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• A highly accurate machine learning
model was developed to predict lead
levels in schools.

• The model was implemented using only
publicly available data for over 8000
schools.

• Themodelwasused topredict lead expo-
sure from water in schools in California
and Massachusetts.

• We estimate that over 16,000 5-year-old
children may be exposed to high lead
levels in CA and MA.

• Themodel could help identify hotspots at
a state level where lead testing should be
a priority.
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Estimating the risk of lead contamination of schools' drinkingwater at the State level is a complex, important, and
unexplored challenge. Variable water quality among water systems and changes in water chemistry during dis-
tribution affect lead dissolution rates from pipes and fittings. In addition, the locations of lead-bearing plumbing
materials are uncertain. We tested the capability of six machine learningmodels to predict the likelihood of lead
contamination of drinking water at the schools' taps using only publicly available datasets. The predictive fea-
tures used in themodels correspond to those with a proven correlation to the dominant, but commonly unavail-
able, factors that govern lead leaching: the presence of lead-bearing plumbing materials and water quality
conducive to lead corrosion. By combining water chemistry data from public reports, socioeconomic information
from the US census, and spatial features using Geographic Information Systems, we trained and testedmodels to
estimate the likelihood of lead contaminated tapwater in over 8,000 schools across California andMassachusetts.
Our best-performingmodel was a Random Forest, with a 10-fold cross validation score of 0.88 for Massachusetts
and 0.78 for California using the average AreaUnder the Receiver Operating Characteristic Curve (ROCAUC)met-
ric. The model was then used to assign a lead leaching risk category to half of the schools across California (the
other half was used for training). There was good agreement between themodeled risk categories and the actual
lead leaching outcomes for every school; however, themodel overestimated the lead leaching risk in up to 17% of
the schools. This model is the first of its kind to offer a tool to predict the risk of lead leaching in schools at the
State level. Further use of this model can help deploy limited resources more effectively to prevent childhood
lead exposure from school drinking water.
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1. Introduction

Childhood lead poisoning is a multifactorial problem that affects as
many as 500,000 US children younger than 6 years of age (Hauptman
et al., 2017). Drinking water is one of several sources of lead exposure
(Triantafyllidou and Edwards, 2012): lead leaching from lead-based
water infrastructure affects over 5000 public drinking water utilities
across the US, potentially putting over 18 million people at risk (Olson
and Fedinick, 2016).While there is good understanding of howdifferent
water quality conditions affect lead solubility (Schock, 1990), water
quality conditions at the tap are not typically reported. Absence of this
knowledge makes it difficult to predict lead levels at the tap and to esti-
mate the number of children exposed to high lead levels in their drink-
ingwater. Thus, leadmonitoring programs in schools and cities, such as
the 3 Ts (Training, Testing and Taking action) and citizen science-based
strategies (Redmon et al., 2020) are the only tools currently available to
identify the schools with elevated lead tap water levels (Dignam et al.,
2019). Widely implemented lead-monitoring programs have been the
cornerstone of remediation programs implemented in cities like Flint,
MI and Newark, NJ, where thousands of people have been exposed to
lead levels well above the 10 ppb guideline value established by the
World Health Organization (WHO, 2017).

After the dramatic media exposure received by the 2016 lead water
crisis of Flint, MI, several states, including California, implementedman-
datory lead testing in all K-12 schools (Kunapuli et al., 2018). Other
states, including Massachusetts, implemented voluntary lead testing
programs to help schools test for lead and copper in their drinking
water (Burlingame et al., 2018). The lead results for some states are
publicly available and constitute, to the best of our knowledge, one of
the largest publicly available drinking water lead databases spanning
entire states. Lead leaching levels are also reported by water utilities
in yearly Consumer Confidence Reports (CCRs), as required by the
Lead and Copper Rule (LCR) (Ramaley, 1993). However, each utility is
required to report only a single number, the 90th percentile lead level,
which does not provide information on the actual distribution of lead
concentrations, nor on the spatial distribution of lead leaching, unlike
the school lead data.

The stark differences between the school lead data and the 90th
percentile lead levels reported by the water utilities becomes apparent
when they are compared. Even though hundreds of schools in California
and Massachusetts reported lead levels above 15 ppb in 2018, none of
the utilities in California and only 3 in Massachusetts reported 90th per-
centile levels above 15 ppb (see Fig. 1). This difference shows that
Fig. 1. (a) Number of schools, and (b) number ofwater utilities, that reported lead levels (at the
California and Massachusetts in 2018. No water utilities in California and only three in Massa
schools exceeded the action level of 15 ppb in California and Massachusetts, respectively. Re
tap water at schools, as demonstrated in California data.
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compliance with the LCR does not necessarily correlate to childhood
lead exposure from school drinking water. However, we note that this
difference may be a result of differences in sampling protocols between
homes and schools (Triantafyllidou et al., 2021) (see Section2.1 for school
drinking water sampling protocols in California and Massachusetts).

In contrast, exhaustive large-scale lead testing programs are expen-
sive and hard to implement (Katner et al., 2016), thus, they have been
mostly implemented in cities where lead water crises have already oc-
curred and received wide adverse publicity.

Machine learning is a promising technique that may help identify
the locally differentiated risk of lead leaching into the drinking water
in schools and elsewhere without the need of exhaustive sampling of
entire cities. This technique has been used to identify the presence of
lead service lines (Abernethy et al., 2018) and the risk of lead leaching
in Flint, MI (Chojnacki et al., 2017). The predictive features used as
input data in these studies include demographic and socioeconomic fac-
tors, including poverty rates, race, property values, and dates in which
propertieswere built, among others (Switzer and Teodoro, 2017). How-
ever, to our knowledge, all the published literature regarding these
machine-learning based approaches is limited to only those cities
where massive lead testing has been already conducted following a
major water crisis. Moreover, extrapolating a model trained on data
from one city might not provide accurate results elsewhere because
the water chemistry and socioeconomic characteristics might be differ-
ent across different cities. Another group of researchers developed a
model to predict the risk of lead leaching in private drinking water sys-
tems in Virginia by using household, geographical and chemical charac-
teristics (Fasaee et al., 2021). However, its applicability is limited to
private systems and does not apply to the over 148,000 public drinking
water systems in the US that provide water to 90% of Americans.

