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Mounting evidence has shown disrupted brain network architecture across the psychosis spectrum. 

However, whether these changes relate to the development of psychosis is unclear. Here, we used 

graph theoretical analysis to investigate longitudinal changes in resting-state brain networks in 

samples of 72 subjects at clinical high risk (including 8 cases who converted to full psychosis) 

and 48 healthy controls drawn from the North American Prodrome Longitudinal Study (NAPLS) 

consortium. We observed progressive reduction in global efficiency (P = 0.006) and increase in 

network diversity (P = 0.001) in converters compared with non-converters and controls. More 

refined analysis separating nodes into nine key brain networks demonstrated that these alterations 

were primarily driven by progressively diminished local efficiency in the default-mode network 

(P = 0.004) and progressively enhanced node diversity across all networks (P < 0.05). The 

change rates of network efficiency and network diversity were significantly correlated (P = 0.003), 

suggesting these changes may reflect shared neural mechanisms. In addition, change rates of 

global efficiency and node diversity were significantly correlated with change rate of cortical 

thinning in the prefrontal cortex in converters (P < 0.03) and could be predicted by visuospatial 

memory scores at baseline (P < 0.04). These results provide preliminary evidence for longitudinal 

reconfiguration of resting-state brain networks during psychosis development and suggest that 

decreased network efficiency, reflecting an increase in path length between nodes, and increased 

network diversity, reflecting a decrease in the consistency of functional network organization, may 

be implicated in the progression to full psychosis.
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1. Introduction

Substantial evidence has pointed to the disorganization of brain network architecture across 

psychotic disorders. The most consistent findings in patients include altered network 

connectivity (Baker et al., 2014; Cao et al., 2016; Lynall et al., 2010; Satterthwaite et al., 

2015; Zhu et al., 2016), network efficiency (Leow et al., 2013; Liu et al., 2008; Lo et al., 

2015; Lynall et al., 2010; Sheffield et al., 2017; Wang et al., 2012; Yan et al., 2015; Zhu et 

al., 2016) and network clustering (Leow et al., 2013; Liu et al., 2008; Lo et al., 2015; Lynall 

et al., 2010; Zhu et al., 2016), suggesting disrupted information integration and segregation 

of brain systems. Moreover, altered network properties have been found to be related to 

genetic risk for psychotic disorders (Lo et al., 2015; Yan et al., 2015), associated with 

severity of clinical symptoms (Wang et al., 2012; Zhu et al., 2016) and cognition (Lynall et 

al., 2010; Sheffield et al., 2017; Yan et al., 2015), and predictive of antipsychotic response 

(Crossley et al., 2017; Ganella et al., 2016). These lines of evidence suggest that changes in 

network integration and segregation may underlie the development of psychosis. However, 

whether these changes predict and potentially contribute to the onset of psychosis remains 

unclear.

Answering this question requires longitudinal observation of individuals at clinical high risk 

(CHR) prior to onset. Using this strategy, previous studies have identified progressive loss 

of gray matter in CHR subjects who converted to full psychosis compared with those who 
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did not, involving regions that are critical to cognitive and social functioning, such as the 

dorsolateral and medial prefrontal cortex (Cannon et al., 2015; Pantelis et al., 2003; Sun et 

al., 2009), temporal cortex (Pantelis et al., 2003; Takahashi et al., 2009; Ziermans et al., 

2012) and cingulate cortex (Pantelis et al., 2003; Ziermans et al., 2012). The progressive 

declines in gray matter volume and thickness are likely to be a result of excessive loss of 

neuropil (dendrites and synapses) during adolescence and early adulthood, which in turn, 

may lead to aberrant synaptic and neurotransmitter functioning that underlie abnormalities 

in brain connectivity and network configuration (Cannon, 2015). Thus far, a critical piece 

of information is still missing in this model that directly links longitudinal changes in 

functional brain connectivity to the development of psychosis.

In the present study, using the data from the second phase of the North American 

Prodrome Longitudinal Study (NAPLS-2) consortium (Addington et al., 2012), we report 

on preliminary results of longitudinal changes in resting-state brain network architecture 

related to the conversion to psychosis. Here, 72 subjects at CHR, including 8 individuals 

who converted to psychosis, and 48 demographically comparable healthy participants 

underwent functional magnetic resonance imaging (fMRI) scans at both baseline and follow

up. We have previously shown that brain network measures derived from fMRI data are 

highly reliable both across time (Cao et al., 2014) and across scanner (Cao et al., 2018), 

making them particularly suitable for the multisite longitudinal design as used here. We 

hypothesized that converters would show progressive alterations and higher change rates 

in functional network properties compared to non-converters and controls, in particular 

measures assessing network connectivity, network integration and network segregation.

2. Methods and materials

2.1. Subjects

A sample of 120 subjects (72 clinical high risk (CHR) individuals, 48 healthy controls (HC, 

age 19.95 ± 4.66 years, 28 males)) with available baseline and follow-up resting-state fMRI 

data was included in this study. During follow-up, 8 CHR subjects converted to psychosis 

(CHR-C, age 17.88 ± 4.39 years, 5 males), and 64 subjects did not convert (CHR-NC, 

age 19.55 ± 3.92 years, 39 males). The subjects were recruited as part of the NAPLS-2 

consortium from eight study sites across the United States and Canada. The sample used in 

the present study was drawn from a larger dataset with baseline scans as previously reported 

(Anticevic et al., 2015) (435 subjects in total, 27 converters, 245 non-converters and 163 

controls). Notably, no significant differences were found between the current sample and 

those with baseline data only in terms of demographic and clinical measures (Table 1, P > 

0.33). The study protocol was reviewed and approved by the institutional review boards at 

each site. All participants provided written informed consent.

