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ABSTRACT OF THE DISSERTATION

Capturing Hidden Signals From High-Dimensional Data

and Applications to Genomics

by

Elior Rahmani

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Eran Halperin, Chair

The analysis of high-dimensional data, albeit challenging owing to various computational

and statistical aspects, often provides opportunities to uncover hidden signals by leverag-

ing inherent structure in the data. In the context of genomics, where molecular markers

are probed at ever-increasing resolution and throughput, large sets of features that follow

specific patterns, in conjunction with large sample sizes, allow us to implement richer and

more sophisticated models than before in attempt to extract signal that is not immediately

evident from the data. Particularly, genomic markers are often affected by multiple genetic

and environmental factors, they may differ in their regulation and presentation in different

tissues, cell types, conditions, or over time, and some markers may affect multiple biological

processes; unveiling those signals is likely to be pivotal in advancing our understanding of

complex biology and disease. This dissertation introduces novel computational methodolo-

gies and theory that address several key challenges faced in the analysis of high-dimensional

genomic data coming from heterogeneous sources (“bulk” genomics) with a particular focus

on DNA methylation data. Through a range of simulations and the analysis of multiple data

sets, we demonstrate that our proposed methods provide opportunities to conduct powerful

and statistically sound population-level studies at an unprecedented resolution and scale.
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the prior information, under the assumption of three constituting cell types in

blood (k = 3): granulocytes, monocytes and lymphocytes (top panel), and un-

der the assumption of six constituting cell types in blood (k = 6): granulocytes,

monocytes and four subtypes of lymphocytes (CD4+, CD8+, B cells and NK

cells; bottom panel). In this experiment, we evaluated BayesCCE, BayesCCE

in a scenario wherein cell counts are known for 5% of the samples in the data

(BayesCCE imp), and BayesCCE in a scenario wherein cell counts and methyla-

tion levels for samples from external data are included in the analysis (5% of the

sample size; BayesCCE imp ext). For each method, presented are the values of

mean absolute correlation (MAC) and mean absolute error (MAE) across all cell

types as a function of the noise introduced into the prior information. Error bars

indicate the performance across four data sets: Hannum et al. [94], Liu et al. [67],

Hannon et al. I, and Hannon et al. II [95]. The range of the prior information

was set between the prior estimated from real blood cell counts (see section 3.2)

and a non-informative prior (a vector of ones). . . . . . . . . . . . . . . . . . . 72

4.1 Observed bulk methylation levels may obscure cell-type-specific signals. Neither

the observed methylation levels nor the observed levels after adjusting for the vari-

ability in cell-type composition can demonstrate a clear difference between cases

and controls, in spite of a clear (unobserved) difference in cell type 3. Methyla-

tion levels are represented by a gradient of red color, and adjusted observed levels

were calculated for each sample by removing the cell-type-specific mean levels,

weighted by its cell-type composition. . . . . . . . . . . . . . . . . . . . . . . . 82
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4.2 A summary of the TCA model for bulk DNA methylation data, presented as a

four-steps generative model. Step 1: methylation altering covariates (e.g., age and

sex) of a particular individual i can affect the methylation distribution of individ-

ual i. Step 2: the cell-type-specific methylomes of individual i are generated for

each of the k cell types in the studied tissue. Step 3: the cell-type-specific methy-

lomes of individual i (3.1) are combined according to the cell-type composition

of the individual (3.2). Step 4: the true signal of the heterogeneous mixture (4.1)

is distorted due to additional variation introduced by different sources of noise

such as batch effects and other experiment-specific artificial variability (4.2); this

results in the observed data. Methylation levels are represented by a gradient of

red color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 TCA versus a traditional decomposition approach. Given bulk DNA methylation

data from a heterogeneous tissue, previous decomposition methods (e.g., PCA,

ReFACTor [36], or a reference-based decomposition [85]) aim at estimating a

matrix of the cell-type proportions of the individuals and a matrix of the cell-

type-specific methylomes in the sample (shared across individuals). In contrast,

TCA aims at estimating a matrix of the cell-type proportions of the individuals

and - for each individual - a matrix of the unique cell-type-specific methylomes

of the individual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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4.4 Reconstructing cell-type-specific methylation levels from simulated bulk whole-

blood data with three constituting cell types (k = 3; 250 samples, 250 sites).

Three approaches were evaluated in capturing the cell-type-specific levels of each

site j and cell type h across all individuals zhj = (z1
hj, ..., z

n
hj): TCA, TCA af-

ter permuting the observed data matrix (“Permutation”) and directly using the

observed bulk data (“Observed”; i.e. using the bulk as the estimate for the cell-

type-specific levels of each cell type). For each of the evaluated approaches and for

each of the simulated cell types (ordered by their mean abundance), presented are

the distributions of the linear correlation between zhj and its estimate ẑhj across

all sites j and across ten simulated data sets (left), and the distribution of the

MSE between zhj and its estimate ẑhj across all sites j and across ten simulated

data set (right). The central mark on each box indicates the median, and the

bottom and top edges indicate the 25th and 75th percentiles, respectively. . . . 97

4.5 Reconstructing cell-type-specific methylation levels from simulated bulk whole-

blood data with six constituting cell types (k = 6; 250 samples, 250 sites). Three

approaches were evaluated in capturing the cell-type-specific levels of each site j

and cell type h across all individuals zhj = (z1
hj, ..., z

n
hj): TCA, TCA after permut-

ing the observed data matrix (“Permutation”) and directly using the observed

bulk data (“Observed”; i.e. using the bulk as the estimate for the cell-type-

specific levels of each cell type). For each of the evaluated approaches and for

each of the simulated cell types (ordered by their mean abundance), presented are

the distributions of the linear correlation between zhj and its estimate ẑhj across

all sites j and across ten simulated data sets (top), and the distribution of the

MSE between zhj and its estimate ẑhj across all sites j and across ten simulated

data set (bottom). The central mark on each box indicates the median, and the

bottom and top edges indicate the 25th and 75th percentiles, respectively. . . . 98

xxi



4.6 An evaluation of power for detecting cell-type-specific associations with DNA

methylation. Performance was evaluated using three approaches: TCA, a stan-

dard linear regression with the observed bulk data, and CellDMC with the true

cell-type proportions as an input. The numbers of true positives (TPs) were mea-

sured under three scenarios using a range of effect sizes: different effect sizes for

different cell types (Scenario I), the same effect size for all cell types (Scenario II),

and a single effect size for a single cell type (Scenario III); each of the scenarios

was evaluated under the assumption of three constituting cell types (k=3; top

row) and six constituting cell types (k=6; bottom row). Lines represent the me-

dian performance across 10 simulations and the colored areas reflect the results

range across the multiple executions. The colored dots reflect the results of TCA

under different initializations of the cell-type proportion estimates (i.e. different

levels of noise injected into TCA), where the color gradients represent the mean

absolute correlation of the initial estimates with the true values (across all cell

types). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xxii



4.7 An evaluation of power for detecting cell-type-specific associations with DNA

methylation while including cell-type-specific affecting covariates and using a non-

parametric distribution of the cell-type proportions. Performance was evaluated

using three approaches: TCA, a standard linear regression with the observed bulk

data, and CellDMC with the true cell-type proportions as an input. The num-

bers of true positives (TPs) were measured under three scenarios using a range

of effect sizes: different effect sizes for different cell types (Scenario I), the same

effect size for all cell types (Scenario II), and a single effect size for a single cell

type (Scenario III); each of the scenarios was evaluated under the assumption of

three constituting cell types (k=3; top row) and six constituting cell types (k=6;

bottom row). Lines represent the median performance across 10 simulations and

the colored areas reflect the results range across the multiple executions. The col-

ored dots reflect the results of TCA under different initializations of the cell-type

proportion estimates (i.e. different levels of noise injected into TCA), where the

color gradients represent the mean absolute correlation of the initial estimates

with the true values (across all cell types). . . . . . . . . . . . . . . . . . . . . 101

4.8 An evaluation of false positives rates in association testing with DNA methyla-

tion. Performance was evaluated using three approaches: TCA, a standard linear

regression with the observed bulk data, and CellDMC with the true cell-type

proportions as an input. The proportions of false positives (FPs) were measured

under three scenarios using a range of effect sizes: different effect sizes for differ-

ent cell types (Scenario I), the same effect size for all cell types (Scenario II), and

only a single effect size for a single cell type (Scenario III); each of the scenarios

was evaluated under the assumption of three constituting cell types (k=3) and

six constituting cell types (k=6). Boxplots reflect results across 10 simulations.

The central mark on each box indicates the median, and the bottom and top

edges indicate the 25th and 75th percentiles, respectively. . . . . . . . . . . . . 102
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4.9 An evaluation of power for detecting cell-type-specific associations with DNA

methylation, stratified by cell types (with the mean abundance of each cell type

noted). Performance was evaluated using three approaches: TCA, a standard

linear regression with the observed bulk data, and CellDMC with the true cell-

type proportions as an input. The numbers of true positives were measured

under a scenario where only a single effect size for a single cell type exists, both

in the case of three constituting cell types (k=3) and six constituting cell types

(k=6). The colored areas reflect the results range across 10 simulations, and

the colored dots reflect the results of TCA under different initializations of the

cell-type composition estimates (i.e. different levels of noise injected into TCA),

where the color gradients represent the mean absolute correlation of the initial

estimates with the true values (across all cell types). . . . . . . . . . . . . . . . 103

4.10 An evaluation of false positives rates in association testing with DNA methylation,

stratified by cell types. Performance was evaluated using three approaches: TCA,

a standard linear regression with the observed bulk data, and CellDMC with the

true cell-type proportions as an input. The proportions of false positives (FPs)

were measured under a scenario where only a single effect size for a single cell type

exists, both in the case of three constituting cell types (k=3) and six constituting

cell types (k=6). Boxplots reflect results across 10 simulations. The central mark

on each box indicates the median, and the bottom and top edges indicate the

25th and 75th percentiles, respectively. . . . . . . . . . . . . . . . . . . . . . . 104
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4.11 Results of the association analysis with level of immune activity and with rheuma-

toid arthritis in the Liu et al. whole-blood methylation data, presented by Man-

hattan plots of the -log10 P-values for the association tests. (a-b) Shown are

results with immune activity using CellDMC (results subsampled and truncated

for visualization) and using TCA. (c-d) Shown are results of the RA analysis

using standard regression and using TCA under the assumption of a single ef-

fect size for all cell types. (e-f) Shown are results of a cell-type-specific analysis

of RA using CellDMC and using TCA. Solid horizontal red lines represent the

experiment-wide significance threshold, and dotted horizontal red lines represent

the significance threshold adjusted for three experiments corresponding to the

three cell types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Evaluation of TCA and CellDMC in the case where the phenotype affects methy-

lation (X|Y ). (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and

precision (positive predictive value; PPV) to detect differentially methylated cell-

types as a function of the association effect size, under the scenario where a single

cell type out of 6 blood cell types is altered in cases versus controls (Uni-1C). (d)-

(f) as in Uni-1C, only for the scenario where two cell types are altered in the

same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario where the

cell types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for

three cell types (Bi-3C). Results are shown across 50 simulated data sets using

violin plots; solid lines represent median values. TCA was executed under the

assumption X|Y (TCA X|Y ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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5.2 Evaluation of TCA and CellDMC in the case where the phenotype affects methy-

lation (X|Y ) using small simulated data (n=60). (a)-(c) Comparison of the sen-

sitivity (SE), specificity (SP), and precision (positive predictive value; PPV) to

detect differentially methylated cell-types as a function of the association effect

size, under the scenario where a single cell type out of 6 blood cell types is altered

in cases versus controls (Uni-1C). (d)-(f) as in Uni-1C, only for the scenario where

two cell types are altered in the same direction (Uni-2C). (g)-(i) as in Uni-2C, only

for the scenario where the cell types are altered in opposite directions (Bi-2C).

(j)-(l) as in Bi-2C, only for three cell types (Bi-3C). Results are shown across 50

simulated data sets using violin plots; solid lines represent median values. TCA

was executed under the assumption X|Y (TCA X|Y ). . . . . . . . . . . . . . . 136

5.3 Evaluation of TCA and CellDMC in the case where the phenotype is affected by

methylation (Y |X). (a)-(c) Comparison of the sensitivity (SE), specificity (SP),

and precision (positive predictive value; PPV) to detect differentially methylated

cell-types as a function of the association effect size, under the scenario where a

single cell type out of 6 blood cell types is altered in cases versus controls (Uni-

1C). (d)-(f) as in Uni-1C, only for the scenario where two cell types are altered in

the same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario where the

cell types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for

three cell types (Bi-3C). Results are shown across 50 simulated data sets using

violin plots; solid lines represent median values. TCA was executed under the

assumption Y |X (TCA Y |X). . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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5.4 Evaluation of TCA and CellDMC in the case where the phenotype is affected

by methylation (Y |X), while executing TCA under the wrong assumption X|Y
(TCA X|Y ). (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and

precision (positive predictive value; PPV) to detect differentially methylated cell-

types as a function of the association effect size, under the scenario where a single

cell type out of 6 blood cell types is altered in cases versus controls (Uni-1C). (d)-

(f) as in Uni-1C, only for the scenario where two cell types are altered in the

same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario where the cell

types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for three

cell types (Bi-3C). Results are shown across 50 simulated data sets using violin

plots; solid lines represent median values. . . . . . . . . . . . . . . . . . . . . . 138

5.5 Evaluation of TCA and CellDMC in the case where the phenotype affects methy-

lation (X|Y ), while executing TCA under the assumption Y |X and using a

marginal test. (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and

precision (positive predictive value; PPV) to detect differentially methylated cell-

types as a function of the association effect size, under the scenario where a single

cell type out of 6 blood cell types is altered in cases versus controls (Uni-1C). (d)-

(f) as in Uni-1C, only for the scenario where two cell types are altered in the

same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario where the cell

types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for three

cell types (Bi-3C). Results are shown across 50 simulated data sets using violin

plots; solid lines represent median values. . . . . . . . . . . . . . . . . . . . . . 139
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5.6 Evaluation of TCA and CellDMC in the case where the phenotype is affected by

methylation (Y |X), while executing TCA under the assumption Y |X and using

a marginal test. (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and

precision (positive predictive value; PPV) to detect differentially methylated cell-

types as a function of the association effect size, under the scenario where a single

cell type out of 6 blood cell types is altered in cases versus controls (Uni-1C). (d)-

(f) as in Uni-1C, only for the scenario where two cell types are altered in the

same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario where the cell

types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for three

cell types (Bi-3C). Results are shown across 50 simulated data sets using violin

plots; solid lines represent median values. . . . . . . . . . . . . . . . . . . . . . 140

5.7 Evaluation of TCA and CellDMC in two independent whole-blood data sets with

smoking. (a-c) Association tests were performed for each of 7 CpGs that were

previously reported by Su et al. as exhibiting either myeloid-specific (in red) or

lymphoid-specific (in green) associations with smoking status [158]. Results are

displayed as heatmaps of the (negative-log transformed) p-values of the associ-

ations with myeloid cells (neutrophils and monocytes) and with lymphoid cells

(T-cells, B-cells, and NK-cells) using (a) CellDMC, (b) TCA under the assump-

tion X|Y (using the tca function), and (c) TCA under the assumption X|Y , while

using a joint test for tissue-level significance (also using the tca function). The

latter achieves genome-wide significance (i.e. >6.98, assuming all 450K methy-

lation array sites) in all but one CpG; calling the cell types that drive these

associations using the results in (b) as a post-hoc analysis reveals the high-power

of combining these two tests. (d) Results of an epigenome-wide analysis presented

by quantile-quantile plots of the (negative-log transformed) p-values for the as-

sociation tests in (a)-(c). Significant global deviation from the y=x line indicates

an inflation arising from a badly specified model. Axes were truncated for visual

purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
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A.1 Reconstructing three-dimensional observation- and source-specific values from

two-dimensional input across ten simulated data sets (n = 250,m = 250, k =

3, τ = 0.01). Three approaches were evaluated in capturing the observation-

specific values for each feature j and source h (i.e. zhj): TCA, TCA after per-

muting the observed two-dimensional data matrix (“Permutation”) and directly

using the observed data matrix (“Observed”). For each of the evaluated ap-

proaches, we present the distribution of the linear correlation between zhj and its

estimate ẑhj across all h, j (in the left) and the distribution of the MSE between

zhj and its estimate ẑhj across all h, j (in the right). . . . . . . . . . . . . . . . 149

A.2 Reconstructing three-dimensional observation- and source-specific values from

two-dimensional input in simulated data (n = 250,m = 250) while varying the

parameters of the simulation. Data was simulated under three scenarios: increas-

ing level of i.i.d. noise added to W (ψ), increasing level of the i.i.d. component of

variation added on top of X (τ) and increasing number of sources in the data (k).

Three approaches were evaluated in capturing the observation-specific values for

each feature j and source h (zhj): TCA, TCA after permuting the observed data

(“Permutation”) and directly using the observed data (“Observed”). For each of

the approaches and for each of the evaluated parameters, we present the median

linear correlation between zhj and its estimate ẑhj across all h, j and across ten

simulated data sets (top panel) and the median MSE between zhj and its estimate

ẑhj across all h, j and across ten simulated data sets (bottom panel). . . . . . . 150
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CHAPTER 1

Introduction

1.1 Scope of research

Technologies for probing molecular genomic markers at ever-increasing resolution and through-

put hold a promise to provide a bridge to understanding complex biology. Indeed, the study

of genomics has already had a tremendous impact, ranging from our understanding of basic

building blocks of biology through practical tools for enhancing healthcare. Yet, success

in studying complex biological systems through genomics has been very limited thus far,

presumably owing to the complex nature of genomics.

Genomic markers such as gene expression and DNA methylation may be affected by mul-

tiple genetic and environmental factors [1, 2, 3, 4], they may differ in their regulation and

presentation in different tissues [5], cell types [6], conditions [7], or over time [8], and some

markers may affect multiple biological processes [9]. Critically, the effect of a given marker

on a complex system likely involves an interplay with multiple other genomic factors. The

development of better models and methodologies that can account for those complexities is

therefore of primary interest in the study of genomics.

The high-dimensional nature of high-throughput genomic data, albeit challenging, provides

opportunities to uncover hidden signals by leveraging the structure of the data: large sets

of features, in conjunction with large sample sizes that follow specific patterns, allow us

to implement richer and more sophisticated models in attempt to eventually improve our

understanding of complex biology. Here, we focus on genomic data generated from heteroge-

neous sources (”bulk” genomics). Particularly, we focus on DNA methylation data collected

from heterogeneous tissues such as blood; such data are now ubiquitously available for large
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samples.

Bulk data represent convolution of signals coming from different sources (typically different

cell types), thus introducing further challenges with data analysis and interpretation. More

specifically, one of the most eminent challenges in the analysis of bulk genomics stems from

the fact that different cell types demonstrate differences in their genomic patterns. The

observed bulk data of a sample therefore reflect convolutions of signals coming from the

different cell types in the tissue under study, weighted by the cell-type composition of the

sample. Both the cell-type composition and the cell-type level genomic profiles may vary

across individuals, conditions, and over time, thus further complicating data modeling and

interpretation.

Notably, technologies for profiling genomic markers at single-cell resolution - most markedly

single-cell RNAseq - allow us to probe genomics at an unprecedented level of granularity.

Those technologies hold the promise to address several challenges faced in the analysis of bulk

genomics; perhaps most prominently, the challenge of tissue heterogeneity, arising due to the

differences in genomic patterns between different cell types. However, single-cell technologies

have yet to allow the routine and reliable generation of data at large scale (i.e. large number

of individuals) and at reasonable costs and effort; as long as these challenges remain in place,

bulk data is likely to still be the predominant tool for studying population-level genomics.

Moreover, those technologies are still in relatively early stages for some genomic data types;

for instance, there have been recent significant advances in the developement of single-cell

DNA methylation, however, coverage and throughput remain major challenges that need to

be addressed [10].

Even if further advances will alleviate the scalability and reliability limitations of current

single-cell technologies in the near future, the large number of existing bulk samples that

have been collected by now are still an extremely valuable resource for genomic research

(e.g., more than 100,000 DNA methylation bulk profiles to date in the Gene Expression

Omnibus (GEO) alone [11]). These data reflect years of substantial community-wide effort

of data collection from multiple organisms, tissues, and under different conditions, and it
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is therefore of great importance to develop better models and tools for the analysis of bulk

data.

1.2 Contributions and Overview

This dissertation tackles several key challenges faced in the analysis of bulk genomic data,

with a particular attention to DNA methylation data. We introduce novel models, theory,

and practical tools for capturing hidden signals from high-dimensional data, which we have

developed and applied primarily in the context of DNA methylation studies.

The correlation between genetics and genomic markers such as gene expression and DNA

methylation has been repeatedly established in the genomics literature [2, 12]. However, in

the context of methylation it was previously not clear to what extent genetics and population

structure are reflected in genome-wide methylation. In Chapter 2, we tackle this question

and further provide a tool for capturing ancestry information from methylation data without

the need for genetics.

While the problem of estimating cell-type composition from genomic data has gained much

attention in the computational biology literature [13, 14], there was previously no reliable way

to estimate cell-type proportions from methylation without the use of reference methylation

data collected from purified cells. In Chapter 3, we demonstrate both theoretically and

empirically that previous reference-free methods do not address this problem adequately,

and we propose a new semi-supervised method that meets the goal without the need for

methylation reference.

In Chapter 4, we introduce Tensor Composition Analysis (TCA), which aims at learning

three-dimensional hidden signals from two-dimensional input data. We demonstrate the

utility of TCA for obtaining cell-type-specific resolution epigenetics from bulk methylation

data, and further use it for the identification of differential methylation at cell-type level.

Finally, we further discuss TCA and put it in context with alternative models. Particularly,

in Chapter 5, we provide theoretical results, showing the relation of TCA to other methods,
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as well as motivate the key idea behind TCA through asymptotic analysis. In addition, we

demonstrate more experiments and further discuss the application of TCA under additional

assumptions and statistical tests.
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CHAPTER 2

Genome-wide methylation data mirror ancestry

information

2.1 Background

The relation between ancestry and genetic variation has been repeatedly established over the

last decade [15, 16]. Several methods now provide accurate estimates of ancestry informa-

tion by leveraging genome-wide systematic difference in allele frequencies between subpop-

ulations, commonly referred to as population structure [17, 18, 19, 20, 21]. These methods

often apply Principal Component Analysis (PCA) or variants of PCA.

Inferring population structure across individuals provides a powerful source of information

for various fields, including genetic epidemiology, pharmacogenomics and anthropology. For

instance, in genetic and molecular epidemiology, in which identifying genetic associations

with disease or exposure is of primary interest, it is essential to have ancestry information

in order to distinguish effects of demographic processes from biological or environmental

effects. Specifically, the importance of controlling for population structure in genome-wide

association studies (GWAS) is now well appreciated. Unless appropriately accounted for,

population structure in GWAS can lead to numerous spurious associations and might obscure

true signals [18, 22].

Emerging epigenome-wide association studies (EWAS) revealed thousands of CpG methyla-

tion sites correlated with genetics and with ancestry [12, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33]. Not surprisingly, due to the genetic signal present in many CpGs, several studies

have shown that the first several principal components (PCs) of methylation data can cap-
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ture population structure in cohorts composed of European and African individuals [28, 34].

However, unlike the case of genotyping data in which global ancestry information is robustly

reflected by the top PCs, the first several PCs of methylation data were also shown to capture

other factors in different scenarios, mainly cell-type composition in case of data collected from

heterogeneous tissues [35, 36], but also other factors, including technical variables, age and

sex [28, 34]. Moreover, it is now appreciated that collecting methylation using probes with

polymorphic CpGs is affected by hybridization sensitivity and does not necessarily reflect

methylation variability but rather genetic variability [37]. Therefore, it is not clear to what

extent global whole-genome DNA methylation states are affected by population structure

when these artifacts are removed.

We introduce EPISTRUCTURE, a method for capturing ancestry information from DNA

methylation data. EPISTRUCTURE is based on the observation that PCA computed from

a set of methylation CpG sites that are highly correlated with SNPs efficiently captures

population structure. Thus, we use a large reference data set that includes both genotypes

and methylation in order to find correlations of CpGs with cis-located SNPs, and to generate

a reference list of genetically-informative CpGs. Then, given new methylation data we

compute the PCs of the methylation levels from the same sites included in the reference

list. We validate the robustness of this method by assessing the correlation between the

methylation-inferred ancestry and the genetically inferred ancestry on two additional large

methylation data sets.

In order to shed light on the relation between genetic ancestry and methylation-based ances-

try, we further explore the unsupervised detection of ancestry from methylation data. We

show that genome-wide methylation mirrors ancestry information in admixed populations af-

ter properly adjusting for known variability in genome-wide methylation, and after properly

removing technical artifacts, particularly probes that include SNPs that may confound the

results. Thus, unlike previous studies that were potentially confounded by these artifacts,

here we show that ancestry is indeed robustly mirrored by methylation data as one of the

main variance components in the data.
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EPISTRUCTURE can be used to infer ancestry information from methylation data in the

absence of genetic data. Although genetic data are often collected in epigenetic studies of

large cohorts, these are typically not made publicly available, making the application of

EPISTRUCTURE especially useful for anyone working on public data.

2.2 Methods

2.2.1 Model and algorithm

Previous studies reported a large number of correlations between DNA methylation and ge-

netics, mainly cis-correlations between CpGs and nearby SNPs [12, 23, 24, 25]. We therefore

assume that cis-located SNPs can capture the genetic variability accounting for the methy-

lation levels of a given CpGs. For a given CpG x we assume the following linear model:

x = β0 +
∑
sj∈Sx

βjsj + ε

where Sx is a group of w SNPs, cis-located with respect to x, {βj}j are their corresponding

effects on the methylation levels and ε represents an error term, assumed to be independent

between different samples.

Given reference data of methylation levels and genotypes for the same individuals, we fit

the above linear model for each CpG. We regard the CpGs for which the model fits well as

linear combinations of SNPs. We define the set of these genetically-informative CpGs as the

reference list. Given methylation data for new individuals, we can estimate the population

structure in the data by applying a standard PCA on the sites in the reference list. The first

several PCs of PCA are well-known to efficiently capture ancestry information when applied

to genotypes data [18], therefore applying PCA on CpGs that are linear combinations of

SNPs is expected to capture population structure as well. In the next subsection we further

demonstrate this intuition mathematically.

Given reference methylation and genotypes data, our suggested algorithm can be summarized
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as follows:

1. For each CpG x, fit a linear model using w SNPs that are closest to x.

2. Define a reference list G of all the CpGs for which the linear model fits well. Evaluate

model fit based on cross-validated squared linear correlation.

3. Given a new methylation data set, apply PCA on the sites defined by G and consider

the first k principal components as the estimate of the population structure.

Note that creating a reference list, described in the first two steps of the algorithm, needs to

be performed only once. Population structure can be then inferred in future data sets using

this list of genetically-informative CpGs. In practice, an appropriate w may be relatively

large (i.e. large number of predictors), while the sample size is typically limited. We therefore

apply a regularized regression with `1 penalty, also known as LASSO regression [38]. For

the same reason, we define a parameter p to limit the maximal number of predictors in each

model. Furthermore, in order to avoid over-fitting of the model, we perform a k-fold cross-

validation procedure for each CpG. The score of a CpG is defined as the median squared

linear correlation of its predicted values with the real values across the k folds. Finally, a

reference list of the CpGs is defined as the set of sites with highest scores.

In principle, one could use the same approach taken here in order to create and use a

reference list of CpGs which explain SNPs well rather than CpGs which are captured well

by SNPs. However, modeling methylation levels as a function of SNPs is more natural with

respect to the causality relations assumed between SNPs and methylation. Moreover, many

methylation sites are known to be affected by several factors (e.g. age [39], gender [40]

and smoking [41]), and therefore considering a group of methylation sites explaining a given

SNP may introduce into the data more, potentially unknown, variance in addition to genetic

variance. This potential problem is expected to be less severe in the opposite direction of

modeling methylation using SNPs. In this case, methylation sites that are well explained by

genetics are less likely to be highly explained by more factors.
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2.2.2 Interpreting EPISTRUCTURE

The EPISTRUCTURE algorithm can be divided into two main steps. First, a reference list

of genetically-informative methylation sites is compiled from a group of CpGs, each found

to be well approximated by its cis-located SNPs. Second, given a new methylation data set,

the first several PCs of the data are calculated only from the sites that were included in the

reference list. The reason for applying PCA in the second part of the algorithm is motivated

by the success of PCA to capture ancestry information in genotyping data [18]. In the case of

genotyping data coming from different populations, the first several PCs capture population

structure by highlighting groups of individuals differing at the level of allele frequencies.

Given an n× s centered genotyping data matrix G of s SNPs collected from n individuals,

the generative model underlying PCA assumes:

G = ZW + Σ (2.1)

Σj ∼MVN
(
0, τ 2In

)
where Z is an n×k matrix representing k-dimensional latent structure of the ancestry infor-

mation for each individual and W is a k× s matrix representing ancestry-specific differences

in allele frequencies for each SNP. Σ is an n× s error term, typically assumed to have inde-

pendent entries (that is, no relatedness between the n individuals and independence between

the SNPs).

Any methylation site can be modeled as a linear function of SNPs and additional error term,

and therefore the methylation level of a specific site in a given individual can be approximated

to some extent using merely the individual’s SNPs. Formally, given an n × m centered

methylation data matrix X of m methylation sites coming from the same n individuals in

G, we can describe Xj, the j-th column of X as:

Xj = GBj + Ej (2.2)

Ej ∼MVN
(
0, σ2

j In
)
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where Bj is an s× 1 coefficients vector of the linear model and Ej is an n× 1 error term. In

particular, methylation site j that cannot be even partially explained by SNPs will have a

corresponding Bj vector of only zeros. In the first step of the EPISTRUCTURE algorithm

we find a group of methylation sites which can be well explained by their cis-located SNPs.

Restricting the data matrix X to be consisted only of such methylation sites increases the

signal-to-noise ratio in the data.

Plugging (2.1) into (2.2) we get

Xj = (ZW + Σ)Bj + Ej (2.3)

= ZWBj + ΣBj + Ej (2.4)

where ΣBj and Ej are normally distributed as before. This model can be equivalently

described as follows:

Xj ∼MVN
(
ZWBj,

(
Bt
jBjτ

2 + σ2
j

)
In
)

(2.5)

Under this formulation there is a dependency between every two methylation sites. However,

based on previous reports showing clear predominance of associations between CpGs and cis-

located SNPs over trans-located SNPs [23, 24, 25], we assume that only cis-located SNPs

are informative for explaining a given methylation site. As a result, B is expected to be

very sparse with values concentrated around the diagonal, assuming the SNPs and CpGs

are ordered by physical position. In particular, every two distant methylation sites are

independent. In our case the matrix B was estimated from the KORA data for which both

genotyping and methylation levels were available. We observed that the vast majority of

the rows in the estimated matrix are sparse and only rarely have more than one non-zero

entry (Figure 2.1). The main reason for this is the fact that we consider only a sparse set

of methylation sites from the genome, resulting from the first step of the algorithm in which

only sites that can be well approximated by SNPs are selected. Therefore, we neglect the

theoretical dependency between close sites and assume no dependency between any of the
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Figure 2.1: Most of the available SNPs used in creating the reference list of genetically-
informative CpGs using the KORA data were found to be predictors of no more than one
CpG in the reference list. Only 26,244 out of the available SNPs in KORA (657,103) were
used in the prediction of the CpGs that were included in the reference list. Out of these sites
82.2% were found to be predictors of only one CpG and 93.3% were found to be predictors
of at most two CpGs.

columns in B. Now, the model can be summarized as:

Xj ∼MVN(ZW̃j, ψ
2
j In) (2.6)

where W̃j = WBj and we are interested in extracting Z, the latent ancestry information

structure of the individuals in the data. The maximum likelihood solution to the model

in (2.6) is given by factor analysis, and the first k factors can be used as estimates of the

latent population structure Z. In practice, factor analysis iteratively scales each site and the

first iteration is equivalent to PCA after standardization of each of the sites. Empirically,

applying more than one iteration did not improve the performance, therefore, in the second

step of the EPISTRUCTURE algorithm we suggest to perform a standardized PCA and to

consider the first k PCs as the estimate of the population structure.
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2.2.3 Data and quality control

The longitudinal KORA study (Cooperative health research in the Region of Augsburg)

consists of independent population-based subjects from the general population living in

the region of Augsburg, southern Germany [42]. Whole-blood samples of the KORA F4

study were used (n = 1, 799) as described elsewhere [43]. Briefly, DNA methylation levels

were collected using the Infinium HumanMethylation450K BeadChip array (Illumina). Beta

Mixture Quantile (BMIQ) [44] normalization was applied to the methylation levels using

the R package wateRmelon, version 1.0.3 [45]. In total, 431,360 probes were available for

the analysis. As described elsewhere [46], genotyping was performed with the Affymetrix

6.0 SNP Array (534,174 SNP markers after quality control), with further imputation using

HapMap2 as a reference panel. A total of 657,103 probes remained for the analysis.