We hypothesize that amachine learningmodel meant to predict the
risk of lead contamination with the potential of being extrapolated to
multiple locationsmust consider at least three kinds of data (in data sci-
ence literature these data are called “features” andwewill use that term
from here onward). These features are: (1) water quality (i.e., water
chemistry) information, which includes source and treated water qual-
ity, as well as water temperature, (2) demographics, and (3) spatial
data. Water quality largely controls lead solubility (Noel et al., 2014;
Schock et al., 2014; Masters et al., 2016). Some components of demo-
graphic information, such as poverty rates and race, are good predictors
of the presence or absence of lead-bearing plumbing materials
(Sampson and Winter, 2016). These materials include lead pipes, fix-
tures, solder and leaded brass plumbing, most of which are found in
tap) below 5 ppb, between 5 and 15 ppb and above 15 ppb (the action level of theMCL) for
chusetts reported 90th percentile lead levels above 15 ppb. In contrast, over 240 and 600
lying only on the 90th percentile numbers might give a false sense of security for lead in
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pre-1986 buildings (Sampson and Winter, 2016). Finally lead leaching
rates (and therefore lead concentrations in water supply) can also de-
pend on local water quality conditions that develop in the water distri-
bution system in a spatially correlated manner (Aisopou et al., 2012).
Moreover, nearby schools may belong to the same administration and
be subject to similar policies and contracts for purchasing water foun-
tains or may have been built on similar dates.

To our knowledge, a model based on these key features (that arise
from insights in environmental chemistry, history of urban demo-
graphics, and history of water infrastructure) has not been reported in
the literature. Thus, predicting lead leaching at scales larger than spe-
cific, well-sampled cities has remained an unsolved problem. Further-
more, we are not aware of any predictive model of lead leaching in
schools in the published literature. Lead leaching in schools is typically
associated to brass or bronze plumbing and the use of lead solder
(Triantafyllidou and Edwards, 2012). This differs sharply to household
lead leaching, which is typically associated to the presence of lead ser-
vice lines (Cornwell et al., 2016).

We report on the use of machine learning to predict the risk of lead
contamination of tap water in schools. Our aim was to implement a ro-
bust model that can predict where lead leaching is likely to take place,
regardless of the source (lead from pipes, fixtures, or solder etc.), or
the form of lead contamination (dissolved or particulate).

Our approach is statistical. The model is not meant to provide a
mechanistic explanation of how lead enters the schools' water supply.
It only aims to help identify schools with a high risk of lead leaching
by relying only on publicly available data.

2. Materials and methods

2.1. Study sites

California and Massachusetts were chosen as study sites because
they have two of the largest publicly available and easily accessible
datasets of lead levels in schools (Agency, 2021; Exectutive Office of
Energy and Environmental Affairs, 2021). Most states do not have
these kinds of data aggregated, organized, and made publicly available.
Many others that do, either have incomplete data or present them in
ways that are hard to obtain and process (e.g., only paper copies located
at various local offices of different agencies). The spatial distributions of
all the lead water data used in this study are shown in Fig. 2a and b.
Fig. 2. Maps of schools in (a) California and (b) Massachusetts where lead levels were measu
predictive machine learning model.

3

The California dataset contains up to five samples per school, all of
whichwere obtained from regularly usedwater delivery points, includ-
ing drinking fountains, cafeteria and food preparation areas, and reus-
able water bottle filling stations (California Water Boards, 2017). All
samples were “first draw” samples: 1 L of water was obtained after a
6 h or longer stagnation period. Only the data corresponding to the
year 2018 for 6954 schools were analyzed in this study. We note that
private and charter schools are not required to test for lead in California,
thus, the dataset contains mostly data from public schools.

The Massachusetts dataset contains a variable number of samples
per school (the MassDEP Drinking Water Program recommends sam-
pling all fixtures at least once (MassDEP, 2016)). Two sampling
methods were reported: (1) ¨first draw¨ samples, which were obtained
fromdrinkingwater fixtures after an 8 h or longer stagnation timeusing
250 mL bottles (this method is different to the ¨first draw¨ samples de-
scribed for California), and (2) ¨flush samples¨, which were collected
after 30 s of flushing using 250mL bottles. Only the ¨first draw¨ samples
were analyzed to decrease any bias that may result from including both
sampling protocols. Only the data corresponding to the year 2016 for
1151 schools were analyzed.

2.2. Features used

Two factors predominantly control lead leaching into the drinking
water: (1) the presence or absence of lead-bearing plumbingmaterials,
and (2) water quality that promotes the formation of soluble or
insoluble lead corrosion products. However, there are no studies that
we are aware of that report either of those two factors for schools in
California or Massachusetts. Thus, in this study we used 94 different,
publicly available, features that, to some degree, are proxies for the
two factors outlined above. These features fall in one of the three
below categories:

2.2.1. Demographic data
Low-income minority groups have been reported to be at a dispro-

portionately larger risk of lead exposure from old and poorly main-
tained water infrastructure in Flint, MI and the state of New Jersey
(Hanna-Attisha et al., 2016; Gleason et al., 2019). Thus, we included
measures of race and poverty into the machine learning model to ac-
count for the fact that race and poverty may be good proxies for the ab-
sence or presence of lead-bearing plumbing materials.
red in 2018 and 2016, respectively. These databases were used in this study to develop a
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The US Census Bureau's data portal was used to obtain the socioeco-
nomic information for the students attending each school by assigning
data from individual census tracts to schools drawing students from
those census tracts. All social data are estimates regarding social condi-
tions within California and Massachusetts census tracts and are pro-
vided by the American Community Survey for the years 2016 and
2018 (United States Census Bureau, 2021). The selected socioeconomic
features correspond to race, poverty levels and unemployment. We
note that previous studies have linked demographic data to the risk of
lead exposure at the community level, and not to the risk of exposure
within schools (Chojnacki et al., 2017; Fasaee et al., 2021). Thus, in
this study we assumed that the correlations found between race,
poverty and lead exposure hold true for schools. This is a reasonable as-
sumption given that schools with high populations of students from
low-incomeminority families aremore likely to have old infrastructure,
including lead-bearing plumbing (Jackson and Johnson, 2021).

