
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Development and Testing of a Scale Autonomous Vehicle for Control Research

Permalink
https://escholarship.org/uc/item/8tr6x7px

Author
Martin, George

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8tr6x7px
https://escholarship.org
http://www.cdlib.org/

Development and Testing of a Scale Autonomous Vehicle for Control Research

By

GEORGE MARTIN
THESIS

Submitted in Partial Satisfaction of the Requirements for the Degree of

MASTER OF SCIENCE

in

Mechanical and Aerospace Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

University Of California, Davis

Approved:

Francis Assadian, Chair

Shima Nazari

Iman Soltani

Committee in Charge

2023

i

ABSTRACT

Development and Testing of a Scale Autonomous Vehicle for Control Research

GEORGE MARTIN

This thesis will present the development and construction of a scale autonomous vehicle, along with its

software development. The platform will serve as a means to test various lateral controllers and compare

their results. Using Buckingham Pi Theorem, the platform will be scaled to achieve dynamic similitude with

a standard electric vehicle, while utilizing common sensors found in modern autonomous vehicle systems. The

software framework will be created using modern software packages, allowing for easy integration with a wide

range of useful robotics tool kits and providing the ability to modify the car for various future applications.

The study will examine the performance of a variety of control methodologies, with consideration for both

their simulated and actual performance on the scaled car.

ii

Acknowledgements

Funding

This project was generously funded through the Future Mobility Lab, in return the scale test bed has been

provided as a platform for future rapid prototyping and research.

General Acknowledgements

I am extremely grateful for the support and advice of Dr. Francis Assadian in the development of controllers

for this car as well as their practical implementations, as well as the advice of Ehsan Arasteh, who helped

guide the development of the concept for this project. Additionally I would like to thank Trevor Vidano,

Jonathan Dorsey, and Tristan Pham for their contributions to the code base of the Future Mobility Lab

Autonomous Car.

iii

Table of Contents

Abstract ii

Acknowledgements iii

List of Tables vi

List of Figures vii

Dedication ix

1 Introduction and Literature Review 1
1.1 Introduction . 1
1.2 Literature Review . 3

1.2.1 Autonomous Vehicles . 3
1.2.2 Scale Car Dynamics . 4
1.2.3 Scale Car Controls . 5

2 Vehicle Modeling 6
2.1 Modeling Convention of Passenger Vehicles . 6
2.2 Kinematic Bicycle Model . 7
2.3 Tire Dynamics . 8
2.4 Dynamic Bicycle Model . 10

3 Scale Car Build 11
3.1 Dimensionless Analysis for Scale Test Bed Development . 11
3.2 Scale Dynamics . 13

3.2.1 Weight, Center of Mass, and Axle Distances . 13
3.2.2 Cornering Stiffness . 14
3.2.3 Moment of Inertia . 15
3.2.4 Dimensionless Parameters of the Scale Car . 17

3.3 Configuration . 18
3.3.1 Software Stack . 20

4 Controller Design and Simulation 25
4.1 Control Problem . 25
4.2 Longitudinal Controller . 25
4.3 Lateral Controllers . 26

4.3.1 Pure Pursuit . 28
4.3.2 Stanley . 29
4.3.3 Youla Parameterization . 30
4.3.4 H∞ . 34
4.3.5 Model Predictive Control . 36

4.4 Simulations . 40

iv

5 Test Procedure 45
5.1 Functional Testing . 45

5.1.1 Low Level Controls . 45
5.1.2 SLAM Toolbox . 46
5.1.3 AMCL . 47

5.2 Path Planning . 48
5.3 Control Testing . 49

6 Discussion & Conclusion 51
6.1 Results . 51
6.2 Future Work . 54

References 56

v

List of Tables

1.1 SAE Levels of Autonomy . 3

3.1 Key Parameters of Bicycle Model, with Units and Base Units 12

3.2 Tire Parameters for Du-Bro 450TV Pneumatic Tires, Courtesy of UIUC (1) 15

3.3 Comparison of Full-Size and Scale Car Parameters . 17

3.4 Comparison of Scale and Full-Size Pi Groups . 18

4.1 RMS of Lateral Error for All Controllers in Simulation . 44

6.1 RMS of Lateral Error for All Controllers in Simulation . 53

vi

List of Figures

1.1 System Architecture of an Autonomous Vehicle (2) . 4

2.1 Two Track Vehicle Model (3) . 6

2.2 Kinematic Bicycle Model Schematic (4) . 7

2.3 Dynamic Bicycle Model Schematic (5) . 8

2.4 Dynamic Bicycle Model Schematic (4) . 10

3.1 Scale Car on Four Weight Scales, for Force Balance Calculations 14

3.2 Bifilar Pendulum with Scale Car Mounted, for Moment of Inertia Calculations 16

3.3 IMU and Encoder Mounted on the Scale Car . 19

3.4 Physical Component Configuration, Sensors and Compute Units 19

3.5 Computer Networking Between Scale Car and Ground Station 20

3.6 Coordinate Frames Provided in ROS, Compared to Physical Car 21

3.7 Transformation Tree of the Scale Car . 22

4.1 Behavior of Longitudinal Controller During Startup (Speed [ms] v. Time [s]) 26

4.2 Pure Pursuit Geometric Relations (6) . 28

4.3 Stanley Controller Geometric Relations (7) . 29

4.4 Simple Block Diagram . 31

4.5 Sensitivity S, Complementary Sensitivity T , and Youla Y (8) 31

4.6 T (blue), S (red), and L (yellow) for the Scale Car . 33

4.7 Gc (red), Gp (blue), Y (yellow), and L (purple) for the Scale Car 34

4.8 Weighing Matrices Used for H∞ Optimization(8) . 35

4.9 Weighing filters compared to T , S, and Y . 36

4.10 Weighing filters compared to T , S, and Y . 36

4.11 Discretized Control Output of an MPC Controller (9) . 37

4.12 Simulation of Pure Pursuit Controller on Test Route . 41

vii

4.13 Simulation of Stanley Controller on Test Route . 42

4.14 Simulation of Youla Controller on Test Route . 42

4.15 Simulation of H∞ Controller on Test Route . 43

4.16 Simulation of Model Predictive Controller on Test Route . 43

5.1 Encoder Raw Output, vs. Kalman Filtered . 46

5.2 IMU Raw Output, vs. Kalman Filtered . 46

5.3 Comparison of Three Maps Taken During Tuning Process . 47

5.4 Final Map, Overlaid with Reference Floor Plan Geometry . 47

5.5 Tuned AMCL Performance Visualization . 48

5.6 Samples of Path Planner Results . 49

5.7 Final Iteration of Car Used in Testing . 49

6.1 Pure Pursuit Testing on Scale Car - 1 m/s . 51

6.2 Stanley Testing on Scale Car - 1 m/s . 52

6.3 Youla Testing on Scale Car - 1 m/s . 52

6.4 MPC Testing on Scale Car - 1 m/s . 53

viii

Dedication

To Jennifer, whose unwavering support made this work possible.

ix

Chapter 1

Introduction and Literature Review

1.1 Introduction

The development of autonomous vehicles has been the subject of intensive research and development in

recent years, with the aim of creating safer and more efficient transportation systems. One of the critical

challenges in the design of AVs is the development of effective lateral control systems that can ensure their

stable and safe operation in various driving scenarios. While simulations and computer modeling have been

used extensively to evaluate lateral control strategies, physical experimentation is also essential to verify the

effectiveness of these systems. However, it can be difficult to bridge the gap between simulation and testing

on a full-size vehicle, which presents an urgent need for an efficient method to rapid-prototype controls

before they are implemented at scale. This master’s thesis focuses on the design, development, and testing

of a scale car test bed to evaluate the lateral control strategies of autonomous vehicles. The test bed will

be equipped with sensors, actuators, and a control system that can mimic the lateral behavior of an actual

vehicle. Through a series of experiments, the test bed will be used to evaluate the performance of different

lateral control strategies. The results of these experiments will be analyzed to determine the effectiveness of

various lateral control strategies and identify the factors that impact their performance. The insights gained

from these experiments can help inform the design and development of more robust and effective lateral

control systems for autonomous vehicles. By leveraging physical experimentation on a scale car test bed,

this thesis aims to contribute to the advancement of AV technology and provide a safe intermediary step

before their implementation in real-world scenarios.

Modern control design generally begins with design of a controller, then simulation of this controller

against a system model before testing on a physical system. These simulations can vary in fidelity from

simple linear models to high fidelity, multi-physics simulations. Though there is a large difference between

simulation and reality, there are many options to help bridge the gap, such as hardware-in-the-loop which

provides real responses of full size components and subsystems during simulation. A scale test bed takes

1

this a step further, providing a realistic response of a full system reduced in scale, though it is necessary

to ensure dynamic similitude between the scale and full-size models to guarantee that results from testing

are meaningful. An approach for achieving this comparison will be elaborated upon within this thesis. An

added benefit of both hardware-in-the-loop and scaled testbeds is that both configurations are also able to

reveal the effect of real-time processing on the controller, as computational delay can significantly impact

performance.

The development of a scaled test bed for controls testing within this thesis provides several long-term

benefits. First, it provides a physical test bed which allows for testing on a system with computational delay.

Additionally, this system uses real sensors with sensor noise, drift, and acquisition delay. Furthermore,

the scale test car is able to, at minimum, behave in similar fashion to a full-size vehicle below a lateral

acceleration of 3-4 m
s2 . Finally, this method allows the integration of a platform which is similar to a real

vehicle control system, with localization, sensor fusion, safety protocols and other such features which allows

for testing of the controller’s true behavior when used in production. For the purposes of this thesis and for

future research in the Future Mobility Lab, this vehicle is structured in such a way that controller algorithms

can be integrated modularly, to compare their performance against a common computational infrastructure.

Control of a standard vehicle can be presented as several separate but related problem statements, from

the control of subsystems such as brake actuation, to full chassis control. Regardless of formulation, one key

feature of these systems is that they are underactuated for the task of autonomous trajectory following, in

that the vehicle cannot move directly laterally, which complicates control design. For this thesis, the control

problem for autonomous vehicles will be separated into longitudinal and lateral controllers. Longitudinal

control encompasses speed, braking, cruise control, and other similar features of a standard vehicle. Lateral

control then concerns itself with the steering of the vehicle. Within this work, testing of controllers will

focus on the development of lateral controllers. As longitudinal and lateral control cannot be decoupled, and

the performance of a longitudinal controller would affect the output of the lateral controller, testing will be

performed at constant speed. However, the structure of the code base allows for the use of an integrated

controller or separate longitudinal controller, enabling testing of any control configuration on the test bed.

Within this thesis, the development, construction and software development of a scale autonomous vehicle

will be presented. This platform will be used to test a variety of lateral controllers, whose results will be

compared. The platform will be scaled using Buckingham Pi Theorem to achieve dynamic similitude with a

standard electric vehicle, and use common sensors found on modern autonomous vehicle systems such as an

IMU, wheel speed sensor, and LIDAR. The software package will be built using Robot Operating System 2

(ROS2), which provides easy integration with a wide range of useful robotics software packages and provides

the ability to modify the car to a large set of applications in the future. Controllers including pure pursuit,

2

Stanley, Youla, and MPC will be tested and results compared with consideration to their simulated and

actual performance on the scaled car.

1.2 Literature Review

1.2.1 Autonomous Vehicles

The technologies supporting autonomous vehicles are rapidly advancing, and at an accelerating rate. Several

degrees of autonomy have been classified into six levels by the Society of Automotive Engineers (10). The

first three levels, zero to three, encompass technologies which already exist in the majority of new cars on the

market, from cruise control to automatic braking and lane keep assist. The higher three levels, three to five,

are considered degrees of autonomy. SAE definitions of the levels of autonomy are provided in Table 1.1. It

is predicted that within and almost certainly by the end of this century, the highest level of autonomy will

be reached (11). As these technologies grow in popularity, autonomous vehicles will become an increasingly

common and fundamental part of many people’s lives. Therefore, it is critical that any new advances are

rigorously studied, to ensure their performance and the safety of both passengers and pedestrians.