We used whole-genome DNA methylation levels and genotyping data from the Genes- envi-

ronments & Admixture in Latino Americans (GALA II) data set, a pediatric Latino popu-

lation study. Details of genotyping data including quality control procedures for single nu-

cleotide polymorphisms (SNPs) and individuals have been described elsewhere [47]. Briefly,

participants were genotyped at 818,154 SNPs on the Axiom Genome-Wide LAT 1, World

Array 4 (Affymetrix, Santa Clara, CA) [48]. Non-autosomal SNPs and SNPs with missing

data (> 0.05) and/or failing platform-specific SNP quality criteria (n = 63, 328) were ex-

cluded as well as SNPs not in Hardy-Weinberg equilibrium (n = 1, 845; p < 10−6) within

their respective populations (Puerto Rican, Mexican, and other Latino). Study participants

were filtered based on 0.95 call rates and sex discrepancies, identity by descent and stan-

dard Affymetrix Axiom metrics. Finally, SNPs with low MAF (< 0.05; n = 334, 975) were

excluded. The total number of SNPs passing QC was 411,787. The data are available in

dbGaP (accession ID phs000920.v1.p1).

Whole-blood methylation data for a subset of the GALA II participants (n = 573) are

publicly available in the Gene Expression Omnibus (GEO) database (accession number

GSE77716) and have been described elsewhere [26, 36]. Briefly, methylation levels were

measured using the Infinium HumanMethylation450K BeadChip array and raw methylation
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data were processed using the R minfi package [49] and assessed for basic quality control

metrics, including determination of poorly performing probes with insignificant detection P-

values above background control probes and exclusion of probes on X and Y chromosomes.

Finally, beta-normalized values of the the data were SWAN normalized [50], corrected for

batch using COMBAT [51] and adjusted for age, gender and chip assignment information

using linear regression. The number of participants with both methylation and genotyping

data was 525. We further excluded 46 individuals collected in a separate batch since they

were all Puerto-Ricans. A total of 479 individuals and 473,838 probes remained for the

analysis.

In order to further evaluate and validate the performance of EPISTRUCTURE we used data

from the CHAMACOS longitudinal birth cohort study [52]. For this analysis, we had a subset

of subjects that had Infinium HumanMethylation450K BeadChip array data available at 9

years of age. Briefly, samples were retained only if 95% of the sites assayed had insignificant

detection P-value and samples demonstrating extremes level in the first two PCs of the data

were removed. Probes where 95% of the samples had insignificant detection P-value (> 0.01;

n = 460) as well as cross-reactive probes (n = 29, 233) identified by Chen et al. [37] were

dropped. A total of 227 samples and 455,590 probes remained for the analysis. Color channel

bias, batch effects and difference in Infinium chemistry were minimized by application of All

Sample Mean Normalization (ASMN) algorithm [53], followed by BMIQ normalization [44].

The data were adjusted for gender and technical batch information using linear regression.

In line with a previous study showing that a panel of small size is sufficient to approximate

genetic ancestry in Latino populations well [54], 106 SNPs were collected and used as ancestry

informative markers for estimating genetic ancestry of the CHAMACOS individuals [55]. The

panel of ancestry informative markers was selected according to previously reported studies

of Latino populations [25, 55, 56, 57]. Briefly, only SNPs with large differences in allele

frequencies between ancestries were selected.
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2.2.4 450K Human Methylation array

This methodology allows for examination of > 450, 000 CpG sites across the genome, rep-

resenting 99% of RefSeq genes. Sites include promoters, gene bodies, and 96% of UCSC

database CpG islands (dense concentrations of CpGs), many of which are known to be

associated with transcriptional control [58, 59, 60, 61, 62, 63]. This platform has been es-

pecially amenable to population studies because of its relative cost effectiveness and low

sample requirements. Several studies have identified CpG sites differentially methylated by

environmental exposures [64, 65] (e.g. arsenic and tobacco smoke) and health outcomes

including obesity [66], rheumatoid arthritis [67], and Crohn’s disease [68] demonstrating its

utility in environmental and molecular epidemiology studies. The relative methylation (beta-

normalized values) for each CpG site is calculated as the ratio of methylated-probe signal

to total (methylated + unmethylated) fluorescent signal intensity. The Infinium pipeline is

streamlined with excellent reproducibility [69].

2.2.5 Compiling a reference list from the KORA cohort

The reference list of genetically-informative CpGs was created using the KORA cohort for

which whole-blood methylation data as well as genotype data were available for 1,799 Euro-

pean individuals. Following the algorithm described above, a score was computed for each

CpG using k-fold cross-validation with k = 10 and using the parameters w = 50 and p = 10

(available in [70]). A reference list was then compiled from CpGs with median correlation

of R2 > 0.5 in the cross-validated prediction procedure, resulting in a total of 4,913 CpGs

(available in [70]), out of which 2,436 are polymorphic CpGs and additional 801 CpGs have

at least on common SNP in their probe outside the CpG target. The number of these refer-

ence CpGs available in the GALA II data set and in the CHAMACOS data set were 4,912

and 4,450, respectively. Removing probes with polymorphic CpGs results in 2,476 and 2,229

CpGs, and further removing probes with common SNPs results in 1,676 and 1,554 CpGs

for GALA II and CHAMACOS, respectively. Unless stated otherwise, polymorphic CpGs

were not excluded from the reference of informative CpGs in the executions of EPISTRUC-
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TURE, therefore highly informative polymorphic CpGs (R2 > 0.5) were also included in

the reference list. In most cases, polymorphic CpGs are excluded as a preprocessing step

in epigenetic studies, however, here we leverages the true genetic signal underlying in these

probes for capturing the ancestry information better.

2.2.6 Detecting 450K probes containing SNPs

Probes with a SNP in their CpG target (polymorphic CpGs) were shown to be biased with

underlying genetic polymorphisms rather than capture methylation signals solely [37]. The

authors reported a list of 70,889 such polymorphic CpGs in the 450k DNA methylation array,

as well as a list of common SNPs residing in probes of the 450K array outside the CpG target

(MAF > 0.01 according to at least one of the major continental groups in the 1000 Genome

database [71]). The total number of probes containing SNPs reported is 167,738.

2.2.7 Estimating ancestry information

Proportions of European, Native-American and African ancestries were estimated for each

individual in both the GALA II and the CHAMACOS cohorts using the software ADMIX-

TURE [19] and the default reference data provided by the software. For the GALA II indi-

viduals we used the 411,787 SNPs remained after QC as an input, and for the CHAMACOS

individuals we used the 106 available ancestry informative markers. The genotype based

PCs were computed by applying PCA on the standardized values of the available genotypes

in each data set. For the CHAMACOS data set, prior to computing PCA, we excluded sites

with more than 5% missing values and completed the remaining missing values by assigning

the mean. This resulted in a total of 99 SNPs.

2.2.8 Adjusting methylation levels for tissue heterogeneity

Methylation levels of the GALA II and CHAMACOS data sets were adjusted for cell-type

composition using ReFACTor, a reference-free method for the correction of cell type hetero-
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geneity in EWAS [36]. Each data set was adjusted for cell composition by regressing out the

first six ReFACTor components, resulting in adjusted beta values. ReFACTor was executed

using the default parameters and K = 6. For one of the experiments in the GALA II data

we used an alternative approach for cell-type composition correction. Similarly, as with the

ReFACTor components, we generated beta adjusted values, only this time we used reference-

based cell-proportion estimates of main leukocyte cell types. Specifically, we obtained cell

proportion estimates of six cell types (granulocytes, monocytes, B cells, NK cells, CD8T and

CD4T cells) using the default implementation available in the minfi package [49], defined

and assembled for the 450K array [72] based on the approach suggested by Houseman et

al. [73] and a 450K reference data set [74].

2.2.9 Feature selection based on proximity to SNPs

For evaluating our suggested method, we calculated alternative methylation-based PCs after

applying a feature selection that was previously suggested as a method for capturing pop-

ulation structure [34]. Following the authors’ recommendation, we considered a list of the

CpGs residing within 50 base pairs from SNPs, as provided by the authors.

2.3 Results

2.3.1 Inferring ancestry information from methylation using EPISTRUCTURE

EPISTRUCTURE selects a set of CpGs that are highly correlated with genotype information

and then performs PCA on these sites while taking into account the cell-type composition

effects and possibly other dominant factors that may affect genome-wide methylation. In

order to compile a list of genetically-informative CpGs, we used the KORA cohort of Euro-

pean adults as reference data; these data include whole-blood methylation and genotyping

data for a set of 1,799 individuals [42]. We fitted a regularized linear regression model for

each CpG from SNPs in cis, and evaluated it based on a cross-validated linear correlation.

Since the vast majority of reported CpG-SNP associations are between CpGs and cis-located
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Figure 2.2: Correlation of methylation sites with cis-SNPs in the KORA data set. An R2

score was calculated for each CpG available in the data from cis-SNPs. The results are
presented in a log scaled histograms, showing that in most of the CpGs only a small portion
of the variance can be explained by cis-SNPs.

SNPs [12, 23, 24], we only considered cis-located SNPs in capturing the genetic component

of each CpG. We observed that for most CpGs only a small fraction of the variance can be

explained by cis-SNPs (R2 < 0.1 for 92.9% of the CpGs tested; Figure 2.2), thus motivating

the use of only a relatively small subset of the CpGs for inferring ancestry information.

Considering only sites that most of their variance can be explained by cis-SNPs (R2 > 0.5)

resulted in a reference list of 4,913 genetically-informative CpGs (available in [70]). We note

that polymorphic CpGs were not excluded from the KORA data set before learning the

reference of informative CpGs, therefore polymorphic CpGs that can be well explained by

cis-SNPs (R2 > 0.5) were also included in the reference list. In most cases, polymorphic

CpGs should be excluded before any data analysis, however, in our case, EPISTRUCTURE

leverages the true genetic signal underlying in the probes of these CpGs. We later demon-

strate the difference in performance when excluding these probes.

In order to test the performance of EPISTRUCTURE we applied it on the GALA II data

set (n = 479), a pediatric Latino population study with Mexican and Puerto-Rican individ-
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Figure 2.3: The fraction of variance explained in the first two genotype-based PCs of the
GALA II data using several methods. Presented are linear predictors using increasing number
of EPISTRUCTURE PCs (in blue), methylation-based PCs (in red) and methylation-based
PCs after feature selection based on a previous study [34] (in yellow) for capturing (a) the
first genotype-based PC and (b) the second genotype-based PC.

uals [75], for which both genotypes and 450K methylation array data (whole-blood) were

available. First, we computed the largest (first) two PCs of the genotypes (genotype-based

PCs), known to capture population structure [18]. We observed that EPISTRUCTURE pro-

vides substantially improved correlation with the first two genotype-based PCs as compared

with the alternatives (Figure 2.3). Particularly, the first PC of EPISTRUCTURE captured

the top genotype-based PC well (R2 = 0.82), as compared to the first PC of the methylation

data (methylation-based PC; R2 = 0.01) and as compared to the methylation-based PC

computed only from CpGs residing in close proximity to nearby SNPs (R2 = 0.01), as was

suggested in a recent study for capturing ancestry information in methylation data [34].

Next, as an alternative measure of population structure, we used the ADMIXTURE soft-

ware [19] to estimate, for each individual, ancestry proportions of the three ancestries known

to compose the Mexican and Puerto-Rican populations: European, Native-American and

African. In this case, the top two principal components of EPISTRUCTURE capture well
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Figure 2.4: Capturing ancestry fraction estimates in the GALA II data using EPISTRUC-
TURE. Presented are linear predictors of European (EU), Native-American (NA) and
African (AF) fraction estimates of the individuals in the data using the first two EPISTRUC-
TURE PCs.

both the Native American ancestry and the African Ancestry (R2 = 0.81 and R2 = 0.56

respectively), while the European ancestry was captured to a lesser extent (R2 = 0.32;

Figure 2.4).

We further tested whether ancestry information can be captured using EPISTRUCTURE

in case there is a weaker population structure in the data. We observed that the first two

PCs of EPISTRUCTURE could capture ancestry information well in both subpopulations

of the GALA II data (R2 = 0.33 in the Puerto-Rican group and R2 = 0.76 in the Mexican

group; Figure 2.5). These results suggest that EPISTRUCTURE can be used as an easy and

efficient method for capturing ancestry information in methylation, even in data sets with

relatively modest population structure.

2.3.2 Unsupervised ancestry inference from methylation data

EPISTRUCTURE is a supervised approach since it uses a reference data set in which both

methylation and genotype data are available. In order to shed light on the extent to which

ancestry is reflected by methylation, we also explored unsupervised approaches for the in-

ference of ancestry from methylation data. Consistent with a previous study of individuals
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Figure 2.5: Capturing ancestry information in the GALA II data from Puerto-Rican indi-
viduals and from Mexican individuals separately. Presented are linear predictors of the first
genotype-based PC using the first two methylation PCs computed from each subpopulation
separately after adjusting the data for cell composition, before and after excluding probes
containing SNPs from the data (top and middle panels, respectively) and using the first two
EPISTRUCTURE PCs (bottom panel).

from the same population [76], the first two genotype-based PCs of the GALA II data clus-

tered the samples into two groups, generally corresponding to Mexican and Puerto-Rican
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Figure 2.6: Capturing population structure in the GALA II data using an unsupervised
approach. (a) The first two PCs of the genotypes, considered as the gold standard, separate
the samples into two subpopulations: Puerto-Ricans (in blue) and Mexicans (in red). (b) The
first two PCs of the methylation levels (methylation PCs) cannot reconstruct the separation
found with the genotype data. (c) Recalculating the first two PCs after applying a feature
selection based on proximity of CpGs to nearby SNPs as was proposed by Barfield et al. [34]
(d) The first two PCs of the methylation after adjusting the data for cell-type composition
(adjusted methylation PCs) can reconstruct most of the separation found in the genotypes.
(e) Using adjusted methylation PCs after excluding the 70,889 polymorphic sites from data.
(f) Using adjusted methylation PCs after excluding the 167,738 probes containing at least
one common SNP.

subpopulations (Figure 2.6a). Since PCA has been shown to mirror ancestry very accurately

in the case of genetic data [15], we first computed the top two methylation-based PCs while

accounting for known technical factors as well as for age and sex, which are known to affect

methylation genome-wide [39, 40, 77]. Considering the population structure characterized

by the first two genotype-based PCs as the ”gold standard”, the first two methylation-based

PCs could not sufficiently capture the population structure in the data (Figure 2.6b).

We then applied a few more sophisticated procedures, as follows. First, as before, we applied

21



a feature selection step prior to calculating the methylation-based PCs according to a recent

study, that suggested to consider only CpGs residing in close proximity to nearby SNPs in

order to capture ancestry information in the first few PCs of the data [34]. We found that this

procedure did not sufficiently reflect population structure in methylation data (Figure 2.6c).

Next, since the first several PCs in methylation data coming from heterogeneous source

such as blood are known to be dominated by cell-type composition variation [35, 36, 78], we

adjusted the data for cell-type composition using ReFACTor [36] and recalculated the first

two PCs. This approach effectively reconstructed most of the separation determined by the

genotype-based PCs (Figure 2.6d).

These results show that 450K-probed methylation data indeed reflect genotype data well.

Specifically, after accounting properly for known confounders, the top methylation-based

PCs capture the genotype-based PCs. However, these results can potentially be driven by

artifacts. Particularly, many probes in the 450K methylation array contain single nucleotide

polymorphisms (SNPs) in their target CpGs. Such polymorphic CpGs were shown to bias

measured methylation levels as a function of the individual’s genotypes, apparently due to

changes in probe binding specificity [37]. Thus, the results above might be biased by these

probes. To address this possibility, we recalculated the first two methylation-based PCs

after excluding 70,889 CpGs that are known to be polymorphic. We found that the new

methylation-based PCs could still capture well the first genotype-based PC (R2 = 0.77 as

opposed to R2 = 0.83 before removing the polymorphic CpGs), accounting for the separation

evident from the first two genotype-based PCs (Figure 2.6e). In addition, we performed a

more conservative analysis by repeating the last step, only this time we excluded all probes

containing at least one common SNP anywhere on the probe (i.e. not only in the target

CpG but anywhere on the prove; in total, 167,738 probes). We found that in this case as

well the reconstruction using the top two methylation-based PCs provided almost the same

separation determined by the genotype-based PCs (Figure 2.6f; R2 = 0.70 with the first

genotype-based PC).

We note that repeating the last two experiments while accounting for estimated cell pro-
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portions computed using a commonly applied reference-based method [73] as an alternative

approach for correction of cell composition effects in methylation could not achieve the same

results (R2 = 0.23 and R2 = 0.14 in the experiments without the polymorphic sites and

in the experiment removing all probes with common SNPs, respectively). This can be ex-

plained by the additional cell-type composition signal captured by ReFACTor but not by

the reference-based approach, as was previously demonstrated on the GALA II data [36].

Substantial difference in performance is especially expected in cases where the reference

methylation data used by the reference-based method do not represent the target popula-

tion well [36, 79]. Removing only part of the cell-type composition signal from the data

results in PCs that are likely to be still dominated by tissue composition information rather

than by population structure. Alternatively, it may be the case that ReFACTor also removed

another sparse confounder, in addition to the cell-type composition signal.

We also compared the different approaches using the ancestry estimates of the ADMIXTURE

software [19]. The results were consistent with our previous experiment - while the first two

methylation-based PCs could not capture the ancestry estimates (R2 = 0.02 with European,

R2 = 0.01 with Native-American and R2 = 0.02 with African fractions), we found the

first two methylation-based PCs after adjusting for cell composition to capture the ancestry

estimates well, even after excluding from the data all probes containing common SNPs

(R2 = 0.28 with the European fraction, R2 = 0.69 with Native-American and R2 = 0.47

with African; Figure 2.7).

We further tested whether ancestry information can be captured in the same manner when

applied to each of the two subpopulations in the data (Mexican and Puerto-Rican) separately.

We found the methylation-based PCs to capture well only the first genotype-based PC of

the Mexican group when not excluding probes containing common SNPs (R2 = 0.08 for the

Puerto-Rican cluster and R2 = 0.74 for the Mexican cluster). After excluding the 167,738

probes containing at least one common SNP from the data, the methylation-based PCs

could not capture a substantial fraction of the first genotype-based PC in either clusters

(R2 = 0.05 for the Puerto-Rican cluster and R2 = 0.05 also for the Mexican cluster). Thus,
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Figure 2.7: Capturing ancestry fraction estimates in the GALA II data. Presented are linear
predictors of European (EU), Native-American (NA) and African (AF) fraction estimates
of the individuals in the data using the first two methylation PCs of the data (top panel),
the first two PCs after adjusting the data for cell composition (adjusted methylation PCs;
middle panel) and using the adjusted methylation PCs after excluding from the data all
probes containing SNPs (bottom panel).

we conclude that under weak population structure the current unsupervised approach does

not mirror ancestry well. However, as we demonstrated earlier, the supervised approach of
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EPISTRUCTURE, using only a relatively small subset of highly informative CpGs (including

highly informative polymorphic CpGs), performed well in this case.

2.3.3 Validation using the CHAMACOS study data

We further validated the effectiveness of EPISTRUCTURE and the unsupervised approaches

using data from the primarily Mexican-American CHAMACOS cohort [52, 80]. We used

whole-blood methylation levels from nine years old participants (n=227) for which we had

106 ancestry informative markers [55], previously shown to approximate ancestry information

well in another Hispanic admixed population [81].

We computed the first two PCs of the available ancestry informative markers (genotype-based

PCs) in order to capture the ancestry information of the samples. Since the CHAMACOS

cohort primarily consists of Mexican-American individuals, we observed no separation into

distinct subpopulations in the first several genotype-based PCs. We then computed the

first two methylation-based PCs, before and after adjusting the data for cell composition.

In addition, we computed the first two EPISTRUCTURE PCs of the data, and measured

how much of the variance of the first genotype-based PC can be explained by each of the

approaches. As shown in Figure 2.8, the first two methylation-based PCs could capture

only a small portion of the first genotype-based PC (R2 = 0.04 before adjusting for cell

composition and R2 = 0.16 after adjusting for cell composition), as opposed with the first two

EPISTRUCTURE PCs which could capture the first genotype-based PC substantially better

(R2 = 0.38). As in the GALA II data, applying feature selection based on proximity of CpGs

to SNPs [34] could capture only a small portion of the ancestry information (R2 = 0.05).

As before, we used the ADMIXTURE software [19] as an alternative measure of population

structure. For each individual we estimated the ancestry proportions of the three ances-

tries known to compose Mexican individuals: European, Native-American and African. The

first two EPISTRUCTURE PCs were found to explain a large portion of the European

and Native-American fraction estimates (R2 = 0.46 for European and R2 = 0.6 for Native-

American ancestry), as opposed with the first two methylation-based PCs (R2 = 0.11 for
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Figure 2.8: Capturing population structure in the CHAMACOS data. Presented are linear
predictors of the first genotype-based PC using (a) the first two methylation PCs of the
data, (b) the first two PCs calculated after applying a feature selection based on proximity
of CpGs to nearby SNPs [34], (c) the first two PCs after adjusting the data for cell-type
composition (adjusted methylation PCs), (d) the first two adjusted methylation PCs after
excluding 167,738 probes containing SNPs from the data, and (e) the using the first two
EPISTRUCTURE PCs.

European and R2 = 0.14 for Native-American ancestry, after adjusting for cell-type com-

position; Figure 2.9). The estimates of African proportions, however, were not captured

well by either approach. This result was expected due to the low average proportion of

African ancestry in Mexican samples (less than 10%) [47]. All the results are summarized

in Table 2.1.

2.3.4 Implications for the EPIC array

The recently introduced EPIC array by Illumina, which allows to probe a set of approximately

850K CpGs, is likely to be used in many future methylation data collection efforts. Since
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Figure 2.9: Capturing ancestry fraction estimates in the CHAMACOS data set. Presented
are linear predictors of European (EU), Native-American (NA) and African (AF) fraction
estimates of the individuals in the data using the first two methylation PCs (top panel),
the first two PCs after adjusting the data for cell-type composition (adjusted methylation
PCs; middle panel) and using the first two EPISTRUCTURE PCs (bottom panel). The
methylation PCs in this experiment were computed without excluding probes containing
SNPs from the data.
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genotype data and corresponding EPIC array data for the same individuals were not publicly

available at the time of this study, we were not able to compile a reference list of CpGs for

the EPIC array. However, inspection of the probes available in each array reveals that only

32,425 of the probes in the 450K array were not included in the EPIC array. We further

found that 94% of the CpGs in the 450K-based reference list we constructed (4,616 CpGs out

of 4,913) were included in the EPIC array. Therefore, our suggested 450K-based reference

list is expected to perform similarly on data generated from the EPIC array. In order to

test that, we repeated all of the experiments we performed so far, only this time we removed

from the data the set of 32,425 sites that were not included in the EPIC array. The results,

summarized in Table 2.1, show that removing these sites leads to only a marginal decrease in

the R2 values. Clearly, as more EPIC array data will become available, EPIC-based reference

list of CpGs is expected to further improve the performance of EPISTRUCTURE.

2.4 Discussion

We demonstrated that 450K DNA methylation data can capture population structure in

admixed populations. Particularly, we observed that in the presence of a relatively strong

population structure (GALA II) the dominant genome-wide signal of ancestry information

could be revealed in an unsupervised manner once appropriately correcting for tissue het-

erogeneity. In contrast, we observed that in the presence of weaker population structure in

the data (CHAMACOS) the genome-wide signal of ancestry methylation is only moderately

reflected by the dominant axes of variation in the data, even after accounting for tissue

heterogeneity.

Using KORA, a large data set for which both methylation levels and genotypes were available,

we generated a reference list of genetically-informative CpGs and successfully used it to

estimate ancestry information in new data sets by applying PCA on the reference sites.

Polymorphic CpGs that were found to be highly correlated with genetics were also include

in the reference list. Although these CpGs are generally treated as artifacts, they represent

true genetic signal and therefore were used in order to further increase the signal captured
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by EPISTRUCTURE. As we showed, by taking this approach, EPISTRUCTURE was able

to effectively isolate and capture ancestry information in methylation data.

While we observed strong correlations between the EPISTRUCTURE PCs and the genotype-

based population structure estimates of the GALA II individuals, only moderate correlations

were found in the CHAMACOS data set (though substantially better than alternative ap-

proaches, in which only negligible correlations with the true ancestry signal were found).

These results can be explained in part by the fact that only 106 ancestry informative mark-

ers were available for us in the CHAMACOS for capturing ancestry information, as opposed

with the dense genotype array information used in the GALA II analysis. Therefore, it is

likely that our inference of population structure by methylation data is in fact more accurate

than reflected in the experiments conducted on the CHAMACOS samples.

The reference-list of CpGs was generated using methylation states and genotypes collected

from European individuals, therefore it may not be optimized for capturing ancestry infor-

mation in non-European populations. However, since we successfully used this list for the

inference of ancestry in the Latino GALA II and CHAMACOS individuals, we expect it to

prove useful for some other non-European populations as well.

Finally, we note that when constructing the linear models for each CpG from its cis-SNPs

in the whole-blood KORA data, we decided not to account for tissue heterogeneity. To

the best of our knowledge, there is currently no evidence for dramatic genome-wide effects

of genotypes on the cell-type composition. Therefore, in the vast majority of CpGs, the

cell-type composition is expected to be orthogonal to the genetic signal they contain. As a

result, accounting for tissue heterogeneity in this case is more likely to reduce the accuracy

of the model due to inaccuracies of the cell-type composition estimates rather than to bias

the selection of CpGs into the reference-list.
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Table 2.1: Summary of the results in the GALA II data set and in the CHAMACOS data
set. In the first part of the table, squared linear correlations were measured between several
measurements of ancestry information and linear predictors using the first two PCs of the
data (Meth PCs), the first two PCs after adjusting the data for cell-type composition (Adj
PCs), the first two PCs after adjusting the data for cell-type composition and excluding
probes containing SNPs from the data (Adj PCs II), the first two PCs when considering
only CpGs in close proximity to SNPs (Barfield et al.) and the first two EPISTRUCTURE
PCs. The second part of the table presents the results of the same experiments, only after
excluding all the CpGs of the 450K array that were not included in the EPIC methylation
array.
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CHAPTER 3

Refernce-free estimation of cell-type composition from

DNA methylation

3.1 Background

DNA methylation status has become a prominent epigenetic marker in genomic studies, and

genome-wide DNA methylation data have become ubiquitous in the last few years. Numer-

ous recent studies provide evidence for the role of DNA methylation in cellular processes

and in disease (e.g., in multiple sclerosis [82], schizophrenia [83], and type 2 diabetes [84]).

Thus, DNA methylation status holds great potential for better understanding the role of

epigenetics, potentially leading to better clinical tools for diagnosing and treating patients.

In a typical DNA methylation study, we obtain a large matrix in which each entry corresponds

to a methylation level (a number between 0 and 1) at a specific genomic position for a specific

individual. This level is the fraction of the probed DNA molecules that were found to have

an additional methyl group at the specific position for the specific individual. Essentially,

these methylation levels represent, for each individual and for each site, the probability of

a given DNA molecule to be methylated. While simple in principle, methylation data are

typically complicated owing to various biological and non-biological sources of variation.

Particularly, methylation patterns are known to differ between different tissues and between

different cell types. As a result, when methylation levels are collected from a complex tissue

(e.g., blood), the observed methylation levels collected from an individual reflect a mixture

of its methylation signals coming from different cell types, weighted according to mixing

proportions that depend on the individual’s cell-type composition. Thus, it is challenging to
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interpret methylation signals coming from heterogeneous sources.

One notable challenge in working with heterogeneous methylation levels has been highlighted

in the context of Epigenome-Wide Association Studies (EWAS), where data are typically

collected from heterogeneous samples. In such studies, we typically search for rows of the

methylation matrix (each corresponding to one genomic position) that are significantly cor-

related with a phenotype of interest across the samples in the data. In this case, unless

accounted for, correlation of the phenotype of interest with the cell-type composition of the

samples may lead to numerous spurious associations and potentially mask true signal [72].

In addition to its importance for a correct statistical analysis, knowledge of the cell-type

composition may provide novel biological insights by studying cell compositions across pop-

ulations.

In principle, one can use high-resolution cell counting for obtaining knowledge about the

cell composition of the samples in a study. However, unfortunately, such cell counting for a

large cohort may be costly and often logistically impractical (e.g., in some tissues, such as

blood, reliable cell counting can be obtained from fresh samples only). Due to the pressing

need to overcome this limitation, development of computational methods for estimating cell-

type composition from methylation data has become a key interest in epigenetic studies.

Several such methods have been suggested in the past few years [36, 85, 86, 87, 88, 89],

some of which aim at explicitly estimating cell-type composition, while others aim at a

more specific goal of correcting methylation data for the potential cell-type composition

confounder in association studies. These methods take either a supervised approach, in which

reference data of methylation patterns from sorted cells (methylomes) are obtained and used

for predicting cell compositions [85], or an unsupervised approach (reference-free) [36, 86,

87, 88, 89].

The main advantage of the reference-based method is that it provides direct (absolute)

estimates of the cell counts, whereas, as we demonstrate here, current reference-free methods

are only capable of inferring components that capture linear combinations of the cell counts.

Yet, the reference-based method can only be applied when relevant reference data exist.
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Currently, reference data only exist for blood [74], breast [90] and brain [91], for a small

number of individuals (e.g., six samples in the blood reference [74]). Moreover, the individuals

in most available data sets do not match the reference individuals in their methylation-

altering factors, such as age [39], gender [40, 77], and genetics [70]. This problem was

recently highlighted in a study in which the authors showed that available blood reference

collected from adults failed to estimate cell proportions of newborns [79]. Furthermore, in

a recent work, we showed evidence from multiple data sets that a reference-free approach

can provide substantially better correction for cell composition when compared with the

reference-based method [92]. It is therefore often the case that unsupervised methods are

either the only option or are a better option for the analysis of EWAS.

As opposed to the reference-based approach, although can be applied for any tissue in prin-

ciple, the reference-free methods do not provide direct estimates of the cell-type proportions.

Previously proposed reference-free methods allow us to infer a set of components, or general

axes, which were shown to compose linear combinations of the cell-type composition [36, 88].

Another more recent reference-free method was designed to infer cell-type proportions, how-

ever, as we show here, it only provides components that compose linear combinations of the

cell-type composition rather than direct estimates [89]. Unlike cell proportions, while linearly

correlated components are useful in linear analyses such as linear regression, they cannot be

used in any nonlinear downstream analysis or for studying individual cell types (e.g., study-

ing alterations in cell composition across conditions or populations). Cell proportions may

provide novel biological insights and contribute to our understanding of disease biology, and

we therefore need targeted methods that are practical and low in cost for estimating cell

counts.