2.2.2. Water quality data
The main water quality parameters that control lead solubility in

drinking water are outlined below:

- pH: elevated pH levels tend to decrease lead concentrations due to
both the relatively low solubility of lead corrosion products and
slower dissolution rates at high pH values in drinking water (Kim
et al., 2011).

- Disinfection residual: the use of strong oxidants as disinfection resid-
uals, such as free chlorine, promote the formation of Lead(IV), which
is insoluble in drinking water (Tam and Elefsiniotis, 2009). In con-
trast, moderate disinfectants, such as monochloramines, promote
the formation of more soluble Lead(II) minerals (Switzer et al.,
2006). Lead concentrations in drinking water depend on both the
type of lead mineral in contact with the water, as well as the sur-
rounding water chemistry (Masters et al., 2016; Rajasekharan et al.,
2007; Wang et al., 2013).

- Dissolved solids: the presence of several ions in drinking water a
have a large effect on lead solubility. For instance, chloride ions pro-
mote lead corrosion, while sulfates limit lead solubility (Edwards
and Triantafyllidou, 2007). Other ions, including calciumand carbon-
ates also have an effect on dissolved and particulate lead levels (Tam
and Elefsiniotis, 2009; Desantis et al., 2020). Moreover, numerous
dissolved ions make up a large proportion of water alkalinity,
which is critically important to aqueous solubility.

- Organic matter: elevated organic matter levels have been associated
to the reductive dissolution of Lead(IV) present on the inner surfaces
of lead pipes (Masters et al., 2016). The presence of natural organic
matter has also been associated to lead release from lead-bearing
brass plumbing (Korshin et al., 2000).

- Water temperature: high water temperatures enhance dissolution
kinetics and thus, may impact the rate at which lead leaches into
the drinking water (Trueman et al., 2016). Moreover, seasonal varia-
tions in surfacewater temperaturemay be associated to fluctuations
of dissolved organic matter concentrations, affecting lead leaching
rates (Masters et al., 2016).

- Corrosion inhibitors:manywater utilities across the US add corrosion
inhibitors, such as orthophosphates, to the drinkingwater to decrease
lead solubility (Stone et al., 2010). Orthophosphates react with dis-
solved Lead(II) ions and form insoluble Lead(II) phosphate minerals,
which then precipitate onto the pipe surfaces. However, under cer-
tain conditions the use of orthophosphates may promote the release
of particulate lead into the drinking water (Zhao et al., 2018).

Even though these water quality parameters largely determine lead
solubility, they are usually notmeasured at the tap in schools. However,
every community water utility in the US is required to develop yearly
Consumer Confidence Reports (CCRs) with details on average water
quality parameters. Thus, wemanually extracted relevant water quality
4

features from the2016 and 2018CCRs of each of the over 600water util-
ities serving each school shown in Fig. 2a and b. Each school was
assigned to a specific water utility by using service area boundary
maps. The extracted features include pH, disinfection residual type
and amount, dissolved ions, including sulfate, chloride, and sodium, al-
kalinity, and water hardness. Trihalomethanes and halo-acetic acids
were also included because they are disinfection byproducts from reac-
tions between the disinfectant and organic matter, and thus they may
be considered proxies for organic matter in utilities that use a free chlo-
rine as a disinfectant (most water utilities do not report organic matter
levels). The use and dose of orthophosphates or other corrosion control
strategies were not included because, even though they are key for con-
trolling lead solubility, most water utilities, particularly the small ones,
do not report whether they use them or not.

We also extracted data from the Safe Drinking Water Information
System (SDWIS) database (EPA, 2021), which contains, for each water
utility, information on the water source (ground or surface water), the
number of people served, the number of service connections, and the
number of violations, among others.Moreover, we obtained average cli-
mate information for each city in California andMassachusetts from the
National Centers for Environmental Information (NOAA) (NOAA, 2021),
as temperature and precipitations may impact the water quality
(Masters et al., 2016). These data includeminimum,maximum, and av-
erage temperatures, as well as precipitation.

We note that water qualitymay vary significantly over the course of
a year, making the CCRs poor indicators of water chemistry.Water qual-
ity may also change significantly during distribution and hence, chemi-
cal properties measured at the treatment facility may be very different
to the ones that reach a particular school. Furthermore, the aforemen-
tioned water quality parameters do not consider other mechanisms of
corrosion, including galvanic coupling between brass or copper pipes
with lead-based fixtures, or lead release caused by physical distur-
bances (Abokifa and Biswas, 2017). However, in the absence of publicly
available water quality data measured at each school, the use of chem-
ical data from CCRs is the only feasible approach to include publicly
available chemical information into the model.

2.2.3. Spatial data
Spatial features were included in the model to account for the fact

that water quality may change as a function of space (a concept termed
“water age” by the EPA (2002)). This may happen as a result of the con-
sumption of the disinfection residuals or leaks, among others
(Charisiadis et al., 2015). Thus, we used ArcMap 10.7, a Geographical
Information System (GIS), to compute the distance of each school to
the nearest school where the reported average lead level in tap water
(calculated as the average of lead levels measured at all tested fixtures
in the school) exceeds 10 ppb. These distances were calculated as
straight lines between schools and were not based on pipe networks
or restricted to schools within the same water systems. Preliminary
data analysis suggested that lead leaching in schools tends to exist in
clusters, regardless of water system boundaries. These clusters may
exist because of similar demographics in specific areas, because nearby
schools may have been constructed in the same year, or because of sim-
ilarities in local water quality conditions that are conducive to lead cor-
rosion. We note that, if a school exceeds this 10-ppb threshold, its
distance to the nearest school where the threshold is exceeded is not
0; it is the distance to the nearest different school where this level is
exceeded. Moreover, these distances were calculated with respect to
the schools in the training sets during model implementation. Thus,
the distances to the nearest school where lead levels exceed 10 ppb
were recalculated every time the data were separated into training
and testing sets.

