinal disease genes [74-77] and a heterozygous de-
novo mutation in IMPDHI was detected in one affected individual in our cohort. This is the
first report of a de-novo variant in the IMPDHI1 gene.

It is interesting to note that only a small proportion of novel causative genes were identified
despite a significant proportion of our pedigrees originating from understudied populations.
Further, the two novel genes observed to carry causative mutations in our cohort were detected
in small pedigrees of European Americans [10, 14]. The low number of novel IRD causative
genes detected is consistent with the low number of novel IRD genes reported in the literature
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in the past few years [2]. An exponential increase in novel IRD gene discovery occurred in two
majors spurts between 2000-2005 and 2010-2015 [2]. The spurts coincided with the develop-
ment of advanced genome analysis tools and consequent enhancement in our knowledge of
the architecture of the genome. Continuing with this trend, recent studies revealed the contri-
bution of atypical genomic changes in IRD genes to pathology [78-80]. Our findings are con-
sistent with the observation that the discovery of novel IRD genes is approaching a plateau
phase and atypical genomic alterations in known IRD genes may contribute to about 10%-
15% of cases [12, 79]. The number of unrelated pedigrees with mutations in recently identified
novel IRD genes, both in our studies and in the literature is small suggesting these mutations
could be more recent or private and are not major contributors to IRD. The underlying cause
of pathology in 47 (43%) pedigrees that remained unresolved in our cohort after WGS may
also involve atypical genotypes including alterations in non-coding sequences or in regions of
the genome that are not well understood [80-82]. Therefore, gaining a deeper understanding
of the genome, particularly the impact of non-coding variants, may improve our understand-
ing of the molecular architecture of IRD and help resolve the remaining cases. Further
advances in genome analysis methodologies may also facilitate the detection of the molecular
cause of IRD in these unresolved pedigrees.

The families analyzed in this study included families that are primarily from understudied
populations from Pakistan and Mexico and a third, well-studied European American popula-
tion. About a third of the pedigrees included in this study are from Mexico with a unique pop-
ulation in which the genetics of IRD are not well understood. Comprehensive genetic analysis
of IRD in this population has been reported primarily in two publications including one of our
own [4, 32, 83-85]. Our previous analysis of 6 Mexican pedigrees from this region using
whole-exome sequencing detected 3 novel and 6 known causative variants in IRD associated
genes [4]. Zenteno et al described targeted genetic analysis of a cohort of probands with IRD
and detection of mutations in 66% of cases with 48% of these mutations being novel [32]. The
current analysis of 35 pedigrees using the WGS detected causative mutations in 63% of pedi-
grees from Mexico and 42% of these are novel. These findings are similar to the observations
reported in the prior two publications and reflect the understudied nature of this population
[4, 32]. Further, 75% of these novel potentially pathogenic SNVs detected in our study are not
listed in the gnomAD database. Since the Mexican population is an admixture of indigenous
peoples and individuals of European ancestry [86, 87]; the detection of a large proportion of
novel variants not listed gnomAD may be due to their possible origin from the indigenous
population in Mexico that are not well represented in gnomAD data set.

The second population included in our analysis is from the Punjab province of Pakistan.
Until recently, the genetics of IRD in this population was not well studied. The structure of the
Pakistani population is unique with endogamous sub-populations of multi-ethnic origin and
high consanguinity in each of these populations [88-90]. Our earlier studies on 208 multigen-
erational pedigrees from the same region with a diagnosis of recessive IRD [7, 91-104] found
homozygous causative mutations in 149 pedigrees (~71%). So far, mutations in novel genes
were observed in only five (2.5%) unrelated Pakistani pedigrees in our cohort ASRGLI [99],
IFT43 [104], ZNF513 [105], SLC24A1 [106], and CLCCI [93]) while the remaining resolved
pedigrees (97.5%) had mutations in known IRD genes. Among the mutations detected in
known genes, p.Pro363Thr in RPE65 is the most common causative mutation found in this
population [7, 91, 107]; this variant was observed only in the South Asian population (gno-
mAD database). An independent study on a cohort of Pakistani families also reported 70%
novel and 30% previously identified variants in IRD associated genes [108-122]. Consistent
with these findings, causative mutations were detected in 60% of pedigrees in the current
study cohort with 60% of the mutations being novel. However, the majority of these novel IRD
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Fig 7. Distribution of IRD genes detected in 61 pedigrees.
https://doi.org/10.1371/journal.pgen.1009848.9007

associated SNVs were listed in the South Asian population in the gnomAD database (7 out of
8) unlike the novel SNVs in the Mexican population.