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Warnings and
Momentary
Assistance

Steering OR
Brake
Assistance

Steering
AND Brake
Assistance

Autonomy,
Driver
Takeover
Required

Autonomy,
No Driver
Takeover

Full Auton-
omy

Automatic
Emergency
Braking

Adaptive
Cruise
Control or
Lane Center-
ing

Adaptive
Cruise
Control and
Lane Center-
ing

Traffic
Chauffeur

Local Driver-
less Taxi

Global Driver-
less Taxi

Table 1.1: SAE Levels of Autonomy

The system architecture of an autonomous vehicle is often split into a few key subsystems. From the

environment, data is captured using a variety of sensors, and a map of this environment is generated as well

as the vehicle’s relative position within it. This is called ’perception.’ After this, the software must decide

a course of action to navigate through the environment, which is called ’planning.’ Finally, commands are

given to the vehicle with the intent of following this course of action. These commands are then translated

and sent to actuators, which maintain motion through the environment, which encompasses the ’control’ of

the vehicle. A diagram of this architecture is shown in Figure 1.1. For the purposes of this thesis, vehicle-to-

vehicle communication will not be included but is possible to integrate in future research. The primary focus

of the scale car development here will be the control subsystem, as it provides a basis for further development

of higher level systems.

3

Figure 1.1: System Architecture of an Autonomous Vehicle (2)

Given that the emphasis of this project will be controls, perception and path planning will be integrated

from external sources. Perception will be largely handled by a set of popular robotics tool kits, and path

planning developed in the Future Mobility Lab prior to the development of the scale car (12). Therefore,

beyond the physical construction and dynamic analysis of the test bed, the remainder of this thesis will focus

on path following methodologies. Further, these control methodologies will be focused solely on the steering

control of the vehicle, with speed control using a common PID control scheme widely used in industry.

1.2.2 Scale Car Dynamics

Several studies have been performed to validate the use of a scaled vehicle test bed in research applications.

First, it was proven that dimensionless analysis could be used to develop a scale vehicle whose properties

could be related to a full-size car (13). Then, this theory was applied to an off-the-shelf remote controlled car,

and shown that the principles of dimensionless analysis held (14). Furthermore, the dimensionless analysis

has been expanded and validations performed to show that trajectories observed by a scale test bed can

behave in similar fashion to a full-size car (15). However, generally control development on a dynamically

accurate model has been limited to studies of widely used control methodologies, with limited research

involving implementations of modern control theory. Additionally, the structural design used to acquire

data from these systems relies heavily on external localization systems such as dGPS and remote camera

localization, which limits testing to a confined test location.

4

1.2.3 Scale Car Controls

Though controls testing on dynamically scaled test beds is limited, there are several developed architectures

for software testing on a scaled vehicle. F1Tenth provides a platform for artificial intelligence and rein-

forcement learning-based autonomous vehicle development, and incorporates GPU acceleration to enable

computationally demanding tasks (16). However, the design of this scale car is purely for the adaptation

of an RC car, without consideration of the dynamic properties of the vehicle. A similar structure has been

developed at the University of Washington (17), though with the same focus on software development and

less interest given to scaled dynamics. Additionally, both structures require the use of a more expensive

single board computer, sold by Nvidia. Given the rise in price of single board computers as a result of

the Coronavirus Pandemic, the expense of a GPU-accelerated SBC has presented an additional hurdle to

implementing these designs. Additionally, both architectures use Robot Operating System 1 (ROS1), the

precursor to ROS2 which has released its final version and will no longer be supported after 2025. Therefore,

it was decided to develop a new system architecture in ROS2, which will see continuous releases and be

supported for the foreseeable future.

Given the breadth of research into scale car dynamics, and software development of autonomous RC

cars, a clear possibility presents itself: the development of a software stack for autonomous research on a

dynamically scaled vehicle. Furthermore, many systems require expensive sensor and compute units, which

adds a roadblock to the adoption of scaled test bed research. To mitigate this, one of the primary design

philosophies for the Future Mobility Lab Autonomous Car was the implementation of affordable components

to develop a system which could perform all necessary functions for controls research in autonomous vehicles.

5

Chapter 2

Vehicle Modeling

2.1 Modeling Convention of Passenger Vehicles

System models used for control design attempt to use a minimal number of states required to accurately

describe the behavior of the system. To this end, several key assumptions can be made to reduce this

number of states for a vehicle model. A passenger vehicle is a complex system, with many moving parts and

component dynamics. Each tire behaves differently in a turn, and inertial properties can be shifted through

the suspension (3). Additionally, the behavior of a car turning at a high lateral acceleration can be very

nonlinear, and system dynamics change depending on bank and pitch angle. However, for most controllers

many of these effects can be ignored in modelling, and treated as a system disturbance.

It can be assumed that the car is moving in a two-dimensional space, which is generally valid for most

use-cases. Additionally, for a lateral and longitudinal controller, suspension dynamics are also unnecessary

except in extreme handling scenarios. This results in a car with no vertical motion, which can be completely

described by its motion in the x-y plane, as shown in Figure 2.1.

Figure 2.1: Two Track Vehicle Model (3)

This model, while reduced enough for some control applications, is still relatively complex, as forces on

each tire deviate when turning. Another practical assumption is that front and rear tires can be modeled

6

as singular tires, generating the bicycle model. This assumption is valid for low lateral acceleration and for

less aggressive maneuvers.

2.2 Kinematic Bicycle Model

For low lateral acceleration maneuvers, it is reasonable to assume that the car will move directly towards

the direction of steer. In this case, tire slip angles are very near to zero and tire forces can be neglected.

Therefore, when using the bicycle model of a vehicle, it can be assumed that the front wheel moves exactly

in the direction in which it is pointed. The rear wheel simply moves forward and is strictly guided by the

steering of the front wheel. A diagram of this model in a global coordinate frame is provided in Figure 2.2.

It should be noted that for a standard passenger vehicle, the rear steering angle δr is always zero.

Figure 2.2: Kinematic Bicycle Model Schematic (4)

Using the kinematic relations of this model, the equations of motion in a global frame can be written as

the following

Ẋ = v cos(ψ + β) (2.1)

Ẏ = v sin(ψ + β) (2.2)

ψ̇ =
v cos(β)

l
tan(δf) (2.3)

β = arctan(
lr
l
tan(δf)) (2.4)

(2.5)

7

where: X = x Position in Inertial Frame

Y = y Position in Inertial Frame

ψ = Inertial Yaw

v = Longitudinal Velocity

lr = Rear Axle Distance to Center Mass

l = Wheelbase

δf = Steer Angle

This model is still nonlinear, as steering angle has a trigonometric relation to the motion of the car, but

can easily be linearized about a neutral trim state. Though this model is reasonable for the design of a

controller at low speed, it is completely unable to account for tire forces, and as such cannot consider road

friction, drift, understeer or oversteer. These dynamics require a model of the tire, which is used to estimate

slip angles of both front and rear tires. As this limits the design capability of a controller, it was decided to

use a model which could account for the dynamic behavior exhibited by the tires.

2.3 Tire Dynamics

Before describing the model used for control development on the scale car, it is useful to describe a model

of tire dynamics. At low speeds and in standard driving conditions, tires can be assumed to be rigid with

perfect traction. However, tires in reality deflect, deform, and interface with the road in ways which are

heavily dependant on conditions such as road surface, driving speed, steer angle, the mass distribution of

the car and the characteristics of the tire itself. The source of tire force is the contact patch, which is the

compressed section of the tire in direct contact with the road surface, as is illustrated in Figure 2.3. The

friction interface of the tire on the road provides resistance to force applied by the mass momentum of the

car, which can be decomposed into a longitudinal and lateral tire force.

Figure 2.3: Dynamic Bicycle Model Schematic (5)

8

In the rigid kinematic model, the direction of tire motion is simply forward with respect to steer angle,

with no lateral motion. However, with the deflection of the contact patch considered, the motion is actually

in the direction of the vector sum of longitudinal and lateral tire forces. The difference between the kinematic

and true direction of motion is called slip angle, and represents the direction of tire travel with respect to

steering direction. With tire modeling and slip angles considered, understeer and oversteer behavior can

be modeled. Also, the contact patch exhibits nearly linear lateral force behavior up to a certain lateral

acceleration, and beyond this will begin to behave in a nonlinear manner and later saturate as the tire loses

traction on the road. This saturation is exhibited in such phenomena as drifting.

For the purposes of this project, as control design is focused on steering at constant velocity, only lateral

tire forces are considered. Various models of tire forces have been thoroughly researched and validated,

with various advantages and disadvantages, such as the Dugoff and Fiala tire models (18). One of the most

popular models in recent years is the Pacejka Magic Tire Formula, which semi-empirically derives tire forces

using several key tire parameters(19). The equation for lateral tire forces for pure slip angles is presented in

the following form

Fy = D sin[C arctan(BΦFy
)] + ∆Sv (2.6)

ΦFy
= (1− E)(α+∆Sh) + (

E

B
) arctan[B(α+∆Sh)] (2.7)

where: B,C,D,E = Semi-Empirical Constants

α = Slip Angle

∆Sv,∆Sh = Tire Characteristic Shifts

The semi-empirical constants as well as tire characteristic shifts are determined through a series of

experiments, and do not have a strict analytical relation, but form a highly accurate model of tire behavior

in steady state conditions. Though this model is quite complex, it can be linearized to the following form

Cα = BCD (2.8)

where: Cα = Cornering Stiffness

Thus, a simple model of tire lateral forces can be used to augment the bicycle model and develop a higher

fidelity dynamic model. This final model will be implemented in the design of controllers for the car. The

parameters for the scale car itself are discussed in a later section, as tire behavior is critical to understanding

the dynamics of a car beyond the range acceptable for kinematic modeling.

9

2.4 Dynamic Bicycle Model

Figure 2.4: Dynamic Bicycle Model Schematic (4)

With tire forces modeled, the kinematic bicycle model can be modified as shown in Figure 2.4, in which

lateral tire forces are included. Additionally, the model can be linearized and presented in error coordinates,

which is useful for control development and is presented in state-space form as follows

d

dt

elat

ėlat

eψ

ėψ

=

0 1 0 0

0 − 2Cαf+2Cαr

mVx

2Cαf+2Cαr

m
−2Cαf lf+2Cαrlr

mVx

0 0 0 1

0 − 2Cαf lf+2Cαrlr
IzVx

2Cαf lf+2Cαrlr
Iz

−2Cαf l
2
f+2Cαrl

2
r

IzVx

elat

ėlat

eψ

ėψ

+

0

2Cαf

m

0

2Cαf lf
Iz

δ (2.9)

ẏ = Cx+Du (2.10)

where: Cαr, Cαr = Front and Rear Cornering Stiffness

lf , lr = Front and Rear Axle Distances to Center Mass

Vx = Longitudinal Velocity

m = Mass of Vehicle

Iz = Mass Moment of Inertia of Vehicle

C,D = Matrices which can be selected depending on the control application

In this formulation, the C matrix can be formed by selecting zero for unregulated error, and one for

controlled error states while D should be held as zero. For example, a controller which considers only lateral

error would have a C matrix of [1 0 0 0] and a D Matrix of 0.

10

Chapter 3

Scale Car Build

3.1 Dimensionless Analysis for Scale Test Bed Development

Scale testing requires the development of a vehicle model, with a given aspect ratio to the full-size model.