2.2.4. Data acquisition challenges and assumptions
Gathering the data mentioned in Sections 2.2.1–2.2.3 was a

challenging process. In the case of the chemical data, there were several
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inconsistencies in reporting among different water utilities, and signifi-
cant data were missing. We only included water quality parameters
that were present in over 70% of the water utilities of each state. For in-
stance, water pH was reported by 80% of the water utilities in California.
In contrast, pHwas reported by only 15% of the utilities inMassachusetts.
Thus, we included pH in the water quality dataset for California, but not
forMassachusetts.Missing datawas not amajor problem in California be-
cause most of the water utilities consistently reported the same parame-
ters throughout the state (about 10% of the chemical data was missing).
However, in Massachusetts only sodium, disinfection byproducts, and
the 90th percentile lead and copper levels were consistently reported
among water utilities. Thus, in Massachusetts only the aforementioned
four water quality parameters were used in the model (the demographic
and spatial variables used were the same for both states).

Several water utilities also report water quality parameters of differ-
ent water sources, which may be blended before delivery to the cus-
tomer or used seasonally (e.g. groundwater in one season and surface
waters in another season). In those cases, we computed the value of
each parameter as a weighted average by considering the percentage
of eachwater source. This approach has limitations because the average
water quality may not be representative of the water used for distribu-
tion.When thewater source percentage was missing (15% of the CCRs),
we assumed that each water supply contributes equally (i.e., the same
volume of water) to thewater system. This assumptionmay not be rea-
sonable for some of thewater utilities; however, one of the objectives of
this study was to determine whether machine learning may be used to
determine the likelihood of lead leaching under uncertainty using pub-
licly available data. Most of the uncertainty in this study come from as-
sumptions and inconsistencies among CCRs, which are the only publicly
available data sources on drinking water quality.

A total of 94 and 88 features within the categories described in
Sections 2.2.1–2.2.3 were obtained for the CA and MA models, respec-
tively (see full datasets in our Github repository (Lobo et al., 2021)).
Given that a different number of features were used in both models
and that there are differences in lead sampling protocols in CA and
MA, the models are not meant to be compared to each other.
Fig. 3. Schematic overview of the steps taken to process the data and implement the machine l
(above or below a 10-ppb threshold) and all its associated features (demographic, chemical an
datapoint.
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2.3. Model implementation

A schematic overview of the steps taken to process the data and im-
plement the machine learning model, described herein, is shown in
Fig. 3.

2.3.1. Data preprocessing
The features described in Section 2.2 and themeasured lead levels in

each schoolwere combined into two datasets, one for California and one
for Massachusetts. The datasets were then preprocessed by one-hot
encoding all categorical features, such as water utility name and disin-
fection type (one-hot encoding is a method used to transform categor-
ical features into binary features (Brownlee, 2017)). The missing data,
all of which corresponded to water quality parameters, were filled in
by using the mean value of each feature (e.g., the missing pH vales
were filled in using the average pH value of all water utilities).

The lead datasets described in Section 2.2.1 were processed by first
calculating the average lead levels per school measured among all fix-
tures (several schools had more than one lead measurement). We
used the average lead levels because we assumed that each student
drinks an equal amount from each of the fixtures tested for lead.
These values were then transformed into binary variables by establish-
ing a variable threshold, transforming each average lead measurement
to either 0 (below the threshold) or 1 (above the threshold). The values
of 10 and 5 ppbwere chosen as thresholds because 10 ppb is the current
guideline value established by the World Health Organization (WHO,
2017), while 5 ppb is currently considered unsafe by Health Canada
(Canada, 2019) and is being considered as a new limit also in the
European Union (European Commission, 2018). Several other thresh-
olds may be used, including the Environmental Protection Agency stan-
dard for school samples of 20 ppb, or the action limit of the LCR of
15 ppb (the latter applies to the 90th percentile lead levels exclusively).

2.3.2. Evaluating different machine learning models
Six machine learning models (Random Forest, k-Nearest Neighbor

(kNN), Support Vector Machine (SVM), Logistic regression, Naïve
earning model. Note that each datapoint in themodel corresponds to a school's lead levels
d geographic) adding up to 28 features for each CA datapoint, and 22 features for eachMA
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Bayes, and Decision Trees) were implemented using the features de-
scribed in Section 2.2 and the binary labels corresponding to lead levels
below and above a threshold of 10 ppb. For more information on how
each model works, see the S.I.

We briefly introduce a method and two metrics used to evaluate
machine learning models.

(1) K-fold cross validation is a commonly used method to test how a
predictive model will perform in practice with data. Predictive
models are typically calibrated with a “training” data set, and
their performance must be tested against data from outside this
training set. In cross validation, the original data is separated
into k independent (i.e., non-overlapping) subsets and then the
model is trained with only k-1 subsets. The trained model is
then tested using the withheld subset. This process is repeated
k times by successively withholding a different subset for testing
each time, effectively creating k instances of the model that is
trained and tested using k different training and testing datasets.