Interestingly, the mutation detection rate was lower (45%) in European American pedigrees
compared to the rate in Mexican and Pakistani pedigrees (63% and 60%, respectively). Despite
the well-studied nature of this population, 41% of the mutations detected in this study cohort
are novel. Furthermore, 50% of these novel causative SNV are not listed in gnomAD
database.

Overall, USH2A is most frequently associated with IRD followed by EYS, CERKL, CRX,
IMPG1I and RPGR in the current study cohorts (Fig 7). Studies describing the genetic analysis
of IRD in geographically distinct populations using a range of methods have been reported
[12, 32, 123-132]. These studies found USH2A as the gene frequently associated with recessive
RP worldwide including the European, Mexican and Pakistani populations [12]. In addition,
the involvement of selected genes including EYS, RPE65, CEP290 in IRD is reported at higher
frequency in certain populations [133]. Further, the involvement of ZNF513 and INPP5E in
IRD is reported only in Pakistani and European populations respectively [134]. Population
specific founder mutations have also been reported [135]. Our previous studies on Pakistani
population identified p.Pro363Thr variant in RPE65 that is specific to the South Asian popula-
tion as the common causative mutation [7, 92]. The distribution of potentially causative vari-
ants detected in the study cohort is consistent with findings on other populations. Although
the Pakistani population and some of the sub-populations in Mexico are endogamous in
nature, the occurrence of causative variants at higher frequency is not observed in these popu-
lations compared to other populations.

The majority of novel mutations identified in our cohort are either not listed in the gno-
mAD database or observed at very low frequency in Latino (for the Mexican), South Asian (for
the Pakistani), or European (for the European American) populations (Tables 1, 3, 4 and 5). It
is unknown if the novel variants detected in cases from the Mexican population are more
recent variants in the Latino population or have originated from the indigenous population
which might not be well represented in gnomAD data. Similarly, all the novel causative vari-
ants found in the Pakistani cohort are either absent or occur at very low frequency in the
South Asian population suggesting those to be unique to this population. Further, these were
observed only in one or a few Pakistani pedigrees despite the endogamous nature of this popu-
lation. Surprisingly, a similar trend was observed with the novel mutations detected in the
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well-studied American population. Eight out of 21 novel mutations detected in European
American pedigrees including AGBL5 and IFT88 variants were not listed in gnomAD while
the remaining are specific to European population. These findings suggest that the novel muta-
tions detected in our cohort are possibly specific to their corresponding populations or private
mutations, particularly the ones observed in European Americans. A majority of pedigrees
analyzed in the current study were prescreened for mutations utilizing targeted mutation
screening methodologies designed based on data predominantly from European Americans
[136-138]. This bias has possibly contributed to the detection of high proportion of novel
causative variants, particularly in the set of European American pedigrees. Overall, the find-
ings on geographically diverse and understudied Mexican and Pakistani populations and the
well-studied Caucasian population including our own data revealed that the pattern of distri-
bution of IRD causative mutations in this cohort was similar to the findings reported in other
worldwide populations. As the number of pedigrees studied from each ethnic group is small,
analysis of additional IRD cases from the understudied Pakistani and Mexican populations
may provide better insight into the genetic architecture of these populations. Further, appro-
priate classification of the clinical relevance of novel potentially causative variants using popu-
lation specific information and the impact of the corresponding gene will facilitate improved
genetic diagnosis to patients from worldwide populations [139].

This study using WGS and in-depth integrated analysis of the nature and type of mutations
in different populations, provided insight into the population-specific genetic architecture of
IRD and enabled it’s comparison to other worldwide populations. Such information will be
helpful in the design of efficient population-specific tools for molecular diagnosis, genetic
counseling, and decision on the selection of therapies. Further analysis of the 47 pedigrees that
remained unresolved in this study may lead to the identification of causative variants in novel
genes or non-coding variants that can contribute to the phenotype by modifying enhancer-
promoter interactions or other yet to be identified functions of non-coding sequences.