This vehicle must be dynamically similar to its larger counterpart. However, it is not as simple as reducing

each dimension by the same aspect ratio. Certain characteristics are warped at different rates comparatively,

and it is necessary to keep these proportionate characteristics identical, more so than maintaining the specific

static ratio. Buckingham Pi Theorem (20) provides a meaningful way to analyze scaled dynamics, with an

added benefit of reducing the number of comparative parameters. This theorem states that for a given linear

system, there exists a set number of dimensionless parameters n which fully describe the dynamics of a

system. These parameters, being dimensionless, therefore can be used to make a scale model with identical

parameters, that achieved dynamic similarity with the original model. The number of parameters is reduced

by the total number of base units included in the formulation. As these parameters are dimensionless, they

hold true for any ratio or scaling of the model vehicle. In order to generate these dimensionless parameters,

it is critical to deconstruct parameters to their fundamental units. For example, an acceleration should be

written in component units such as m
s2 , which have base units of [L][T]−2. Though any set of base units

can be used in the process of dimensionless parameter generation, the two most common are MLT and

FLT, which correspond to mass-length-time and force-length-time, respectively. The goal when generating

these parameters is to incorporate all parameters in such a way that the base units cancel, leaving only

dimensionless key parameters known as Pi groups.

Using the linear dynamic bicycle model, these parameters become the front axle distance to center of

gravity lf , rear axle distance to center of gravity lr, wheelbase l, front cornering stiffness Cf , rear cornering

stiffness Cr, longitudinal speed vx, mass m, and rotational inertia Iz. The units and base units for these

parameters are shown in Table 3.1. Using Buckingham Pi Theorem, these parameters are sufficient to develop

Pi groups (13). With these eight parameters, the number of Pi groups needed is reduced by three, as all

three base units of the MLT formulation are included, leaving a total of five groups.

11

Parameter Units Base Units
lf m [L]
lr m [L]
l m [L]

Cf
kgm
s2 [M][L][T]−2

Cf
kgm
s2 [M][L][T]−2

vx
m
s [L][T]−1

m kg [M]
Iz kgm2 [M][L]2

Table 3.1: Key Parameters of Bicycle Model, with Units and Base Units

npi = nparameters − nunique base units = 8− 3 = 5 (3.1)

The Pi groups are then determined as the following.

Π1 =
lf
l

(3.2)

Π2 =
lr
l

(3.3)

Π3 =
Cf l

mv2
(3.4)

Π4 =
Crl

mv2
(3.5)

Π5 =
Iz
ml2

(3.6)

However, this set of Pi groups only concerns itself with the dynamic behavior of the vehicle. In order

to compare the error of the lateral controller at scale, it is necessary to expand the Pi groups to include

positional scaling. This study has been previously performed, and the additional groups identified using

additional parameters yaw ψ, steering angle δ, x-position x, and y-position y (15).

Π6 = ψ (3.7)

Π7 = δ (3.8)

Π8 =
x

l
(3.9)

Π9 =
y

l
(3.10)

Though seemingly trivial, the inherent lack of dimension in yaw angle and position show that the steering

commands of cars and car-like robots are comparable at any scaling, and that the x and y position of the

12

vehicle is directly scaled by the aspect ratio, which reaffirms the idea that analysis at scale will provide

meaningful results to a controller meant for implementation on larger vehicle.

Pi groups can then be calculated for a full size vehicle using the parameters listed in Table 3.3. Then,

a scale vehicle can be modified in order to align its own Pi group values to the larger vehicle, thereby

guaranteeing dynamic similarity.

3.2 Scale Dynamics

As described in the previous section, there are several key parameters to be identified in order to correlate the

scale vehicle dynamics to a full-size car. While certain parameters are static or difficult to modify and align

with the dimensionless parameters of a car, others are relatively easy to manipulate in order to ensure a good

agreement of the car’s dynamic properties. The center of gravity, and by extension ratio of distances from the

center of gravity to axles, can be manipulated by shifting component positions on the scale car. The inertia

can also be altered in similar fashion by varying the mass distributions of the components. Furthermore,

it is entirely feasible to add small weights to the car as necessary to vary both these parameters as well as

the total mass directly. This leaves velocity and cornering stiffness to be determined. Conveniently, these

numbers are correlated with Pi groups three and four, which means that test speed of the lateral controller

can be varied, given a prescribed cornering stiffness to produce useful results.

One key feature of an electric vehicle is that its center of gravity is much closer to the midpoint between

each axle than a conventional vehicle with an internal combustion engine. With this known, it becomes much

easier to make the first four groups align. The first two groups essentially describe the position of the center

of mass, in relation to the wheelbase, which is easy to modify to achieve similarity. The third and fourth

groups become trivial as well, as the cornering stiffnesses of an idealized car, with center of gravity precisely

at this midpoint between axles, become identical. This means that, for a given physical model, forward

speed can be varied and provide sufficient flexibility to achieve similitude. The fifth and final group would

be the most difficult in this case to guarantee, and may require some adjustments of component positions,

while maintaining the position of the center of gravity, to achieve similarity. Therefore, a practical method

to achieve total similarity of the five Pi groups is to modify the dimensionless parameters of the scale car in

ascending order.

3.2.1 Weight, Center of Mass, and Axle Distances

Wheelbase is strictly provided as a parameter of the 1:7 scale car purchased from Traxxas. This parameter

has a value of 0.404 m. The center of mass was then calculated by force balance, by measuring the weights

13

over each axle using four scales with a measuring precision of 0.1 g. The measured mass of the car is 5.568

kg. Similarity was achieved by adjusting the position of the battery packs used to power the computation

units of the car, which required minimal effort.

Figure 3.1: Scale Car on Four Weight Scales, for Force Balance Calculations

The force and moment balance equations are relatively straightforward, using static equations and knowl-

edge of the wheelbase l, car total mass mcar, and normal force at each axle, Frearaxle and Ffrontaxle to

determine the front and rear axle distances, lf and lr.

ΣF = Frearaxle + Ffrontaxle −mcarg (3.11)

ΣMrearaxle = Ffrontaxlel − lrmcarg (3.12)

l = lf + lr (3.13)

Using this system of equations, the values of lf and lr can be trivially derived as 0.205 m and .0199 m,

respectively.

3.2.2 Cornering Stiffness

Cornering stiffnesses present a unique challenge in the design of a scale car. First, it must be shown that the

behavior of a scaled tire itself is similar to that of a standard tire, in addition to the requirement to achieve

similarity in the third and fourth Pi groups. As this would be a large undertaking, requiring the creation of

a test apparatus, it was decided that a preferable alternative would be to use a tire which had already been

thoroughly analyzed. Fortunately, this work has already been done for a select line of DuBro pneumatic

tires. Intended for use with remote controlled aircraft, these tires have been shown to have good agreement

with a Pacejka tire model (1). Additionally, published test data showing the Pacejka constants for these tires

14

have been provided, as shown for the 4 1
2” tires in Table 3.2. In order to calculate the cornering stiffnesses,

the model was linearized about a neutral trim state, which is shown in Equation 2.8. Since the results of tire

testing are presented as a table in incremental speeds and tire loads, the value of the cornering stiffness was

interpolated between cornering stiffnesses at each setpoint, to determine the parameters for both the front

and rear tires.

Pacejka Constants for 4 1
2” Du-Bro Tires at Varying Loads

FN B C D E ∆Sv ∆Sh
20 0.132 1.30 21.30 0.04 0.06 -0.59
30 0.112 1.23 31.14 -0.62 1.44 -0.67
40 0.104 1.15 38.77 -0.99 3.15 -0.90
50 0.079 1.18 50.98 -1.71 3.64 -0.99
60 0.065 1.35 57.45 -1.05 3.66 -0.92
70 0.057 1.43 62.86 -1.17 3.06 -0.82

Table 3.2: Tire Parameters for Du-Bro 450TV Pneumatic Tires, Courtesy of UIUC (1)

Using these parameters, the front and rear cornering stiffness can be interpolated. Given the axle loads,

it can be assumed that each tire carries half the weight, so the cornering stiffness of each tire can be directly

interpolated, then doubled to determine a total front and rear cornering stiffness, resulting in a Cαf of 6.932

N
rad and Cαr of 6.918 N

rad .

3.2.3 Moment of Inertia

The rotational moment of inertia for the scale car requires more effort than the previous parameters. One

simple approximation would be to assume that weight is centered above each axle, and could be calculated

using the measurements taken when determining the center of mass. This assumption can be used to trivially

simplify the mass moment of inertia equation to the following equation.

Iz = mlf lr (3.14)

where: m = Mass of the Vehicle

lf = Front Axle Distance to Center of Mass

lr = Rear Axle Distance to Center of Mass

However, this is not a very precise measurement, and in comparison to the precision of the other identified

parameters, is severely lacking in both accuracy and verifiability. One method that would provide a higher

accuracy estimate would be the modeling of each component and assembly in a 3D CAD software, using

measured masses of each component and allowing the software to identify the center of mass through a brute

force calculation. This would be reasonable, but leaves room for error in modeling, compounding error due to

15

calibration, and requires a significant time investment. Ultimately, it was decided to measure the rotational

inertia of the car using a bifilar pendulum. This pendulum is used widely in industry to find the rotational

inertia of irregular objects, and provides a practical method to derive the parameter for the scale car. The

pendulum is anchored at two points, and the test specimen mounted to a rigid structure connecting these

anchors. The pendulum is then moved out of equilibrium, by twisting it slightly. The period of oscillation

for this pendulum is then related to the combined moment of inertia of the rigid structure and test specimen.

Using a structure with simple geometry allows for easy calibration and validation of the pendulum itself.

This inertia can then be subtracted from the total measured inertia to isolate the scale car’s rotational

inertia.

Iz =
d2mgT 2

16π2l
(3.15)

where: d = Distance Between Anchors

m = Mass of the Rotating System

g = Gravitational Constant

T = Period of Oscillation

l = Length of the Tension Cables

A pendulum was made using two pieces of planed two-by-four lumber which were selected to have no

aberrations or knots in the wood, with the assumption that this would maximize the homogeneity of the

wood and greatly simplify inertia calculations. The lumber sections were connected by two equal lengths of

nylon cord, and one section of lumber clamped rigidly to a sturdy table.

Figure 3.2: Bifilar Pendulum with Scale Car Mounted, for Moment of Inertia Calculations

After assembly, the pendulum was oscillated and its period calculated. The resultant moment of inertia

16

measurement was in good agreement with the theoretical calculation. The measured value was chosen as

the true value, as the calculation did not account for the added mass of the mounting hardware or any other

marginal inconsistencies in the lumber. At this point, the scale car was mounted to the rigid structure,

taking care to position the center of masses of both objects directly in line with the midpoint between the

anchor points. Oscillation period was then recorded. Using the parameters of this test setup, the inertia is

calculated as follows, subtracting the predetermined inertia of the wooden mounting block.

Iz =
0.8642(5.568 + 1.660)g(0.82)2

16π2(0.80)
− 0.1146kgm2 = 0.167kgm2 (3.16)

3.2.4 Dimensionless Parameters of the Scale Car

Using the parameters calculated in the previous section, dimensionless parameters can be formed and com-

pared to a full-size car. To provide a comparison, vehicle parameters used in the study of an in-wheel electric

vehicle are used as reference (21). These parameters provide a generic model for an electric vehicle, and

although no specific model is provided gives a good estimate of a standard model for a car of this type.

Furthermore, if provided a specific model, the scale car is capable of being modified by adjusting weight

distribution and tuning vehicle speed to match a given vehicle’s properties, allowing for additional flexibility

in future research.

Parameter Standard EV Scale Car
lf [m] 1.000 0.205
lr [m] 1.000 0.199
w [m] 2.000 0.404
Cf [Nrad] 22000 6.932
Cr [Nrad] 25000 6.918
v [ms] 7.000 1.000
m [kg] 900.0 5.568
Iz [kgm2] 1200.0 0.167

Table 3.3: Comparison of Full-Size and Scale Car Parameters

Using these parameters, Pi groups can be generated and compared, as shown in Table 3.4. The Pi Groups

show very good agreement, with a maximum deviation of 13.4% of the fourth group, while the first three

groups remain within 1% tolerance. For a standard vehicle model, this shows sufficient agreement, given the

variance in possible parameters shown in the NHTSA database far exceeds the deviation of the scale car in

some vehicle models (22).