(2) The “Receiver Operating Characteristic Area Under the Curve”
(ROC AUC) metric, which ranges from 0.5 to 1, is commonly
used to evaluate the ability of the model to distinguish between
True Positives (TP) and False Positives (FP) for different probabil-
ity thresholds. Thus, ROC AUC values close to 1 indicate that the
model can perfectly distinguish between TPs and FPs, while
values close to 0.5 indicate that the model is no better than ran-
dom selection. TPs in our case mean that the model predicts that
a school has lead levels over 10 ppb, and the measured value for
that school is indeed over 10 ppb. FPs are those cases in which
themodel predicts that a school has lead levels over 10 ppb how-
ever, the actual (measured) lead levels are below 10 ppb.

(3) The “Precision Recall Area Under the Curve” (PR AUC) metric,
which ranges from 0 to 1, is typically used to evaluate the ability
of the model to distinguish between TPs and False Negatives
(FN) for different probability thresholds. PR AUC values close to
1 indicate that the model can perfectly distinguish between TPs
and FNs,while values close to 0 indicate that themodel is no bet-
ter than random selection. FNs are those cases in which the
model predicts that a school has lead levels below 10 ppb how-
ever, the actual (measured) lead levels are over 10 ppb.

We assessed the performance of the six aforementioned machine
learning models by optimizing their respective hyperparameters (the
models' internal parameters) using a 10-fold cross validation. This
process consisted of iterating through multiple combinations of
hyperparameters and finding those that provided the highest cross val-
idation scores. The ROC AUC metric was to select the best-performing
model (the one with the highest average ROC AUC score for all 10
folds). The methodology used to optimize the hyperparameters, as
well as their optimized values are shown in the S.I.

2.3.3. Model selection and feature importance analysis
The best performing model, based on the cross-validation analysis,

was used to assess the relevance of all input features in the model.
Moreover, we analyzed the importance of each of the three feature
types (chemical, demographic, and spatial) by removing all features
from one feature type at a time, and then assessing the model perfor-
mance with only two of the three types of features (e.g., we removed
all the chemical features and tested the performance of the model
using only the demographic and spatial features). The performance
was assessed by splitting the data randomly into a 70% training and a
30% testing dataset by using the train_test_split function in the Python
scikit-learn package. The data was split randomly 1000 times, and the
ROC AUC and PR AUC was then calculated for each split. Given the im-
portance of accurately identifying locations with a high risk of lead con-
tamination and the unbalanced nature of our dataset (only about 20% of
schools have lead levels over 10 ppb), the PR AUC metric provides
6

insights into the ability of the model to accurately predict the minority
class labels and to avoid predicting FNs.

The compiled datasets used in this study, as well as the code used to
implement themachine learningmodelsmay be found in ourGithub re-
pository (Lobo et al., 2021).

2.4. Practical examples of model implementation

2.4.1. Implementation in the East Bay
To test the usefulness of the model in cities with where lead testing

is incomplete, the California dataset was separated into two subsets:
(1) half of the schools within the East Bay (a part of the San Francisco
Bay Area) and (2) the rest of the schools in the state. The best-
performing model was trained with set (2) and then tested using set
(1). The schools in set (1) were chosen randomly. This was done to sim-
ulate a scenario in which not all the schools in a single location have
been tested for lead, which is the practical scenario in which we envi-
sion this model being used to direct precious testing resources. How-
ever, instead of using a binary output to identify individual schools at
risk, as explained in Section 2.3, we computed the probability of lead
levels exceeding 5 ppb for every school in the East Bay. This method
allowed us to categorize each of the schools in the test set as having a
simulated low, medium, and high probability of lead concentrations in
drinking water exceeding 5 ppb. We defined the modeled probability
of lead concentration being above 5 ppb as “low” if below 0.3, as
“medium” if between 0.3 and 0.7, and as “high” if over 0.7 (e.g., if a
school has a simulated probability of lead concentrations exceeding
5 ppb of 0.1, then it is categorized as “low” risk because its modeled
probability is below 0.3). Thus, the model assigned each school a de-
fined modeled probability, and therefore, an assigned risk category
(low, medium, and high). Then we counted the actual number of
schools observed to have average lead water levels over 5 ppb, as well
as the total number of schools within each category. This allowed us
to compute, for each risk category, the actual “fraction of schools with
lead levels exceeding 5 ppb”. As the wording implies, for each category,
this fraction was simply the actual number of schools with lead water
levels over 5 ppb divided by the total number of schools in that risk
category. We compared the actual fractions, and predicted average
probabilities, to assess the predictive power of the model in a single
area rather than the entire state. We note that we chose the East Bay
to illustrate the model implementation in a particular area. We could
have chosen any other city or town in California or Massachusetts.

2.4.2. Implementation in California
The procedure described in Section 2.4.1 (train themodel using data

from the state excluding half the schools of a single city or town, and
then predict the probability of school lead leaching for the excluded
schools) was deployed to cover all cities and towns in CA (towns with
only one school were ignored). The modeled probability that a school
has average lead water levels over 10 ppb was computed for every
school excluded from the training sets. Using these probabilities,we cat-
egorized each of the predicted school probabilities into low, medium,
and high risk of lead leaching following the same procedure described
in Section 2.4.1. These probabilities were then compared to the actual
fraction of schools with lead levels exceeding 10 ppb within each risk
category.

3. Results and discussion

3.1. Model selection and parameter significance

Random Forest (RF) outperformed all other models tested in this
study when applied to both the California and Massachusetts datasets
(see Table 1). RF has been used to predict lead levels in drinking water
in Flint, MI (Chojnacki et al., 2017), arsenic levels in groundwaters in
Bangladesh (Tan et al., 2020) and nitrate levels in groundwater



Table 1
Mean and standard deviations of the 10-fold cross validation using the Area Under the
Receiver Operating Characteristic curve (ROC AUC) of different machine learning models
for the California andMassachusetts leaddatabases. The optimizedhyperparameterswere
used in all cases (see S.I). Random forest is the best performingmodel when implemented
with data from both states.