In attempt to address the limitations of previous reference-free methods and to provide cell

count estimates rather than linear combinations of the cell counts, we propose an alternative

Bayesian strategy that utilizes prior knowledge about the cell-type composition of the studied

tissue. We present a semi-supervised method, BayesCCE (Bayesian Cell Count Estimation),

which encodes experimentally obtained cell count information as a prior on the distribution
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of the cell-type composition in the data. As we demonstrate here, the required prior is

substantially easier to obtain compared with standard reference data from sorted cells. We

can estimate this prior from general cell counts collected in previous studies, without the

need for corresponding methylation data or any other genomic data.

We evaluate our method using four large methylation data sets and simulated data, and show

that our method produces a set of components that can be used as cell count estimates. We

observe that each component of BayesCCE can be regarded as corresponding to scaled values

of a single cell type (i.e. high absolute correlation with one cell type, but not necessarily good

estimates in absolute terms). We find that BayesCCE provides a substantial improvement

in correlation with the cell counts over existing reference free methods (in some cases a 50%

improvement). We also consider the case where both methylation and cell count information

are available for a small subset of the individuals in the sample, or for a group of individuals

from external data. Notably, existing reference-based and reference-free methods for cell type

estimation completely ignore this potential information. In contrast, our method is flexible

and allows to incorporate such information. Specifically, we show that our proposed Bayesian

model can leverage such additional information for imputing missing cell counts in absolute

terms. Testing this scenario on both real and simulated data, we find that measuring cell

counts for a small group of samples (a couple of dozens) can lead to a further significant

increase in the correlation of BayesCCE’s components with the cell counts.

3.2 Methods

3.2.1 Notations and related work

Let X ∈ Rn×m be an n samples by m sites matrix of DNA methylation levels coming from

a heterogeneous source consisting k cell types. For methylation levels, we consider what

is commonly referred to as beta-normalized methylation levels, which are defined for each

sample in each site as the proportion of methylated probes out of the total number of probes.

Put differently, Xij ∈ [0, 1] for each site j and sample i. We denote Z ∈ Rk×m as the cell-
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type-specific mean methylation levels for each site, W ∈ Rk×n as the cell-type proportions

of the samples in the data, and we denote a column vector of a matrix M by Mj for the j-th

vector.

Given the above notations, a common model for heterogeneous DNA methylation (i.e. mix-

tures) is

Xij = W T
i Zj + εij (3.1)

εij ∼ N(0, σ2) (3.2)

∀i∀h : Whi ≥ 0 (3.3)

∀i :
k∑

h=1

Whi = 1 (3.4)

∀j∀h : 0 ≤ Zhj ≤ 1 (3.5)

where the error term εij models measurement noise and other possible unmodeled factors.

The constraints in (3.3) and in (3.4) require the cell-type proportions to be positive and to

sum up to one in each sample, and the constraints in (3.5) require the cell-type-specific mean

levels to be in the range [0, 1]. This model was initially suggested for DNA methylation in

the context of reference-based estimation of cell proportions by Houseman et al. [85]. We

are interested in estimating W . Taking a standard maximum-likelihood approach for fitting

the model results in the following optimization problem:

Ŵ , Ẑ = argmin
W,Z

‖O −W TZ‖2
F (3.6)

s.t ∀i∀h : Whi ≥ 0 (3.7)

∀i :
k∑

h=1

Whi = 1 (3.8)

∀j∀h : 0 ≤ Zhj ≤ 1 (3.9)

where ‖ · ‖2
F is the squared Frobenius norm. The reference-based method [85] first obtains

an estimate of Z from reference methylation data collected from sorted cells of the cell types

composing the studied tissue. Once an estimate of Z is fixed, W can be estimated by solving
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a standard quadratic program.

If the matrix Z is unknown, which is a reference-free version of the problem, the above

formulation of the problem can be regarded as a version of non-negative matrix factorization

(NNMF) problem. NNMF has been suggested in several applications in biology; notably,

the problem of inference of cell-type composition from methylation data has been recently

formulated as an NNMF problem [88]. In order to optimize the model, the authors used an

alternative optimization procedure in which Z or W are optimized while the other is kept

fixed. However, as demonstrated by the authors [88], this solution results in the inference of

a linear combination of the cell proportions W . Put differently, more than one component

of the NNMF is required for explaining each cell type in the data.

The inability of NNMF to provide one component per cell type was recently highlighted

and explained using geometric considerations [89], which nicely showed the non-identifiable

nature of the NNMF model in (3.6) in case that a perfect factorization of X into Z,W exists

(i.e. X = W TZ). However, in practice, perfect factorization never exists in real biological

data. Thus, in addition to empirical evidence from several data sets on which we apply the

NNMF method (see Results), in the next subsection we provide a mathematical proof for the

non-identifiability of the NNMF model in (3.6) under a more general case, where a perfect

factorization does not necessarily exist.

In an attempt to overcome the non-identifiability of the model in (3.6) and to provide cell-

type proportions when reference methylation data are not available, a recent modification

of the NNMF model has been suggested [89]. The method, MeDeCom, solves the optimiza-

tion of the NNMF model while including additional penalty term in the objective function.

Derived from biological knowledge about mean methylation levels, the penalty negatively

weights mean methylation levels diverging from a known bimodal behavior of methylation

levels, wherein CpGs tend to be overall methylated or unmethylated [89]. While the modified

objective suggested in MeDeCom overcomes the non-identifiability of the NNMF model for

a given weight of the penalty (λ), it is not entirely clear how to select λ. To circumvent this

problem, the authors proposed a cross-validation procedure for the selection of λ. However,
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our empirical results from four large whole-blood methylation data sets, as well as from sim-

ulated data, show sub-optimal performance for MeDeCom, similarly to the solutions of the

simpler NNMF model. Our results suggest that the modification introduced by MeDeCom

may not effectively avoid the non-identifiability nature of the NNMF model, possibly due to

insufficient prior information or inability to effectively determine an appropriate value for λ.

Another recent reference-free method for estimating cell composition in methylation data,

ReFACTor [36], performs an unsupervised feature selection step followed by a principal

components analysis (PCA). Similarly to the NNMF solution, ReFACTor is an unsupervised

method and it only finds principal components (PCs) that form linear combinations of the

cell proportions rather than directly estimates the cell proportion values [36].

3.2.2 Non-identifiability of the NNMF model

We hereby show by construction the non-identifiability nature of the NNMF model in (3.6).

For this proof, instead of the constraints in (3.9), we consider a slightly modified version of

the constraints:

∀j∀h : 0 < Zhj < 1 (3.10)

While in theory we may have an equality (i.e. Zhj = 0 or Zhj = 1), in practice, such sites are

typically not measured or excluded from the analysis, since they would not be demonstrating

any variability.

Proposition: Let Ŵ , Ẑ be a solution to the problem in (3.6). There exist W̃ 6= Ŵ , Z̃ 6= Ẑ

such that ‖X − Ŵ T Ẑ‖2
F = ‖X − W̃ T Z̃‖2

F and the constraints in (3.7), (3.8) and in (3.10)

are satisfied.

Proof:

Let 0 < c < 1, define Q ∈ Rk×k to be the identity matrix up to two entries: Q11 = 1−c,Q12 =

c. It follows that Q−1 is also the identity matrix up to two entries: Q−1
11 = 1

1−c , Q
−1
12 = c

c−1
.
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Denote W̃ = QT Ŵ and denote Z̃ = Q−1Ẑ, we get that

‖X − W̃ T Z̃‖2
F = ‖X − Ŵ TQQ−1Ẑ‖2

F = ‖X − Ŵ T Ẑ‖2
F

The constraints in (3.7) hold since W̃hi ≥ 0 for each 1 ≤ i ≤ n, 1 ≤ h ≤ k. The constraints

in (3.8) hold since for each 1 ≤ i ≤ n

k∑
l=1

W̃li =
k∑
l=1

k∑
h=1

QT
lhŴhi = (1− c)Ŵ1i + cŴ1i +

k∑
h=2

Ŵhi =
k∑

h=1

Ŵhi = 1

In addition, Z̃hj ∈ (0, 1) for 2 ≤ h ≤ k, 1 ≤ j ≤ m. In order to completely satisfy the

constraints in (3.10), we also require these constraints to be satisfied for h = 1, 1 ≤ j ≤ m.

It is easy to see that for each j the latter is satisfied if

0 < c < min

{
1− Ẑ1j

1− Ẑ2j

,
Ẑ1j

Ẑ2j

}

Therefore, we can simply select a value of c in the range

0 < c < minj

{
min

{
1− Ẑ1j

1− Ẑ2j

,
Ẑ1j

Ẑ2j

}}

Note that we necessarily have either

0 < c < minj

{
min

{
1− Ẑ1j

1− Ẑj1
,
Ẑ1j

Ẑ2j

}}
< 1

or

0 < c < minj

{
min

{
1− Ẑ2j

1− Ẑ1j

,
Ẑ2j

ẐT
1j

}}
< 1

In the latter case we can switch the positions of the first two columns in Z. Equality of

the minimum to 1 in both cases would mean that the first two rows of Z are identical,
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which would mean that the problem is non-identifiable, as the first two cell types cannot

be distinguished in this scenario. As a result of the above, the constraints in (3.10) can be

satisfied for a range of values of c. �

3.2.3 The model

We suggest a more detailed model by adding a prior on W and taking into account potential

covariates. Specifically, we assume that

Wi ∼ Dirichlet(α1, ..., αk) (3.11)

where α1, ..., αk are assumed to be known. In practice, the parameters are estimated from

external data in which cell-type proportions of the studied tissue are known. Such experi-

mentally obtained cell-type proportions were used to test the appropriateness of the Dirichlet

prior in describing cell composition distribution (data not shown). Also, we consider addi-

tional factors of variation affecting observed methylation levels, in addition to variation in

cell-type composition. Specifically, denote C ∈ Rn×p as a matrix of p covariates for each

individual and S ∈ Rm×p as a matrix of corresponding effects of the p covariates on each of

the m sites. As before, we are interested in estimating W , the cell-type proportions of the k

cell types. Deriving a maximum likelihood-based solution for this model and repeating the

constraints for completeness results in the following optimization problem:

Ŵ , Ẑ, Ŝ = argmin
W,Z,S

1

2σ2
‖X −W TZ − CST‖2

F −
k∑

h=1

(αh − 1)
n∑
i=1

log(Whi) (3.12)

s.t ∀i∀h : Whi ≥ 0 (3.13)

∀i :
k∑

h=1

Whi = 1 (3.14)

∀j∀h : 0 ≤ Zhj ≤ 1 (3.15)
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Our intuition in this model is that since the priors on W are estimated from real data,

incorporating them will push the solution of the optimization to return estimates of W

which are closer to the true values as opposed to a linear combination of them.

3.2.4 The BayesCCE algorithm

Our algorithm uses ReFACTor as a starting point, and we estimate W by finding an appropri-

ate linear transformation of the ReFACTor principal components (ReFACTor components).

In principle, any of the reference-free methods we examined (ReFACTor, NNMF and MeDe-

Com) could be used as the starting point for our method. However, as we later show, we

found that ReFACTor captures a larger portion of the cell composition variance compared

with the alternatives.

Applying ReFACTor on our input matrix X we get a list of t sites that are expected to be

most informative with respect to the cell composition in X. Let X̃ ∈ Rn×t be a truncated

version of X containing only the t sites selected by ReFACTor. We apply PCA on X̃ to get

L ∈ Rt×d, P ∈ Rn×d, the loadings and scores of the first d ReFACTor components. Then, we

reformulate the original optimization problem in terms of linear transformations of L and P

as follows:

Â, V̂ , B̂ = argmin
A,V,B

1

2σ2
||X̃ − PV ATLT − CBTLT ||2F (3.16)

−
k∑

h=1

(αh − 1)
n∑
i=1

log

(
d∑
l=1

PilVlh

)

s.t ∀i∀h :
d∑
l=1

PilVlh ≥ 0 (3.17)

∀i :
k∑

h=1

d∑
l=1

PilVlh = 1 (3.18)

∀j∀k : 0 ≤
d∑
l=1

LjlAlh ≤ 1 (3.19)

where A ∈ Rd×k is a transformation matrix such that Z̃ = ATLT (Z̃ being a truncated
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version of Z with the t sites selected by ReFACTor), V ∈ Rd×k is a transformation matrix

such that W T = PV and B ∈ Rd×p is a transformation matrix such that LB corresponds to

the effects of each covariate on the methylation levels in each site. The constraints in (3.17)

and in (3.18) correspond to the constraints in (3.13) and in (3.14), and the constraints

in (3.19) correspond to the constraints in (3.15).

Given V̂ , we simply return Ŵ = V̂ TP T as the estimated cell proportions. Note that in the

new formulation we are now required to learn only d(2k + p) parameters - d, k and p being

small constants - a dramatically decreased number of parameters compared with the original

problem which requires nk + m(k + p) parameters. By taking this approach, we make an

assumption that X̃ consists of a low rank structure that captures the cell composition using

d orthogonal vectors. While a natural value for d would be k, d is not bounded to be k.

Particularly, in cases where substantial additional cell composition signal is expected to be

captured by latter ReFACTor components (i.e. components beyond the first k), we would

expect to benefit from increasing d. Clearly, overly increasing d is expected to result in

overfitting and thus a decrease in performance. Finally, taking into account covariates with

potentially dominant effects in the data should alleviate the risk of introducing noise into Ŵ

in case of mixed low-rank structure of cell-composition signal and other unwanted variation

in the data. We note, however, that similarly to the case of correlated explaining variables

in regression, considering covariates that are expected to be correlated with the cell-type

composition may result in underestimation of A, V and therefore lead to a decrease in the

quality of Ŵ .

3.2.5 Imputing cell counts using a subset of samples with measured cell counts

In practice, we observe that each of BayesCCE’s components corresponds to a linear trans-

formation of one cell type rather than to an estimate of that cell type in absolute terms. That

is, it still lacks the right scaling (multiplication by a constant and addition of a constant) for

transforming it into cell-type proportions. Furthermore, we would like the ith BayesCCE

component to correspond to the ith cell type described by the prior using the αi parameter.
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Empirically, this is not necessarily the case, especially in scenarios where some of the αi

values are similar. In order to address these two caveats, we suggest incorporating measured

cell counts for a subset of the samples in the data.

Assume we have n0 reference samples in the data with known cell counts W (0) and n1

samples with unknown cell counts W (1) (n = n0 + n1). This problem can be regarded as an

imputation problem, in which we aim at imputing cell counts for samples with unknown cell

counts. We can find Ẑ by solving the problem in (3.12) under the constraints in (3.15) for

the n0 reference samples while replacing W with W (0) and keeping it fixed. Then, given Ẑ,

we can now solve the problem in (3.16), after replacing ATLT with Ẑ (i.e. we find only V,B

now), under the following constraints

∀(1 ≤ i ≤ n0)∀h :
d∑
l=1

P
(0)
il Vlh = W

(0)
hi (3.20)

∀(1 ≤ i ≤ n1)∀h :
d∑
l=1

P
(1)
il Vlh ≥ 0 (3.21)

∀(1 ≤ i ≤ n1) :
k∑

h=1

d∑
l=1

P
(1)
il Vlh = 1 (3.22)

where P (0) contains n0 rows corresponding to the reference samples in P , and P (1) contains n1

rows corresponding to the remaining samples in P . In this case, both problems of estimating

Z and solving (3.16) while keeping Ẑ fixed are convex - the first problem takes the form

of a standard quadratic problem and the latter results in an optimization problem of the

sum of two convex terms under linear constraints. Using Ẑ, estimated from cell counts and

corresponding methylation levels of a group of samples, as well as adding the constraints

in (3.20), are expected to direct the inference of W towards a set of components such that

each one corresponds to one known cell type with a proper scale.

We note that given an estimate Ẑ as described above, we can also solve directly the problem

in (3.12) rather than the problem in (3.16). This approach may be more desired in cases

where P does not effectively capture the cell composition variation in the data. In the context

of our study, however, it is not possible to reliably evaluate the approach of solving directly

42



the problem in (3.12), owing to the fact the the ground truth we set for evaluation is based on

the same matrix Z. Specifically, in this case, the cell proportions of the reference individuals

are expected to recover the same matrix Z that was used for computing the ground truth

proportions of the non-reference individuals. As a result, the estimated proportions of the

non-reference individuals will be exactly the ground truth that is used in the evaluation (up

to a statistical error arising from the estimation of Z), regardless of the true accuracy of

the estimate Ẑ with respect to the true Z and regardless of the true accuracy of the cell

proportion estimates.

3.2.6 Evaluation of performance

The fraction of cell composition variation (R2) captured by each of the reference-free meth-

ods, ReFACTor, NNMF and MeDeCom, was computed for each cell type using a linear

predictor fitted with the first k components provided by each method. In order to evaluate

the performance of BayesCCE, for each component i we calculated its absolute correlation

with the i-th cell type, and reported the mean absolute correlation (MAC) across the k

estimated cell types. While the Dirichlet prior assigns a specific parameter αh for each cell

type h, empirically, we observed that in the case of k = 6 with no known cell counts for

a subset of the samples, the i-th BayesCCE component did not necessarily correspond to

the i-th cell type. Put differently, the labels of the k cell types had to be permuted before

calculating the MAC. In this case we considered the permutation of the labels which resulted

with the highest MAC as the correct permutation. In the rest of the cases, we did not apply

such permutation (all the experiments using k = 3 and all the experiments using k = 6 with

known cell counts for a subset of the samples).

For evaluating ReFACTor, NNMF and MeDeCom, reference-free methods which do not

attribute their components to specific cell types in any scenario, we considered for each

method the permutation of its components leading to the highest MAC in all experiments

when compared with BayesCCE. In addition, we considered absolute error of the estimates

from the ground truth as an additional quality measurement. We calculated the mean
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absolute error (MAE) across the k estimated cell types. When calculating absolute errors

for the ReFACTor components, we scaled each ReFACTor component to be in the range

[0, 1].

3.2.7 Implementation and application of the reference-free and reference-based

methods

We calculated the ReFACTor components for each data set using the parameters k = 6

and t = 500 and according to the default implementation and recommended guidelines of

ReFACTor as described in the GLINT tool [93] and in a recent work [92], while accounting

for known covariates in each data set. More specifically, in the Hannum et al. data [94]

we accounted for age, sex, ethnicity and batch information, in the Liu et al. data [67] we

accounted for age, sex, smoking status and batch information, and in the two Hannon et

al. data sets [95] we accounted for age, sex and case/control state. We used the first six

ReFACTor components (d = 6) for simulated data in order to accommodate with the number

of simulated cell types, and the first ten components (d = 10) for real data, as real data are

typically more complex and are therefore more likely to contain substantial signal in latter

components.

The NNMF components were computed for each data set using the default setup of the

RefFreeEWAS R package from the subset of 10,000 most variable sites in the data set, as

performed in the NNMF paper by the authors [88]. Similarly, the MeDeCom components

were computed for each data set using the default setup of the MeDeCom R package [89]

from the subset of 10,000 most variable sites in the data set, as repeatedly running the

method on the entire set of CpGs was revealed to be computationally prohibitive. The regu-

larization parameter λ was selected according to a minimum cross-validation error criterion,

as instructed in the MeDeCom package.

We used the GLINT tool [93] for estimating blood cell-type proportions for each one of

the data sets, according to the Houseman et al. method [85], using 300 highly informative

methylation sites defined in a recent study [96] and using reference data collected from sorted
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blood cells [74].

3.2.8 Data sets

We evaluated the performance of BayesCCE using a total of six data sets, as described

bellow. For the real data experiments we downloaded four publicly available Illumina 450K

DNA methylation array data sets from the Gene Expression Omnibus (GEO) database: a

data set by Hannum et al. (accession GSE40279) from a study of aging rate [94], a data

set by Liu et al. (accession GSE42861) from a recent association study of DNA methylation

with rheumatoid arthritis [67], and two data sets by Hannon et al. (accessions GSE80417

and GSE84727; denote Hannon et al. I and Hannon et al. II) from a recent association

study of DNA methylation with schizophrenia).

We preprocessed the data according to a recently suggested normalization pipeline [97].

Specifically, we retrieved and processed raw IDAT methylation files using R and the minfi R

package [49] as follows. We removed 65 single nucleotide polymorphism (SNP) markers and

applied the Illumina background correction to all intensity values, while separately analyzing

probes coming from autosomal and non-autosomal chromosomes. We used a detection P-

value threshold of P-value < 10−16 for intensity values, setting probes with P-values higher

than this threshold to be missing values. Based on these missing values, we excluded samples

with call rates < 95%. Since IDAT files were not made available for the Hannum et al. data

set, we used the methylation intensity levels published by the authors.

As for data normalization, following the same suggested pipeline [97], we performed a quantile

normalization of the methylation intensity values, subdivided by probe type, probe sub-type

and color channel. Beta-normalized methylation levels were eventually calculated based

on intensities levels (according to the recommendation by Illumina). On top of that, we

excluded probes with over 10% missing values and used the ”impute” R package for imputing

remaining missing values. Additionally, using GLINT [93], we excluded from each data set

all CpGs coming from the non-autosomal chromosomes, as well as polymorphic and cross-

reactive sites, as was previously suggested [37].
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We further removed outlier samples and samples with missing covariates. In more details,

we removed six samples from the Hannum et al. data set and two samples from the Liu et al.

data set, which demonstrated extreme values in their first two principal components (over

four empirical standard deviations). Furthermore, we removed from the Liu et al. data set

two additional remaining samples that were regarded as outliers in the original study of Liu et

al., and we removed from the Hannon et al. data sets samples with missing age information.

The final number of samples remained for analysis were n = 650, n = 658, n = 638 and

n = 656, and the numbers of CpGs remained were 382,158, 376,021, 381,338 and 382,158,

for the Hannum et al. data set, Liu et al. data set, and the Hannon et al. I and Hannon et

al. II data sets, respectively.

For learning prior information about the distribution of blood cell-type proportions we used

electronic medical record (EMR) based study data that were acquired via the previously

published Department of Anesthesiology and Perioperative Medicine at UCLA’s periopera-

tive data warehouse (PDW) [98]. The PDW is a structured reporting schema that contains

all the relevant clinical data entered into an EMR via the use of Clarity, the relational

database created by EPIC (EPIC Systems, Verona, WI) for data analytics and reporting.

We used high-resolution cell count measurements from adult individuals (n = 595) for fitting

a Dirichlet distribution. The resulted parameters of the prior were 15.0727, 1.8439, 2.5392,

1.7934, 0.7240 and 0.7404 for granulocytes, monocytes , CD4+, CD8+, B cells, and NK

cells, respectively. The parameters of the prior calculated for the case of three assumed cell

types (k = 3) were 7.7681, 0.9503, and 2.9876 for granulocytes, monocytes, and lympho-

cytes, respectively. Finally, for generating simulated data sets and for generating correlation

maps of cell-type-specific methylomes, we used publicly available data of methylation refer-

ence of sorted cell types collected in six individuals from whole-blood tissue (GEO accession

GSE35069) [74].
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3.2.9 Data simulation

We simulated data following a model that was previously described in details elsewhere [36].

Briefly, we used methylation levels from sorted blood cells [74] and, assuming normality, esti-

mated maximum likelihood parameters for each site in each cell type. cell-type-specific DNA

methylation data were then generated for each simulated individual from normal distribu-

tions with the estimated parameters, conditional on the range [0,1], for six cell types and for

each site. Cell proportions for each individual were generated using a Dirichlet distribution

with the same parameters used in the real data analysis. Eventually, observed DNA methyla-

tion levels were composed from the cell-type-specific methylation levels and cell proportions

for each individual, and a random normal noise was added to every data entry to simulate

technical noise (σ = 0.01). To simulate inaccuracies of the prior, the Dirichlet parameters

required by BayesCCE were learned from cell-type proportions of 50 samples generated at

random from a Dirichlet distribution using the parameters learned from real data.

3.3 Results

3.3.1 Benchmarking existing reference-free methods for capturing cell-type com-

position

We first demonstrate that existing reference-free methods can infer components that are

correlated with the tissue composition of DNA methylation data collected from heterogeneous

sources. For this experiment, as well as for the rest of the experiments that follow, we used

four large publicly available whole-blood methylation data sets: a data set by Hannum et

al. [94] (n = 650), a data set by Liu et al. [67] (n = 658), and two data sets by Hannon et

al. [95] (n = 638 and n = 665; denote Hannon et al. I and Hannon et al. II, respectively). In

addition, we simulated data based on a reference data set of methylation levels from sorted

leukocytes cells [74] (see section 3.2). While cell counts were known for each sample in the

simulated data, cell counts were not available for the real data sets. We therefore estimated

the cell-type proportions of six major blood cell types (granulocytes, monocytes and four
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subtypes of lymphocytes: CD4+, CD8+, B cells and natural killer cells) based on a reference-

based method [85], which was shown to reasonably estimate leukocyte cell proportions from

whole-blood methylation data collected from adult individuals [35, 79, 96]. Due to the

absence of large publicly available data sets with measured cell counts, these estimates were

considered as the ground truth for evaluating the performance of the different methods.

For benchmarking performance of existing methods, we considered three reference-free meth-

ods, all of which were shown to generate components that capture cell-type composition infor-

mation from methylation: ReFACTor [36], Non-Negative Matrix Factorization (NNMF) [88]

and MeDeCom [89]. Although the reference-free methods can potentially allow the detec-

tion of more cell types than the set of predefined cell types in the reference-based approach,

we evaluated six components of each of the reference-free methods - six being the number

of estimated cell types composing the ground truth. We found all methods to capture a

large portion of the cell composition information in all data sets; particularly, we observed

that ReFACTor performed considerably better than NNMF and MeDeCom in all occasions

(Figure 3.1).

In spite of the fact that all three methods can capture a large portion of the cell composition

variation, each component provided by these methods is a linear combination of the cell

types in the data rather than an estimate of the proportions of a single cell type. As a

result, as we show next, in general, these methods perform poorly when their components

are considered as estimates of cell-type proportions. Of note, ReFACTor was not designed for

estimating cell proportions but rather for providing orthogonal principal components of the

data that together capture variation in cell compositions, however, NNMF and MeDeCom,

which extends the underlying model in NNMF, were designed to provide estimates of cell-

type proportions.

3.3.2 Evaluation of BayesCCE

Every method that has been developed so far for capturing cell composition signal from

methylation can be classified as either reference-based, wherein a reference of methylation
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Figure 3.1: The fraction of cell-type composition variance explained (R2) by several reference-
free methods. For each of the different methods, ReFACTor, NNMF and MeDeCom, a linear
model was fitted for each of the six cell types using six components. The results presented
for the simulated data were averaged across ten different simulated data sets.

patterns of sorted cells is used, or reference-free, wherein cell composition information is

inferred in an unsupervised manner. Our proposed method, BayesCCE, combines elements

from the underlying models of previous reference-free methods with further assumptions.

BayesCCE does not use standard reference data of sorted methylation levels, but rather it

leverages relatively weak prior information about the distribution of cell-type composition

in the studied tissue. This allows BayesCCE to direct the solution towards the inference of

one component for each cell type that is encoded in the prior information.

In order to evaluate BayesCCE, we obtained prior information about the distribution of

leukocyte cell-type proportions in blood using high resolution blood cell counts that were

previously measured in 595 adult individuals (see section 3.2). In concordance with the

estimated cell-type proportions used as the ground truth, we first considered the assumption
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of six constituting cell types in blood tissue (k = 6). We applied BayesCCE on each of

the four data sets, and evaluated the resulted components. We observed that each time

BayesCCE produced a set of six components such that each component was correlated with

one of the cell types, as desired (Figure 3.2 and Tables 3.1 and 3.2). Specifically, we found

the mean absolute correlation values across all six cell types to be 0.58, 0.63, 0.45 and

0.45 in the Hannum et al., Liu et al., Hannon et al. I and Hannon et al. II data sets,

respectively. We note, however, that the assignment of components into corresponding cell

types could not be automatically determined by BayesCCE. In addition, in general, the

BayesCCE components were not in the right scale of their corresponding cell types (i.e.

each component represented the proportions of one cell type up to a multiplicative constant

and addition of a constant). These symptoms are expected due to the nature of the prior

information used by BayesCCE. For more details about the assignment of components into

cell types and evaluation measurements see section 3.2.

We next considered a simplifying assumption of only three constituting cell types in blood

tissue (k = 3): granulocytes, lymphocytes and monocytes. We applied BayesCCE on each

of the four data sets, and observed high correlations between the estimated components

of granulocytes and the granulocytes levels (r ≥ 0.91 in all data sets) and between the

estimated components of lymphocytes and the lymphocytes levels (r ≥ 0.87 in all data sets),

yet much lower correlations for monocytes (r ≤ 0.27 in all data sets; Figure 3.3 and Tables 3.1

and 3.2). We note that poor performance in capturing some cell type may be partially derived

by inaccuracies introduced by the reference-based estimates, which are used as the ground

truth in our experiments. Notably, three recent studies, which consisted of samples for which

both methylation levels and cell count measurements were available, demonstrated that while

the reference-based estimates of the overall lymphocyte and granulocyte levels were found to

be highly correlated with the true levels, the accuracy of estimated monocytes was found to

be substantially lower [36, 79, 99]. This may explain in part the low correlations we report

for monocytes in our experiments. Low correlations with some of the cell types may be

driven by various reasons, such as utilizing inappropriate reference or failing to perform a
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Figure 3.2: BayesCCE captures cell-type proportions in four data sets under the assumption
of six constituting cell types in blood (k = 6): granulocytes, monocytes and four subtypes of
lymphocytes (CD4+, CD8+, B cells and NK cells). The BayesCCE estimated components
were linearly transformed to match their corresponding cell types in scale (see section 3.2).
For convenience of visualization, we only plot the results of 100 randomly selected samples
for each data set.

good feature selection. We later provide a more detailed discussion about these issues.

For assessing the performance of BayesCCE in light of previous reference-free methods, we

sub-sampled the data and generated ten data sets of 300 randomly selected samples from

each one of the four data sets. In addition, we simulated ten data sets of similar size (n =
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Figure 3.3: BayesCCE captures cell-type proportions in four data sets under the assumption
of three constituting cell types in blood (k = 3): granulocytes, monocytes and lymphocytes.
The BayesCCE estimated components were linearly transformed to match their correspond-
ing cell types in scale (see section 3.2).