17

Π Group Standard EV Scale Car
Π1 0.500 0.508
Π2 0.500 0.492
Π3 0.998 1.003
Π4 1.134 1.001
Π5 0.333 0.366

Table 3.4: Comparison of Scale and Full-Size Pi Groups

3.3 Configuration

The car was designed with a goal of providing an affordable, open-source test platform that could still utilize

modern technologies and be capable of performing any necessary testing maneuver and provide dynamic

similarity with a standard electric vehicle. To this effect, it was decided that the vehicle would be built upon

a standard remote-controlled 1:7 scale car, the Traxxas XO-1. This vehicle comes equipped with a drive

motor, electronic speed controller, and steering servo with an Ackermann steering design. Additionally, the

vehicle has both a front and rear differential, as well as spring and damper suspension system which allows

for a more realistic behavior when driving. In the future, this also provides an opportunity to generate a

higher fidelity model of the car for testing of more complex control designs.

The car is also equipped with a set of sensors which are commonly found in autonomous vehicles: a wheel-

speed sensor, inertial measurement unit (IMU), and light detecting and ranging unit (LIDAR). Additionally,

a depth camera has been mounted to the car, and while it is out of scope and unused in this thesis, there

are existing software suites that can perform sensor fusion between the LIDAR and depth camera. The

wheels-speed sensor is an AS5600 magnetic encoder, which uses the Hall effect to determine the angular

position of a magnet mounted on the front differential of the car. The IMU is a standard MPU6050, an

affordable sensor with six degrees of freedom, providing linear accelerations and angular velocities. The

LIDAR is an RPLIDAR A2M8, which refreshes a two-dimensional map at a rate of ten full scans per second,

and scans pixels at a rate of eight thousand per second. The included depth camera is an Intel Realsense

D435i. Mounting brackets were 3D printed for each sensor, and will be provided on the Future Mobility Lab

GitHub repository. To control the ESC and servo motor, a PWM I2C breakout board was added, which

contains a real-time clock and permits precise control of both motors mounted on the car.

One unique aspect of this project is the inclusion of two separate compute units, which handle localization

and control separately. This allows for future flexibility in the project, leaving additional computational

headroom for more advanced software and the inclusion of additional features such as obstacle detection

and avoidance. Two Raspberry Pi 4b single board computers were mounted on the car, each equipped

with an individual battery. Tests were performed with both the 4 GB and 8 GB models, and in this case

18

Figure 3.3: IMU and Encoder Mounted on the Scale Car

both possessed adequate memory to perform the required tasks. An overview of the sensor integration and

interconnection of compute units is shown in Figure 3.4.

Figure 3.4: Physical Component Configuration, Sensors and Compute Units

Communication from the scale car to a ground station is also critical. To enable remote control, start

up and safe takeover during failure, a network connection was established between the localization unit and

a ground station, using a local area network. Additionally, an alternate configuration was made for outside

use in which the ground station serves as the router, generating a Wi-Fi hotspot for the localization unit

to connect to. A visual representation of this network configuration is shown in Figure 3.5. With this

configuration, latency between the onboard units is an average 0.33 ms, while the latency from the ground

station to car is 164 ms. Speed is only critical between the compute units, as messages are rapidly transferred

to provide pose estimates to the controller, and as such this configuration was deemed sufficient.

19

Figure 3.5: Computer Networking Between Scale Car and Ground Station

3.3.1 Software Stack

The codebase for this project was developed using Robot Operating System 2 - Humble Hawksbill (23).

ROS2 is an open-source software development kit that provides a set of libraries, interfaces, and other

utilities for robotics development. It was chosen as the platform for the development of the scale car due

to its ease of implementation, modular functionality, and popularity within the robotics community. The

version, Humble Hawksbill, was selected as it is the first version of ROS2 with a long-term support (LTS) of

five years. This means that the platform will be supported, provided critical updates, and likely see active

development until mid-2027. This will prove incredibly useful to future research using this test bed, as it

enables the implementation of state-of-the-art software packages without excessive effort. Packages such as

Robot Localization, SLAM Toolbox and Nav2 are consistently updated and optimized for performance on

embedded systems, providing simple APIs and configurations for tuning on the scale car.

ROS2 uses a publisher-subscriber protocol, in which modular programs can run independently, subscrib-

ing to topics with pertinent information, while publishing their own outputs asynchronously. this means

that sensor messages, localization, sensor fusion, and control can all be handled in separate programs while

communicating through a unified protocol. Additionally, this format allows for the exchange of information

across multiple devices over a network. The two onboard Raspberry Pi single board computers communicate

via an Ethernet cable, while topics are transmitted over Wi-Fi for viewing on a remote computer.

The distributed structure of ROS2 means that programs can be organized into nodes, which communicate

through the previously described protocol and together perform the sum of a robot’s functions. These nodes

are further organized into packages which contain sets of interrelated nodes. For example, the control

architecture of the scale car is split into two packages - one low level and one high level. The high level

package has customizeable nodes for each controller type, and the low level package contains a servo motor

and drive motor control node. The distributed nature of this system lends itself to the use of callbacks. The

20

high level controller has a callback which is triggered whenever the robot’s position is updated, the low level

controller has a steering callback which is triggered whenever a new control command is published, and a

driver motor control loop has a direct signal callback which is triggered whenever a new velocity reading or

command is provided to it.

One package of considerable influence to this project is Nav2 (24). This package contains a complete

toolbox for use in the navigation of mobile robots, from behavior trees, to localization, to control. However,

the control structure is more heavily tailored to either omni-wheel or dual-motor controlled robots, which are

structurally different from a car-like robot with Ackermann steering. Therefore, the entire path planning,

control, and sensor integration libraries were written exclusively for the scale car, but Nav2 message types

and localization was incorporated to provide further flexibility in future research, such as obstacle avoidance.

An important consideration in robotics design is the relationship of the various coordinate systems of the

robot. Each sensor has its own respective coordinate system which must be respected, and which relates to

the coordinate system of the robot to be controlled. For example, an IMU may be mounted at an angle or

offset from the center of the robot, and as such its recorded accelerations will not immediately align with

the robots own accelerations. To account for this, transforms are published between each sensor’s coordinate

frame and a base link frame of the robot. For the scale car, this is shown in Figure 3.6. Using these

transforms, all sensor values can be merged into a unified model of the behavior of the robot with respect

to any pertinent reference frame. All sensors except for the wheel speed sensor are provided coordinate

transforms, as the wheel speed sensor’s output is assumed to share longitudinal velocity with the base link

of the car.

Figure 3.6: Coordinate Frames Provided in ROS, Compared to Physical Car

In addition to providing transforms between the coordinate frames of the robot, ROS2 also expects a

transform between the base link of the robot and its odometry estimate, as well as the odometry estimate

and the map in which the robot is navigating. To achieve these requirements, the raw sensor values are

fused with an extended Kalman filter, and the transform of the robots pose to the map is provided by

either a graphical SLAM package or Adaptive Monte Carlo Localization (AMCL) package. All transforms

21

are connected in a transformation tree, which enables all data published by ROS2 to be provided to each

sensor with a complete transform from point to point. For example, the IMU reading can be transformed

to mathematically relate it to the acceleration of the robot with respect to the map coordinate frame. The

bi-directional transformation tree for the scale car is shown in Figure 3.7, with arrow indicating forward

transformation.

Figure 3.7: Transformation Tree of the Scale Car

The distributed structure, transform tree, and modular nature of ROS2 enables the separation of sub-

systems to handle the various functions of the scale car during operation. The following subsections will

elaborate on the differentiation of functionality and responsibility of each package, from the basic system

functions to high level controls.

3.3.1.1 Low Level Drivers

In order to maintain the modularity of the software stack, and enable the use of new sensor or low-level

control interfaces, sensors and motor controllers were subdivided into independent packages, each interfacing

from an I2C (Inter-Integrated Circuit) protocol to ROS2 topics. The IMU and wheel encoder packages are

publishers which read in raw data and publish inertial frame accelerations and wheel velocities, which are

the provided to other nodes as needed. The motor and servo controller were merged, as both use a single

breakout board over the I2C interface. This low level controller sends direct servo steering angle commands,

translating from desired steering angle to motor angle. The drive motor is regulated by a PI loop which

takes raw velocity readings and outputs a throttle value. Additionally, a feed forward component was added

for steering angle to prevent excessive velocity losses when turning. The control design is expanded upon in

Section 4.2.

22

3.3.1.2 Robot Localization

In order to fuse the IMU and wheel encoder values, and publish a unified pose estimate, an extended Kalman

Filter is implemented using the Robot Localization package of ROS2 (25). This package provides the utility

to use a standard, extended, or unscented Kalman Filter, and further provides a configuration file format

for adjusting filter parameters. The filter comes with models for an omni-drive and dual-motor drive robot

structure, and while it is not an exact match the dual drive configuration encompasses the behavior of

the scale car accurately enough to be implemented. The extended Kalman filter was selected as it more

accurately encompasses the motion of the scale car without adding the quantity of parameters which are

used in an unscented filter. However, switching between filter implementations is as simple as revising the

configuration file, and a study of performance between the filters could easily be performed in the future.

This package, in addition to performing sensor fusion, also provides a smoothing between the map to car

transform and the car to sensor transforms.

3.3.1.3 SLAM Toolbox

In order to map the environment, a graphical SLAM implementation is used. The SLAM toolbox for ROS2

provides another easily implemented package of SLAM nodes, which fuse LIDAR scans into a pose graph,

which can be tuned and refined to improve performance. This map is then voxelized, and exported for future

testing to remove the computational load of mapping while navigating during testing.

3.3.1.4 Adaptive Monte Carlo Localization

While the SLAM toolbox is highly optimized and does not use excessive resources in localization mode,

a more optimal localization method is Adaptive Monte Carlo Localization (AMCL). This method uses a

particle filter, generating between one and two thousand particles and forward simulating the motion of

the vehicle. The particles are then averaged to identify the pose estimate and covariance of the car. The

algorithm for this method is elaborated in Probabilistic Robotics, and application on the scale car further

described in Section 5.1.3(26).

3.3.1.5 Controls

The remaining functionalities are implemented in the control packages, which encompass planning as well

as control. The path planner was written previously for the Future Mobility Lab and has functionalities for

Djikstra’s search algorith, A*, RRT, and PRM path planners. As this work has been performed, compared

and written about, it will not be expanded on in the scope of this thesis other than functional testing in

23

Section 5.2.

The controls are built using an abstract controller class, which is initialized with a configuration file that

allows a variety of controllers to be constructed and used. For this thesis, pure-pursuit, Stanley, Youla, H∞,

and MPC controllers have been written and tested. These controls send a constant velocity command to the

low-level drive motor controller, and a steering command to the servo. The entirety of Chapter 4 is dedicated

to the development of these control methodologies. The ability to develop an independent longitudinal

controller or integrated lateral and longitudinal controller was heavily considered in the development of the

controller class, and can easily be added using the convention of the other controllers in the Python source

code.

24

Chapter 4

Controller Design and Simulation

4.1 Control Problem

Passenger vehicles are inherently under-actuated for the purposes of trajectory following. This means that

a car cannot follow an arbitrary provided path. For example, a car is generally incapable of pure lateral

translation during standard operation. The actuators available to a car are throttle, brake and steering.

The throttle and brake control longitudinal velocity, while steering controls the heading angle of the front

wheels. For the purposes of this thesis, longitudinal control will be managed by a simple low level controller

to achieve constant velocity, while several lateral controllers are tested and compared.