Model Mean ROC-AUC score Standard deviation

CA data MA data CA data MA data

Random Forest 0.78 0.88 0.03 0.02
Decision Tree 0.76 0.76 0.09 0.04
k-Nearest Neighbor 0.75 0.72 0.04 0.06
Logistic regression 0.70 0.68 0,05 0.05
SVM 0.70 0.70 0.04 0.06
Naïve Bayes 0.68 0.60 0.07 0.09
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(Wheeler et al., 2015), amongothers.Moreover, its ease of use and com-
parable results to other machine learning models, such as neural net-
works, makes it better suited for use by non-experts (Sameen et al.,
2019). This study further confirms that RF may be used to predict com-
plex andmultifactorialwater quality parameters from relevant features,
likely because of its ability to generate non-linear decision boundaries.
In fact, the best-performing models, RF, decision trees and kNN, are all
non-linear classifiers. In contrast, the worst-performing models, SVM,
Naïve Bayes and logistic regression, are all linear classifiers.

We emphasize that our approach is notmeant to provide a causal re-
lationship between the different input features and the risk of lead
leaching in schools. The selection of the input features comes from
prior expertise and insights in relevant domains (water chemistry, envi-
ronmental engineering knowledge related to lead in urban drinking
water, urban socio-economic history, and geospatial differentiation)
by those developing the model. Thus, even though the model uses so-
cioeconomic information, this does not mean (and nor do we support
amisinterpretation) that socioeconomics plays a direct andmechanistic
(i.e., causal) role in the lead leaching process.

3.2. Model performance

The performance of the optimized RF model is good in both
Massachusetts (average ROC AUC = 0.88) and California (average ROC
AUC=0.77), as shown in Fig. 4. These resultswere obtained after setting
the number of trees to 1000 and 500, and themaximum tree depth to 12
and 9 in the CA and MA models, respectively (the rest of the RF
hyperparameters were set to the sklearn package default values). As a
Fig. 4. Box plot of the Area Under the Receiver Operating Characteristic (ROC AUC) and
Precision-Recall (PR AUC) curves for 1000 instances of the model in (a) California and
(b) Massachusetts. The performance of the model is very good in California, and
excellent in Massachusetts. As applied to both the states, the RF models predict more
false negatives than false positives, as shown by the large PR AUC values.
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reference, to the best of our knowledge, the only othermachine learning
model that has been used to predict lead levels has been applied to a
much more dense, detailed, and richer dataset from a single city (Flint,
MI), and nevertheless, it led to an average ROC AUC of 0.72 (Chojnacki
et al., 2017) (using a 15 ppb threshold). Thus, ourmodel is more capable
over a much larger area, that of the full state, with larger diversity in
geography, socio-economic status, andwater chemistry, while providing
more accurate results. Notably, the RF model in both California and
Massachusetts provides precise results. This is shown by the high PR
AUC vales (average PR AUC is 0.88 for California and 0.91 for
Massachusetts). High PR AUC values indicate that the model can accu-
rately distinguish TP from FP. The discrepancy between ROC and PR
AUC values is caused by the tendency of the model to predict more FPs
than FNs. This is a desirable outcome when predicting lead leaching,
given the high social cost of predicting FNs. FNs would be a harmful out-
come from a public health perspective, since such schools could be
assigned on a lower priority for further monitoring and testing, in a
resource-constrained situation.

Amajor concern when implementingmachine learningmodels is to
identify whether the amount of data (i.e., the number of datapoints)
used is enough to provide representative results. In the case of ensemble
models utilizing bootstrap aggregation, such as RF, the Out-of-Bag error
(OOB error) is a metric that is commonly used to evaluate the model
stability as a function of datapoints used. The OOB error represents the
mean error obtained fromevaluating themodel's performance on a sub-
set of data that was excluded from the bootstrap sample used to train
the model, akin to a cross-validation discussed earlier. Our model's
OOB error becomes stable when the number of datapoints (schools) is
larger than 400. This was true for both California and Massachusetts
models (See S.I). The numbers of datapoints in both State datasets are
substantially larger than 400 (over 6000 in California and over 1000 in
Massachusetts), therefore it is likely that the error will remain stable
as more points are added.

3.3. Feature importance analysis

The distance to the nearest school with average lead levels of over
10 ppb, is the most important feature in the model for both California
and Massachusetts, as shown in Fig. 5. This was expected because this
distance may incorporate at least four different kinds of relevant infor-
mation: (1) Water quality conditions existing at a local scale are likely
to be similar. Lead leaching is usually associated to corrosivewater qual-
ity conditions (Schock, 1990), thus, the distance to the nearest school
with high lead levels may act as a proxy of the corrosivity of the water
at the school being evaluated. The water quality at a local scale may
be significantly different from the conditions reported at the water
treatment facility, because water quality can and often does change
throughout the distribution system as a result of leaks, consumption
of the disinfection residual, and consumption of orthophosphates,
among others (Sert and Altan-Sakarya, 2017). (2) Similar construction
dates may signal similar materials in water transport to the school.
Nearby schools are more likely to have been constructed in similar
years, thus, if a school was constructed previous to 1986 (before lead-
bearing plumbing materials were banned), it is likely that a nearby
school was also constructed previous to that year. (3) Nearby schools
may belong to the same administration and be subject to similar policies
and contracts for purchasing water fountains. And lastly (4) nearby
schools may have similar socioeconomic conditions. Given that old
schools located in low-income neighborhoods tend to have a higher
risk of lead leaching (Lambrinidou et al., 2010), it is likely that many
schools within the same low-income communities will have higher
risk of lead leaching.