Methodology
Ethics statement

The study protocol adhered to the tenets of the declaration of Helsinki and was approved by
the Institutional Review Boards of the University of California San Diego, USA; University of
California San Francisco, USA; University of Michigan, Kellogg Eye Center, USA; Johns Hop-
kins University School of Medicine, USA; University of Arizona, USA; Retina and Genomics
Institute, Yucatan, México; Genetics and Ophthalmology, Genelabor, Goiania, Brazil and Uni-
versity of Punjab, Lahore, Pakistan. Preliminary information on the clinical history of the
patients and their family members were collected for the study along with the family history.
Blood samples were collected from all available family members after obtaining their written
consent to participate in our study.

Pedigree selection. Pedigrees with at least one individual with a diagnosis of non-syndro-
mic inherited retinal degeneration (IRD) were recruited. Patients with a primary diagnosis of
Stargardt (STGD1) were excluded from this study. Self-reported ethnicity information was
recorded.

Patient samples. A total of four hundred and nine individuals from 108 unrelated families
were analyzed by performing whole-genome sequencing. Among these, 203 individuals were
affected and 206 were unaffected with 206 females and 203 males. 15 families were recruited
from Pakistan, 35 from Mexico, 2 from India, 2 were Ashkenazi Jewish, and the remaining 54
families were of European ancestry from the USA.
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The 108 pedigrees in this study had previously been examined for mutations in known IRD
genes using a wide range of methodologies available. A set of 31 pedigrees with 1 to 5 affected
members were previously analyzed by sequencing whole-exomes of selected members using
Nimblegen V1-V3 (Roche Nimblegen, Inc., Wisconsin) or Agilent V1-V5 + UTRs probes
(Agilent Technologies, Santa Clara, CA) to identify disease-causing gene mutations but
remained unresolved. Similarly, probands of the remaining 77 pedigrees were initially ana-
lyzed using various targeted mutation or gene screening panels that were available in the past
two decades [3] including ABCA4 and recessive RP mutation panels (Asper biotechnology,
Estonia), selected retinal disease gene resequencing arrays [140], targeted gene sequencing by
Sanger sequencing and targeted exome capture [4] but failed to identify causative mutations.

Whole-genome sequence (WGS) Analysis. DNA isolation was performed using standard
techniques from whole blood samples of patients using the Qiagen DNeasy blood kit (Qiagen,
Germantown, MD) as previously described [7]. WGS was performed on at least one affected
individual, and one or more unaffected close relative from each pedigree. The Illumina
HiSeqX10 (Illumina, San Diego, CA) platform was used for sequencing whole-genomes at a
minimum of 30X depth. The reads were mapped against human genome 19 (hg19) with decoy
sequences using BWA-MEM [141, 142]. Biobambam? was used to mark the duplicate reads
and the remaining reads were sorted by genomic coordinate [143]. Variant calling was per-
formed using HaplotypeCaller in Genome Analysis Toolkit (GATK) following the best-prac-
tice pipeline guidance [143, 144]. The genotyping quality of single nucleotide variants (SNVs)
and insertions-deletions (INDELs) was assessed using the variant quality score recalibration
approach implemented in GATK. Autosomal variants from pseudo-autosomal regions of the
male X chromosome (chrX, 60001-2699520 and chrX, 154931044-155260560) were treated as
diploid, whereas the rest of the male X chromosome, as well as the Y chromosome, were
treated as haploid. A series of quality control processes were performed to determine the sam-
ple identity and sequencing quality, which includes sex identification based on the heterozy-
gosity rate on the X chromosome, genetic relatedness among individuals was determined
using identical by descent (IBD) segment analysis and this information was verified with the
provided family structure, and sample heterozygosity rate was examined to detect any poten-
tial sample contamination. The sequencing data from five individuals from five different pedi-
grees were eliminated because they did not pass quality control metrics.