Lateral control of an autonomous vehicle is intended to allow the vehicle to follow a given trajectory or

path. However, since the system is under-actuated, the dynamics of the car make this design non-trivial. A

controller cannot simply control for cross-track error without consideration of vehicle yaw, as it would be

incredibly difficult to tune and would likely result in erratic behavior about the target path. A variety of

strategies exist to perform this control, which can be described as geometric control, model-based control,

and model predictive control methods. Geometric controllers use kinematic relations between the car and

path to determine a steering angle. Internal model controllers use a system model to derive the control

law, which incorporates knowledge of the system to be controlled with the goal of improving performance.

Model predictive controllers forward-simulate the vehicle’s motion in discrete space, and use an optimization

scheme to select steering angles at a set frequency.

4.2 Longitudinal Controller

Longitudinal control is limited within the scope of this thesis, and as such the scale car relies on a reliable,

well-tested control scheme of a PI controller. During testing, it was noticed that the vehicle would slow down

at high steering angles, and as such a feed-forward component was added to help account for the additional

throttle required to maintain velocity into a turn.

25

P = Kpe+Kδδ +Ki

∫
e dt (4.1)

where: P = Throttle Command

Kp = Proportional Gain

e = Velocity Error

Ki = Integral

Kδ = Steering Gain

δ = Steering Angle

Due to the nature of this controller, and fact that it is implemented inline with an electronic speed

controller that cannot be easily modeled, performance can only be gauged from real-world data. Figure 4.1

shows the step response of the vehicle from idle to a 1 m
s setpoint. In addition to extensive tuning, the

quality of the controller is gauged by its ability to maintain constant velocity during test maneuvers.

Figure 4.1: Behavior of Longitudinal Controller During Startup (Speed [m
s
] v. Time [s])

4.3 Lateral Controllers

The lateral controllers are design to follow a predetermined trajectory at constant velocity, as speed is regu-

lated by the longitudinal controller. In this section, the theory and control methodologies will be explained

for controllers of increasing complexity. Geometric controllers for steering provide a simple control formula-

tion, but rely on simple geometric relations between the vehicle pose and path which are not always held,

and generally respond poorly to disturbances and sensor noise. Model-based controllers use mathematical

models of the vehicle to be controlled in order to develop a controller which considers system dynamics.

This enables the development of optimal or robust control strategies and can consider lateral as well as yaw

26

error. Finally, model predictive control forward-simulates the dynamics of the car and uses an optimization

technique to select the next steering input. This method is computationally expensive compared to previous

controllers, but is able to account for state and steering input limitations using its predictive model.

To be considered for use in a real car, a controller must be able to follow a given path with reasonable

accuracy, and be sufficiently robust to common disturbances and sensor noise. Some common examples of

antagonist interactions are GPS position jumping, wind gusts, poor sensor calibration, and for non-geometric

controllers, modelling inaccuracies. Additionally, the controller must be able to operate with real steering,

in which there is delay between control signal and actuation, as well as a limit to the rate of change of

steering angle and maximum steer angle. Controllers must be able to operate with these physical limitations

without reducing performance. In this chapter, theory and control formulation will be discussed, as well as

the practical implementation of these strategies for testing on the scale car.

Before discussing controllers, there are a few common elements used in application to be presented.

Controllers require a reference signal to operate, and for path following this signal is generally a reference

point or set of reference points on the given path. For the most part, these reference points can be found by

identifying either the nearest point to the car within the path, or to a point at some distance ahead of the

car on the path. Algorithm 1 presents a basic method for finding reference points using both methods, as

the lookahead calculation first involves finding the nearest reference point. It is assumed that all waypoints

and pose data are provided in an ordered format.

Algorithm 1 Pseudo-Code for the Identification of Reference Points, Nearest and Look-Ahead

1: l← Look-Ahead Distance
2: waypoints← Ordered Waypoint Array
3: pose← Pose of Vehicle
4: procedure Get Nearest Reference(pose, waypoints)
5: Distance Array← []
6: for i in length(waypoints) do
7: Reference Distance← norm(posex,y − waypoints(i)x,y)
8: Distance Array.append(Reference Distance)

9: Nearest Reference Index← minindex(Distance Array)
10: returnNearest Reference Index,Distance Array

11: procedure Get Look-Ahead Reference(l, waypoints, pose)
12: Nearest Reference,Distance Array← GetNearestReference(pose, waypoints)
13: Look-Ahead Index← Nearest Reference
14: Look-Ahead Reference← Distance Array(Look-Ahead Index)
15: while Look-Ahead Reference <= l do
16: Look-Ahead Reference← Distance Array(Look-Ahead Index)
17: Look-Ahead Index← Look-Ahead Index+ 1

18: returnLook-Ahead Index

These algorithms will be referenced when generating inputs to all controllers in the following sections.

27

4.3.1 Pure Pursuit

4.3.1.1 Theory

The pure pursuit method is an intuitive, simple control scheme, which looks ahead of the car at a given

distance, and steers toward the path’s location at this distance. Figure 4.2 depicts the geometric model used

for the pure pursuit algorithm.

Figure 4.2: Pure Pursuit Geometric Relations (6)

One important consideration is the definition of the car’s pose. In this model, as well as many in industry,

the position of the vehicle is defined by the pose of its rear axle. For this controller, a point is found on the

reference path at distance ld in front of the rear axle, and steering angle is defined as δ. The full equation

used in the controller, considering global path coordinates, is the following

δ = arctan(
gy − ycar
gx − xcar

)− ψg (4.2)

where: δ = Steer Command

(gx, gy) = Look-Ahead Reference

(xcar, ycar) = Rear Axle Position

ld = Look-Ahead Distance

ψg = Current Vehicle Global Yaw Heading (From +x direction)

4.3.1.2 Controller Design

The implementation of this controller is relatively straightforward. After identifying the look-ahead reference

point, the pure pursuit function is directly applied to determine the steering angle of the car, as shown in

Algorithm 2.

28

Algorithm 2 Pseudocode for Pure Pursuit Controller

1: l← Look-Ahead Distance
2: waypoints← Ordered Waypoint Array
3: pose← Pose of Vehicle
4: procedure Get Steering Angle(l, waypoints, pose)
5: Look-Ahead Reference Index← Get Look-Ahead Reference(l, waypoints, pose)
6: Y-Vector← Look-Ahead Reference.y − pose.y
7: X-Vector← Look-Ahead Reference.x− pose.x
8: SteerAngle← arctan(Y-Vector

X-Vector)− pose.ψ
9: return SteerAngle

4.3.2 Stanley

4.3.2.1 Theory

The Stanley controller was originally designed at Stanford during the DARPA Grand Challenge in 2005 (7).

This geometric controller identifies a stabilizing function which combines both the yaw heading of the path

and cross-track error. The equation was derived such that the system would have a globally asymptotic and

stable equilibrium of zero error. For use in the Grand Challenge, additional terms were added to account for

behavioral effects of the car, but these are not included in this controller as the base formulation is sufficient

to develop a reference controller on the scale car.

Figure 4.3: Stanley Controller Geometric Relations (7)

The stabilizing equation using this geometric model is as follows

δ = ψ + arctan(
ke

v
) (4.3)

29

where: δ = Steer Command

ψ = Vehicle Yaw Heading Relative to Path Yaw

k = Stanley Gain Parameter

e = Cross-Track Error

v = Longitudinal Velocity

4.3.2.2 Controller Design

The implementation of this controller is similar to pure pursuit, in that reference points are generated, and

control law directly applied. Pseudo-code for the Stanley controller implementation is shown in Algorithm

3.

Algorithm 3 Pseudocode for Stanley Controller

1: k ← Stanley Controller Gain
2: v ← Longitudinal Velocity
3: waypoints← Ordered Waypoint Array
4: pose← Pose of Vehicle
5: procedure Get Steering Angle(v, waypoints, pose)
6: Nearest Reference Index,Distance Array← Get Nearest Reference(waypoints, pose)
7: ψref ← pose.ψ − waypoints(Nearest Reference Index).ψ
8: evector = cross(posex,y,z, waypoints(Nearest Reference Indexx,y,z)
9: e← Distance Array (Nearest Reference Index) ∗ sign(evector)

10: SteerAngle← ψref + arctan(kev)
11: return SteerAngle

4.3.3 Youla Parameterization

4.3.3.1 Theory

The simplest model of a plant with a feedback controller is presented in Figure 4.4. In this system, error

state e is provided as a reference signal to the controller, which then generates a control output. feedback

gain is modeled by H(s), and for the remainder of this discussion will be considered as Unity. For this

control scheme, the return ratio or open-loop transfer function then becomes L = Gc(s)Gp(s). This return

ratio can be used to derive three transfer functions that convey an immense amount of information about

the system’s behavior. These transfer functions are sensitivity S, complementary sensitivity T , and Youla

Y .

S =
1

1 + L
(4.4)

T =
L

1 + L
(4.5)

30

Y =
Gc

1 + L
= GcS =

T

Gp
(4.6)

First, it is necessary to understand the relationship between sensitivity and complementary sensitivity.

It can be shown simply that S + T = 1, and although this is apparently trivial, it is in face a profound

statement. A well-designed controller should seek a T which has a gain of 0 dB at low frequencies, to

ensure target tracking. T should then drop off at higher frequencies in order to reject noise, as well as high

frequency disturbances. However, given the relationship of T and S, this implies that sensitivity must rise as

complementary sensitivity drops. This reveals a key consideration of control design, that there is a necessary

balance between optimally and robustness. That is to say that it is impossible to design a controller which

perfectly tracks a setpoint at all frequency ranges.

Figure 4.4: Simple Block Diagram

The Youla Parameterization Approach is a linear frequency-based control design technique. If a stable

Youla parameter is found that meets a set of interpolation conditions, then it can be used to generate a

controller that is guaranteed to be stabilizing in a linear sense, and whose robustness to noise and disturbances

can easily be identified. The guiding principle of this method which enables its flexibility is the relation of

sensitivity, complementary sensitivity and the Youla parameter, whose Bode magnitudes are shown in Figure

4.4.

Figure 4.5: Sensitivity S, Complementary Sensitivity T , and Youla Y (8)

Using Youla Parameterization, it is possible to describe the set of all stabilizing linear controllers, so

31

long as certain conditions can be met. These conditions and their proofs are thoroughly explained in Robust

Control, Youla Parameterization Approach (8). The necessary and sufficient conditions are as follows

1. Y must be stable.

2. GpY must be stable.

3. Gp(1−GpY) must be stable.

The first and second conditions are easy to achieve, but interpolation conditions are presented which can

be used to confirm that the third requirement has been met. In complete form, a list of requirements is as

follows

1. T (p) = 1 for any unstable poles p

2. T (z) = 0 for any unstable zeroes z

3. dk

dsk
T (p) = 0 for 1 ≤ k ≤ ap − 1, ap no. of repeated unstable poles in Gp

4. dk

dsk
T (z) = 0 for 1 ≤ k ≤ az − 1, az no. of repeated unstable zeroes in Gp

Although this appears to be more tedious to achieve, these interpolation conditions provide a straightfor-

ward method to designing a Y that is internally stabilizing. This method provides a great degree of flexibility

in design.

4.3.3.2 Controller Design

To perform the requisite analysis and identify a Youla parameter for this model, Equations 2.9 and 2.10 were

converted from state-space to transfer function form.

Gp = C(SI −A)−1B +D =
17.735(s+ 4.073)(s+ 1.049)

s2(s+ 7.032)(s+ 4.712)(s+ 0.9091)
(4.7)

where: C = [1 0 ds 0]

ds = Yaw Error Weight Relative to Cross-Track Error

D = 0

With two unstable poles at the origin, the additional interpolation conditions of repeated poles (as

discussed in the previous section) must be met. This was achieved by first shaping T , and using the

relationship of T and Gp to generate Y. T , S, and L for this system are presented in Figure 4.6. It is relevant

32

to note that the crossover frequency is between 1 and 2 Hz, which is sufficient to capture most lateral vehicle

dynamic behavior in the linear range.