The socioeconomic features are the secondmost important variables
in the model. This is consistent with prior published research showing
that poverty rates and race are correlated to the presence or absence
of lead-bearing plumbing materials (Sampson and Winter, 2016;



Fig. 5. Feature importance analysis using the Gini importance for the random forestmodel implemented in (a) California and (b)Massachusetts. TheGini importance represents the loss in
entropy (statistical dispersion) resulting from adding each feature to the model. Out of the 94 features used in the California model and the 88 used in theMassachusetts model, only the
fivemost important social and chemical features (red and pink, respectively), and the only spatial feature (green) are shown. The spatial feature contributes themost to themodel in both
states. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Gleason et al., 2019). Like the distance to the nearest school with aver-
age lead levels over 10 ppb, the socioeconomic variables provide an es-
timate of how lead-bearing plumbing materials are distributed
throughout geographical space. The presence of lead-bearing plumbing
materials is a necessary condition for lead leaching to take place. Thus, it
is expected that any feature that correlates to the presence of such ma-
terials will be a good contributing feature for predicting lead contami-
nated water in schools.

The chemical features contribute the least towards reducing the en-
tropy of the model, likely because they are the same for every school
within the same water system (water utilities issues a single Consumer
Confidence Report (CCR) for the entire water system under its pur-
view). However, the “population count” feature, which indicates the
number of people served by each water utility, was important in the
CA dataset. This feature is likely a good predictor of lead in drinking
water in schools because very small water systems (<500 people) are
more likely to violate health-related water quality regulations than
larger systems (Rubin, 2013). This is particularly true for small water
systems in rural California (Balazs and Ray, 2014). Given that the chem-
ical features are constant for each water utility, they do not explain the
variability within any given water system, but instead provide a water
quality baseline for each city. This allows representing the fact that cities
with similar demographics (or with the same distribution of lead-
bearing plumbing materials), will have different lead leaching levels if
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their water quality is different. However, we also note that the water
quality dataset had the largest amount of missing information, which
may have affected its relevance in the model. A similar feature impor-
tance analysis using the regression coefficients of a logistic model is
shown in the S.I.

Retraining the model with any two of the three feature types
(i.e., chemical and social, social and spatial, or spatial and chemical)
highlights the importance of using all three to optimize performance,
as shown in Fig. 6. When using only chemical and socioeconomic data,
the mean ROC AUC drops over 25% in both states (mean ROC AUC de-
creases to 0.75 and 0.65 for Massachusetts and California, respectively),
making themodel inadequate for use in California. In the case of Massa-
chusetts, the ROC AUC decreases to a level comparable to themodel de-
veloped by Chojnaki et al. for the city of Flint,MI (Chojnacki et al., 2017).
This supports the idea that socioeconomic features by themselves may
be good predictors of lead contamination in individual cities served by
a single water utility, like Flint, MI. However, extrapolating results to a
state level requires the use of chemical information, as the baseline
water quality is different for differentwater systems. This is because cit-
ies with highly corrosive tap water can be expected to have higher lead
leaching levels in schools than cities where corrosion control strategies
are implemented, everything else being held equal.

Using only the social and spatial data, the ROCAUC decreases by 15%
in both states (mean ROC AUC is 0.79 and 0.72 for Massachusetts and



Fig. 6. Box plot of the Area Under the Receiver Operating Characteristic (ROC AUC) curve for 1000 instances of the model in (a) California and (b) Massachusetts when using different
feature types (chemical, social and spatial) to train and test the model. The model performance is best when all three kinds of data are used; however, good results are also observed
with the use of only spatial and chemical data, for both states.

Fig. 7. Actual fraction and predicted probability of (a) lead in drinking water levels
exceeding 5 ppb in half of the schools within the East Bay (a part of the San Francisco
Bay Area) and (b) lead in drinking water levels exceeding 10 ppb in half of the schools in
California, for three modeled risk categories: low, medium and high. Each risk category
corresponds to modeled lead leaching probabilities of less than 0.3 (low), between 0.3
and 0.7 (medium), and over 0.7 (high). The model is in good agreement with the
observed data for each risk category; however, it tends to slightly overpredict the average
likelihood of lead leaching for each category. Error bars were added to the observed
(actual) fraction in each category to account for noise caused by finite sample size.
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California, respectively). Even if these results are better than those ob-
tained when using the chemical and socioeconomic data, the perfor-
mance in California is still borderline adequate. This supports our
hypothesis that the chemical data is necessary as a baseline that adjusts
how the model responds to spatial and social variables. Both the pres-
ence of lead-bearing plumbing materials and drinking water quality
conducive to lead corrosion are needed for lead leaching to take place,
thus, features that predict both factors are needed to predict the likeli-
hood of lead leaching in schools.

When using only the spatial and chemical data, the mean ROC AUC
decreases by less than 5% in both states (mean ROC AUC is 0.84 and
0.74 for Massachusetts and California, respectively); however, the stan-
dard deviation increases, as shown in Fig. 6. It is likely that the spatial
and the social data provide redundant information in many cases, as
the former may provide information on three different underlying
causal factors: local water quality conditions, socioeconomic conditions
among similar close-by schools, and the presence or absence of lead-
bearing plumbing materials (Wescoat et al., 2007). However, the social
data decreases the variability of the model and slightly increases the
average performance. This supports our hypothesis that all three kinds
of variables, social, chemical, and spatial, are relevant to model lead
leaching at a local level, as they provide insights into different phenom-
ena. The socioeconomic data provide information on the presence of
lead-bearing plumbing materials, while the chemical data provide in-
sights into the corrosivity of thewater. Finally, the spatial datamay pro-
vide both kinds of information.

3.4. Practical examples of model implementation

3.4.1. Implementation in the East Bay
We tested the ability of the model to assess the risk of lead leaching

in a scenariowhere only partial lead data is available for a single city, but
other data exist for other cities within the same State (see Section 2.4.1
for more details). As shown in Fig. 7a, the model accurately categorized
the risk of above-threshold lead concentrations in over 87% of the
schools in the East Bay that were not included in the training set. In
the figure there is good agreement between the predicted probabilities
and actual measured fractions of schools with lead concentrations
above the 5-ppb threshold. Recall that these are defined as the probabil-
ity that a certain school categorized as low, medium, and high risk
9
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predicted by the model, will have average lead leaching levels over
5 ppb. These good results were obtained even though only 50% of the
schools in the East Bay (and the rest of the cities in CA) were used to
train the model. We note that the model tends to slightly overpredict
the risk of lead leaching in schools, which is a bias towards predicting
more FP than FN (see Section 3.2). This, however, is desirable from a
public health perspective where the cost of a FN is higher than that of
a FP.