300; see section 3.2). Figure 3.4 demonstrates a significant and substantial improvement in

performance for BayesCCE upon existing methods under the assumption of six constituting

cell types (k = 6). Repeating the same set of experiments while assuming three constituting

cell types (k = 3) revealed similar results (Figure 3.5).
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Absolute Correlation

k = 3 k = 6

data set Method Gran Lymph Mono Gran CD4+ CD8+ B NK Mono

Hannum et al. [94]

ReFACTor 0.166 0.975 0.051 0.95 0.389 0.335 0.34 0.129 0.201

NNMF 0.952 0.938 0.172 0.85 0.3 0.184 0.644 0.077 0.118

MeDeCom 0.448 0.923 0.285 0.631 0.505 0.351 0.433 0.015 0.258

BayesCCE 0.936 0.872 0.251 0.921 0.703 0.575 0.559 0.326 0.405

BayesCCE imp 0.965 0.988 0.516 0.951 0.851 0.626 0.899 0.636 0.403

BayesCCE imp ext 0.959 0.985 0.214 0.957 0.804 0.513 0.744 0.474 0.103

Liu et al. [67]

ReFACTor 0.164 0.982 0.105 0.961 0.089 0.495 0.338 0.137 0.309

NNMF 0.936 0.98 0.092 0.902 0.269 0.588 0.023 0.089 0.328

MeDeCom 0.97 0.773 0.054 0.73 0.563 0.24 0.16 0.283 0.293

BayesCCE 0.971 0.956 0.021 0.973 0.785 0.719 0.59 0.487 0.209

BayesCCE imp 0.977 0.986 0.561 0.982 0.792 0.675 0.609 0.554 0.496

BayesCCE imp ext 0.988 0.986 0.529 0.971 0.726 0.66 0.646 0.516 0.483

Hannon et al. I [95]

ReFACTor 0.387 0.919 0.025 0.883 0.013 0.403 0.358 0.043 0.147

NNMF 0.916 0.959 0.157 0.682 0.597 0.401 0.159 0.074 0.193

MeDeCom 0.934 0.7 0.027 0.801 0.342 0.285 0.297 0.16 0.135

BayesCCE 0.947 0.973 0.266 0.956 0.628 0.297 0.451 0.186 0.153

BayesCCE imp 0.938 0.977 0.305 0.944 0.738 0.467 0.643 0.366 0.35

BayesCCE imp ext 0.971 0.973 0.528 0.967 0.665 0.355 0.687 0.384 0.419

Hannon et al. II [95]

ReFACTor 0.106 0.977 0.072 0.952 0.011 0.214 0.427 0.429 0.05

NNMF 0.833 0.805 0.14 0.598 0.416 0.245 0.234 0.038 0.143

MeDeCom 0.829 0.724 0.018 0.482 0.329 0.222 0.107 0.124 0.102

BayesCCE 0.91 0.981 0.217 0.914 0.713 0.316 0.425 0.206 0.107

BayesCCE imp 0.973 0.983 0.441 0.965 0.756 0.62 0.823 0.641 0.519

BayesCCE imp ext 0.957 0.98 0.299 0.972 0.751 0.563 0.775 0.618 0.604

Table 3.1: A summary of the correlation of existing reference-free methods and BayesCCE
with each cell type in four whole-blood data sets (considering reference-based estimates as
the ground truth), under the assumption of six constituting cell types in blood (k = 6): gran-
ulocytes, monocytes and four subtypes of lymphocytes (CD4+, CD8+, B cells and NK cells),
and under the assumption of three constituting cell types in blood (k = 3): granulocytes,
monocytes and lymphocytes. For each of the methods, ReFACTor, NNMF, MeDeCom and
BayesCCE, we considered a single component per cell type (see section 3.2). In addition,
we considered the scenario wherein cell counts are known for 5% of the samples (BayesCCE
imp), and the scenario wherein samples from external data with both methylation levels and
cell counts are available (5% of the sample size; BayesCCE imp ext). For BayesCCE imp and
BayesCCE imp ext, correlations were calculated after excluding the samples with assumed
known cell counts.
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Mean Absolute Error

k = 3 k = 6

data set Method Gran Lymph Mono Gran CD4+ CD8+ B NK Mono

Hannum et al. [94]

ReFACTor 0.187 0.104 0.587 0.233 0.498 0.335 0.627 0.593 0.161

NNMF 0.113 0.11 0.067 0.141 0.121 0.062 0.272 0.051 0.046

MeDeCom 0.232 0.064 0.276 0.445 0.072 0.125 0.148 0.134 0.106

BayesCCE 0.237 0.186 0.114 0.501 0.097 0.166 0.041 0.043 0.422

BayesCCE imp 0.022 0.022 0.021 0.022 0.027 0.029 0.015 0.023 0.021

BayesCCE imp ext 0.044 0.018 0.046 0.032 0.042 0.032 0.031 0.037 0.027

Liu et al. [67]

ReFACTor 0.183 0.14 0.54 0.233 0.356 0.497 0.41 0.423 0.317

NNMF 0.197 0.196 0.046 0.223 0.082 0.276 0.042 0.049 0.058

MeDeCom 0.284 0.193 0.202 0.398 0.071 0.079 0.1 0.165 0.108

BayesCCE 0.23 0.214 0.043 0.094 0.034 0.038 0.049 0.076 0.038

BayesCCE imp 0.023 0.015 0.017 0.02 0.033 0.034 0.016 0.027 0.018

BayesCCE imp ext 0.013 0.016 0.021 0.019 0.032 0.045 0.021 0.03 0.019

Hannon et al. I [95]

ReFACTor 0.222 0.131 0.383 0.201 0.318 0.284 0.445 0.404 0.437

NNMF 0.218 0.221 0.045 0.463 0.221 0.305 0.05 0.046 0.043

MeDeCom 0.215 0.151 0.246 0.408 0.062 0.083 0.117 0.122 0.115

BayesCCE 0.27 0.23 0.084 0.311 0.159 0.053 0.054 0.066 0.042

BayesCCE imp 0.022 0.014 0.023 0.034 0.027 0.028 0.014 0.026 0.016

BayesCCE imp ext 0.014 0.03 0.017 0.017 0.03 0.03 0.027 0.026 0.016

Hannon et al. II [95]

ReFACTor 0.231 0.199 0.368 0.185 0.363 0.272 0.39 0.223 0.28

NNMF 0.468 0.47 0.048 0.502 0.086 0.624 0.039 0.048 0.061

MeDeCom 0.207 0.08 0.277 0.413 0.082 0.097 0.131 0.123 0.125

BayesCCE 0.205 0.191 0.064 0.31 0.192 0.034 0.07 0.07 0.038

BayesCCE imp 0.013 0.012 0.015 0.027 0.025 0.025 0.011 0.023 0.015

BayesCCE imp ext 0.017 0.015 0.035 0.014 0.026 0.027 0.015 0.022 0.016

Table 3.2: A summary of the mean absolute error of existing reference-free methods and
BayesCCE with each cell type in four whole-blood data sets (considering reference-based
estimates as the ground truth), under the assumption of six constituting cell types in blood
(k = 6): granulocytes, monocytes and four subtypes of lymphocytes (CD4+, CD8+, B
cells and NK cells), and under the assumption of three constituting cell types in blood
(k = 3): granulocytes, monocytes and lymphocytes. For each of the methods, ReFACTor,
NNMF, MeDeCom and BayesCCE, we considered a single component per cell type (see
section 3.2). In addition, we considered the scenario wherein cell counts are known for 5%
of the samples (BayesCCE imp), and the scenario wherein samples from external data with
both methylation levels and cell counts are available (5% of the sample size; BayesCCE
imp ext). For BayesCCE imp and BayesCCE imp ext, absolute errors were calculated after
excluding the samples with assumed known cell counts.
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Figure 3.4: The performance of existing reference-free methods and BayesCCE under the
assumption of six constituting cell types in blood (k = 6): granulocytes, monocytes and four
subtypes of lymphocytes (CD4+, CD8+, B cells and NK cells). For each method, box plots
show for each data set the performance across ten sub-sampled data sets (n = 300), with
the median indicated by a horizontal line. For each of the methods, ReFACTor, NNMF,
MeDeCom and BayesCCE, we considered a single component per cell type (see section 3.2).
Additionally, we considered the scenario of cell counts imputation wherein cell counts were
known for 5% of the samples (n = 15; BayesCCE imp), and the scenario wherein samples
from external data with both methylation levels and cell counts were used in the analysis
(n = 15; BayesCCE imp ext). Top panel: mean absolute correlation (MAC) across all cell
types. Bottom panel: mean absolute error (MAE) across all cell types. For BayesCCE imp
and BayesCCE imp ext, the MAC and MAE values were calculated while excluding the
samples with assumed known cell counts.
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Figure 3.5: The performance of existing reference-free methods and BayesCCE under the
assumption of three constituting cell types in blood (k = 3): granulocytes, monocytes and
lymphocytes. For each method, box plots show for each data set the performance across
ten sub-sampled data sets (n = 300), with the median indicated by a horizontal line. For
each of the methods, ReFACTor, NNMF, MeDeCom and BayesCCE, we considered a single
component per cell type (see section 3.2). Additionally, we considered the scenario of cell
counts imputation wherein cell counts were known for 5% of the samples (n = 15; BayesCCE
imp), and the scenario wherein samples from external data with both methylation levels and
cell counts were used in the analysis (n = 15; BayesCCE imp ext). Top panel: mean absolute
correlation (MAC) across all cell types. Bottom panel: mean absolute error (MAE) across
all cell types. For BayesCCE imp and BayesCCE imp ext, the MAC and MAE values were
calculated while excluding the samples with assumed known cell counts.
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3.3.3 BayesCCE impute: cell counts imputation

We next considered a scenario in which cell counts are known for a small subset of the samples

in the data. This problem can be viewed as a problem of imputing missing cell count values

(see section 3.2). We repeated all previous experiments, only this time we assumed that cell

counts are known for randomly selected 5% of the samples in each data set. As opposed

to the previous experiments, in which each one of the BayesCCE components constituted a

scaled estimate of the proportions of one of the cell types, incorporating samples with known

cell counts allowed BayesCCE to produce components that form absolute estimates of the

cell-type proportions (i.e. not scaled components, but components with low absolute error

compared with the true proportions). Moreover, in contrast to previous experiments, each

component was now automatically assigned to its corresponding cell type.

Under the assumption of six constituting cell types in blood tissue (k = 6), we observed a

substantial improvement of up to 58% in mean absolute correlation values compared with

our previous experiments (Figure 3.6 and Tables 3.1 and 3.2). Specifically, we found the

mean absolute correlation values across all six cell types to be 0.71, 0.66, 0.56 and 0.71 in

the Hannum et al., Liu et al., Hannon et al. I and Hannon et al. II data sets, respectively. In

addition, in contrast to our previous experiments, inclusion of some cell counts resulted in low

mean absolute error, which reflects a correct scale for the components. We observed similar

results when assuming three constituting cell types (k = 3), providing an improvement of

up to 28% in correlation and a substantial decrease in absolute errors compared with the

previous experiments (Figure 3.7 and Tables 3.1 and 3.2).

In the absence of cell counts for a subset of the individuals in the data, we can incorporate

into the analysis external data of samples for which both cell counts and methylation levels

(from the same tissue) are available. We repeated again all previous experiments (k = 3 and

k = 6), only this time for each data set we added a randomly selected subset of samples from

one of the other data sets (5% of the original sample size), and used both their methylation

levels and cell-type proportions in the analysis. Specifically, we used randomly selected

samples and corresponding estimates of cell-type proportions from the Hannon et al. I data
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Figure 3.6: BayesCCE captures cell-type proportions in four data sets under the assumption
of six constituting cell types in blood (k = 6): granulocytes, monocytes and four subtypes
of lymphocytes (CD4+, CD8+, B cells and NK cells), and assuming known cell counts for
randomly selected 5% of the samples in the data. All correlations were calculated while
excluding the samples with assumed known cell counts. For convenience of visualization, we
only plot the results of 100 randomly selected samples for each data set.

set for the experiments in all three other data sets, and samples from the Hannon et al. II

data set for the experiment with the Hannon et al. I data set. In order to pool samples

from two data sets together, we considered only the intersection of CpG sites that were

available for analysis in the two data sets. In addition, unlike in the previous experiments,
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Figure 3.7: BayesCCE captures cell-type proportions in four data sets under the assumption
of three constituting cell types in blood (k = 3): granulocytes, monocytes and lymphocytes,
and assuming known cell counts for randomly selected 5% of the samples in the data. All
correlations were calculated while excluding the samples with assumed known cell counts.

here we potentially introduce new batch effects into the analysis, as in each experiment the

original sample is combined with external data. We therefore accounted for the new batch

information by adding it as a new covariate into BayesCCE. As in the case of known cell

counts for a subset of the samples, we found that the inclusion of external samples with both

methylation and cell counts substantially improved the performance in terms of correlation
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Figure 3.8: BayesCCE captures cell-type proportions in four data sets under the assumption
of six constituting cell types in blood (k = 6): granulocytes, monocytes and four subtypes of
lymphocytes (CD4+, CD8+, B cells and NK cells), and including a group of samples with
known cell counts from external data. For each data set, samples from one of the other
data sets were included in the analysis (5% of the sample size), while assuming that both
their methylation levels and cell counts are known. All correlations were calculated while
excluding the samples with assumed known cell counts. For convenience of visualization, we
only plot the results of 100 randomly selected samples for each data set.

and absolute errors (Figures 3.8 and 3.9 and Tables 3.1 and 3.2). These results clearly show

that estimates can be dramatically more accurate given measured cell counts for as few as a

couple of dozens of samples in the data (or such samples from external data).
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Figure 3.9: BayesCCE captures cell-type proportions in four data sets under the assumption
of three constituting cell types in blood (k = 3): granulocytes, monocytes and lymphocytes,
and including a group of samples with known cell counts from external data. For each data
set, samples from one of the other data sets were included in the analysis (5% of the sample
size), while assuming that both their methylation levels and cell counts are known. All
correlations were calculated while excluding the samples with assumed known cell counts.

As before, for assessing performance more thoroughly, we applied BayesCCE on the same sub-

sampled data sets we used before (n = 300), while assuming known cell counts for a subset of

the samples. In one scenario we assumed cell counts are known for 5% of the samples in each

data set (n = 15), and in a second scenario we included into the analysis methylation levels
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and cell-type proportions of 15 samples from external data. These experiments revealed in

most cases a substantial improvement in correlation over a standard execution of BayesCCE

(i.e. without inclusion of cell counts), and revealed in all cases a substantial improvement in

mean absolute error. The results are summarized in Figure 3.4 for the case of six constituting

cell types (k = 6) and in Figure 3.5 for the case of three constituting cell types (k = 3).

We further tested the performance of BayesCCE as a function of the number of samples for

which cell counts are available. Remarkably, we found that known cell counts for only a

couple of dozens of the samples are needed in order to achieve the maximal improvement

in performance; including more samples with known cell counts did not provide a further

improvement (Figure 3.10). In addition, we evaluated the performance of BayesCCE as a

function of the sample size. Interestingly, while performance did not improve by increasing

the sample over a few hundred of samples in the case of unknown cell counts, we found

that knowledge of cell counts for as few as 15 samples in the data allowed a monotonic

improvement in performance in larger sample sizes (Figure 3.11).

Finally, we considered an alternative approach for verifying the results of BayesCCE. Al-

though our study aims at estimating cell-type proportions without the need for reference

methylation data, BayesCCE jointly learns cell-type composition and cell-type-specific mean

methylation levels (methylomes). Hence, as a by-product of the BayesCCE algorithm, we

also obtain cell-type-specific methylomes across the CpG sites selected by BayesCCE as part

of its feature selection process (see section 3.2). Our experiments found BayesCCE to provide

one component per cell type; however, these components are not necessarily appropriately

scaled, which implies that estimated cell-type-specific methylation profiles are also not nec-

essarily calibrated. Nevertheless, in the scenario where cell counts were known even for a

small subset of the individuals in the study, BayesCCE provided calibrated cell count esti-

mates. In such cases, we therefore expect BayesCCE to provide calibrated cell-type-specific

methylation profiles. Using correlation maps, for each of the four whole-blood methylation

data sets we analyzed, we verified high similarity between the cell-type-specific methylomes

obtained by BayesCCE to those estimated by a reference methylation data collected from
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Figure 3.10: Performance of BayesCCE as a function of the number of samples for which
cell counts are known, under the assumption of six constituting cell types in blood (k = 6):
granulocytes, monocytes and four subtypes of lymphocytes (CD4+, CD8+, B cells and NK
cells). Presented are the medians of the mean absolute correlation values (MAC; in blue)
and the medians of the mean absolute error values (MAE; in red) across the six cell types.
Error bars indicate the range of MAC and MAE values across ten different executions for
each number of samples with known cell counts. In every execution samples with known
cell counts were randomly selected, and all MAC and MAE values were calculated while
excluding the samples with assumed known cell counts.

sorted blood cells [74] (Figures 3.12 and 3.13).

In spite of an overall high similarity between these two approaches, the correlation patterns
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Figure 3.11: Performance of BayesCCE without known cell counts and BayesCCE with
known cell counts (BayesCCE imp) for 15 of the samples as a function of the number of
samples in simulated data (k = 6). Presented are the medians of the mean absolute corre-
lation values (MAC; in blue) and the medians of the mean absolute error values (MAE; in
red) across the six cell types. Error bars indicate the range of MAC and MAE values across
ten different executions for each sample size. In BayesCCE imp, all MAC and MAE values
were calculated while excluding the samples with assumed known cell counts.

detected by BayesCCE did not perfectly match those estimated using the reference data.

While this may demonstrate the expected accuracy limitations of BayesCCE to some extent,

we also attribute these imperfect matches, at least in part, to inaccuracies introduced by

the reference data set, owing to the fact that it was constructed only from a small group

of individuals (n = 6), which do not represent well all the individuals in other data sets in

terms of methylome altering factors such as age [39], gender [40, 77], and genetics [70].

3.3.4 Robustness of BayesCCE to biases introduced by the cell composition

prior

BayesCCE relies on prior information about the distribution of the cell-type composition

in the studied tissue. In practice, the available prior information may not always precisely

reflect the cell composition distribution of the individuals in the study. For instance, in a
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Figure 3.12: Correlation maps of the estimated cell-type-specific methylomes using
BayesCCE impute, under the assumption of six constituting cell types in blood (k = 6):
granulocytes, monocytes and four subtypes of lymphocytes (CD4+, CD8+, B cells and NK
cells). For each of four data sets, correlation maps were calculated using cell-type-specific
mean methylation levels estimated from a reference data set of methylation levels collected
from sorted blood cell types by Reinius et al. (left column), using the estimates obtained by
BayesCCE under the assumption of known cell counts for 5% of the samples (BayesCCE im-
pute; middle column), and using the reference-based estimates versus the BayesCCE impute
estimates (right column).

case/control study design, cases may demonstrate altered cell compositions compared with

healthy individuals. Therefore, in this scenario, a prior estimated from a healthy population

(or a sick population) is expected to deviate from the actual distribution in the sample. This

potential problem is clearly not limited to case/control studies, but also applies to studies

with quantitative phenotypes, in case these are correlated with changes in cell composition of
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Figure 3.13: Correlation maps of the estimated cell-type-specific methylomes using
BayesCCE impute with external data, under the assumption of six constituting cell types in
blood (k = 6): granulocytes, monocytes and four subtypes of lymphocytes (CD4+, CD8+,
B cells and NK cells). For each of four data sets, correlation maps were calculated using
cell-type-specific mean methylation levels estimated from a reference data set of methylation
levels collected from sorted blood cell types by Reinius et al. (left column), using the esti-
mates obtained by BayesCCE in a scenario wherein samples from external data with both
methylation levels and cell counts were available (5% of the sample size; BayesCCE impute
ext, middle column), and using the reference-based estimates versus the BayesCCE impute
ext estimates (right column).

the studied tissue. In principle, we can address this issue by incorporating several appropriate

priors and assigning different priors to different individuals in the study. However, in practice,

population-specific priors may be hard to obtain, mainly owing to the fact that numerous

known and unknown factors can affect cell composition.
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We revisited our analysis from the previous subsections in attempt to assess the robustness

of BayesCCE to non-informative or misspecified priors. A desired behavior would allow

BayesCCE to overcome a bias introduced by a prior which does not accurately represent all

the individuals in the sample. Particularly, we considered three whole-blood case/control

data sets, two schizophrenia data sets by Hannon et al. and a rheumatoid arthritis data set

by Liu et al., all of which are expected to demonstrate differences in blood cell composition

between cases and controls [100, 101].

In fact, in our analysis we had an inherently misspecified prior since we learned the prior from

hospital patients (outpatients), which are overall expected to represent a sick population

better than a more general population. Specifically, out of the 595 individuals used for

learning the prior, 64% are known to have taken at least one medication at the time of blood

draw for cell counting and 24% were admitted to the hospital due to various conditions within

two months before or after the time of their blood draw (70.4% were either admitted or took

medications). We expect these conditions to be correlated with alterations in blood cell

composition, and therefore the prior information we used is expected to represent deviation

from a healthy population and, as a result, to misrepresent at least the control individuals

in the case/control data sets we analyzed.

We further considered an additional fourth data set by Hannum et al., which was originally

studied in the context of aging (age range: 19-101, mean: 64.03, SD: 14.73). Our prior was

calculated using sample with a different distribution of ages (range: 20-88, mean: 49.19, SD:

16.69), thus misrepresenting the cell composition distribution in the Hannum et al. data to

some extent.

Remarkably, we found the cell composition estimates given by BayesCCE to effectively detect

differences between populations in the data sets, in spite of using a single prior estimated

from one particular population. Specifically, we found that BayesCCE correctly detected

the cell types which differentiate between cases and controls and between young and older

populations; notably, in some of the data sets we found BayesCCE to demonstrate some

differences between cases and controls which were not captured by the reference-based es-
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timates (Figure 3.14). For example, NK cells abundance is known to change in aging in a

process known as NK cell immunosenescence [102, 103], and monocyte levels are known to

increase in RA patients compared with healthy individuals. [104, 105, 106]. These differences

in cell populations were detected by BayesCCE but not by the reference-based method, thus

suggesting that BayesCCE could uncover signal which was undetected by the reference-based

method (Figure 3.14). That said, some other cell composition differences that were reported

by BayesCCE but not by the reference-based method or vice versa may be the result of

inaccuracies introduced by BayesCCE. Quantifying more accurately and reliably to what

extent each method can detect cell composition differences would require several large data

sets with known cell counts.

In addition, for each data set, we estimated the distribution of white blood cells based on the

BayesCCE cell count estimates, and verified the ability of BayesCCE to correctly capture

two distinct distributions (cases and controls or young and older individuals), regardless of

the single distribution encoded by the prior information (Figure 3.14). While BayesCCE

provides one component per cell type, these components are not necessarily appropriately

scaled to provide cell count estimates in absolute terms. Therefore, for the latter analysis,

we considered only the scenarios in which cell counts are known for a small number of

individuals.

We further evaluated the scenario in which two different population-specific prior distri-

butions are available. Specifically, one prior for cases and another one for controls in the

case/control studies, and one for young and another one for older individuals in the aging

study. For the purpose of this experiment, we estimated the priors using the reference-based

estimates of a subset of the individuals (5% of the sample size) that were then excluded from

the rest of the analysis. Interestingly, we found the inclusion of two prior distributions to

provide no clear improvement over using a single general prior (Table 3.3). Thus, further

confirming the robustness of BayesCCE to inaccuracies introduced by the prior information

due to cell composition differences between populations.

Finally, we evaluated the effect of incorporating noisy priors on the performance of BayesCCE
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Figure 3.14: The robustness of BayesCCE to prior misspecification and its ability to cap-
ture population-specific variability in cell-type composition, under the assumption of six
constituting cell types in blood (k = 6): granulocytes, monocytes and four subtypes of lym-
phocytes (CD4+, CD8+, B cells and NK cells). Left side: t-test results (presented by the
negative log of the Bonferroni-adjusted p-values) for the difference in proportions of each
cell type between cases and controls. Right side: the Dirichlet parameters of estimated cell
counts stratified by cases and controls; red dashed rectangles emphasize the high similarity
in the estimated case/control-specific cell composition distributions yielded by the different
methods, regardless of the prior used (”prior”). Results are presented for four different data
sets and using cell count estimates obtained by four approaches: the reference-based method,
BayesCCE, BayesCCE with known cell counts for 5% of the samples (BayesCCE imp), and
BayesCCE with 5% additional samples with both known cell counts and methylation from
external data (BayesCCE imp ext). For the Hannum et al. data set, for the purpose of
presentation, cases were defined as individuals with age above the median age in the study.
In the evaluation of BayesCCE imp and BayesCCE imp ext, samples with assumed known
cell counts were excluded before calculating p-values and fitting the Dirichlet parameters.

by considering a range of possible priors with different levels of inaccuracies, including a non-

informative prior (Figure 3.15). Not surprisingly, we observed that given cell counts for a

small subset of samples, BayesCCE was overall robust to prior misspecification, which did not

result in a substantially reduced performance even given a non-informative prior. In the ab-

sence of known cell counts, the performance of BayesCCE was somewhat decreased, however,
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Single prior Stratified prior

data set Method MAC MAE MAC MAE

k = 3

Hannum et al. [94]

(Aging)
BayesCCE 0.661 0.102 0.667 0.105

BayesCCE imp 0.829 0.022 0.830 0.021

Liu et al. [67]

(Rheumatoid arthritis)
BayesCCE 0.685 0.094 0.681 0.040

BayesCCE imp 0.893 0.014 0.894 0.014

Hannon et al. I [95]

(Schizophrenia)
BayesCCE 0.632 0.111 0.633 0.111

BayesCCE imp 0.784 0.017 0.785 0.016

Hannon et al. II [95]

(Schizophrenia)
BayesCCE 0.490 0.252 0.492 0.206

BayesCCE imp 0.815 0.012 0.816 0.012

k = 6

Hannum et al. [94]

(Aging)
BayesCCE 0.497 0.113 0.510 0.114

BayesCCE imp 0.718 0.026 0.654 0.027

Liu et al. [67]

(Rheumatoid arthritis)
BayesCCE 0.537 0.041 0.557 0.058

BayesCCE imp 0.711 0.024 0.697 0.023

Hannon et al. I [95]

(Schizophrenia)
BayesCCE 0.463 0.172 0.436 0.164

BayesCCE imp 0.601 0.022 0.602 0.022

Hannon et al. II [95]

(Schizophrenia)
BayesCCE 0.485 0.086 0.471 0.075

BayesCCE imp 0.603 0.023 0.613 0.024

Table 3.3: A summary of the performance of BayesCCE using a single prior versus using a
separate prior for cases and controls (stratified prior). Mean absolute correlation (MAC) and
mean absolute error (MAE) values are presented under the assumption of six constituting
cell types in blood (k = 6): granulocytes, monocytes and four subtypes of lymphocytes
(CD4+, CD8+, B cells and NK cells), and under the assumption of three constituting cell
types in blood (k = 3): granulocytes, monocytes and lymphocytes. A standard application
of BayesCCE was compared with the scenario wherein cell counts are known for 5% of the
samples (BayesCCE imp). In the later case, correlations were calculated after excluding
the samples with assumed known cell counts. For the Hannum et al. data set, cases were
defined as individuals with age above the median age in the study. For each data set, each
of the calculated priors (the single general prior, the cases only prior and the controls only
prior) was estimated using 5% of the samples in the data, which were then excluded from
the subsequent analysis.

remained reasonable even in the scenario of a non-informative prior. Particularly, overall,

BayesCCE with a non-informative prior performed better than the competing reference-free

methods (ReFACTor, NNMF, and MeDeCom). We attribute this result to the combina-
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tion of the constraints defined in BayesCCE with the sparse low-rank assumption it takes,

which seems to handle more efficiently with the high-dimension nature of the computational

problem (see section 3.2).

We note that in the presence of a non-informative prior, BayesCCE conceptually reduces

to the performance of ReFACTor, and therefore it captures the same cell composition vari-

ability in the data. Yet, owing to the additional constrains, BayesCCE allows to overcome

ReFACTor in capturing a set of components such that each component corresponds to one

cell type.
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Figure 3.15: The performance of BayesCCE as a function of increasing noise introduced
by the prior information, under the assumption of three constituting cell types in blood
(k = 3): granulocytes, monocytes and lymphocytes (top panel), and under the assumption
of six constituting cell types in blood (k = 6): granulocytes, monocytes and four subtypes
of lymphocytes (CD4+, CD8+, B cells and NK cells; bottom panel). In this experiment, we
evaluated BayesCCE, BayesCCE in a scenario wherein cell counts are known for 5% of the
samples in the data (BayesCCE imp), and BayesCCE in a scenario wherein cell counts and
methylation levels for samples from external data are included in the analysis (5% of the
sample size; BayesCCE imp ext). For each method, presented are the values of mean absolute
correlation (MAC) and mean absolute error (MAE) across all cell types as a function of the
noise introduced into the prior information. Error bars indicate the performance across four
data sets: Hannum et al. [94], Liu et al. [67], Hannon et al. I, and Hannon et al. II [95].
The range of the prior information was set between the prior estimated from real blood cell
counts (see section 3.2) and a non-informative prior (a vector of ones).

72



3.4 Discussion

We introduce BayesCCE, a Bayesian method for estimating cell-type composition from het-

erogeneous methylation data without the need for methylation reference. We show mathe-

matically and empirically the non-identifiability nature of the more straightforward reference-

free NNMF approach for inferring cell counts, which tends to provide only linear combina-

tions of the cell counts. In contrast, while we do not provide conditions for the uniqueness of

a BayesCCE solution, our empirical evidence from multiple data sets clearly demonstrates

the success of BayesCCE in providing desirable results of one component per cell type by

leveraging readily obtainable prior information from previously collected data.

The parameters of the prior required by BayesCCE can be estimated by utilizing previous

studies that collected cell counts from the tissue of interest. In our evaluation of the method,

we used whole-blood methylation data, and we considered the classical definition of leukocyte

cell types, which relies on cell surface markers. Considering other definitions of cell types is of

potential interest; particularly, it would be interesting to examine to what extent BayesCCE

and the reference-free methods can capture cell-type composition following a methylation-

based definition of cell types (i.e. when defining cell types according to their methylation

patterns).

Since BayesCCE captures cell composition variation under the classical definition of cell

types by using the most dominant components of variation in the data, the main cell types

of a natural methylation-based definition are expected to be a linear combination of the cell

types under the classical definition. Much like in the experiments we presented here, wherein

given a prior about the distribution of the cell types BayesCCE directed the solution towards

an appropriate linear transformation, we would expect BayesCCE to perform similarly in

the case of a methylation-based definition of cell types (given appropriate prior information

about the distribution of cell types). Nevertheless, obtaining such a definition and evaluating

BayesCCE under that definition would require obtaining appropriate single-cell methylation

data, which is currently scarcely available. Moreover, deriving an actual meaningful defini-

tion of cell types given such data is a non-trivial problem. Therefore, until such definition
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and appropriate data are available, we are bounded to consider the classical definition of cell

types.

Since BayesCCE requires a prior which can be estimated from previously collected cell counts

without the need for any other genomic data, obtaining such as prior is relatively easy

for many tissues, such as brain [107], heart [108] and adipose tissue [109]. Particularly,

such data should be substantially easier to obtain compared to reference data from sorted

cells for the corresponding tissues. Ideally, in order to learn the prior, one would want to

use cell counts coming from the same population as the target population. Nevertheless,

empirically, we observe that BayesCCE leverages the prior to direct the solution while still

allowing enough flexibility, which makes it robust even to substantial deviations of the prior

from the true underlying cell composition distribution. In fact, our results demonstrate that

BayesCCE handles biases introduced by the prior remarkably well. Particularly, it allows to

capture differences in cell compositions between different populations in the same study, thus

providing an opportunity to study cell composition differences between different populations

even in the absence of methylation reference.

Since no large data sets with measured cell counts are currently publicly available, we used a

supervised method [85] for obtaining cell type proportion estimates, which were used as the

ground truth in our experiments. Even though the method used for obtaining these estimates

was shown to reasonably estimate leukocyte cell proportions from whole-blood methylation

data in several independent studies [35, 79, 96], these estimates may have introduced biases

into the analysis. Particularly, any inaccuracies introduced by the reference-based method

could have directly affect the results of our evaluation. Our results indicate that such in-

accuracies are more likely in some particular cell types over others. Failing to accurately

estimate a particular cell type may be the outcome of various reasons. Notably, utilizing

inappropriate reference data or failing to select a set of informative features that mark a

particular cell type may dramatically affect its estimated values. Other reasons which are

not methodological may also lead to inaccuracies of the estimates. For example, two cell

types with very similar methylation patterns will be hardly distinguishable. In spite of the
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potential pitfalls of using estimates as a baseline for evaluation, we believe that our results

on several independent data sets, including simulated data, and the use of a prior estimated

from a large data set of high resolution cell counts, provide a compelling evidence for the

utility of BayesCCE.

We further demonstrate that imputation of cell counts can be highly accurate when cell

counts are available for some of the samples in the data. Particularly, based on our exper-

iments, only as few as a couple of dozens of samples with known cell counts are needed in

order to substantially improve performance. Moreover, in the general setup of BayesCCE,

where no cell counts are known, each component corresponds to one cell type, however, not

necessarily in the right scale and there is no automatic way to determine the identity of that

cell type. In contrast, in the case of cell counts imputation, where cell counts are known for

a subset of the samples, the assignment of components into cell types is straightforward. In

addition, as we showed, BayesCCE is able to reconstruct cell counts up to a small absolute

error (i.e. each component is scaled to form cell proportion estimates of one particular known

cell type).