T =
k(τ1s+ 1)

(s2 + 2ζ1ω1s+ ω2
1)(s

2 + 2ζ2ω2s+ ω2
2)

(4.8)

where: k, ζ1, ω1, ζ2, ω2 = Tuning Parameters

Figure 4.6: T (blue), S (red), and L (yellow) for the Scale Car

Using two second-order Butterworth Low Pass filters, in addition to a static gain k permits a great deal

of design flexibility. After some tuning, the final Youla Parameter was selected. It can be quickly confirmed

through examination that this selection meets all required interpolation conditions. Y was then used to

generate the controller transfer function Gc using the relation of Y , S, and Gc. Bode magnitude plots of the

relevant functions are presented in Figure 4.7.

Y =
3146s2(s+ 7.032)(s+ 4.712)(s+ 1.15)(s+ 0.9091)

(s+ 11.11)(s+ 4.073)(s+ 1.049)(s2 + 2.687s+ 3.61)(s2 + 56.56s+ 1600)
(4.9)

After selecting Gc, the controller can be implemented by converting its transfer function to a discrete

state-space formulation. Then, this digital filter can be used to implement a controller as shown in Algorithm

4. This requires a strict control frequency, which is currently 20 Hz for all controllers on the scale car. This

frequency was selected as it captures all relevant dynamics necessary for the controller, with a Nyquist

frequency of 10 Hz.

33

Figure 4.7: Gc (red), Gp (blue), Y (yellow), and L (purple) for the Scale Car

Algorithm 4 Pseudocode for LTI Controller

1: A,B,C,D ← Discrete State-Space Form of Gc
2: l← Look-Ahead Distance
3: waypoints← Ordered Waypoint Array
4: pose← Pose of Vehicle
5: GcStates← Array of Zeros, Size m− by − 1 for Gc of size m− by −m
6: procedure Get Steering Angle(l, waypoints, pose)
7: Look-Ahead Reference Index← Get Look-Ahead Reference(l, waypoints, pose)
8: error = norm(waypoints(Look-Ahead Reference Index)x,y − posex,y)
9: GcStates = cross(A,GcStates) + cross(B, error)

10: SteerAngle = cross(C,GcStates) + cross(D, error)
11: return SteerAngle

4.3.4 H∞

4.3.4.1 Theory

The H∞ method is an optimization technique, which shapes the closed-loop transfer functions T , S, and Y

using a set of weighing filters in order to generate a controller which minimizes an infinity norm of these

weighted transfer functions. This method generates a form of optimal robust controller, in that it is robust

to the worst-case disturbance response of the system and optimal for the presented cost function.

The mathematical proof of the validity for this optimization technique is again shown in Robust Control,

Youla Parameterization Approach (8), but a cursory explanation of the method will be presented here.

Figure 4.8 shows a set of weighing filters, which are used to derive a mapping transfer function Tzw which

represents a transfer function of the response of all controlled signals and tracked errors z to all exogenous

inputs w such as signal noise, disturbances, and control commands.

This function is shown in Equation 4.10. The weighing transfer functions Wp, Wu, and W∆ can then

be tuned to shape T , S, and Y and achieve good reference tracking, disturbance rejection, and controller

actuation effort respectively. Optimization is achieved when this function is minimized by a controller K

34

Figure 4.8: Weighing Matrices Used for H∞ Optimization(8)

and the nominal performance is less than one, as shown in equation 4.11.

Tzw = [WpS WuY W∆T]
T (4.10)

minimize
k

||Tzw||∞ < 1 (4.11)

Weighing filters can be selected given the following constraints.

|Wp(s)|−1 > |S(s)| ∀ s > 0 (4.12)

|W∆(s)|−1 > |T (s)| ∀ s > 0 (4.13)

|Wu(s)|−1 > |Y (s)| ∀ s > 0 (4.14)

4.3.4.2 Controller Design

Transfer functions forWp,Wu, andW∆ were generated with respect to the conditions provided in the previous

section, and are presented in Figure 4.9. Using these filters, H∞ synthesis was achieved using a MATLAB

optimization package, which generated a transfer function of the form

Gc =
0.0075619(s+ 2.234e07)(s+ 13.69)(s2 + 0.009107s+ 4.145e− 05)

(s+ 2234)(s+ 21.15)(s+ 16.34)(s+ 0.4355)(s+ 1.056e− 05)
(4.15)

The computed Gc can then be converted to a discrete states-space filter, much like the Youla approach.

This means that the implementation of this method also uses Algorithm 4. A Comparison of Gc, Gp, Y ,

and L is shown in Figure 4.10.

35

Figure 4.9: Weighing filters compared to T , S, and Y

Figure 4.10: Weighing filters compared to T , S, and Y

4.3.5 Model Predictive Control

4.3.5.1 Theory

Model Predictive Control (MPC) is an optimal control strategy which forward-simulates a dynamic model,

and optimizes the control inputs based on a given cost function. It is very computationally expensive relative

to other control methodologies, with computing power only recently increasing to the level required for real-

time operation on complex, fast dynamic systems. MPC is performed by discretizing n time steps forward

to a time horizon Td (in this case assuming number of input time steps Nu and state time steps Ny are

equal), and optimizing within each time step using the assumption that a constant command signal for each

time steps’ duration. An example of the control discretization is shown in Figure 4.11. The fundamental

assumption that enables MPC is that the system model is deterministic; if the system is determined only by

its current states and inputs, and inputs are held constant, then the states at the end of each time step are

completely determined by the inputs at the beginning of each time step. Therefore, an optimization scheme

36

only needs to vary the inputs to the dynamic system in order to find a solution for a given time step.

Figure 4.11: Discretized Control Output of an MPC Controller (9)

Now, knowing that optimizing inputs at the beginnings of each time step, and holding these inputs for

the duration of each time step produces a theoretically optimal control output (in a discrete sense), the

method of optimization becomes the primary question.

Optimization strategies seek to find the global minimum or maximum of some function. For linear

systems, this is a solved problem, as linear convex systems must possess one global minima. For nonlinear

systems, which can contain both local and global minima, the problem becomes more complex. As an

optimization algorithm runs, it may descend into a local minima, in which there are currently no guaranteed

methods to determine whether or not the given minimum is local or global, without probabilistic assumptions

or brute force for nonlinear systems. However, so long as the system is convex, linear or nonlinear, it by

definition must contain a single global minimum (27). In these situations, it is possible to use convex,

constrained optimization techniques.

Many such techniques exist and are implemented in control applications, but for illustrative purposes the

Newton-Raphson constrained optimization method will be presented here (28). This method uses a form of

gradient descent, in which a Hessian approximation of a function about a given point is calculated, and its

minimum determined. The formula for determining the next iteration is as follows

xk+1 = xk − (∇2f(xk))
−1∇f(xk) (4.16)

This process is iterated several times, and usually terminated when a maximum number of iterations is

achieved, or the change of estimate from one iteration to the next becomes sufficiently small. This technique

is applied at each time step, where in MPC applications the states x of this technique are the inputs, and

f(xk) is the cost function of both states and inputs. Generally, cost functions are selected to be quadratic

as functions of this sort are inherently convex. An example cost function would be

37

J = xTQx+ uTRu+ xTf QTxf (4.17)

where: J = Cost

x = Vector of Error States

Q = Error Weighing Matrix

u = Vector of Inputs

R = Input Weighing Matrix

QT = Terminal State Weights

xf = Final State

If the dynamic model is linear, and cost function is convex, then convex optimization techniques will be

effective in determining a global minimum. With both a method of discretization and optimization defined,

the final concept in MPC formulation can be elucidated: implementation.

The most straightforward way of implementing MPC is referred to as direct single shooting. This method

is sequential, and is performed by optimizing over the first time step, and using the final state calculations

as initial parameters in the next time step. The process is then repeated, solving step-by-step in time order

until the time horizon is reached. This method is practical in many applications, but too slow in limited

computation environments or for fast dynamic systems. A more advanced approach is called direct multiple

shooting (29). This method optimizes over each time step in parallel, an effective strategy on most modern

computing platforms. However, this method presents an issue of determining initial states. As opposed

to single shooting, in which the initial states of each time step are calculated prior to optimizing, multiple

shooting attempts to solve all inputs at once. This means that in multiple shooting, each time step must first

guess its initial states, and optimize based on this guess. To remedy this, slack variables are introduced. Slack

variables are a measure of error between one time step’s final calculation and the next time step’s initial

guess, which is also frequently referred to as a defect. To generate a working solution, the optimization

process attempts to derive inputs which minimize the cost function, and also reduce each defect to zero.

These defects can have their own quadratic costs, such that the optimization scheme seeks to optimize the

input to the system to both meet the control cost function and minimize error in initial state estimation.

This increases the size of the state-space significantly, but in practice greatly reduces computational time.

4.3.5.2 Controller Design

In order to use MPC with a set of prescribed waypoints, it is necessary to relate the global and local frame

by some means. Either the waypoints can be translated in realtime using a coordinate transform, or the

38

vehicle’s position can be described with respect to the global frame. The latter method was chosen for this

implementation, as it proved to be more intuitive in implementation (30). The nonlinear dynamic bicycle

model with linear tire parameters, in global coordinates is as follows

ẍ = ψ̇ẏ + ax (4.18)

ÿ = −ψ̇ẋ+
2

m
(Fc,f cos δf + Fc,r) (4.19)

ψ̈ =
2

Iz
(lfFc,f − lrFc,r) (4.20)

Ẋ = ẋ cosψ − ẏ sinψ (4.21)

Ẏ = ẋ sinψ + ẏ cosψ (4.22)

where: x, y = Local Frame Position Coordinates

X,Y = Global Frame Position Coordinates

ψ = Yaw Heading

m = Mass of Vehicle

Iz = Mass Moment of Inertia of Vehicle

Fc,f = Front Cornering Force

Fc,r = Rear Cornering Force

δ = Steering Angle

The cost function used in this formulation is modeled akin to Equation 4.17, in which error states and

inputs have transient costs and the final error states are given a terminal cost. Additionally, slack parameters

are given a cost between shooting nodes. This optimization problem formulation is inspired by work done

in vehicular MPC for race cars at the University of Freiburg (31), and adapted to the previously described

dynamic bicycle model. The cost function to be implemented then can be shown as follows

J = xTQx+ uTRu+ xTf QTxf +

n∑
n=1

|xn+1 − xn|TL|xn+1 − xn| (4.23)

39

where: x = [X,Y,ψ] Errors

u = δ

Q = Error Weights

QT = Terminal Weights

R = Input Weights

L = Slack Weights Between Nodes

n = Number of Shooting Nodes

This MPC controller design is implemented using Acados, a highly optimized C code generator for

nonlinear optimal control (32). Acados uses a symbolic interpreter to take a given system model and cost

function, and generates C code that can be targeted directly to a computer chip architecture. Additionally,

Acados has a Python interface which enables a previously generated code to be called directly in Python,

making it easy to integrate with the scale car software stack. The pseudo-code for this implementation is

presented in Algorithm 5. This implementation runs at an average 200 Hz using single-threading on the

Raspberry Pi’s processor, and easily meets the 20 Hz requirement of the controller on the scale car.

Algorithm 5 Pseudocode for MPC Controller

1: v ← Longitudinal Velocity
2: Td ← Time Horizon
3: waypoints← Ordered Waypoint Array
4: pose← Pose of Vehicle
5: AcadosSolver ← Acados Solver Object
6: procedure Get Steering Angle(v, Td, waypoints, pose)
7: Nearest Reference Index,Distance Array← Get Nearest Reference(waypoints, pose)
8: MPCref ← []
9: for i in length(Distance Array) do

10: if Distance Array(i) ≤ v ∗ Tdandi ≥ Nearest Reference Index then
11: MPCref .append(waypoints(i)) ▷ Collect All Reachable References

12: AcadosSolver.pose← pose
13: AcadosSolver.references←MPCref
14: AcadosSolver.solve() ▷ Run Optimization Process
15: SteerAngle← AcadosSolver.u0 ▷ Take First Optimized Input
16: return SteerAngle

4.4 Simulations

Before testing on the scale car, all controllers were simulated to confirm that their implementation is sound

and perform initial tuning. Simulations for all controllers except for MPC were performed in MATLAB, and

MPC performed in Python using the Acados Python interface. Test runs were performed on a path identical

to the real test path. The simulation was performed by initializing the vehicle at the beginning of the path,

40

with a slight offset moving at constant velocity. The simulated model is a dynamic bicycle model, with

constant cornering stiffnesses and nonlinearity introduced by coordinate transforms and steering angles. All

control parameters were held constant during testing. For the test manuever, the car must first perform a

right-hand turn and then chicane (quick right then left) at constant speed.