The called variants were annotated with SnpEff v4.11 [145], PolyPhen v2.2.2 [146], and
CADD vl1.3 [147]. Genome STRIP (svtoolkit 2.00.1611) [148] and Lumpy [149], which are
part of the SpeedSeq software [150], were used to identify copy number variations (CNVs) in
patients.

ExAC Z score distribution in Retina genes

ExAC Browser (Beta) Exome Aggregation Consortium has a Z-score for each gene to evaluate
its intolerance and conservation against three types of mutation; synonymous, missense and
loss of function (LoF). The scores were originally developed to find disease-relevant de-novo
mutations. In this study, we examined if the scores could be used to prioritize disease causative
genes.

Filtering criteria. To identify rare deleterious SNVs, insertion-deletions (INDELs) and
other types of structural variants as possible candidate variants, the following filtering criteria
were used: allele frequency < 0.005 in 1000Genome project, < 0.05 in our inhouse cohort
and < 0.05 in our 409 samples. Further, the allele frequency was validated using the ExAC and
gnomAD databases. Highly deleterious variants were assessed and scored as: SnpEff putative
impact = “HIGH” or PolyPhen2 Prediction = “possibly/probably damaging” or CADD Phred
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Score > = 30. Relatively deleterious variants were scored as: SnpEff putative impact = “HIGH/
MODERATE” or Polyphen2 Prediction = “possibly/probably damaging” or CADD Phred
Score > = 20.

Following initial filtering, selected variants were further analyzed based on segregation, pat-
tern of inheritance, status reported in Human Genome Mutation Database (HGMD profes-
sional version 2020.4; http://www.hgmd.cf.ac.uk/ac/index.php), ClinVar classification on
clinical relevance using the American College of Medical Genetics and Genomics (ACMG)
and the Association for Molecular Pathology (AMP) guidelines, relevant population specific
information and the known/reported physiological function of the corresponding gene [139].

Segregation analysis of SNVs. Segregation analysis of potentially disease-causing variant
(s) identified in the IRD families by WGS was performed by dideoxy sequencing as previously
described [151].

Segregation analysis of CNVs. Copy numbers variation of the exons of candidate genes
and two reference genes ZNF80 and GPR15 were quantified using a CFX Connect Real-Time
PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA) as described previously
[11,123].

Control sample analysis. A set of 95 unrelated ethnically matched Pakistani control sam-
ples were analyzed using dideoxy sequencing to validate novel variants identified in pedigrees
from Pakistan, as described previously [8, 151]. A set of 768 individuals (including 422 whole-
genome sequenced individuals from IRD pedigrees and 346 ethnicity matched controls) in
our laboratory data set and 1000Genome data base and gnomAD database were used for the
analysis of remaining variants.

qPCR analysis of structural changes. Segregation analysis of identified large insertion
and deletions were validated by quantitative polymerase chain reaction (QPCR) analysis as
described before [11].

Supporting information

S1 Fig. Clinical findings of patients with atypical genotypes. (A) Fundus image from right
eye of IV:2 from RF.VI13.0707 pedigree with the heterozygous IMPDH1 c.940A>G, p.
Lys314Glu variant. The image demonstrates a waxy pallor of the optic disc, retinal vascular
attenuation and mottling and light pigmentation of the retina in keeping with retinitis pig-
mentosa (RP). In addition, to normal RP features there is marked macular atrophy, with lac-
quer cracks are observed in the macular region of both eyes with clusters of pigment
surrounding the area of atrophy. (B to D) Fundus images of IV:1 and II:3 from pedigree RF.
VI1104.0514: (F) Fundus images of IV:1 with the CLN3 mutation show macula discoloration
and early Bull’s eye pattern and subtle mottling of the retina at age 10. (G, H) Fundus images
of II:3 show marked chorioretinal atrophy with large clusters of pigment suggestive of end-
stage disease due to C2orf71. (E) Composite left eye color fundus image of RF.VI111.0514
case, III:5 with mutations in PRPF8 and PRPF31 genes. Image demonstrates way disc pallor,
pigmentation of the fundus and retinal vessel attenuation suggestive of retinitis pigmentosa.
(TIF)

S$1 Table. Clinical diagnosis of all pedigrees.
(XLSX)
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