We note that in our evaluation of BayesCCE we considered only whole-blood data sets.

Studying other tissues or biological conditions is clearly of interest. However, in the absence

of other tissue-specific methylation references that were clearly shown to allow obtaining

reasonable cell type proportion estimates, evaluation of performance based on tissues other

than whole-blood will not be reliable. We therefore opt to focus on evaluating the per-

formance of BayesCCE using multiple large whole-blood data sets. Importantly, beyond

its potential utility for complex biological scenarios in which reference data is unavailable,

BayesCCE may also provide an opportunity to improve cell count estimates in whole-blood

studies in scenarios where the currently available reference data is not appropriate. Notably,

in a recent work we have shown using multiple whole-blood data sets that ReFACTor out-

performs the reference-based method in correcting for cell composition [92]. Differences in

performance between ReFACTor (upon which BayesCCE relies for obtaining a starting point

that captures the cell composition variation in the data) and the reference-based method are
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expected to be especially large in studies where the available reference data do not represent

the individuals in the study well. We argue that this is likely to typically be the case, as the

current go-to whole-blood reference consists of only six individuals [74], which represent a

very specific and narrow population in terms of methylome altering factors, such as age [39],

gender [40, 77], and genetics [70]. That said, large data sets with experimentally measured

cell counts are required in order to fully investigate and demonstrate these claims.

We further note that in our benchmarking of BayesCCE with existing reference-free methods

we considered only a subset of the available methods in the literature. Other reference-

free methods that have been suggested in the context of accounting for cell composition in

methylation data exist, however, these do not provide explicit components, but rather only

implicitly account for cell composition variability in association studies. While in principle

these methods can be modified to produce components, in this work we focused only on

methods that can be readily used to provide explicit components for evaluation. We further

note that several supervised and unsupervised decomposition methods have been suggested

for estimating cell composition from gene expression [110, 111, 112, 113, 114]. However,

these were refined for gene expression data and, to the best of our knowledge, none of

these methods takes into account prior knowledge about the cell composition distribution as

in BayesCCE. It remains of interest to investigate whether BayesCCE can be adapted for

estimating cell composition from gene expression without the need for purified expression

profiles.

Finally, our approach is based on finding a suitable linear transformation of the components

found by ReFACTor [36]. It is therefore important to follow the guidelines for the applica-

tion of ReFACTor, such as incorporation of methylation altering covariates; these guidelines

were recently highlighted elsewhere [92, 93]. Since BayesCCE relies on the ReFACTor com-

ponents, it is limited by their quality, and particularly, if the variability of some cell type is

not captured by ReFACTor, BayesCCE will not be able to estimate that cell type well. Such

a result is possible in scenarios where the variation of a particular cell type is substantially

weaker than other sources of variation in the data (which are unrelated to cell-type com-
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position); we note, however, that this potential limitation is not exclusive for ReFACTor or

BayesCCE but rather a general limitation of all existing reference-free methods. BayesCCE

will effectively provide the same result as ReFACTor if used for correcting for a potential

cell-type composition confounder in methylation data. Since ReFACTor does not allow to

infer direct cell count estimates but rather linear transformations of those, we suggest to

use BayesCCE in cases in which a study of individual cell types is performed and there-

fore ReFACTor cannot be used. In case merely a correction for cell composition is desired,

we suggest to use BayesCCE when cell counts are known for a subset of the samples, and

otherwise to use ReFACTor.
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CHAPTER 4

Cell-type-specific resolution epigenetics without the

need for cell sorting or single-cell biology

4.1 Background

Each cell type in the body of an organism performs a unique repertoire of required func-

tions. Hence, disruption of cellular processes in particular cell types may lead to phenotypic

alterations or development of disease. This presumption in conjunction with the complexity

of tissue-level (“bulk”) data has led to many cell-type-specific genomic studies, in which

genomic features, such as gene expression levels, are assayed from isolated cell types in

a group of individuals and studied in the context of a phenotype or condition of interest

(e.g., [115, 116, 117, 118]).

In fact, in order to reveal cellular mechanisms affecting disease it is critical to study cell-type-

specific effects. For example, it has been shown that cell-type-specific effects can contribute to

our understanding of the principles of regulatory variation [119] and the underlying transcrip-

tional landscape of heterogeneous tissues such as the human brain [120], it can provide a finer

characterization of tumor heterogeneity [121, 122], and it may reveal disease-related path-

ways and mechanisms of genes that were detected in genetic association studies [123, 124].

Moreover, these findings are typically not revealed when a heterogeneous tissue is studied.

For example, in [123] it has been shown that the FTO allele associated with obesity re-

presses mitochondrial thermogenesis in adipocyte precursor cells. Particularly, in that study

it is shown that the developmental regulators IRX3 and IRX5 had genotype-associated ex-

pression in primary preadipocytes, while genotype-associated expression was not observed
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in whole-adipose tissue, indicating that the effect was cell-type specific and restricted to

preadipocytes.

In spite of the clear motivation to conduct studies with a cell-type-specific resolution, while

developments in genomic profiling technologies have led to the availability of many large bulk

data sets with hundreds or thousands of individuals (e.g., [43, 125, 126]), cell-type-specific

data sets with a large number of individuals are still relatively scarce. Particularly, cell-

type-specific studies are typically drastically restricted in their sample sizes owing to high

costs and technical limitations imposed by both cell sorting and single-cell approaches. This

restriction is especially profound for epigenetic studies with single-cell DNA methylation -

while pioneering works on single-cell methylation have demonstrated significant advances

(e.g. [127, 128, 129, 130]), profiling methylation with single-cell resolution is still limited in

coverage and throughput and currently cannot be practically used to routinely obtain large-

scale data for population studies (the most eminent recent studies included data from only

a few individuals). This, in turn, substantially limits our ability to tackle questions such as

identification of disease-related altered regulation of genes in specific cell types and mapping

of diseases to specific manifesting cell types.

Technologies for profiling single-cell methylation are currently still under development, and

some of these attempts will potentially allow sometime in the future for the analysis of cell-

type-specific methylation across or within populations. However, even if such technologies

emerge in the near future, the large number of existing bulk methylation samples that have

been collected by now are still an extremely valuable resource for genomic research (e.g.,

more than 100,000 bulk profiles to date in the Gene Expression Omnibus (GEO) alone [11]).

These data reflect years of substantial community-wide effort of data collection from multiple

organisms, tissues, and under different conditions, and it is therefore of great importance

to develop new statistical approaches that can provide cell-type-specific insights from bulk

data.

Here, we introduce Tensor Composition Analysis (TCA), a novel computational approach

for learning cell-type-specific DNA methylation signals (a tensor of samples by methylation
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sites by cell-types) from a typical two-dimensional bulk data (samples by methylation sites).

Conceptually, TCA emulates the scenario in which each individual in the bulk data has been

profiled with a single-cell resolution and then signals were aggregated in each cell population

of the individual separately.

4.2 Methods

4.2.1 Enhancing epigenetic studies with cell-type-specific resolution

Different cell types are known to differ in their methylation patterns. Therefore, a bulk

methylation sample collected from a heterogeneous tissue represents a combination of dif-

ferent signals coming from the different cell types in the tissue. Since cell-type composition

varies across individuals, testing for correlation between bulk methylation levels and a phe-

notype of interest may lead to spurious associations in case the phenotype is correlated with

the cell-type composition [72]. A widely acceptable solution to this problem is to incorporate

the cell-type composition information into the analysis of the phenotype by introducing it

as covariates in a regression analysis. Even though this procedure is useful for eliminating

spurious findings, it does not take into account the fact that individuals are expected to

vary in their methylation levels within each cell type (i.e. not just in their cell-type compo-

sition). Effectively, taking this approach results in an analysis that is conceptually similar

to a study in which the cases and controls are matched on cell-type distribution, however,

cell-type-specific signals are not explicitly modeled and leveraged.

In order to illustrate the above, consider the simple scenario, where the samples in the study

are matched on cell-type distribution. Given no statistical relation between the phenotype

and the cell-type composition, association studies typically assume a model with the following

structure:

yi = xiβ + εi (4.1)
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Here, yi represents the phenotypic level of individual i, xi and β represent the bulk methyla-

tion level of individual i at a particular site under test and its corresponding effect size, and

εi represents noise. This standard formulation assumes that a single parameter (β) describes

the statistical relation between the phenotype and the bulk methylation level. We argue that

this formulation is a major oversimplification of the underlying biology. In general, different

cell types may have different statistical relations with the phenotype. Thus, a more realistic

formulation would be:

yi =
k∑

h=1

xihβh + εi (4.2)

Here, xi1, ..., xik are the methylation levels of individual i in each of the k cell types composing

the studied tissue and β1, ..., βk are their corresponding cell-type-specific effects.

Applying a standard analysis as in Equation (4.1) to bulk data may fail to detect even

strong cell-type-specific associations with a phenotype. For instance, consider the scenario

of a case/control study, where the methylation of one particular cell type is associated with

the disease. In this scenario, due to the signals arising from other cell types, the observed bulk

levels may obscure the real association and not demonstrate a difference between the cases

and controls; importantly, in general, merely taking into account the variation in cell-type

composition between individuals does not allow the detection of the association (Figure 4.1).

Thus, allowing analysis with a cell-type-specific resolution (i.e. obtaining xi1, ..., xik for each

individual i) - beyond being required for revealing disease-manifesting cell types - is also

important for the detection of true signals.

Notably, in the context of differential gene expression analysis, it has been previously sug-

gested that cell-type-specific effects can be estimated by treating a phenotype of interest as

a covariate (i.e. of the expression level) with potentially different effects on different cell

types [131, 132]. Practically, this approach suggests to evaluate the effect of an interaction

term (i.e. a multiplicative term) of the cell-type composition and the phenotype under a

standard regression framework (i.e. by adding the interaction term to Equation (4.1)) [132];

equivalently, one may achieve the same goal by solving multiple decomposition problems
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Figure 4.1: Observed bulk methylation levels may obscure cell-type-specific signals. Neither
the observed methylation levels nor the observed levels after adjusting for the variability
in cell-type composition can demonstrate a clear difference between cases and controls, in
spite of a clear (unobserved) difference in cell type 3. Methylation levels are represented
by a gradient of red color, and adjusted observed levels were calculated for each sample by
removing the cell-type-specific mean levels, weighted by its cell-type composition.

(one for each possible value of the phenotype) [131]. In fact, this concept was recently ap-

plied and reported in the context of DNA methylation in attempt to detect cell-type-specific

differences in methylation [133]. However, as we demonstrate below, a more detailed model

of the variation in bulk methylation data allows a substantial improvement in power.

We propose a new model for DNA methylation, where we assume that the cell-type-specific
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Figure 4.2: A summary of the TCA model for bulk DNA methylation data, presented as a
four-steps generative model. Step 1: methylation altering covariates (e.g., age and sex) of
a particular individual i can affect the methylation distribution of individual i. Step 2: the
cell-type-specific methylomes of individual i are generated for each of the k cell types in the
studied tissue. Step 3: the cell-type-specific methylomes of individual i (3.1) are combined
according to the cell-type composition of the individual (3.2). Step 4: the true signal of the
heterogeneous mixture (4.1) is distorted due to additional variation introduced by different
sources of noise such as batch effects and other experiment-specific artificial variability (4.2);
this results in the observed data. Methylation levels are represented by a gradient of red
color

methylation levels of an individual are coming from a distribution that - up to methylation

altering factors such as age [39] and sex [40] - is shared across individuals in the population.

Based on this model, we developed Tensor Composition Analysis (TCA), a method for learn-

ing the unique cell-type-specific methylomes of each individual sample from its bulk data.

We provide a detailed illustration of the model in Figure 4.2 and highlight the conceptual

difference between TCA and a traditional decomposition approach in Figure 4.3. Here, we

focus on the application of TCA for association studies, where we only implicitly consider

the cell-type-specific methylomes of each individual by integrating over their distributions.

Importantly, TCA requires knowledge of the cell-type proportions of the individuals in the
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Figure 4.3: TCA versus a traditional decomposition approach. Given bulk DNA methyla-
tion data from a heterogeneous tissue, previous decomposition methods (e.g., PCA, ReFAC-
Tor [36], or a reference-based decomposition [85]) aim at estimating a matrix of the cell-type
proportions of the individuals and a matrix of the cell-type-specific methylomes in the sample
(shared across individuals). In contrast, TCA aims at estimating a matrix of the cell-type
proportions of the individuals and - for each individual - a matrix of the unique cell-type-
specific methylomes of the individual.

data. These can be computationally estimated using either a reference-based supervised

approach [85] or a reference-free semi-supervised approach [134]; current reference-free unsu-

pervised methods, however, are unable to provide reasonable estimates of cell-type propor-

tions but rather only linear combinations of them [134]. Notably, in cases where only noisy

estimates of the cell-type proportions are available (i.e. owing to inaccuracies of the com-

putational method used for estimation), they can be used for initializing the optimization

procedure of the TCA model, which can then provide improved estimates. As a result, as

we show next, TCA performs well even in cases where only noisy estimates of the cell-type

proportions are available.

In the following subsections, we summarize the model and mathematical methods. Further
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details, including the full mathematical derivations and the optimization procedures in TCA

are given in Appendix A.

4.2.2 Modeling cell-type-specific variation in DNA methylation

Let Zi
hj denote the value coming from cell type h ∈ 1, ..., k at methylation site j ∈ 1, ...m in

sample i ∈ 1, ...n, we assume:

Zi
hj|µhj, σhj ∼ N(µhj, σ

2
hj) (4.3)

In theory, the methylation status of a given site within a particular cell is a binary condi-

tion. However, unlike in the case of genotypes, methylation status may be different between

different cells (even within the same individual, site and, cell type). We therefore consider a

fraction of methylation rather than a fixed binary value. In array methylation data, possibly

owing to the large number of cells used to construct each individual signal, we empirically

observe that a normal assumption is reasonable.

Admittedly, normality may not hold for values near the boundaries (i.e. sites with mean

methylation levels approaching 0 or 1); this can be addressed by applying variance stabilizing

transformations such as a logit transformation (commonly referred to as M-values in the

context of methylation) [135]. However, in practice, we ignore such consistently methylated

or consistently unmethylated sites (e.g., in our experiments we discarded sites with mean

value higher than 0.9 or lower than 0.1), which results in a set of sites that demonstrate an

approximately linear relation with their respective M-values [135]. This makes the normality

assumption reasonable and therefore widely accepted in the context of statistical analysis of

DNA methylation.

Let W ∈ Rk×n be a non-negative constant weights matrix of k cell types for each of the

n samples (i.e. cell-type proportions; each column sums up to 1), we assume the following
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model for site j of sample i in the observed heterogeneous methylation data matrix X:

Xij =
k∑

h=1

whiZ
i
hj + εij, εij ∼ N(0, τ 2) (4.4)

where whi is the proportion of the h-th cell type of sample i in W , and εij represents an

additional component of measurement noise which is independent across all samples. We

therefore get that Xij follows a normal distribution with parameters that are unique for each

individual i and site j. Put differently, we assume that the entries of X are independent but

also different in their means and variances.

4.2.3 Tensor Composition Analysis (TCA)

Following the assumptions in (4.3) and in (4.4), the conditional probability of Zi
j =

(
Zi

1j, ..., Z
i
kj

)T
given Xij can be shown (Appendix A) to satisfy

Pr(Zi
j = zij|Xij = xij, wi, µj, σj, τ) ∝ exp

(
−1

2
(aij − zij)TS−1

ij (aij − zij)
)

(4.5)

where

Σj = diag(σ2
1j, ..., σ

2
kj) (4.6)

Sij =

(
wiw

T
i

τ 2
+ Σ−1

j

)−1

(4.7)

aij = Sij

(xij
τ 2
wi + Σ−1

j µj

)
(4.8)

Essentially, our suggested method, TCA, leverages the information given by the observed

values {xij} for learning a three-dimensional tensor consisted of estimates of the underlying

values {zihj}. This is done by setting the estimator ẑij to be the mode of the conditional

distribution in (4.5):

ẑij = aij =

(
wiw

T
i

τ 2
+ Σ−1

j

)−1 (xij
τ 2
wi + Σ−1

j µj

)
(4.9)
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TCA requires the cell-type proportionsW as an input. GivenW , the parameters τ, {µj}, {σj}
can be estimated from the observed data under the assumption in (4.4). In practice, the cell-

type proportions are typically unknown. In such cases, W can be estimated computationally

using standard methods (e.g., [85, 134]) and then re-estimated under the TCA model in an

alternating optimization procedure with the rest of the parameters in the model. The TCA

model can further account for covariates, which may either directly affect Zi
j (e.g., age and

sex) or affect the mixture Xij (e.g., batch effects). For more details and a full derivation of

the conditional distribution of Zi
j, while accounting for covariates, and for information about

parameters inference see Appendix A.

In order to see why TCA can learn non-trivial information about the {zihj} values, consider

a simplified case where τ = 0, µhj = 0, σhj = 1 for each h and a specific given j. In this case,

it can be shown (Appendix A) that

Zi
hj|Xij = xij ∼ N

(
whixij∑k
l=1w

2
li

, 1− w2
hi∑k

l=1w
2
li

)
(4.10)

That is, given the observed value xij, the conditional distribution of Zi
hj has a lower vari-

ance compared with that of the marginal distribution of Zi
hj (σ2

hj = 1), thus reducing the

uncertainty and allowing us to provide non-trivial estimates of the {zihj} values. This result

further implies that in the context of DNA methylation, where the weights matrix W cor-

responds to a matrix of cell-type proportions, we should expect to gain better estimates for

the {zihj} levels in more abundant cell types compared with cell types with typically lower

abundance. For more details see Appendix A.

4.2.4 Applying TCA to epigenetic association studies

We next consider the problem of detecting statistical associations between DNA methyla-

tion levels and biological phenotypes. Let X ∈ Rn×m be an individuals by sites matrix of

methylation levels, and let Y denote an n-length vector of phenotypic levels measured from

the same n individuals, typical association studies usually consider the following model for
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testing a particular site j for association with Y :

Yi = Xijβj + ei, ei ∼ N(0, σ2) (4.11)

where Yi is the phenotypic level of individual i, βj is the effect size of the j-th site, and ei

is a component of i.i.d. noise. For convenience of presentation, we omit potential covariates

which can be incorporated into the model. In a typical EWAS, we fit the above model for

each feature, and we look for all features j for which we have a sufficient statistical evidence

of non-zero effect size (i.e. βj 6= 0).

In principle, one can use TCA for estimating cell-type-specific levels, and then look for cell-

type-specific associations by fitting the model in (4.11) with the estimated cell-type-specific

levels (instead of directly using X). However, an alternative one-step approach can be also

used. This approach leverages the information we gain about zihj given that Xij = xij for

directly modeling the phenotype as having cell-type-specific effects. Specifically, consider

the following model:

Yi = Zi
ljβlj + ei, ei ∼ N(0, φ2) (4.12)

where βlj denotes the cell-type-specific effect size of some cell type of interest l. Provided

with the observed information xij, while keeping the assumptions in (4.3) and in (4.4), it

can be shown (Appendix A) that:

Yi|Xij = xij ∼ N

(
βlj

(
µlj +

wliσ
2
ljx̃ij

τ 2 +
∑k

h=1w
2
hiσ

2
hj

)
, φ2 + β2

lj

(
σ2
lj −

w2
liσ

4
lj

τ 2 +
∑k

h=1 w
2
hiσ

2
hj

))
(4.13)

x̃ij = xij −
k∑

h=1

whiµhj (4.14)

This shows that directly modeling Yi|Xij effectively integrates the information over all pos-

sible values of Zi
lj. Given W,µj, σj, τ (typically estimated from X; Appendix A), we can

estimate φ and the effect size βlj using maximum likelihood. The estimate β̂lj can be then

tested for significance using a generalized likelihood ratio test. Similarly, we can consider a
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joint test for the combined effects of more than one cell type. A full derivation of the sta-

tistical test is described in Appendix A. Here, whenever association testing was conducted,

we used this direct modeling of the phenotype given the observed methylation levels.

Finally, we note that in principle one can also use the model in Equation (4.4) for testing

for cell-type-specific associations by treating the phenotype of interest as a covariate and

estimating its cell-type-specific effect size. However, TCA provides a way to deconvolve the

data into cell-type-specific levels, which is of independent interest beyond the specific appli-

cation for association studies. Moreover, model directionality often matters, and the TCA

framework allows us to directly model the phenotype rather than merely treat it as another

covariate. Particularly, in the context of this work, it is known that methylation levels are

actively involved in many cellular processes such as regulation of gene expression [136], thus,

making DNA methylation a potential contributing determinant in disease (which further

justifies the modeling of the phenotype as an outcome).

4.2.5 Implementation of TCA

A Matlab implementation of TCA was used for deriving all the results reported here, and an

additional implementation in R was deposited as a CRAN package (‘TCA’). The source code

of both implementations is available from github at http://github.com/cozygene/TCA.

TCA requires for its execution a heterogeneous DNA methylation data matrix and corre-

sponding cell-type proportions for the samples in the data. In case where cell counts are

not available, TCA can take estimates of the cell-type proportions, which are then opti-

mized with the rest of the parameters in the model. For the real data experiments, we used

GLINT [93] for generating initial estimates of the cell-type proportions for the whole-blood

data sets. GLINT provides estimates according to the Houseman et al. model [85], using a

panel of 300 highly informative methylation sites in blood [96] and a reference data collected

from sorted blood cells [74]. Given these estimates, we used the TCA model to re-estimate

the cell-type proportions using the top 500 sites selected by the feature selection procedure

of ReFACTor [36].
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4.2.6 Data simulation

We first estimated cell-type-specific means and standard deviations in each site using ref-

erence data of methylation levels collected from sorted blood cells [74]. Since we expected

cell-type-specific associations to be mostly present in CpG sites that are highly differentially

methylated across different cell types, we considered cell-type-specific means and standard

deviations from sites which demonstrated the highest variability in cell-type-specific mean

levels across the different cell types. Using the estimated parameters of a given site, we

generated cell-type-specific DNA methylation levels using normal distributions, conditional

on the range [0, 1]. In cases where covariates were simulated to have an effect on the cell-

type-specific methylation levels, the means of the normal distributions were tuned for each

sample to account for its covariates and the corresponding effect sizes (shared across samples;

Appendix A).

We generated cell-type proportions for each sample using a Dirichlet distribution with pa-

rameters set according to previous estimates from cell counts of 6 blood cell types [134]:

15.0727, 1.8439, 2.5392, 1.7934, 0.7240, and 0.7404, which correspond to Dirichlet parame-

ters for granulocytes, monocytes and 4 sub-types of lymphocytes (CD4+, CD8+, B and NK

cells). In the case of three constituting cell types (granulocytes, monocytes, and lympho-

cytes), we set the Dirichlet parameter of lymphocytes to be the sum of the parameters of

all the lymphocyte sub-types. For the experiments with a nonparametric distribution of the

cell-type proportions we sampled proportions of individuals from a pool of reference-based

estimates that were estimated using a reference-based method [85] for samples in two data

sets (described below) [67, 94].

Eventually, for each sample, we composed its methylation level at each site by taking a

linear combination of the simulated cell-type-specific levels of that site, weighted by the cell

composition of that sample, and added an additional i.i.d normal noise conditional on the

range [0, 1] to simulate technical noise (τ = 0.01). In cases where covariates were simulated to

have a global effect on the methylation levels (i.e. non-cell-type-specific effect, such as batch

effects), we further added an additional component of variation for each sample according
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to its global covariates and their corresponding effect sizes.

4.2.7 Data sets

We used a total of five methylation data sets, all of which were collected using the Illumina

450K human DNA methylation array and are available from the Gene Omnibus Database

(GEO). In more details, we used 3 methylation data sets that were previously collected in

RA studies: a whole-blood data set by Liu et al. of 354 RA cases and 332 controls (GEO

accession GSE42861) [67], a CD4+ methylation data set of 12 RA cases and 12 controls with

matching age and sex (for each RA patient, a control sample with matching age and sex was

collected) by Guo et al. (GEO accession GSE71841) [137], and cell-sorted methylation data

collected from 63 female RA patients and 31 female control subjects in CD4+ memory cells,

CD4+ naive cells, CD14+ monocytes, and CD19+ B cells (a total of 371 samples across four

cell sub-types; GEO accession GSE131989); these cell-sorted data were originally described

by Rhead et al. [138]. In addition, for replicating the association results with immune activity,

we used another data set that was previously studied by Hannum et al. in the context of

aging rates (n=656; GEO accession GSE40279) [94]. Finally, for the simulation experiments

we used methylation reference of sorted leukocyte cell types collected in 6 individuals from

the (GEO accession GSE35069) [74].

We processed the data similarly to a recently suggested normalization pipeline [97]. Specif-

ically, we processed the raw IDAT files of the Liu et al. data set [67] and the Rhead et al.

data set [138] (each cell sub-type separately) using the “minfi” R package [49] as follows.

We removed 65 SNP markers and applied the Illumina background correction to all inten-

sity values, while analyzing probes coming from autosomal and non-autosomal chromosomes

separately. We considered a threshold of 10e-16 for the detection p-value of intensity values;

probes with p-values higher than this threshold were treated as missing values, and samples

with call rate <95% and probes with call rate <90% were excluded. Since IDAT files were

not made available for the Hannum et al. data [94] and the Guo et al. data [137], we used the

methylation intensity levels published by the authors. For each data set, we then performed
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a quantile normalization of the methylation intensity levels, subdivided by probe type, probe

sub-type, and color channel, and imputed missing values using the ”impute” R package (us-

ing the function impute.knn). Eventually, we calculated Beta-normalized methylation levels

based on the normalized intensity levels (according to the recommendation by Illumina).

We further excluded samples from the above data sets as follows. In the Liu et al. data

set, we excluded two samples that demonstrated extreme values in their first two principal

components (over four empirical standard deviations) and two more of the remaining samples

that were regarded as outliers in the original study of Liu et al. In the Rhead et al. data

set, we excluded a small batch that consisted of only 4 individuals, and in the Hannum

et al. data set we removed six samples that demonstrated extreme values in their first

two principal components (over four empirical standard deviations). The final numbers of

samples remained for analysis in the Liu et al. data set, the Hannum data set and the Guo et

al. data set were n=658, n=650, and n=24, respectively. The numbers of samples remained

for analysis in the Rhead et al. data were n=89, n=88, n=90, and n=86 for the CD4+

memory cells, CD4+ naive cells, monocytes, and B cells, respectively.

Finally, for the association experiments, we discarded consistently methylated probes and

consistently unmethylated probes from the data (mean value higher than 0.9 or lower than

0.1, respectively, according to the Liu et. al discovery data), and we further used GLINT [93]

to exclude from the data CpGs coming from the non-autosomal chromosomes, as well as

polymorphic and cross-reactive sites, as was previously suggested [37].

4.2.8 Power simulations

We simulated data and sampled for each site under test a normally distributed phenotype

with additional effects of the cell-type-specific methylation levels of the site. We set the

variance of each phenotype to the variance of the site under test, in order to eliminate the

dependency of the power in the variance of the tested site (and therefore allow a clear quan-

tification of the true positives rate under a given effect size). Particularly, when simulating

an effect coming from a single cell type, we randomly generated a phenotype from a normal
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distribution with the variance set to the variance of the site under test in the specific cell

type under test. Similarly, when simulating effects coming from all cell types, we randomly

generated a phenotype from a normal distribution with the variance set to the total variance

of the site under test (i.e. across all cell types).

We performed the power evaluation using simulated data with 3 constituting cell types (k=3)

and using simulated data with 6 constituting cell types (k=6). We considered three scenarios

across a range of effect sizes as follows: different effect sizes for different cell types (using s

joint test), the same effect size for all cell types (using a joint test, under the assumption

of the same effect for all cell types), and a scenario with only a single associated cell type

(a marginal test). In the first scenario, effect sizes for the different cell types were drawn

from a normal distribution with the particular effect size under test set to be the mean

(with standard deviation σ = 0.05), and in the third scenario we evaluated the aggregated

performance of all the marginal tests across all constituting cell types in the simulation.

We further repeated the marginal test while stratifying the evaluation by cell type (i.e. the

marginal test was performed under the third scenario for each cell type separately). In

each of these experiment, we calculated the true positives rate of the associations that were

reported as significant while adjusting for the number of sites in the simulated data.

For each scenario and for each number of constituting cell types, we simulated 10 data sets,

each included 500 samples and 100 sites. Importantly, throughout the simulation study, we

considered for each simulated data set the case where only noisy estimates of the cell-type

proportions are available (and therefore need to be re-estimated together with the rest of the

parameters in the TCA model). Specifically, for each sample in the data we replaced its cell-

type proportions with randomly sampled proportions coming from a Dirichlet distribution

with the original cell-type proportions of the individuals as the parameters. For each level

of noise, these parameters were multiplied by a factor that controlled the level of similarity

of the sampled proportions to the original proportions. Finally, for evaluating false positives

rates, we followed the above procedure, however, without adding additional effects coming

from methylation levels. We evaluated the false positives rate by considering the fraction of
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sites with p-value<0.05.

4.2.9 Analysis of immune activity

We used the Liu et al. data [67] as the discovery data (n=658) and the Hannum et al.

data [94] as the replication data (n=650). Since we expected to observe associations with

regulation of cell-type composition in CpGs that demonstrate differential methylation be-

tween different cell types, we considered for this analysis only CpGs that were reported as

differentially methylated between different whole-blood cell types [72]. Specifically, we con-

sidered the sites in the intersection between the set of Bonferroni-significant CpGs that were

reported as differentially methylated in whole-blood and the available CpGs in both the

discovery and replication data sets; this resulted in a set of 50,123 CpGs that were available

for this analysis.

We performed a standard linear regression analysis using GLINT [93] and a TCA analysis

under the assumption of the same effect size in all cell types. In the analysis of the Liu

et al. data we controlled for RA status, gender, age, smoking status, and known batch

information, and in the analysis of the Hannum et al. data we controlled for gender, age,

ethnicity and the first two EPISTRUCTURE principal components [70] in order to account

for the population structure in this data set. In both data sets, in order to take into account

potentially unknown technical confounding effects, we further included the first ten principal

components calculated from the intensity levels of a set of 220 control probes in the Illumina

methylation array, as suggested by Lenhe et al. [97] in an approach similar to the remove

unwanted variation method (RUV) [139]. These probes are expected to demonstrate no

true biological signal and therefore allow to capture global technical variation in the data.

In the replication analysis, we applied a Bonferroni threshold in reporting significance, con-

trolling for the number of genome-wide significant associations that were reported in the

discovery data. The results are summarized in Supplementary Data 1 in [140], where ad-

ditional description for the associated genes is provided from GeneCards [141], the GWAS

catalog [142], and GeneHancer [143].
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4.2.10 Analysis of rheumatoid arthritis

We used the Liu et al. data [67] as the discovery data (n=658, 214,096 Cpgs). We applied

a standard logistic regression analysis with the RA status as an outcome using GLINT [93]

and TCA analysis: under the assumption of a single effect for all cell types (joint test), and

for each of CD4+, CD14+, and CD19+, under the assumption of a single associated cell

type (marginal test). In every analysis, we accounted for the same variables described in the

immune activity analysis with this data set. In the TCA analysis, we additionally accounted

for the first six ReFACTor components [36], calculated according to the most recent updated

guidelines [92]. In order to test the associations reported by TCA for enrichment for the RA

pathway, we used missMethyl [144], an R package that allows to run enrichment analysis for

disease directly on CpGs (while accounting for gene length bias).