Figure 4.12: Simulation of Pure Pursuit Controller on Test Route

The Pure Pursuit controller performed the best at 1 m
s , and the worst at 2 m

s . The look-ahead distance

selected was 0.5 m, which most likely contributed to the poor performance during the higher speed run.

Furthermore, the controller experiences nearly bang-bang phenomena at higher speeds, which is not remotely

close to optimal. However, if the look-ahead distance was increased then tracking performance was reduced

to a degree that the car would likely have experienced a collision were the experiment to take place on

the scale car. Performance is roughly as expected, as Pure Pursuit is documented as having near-optimal

performance at very low speeds with non-aggressive maneuvers, but suffer greatly when either phenomena

is introduced.

The Stanley controller shows good performance at both speeds, with slightly increased lateral error and

higher overshoot during the chicane maneuver at the end of the route. Furthermore, the inputs steering

angle does not saturate at any point in the run. This consistent performance aligns with expectations of the

Stanley controller, as it was originally designed with constant velocity operation in mind.

The Youla controller performs roughly the same as the Stanley controller at 1 m
s , but shows much better

performance at 2 m
s . This is likely due to the consideration of vehicle dynamics in the formulation controller,

and good disturbance rejection of the Youla approach. However, the input steering angle has some jitter,

which may affect performance during testing on the scale car as the servo has a limited input speed that it

can achieve.

41

Figure 4.13: Simulation of Stanley Controller on Test Route

Figure 4.14: Simulation of Youla Controller on Test Route

The H∞ controller performs as well as Youla at 1 m
s , but much worse at 2 m

s . In the future, additional

investigation must be performed with regards to internal stability as well as the weighing matrices of this

controller, as it should at minimum perform as well as the Youla controller. Other than the pure pursuit

implementation, this is the only controller which saturates the steering input at the higher speed.

The MPC controller performs nearly as well as the Pure Pursuit controller at low speed, and the lowest

root-mean-square lateral error at the higher speed. This controller was implemented in Python instead of

MATLAB, as Acados was natively developed in Python. However, the dynamic model and test implementa-

tion are identical and as such can be compared meaningfully. An interesting phenomena is that the steering

angles generated by the MPC controller are lower at high speeds, which is the inverse of the behavior exhib-

ited by all other controllers. This is potentially due to the predictive feature of MPC, which calculates an

optimal trajectory with low or no overshoot and provides a steering input which is expected to achieve this.

42

Figure 4.15: Simulation of H∞ Controller on Test Route

Figure 4.16: Simulation of Model Predictive Controller on Test Route

At higher speeds, with a constant time horizon, the controller is additionally optimizing over a larger span,

possibly resulting in smoother performance at the higher speed.

From the simulations, root-mean-square lateral error measurements were taken for each controller at two

speed set-points. These are tabulated in Table 6.1. Surprisingly, pure pursuit is shown to have the minimum

error at low speeds. However, at higher speeds, the error was the largest by a significant margin. All other

controllers have similar performance at 1 m
s , with their performance both quantitatively and qualitatively

diverging at 2 m
s . This provides a good basis for testing on the scale car, as both data-driven and observational

performance can be compared to these simulations. It should be noted that results are generated without any

robustness analysis, in that model discrepancies, sensor noise, or additional disturbances were not considered.

43

Lateral Error 1 m/s 2 m/s
Pure Pursuit 0.0699 0.2697
Stanley 0.1003 0.1809
Youla 0.1017 0.1286
H∞ 0.1012 0.2138
MPC 0.0730 0.0887

Table 4.1: RMS of Lateral Error for All Controllers in Simulation

44

Chapter 5

Test Procedure

5.1 Functional Testing

After construction of the scale car and during development of its code base, functional testing was performed

to ensure the system operated as expected. First, low level functions were validated, then mapping and

localization packages following this. The validation process was performed to ensure that path planning and

control algorithms were tested on a fundamentally sound system architecture.

5.1.1 Low Level Controls

First, the most basic components were validated, to ensure that the mounting, connecting, calibration, and

filtering methodologies were acceptable. Motor drivers were tested by placing the car on a block, such that

all wheels were free to rotate. Then, a set of steering commands were sequentially sent to the servo and

visually inspected to ensure a match. A sine wave input was then sent to ensure steady turning could be

performed. The motor electronic speed controller (ESC) contains an internal throttle regular, not specifically

tied to velocity. Before testing full drive capabilities, throttle commands were sent to test forward, reverse,

and idle ranges as well as the relative speed of the unloaded wheels. The operating range was then limited,

as full throttle was observed to be excessively fast for any reasonable operation within the lab or any indoor

test facility.

After determining that motor controls functioned acceptably, sensor tests were performed. The encoder

and IMU were and tested in tandem with the Kalman filter implemented by the Robot Localization package.

Figures 5.1 and 5.2 show raw data captured during a constant velocity maneuver. Results indicate that while

velocity is not regulated strongly by the Kalman filter, with only the sharpest spikes being filtered out, the

acceleration noise is highly filtered and produces a very smooth output near zero, which is reasonable given

the maneuver performed.

45

Figure 5.1: Encoder Raw Output, vs. Kalman Filtered

Figure 5.2: IMU Raw Output, vs. Kalman Filtered

5.1.2 SLAM Toolbox

Mapping was performed using SLAM Toolbox, and the generated pose graph was exported as an image file,

an industry standard for two-dimensional maps. Initially, this map was very sparse, and had a significant

issue of drift over the course of the mapping run. This was due to a low rate of scan samples being added to

the pose graph, as well as a high driving speed of the car. This toolbox comes with an asynchronous mode,

which stores all scans captured during a test run, and adds them to the pose graph whenever the CPU has

additional capacity. After enabling this mode, and adjusting settings to add as many poses as reasonably

possible to the graph, map quality was greatly improved 5.3. Slight drift is still observed, but is considered

minimal given the amount of drift per unit length of the test run map. Additionally, the pose graph can be

manually adjusted in future runs if drift is considered excessive using the ROS2 Visualization Tool (RVIZ).

The largest source of error in this map is observed between the two rooms of the lab, as it is difficult

to perform loop closure in a way that aligns the rooms to each other in a satisfactory manner, despite each

room itself being mapped accurately. To remedy this, the mapping session was greatly extended in time,

46

Figure 5.3: Comparison of Three Maps Taken During Tuning Process

and room re-mapped several dozen times within the same session. This provided ample opportunities for

loop closure to the algorithm. Using the floor plan of the lab as a reference, the improvement in map quality

becomes very clear. The final map and floor plan overlay are presented in Figure 5.4. Minor adjustments

to the map allow it to essentially become a ground truth, and maintain the relative locations of furniture

within the room.

Figure 5.4: Final Map, Overlaid with Reference Floor Plan Geometry

5.1.3 AMCL

The final functional testing to be performed was the implementation and tuning of the AMCL node. This

method uses a particle filter, which generates various pose estimates for the vehicle with a stochastic variation,

averaging the existing estimates to provide a single pose of the robot. If estimates show significant error

when matching the current LIDAR scan to the given map, these estimates are trimmed and new estimates

generated. Initially, variance is large and estimates highly random, but if working properly they converge

with a relatively small covariance. When first tested, this filter had very poor performance, especially when

turning. The primary issue was discovered to be the stochastic variation of yaw, which was increased. To

47

(a) AMCL Visualization Prior to Convergence (b) AMCL Visualization After Convergence

Figure 5.5: Tuned AMCL Performance Visualization

further improve performance, the number of generated particles was increased and tolerance for matching

decreased to maximize the performance of the AMCL node, using as much of the available computational

power as was deemed reasonable.

5.2 Path Planning

To generate a path for testing applications, it was decided that a single, well constructed global path should

be generated and repeatedly used to validate controller performance against a universal test route. Tested

algorithms include Dijkstra’s, A∗, Rapidly-Exploring Random Trees (RRT), and Probabilistic Road Map

(PRM). A∗ was selected as the algorithm to be used to generate the standard route, due to its deterministic

nature and relative performance improvement due to its implementation of a heuristic. Although performance

was not an immediate concern, A∗ would most likely see use in a real scenario as opposed to Dijkstra’s search

algorithm and as such was decided to be the most realistic generated route. Additionally of note, the search

algorithms were implemented with a standard form, not considering vehicle dynamics. From initial testing,

it was decided to add a keep-out zone as well as add artificial search barriers around furniture corners to

enable the planner to consistently generate a path which was dynamically feasible and possessed lower risk

of a collision failure. These features are included in both examples of Figure 5.6.

In the future, it is highly recommended to incorporate a more advanced planner to reduce user input.

One issue present is that the door is very narrow, and a binary cost map requires an inflation layer no larger

than half of the door’s width. A more ideal implementation would be the development of a modern cost

map, with gradients of cost which would permit the planner to search for an optimal path even with tight

dimensional constraints, and allow the search algorithm to intrinsically provide safer wall margins within

the cost map gradient.

48

(a) A∗ Path Planner Results (b) PRM Path Planner Results

Figure 5.6: Samples of Path Planner Results

5.3 Control Testing

Control testing was performed by running a test route with each controller, initialized at the same position

with the same planned path. For initial testing, lower cost rubber tires were used to validate functionality.

After this, tires were replaced with the Du-Bro tires modeled in Chapter 3. The final iteration of the scale

car is shown in Figure 5.7. To prevent any damage to the vehicle in the event of a collision, a foam lining

was installed as a front bumper, which proved effective in mitigating damage from slow speed collisions.

Figure 5.7: Final Iteration of Car Used in Testing

During testing, it was noticed that when passing from one room to another, the localization would

experience sudden drift, which caused each controller to respond in a fashion similar to a small step input.

Though the source of this jump has not been isolated, it is likely either due to the lack of features in the

narrow doorway causing AMCL to converge more slowly, or the LIDAR reaching a minimum threshold

distance in which scans become unreliable. To reduce the effect of this disturbance, the path was modified

to ensure that the vehicle steered straight during passage between rooms, as turning through the door

49

introduced erratic behavior. Since the current yaw estimate relies heavily on AMCL, this problem could

be mitigated by the introduction of additional yaw and yaw rate sensors onboard the scale car, to improve

odometry in the inertial reference frame.

Four of the five controllers were implemented and tested with varying degrees of success. Unfortunately,

at the time of writing, the H∞ controller failed to complete the route. When implemented on the car, this

controller saturates the steering input immediately, and even with anti-windup added to the controller, it’s

performance is akin to a bang-bang controller. This may be due to inconsistent velocity measurements, as

this controller is optimized to an exact speed setpoint and the speed necessarily varies in a real environment.

The remaining four controllers were able to complete the course, and generate data for comparison.

50

Chapter 6

Discussion & Conclusion

6.1 Results

Each successful controller test produced behavior similar, though not identical to simulation. The Pure

Pursuit controller, whose results are shown in Figure 6.1, exhibited very similar behavior. Notably, it cut

the corner in the first right-hand turn, which is an expected behavior of the controller. Furthermore, the car

did not overshoot the chicane maneuver at all, but took additional time to converge to the path.