Using the probabilities shown in Fig. 7a and the total number of
schools within each risk category, we calculated that, out of the 176
schools in the East Bay where the model was used to predict the risk
of lead leaching, 54 are expected to have leaching levels of over 5 ppb.
This is close to the 48 schools in this subset of schools where lead levels
exceeded 5 ppb in 2018.

3.4.2. Implementation in California
The same approach used to test the model in the East Bay was used

to test its applicability in every city and town in CA, but this time using a
10-ppb threshold. As shown in Fig. 7b, themodel accurately categorized
the risk of lead levels exceeding 10 ppb of most schools in CA that were
not included in the test set (like in the previous case, half of the schools
in each city were excluded during training). Using the predicted lead
leaching probabilities and the total number of schools within each risk
category, we calculated that out of the 3748 schools in CA where the
model was used to predict the risk of lead leaching, 551 are expected
to have leaching levels of over 10 ppb. This is reasonably close to the
423 schools in this subset of schools where average lead concentrations
in water exceeded 10 ppb in 2018.

The results shown in Fig. 7 give an example of how this approach
may be used to identify schools where lead testing should be a priority.
This approach may be used to identify schools at high risk of lead
leaching so that limited resources may be deployed more efficiently.
Of course, these results for the East Bay and other towns and cities in
CA do not provide any new information regardingwhich schools should
be tested, because (as noted earlier in this paper) most of the schools
in these two states have already been tested for lead concentrations
in their water. However, we note that charter and private schools in
California are not required to test their drinking water for lead. For
those schools, this model could be used to predict their risk of lead
leaching so that appropriate actions can be taken.

These results provide a testing ground for the proposed methodol-
ogy, since the model accurately categorized the lead leaching risk of
over 85% of the schools in California when relying on incomplete pub-
licly available datasets. To our knowledge, this model is the first of its
kind to predict the risk of lead leaching in geographical areas where
the lead source is not predominantly from lead service lines (lead
leaching in schools is usually caused by theuse of leadedbrass plumbing
(Triantafyllidou and Edwards, 2012; Boyd et al., 2008)). Moreover, our
approach could potentially be used to identify schools at risk anywhere
in the US where partial school lead water surveys exist (this remains to
be tested). Lastly, our results show that the model provides accurate
predictions (for risk of lead in school waters) in specific locations,
evenwhen trained using state-level data. This, to the best of our knowl-
edge, has not been previously reported in literature. This success is
likely a result of the relying on features that capture the twomain com-
ponents of lead leaching: the presence of lead-bearing plumbing mate-
rials and drinking water quality conducive to lead corrosion. By
(partially) capturing these phenomena, it becomes easier to extrapolate
the model to different cities, unlike existing models that mostly use so-
cioeconomic features to predict lead leaching.

3.5. Model challenges and limitations

As stated earlier, themodel reported in this work does not intend to
provide a mechanistic explanation of the factors that govern lead
leaching. The nature of the RF development process, by training on
10
diverse data, incorporates the complex non-linear correlations of lead
leaching with socioeconomic, chemical, and spatial features. We chose
these features based on our knowledge and expertise gained from
study of various relevant fields relevant to the lead leaching process,
and relevant to howdifferentmechanistic variables correlate to publicly
available data. Like many prior studies, our model too captures the un-
fortunate fact that low-income, nonwhite communities are more likely
to be exposed to lead in drinking water. This fact is entirely separate
from the chemistry of lead dissolution. We emphasize that, if progress
is made towards an equitable and fair access to safe drinking water,
the accuracy of ourmodel should decrease.We included social variables
because they are currently good predictors of lead-bearing infrastruc-
ture, thus, the reported accuracy is meant to show a picture of today
and not of some immutable laws of nature. In an ideal world, race and
income-levels should not be correlated with lead contamination of
drinking water, and thus, a model to predict lead leaching should not
depend on such social data; however, that is not currently the case.

The accuracy of our model is also likely limited by the quality of the
chemical data. We used all the available information provided in the
water utility CCRs; however, the amount of relevant information is lim-
ited. For instance, most of the utilities in California and Massachusetts
do not report whether they use corrosion control (e.g., add orthophos-
phates to thewater supply) or other strategies to prevent lead leaching,
therefore, these variables could not be included in the model. Further-
more, the CCRs are often hard tofind and vary greatly in terms of quality
and content among different utilities. This makes the construction of a
water quality database a slow and painstaking process prone to
human error. Thus, the performance of the developed model might be
hindered both by the lack of relevant water quality data and by
human errors when transcribing the CCRs into the database.

4. Conclusions

Althoughmachine learningmodelsmeant to predict lead leaching in
drinking water have been developed for individual cities, to our knowl-
edge no model has attempted to predict lead leaching in schools at the
state level. In this study we provided a methodology to build such a
model from publicly available datasets and we tested it using data
from California and Massachusetts. We found that using water-
chemistry, socioeconomic, and spatial data provided the best results de-
spite the lowquality of the publicly availablewater-chemistry data. This
research also highlights the need of a nation-wide database for drinking
water quality, akin to the existingwater quality database created by the
US Geological Survey for water bodies across the US, that is compatible
with the data needs of the 21st century.

Our results suggest that applications in states are also possible
where lead testing is still incomplete or seriously lacking, since the
model predictions are useful to predict high-risk schools even with in-
complete state level data. Moreover, the data from the newly tested
schools can then be added to the training data for the model, succes-
sively improving its accuracy. Our results suggest that machine learning
can play a significant role in designing future urbanwater management
strategies to support equitable access to safe drinking water for all,
supporting the goals of Environmental Justice related to safe drinking
water, and aligned with Sustainable Development Goal 6.
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