In the validation analysis with the Rhead et al. data, we applied a standard logistic regression

analysis using GLINT [93] on each of the CD14+ (n=90) and CD19+ (n=86) data sets, while

accounting for age, smoking status, and batch information. Since the Rhead et al. data

included sorted-cell methylation from two sub-types of CD4+, for the replication analysis of

CD4+ (n=81) we performed for each site a logistic regression analysis using both its CD4+

naive cells methylation levels and CD4+ memory cells methylation.

Taking a standard regression approach in the analysis of the Guo et al. CD4+ sorted

methylation data resulted in a severe inflation in test statistic. Since the cases and controls

in the sample were matched for age and sex, we suspected that technical variation might

have led to this inflation. In order to test that, we calculated the first principal component

of control probes, similarly to the approach taken in the analysis of the Liu et al. data.

However, since IDAT files were not available for the Guo et al .data, and therefore the

same set of 220 control probes that were used in the Liu et al. data were not available, we

used the methylation intensity levels of the 220 sites with the least variation in the data

as control probes. Indeed, we found that the first PC of the control probes corresponds to

the case/control status in the data almost perfectly (r=0.91, p-value=6.29e-10). As a result,

p-values obtained using a standard analysis of the Guo et al. data set are not reliable. We
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therefore considered the following nonparametric procedure. We ranked the sites according

to their absolute difference in mean methylation levels between cases and controls, and

considered a simple enrichment test, wherein the p-value of a site was determined as its rank

divided by the total number of sites in the ranking.

The results are summarized in Supplementary Data 2 in [140], where additional description

for the associated genes is provided from GeneCards [141], the GWAS catalog [142], and

GeneHancer [143].

4.2.11 Application of CellDMC and HIRE

We applied CellDMC using the corresponding R package by Zheng et al. [133], and provided

it with the true cell-type proportions as an input throughout our simulation study, and with

the same covariates we used for TCA in the real data analysis. We further applied HIRE

using the corresponding R package by Luo et al. [145]. Unlike CellDMC, HIRE treats the

cell-type proportions as parameters that are being estimated as part of the optimization

process. Therefore, in order to provide it with a similar advantage to CellDMC, which was

given access to the true cell-type proportions in the simulation study, we assigned the initial

cell-type proportion estimates in the HIRE code to be the true cell-type proportions.

Since both CellDMC and HIRE provide only test statistics and p-values for the effects of

individual cell types (i.e. only for marginal tests and not for a joint, CpG-level test), in the

power simulations with effects in multiple cell types we considered a CpG to be associated

with the phenotype if it had a significant association with at least one of the cell types. To

make our benchmarking of TCA with these methods conservative, we allowed a favorable

procedure for CellDMC and HIRE in these cases by not accounting for the number of cell

types (i.e. just for the number of CpGs) when calculating true positive rates.
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Figure 4.4: Reconstructing cell-type-specific methylation levels from simulated bulk whole-
blood data with three constituting cell types (k = 3; 250 samples, 250 sites). Three ap-
proaches were evaluated in capturing the cell-type-specific levels of each site j and cell type
h across all individuals zhj = (z1

hj, ..., z
n
hj): TCA, TCA after permuting the observed data

matrix (“Permutation”) and directly using the observed bulk data (“Observed”; i.e. using
the bulk as the estimate for the cell-type-specific levels of each cell type). For each of the
evaluated approaches and for each of the simulated cell types (ordered by their mean abun-
dance), presented are the distributions of the linear correlation between zhj and its estimate
ẑhj across all sites j and across ten simulated data sets (left), and the distribution of the
MSE between zhj and its estimate ẑhj across all sites j and across ten simulated data set
(right). The central mark on each box indicates the median, and the bottom and top edges
indicate the 25th and 75th percentiles, respectively.

4.3 Results

4.3.1 Detecting cell-type-specific associations using TCA

In order to empirically verify that TCA can learn cell-type-specific methylation levels, we

first leveraged whole-blood methylation data collected from sorted leukocytes [74] to simulate

heterogeneous bulk methylation data. While the bulk data captured the cell-type-specific sig-

nals to some extent, as expected, TCA performed substantially better (Figures 4.4 and 4.5).

We next evaluated the performance of TCA in detecting cell-type-specific associations by

simulating whole-blood methylation and corresponding phenotypes with cell-type-specific

effects. We compared the performance of TCA with a standard regression analysis of the bulk

levels and with the method CellDMC, an interaction-based test that was recently evaluated
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Figure 4.5: Reconstructing cell-type-specific methylation levels from simulated bulk whole-
blood data with six constituting cell types (k = 6; 250 samples, 250 sites). Three approaches
were evaluated in capturing the cell-type-specific levels of each site j and cell type h across
all individuals zhj = (z1

hj, ..., z
n
hj): TCA, TCA after permuting the observed data matrix

(“Permutation”) and directly using the observed bulk data (“Observed”; i.e. using the bulk
as the estimate for the cell-type-specific levels of each cell type). For each of the evaluated
approaches and for each of the simulated cell types (ordered by their mean abundance),
presented are the distributions of the linear correlation between zhj and its estimate ẑhj
across all sites j and across ten simulated data sets (top), and the distribution of the MSE
between zhj and its estimate ẑhj across all sites j and across ten simulated data set (bottom).
The central mark on each box indicates the median, and the bottom and top edges indicate
the 25th and 75th percentiles, respectively.

in the context of detecting cell-type-specific associations with methylation [133]. Notably,

we provided CellDMC with the true underlying cell-type proportions as an input. Beyond
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introducing interaction terms into a standard regression framework, CellDMC also considers

additive effects of the cell-type composition. Given the true cell-type proportions, it therefore

achieves a perfect linear correction for cell-type composition. Hence, CellDMC practically

reflects in our experiments an upper bound for the performance of any standard method

that merely accounts for linear differences in cell-type composition across individuals.

Our experiments verify that TCA yields a substantial increase in power over the alterna-

tives under different scenarios Particularly, in its worst performing scenario, TCA achieved a

median of 2.25 fold increase in power (across all tested effect sizes) over the standard regres-

sion approach and a median of 11.15 fold increase in power in the best performing scenario

(Figure 4.6); compared with CellDMC, TCA achieved a median of between 1.46 and 12.25

fold increase in power across all scenarios. Repeating these experiments while including

cell-type-specific affecting covariates and under a nonparametric distribution of the cell-type

proportions (i.e. rather than a parametric one) demonstrated similar results (Figure 4.7).

Remarkably, TCA demonstrated the highest improvement in a scenario where all cell types

had the exact same effect size, although this is intuitively a favorable scenario for a standard

regression analysis, which does not model cell-type-specific signals (Figure 4.6). Interestingly,

in spite of the high power achieved by TCA, we found it to be conservative (i.e. less false

positives than expected; Figure 4.8); this can be explained by the optimization procedure of

the model (Appendix A).

Finally, we performed an additional power analysis stratified by cell types, which, once again,

showed that TCA robustly outperforms the alternative approaches (Figures 4.9 and 4.10).

This analysis further revealed that under the scenario of a single causal cell type, TCA

achieved better power when the causal cell type was highly abundant (as opposed to lowly

abundant); these results are expected, given that bulk signals are mostly dominated by

abundant cell types. For instance, considering a moderate effect size corresponding to a

signal-to-noise ratio of 1, we found that TCA achieved a median power of 1 and 0.52 in

granulocytes and CD4+ cells (the two most abundant cell types; mean abundance of 0.67

and 0.11, respectively), yet only a limited power in the less abundant cell types; for example,
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Figure 4.6: An evaluation of power for detecting cell-type-specific associations with DNA
methylation. Performance was evaluated using three approaches: TCA, a standard linear
regression with the observed bulk data, and CellDMC with the true cell-type proportions as
an input. The numbers of true positives (TPs) were measured under three scenarios using a
range of effect sizes: different effect sizes for different cell types (Scenario I), the same effect
size for all cell types (Scenario II), and a single effect size for a single cell type (Scenario
III); each of the scenarios was evaluated under the assumption of three constituting cell
types (k=3; top row) and six constituting cell types (k=6; bottom row). Lines represent
the median performance across 10 simulations and the colored areas reflect the results range
across the multiple executions. The colored dots reflect the results of TCA under different
initializations of the cell-type proportion estimates (i.e. different levels of noise injected
into TCA), where the color gradients represent the mean absolute correlation of the initial
estimates with the true values (across all cell types).

in the two least abundant cell types considered, B cells and NK cells (mean abundance 0.03

for both), TCA could only achieve a median power of 0.08 and 0.03 under the same effect

size (Figure 4.9).
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Figure 4.7: An evaluation of power for detecting cell-type-specific associations with DNA
methylation while including cell-type-specific affecting covariates and using a nonparametric
distribution of the cell-type proportions. Performance was evaluated using three approaches:
TCA, a standard linear regression with the observed bulk data, and CellDMC with the true
cell-type proportions as an input. The numbers of true positives (TPs) were measured under
three scenarios using a range of effect sizes: different effect sizes for different cell types
(Scenario I), the same effect size for all cell types (Scenario II), and a single effect size for
a single cell type (Scenario III); each of the scenarios was evaluated under the assumption
of three constituting cell types (k=3; top row) and six constituting cell types (k=6; bottom
row). Lines represent the median performance across 10 simulations and the colored areas
reflect the results range across the multiple executions. The colored dots reflect the results
of TCA under different initializations of the cell-type proportion estimates (i.e. different
levels of noise injected into TCA), where the color gradients represent the mean absolute
correlation of the initial estimates with the true values (across all cell types).

4.3.2 Cell-type-specific differential methylation in immune activity

In general, the methylation levels in a particular cell type are not expected to be related to

the tissue cell-type composition. Therefore, in the analysis of sorted-cell or single-cell methy-

lation, there is no need to account for cell-type composition. In contrast, it is now widely

acknowledged that in analysis of bulk methylation one has to account for cell-type composi-
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Figure 4.8: An evaluation of false positives rates in association testing with DNA methyla-
tion. Performance was evaluated using three approaches: TCA, a standard linear regression
with the observed bulk data, and CellDMC with the true cell-type proportions as an input.
The proportions of false positives (FPs) were measured under three scenarios using a range
of effect sizes: different effect sizes for different cell types (Scenario I), the same effect size for
all cell types (Scenario II), and only a single effect size for a single cell type (Scenario III);
each of the scenarios was evaluated under the assumption of three constituting cell types
(k=3) and six constituting cell types (k=6). Boxplots reflect results across 10 simulations.
The central mark on each box indicates the median, and the bottom and top edges indicate
the 25th and 75th percentiles, respectively.

tion in cases where it is correlated with the phenotype of interest [72]. For a phenotype that

is highly correlated with the cell-type composition, such a correction of bulk methylation

data is expected to reduce true underlying signals, potentially resulting in no findings (i.e.

false negatives). As opposed to analysis of bulk data, cell-type specific analysis would not

reduce the signal in this case. To demonstrate this, we consider an extreme case where the

phenotype is the cell-type composition. Specifically, we defined the level of immune activity

of an individual as its total lymphocyte proportion in whole-blood, and aimed at finding
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Figure 4.9: An evaluation of power for detecting cell-type-specific associations with DNA
methylation, stratified by cell types (with the mean abundance of each cell type noted).
Performance was evaluated using three approaches: TCA, a standard linear regression with
the observed bulk data, and CellDMC with the true cell-type proportions as an input.
The numbers of true positives were measured under a scenario where only a single effect
size for a single cell type exists, both in the case of three constituting cell types (k=3)
and six constituting cell types (k=6). The colored areas reflect the results range across 10
simulations, and the colored dots reflect the results of TCA under different initializations of
the cell-type composition estimates (i.e. different levels of noise injected into TCA), where
the color gradients represent the mean absolute correlation of the initial estimates with the
true values (across all cell types).

methylation sites that are associated with regulation of immune activity.

Since bulk methylation data is a composition of signals that depend on to the cell-type

proportions, a standard regression approach with whole-blood methylation is expected to
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Figure 4.10: An evaluation of false positives rates in association testing with DNA methy-
lation, stratified by cell types. Performance was evaluated using three approaches: TCA, a
standard linear regression with the observed bulk data, and CellDMC with the true cell-type
proportions as an input. The proportions of false positives (FPs) were measured under a
scenario where only a single effect size for a single cell type exists, both in the case of three
constituting cell types (k=3) and six constituting cell types (k=6). Boxplots reflect results
across 10 simulations. The central mark on each box indicates the median, and the bottom
and top edges indicate the 25th and 75th percentiles, respectively.

fail to distinguish between false and true associations with immune activity. We verified this

using whole-blood methylation data from a previous study by Liu et al. (n = 658) [67].

Importantly, accounting for the cell-type composition in this case would eliminate any true

signal in the data, as the immune response phenotype is perfectly defined by the cell-type
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composition.

We next performed cell-type-specific analysis. Applying CellDMC resulted in a massive

inflation in test statistic, which failed to distinguish between false and true associations

(Figure 4.11a). Using TCA, in contrast, resulted in 8 experiment-wide significant associa-

tions (p-value<9.87e-07; Figure 4.11b and Supplementary Data 1 in [140]). Importantly, 6

of the associated CpGs reside in 5 genes that were either linked in GWAS to leukocyte com-

position in blood or that are known to play a direct role in regulation of leukocytes: CD247,

CLEC2D, PDCD1, PTPRCAP, and DOK2 (Supplementary Data 1 in [140]). The remaining

associated CpGs reside in the genes SDF4 and SEMA6B, which were not previously reported

as related to leukocyte composition. Using a second large whole-blood methylation data set

(n=650) [94], we could replicate the associations with 4 out of the 7 genes (PTPRCAP,

DOK2, SDF4 and SEMA6B ; p-value<0.0063; Supplementary Data 1 in [140]). Our results

are therefore consistent with the possibility that methylation modifications in these genes

are involved in regulation of immune activity.

4.3.3 Cell-type-specific differential methylation in rheumatoid arthritis

RA is an autoimmune chronic inflammatory disease which has been previously related to

changes in DNA methylation [146, 147]. In order to further demonstrate the utility of

TCA, we revisited the largest previous whole-blood methylation study with RA by Liu et

al. (n = 658) [67].

As a first attempt to detect associations between methylation and RA status, we applied

a standard regression analysis, which yielded 6 experiment-wide significant associations (p-

value<2.33e-7 ;Figure 4.11c and Supplementary Data 2 in [140]), overall in line with previous

studies that analyzed this data set [36, 87]. In order to allow an intuitive comparison

with a standard regression, we performed a second analysis under the TCA model while

assuming a single effect size in all cell types, which is expected to be a favorable scenario

for a standard regression analysis. Remarkably, TCA found 15 experiment-wide significant

CpGs, 11 of which were not reported by the standard regression analysis. Altogether, these
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Figure 4.11: Results of the association analysis with level of immune activity and with
rheumatoid arthritis in the Liu et al. whole-blood methylation data, presented by Manhattan
plots of the -log10 P-values for the association tests. (a-b) Shown are results with immune
activity using CellDMC (results subsampled and truncated for visualization) and using TCA.
(c-d) Shown are results of the RA analysis using standard regression and using TCA under
the assumption of a single effect size for all cell types. (e-f) Shown are results of a cell-type-
specific analysis of RA using CellDMC and using TCA. Solid horizontal red lines represent
the experiment-wide significance threshold, and dotted horizontal red lines represent the
significance threshold adjusted for three experiments corresponding to the three cell types.

15 associations highlighted RA as an enriched pathway (p-value=1.45e-07; Figure 4.11d and

Supplementary Data 2 in [140]).
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The presumption that only some particular immune cell-types are related to the patho-

genesis of RA, have led to studies with methylation collected from sorted populations of

leukocytes (e.g., [137, 138, 148]). In a recent study by Rhead et al., some of us investigated

differences in methylation patterns between RA cases and controls using data collected from

sorted cells [138]. Particularly, methylation levels were collected from two sub-populations of

CD4+ T cells (memory cells and naive cells; n=90, n=88), CD14+ monocytes (n=90), and

CD19+ B cells (n=87). Although this study involved a considerable data collection effort in

an attempt to provide insights into the methylome of RA patients at a cell-type-specific res-

olution, it does not allow the detection of experiment-wide significant associations, possibly

owing to the limited sample size.

In order to reconcile with the sample size limitation in the sorted data by Rhead et al., we

considered it for validation of the results reported by TCA in the large whole-blood data

rather than for detecting novel associations. We found that 11 of the 15 CpGs reported

by TCA (and 4 of the 6 CpGs reported by a standard regression) had a significant p-value

at level 0.05 in at least one of the cell types, reflecting a high consistency with the results

reported by TCA.

We next used TCA to test for associations in each of CD4+, CD14+, and CD19+ cells

separately (i.e. a marginal test for each cell type, without the restriction of a single effect

size). This analysis reported 15 cell-type-specific associations with 11 CpGs: 6 associations in

CD4+, 8 in CD14+, and one association in CD19+ cells (p-value<2.33e-07; Figure 4.11f and

Supplementary Data 2 in [140]). Considering a more stringent significance threshold in order

to account for the three separate experiments we conducted for the three cell types resulted in

10 cell-type-specific associations with 7 CpGs (p-value<7.78e-08; Figure 4.11f). We further

found these CpGs to be enriched for involvement in the RA pathway (p-value=9.47e-07);

particularly, 4 of these CpGs reside in HLA genes (or in an intergenic HLA region) that

were previously reported in GWAS as RA genetic risk loci: HLA-DRA, DRB5, DQA1, and

DQA2.

We further sought to evaluate the 15 associations found by the TCA marginal test using
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sorted data. We found that in the Rhead et al. data 4 of the 6 associations in CD4+ and 4

of the 8 associations in CD14+ had a significant p-value at level 0.05, with all associations

having overall low p-values (p-value ≤ 0.35 for all 15 associations; Supplementary Data 2

in [140]). Following the enrichment in small p-values, considering a false discovery rate (FDR)

criterion for the entire set of 15 associations revealed significant q-values at level 0.05 for all

15 associations. We further considered an additional data set with sorted CD4+ methylation

from an RA study by Guo et al. (n=24) and found it to be consistent (p-value<0.05) with

3 of the 4 CD4+ associations that were verified in the Rhead et al. data.

Notably, applying CellDMC as an alternative approach for detecting cell-type-specific asso-

ciations in CD4+, CD14+, and CD19+ resulted in 6 genome-wide significant hits: one in

CD14+ and five in CD19+ (and only three hits in CD19+ if accounting for the three sepa-

rate experiments; Figure 4.11e). However, none of these 6 hits were found to be significant

in the sorted cells data by Rhead et al. (p-value>0.05), thus, echoing our conclusions from

the power simulation showing a substantial gap in power between TCA and CellDMC.

Finally, we note that the lack of evidence (from the sorted cells data) for some of the

associated CpGs may be explained in part by the fact that each data set was collected

from a different population; specifically, Liu et al. studied a Swedish population, Rhead et

al. studied a heterogeneous European population, and Guo et al. studied a Han Chinese

population. In the case of TCA, another possibility is that it did not attribute the correct

cell types to some of the associations. A support for this possibility is given by the fact

that two associations (cg16411857 and cg22812614) were attributed to CD4+, however were

supported by the sorted data to be CD14+ specific, and another association (cg11767757)

was attributed to all cell types, however, was only supported by the sorted data to be CD14+

specific.
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4.4 Discussion

We proposed a methodology that can reveal novel cell-type-specific associations from bulk

methylation data, i.e., without the need to collect cost prohibitive cell-type-specific data.

This methodology is particularly useful in light of the large number of bulk samples that have

been collected by now, and due to the fact that currently single-cell methylation technologies

are not practically scalable to large population studies. Importantly, we found that TCA is

substantially superior to a standard regression analysis with interaction terms between the

cell-type proportions and the phenotype, while adequately controlling for false positive rate,

even in the case where all cell types share the same effect size. We therefore suggest that

TCA should always be preferred in analysis of bulk methylation data.

Notably, a recent attempt to provide cell-type-specific context in genetic studies aims at

identifying trait-relevant tissues or cell types by leveraging genetic data and known tissue or

cell-type-specific functional annotations [149, 150]. This approach yielded some promising

results in relating trait-associated genetic loci to relevant tissues and cell types. However, it

is limited to only one particular task and it is bounded by design to consider only genetic

signals, whereas non-genetic signals are often also of interest in genomic studies. Moreover,

this approach can only suggest an implicit cell-type-specific context by binding known an-

notations with heritability. In contrast, the approach taken in TCA allows the extraction of

explicit cell-type-specific signals, which can potentially allow many opportunities and appli-

cations in biological research. We further note that around the time of submitting this work,

another model similar to TCA appeared as a preprint by Luo et al. [145]. For completeness,

we verified that TCA performs substantially better than the method by Luo et al.; given

that the latter was not published at the time of developing TCA, we did not include this

evaluation in this work.

A potential limitation of TCA is the need for rarely available cell-type proportions as an

input. We alleviate this issue by allowing TCA to get estimates of the cell-type proportions

using standard methods [85, 134] and then re-estimating them following the TCA model.

As we showed, this allows TCA to provide good results even when just noisy estimates of
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the cell-type proportions are available. In practice, obtaining such estimates can be done

using either a reference-based approach [85] or a semi-supervised approach [134], in case a

methylation reference is not available for the studied tissue.

Our experiments and mathematical results show that TCA can extract cell-type-specific

signals from abundant cell types better compared with lowly abundant cell types. Another

potential limitation is expected to be in the case where the proportion of one cell type

strongly covary with the proportion of a second cell type. In case of a true association

in just one of the two cell types, performing a marginal association test on each cell type

separately might fail to effectively distinguish between the signals of the two cell types and

report an association in both cell types. In light of these limitations, we suggest that future

studies include small replication data sets from sorted or single cells. Future work might be

able to alleviate this issue by modeling the covariance of the cell-type proportions.

We further note that around the time of developing TCA, another model similar to TCA

appeared as a preprint by Luo et al. [145] (HIRE). For completeness, we verified that TCA

performs substantially better than the method by Luo et al. (data not shown); given that

the latter was not published by the time of finalizing the work on TCA, we separated this

evaluation from the our benchmarking.

Finally, in this work we focus on the application of TCA to epigenetic association studies.

However, TCA can be formulated as a general statistical framework for obtaining underlying

three-dimensional information from two-dimensional convolved signals, a capability which

can benefit various domains in biology and beyond.
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CHAPTER 5

Tensor Composition Analysis: relation to other models

and further analysis

5.1 Background

Genomic markers are known to demonstrate differences between different cell types. Yet,

differential analysis in genomics is typically performed using tissue-level bulk data, owing

to high costs and practical limitations with generating large-scale data at cell-type-specific

resolution. This has led to the development of computational methods that aim at performing

differential analysis experiments at the cell-type level using tissue-level data.

A first attempt in that direction suggested to estimate differential expression at a cell-type

level by solving a separate decomposition problem for each of two populations of interest

(e.g., cases and controls for a particular condition) [131]. A later work, which, as we show

here, essentially further generalized the two-way decomposition approach, allowed to con-

sider non-categorical phenotypes by using a standard linear regression framework with inter-

action terms between the cell-type proportions of the samples in the data and a phenotype

and interest [132]. More recently, the same interaction model was suggested and applied

independently by several groups for calling differential DNA methylation at the cell-type

level [133, 151, 152].

A different approach that was suggested here in Chapter 4 - Tensor Composition Analysis

(TCA) - models cell-type-specific variation as individual-specific, thus assuming that the

two-dimensional input data (individuals by CpGs in the case of methylation) is coming from

a three-dimensional structure (individuals by CpGs by cell types). Notably, this perspective
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was implicitly suggested independently by another group as well at the same time [153],

although, as we later discuss, they did not consider the entire span of aspects that were

presented as part of the TCA framework.

Below, we go over the technical details of the decomposition approach for detecting differ-

ential methylation at the cell-type level. Then, we describe the TCA approach and relate

it mathematically to the more standard decomposition and interaction models, as well as

provide a theoretical justification for TCA through asymptotic analysis. Finally, we further

evaluate and discuss different alternatives for statistical testing and setting model direction-

ality that are possible within the TCA framework, while providing a thorough comparison

with the interaction model.

5.2 Methods

5.2.1 A two-way decomposition for differential analysis with binary phenotypes

Let X ∈ Rn×m be tissue-level bulk data collected from m features in n individuals. A

standard decomposition problem assumes the following model:

X = W TZ + E (5.1)

Here, W ∈ Rk×n is a matrix containing for each individual their fractions of each of k

different cell types assumed to compose the tissue from which X was collected, Z ∈ Rk×m

is a matrix with cell-type-specific signatures for each of the k cell types in each of the m

features, and E ∈ Rn×m represents noise.

Many different versions that differ in their assumptions on the components of the decomposi-

tion (i.e. W,Z,E) have been proposed, and numerous applications in genomics and beyond

have successfully employed a decomposition approach. Critically, estimating W,Z jointly

under the model in (5.1) (unsupervised decomposition) may not be identifiable, even when

introducing certain constraints on the solution of the decomposition (such as non-negativity
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constraints and requiring the cell-type fractions of each individual to sum up to 1) [134].

To circumvent this, one can learn and fix either Z or W by using external reference data

collected from purified cells for the former or, alternatively, measuring cell counts for the

individuals in the data for the latter; this supervised decomposition approach allows to avoid

the non-identifiability issue [85, 134].

Solving a decomposition problem provides us with cell-type-specific signatures that are

shared across all individuals in the data; thus, essentially assuming that all individuals

have the exact same values at the cell-type level. This assumption, which is known to be

unjustified biologically, is inherent in the classical decomposition formulation. Consequently,

this model does not allow us to interrogate variance at the cell-type level, let alone to per-

form differential expression at the cell-type level. The first relaxation of this assumption in

genomics was proposed by Shen-Orr et al. in the context of differential expression analysis

[131], where the authors considered the following model for tissue-level expression data:

xij =
k∑

h=1

whiz
g
hj + εij (5.2)

εij ∼ N(0, σ2
g)

Here, xij corresponds to the expression level of gene j in individual i (row i, column j in

X), whi corresponds to the fraction of cell type h in individual i (row h, column i in W ),

and zhj corresponds to the expression of gene j in cell-type h (row h, column j in Z). The

parameter g ∈ {0, 1} represents two possible values for Z, one for each of two groups of

individuals (e.g., cases and controls) and εij is assumed to be normally distributed with a

possibly different variance for each group g.

Shen-Orr et al. experimentally measured W and solved (5.2), which essentially corresponds

to solving a supervised version of the decomposition model in (5.1) twice, once for each group

g, while fixing W with the measured cell counts. Provided with estimates for {zghj}h,j,g, the

authors statistically tested for differences between z0
hj and z1

hj for each h, j, which allowed to

interrogate differential expression of gene j in cell type h across the two groups of individuals.

113



5.2.2 Regression with interaction terms as a generalized decomposition for

quantitative phenotypes

The two-way decomposition approach can in principle be extended to a multi-way decom-

position, where a separate decomposition model is fitted for each possible value of a cate-

gorical phenotype of interest. However, is it not immediately clear how this approach can

be extended to quantitative phenotypes. As we next show, this can be addressed within a

regression framework.

Westra et al. [132] employed a regression model with interaction terms in the context of

differential expression as follows. Let y be an n-length vector with phenotypic values for

the same n individuals as in the data matrix X, keeping the previous notations, the authors

considered the following model for tissue-level expression:

xij =
k∑

h=1

whiµhj +
k∑

h=1

whiyiγhj + εij (5.3)

εij ∼ N(0, σ2)

where µhj is the cell-type-specific signature of gene j in cell type h, yi is the phenotypic

value of individual i and γhj is the effect size - specific to gene j - of the interaction (i.e.

multiplicative) term between y and the proportion of cell type h.

For a binary phenotype y, it is easy to see that the model in (5.3) can be rephrased as a

two-way decomposition model as in (5.2):

k∑
h=1

whiµhj +
k∑

h=1

whiyiγhj + εij =
k∑

h=1

whiz̃hjI{yi = 0}+
k∑

h=1

whiz
′
hjI{yi = 1}+ εij(5.4)

≡
k∑

h=1

whiz
g
hj + εij (5.5)

where g in (5.5) represents the possible values for zhj, corresponding to the two values of

the phenotype y. Of note, the component of variation εij can be treated separately for each

group in y.
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The above illustrates the motivation for performing cell-type-specific differential analysis

by testing the coefficients {γhj} in (5.3) as an evidence for different effects for different

values of y. Clearly, rephrasing the decomposition formulation as a regression problem with

interactions not only allows us to consider non-categorical phenotypes, but it also allows a

straightforward model fitting and statistical analysis by leveraging the well-established tools

from standard regression analysis. Particularly, covariates can be readily included in the

model and tested as in standard regression:

xij =
k∑

h=1

whiµhj +
k∑

h=1

whiyiγhj +

p∑
d=1

cidδjd + εij (5.6)

Here, cid, δjd are the value of the d-th covariate (out of a total of p covariates) of individual

i and its corresponding effect size, which is specific to feature j.

The interaction model in (5.6) was recently presented and applied by several groups for

calling differential DNA methylation at cell-type resolution [133, 151, 152]. Most notably, it

was used in CellDMC by Zheng et al. [133].

5.2.3 TCA: a deconvolution-based solution

While the interaction model in (5.6) improves upon the classical decomposition model in (5.1)

by allowing differences in cell-type-specific profiles between individuals that are coming from

different groups, it is still limited by the assumption that cell-type-specific levels are constant

across individuals when conditioning on the phenotype of interest (whether it is categorical or

continuous). Put differently, if we consider a case/control scenario as an illustrative example,

the interaction model assumes that all cases (and similarly for controls) share the exact same

cell-type-specific levels. The inter-group variation under this model stems only from fixed

effects, while ignoring possible effects of additional factors at the cell-type level as well as

intrinsic variability per individual (i.e. individual-specific unexplained biological noise).

TCA models the assumption that different individuals may demonstrate differences in cell-

type-specific profiles owing to multiple factors affecting at the cell-type level and owing to
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individual-specific intrinsic variability [140]. In more details, the TCA model for methylation

at the cell-type level makes the following assumption:

Zi
hj = µhj +

p1∑
d=1

c
(1)
id γ

j
hd + εihj (5.7)

εihj ∼ N(0, σ2
hj)

where Zi
hj is a random variable that represents the level in methylation site j and cell type h

for the i-th individual, µhj, σhj are the population-level mean value and standard deviation

for site j and cell type h, and c
(1)
id , γ

j
hd are the value of the d-th covariate (out of a total of

p1 covariates) of individual i and its corresponding effect size that is specific to methylation

site j and cell type h. Note that (5.7) considers p1 covariates that are assumed to affect

methylation at the cell-type level.

The TCA model further assumes the following for the observed tissue-level data:

Xij =
k∑

h=1

whiZ
i
hj +

p2∑
d=1

c
(2)
id δjd + εij (5.8)

εij ∼ N(0, τ 2)

where εij is an i.i.d. component of variation and c
(2)
id , δjd are the value of the d-th covariate

(out of a total of p2 covariates) of individual i and its corresponding effect size that is specific

to site j. Note that (5.8) considers p2 covariates that are assumed to affect the tissue-level

methylation mixtures (i.e. rather than the methylation at the cell-type level; such covariates

can be, for example, batch information, that may affect the mixture regardless of the cell

composition and the underlying cell-type-specific signals).

The above model reflects the assumption that the two-dimensional input data (X; individuals

by sites) is coming from a three-dimensional underlying structure ({zihj}h,j,i; individuals by

sites by cell types). The TCA framework allows for learning the cell-type-specific levels of

an individual from their tissue-level data, thus performing a deconvolution of the observed

signals in X into their underlying signals.
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We make a distinction between a deconvolution that aims at obtaining the complete three-

dimensional underlying signals and a decomposition that aims at obtaining population-level

properties from the data, as in (5.1) and (5.6). Performing a deconvolution in this case

becomes possible by the fact that both the data points and the entries of the underlying

three-dimensional tensor are treated as random variables. Consequently, we can look at the

conditional distribution of the tensor given the observed data and use it for inferring the

tensor values of the observed data. Particularly, the TCA estimator is defined as:

ẑihj = E[Zi
hj|Xij = xij; Θ] (5.9)

where Θ represents the parameters in (5.7) and in (5.8) - these are unknown, however, they

can be estimated from the data [140]. Particularly, W is assumed to be known in a typical

application of TCA, however, we developed an alternative optimization procedure for re-

estimating W from the data in the case where only low-quality estimates of the cell-type

proportions are available [140].