Figure 6.1: Pure Pursuit Testing on Scale Car - 1 m/s

The Stanley controller also performed similarly to simulation, following the path as illustrated in Figure

6.2. This controller was able to track the right hand turn very well, but exhibits oscillatory behavior after

entry into the new room, likely caused by poor disturbance rejection. The controller also overshoots the

chicane maneuver as expected from simulation, but the controller does course-correct and track the line for

the remainder of the test run.

The Youla controller performed in similar manner to the simulation, except at the beginning of the

chicane. This could likely be due to to the bandwidth limiting behavior of the controller, as well as discrep-

51

Figure 6.2: Stanley Testing on Scale Car - 1 m/s

ancies between the model and physical car. However, compared to the other controllers, the Youla controller

was able to handle the localization disturbance through the doorway, and maintain course along the path.

Results of this controller are shown in Figure 6.3.

Figure 6.3: Youla Testing on Scale Car - 1 m/s

The Model Predictive Controller showed perhaps the largest discrepancy between simulation and reality,

not reacting quickly to the first turn as well as overshooting the chicane. Additionally, it has the largest

difference in average lateral error between reality and simulation. This is most likely due to discrepancies

between the design model and actual car. In simulation, MPC is tested against its own exact model, but any

modelling discrepancies between the design model and true controller may impact controller performance on

a real vehicle. One additional consideration is that tuning the simulation is relatively easy, but tuning MPC

on the car is much more difficult. This process requires re-compilation of the code each time the cost function

52

is modified. Though in a lab setting this can be mitigated, this would present a challenge for adoption of

this control methodology in industry as it would greatly lengthen the tuning process.

Figure 6.4: MPC Testing on Scale Car - 1 m/s

Lateral Error 1 m/s
Pure Pursuit 0.0846
Stanley 0.1046
Youla 0.0999
MPC 0.1367

Table 6.1: RMS of Lateral Error for All Controllers in Simulation

The purpose of this work was to develop a scaled vehicle test bed for use in the research of controls

for autonomous vehicle applications. A vehicle was constructed which possesses dynamic similitude with a

standard battery electric vehicle, and maintains the ability to be retrofitted and align with other parameters

if so desired. On this test bed, a control architecture was developed using ROS2, providing a modular

software stack that enables isolated research into the many subsystems of an autonomous car, as well as

full system research. Five controllers were designed, implemented, and compared within this framework,

validating the practicality of this application.

The development of the scaled test bed was successful, and resulted in the construction of a functional,

dynamically similar model. However, only minimal validation has been done with respect to this car, and

much more work can be done to confirm both the acquired model parameters, as well as correlate them

to a full-size vehicle. The implementation of ROS2 was successful, and provides an avenue for continued

development of the test bed. As new technologies are developed and implemented in ROS2, such as advanced

localization and sensor fusion packages, they can be added to and tested on the scale car with minimal effort.

The controllers implemented present a meaningful comparison not only between the respective methods,

53

but also between simulated and real performance. The work done in this thesis reinforces the necessity of

robust control design, and confirms the essential characteristics of each tested control methodology.

6.2 Future Work

As this project was built from the ground up, and therefore relatively new, there is no lack of work to be

performed. Dynamics within the linear range have been validated within literature, but more work can be

done to validate the nonlinear dynamics of the vehicle. Additionally, higher order models can be developed.

An ultimate goal of this validation would be the tuning of scale parameters to a full-size vehicle, then the

testing of a full control implementation pipeline. This would require simulation, implementation on the scale

car, and finally implementation on a full-scale car. One important aspect to investigate is the tuning of

controllers between both vehicles. This is performed easily using Youla or H∞ methods, as they are model-

based controllers with a constant Gc, but other controllers have parameters that may scale in a fashion that

has not yet been investigated.

With this car, tuning has been performed to improve vehicle function as much as possible within the

project’s time frame, but more work can always be done. Filtering, localization, and controller tuning

has been done individually, with the goal of improving controller performance, but all three configurations

interrelate and should be investigated further. Additionally, only one method of filtering and localization

has been thoroughly tested, and different methodologies could be investigated in these areas as has been

performed for the controller. Furthermore, path planning is limited currently to the generation of a global

path, which could be improved in the future to enable re-planning and obstacle avoidance. From experiments

performed, there is enough computational space left in the compute units to enable this and other more

advanced autonomous navigation concepts.

In the future, lessons learned from this scale car build could be used to construct a more advanced scale

car, such as one which enables torque vectoring with a dual motor configuration. One possibility is to design

this build to have inertial masses which can be re-positioned to match several different vehicle models, to

enable rapid tuning and development of controllers for several vehicles at once. There are many such options

for improvement, but one universal improvement that should be made is the use of a more complex IMU and

encoders on each wheel as well as an average wheel speed encoder. State estimation is limited and heavily

relies on the tuning of the AMCL package, which introduces a covariance and calculation delay which could

be improved with the implementation of more sensors and more robust sensor fusion. Additionally, it was

determined through this build that the driver motor of the Traxxas XO-1 has significantly more power than

is required for research at virtually and speed. With the current scaling, the car would be performing 100

54

mile per hour equivalent maneuvers at only a speed of 7 meters per second. In fact, using a motor with lower

torque or gearing may improve startup performance, as this motor was primarily designed for race track

operation. Finally, given the abundance of power available in the RC car batteries, it would be reasonable

to install a Buck converter, taking power from the car’s batteries. The current portable batteries powering

each Raspberry Pi are sufficient, but with access to higher voltages with a higher amperage tolerance than

the current configuration, next generation single board computers such as the Rock Pi 4 could easily be

implemented to upgrade the car’s computational stack.

Overall, this project has accomplished what it set out to achieve: the development of a dynamically

scaled vehicle that can be used for controls research. Beyond this, the work has enabled a variety of future

endeavors into scaled car autonomous vehicle development, and provided an affordable means with which to

create new test beds which have access to leading-edge technologies.

55

References

[1] M. Polley and A. Alleyne, “Dimensionless analysis of tire characteristics for vehicle dynamics studies,”
Proceedings of the 2004 American Control Conference, 2004.

[2] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. Eng, D. Rus, and M. Ang, “Perception,
planning, control, and coordination for autonomous vehicles,” Machines, vol. 5, no. 1, p. 6, 2017.

[3] Jin, Yin, and Chen, “Advanced estimation techniques for vehicle system dynamic state: A survey,”
Sensors, vol. 19, no. 19, p. 4289, 2019.

[4] R. Rajamani, Vehicle Dynamics and control. Springer, 2012.

[5] R. N. Jazar, Vehicle dynamics: Theory and application. Springer, 2018.

[6] M.-W. Park, S.-W. Lee, and W.-Y. Han, “Development of lateral control system for autonomous vehicle
based on adaptive pure pursuit algorithm,” 2014 14th International Conference on Control, Automation
and Systems (ICCAS 2014), 2014.

[7] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous automobile trajectory
tracking for off-road driving: Controller design, experimental validation and racing,” 2007 American
Control Conference, 2007.

[8] F. Assadian and K. R. Mallon, Robust control: Youla parameterization approach. Wiley, 2022.

[9] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: An engineer-
ing perspective,” The International Journal of Advanced Manufacturing Technology, vol. 117, no. 5-6,
p. 1327–1349, 2021.

[10] S. International, “Taxonomy and definitions for terms related to driving automation systems for on-road
motor vehicles,” 2014.

[11] M. Mart́ınez-Dı́az and F. Soriguera, “Autonomous vehicles: Theoretical and practical challenges,”
Transportation Research Procedia, vol. 33, p. 275–282, 2018.

[12] J. Dorsey, “Path planning for autonomous vehicles,” 2023.

[13] S. Brennan and A. Alleyne, “The illinois roadway simulator: A mechatronic testbed for vehicle dynamics
and control,” IEEE/ASME Transactions on Mechatronics, vol. 5, no. 4, p. 349–359, 2000.

[14] R. O’Brien, J. Piepmeier, P. Hoblet, S. Burns, and C. George, “Scale-model vehicle analysis using
an off-the-shelf scale-model testing apparatus,” Proceedings of the 2004 American Control Conference,
2004.

[15] A. Liburdi, “Development of a scale vehicle dynamics test bed,” 2010.

[16] V. S. Babu and M. Behl, “f1tenth.dev - an open-source ros based f1/10 autonomous racing simulator,” in
2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), pp. 1614–
1620, 2020.

[17] S. S. Srinivasa, P. Lancaster, J. Michalove, M. Schmittle, C. Summers, M. Rockett, J. R. Smith,
S. Chouhury, C. Mavrogiannis, and F. Sadeghi, “MuSHR: A low-cost, open-source robotic racecar
for education and research,” CoRR, vol. abs/1908.08031, 2019.

56

[18] D. L. Edwards and D. M. Bevly, “A method to estimate critical tire properties using non-linear tire
models,” Volume 9: Mechanical Systems and Control, Parts A, B, and C, 2007.

[19] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle System Dynamics, vol. 21,
no. sup001, p. 1–18, 1992.

[20] A. A. Sonin, “A generalization of the pi-theorem and dimensional analysis,” Proceedings of the National
Academy of Sciences, vol. 101, no. 23, p. 8525–8526, 2004.

[21] R. Wang, H. Zhang, J. Wang, F. Yan, and N. Chen, “Robust lateral motion control of four-wheel
independently actuated electric vehicles with tire force saturation consideration,” Journal of the Franklin
Institute, vol. 352, no. 2, p. 645–668, 2015.

[22] S. Zagorski, G. Heydinger, J. Coyle, and M. Jebode, “Measured vehicle inertial parameters - nhtsa’s
data through august 2020,” SAE Technical Paper Series, 2021.

[23] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating system 2: Design,
architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, p. eabm6074, 2022.

[24] S. Macenski, F. Martin, R. White, and J. Ginés Clavero, “The marathon 2: A navigation system,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.

[25] T. Moore and D. Stouch, “A generalized extended kalman filter implementation for the robot operating
system,” in Proceedings of the 13th International Conference on Intelligent Autonomous Systems (IAS-
13), Springer, July 2014.

[26] T. Sebastian, B. Wolfram, and F. Dieter, Probabilistic Robotics. The MIT Press, 2005.

[27] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press, 2021.

[28] B. Polyak, “Newton’s method and its use in optimization,” European Journal of Operational Research,
vol. 181, no. 3, p. 1086–1096, 2007.

[29] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: Theory, computation, and design.
Nob Hill Publishing, 2020.

[30] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models for au-
tonomous driving control design,” 2015 IEEE Intelligent Vehicles Symposium (IV), 2015.

[31] D. Kloeser, T. Schoels, T. Sartor, A. Zanelli, G. Prison, and M. Diehl, “Nmpc for racing using a
singularity-free path-parametric model with obstacle avoidance,” IFAC-PapersOnLine, vol. 53, no. 2,
p. 14324–14329, 2020.

[32] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli, B. Novoselnik, T. Albin,
R. Quirynen, and M. Diehl, “acados – a modular open-source framework for fast embedded optimal
control,” Mathematical Programming Computation, Oct 2021.

57

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Dedication
	Introduction and Literature Review
	Introduction
	Literature Review
	Autonomous Vehicles
	Scale Car Dynamics
	Scale Car Controls

	Vehicle Modeling
	Modeling Convention of Passenger Vehicles
	Kinematic Bicycle Model
	Tire Dynamics
	Dynamic Bicycle Model

	Scale Car Build
	Dimensionless Analysis for Scale Test Bed Development
	Scale Dynamics
	Weight, Center of Mass, and Axle Distances
	Cornering Stiffness
	Moment of Inertia
	Dimensionless Parameters of the Scale Car

	Configuration
	Software Stack

	Controller Design and Simulation
	Control Problem
	Longitudinal Controller
	Lateral Controllers
	Pure Pursuit
	Stanley
	Youla Parameterization
	H
	Model Predictive Control

	Simulations

	Test Procedure
	Functional Testing
	Low Level Controls
	SLAM Toolbox
	AMCL

	Path Planning
	Control Testing

	Discussion & Conclusion
	Results
	Future Work

	References