Notably, even though the model in (5.6), as presented in CellDMC, does not make a dis-

tinction between cell-type-specific covariates and mixture-level covariates, it can allow so

by considering interaction terms between the cell-type proportions and the covariates that

are assumed to have cell-type-specific effects. Yet, TCA further handles individual-specific

intrinsic variability (i.e. the component εihj in (5.7)), which is not modeled by CellDMC.

In parallel to the introduction of TCA, another group presented essentially the same model

as in (5.7)-(5.8) [153] and applied it for calling cell-type-specific differential methylation by

treating the phenotype of interest as a cell-type-specific covariate. The TCA framework,

however, is more general: it allows both to treat the phenotype as a covariate (i.e. as an

explaining variable of methylation; see next subsection) and, as we later discuss, to directly

model the phenotype (i.e. as the explained variable, while considering methylation levels

as explaining variables). In addition, as discussed above, TCA allows to explicitly estimate

cell-type-specific methylation profiles for each individual.
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5.2.4 Relating the TCA model to the interaction model

In the chapter introducing TCA (Chapter 4), we primarily focused on directly modeling

a phenotype of interest as affected by cell-type-specific methylation, while making the as-

sumptions in (5.7)-(5.8) for the methylation levels (see further details in the next subsection).

However, since the model in (5.7)-(5.8) can take into account covariates that affect methyla-

tion levels (or mediating components thereof) at the cell-type level, the phenotype of interest

can also be treated as a cell-type-specific covariate.

Let y be a phenotype of interest that may affect methylation at the cell-type level, assuming

no other factors affect methylation for simplicity, the TCA model can be formulated as

follows:

Zi
hj = µhj + yiγ

j
h + εihj, ε

i
hj ∼ N(0, σ2

hj) (5.10)

Xij =
k∑

h=1

whiZ
i
hj + εij, εij ∼ N(0, τ 2) (5.11)

Disregarding the component of intrinsic variation at the cell-type level (i.e. εihj) by assuming

σhj = 0, we get:

zihj = µhj + yiγ
j
h (5.12)

where zihj is now a constant value conditional on yi, γ
j
h (and therefore we make a distinction

from the notation Zi
hj, which represents a random variable with non-zero variance). Under

this assumption, the model of X can be summarized as follows:

xij =
k∑

h=1

whizhi + εij (5.13)

=
k∑

h=1

whiµhj +
k∑

h=1

whiyiγ
j
h + εij (5.14)

where εij ∼ N(0, τ 2), and where, as before, we make a distinction between xij here and Xij
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in (5.11) (where cell-type-specific components are non-trivial random variables). This model

is exactly the model in (5.3), which is the one used in CellDMC.

We conclude that assuming no intrinsic variability at the cell-type level (i.e. setting σhj = 0)

yields TCA as equivalent to the CellDMC model, which reveals CellDMC as a degenerate

case of TCA. Unlike CellDMC, the generality of TCA allows it to absorb and account for

intrinsic variability at the cell-type level, and for that reason, in principle, TCA is expected to

perform better than CellDMC in cases where intrinsic cell-type variation exists and equally

well as CellDMC in cases where intrinsic cell-type variation does not exist or is minimal.

Importantly, the above result is specific to the case where methylation is assumed to be

affected by the phenotype. As we discuss next, the TCA framework also allows to accommo-

date the assumption that the phenotype of interest if statistically affected by methylation

(either directly or by a mediating component). In that case, CellDMC cannot be clearly

related to TCA, as it does not allow an analogous modeling of the phenotype.

5.2.5 Changing the model directionality: modeling the phenotype within the

TCA framework

All the models we discussed so far aim at explaining methylation, and differential methyla-

tion analysis is made possible within these models by testing whether a phenotype of interest

statistically affect the methylation levels under test. Essentially, this is done by including the

phenotype as a covariate in the model of the methylation levels. In practice, however, the

directionality of the true underlying model may be different. That is, the phenotype of inter-

est may be affected by methylation levels (or by a component that is statistically captured

by methylation). In those cases, the models discussed above are statistically unjustified and,

as we later show, empirically lead to worse performance as a result of making an incorrect

assumption. In what follows, we denote the assumption that methylation affects the phe-

notype (or a mediating component thereof) by Y |X, and we denote the assumption that

methylation is affected by the phenotype (or by a mediating component thereof) inversely

as X|Y .
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The TCA framework allows to accommodate the assumption that methylation affects the

phenotype by directly modeling the phenotype. Particularly, it considers the following model

for testing a given methylation site j:

Yi =
k∑

h=1

Zi
hjβhj + ei (5.15)

ei ∼ N(0, φ2)

Here, Yi is the phenotypic level of individual i (we make a distinction from our previously

defined yi to reflect the fact that the phenotype is now a function of the random variables

{Zi
hj}h,j) and βhj is the effect size of the methylation level in cell type h at site j on the

phenotype.

Notably, depending on the context and phenotype of interest, assuming Y |X as in (5.15)

may be more appropriate (and interesting) than the alternative assumption X|Y . As an

example, consider our analysis in Chapter 4, where we applied TCA to previously studied

data with rheumatoid arthritis [67]. In this analysis, three of the associated CpGs we found

are highly heritable (cg13081526, cg18816397, cg13778567; more than 50% of their variances

can be explained by their cis-SNPs [70]). These findings are consistent with the possibility

that methylation mediates causal genetic effects on rheumatoid arthritis, which rationalizes

the assumption Y |X.

Fitting the model in (5.15) within the TCA framework can be done in one of two ways.

First, cell-type-specific methylation can be inferred following (5.9), which then allows to

employ a standard regression analysis (i.e. using the tensor estimates as the explaining

variables). Second, we can consider the conditional distribution of the phenotype given

{Zi
hj}h,j,i, however, since these are random variables with unobserved values they need to be

integrated over. We can do so by using the conditional distribution Zi
hj|Xij as follows:

∫
z1

...

∫
zk

Pr
(
Yi = yi|{Zi

hj = zh}kh=1

)
Pr
(
{Zi

hj = zh}kh=1|Xij = xij
)
dz1...dzk(5.16)

= Pr (Yi = yi|Xij = xij) (5.17)
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Therefore, in this second approach, TCA fits the conditional model Yi|Xij = xij, which can

be expressed in terms of the effect sizes {βhj}h,j, thus allowing to estimate and statistically

test them [140].

Of note, taking either approach to fit the model in (5.15) still requires to obtain estimates

for the parameters of the methylation model in (5.7)-(5.8) [140]. These can then be used

in the first approach for estimating {Zi
hj}h,j,i following (5.9) or in the second approach for

fitting the distribution Yi|Xij = xij. Regardless of which approach is taken, under the X|Y
assumption, the phenotype should not be considered as a cell-type-specific covariate as before

in the X|Y assumption.

5.2.6 A theoretical justification for TCA over standard regression

Let Y ∈ Rn be an outcome across n observations and X ∈ Rn be an explaining variable. A

standard linear regression model assumes:

Yi = Xiβ + εi (5.18)

εi ∼ (0, σ2) (5.19)

In this classical formulation X is assumed to be fixed. However, in many types of problems, it

may be more appropriate to treat X as random. TCA considers the case where X is random

and is coming from a mixture of distributions (corresponding to the different sources that

compose the mixture; in our case with methylation, sources correspond to cell types). Under

this assumption, we would want to take into account the variation coming from the different

sources.
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Consider the following simplified setup of the assumptions in TCA:

Xi =
k∑

h=1

WhiZhi (5.20)

Zhi ∼ N(0, 1) (5.21)

~Wi = (W1i, ...,Wki)
T ∼ FΘ (5.22)

where each of the sets {Zhi}h,i, { ~Wi}i is i.i.d. across observations. Under this setup, we can

consider the following model, which allows different effects for the different sources composing

X:

Yi =
k∑

h=1

Zhiβh + εi (5.23)

This model is clearly richer than the regression model in (5.18), and we are interested in

understanding the expected differences between applying TCA and taking a standard linear

regression approach under the assumptions in (5.20)-(5.23) (i.e. using the TCA estimator

versus a linear regression estimator). To further simplify our analysis, consider the special

case where there is an effect only in a single source l. Put differently, we change the model

of the outcome Y in (5.23) to the following:

Yi = Zliβ + εi (5.24)

εi ∼ N(0, σ2) (5.25)

Below, we show an asymptotic analysis comparing the TCA estimator to a standard linear

regression estimator under these settings. In our analysis, we consider the two-step approach

of TCA for model fitting under the assumption Y |X; that is, the values {zhi}h,i are first

explicitly estimated and then used as the explaining variables in a standard linear regression

analysis.

Denote the estimator of a standard (univariate) linear regression by β̂REG
n , where n denotes
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the number of observations. Further define

aREG
n =

1

n

n∑
i=1

XiYi (5.26)

bREG
n =

1

n

n∑
i=1

X2
i (5.27)

We get that

β̂REG
n =

aREG
n

bREG
n

(5.28)

We will be using the following (Slutsky’s Theorem):

√
n
(
aREG
n − E

[
aREG

1

])
bREG
n

d−→ N

(
0,

V
[
aREG

1

]
E [bREG

1 ]
2

)
(5.29)

This relation holds since:

√
n
(
aREG
n − E

[
aREG

1

]) d−→ N
(
0,V

[
aREG

1

])
(5.30)

bREG
n

p−→ E
[
bREG

1

]
(5.31)

where (5.30) is given by the central limit theorem and (5.31) is given by the law of large

numbers.

In this case

E
[
aREG

1

]
= βE[Wl1] (5.32)

E
[
bREG

1

]
=

k∑
h=1

E[W 2
h1] (5.33)

V
[
aREG

1

]
= (β2 + σ2)

k∑
h=1

E[W 2
h1] + β2

(
E[W 2

l1] + V[Wl1]
)

(5.34)

Using (5.29), we get the following asymptotic distribution for the estimator of linear regres-
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sion:

β̂REG
n

d−→ N

(
βE[Wl1]∑k
h=1 E[W 2

h1]
,
(β2 + σ2)

∑k
h=1 E[W 2

h1] + β2 (E[W 2
l1] + V[Wl1])

n
∑k

h=1 E[W 2
h1]

)
(5.35)

Next, we derive the asymptotic distribution of the TCA estimator. First, recall that the

TCA estimator of Zli in this case is

Ẑli = E
[
Zli|Xi = xi, ~Wi = (w1i, ..., wki)

T
]

=
wlixi∑k
h=1w

2
hi

(5.36)

Similarly to the case of the regression estimator, we define

aTCA
n =

1

n

n∑
i=1

ẐliYi (5.37)

bTCA
n =

1

n

n∑
i=1

Ẑ2
li (5.38)

β̂TCA
n =

aTCA
n

bTCA
n

(5.39)

which gives us

E
[
aTCA

1

]
= βE

[
W 2
li∑k

h=1W
2
hi

]
(5.40)

E
[
bTCA

1

]
= E

[
W 2
li∑k

h=1 W
2
hi

]
(5.41)

V
[
aTCA

1

]
= (β2 + σ2)E

[
W 2
li∑k

h=1 W
2
hi

]
+ β2

(
E

[
W 2
li∑k

h=1W
2
hi

]
+ 2V

[
W 2
li∑k

h=1 W
2
hi

])
(5.42)

Using (5.29) similarly as in the regression case, we get the following asymptotic distribution

for the estimator of TCA:

β̂TCA
n

d−→ N

β, 1

n

(
2β2 + σ2

)
+

2β2

n

V
[

W 2
li∑k

h=1W
2
hi

]
E
[

W 2
li∑k

h=1W
2
hi

]
 (5.43)
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Asymptotically, TCA provides an unbiased estimator for β. On the other hand, a standard

linear regression estimator yields a biased estimator in case β 6= 0; particularly, it will

typically underestimate β, except for cases where E[Wli] >
∑k

h=1 E[W 2
hi], in which case it

will overestimate β. These results provide an insight into the empirical differences we observe

between TCA and and a standard regression approach (see Subsection 4.3.1).

5.2.7 Software and computational tools

We applied TCA using the TCA R package version 1.2.0 (available on CRAN); source code

is available from github at github.com/cozygene/TCA. For the application of CellDMC, we

used the CellDMC function in the EpiDISH R package version 2.2.0 (available on Bioconduc-

tor) which provides an implementation of CellDMC.

In the application of TCA under the assumption X|Y , we used the tca function, which

provides p-values for the estimated parameters in the model under a marginal conditional

test and under a joint test; these are given in the output fields gammas_hat_pvals and

gammas_hat_pvals.joint of the tca function. In the application of TCA under the assump-

tion Y |X, we used the tcareg function, while setting the argument test to the requested

type of test (e.g., marginal or marginal conditional). Throughout our experiments, unless

stated otherwise, we used the fast mode of the tca function by setting vars.mle = FALSE

and the fast mode of the tcareg function by setting fast_mode = TRUE (see next subsection

for details).

5.2.8 Fast optimization of the TCA model

We previously applied an alternating maximum-likelihood-based optimization procedure for

fitting the TCA model [140]. Learning the mean parameters in the model in equations (5.7)-

(5.8) given the variance parameters is a convex problem that can be solved efficiently by

formulating it as a constrained regression problem, yet, estimating the variance parameters

(i.e. given estimates of the means) is a non-convex problem. For that reason, we employed

a gradient-based optimization for the variances. This resulted in relatively long runtimes of
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the function tca in the TCA R package, especially for large data such as methylation arrays

that include hundreds of thousands of features.

Maximum-likelihood estimation is perhaps the most common approach for fitting statistical

models, however, alternatives do exist. Particularly, the generalized method of moments

(GMM) allows to estimate model parameters by defining moment conditions, which are es-

sentially sets of equations that are constructed from the model parameters and the data [154].

Given that several assumptions on the moment conditions are met, parameter estimation

with proven statistical properties can then be performed by solving efficient quadratic pro-

gramming problems [154, 155].

We applied the GMM technique for a fast estimation of the variances in the TCA model.

Particularly, for each methylation site, we estimated the cell-type-specific variance param-

eters of all cell-types jointly. In order to do so, for each site, we define a set of moment

conditions, one per each individual sample in the data. Each such individual-based moment

condition formulates an estimator for the variance of the methylation level of the individual

in the particular site under consideration. Since the variance of each given individual is a

function of both the individual-specific cell-type proportions and the variance parameters

of all cell types, these moment conditions can be used to estimate the variance parameters

under the GMM framework [154].

We updated the tca function in the TCA package to include an argument vars.mle, which

can set tca to use either the original maximum-likelihood estimation procedure for the

variances (if set to TRUE) or the alternative, GMM-based procedure (if set to FALSE).

The TCA framework further allows for statistical testing under the assumption that cell-

type-specific methylation affect the phenotype of interest or a mediating component thereof

(i.e. Y |X; see subsection 5.2.5); this assumption is implemented in the TCA package within

the tcareg function. As discussed in the original TCA paper, there are two approaches

to perform statistical testing under the assumption Y |X. First, we can use a two-step

approach of obtaining estimates for the cell-type-specific levels (using the tensor function

in the TCA package), which can then be associated with the phenotype under a standard
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regression framework. Second, we can consider a single-step approach of directly using the

conditional distribution of the phenotype given the data for statistical inference and testing

(see subsection 5.2.5).

Previously, we implemented only the one-step approach in tcareg. In order to streamline the

faster statistical testing that is allowed by the two-step approach, we updated the tcareg

function accordingly to include an argument fast_mode, which can set tcareg to use ei-

ther the previously implemented one-step approach (if set to FALSE) or the faster two-step

approach (if set to TRUE).

5.2.9 Simulation study

We designed our simulation study similarly to a recently suggested pipeline [156] as follows.

For each data set we simulated, we generated tissue-level bulk data for a subset of the

methylation sites that are available in the Reinius et al. data [74]: 1,000 sites picked at

random and an additional set of 333 reference CpGs that are used in the software EpiDISH

for reference-based estimation of cell-type proportions [157]. For simulating methylation

levels of an individual, we first sampled cell-type-specific methylation levels for the 1,333

sites in each of six major immune cell types (CD4+, CD8+, granulocytes, monocytes, B

cells, and natural killer cells) using Beta distributions that we learned from the purified

methylation profiles of these cell types in the Reinius et al. data (n=6 for each cell type) [74].

Eventually, we constructed tissue-level methylation values by linearly mixing them according

to cell-type proportions that we sampled from a pool of estimates we obtained by applying

the reference-based method EpiDISH to the Hannum et al. data [94].

In the experiments under the assumption X|Y (i.e. methylation is affected by the pheno-

type), unless otherwise stated, each data set we generated was consisted of 500 individuals

(to reflect a typical sample size in association studies), out of which 250 were cases and 250

controls. For simulating differentially methylated cell-types, we first selected 100 sites and

cell types at random (the number of cell types was determined by the specific scenario un-

der consideration as explained later), while requiring the selected sites to exhibit either low
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(<0.2) or high (>0.8) average methylation levels in the specific cell-types to be altered (the

former were used for simulating hypermethylation in cases and the latter for hypomethyla-

tion in cases). Then, we altered the cell-type-specific methylation of cases in the selected

sites and cell types based on the following equations:

γ =
|µ1 − µ2|√

σ2
1+σ2

2

2

(5.44)

σ1 =

√
µ1(1− µ1)

µ2(1− µ2)
σ2 (5.45)

Here, considering one particular differentially methylated cell type in a given methylation

site, γ denotes the effect size and {µ1, σ
2
1}, {µ2, σ

2
2} denote sets of the mean and variance of

the methylation levels of the particular site and cell type in the cases and controls groups,

respectively. Setting µ1, σ1 was done using the above equations given a particular effect size

under consideration and given the parameters {µ2, σ2}, which were set to the mean and

variance of the beta distributions that were estimated based on the Reinius et al. data as

explained above. Given {µ1, σ
2
1}, these were considered as the mean and variance of a beta

distribution from which methylation levels were sampled for cases.

In the experiments under the assumption Y |X (i.e. methylation affects the phenotype),

unless otherwise stated, each data set we generated consisted of 500 individuals; these were

similarly generated as in the X|Y simulations, with the exception that methylation levels

of a specific cell type in a specific site were sampled from a single beta distribution (i.e.

the same distribution for all individuals, as opposed to the separate distribution for cases

and controls in the X|Y simulations). We randomly selected 100 differentially methylated

sites and cell types as performed previously in the X|Y simulations, and then simulated a
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phenotype for each differentially methylated site j as follows:

yji = wTi αj +
∑
h∈Sj

Zi
hjβhj + εij (5.46)

αj ∼ N(0, 1) (5.47)

εij ∼ N(0, σ2
j ) (5.48)

σ2
j =

∑
h∈Sj

σ2
hj (5.49)

where yji is the phenotypic value of individual i, wi,αj are the individual’s cell-type propor-

tions and their corresponding effect sizes in site j, respectively, Sj is the set of all differentially

methylated cell types in site j, Zi
hj, βhj are the cell-type-specific methylation of individual

i in site j and cell type h and the corresponding effect size, respectively, and σhj is the

standard deviation of cell type h in site j.

The rest of the simulated sites that are not differentially methylated were tested against one

of the 100 simulated phenotypes (selected at random). Notably, Equation (5.49) allows a

meaningful definition of effect sizes by accounting for changes in variability between different

methylation sites and cell types. Further, βhj can be either positive or negative under the

above formulation, however, in our final evaluations (i.e. in the figures) we consider the

absolute value of βhj as the effect size.

In both the X|Y and Y |X experiments, we considered four scenarios: unidirectional change

in one cell type, unidirectional changes in two cell types, bidirectional changes in two cell

types, and bidirectional changes in three cell types. For evaluation metrics, we considered

sensitivity, specificity, and precision (positive predictive value ; PPV). In our calculation of

sensitivity, we did not require that the direction of a predicted association must match the

direction of the true effect in order to be counted as a true positive. We disregarded this

seemingly reasonable criterion for reasons that are related to the inherent multicollinearity

in TCA and CellDMC (see Appendix B). Yet, we did rerun all experiments while taking

this additional criterion into account in the definition of sensitivity, and we found that
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results are essentially the same in all experiments (and conclusions therefore remain the

same throughout our analysis; data not shown), with the exception of marginal tests in

the bi-directional scenarios, wherein the performance of sensitivity is greatly affected by the

inclusion of this criterion.

5.2.10 Analysis of smoking status

We obtained the normalized Illumina 450k data by Liu et al. (n=689) [67] and by Hannum

et al. (n=656) [94] from the Gene Expression Omnibus (GEO; accession numbers GSE42861

and GSE40279, respectively); smoking information is not available on the GEO record of the

Hannum et al. data and can be obtained from the authors. We removed two samples with no

smoking information from the Liu et al. data and 66 sample with no smoking information

from the Hannum et al. data, and in both data sets we defined the smoking status as a

categorical variable with three categories: never-smokers, ex-smokers, and current smokers

(occasional smokers were considered as smokers).

In each of the two data sets, we tested the smoking status for each of the seven differentially

methylated CpGS that were previously reported by Su et al. as either myeloid- or lymphoid-

specific [158]. In our analysis, we accounted for rheumatoid arthritis status, gender, and

age in the Liu et al. data, and for age, gender, and plate in the Hannum et al. data. In

addition, in order to account for technical variation in the data, we considered a previously

suggested approach by Lehne et al. for capturing technical variation in the Illumina 450k

methylation arrays [97], wherein principal components (PCs) are calculated from control

probes that are not expected to exhibit any biological signal. Specifically, in our case, we

included in the analysis of each data set the top ten PCs calculated from a set of 1,000 sites

that demonstrate the lowest variance in the data (and are therefore expected to exhibit no

true biological variation). Finally, for evaluating genome-wide calibration, we tested all the

methylation sites in the data for association with the smoking status, except for polymorphic

probes, non-specific probes, and probes of sites that are on non-autosomal chromosomes as

previously suggested [37].
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Our evaluation included three methods: CellDMC, TCA under the assumption X|Y using

marginal conditional tests, and TCA under the assumption X|Y using joint tests. All meth-

ods were executed under the assumption of two cell-types (myeloids and lymphoids). To

that end, cell-type proportions of seven blood cell types were estimated using the reference-

based method EpiDISH [157], and then aggregated within each of the lymphoid and myeloid

compartments.

5.3 Results

5.3.1 Differential DNA methylation at a cell-type level: TCA in the context of

a standard decomposition approach

Calling differential DNA methylation at a cell-type level from tissue-level bulk data has re-

cently become a question of interest [133, 140, 151, 152, 153, 159], and thus far, two different

approaches have been suggested for the task. The first approach employs a standard re-

gression analysis while including and evaluating interaction terms (i.e. multiplicative terms)

between cell-type proportions and the phenotype of interest; this approach reflects a gener-

alization of a classical decomposition problem (see Subsection 5.2.2). The second approach,

TCA, was introduced here in Chapter 4.

In Chapter 4, we focused on the application of TCA for detecting differential methylation at

cell-type level under the assumption that methylation levels affect the phenotype of interest

(or a mediating component thereof; denote this assumption by Y |X). However, the TCA

framework can also properly accommodate the other direction - the assumption that methy-

lation levels are affected by the phenotype of interest (or by a mediating component thereof;

denote this assumption by X|Y ). The latter is the assumption taken by the interaction

model, and it is therefore of interest to investigate TCA and compare it with the interaction

model under both assumptions.

Under the assumption X|Y , TCA is a more expressive model than the interaction model,

as it makes more general assumptions about the variation of cell-type-specific methylation
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(see Subsection 5.2.4). Therefore, for large enough data (at least 60 samples as we later

show), TCA is expected to be the better choice in general. To illustrate the difference

between the methods, consider a case/control study design. In that case, the interaction

model assumes a fixed effect between cases and controls as the only variation at the cell-type

level; this corresponds to the unrealistic assumption that all individuals within a group (i.e.

cases or controls) have the exact same methylome. TCA improves upon this by modeling

the variation of cell-type-specific methylation across individuals (i.e. even within the same

group). We show this theoretically by revealing the mathematical relation between TCA

and the interaction model, which yields the latter as a degenerate case of the more general

TCA model (see Subsection 5.2.4).

The interaction model cannot take the assumption Y |X, however, this model directionality is

often of more interest than the assumption X|Y (see Subsection 5.2.5). Our empirical results

from Chapter 4 concerning the Y |X case provide strong empirical evidence and mathematical

intuition for the advance of TCA over alternative approaches (see Subsection 4.3.1). Here, we

further provide asymptotic analysis, showing the theoretical merit of TCA over a standard

regression model - the standard approach for addressing the assumption Y |X - by revealing

that TCA, unlike a linear regression analysis, allows an unbiased estimation of effect sizes

(see Subsection 5.2.6).

In the next two subsections, we consider both the X|Y and Y |X assumptions, with a primary

focus on the former (previously we only evaluated Y |X). We benchmark the performance of

TCA and the interaction model through a set of experiments, including a thorough simulation

study and analysis of methylation with smoking status using multiple methylation data sets.

For the interaction model, we used CellDMC, which was recnetly suggested for the goal of

detecting differential DNA methylation at the cell-type level [133].

5.3.2 Evaluation of TCA and the interaction model

In Chapter 4, we focused on two types of statistical tests in TCA: a marginal test, wherein

the effect of each cell type is estimated and tested marginally (i.e. separately), irrespective of
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other cell types, and a joint test, wherein the effects of all cell types are estimated jointly and

statistically tested for their combined effect. However, we have implemented other types of

statistical tests as well, each allowing to test a different hypothesis about the relation between

the phenotype of interest and cell-type-specific methylation (see Appendix B). Particularly,

TCA allows to conduct marginal conditional tests, wherein the effects of all cell types are

estimated jointly and then tested in each cell type. Marginal conditional tests are also the

ones used by CellDMC.

We evaluated TCA and CellDMC using a simulation study, where we considered four dif-

ferent scenarios: unidirectional change in one cell type, unidirectional changes in two cell

types, bidirectional changes in two cell types, and bidirectional changes in three cell types.

Evaluating both methods under the same biological model (i.e. under the assumption X|Y )

renders TCA as the (mildly) better performing method under all four scenarios and all three

evaluation metrics that were considered (Figure 5.1). These results are not surprising given

our theoretical results, which reveal CellDMC as a degenerate case of TCA (see Subsec-

tion 5.2.4). Repeating this analysis using different sample sizes shows a slight advantage for

CellDMC over TCA in data with less than 60 individuals (Figure 5.2), thus providing insight

into the sample size required in order to benefit from the generality of TCA over CellDMC.

Further simulating phenotypes to be statistically affected by methylation (i.e. setting Y |X
rather than X|Y as the true model) results in a substantial decrease in specificity and

precision for CellDMC (with the benefit of a mild increase in sensitivity) compared to TCA

(Figure 5.3). This can be explained by the fact that TCA can properly accommodate the

assumption Y |X, the true biological model in this case, whereas CellDMC is bound to

assume X|Y . Notably, applying TCA under the wrong biological assumption in this case

(i.e. assuming X|Y ) performs better than CellDMC, reflecting better robustness of TCA to

model misspecification (Figure 5.4).

Lastly, we evaluated TCA with marginal tests, which yielded a substantial increase in sensi-

tivity, however, at the cost of a considerable decrease in specificity and precision (Figures 5.5

and 5.6); this result is expected given the inherent difference between marginal and marginal
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conditional tests (see Appendix B).
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Figure 5.1: Evaluation of TCA and CellDMC in the case where the phenotype affects methy-
lation (X|Y ). (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and precision
(positive predictive value; PPV) to detect differentially methylated cell-types as a function
of the association effect size, under the scenario where a single cell type out of 6 blood cell
types is altered in cases versus controls (Uni-1C). (d)-(f) as in Uni-1C, only for the scenario
where two cell types are altered in the same direction (Uni-2C). (g)-(i) as in Uni-2C, only for
the scenario where the cell types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-
2C, only for three cell types (Bi-3C). Results are shown across 50 simulated data sets using
violin plots; solid lines represent median values. TCA was executed under the assumption
X|Y (TCA X|Y ).
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Figure 5.2: Evaluation of TCA and CellDMC in the case where the phenotype affects methy-
lation (X|Y ) using small simulated data (n=60). (a)-(c) Comparison of the sensitivity (SE),
specificity (SP), and precision (positive predictive value; PPV) to detect differentially methy-
lated cell-types as a function of the association effect size, under the scenario where a single
cell type out of 6 blood cell types is altered in cases versus controls (Uni-1C). (d)-(f) as in
Uni-1C, only for the scenario where two cell types are altered in the same direction (Uni-
2C). (g)-(i) as in Uni-2C, only for the scenario where the cell types are altered in opposite
directions (Bi-2C). (j)-(l) as in Bi-2C, only for three cell types (Bi-3C). Results are shown
across 50 simulated data sets using violin plots; solid lines represent median values. TCA
was executed under the assumption X|Y (TCA X|Y ).
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Figure 5.3: Evaluation of TCA and CellDMC in the case where the phenotype is affected
by methylation (Y |X). (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and
precision (positive predictive value; PPV) to detect differentially methylated cell-types as a
function of the association effect size, under the scenario where a single cell type out of 6
blood cell types is altered in cases versus controls (Uni-1C). (d)-(f) as in Uni-1C, only for
the scenario where two cell types are altered in the same direction (Uni-2C). (g)-(i) as in
Uni-2C, only for the scenario where the cell types are altered in opposite directions (Bi-2C).
(j)-(l) as in Bi-2C, only for three cell types (Bi-3C). Results are shown across 50 simulated
data sets using violin plots; solid lines represent median values. TCA was executed under
the assumption Y |X (TCA Y |X).
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Figure 5.4: Evaluation of TCA and CellDMC in the case where the phenotype is affected by
methylation (Y |X), while executing TCA under the wrong assumption X|Y (TCA X|Y ).
(a)-(c) Comparison of the sensitivity (SE), specificity (SP), and precision (positive predictive
value; PPV) to detect differentially methylated cell-types as a function of the association
effect size, under the scenario where a single cell type out of 6 blood cell types is altered
in cases versus controls (Uni-1C). (d)-(f) as in Uni-1C, only for the scenario where two cell
types are altered in the same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario
where the cell types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for
three cell types (Bi-3C). Results are shown across 50 simulated data sets using violin plots;
solid lines represent median values.
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Figure 5.5: Evaluation of TCA and CellDMC in the case where the phenotype affects methy-
lation (X|Y ), while executing TCA under the assumption Y |X and using a marginal test.
(a)-(c) Comparison of the sensitivity (SE), specificity (SP), and precision (positive predictive
value; PPV) to detect differentially methylated cell-types as a function of the association
effect size, under the scenario where a single cell type out of 6 blood cell types is altered
in cases versus controls (Uni-1C). (d)-(f) as in Uni-1C, only for the scenario where two cell
types are altered in the same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the scenario
where the cell types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C, only for
three cell types (Bi-3C). Results are shown across 50 simulated data sets using violin plots;
solid lines represent median values.
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Figure 5.6: Evaluation of TCA and CellDMC in the case where the phenotype is affected by
methylation (Y |X), while executing TCA under the assumption Y |X and using a marginal
test. (a)-(c) Comparison of the sensitivity (SE), specificity (SP), and precision (positive
predictive value; PPV) to detect differentially methylated cell-types as a function of the
association effect size, under the scenario where a single cell type out of 6 blood cell types is
altered in cases versus controls (Uni-1C). (d)-(f) as in Uni-1C, only for the scenario where
two cell types are altered in the same direction (Uni-2C). (g)-(i) as in Uni-2C, only for the
scenario where the cell types are altered in opposite directions (Bi-2C). (j)-(l) as in Bi-2C,
only for three cell types (Bi-3C). Results are shown across 50 simulated data sets using violin
plots; solid lines represent median values.
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5.3.3 Analysis of methylation with smoking status

We next evaluated TCA and CellDMC in detecting differential methylation with smoking

status in two large independent whole-blood methylation data sets [67, 94]. We formed a

ground truth for evaluation by considering a set of 7 CpGs that were previously identified

as exhibiting either myeloid-specific or lymphoid-specific changes in methylation [158].

Both TCA and CellDMC demonstrate an overall good performance in the detection of the

7 differentially methylated CpGs, with no clear difference in performance between the two

methods (Figure 5.7a-b). Yet, evaluating specificity by applying the two methods on the

entire data (i.e. rather than just on the 7 CpGs), shows that while TCA is well calibrated at

the epigenome-wide level, CellDMC tends to suffer from a severe inflation in test statistic,

thus indicating low specificity and precision for CellDMC (Figure 5.7d).

Notably, 7 out of the 14 tested CpGs across the two data sets did not achieve genome-

wide significance, which would not have allowed de-novo detection of these associations in

practice, presumably due to insufficient power. In order to address this, it is important

to first appreciate that modeling the cell-type-specific nature of methylation is expected

to benefit more types of analyses beyond calling for differentially methylated cell types.

Particularly, compared to a standard regression analysis, TCA improves the detection of

tissue-level associated CpGs via joint tests, wherein the effects of all cell types are tested

jointly for their combined effect [140]. Such tissue-level tests can enable a powerful two-step

approach of first detecting tissue-level associations followed by a post-hoc analysis of the

associated CpGs at the cell-type level.

Indeed, combining a tissue-level test for each CpG with a cell-type level post-hoc analysis, as

allowed by TCA, correctly detects 10 out of the 14 smoking associated CpGs and cell types at

a genome-wide significance level (Figure 5.7c). This shows that the detection of tissue-level

associations is of primary interest, and methods such as TCA and CellDMC should not be

evaluated solely on their ability to directly capture differentially methylated cell types.
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Figure 5.7: Evaluation of TCA and CellDMC in two independent whole-blood data sets with
smoking. (a-c) Association tests were performed for each of 7 CpGs that were previously
reported by Su et al. as exhibiting either myeloid-specific (in red) or lymphoid-specific (in
green) associations with smoking status [158]. Results are displayed as heatmaps of the
(negative-log transformed) p-values of the associations with myeloid cells (neutrophils and
monocytes) and with lymphoid cells (T-cells, B-cells, and NK-cells) using (a) CellDMC, (b)
TCA under the assumptionX|Y (using the tca function), and (c) TCA under the assumption
X|Y , while using a joint test for tissue-level significance (also using the tca function). The
latter achieves genome-wide significance (i.e. >6.98, assuming all 450K methylation array
sites) in all but one CpG; calling the cell types that drive these associations using the
results in (b) as a post-hoc analysis reveals the high-power of combining these two tests. (d)
Results of an epigenome-wide analysis presented by quantile-quantile plots of the (negative-
log transformed) p-values for the association tests in (a)-(c). Significant global deviation
from the y=x line indicates an inflation arising from a badly specified model. Axes were
truncated for visual purposes.
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5.4 Discussion

We provide both empirical and theoretical evidence that for large enough sample sizes (at

least 60), TCA is superior over the interaction model when it is applied under the assumptions

taken in CellDMC, with the additional benefit of allowing to accommodate and therefore

better handle different assumptions that are not allowed by CellDMC.

In light of the dramatic increase in sensitivity and decrease in specificity and precision ob-

served in marginal tests compared with marginal conditional tests, we highly recommend to

complement large data generation with small sets of sorted methylation data when possible.

Such data can address the low precision limitation of the highly powerful marginal tests by

providing a way to experimentally replicate associations at a cell-type-specific resolution.

In the absence of sorted data for validation, it is advised to use the less powerful yet more

precise alternative tests provided in TCA. Particularly, a two-step approach, combining

joint tests for the identification of tissue-level hits, followed by a cell-type level marginal

conditional test for allowing a cell-type level resolution into the candidate CpGs, provides

a powerful yet precise approach. That said, in some cases this two-step approach may not

perform as well as a more standard one-step approach; for example, in scenarios where only

a single cell type is expected to be related to the phenotype of interest, joint tests may be

less powerful and therefore directly performing cell-type level tests are expected to be more

powerful. A detailed discussion with practical guidelines for the selection of statistical tests

and model assumptions in the application of TCA for detecting differential methylation is

provided in Appendix B.
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Appendix A

Tensor Composition Analysis: full model and

optimization

A.0.1 The TCA model

Let Zi
hj be the methylation level of individual i ∈ {1, ...n} in cell type h ∈ {1, ...k} at

methylation site j ∈ {1, ...m}, and let C(1) ∈ Rp1×n be a matrix of p1 covariates that may

potentially affect methylation levels in a cell-type-specific manner. We assume:

Zi
hj = µhj + (c

(1)
i )Tγjh + εihj (A.1)

εihj ∼ N(0, σ2
hj) (A.2)

where c
(1)
i is the i-th column of C(1) (corresponding to the p1 covariates of the i-th individual),

γjh is a p1-length vector of corresponding effects sizes for the p1 covariates in the h-th cell

type at site j, and eihj is an i.i.d. component of variation.

We assume that observed methylation levels are convolved signals coming from k different

cell-types. We denote W ∈ Rk×n as a matrix of cell-type proportions of k cell types for

each of the n individuals, and C(2) ∈ Rp2×n as a matrix of p2 global covariates potentially

affecting the observed methylation levels. Our model for Xij, the observed methylation level
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of the i-th individual in cell type j, is as follows:

Xij = (c
(2)
i )T δj +

k∑
h=1

whiZ
i
hj + εij (A.3)

εij ∼ N(0, τ 2) (A.4)

s.t. ∀i :
k∑

h=1

whi = 1 (A.5)

∀h, i : whi ≥ 0 (A.6)

where c
(2)
i is the i-th column of C(2) (corresponding to the p2 covariates of the i-th individual),

δj is a p2-length vector of corresponding effects sizes of the p2 covariates for the j-th site,

and eij is a component of i.i.d. variation that models measurement noise.

A.0.2 Deriving the TCA estimator

Let Θj = (µj, σj, wi, τ,Γj, δj) be the set of the model’s parameters for a particular site j,

where Γj is a p1 × k matrix with the vectors γj1, ..., γ
j
k. Given the observed values, we are

interested in the conditional distribution Zi
j|Xij = xij. Following the assumptions in (A.1)
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to (A.4), the conditional probability satisfies:

Pr(Zi
j = zij|Xij = xij, c

(1)
i , c

(2)
i ,Θj) ∝ Pr(Zi

j = zij|µj, σj, c(1)
i ,Γj)Pr(Xij = xij|Zi

j = zij, wi, τ, c
(2)
i , δj)

∝ exp

(
−1

2

(
zij − µj − ΓTj c

(1)
i

)T
Σ−1
j

(
zij − µj − ΓTj c

(1)
i

))
exp

(
− 1

2τ 2

(
xij − (zij)

Twi − (c
(2)
i )T δj

)2
)

∝ exp

(
−1

2

(
(zij)

TΣ−1
j zij − 2(zij)

TΣ−1
j

(
µj + ΓTj c

(1)
i

)))
exp

(
− 1

2τ 2

(
(zij)

Twiw
T
i z

i
j − 2(zij)

Twi

(
xij − (c

(2)
i )T δj

)))
∝ exp

(
−1

2

(
(zij)

T

(
Σ−1
j +

wiw
T
i

τ 2

)
zij

))
exp

(
−1

2

(
−2(zij)

T

(
Σ−1
j

(
µj + ΓTj c

(1)
i

)
+ wi

(
xij − (c

(2)
i )T δj

τ 2

))))

∝ exp

(
−1

2
(zij − aij)TS−1

ij (zij − aij)
)

(A.7)

where

Σj = diag(σ2
1j, ..., σ

2
kj) (A.8)

Sij =

(
Σ−1
j +

wiw
T
i

τ 2

)−1

(A.9)

aij = Sij

(
Σ−1
j

(
µj + ΓTj c

(1)
i

)
+ wi

(
xij − (c

(2)
i )T δj

τ 2

))
(A.10)

The probability in (A.7) is maximized when zij is the mode of the conditional distribution

(which is the mean in this case). We therefore set the TCA estimator of zij to be:

ẑij = aij =

(
wiw

T
i

τ 2
+ Σ−1

j

)−1
(

Σ−1
j

(
µj + ΓTj c

(1)
i

)
+ wi

(
xij − (c

(2)
i )T δj

τ 2

))
(A.11)
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A.0.3 Extracting underlying signals from convolved signals using TCA

In order to see why TCA can learn non-trivial information about the {zihj} values, note

that [160]

Zi
hj|Xij ∼ N

(
µ̃1 +

Cov[Zi
hj, Xij]

σ̃2
2

(xij − µ̃2), σ̃2
1 −

Cov[Zi
hj, Xij]

2

σ̃2
2

)
(A.12)

where

µ̃1 = E[Zi
hj], σ̃

2
1 = V[Zi

hj] (A.13)

µ̃2 = E[Xij], σ̃
2
2 = V[Xij] (A.14)

Consider a simplified case where τ = 0 and µhj = 0, σhj = 1 for each h and some particular j.

Assuming no covariates for simplicity, given the model of Zi
hj and the model of Xij in (A.1)

to (A.4), we know that

Cov[Zi
hj, Xij] = E[Zi

hjXij]− E[Zi
hj]E[Xij]

= E

[
Zi
hj

k∑
l=1

wliZ
i
lj

]
= whi

(A.15)

Therefore, based on (A.12), in this case we get that

Zi
hj|Xij = xij ∼ N

(
whixij∑k
l=1w

2
li

, 1− w2
hi∑k

l=1w
2
li

)
(A.16)

This means that given the observed value xij, the conditional distribution of Zi
hj has a lower

variance compared with that of the marginal distribution of Zi
hj (σ2

hj = 1), thus reducing the

uncertainty and allowing us to provide a non-trivial estimate for the {zihj} values. This result

is not specific for methylation but rather more general. In order to empirically verify this

result and get an initial intuition as for the potential performance of TCA, we considered
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the following simplified general simulation.

We sampled three-dimensional source- and observation-specific values according to the model

in (A.1)-(A.2) for every feature j, observation i and source h (i.e. for each of the {zihj}
values) using n = 250,m = 250, k = 3 for the number of observations, features and sources,

respectively. In this experiment, we sampled all the source- and observation-specific values,

as well as the weights matrix (W ), from a standard normal distribution. Eventually, we

generated a matrix of observed mixtures (X) according to the model in (A.3)-(A.4) using

the source- and observation-specific values, the weights matrix and an additional component

of i.i.d. variation (τ = 0.01). For performance evaluation, for each estimated vector ẑhj =

(ẑ1
hj, ..., ẑ

n
hj)

T , we considered its linear correlation and mean squared error (MSE) with the

true values in zhj.

For simplicity, we assumed that all the parameters of the model are known, and applied

TCA for estimating the {zihj} values. In order to form a baseline for comparison and to

empirically verify that TCA can extract non-trivial information about the {zihj} values, we

also applied TCA after permuting X (independent permutation of each row of the matrix).

In addition, for each vector zhj, we also measured to what extent its information can be

captured by xj = (x1j, ..., xnj)
T , the observed levels in the j-th feature of X. We observed

that TCA could effectively reconstruct a substantial portion of the information in the {zhj}
vectors, far outperforming the baseline measurements (Figure A.1). We further verified the

robustness of TCA by varying the parameters of the simulation across a wide range of values

(Figure A.2).
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Figure A.1: Reconstructing three-dimensional observation- and source-specific values from
two-dimensional input across ten simulated data sets (n = 250,m = 250, k = 3, τ = 0.01).
Three approaches were evaluated in capturing the observation-specific values for each feature
j and source h (i.e. zhj): TCA, TCA after permuting the observed two-dimensional data
matrix (“Permutation”) and directly using the observed data matrix (“Observed”). For each
of the evaluated approaches, we present the distribution of the linear correlation between zhj
and its estimate ẑhj across all h, j (in the left) and the distribution of the MSE between zhj
and its estimate ẑhj across all h, j (in the right).
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Figure 16: Reconstructing three-dimensional observation- and source-specific values from two-

dimensional input in simulated data (n = 250, m = 250) while varying the parameters of the

simulation. Data was simulated under three scenarios: increasing level of i.i.d. noise added

to W ( ), increasing level of the i.i.d. component of variation added on top of X (⌧) and

increasing number of sources in the data (k). Three approaches were evaluated in capturing the

observation-specific values for each feature j and source h (zhj): TCA, TCA after permuting

the observed data (“Permutation”) and directly using the observed data (“Observed”). For

each of the approaches and for each of the evaluated parameters, we present the median linear

correlation between zhj and its estimate ẑhj across all h, j and across ten simulated data sets

(top panel) and the median MSE between zhj and its estimate ẑhj across all h, j and across ten

simulated data sets (bottom panel).

25

Figure A.2: Reconstructing three-dimensional observation- and source-specific values from
two-dimensional input in simulated data (n = 250,m = 250) while varying the parameters
of the simulation. Data was simulated under three scenarios: increasing level of i.i.d. noise
added to W (ψ), increasing level of the i.i.d. component of variation added on top of X
(τ) and increasing number of sources in the data (k). Three approaches were evaluated in
capturing the observation-specific values for each feature j and source h (zhj): TCA, TCA
after permuting the observed data (“Permutation”) and directly using the observed data
(“Observed”). For each of the approaches and for each of the evaluated parameters, we
present the median linear correlation between zhj and its estimate ẑhj across all h, j and
across ten simulated data sets (top panel) and the median MSE between zhj and its estimate
ẑhj across all h, j and across ten simulated data sets (bottom panel).

150



A.0.4 Inferring the parameters of the model

In order to estimate the {zihj} values, the TCA algorithm requires knowledge of the pa-

rameters in (A.1) to (A.4). Since Xij is essentially a function of Zi
1j, ..., Z

i
kj, we can use its

assumed distribution for estimating all of the parameters in the model. More specifically,

following the model in (A.3)-(A.4), we note that:

Xij ∼ N

(
(c

(2)
i )T δj +

k∑
h=1

whi

(
µhj + (c

(1)
i )Tγjh

)
,

k∑
h=1

w2
hiσ

2
hj + τ 2

)
(A.17)

We can therefore take an ML approach for estimating the parameters of the model from

the observed data matrix X. In practice, we require an initial estimate of W as an input

for the optimization. Such an estimate can be obtained by either using a reference-based

approach [85] or a reference-free semi-supervised approach [134]. Given an estimate of W ,

we can then estimate the rest of the parameters in the model, and given estimates for

the rest of the parameters in the model, we can update the estimate of W . We perform

this alternating optimization procedure until convergence. Since we assume that different

individuals are independent, updating W requires us to solve a set of n relatively easy

optimization problems, each with k parameters, while satisfying the constraints in (A.5)

and (A.6); we solve this numerically using a standard non-linear optimization procedure.

Below, we describe the optimization of the rest of the parameters of the model given W (or

an estimate of W ).

Given W and the variances τ, σj = (σ1j, ..., σkj)
T , ML solution for µj = (µ1j, ..., µkj)

T , δj,

{γjh}kh=1 for feature j is given by solving the following constrained regression problem:

µ̂j, δ̂j, {γ̂jh}kh=1 = argmin
µj ,δj ,{γjh}

k
h=1

n∑
i=1

(
x̃ij −

k∑
h=1

w̃hiµhj −
p2∑
l=1

c̃
(2)
li δjl −

p1∑
l=1

k∑
h=1

c̃
(1)
lihγ

j
h

)2

(A.18)

s.t. ∀1 ≤ j ≤ m : µhj ∈ [0, 1] (A.19)
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where

x̃ij =
xij√∑k

l=1 w
2
liσ

2
lj + τ 2

(A.20)

w̃ih =
whi√∑k

l=1 w
2
liσ

2
lj + τ 2

(A.21)

c̃
(1)
lih =

wihc
(1)
li√∑k

d=1w
2
diσ

2
dj + τ 2

(A.22)

c̃
(2)
li =

c
(2)
li√∑k

h=1w
2
hiσ

2
hj + τ 2

(A.23)

and where δjl is the l-th entry of the vector δj, and c
(1)
li , c

(2)
li are the l-th covariate of individual

i in C(1) and in C(2), respectively. The constraints in (A.19) reflect the fact that methylation

levels are bounded to the range [0, 1], which means the mean levels should be also bounded

to that range. We note that in principle we should also constrain the effects contributed by

δj, {γjh}kh=1, in order to make sure that the total estimated methylation levels do not fall out

of the range [0, 1]. In practice, in real data, these additional constraints may result with less

accurate estimates. This problem can be solved efficiently using quadratic programming.

Since τ, σj are typically unknown, we perform an alternative optimization procedure as

follows. We start by finding initial estimates for δj, {γjh}kh=1, by assuming that σ1j = ... =

σkj, τ = 0. Under these conditions, the solution to the optimization problem in (A.18) is

now independent of σj, τ . Specifically, for obtaining an initial estimate of µj, δ
j, {γjh}kh=1, we

solve the problem in (A.18) while setting

x̃ij =
xij
‖wi‖2

(A.24)

w̃hi =
whi
‖wi‖2

(A.25)

c̃
(1)
lih =

whic
(1)
lih

‖wi‖2

(A.26)

c̃
(2)
li =

c
(2)
li

‖wi‖2

(A.27)
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Once we obtain µ̂j, δ̂j, {γ̂jh}kh=1, we can fix them and estimate σj, τ using any hill climbing

algorithm (and then repeat until convergence). In practice, for learning σj, τ we perform

another alternating optimization procedure as follows. We first assume τ to be unique for

each site and estimate for each site j separately initial estimates of σj, τ . Then, we re-

estimate τ using the entire data and the estimates of {σj} from all sites, and finally, we

re-estimate σj for each site j using the updated estimate of τ .

Notably, the number of parameters we need to estimate in our model is very large compared

with the number of data points available for inference. However, for each set of constant

number of parameters that we estimate, we use n data points. For instance, for estimating

the parameters µj, δj, {γjh}kh=1 for site j (a constant set of k(p1 + 1) + p2 parameters), we use

n data points.

A.0.5 Testing a phenotype for cell-type-specific associations

TCA allows us to estimate cell-type-specific methylation levels for each individual in the

data. In principle, such estimates can then be used for running a cell-type-specific EWAS

by testing the estimates of a particular cell type for association with a phenotype of interest

(or for running a joint test for several cell types by using their estimated cell-type-specific

methylation levels jointly). However, for the application of association testing, we suggest

an alternative one-step approach instead of the more straightforward two-steps approach.

We model the phenotype of interest as potentially affected by cell-type-specific methylation

levels, and use the conditional distribution of the phenotype given the observed data in X.

Effectively, this allows us to integrate over all the potential values of the {zihj} individual

and cell-type-specific levels. In addition to taking into account covariates that may affect

the methylation levels, as described in (A.1) and in (A.3), we also consider potential direct

effects of other (or the same) covariates on the phenotype.
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A.0.6 Joint test for effect sizes in all cell types

Let Y ∈ Rn×1 be a quantitative phenotype of interest, where Yi corresponds to the phenotypic

level of sample i, and let C(3) ∈ Rp3×n be a matrix of p3 covariates potentially affecting the

phenotype (may also include an intercept term), we assume the following model:

Yi = (c
(3)
i )Tα +

k∑
h=1

βhjZ
i
hj + ei (A.28)

ei ∼ N(0, φ2) (A.29)

where β1j, ..., βkj are the effect sizes of the k different cell types in site j. Recall the model

of Xij in (A.3)-(A.4), using (A.12) we get

Yi|Xij ∼ N

(
µ̃1 +

Cov[Xij, Yi]

σ̃2
2

(xij − µ̃2), σ̃2
1 −

Cov[Xij, Yi]
2

σ̃2
2

)
(A.30)

where

µ̃1 = E[Yi], σ̃
2
1 = V[Yi] (A.31)

µ̃2 = E[Xij], σ̃
2
2 = V[Xij] (A.32)

Different individuals are assumed to be independent (both in their phenotypic and their

cell-type-specific methylation levels), and Cov[yi, Xtj] = 0 for any t 6= i.
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Note that

Cov[Xij, Yi] = E[YiXij]− E[Yi]E[Xij]

= E

[(
(c

(3)
i )Tα +

k∑
h=1

βhjZ
i
hj + e

)(
(c

(2)
i )T δj +

k∑
h=1

whiZ
i
hj + ε

)]

−
(

(c
(3)
i )Tα +

k∑
h=1

βhjE[Zi
hj]

)(
c

(2)
i δj +

k∑
h=1

whiE[Zi
hj]

)

= (c
(3)
i )Tα

k∑
h=1

whiE[Zi
hj] + (c

(2)
i )T δj

k∑
h=1

βhjE[Zi
hj] + E

[
k∑

h=1

βhjZ
i
hj

k∑
h=1

whiZ
i
hj

]

− (c
(3)
i )Tα

k∑
h=1

whiE[Zi
hj]− (c

(2)
i )T δj

k∑
h=1

βhjE[Zi
hj]−

k∑
h=1

βhjE[Zi
hj]

k∑
h=1

whiE[Zi
hj]

=
k∑

h=1

whiβhjE[(Zi
hj)

2]−
k∑

h=1

whiβhjE[Zi
hj]

2

=
k∑

h=1

whiβhjσ
2
hj

(A.33)

Therefore, we get

Yi|Xij = xij ∼ N
(
µ̃ij, σ̃

2
ij

)
(A.34)

where

µ̃ij = (c
(3)
i )Tα +

k∑
h=1

βhj

(
µhj + (c

(1)
i )Tγjh +

whiσ
2
hjx̃ij

τ 2 +
∑k

l=1 w
2
liσ

2
lj

)
(A.35)

x̃ij = xij − (c
(2)
i )T δj −

k∑
l=1

wli(µlj + (c
(1)
i )Tγjl ) (A.36)

σ̃2
ij = φ2 +

k∑
h=1

β2
hjσ

2
hj −

(∑k
h=1 βhjwhiσ

2
hj

)2

τ 2 +
∑k

h=1w
2
hiσ

2
hj

(A.37)

Using the distributions Yi|Xij = xij for each individual i, we can now consider the following
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hypothesis testing for site j:

H0 : β1j = ... = βkj = 0 (A.38)

H1 : ∃h.βhj 6= 0 (A.39)

This formulation essentially tests the particular site under test j for association with the

phenotype by considering the joint contribution of all cell-type-specific effects. Alternatively,

we can look for cell-type-specific effects of a subset of the cell types.

A.0.7 Marginal test for the effect size of a particular cell type

Consider the following model:

Yi = (c
(3)
i )Tα + βhjZ

i
hj + ei (A.40)

ei ∼ N(0, φ2) (A.41)

where βhj is the effect size of a particular cell type h. Similarly as before, we get:

Yi|Xij = xij ∼ N
(
µ̃ij, σ̃

2
ij

)
(A.42)

where

µ̃ij = (c
(3)
i )Tα + βhj

(
µhj + (c

(1)
i )Tγjh +

whiσ
2
hjx̃ij

τ 2 +
∑k

l=1w
2
liσ

2
lj

)
(A.43)

x̃ij = xij − (c
(2)
i )T δj −

k∑
l=1

wli(µlj + (c
(1)
i )Tγjl ) (A.44)

σ̃2
ij = φ2 + β2

hj

(
σ2
hj −

w2
hiσ

4
hj

τ 2 +
∑k

l=1w
2
liσ

2
lj

)
(A.45)

Using the distributions Yi|Xij = xij for each individual i, we can now consider the following
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hypothesis testing for site j:

H0 : βhj = 0 (A.46)

H1 : βhj 6= 0 (A.47)

We calculate p-values for both the joint test and the marginal test using a generalized

likelihood-ratio test. The null model can be fitted using standard ML estimators. For

the alternative model, given the estimates for a particular site j, Θj = (µj, σj,W, τ,Γj, δj),

and given the observed data Y,Xj, C
(1), C(2), C(3), the parameters α = (α1, ..., αp), φ and

βj = (β1j, ..., βkj) (in a marginal test for cell type h only the estimate of βhj is needed) can

be estimated using ML. In practice, we do that by numerically maximizing the log likelihood

of the conditional distribution using a standard non-linear optimization procedure.

Throughout our experiments, we observed that TCA, albeit powerful, resulted in a deflation

in the test statistic under the null, leading it to be an over-conservative test. This behavior

may be explained by the optimization procedure we apply. Specifically, an appropriate ap-

plication of the generalized-likelihood ratio test we use relies upon using ML estimates of the

parameters in the TCA model. In our case, we achieve ML estimates under the null model,

however, in general, we do not achieve ML estimates under the alternative model for two

reasons. First, our optimization procedure involves a non-convex optimization, which is not

guaranteed to yield global optimum, and second, for computational convenience, we leverage

only the bulk methylation data (X) in learning the parameters of the TCA model. The latter

is not optimal since in principle the phenotypic data (Y ) provides more information about

the parameters of the model. As a result, the estimates under the alternative hypothesis are

not ML estimates, which leads to a lower likelihood of the alternative model and therefore

to a deflation in the test statistic of the generalized-likelihood ratio test (and thus the test

is over-conservative).
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Appendix B

Tensor Composition Analysis: A practical guide

B.0.1 Statistical testing within the TCA framework

The TCA framework allows us to run several different types of statistical tests on a phenotype

of interest, each of which can test a different hypothesis about the statistical relation of the

phenotype to the methylation levels under test. In this section, we briefly describe the

statistical tests we implemented as part of the TCA R package (TCA on CRAN).

Much like in standard regression analysis, where we can test different hypotheses about the

coefficients of the independent variables, both the model in (5.7)-(5.8) and in (5.15) can be

used to test several different hypotheses about the effect sizes β1j, ..., βkj. Below, we provide

a list of the tests we implemented in the TCA R package for testing the statistical association

of a given phenotype with each particular methylation site j in the data.

Tests under the biological assumption Y |X, using the model in (5.15):

• marginal conditional - fits the parameters β1j, ..., βkj for all cell types jointly and tests

for the significance of the effect of each cell type separately.

• marginal - for each cell type h, fits the parameter βhj and tests for the significance of

its effect, while assuming ∀l 6= h : βlj = 0.

• joint - fits the parameters β1j, ..., βkj for all cell types jointly and tests for the signifi-

cance of the overall effect across all cell types (i.e. a tissue-level test).

• single effect size - fits the parameters β1j, ..., βkj under the assumption β1j = ... = βkj

and tests for the significance of the overall effect across all cell types.

158



• custom - compares and tests any two nested models, each representing a subset of the

parameters β1j, ..., βkj, and tests for the significance of the overall effect across all cell

types in the alternative model (i.e. the larger model) that are not in the null model

(i.e. the smaller model).

Tests under the biological assumption X|Y , using the model in (5.7)-(5.8):

• marginal conditional - same as the analogous model for X|Y above, only under the

assumption X|Y .

• joint - same as the analogous model for X|Y above, only under the assumption X|Y .

Of note, the interaction model in (5.3) can in principle define more statistical tests on the

cell-type-specific effect sizes under the assumption X|Y (i.e. note just a marginal conditional

test), similarly to the tests above allowed in TCA. However, these are expected to be inferior

to their analogous ones in TCA given that the interaction model is a degenerate case of

TCA (see Subsection 5.2.4). Notably, there is no clear way to accommodate the assumption

Y |X in the innteraction model, as the method relies on the interaction between cell-type

proportions and a phenotype, which is the explained variable to be modeled under Y |X.

B.0.2 Selecting appropriate statistical tests for differential methylation at cell-

type resolution

The first important decision one should make when testing for differential methylation at

cell-type resolution is how to set the model directionality. This decision clearly should be

context- and phenotype-dependent, however, admittedly, it may often not be clear how to

make an informed decision. Yet, in some cases, the selection of a biological assumption is

natural. For example, when looking for associations with demographic factors such as age

or ancestry, it makes no sense to assume Y |X, as these demographics cannot be altered by

methylation.

Based on the results from our simulation study (see Subsection 5.3.2), the consistency be-

tween TCA and the interaction model may provide useful evidence as for the true underlying
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model. Specifically, high consistency in the predicted associations between TCA and the in-

teraction model while applying TCA under the assumption X|Y provides evidence that the

assumption X|Y holds (Figure 5.1). In contrast, limited consistency between the two meth-

ods owing to lower specificity and precision of the interaction model - which is expected to

result in more predicted associations for the interaction model over TCA and likely demon-

strate an inflation in test statistic - provides evidence that the assumption Y |X holds; either

when applying TCA under the assumption X|Y (Figure 5.4) or when applying TCA under

the assumption Y |X, which is expected to provide even worse inconsistency based on our

simulations (Figure 5.3). That said, in practice, the extent to which a given phenotype will

demonstrate patterns of consistency that are similar to those revealed by simulations is still

unclear; particularly, a phenotype may be both affected by some methylation sites (or by a

component captured by methylation) and affect some other methylation sites (or a mediating

component thereof).

In cases of association studies that aim at de-novo detection of differential methylation, we

recommend to apply a joint test for an initial screening for tissue-level associations. Then,

marginal conditional tests should be performed as a post-hoc analysis for calling differentially

methylated cell types in the CpGs that passed multiple testing correction in the first tissue-

level screening.

As per our previous suggestion, we recommend that future studies include small replication

data sets from sorted or single cells, in which case users may opt to replace marginal con-

ditional tests with the much more powerful, yet less precise marginal tests; in such cases,

pre-screening for tissue-level associations using joint tests may be less powerful.

In cases where only a single cell type (or a small subset of cell types) is associated with

the phenotype, joint tests are expected to be less powerful than marginal and marginal

conditional tests (owing to the unnecessarily higher degrees of freedom in a joint test).

While this is typically unknown a-priori, this rationale can be applied to cases where only a

particular cell type (or a small subset of cell types) are of interest, in which case, an initial

screening step using a joint test should be avoided.
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Lastly, it is important to understand the limitations of methods such as TCA and the

interaction model. Particularly, there are limitations that rise due to inherent properties

of these models: first, the proportions of different cell types are correlated, owing to the

fact that fractions sum up to 1 and thus depend on each other, and second, the higher the

abundance of a cell type is, the higher the variance that it accounts for in the observed

mixture data. Consequently, the estimated cell-type-specific methylation in TCA and the

cell-type-phenotype interactions in the interaction model, both of which directly rely on

the cell-type proportions, are expected to be correlated between different cell types. For

that reason, these two models are expected to be bounded in their precision to detect truly

differentially methylated cell types.

In order to see that, consider an example where we have cell type A with accurate estimates

of the cell-type proportions and cell type B with less accurate estimates of the cell-type

proportions (e.g., granulocytes and monocytes in whole-blood). Further assume that cell

type B is truly differentially methylated at some particular CpG under test. In that case, if

the proportions of both cell types are highly correlated (and they typically are), cell type A

may capture some of the cell-type-specific methylation of cell type B that was not captured

by directly using the proportions of cell type B (due to the limited accuracy of the estimated

proportions of cell type B and the correlation between the proportions of A and B). Not only

that, these correlations between the proportions of different cell types may also introduce

high multicollinearity between estimated methylation of different cell types and their effects.

As a result of these, cell type A in our example may be called as differentially methylated,

even though the true signal is coming from cell type B.

The above limitations are also the reason for the particularly low precision of the marginal

test in TCA, where the cell type under test tends to capture true signal coming from other

cell types as well (Figures 5.5 and 5.6), much like what one would observe when applying

marginal tests under standard linear regression in the case of having multiple highly cor-

related features (where only some of them are truly statistically related to the dependent

variable). Importantly, applying a marginal conditional test instead of a marginal test mit-
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igates this limitation (although not completely, as explained above) by accounting for the

other cell types.
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