The participants were evaluated using the Structured Clinical Interview for Diagnostic 

and Statistical Manual of Mental Disorders (SCID, First et al., 2002) and the Structured 

Interview for Prodromal Syndromes (SIPS, McGlashan et al., 2001) at each assessment 

point by clinicians. At each assessment point, prodromal symptom severity was quantified 

using the Scale of Prodromal Symptoms (SOPS, McGlashan et al., 2001). Memory and 

learning abilities were evaluated using the Brief Visuospatial Memory Test-Revised (BVMT

Cao et al. Page 3

Schizophr Res. Author manuscript; available in PMC 2021 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R, Benedict, 1997) and the Hopkins Verbal Learning Test-Revised (HVLT-R, Brandt and 

Benedict, 1998). See Table 1 and Supplementary materials for sample details.

2.2. Imaging paradigm and data acquisition

All participants underwent a 5-min eyes-open resting-state scan. See Supplementary 

materials for details on data acquisition.

2.3. Data processing

The entire processing pipeline followed that of previously published work (Cao et al., 

2016; Cao et al., 2017; Cao et al., 2014). In brief, mean time series for each of the 90 

nodes defined by the Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et 

al., 2002) were extracted from the preprocessed data and further corrected for physiological 

and scanner noises. Pairwise Pearson correlation coefficients were calculated between the 

processed time series of each node, resulting in a 90 × 90 two-dimensional correlation 

matrix for each subject at each scan point (see Supplementary materials).

We quantified two connectivity metrics describing the characteristics of the derived 

correlation matrices: node strength and node diversity (Lynall et al., 2010). Node strength is 

the average connectivity between a given node and all other nodes in the network, reflecting 

how strongly the node is connected to others. Node diversity is the connectivity variance 

between a given node and all other nodes, reflecting how homogeneous the connectivity is 

for that node. These two metrics were then further averaged across the 90 nodes to generate 

a global measure.

To build weighted brain graphs, the derived correlation matrices were further thresholded 

into 31 densities ranging from 0.10 to 0.40 with an increment interval of 0.01. At each 

density, only the given proportion of edges ranked by connectivity strength were kept 

as true internode connections in the matrix, thereby generating a weighted adjacency 

matrix. This procedure ensured that the number of edges in the network was exactly 

the same across individuals at each threshold. Three graph metrics were subsequently 

computed assessing the integration and segregation of the derived weighted networks: 

global efficiency, transitivity and small-worldness. Global efficiency is a measure of network 

integration, defined as the average inverse of the shortest path length between all pairs of 

nodes in the network. Transitivity quantifies network segregation as the normalized global 

measure of network clustering. Small-worldness is an index assessing the combination of 

network segregation and network integration (computed from 100 randomizations). After 

computation, these measures were averaged across all densities to ensure that results were 

not biased by a single threshold.

As we have previously shown (Cao et al., 2018; Cao et al., 2014), all examined connectivity 

and graph metrics are highly reliable across scanners and sessions, making the investigation 

of their longitudinal changes feasible. Here, following our previous work (Cannon et al., 

2015), we quantified the change rates for each of the examined measures for each subject. 

Change rate was defined as
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CR = M FU − M BL /M BL
T

where M(FU) and M(BL) are network measures at follow-up and at baseline, respectively, 

and T is the time interval between the two scans (in month). As a result, change rate reflects 

the percentage of change for a given measure per month. This approach was preferred 

to repeated-measures analysis of variance (ANOVA) because the interscan interval varied 

across subjects.

2.4. Statistical analysis

We employed an analysis of covariance (ANCOVA) model to test the differences in 

the examined metrics between the three groups at both baseline and follow-up. Here, 

the five baseline connectivity and graph metrics were entered as dependent variables in 

the baseline analysis, and their change rates were entered as dependent variables in the 

follow-up analysis. Group was given as independent variable, and age, sex, site, frame-wise 

displacement (for baseline analysis) and interscan change in frame-wise displacement (for 

follow-up analysis) were included as covariates. Significance was set at two-tailed P < 0.05 

after false-discovery rate (FDR) correction for multiple comparisons of the five metrics.

All metrics with significant group differences were then examined for potential associations 

with structural, clinical and cognitive variables using Pearson correlations. Specifically, 

according to the psychosis onset model described previously, if progressive loss of gray 

matter drives changes in brain connectivity and brain networks, the change rates of cortical 

thickness and network measures should be highly correlated. We tested this hypothesis 

using data on cortical thickness for bilateral prefrontal cortex as previously described (see 

Cannon et al., 2015 for details), whose change rates were calculated using the same formula 

as above. We also probed potential associations of change rates of functional network 

measures with clinical symptoms and memory ability at baseline, as these baseline variables 

have previously been shown as predictive of conversion to psychosis (Cannon et al., 2016; 

Seidman et al., 2016). Clinical symptoms were quantified by the summed scores of each 

domain in the SOPS (positive, negative, disorganization, general), visuospatial and verbal 

memory abilities were assessed using the total recall score in the BVMT-R and the total 

recall score in the HVLT-R, respectively.

3. Results

3.1. Group differences at baseline

At baseline, there were no significant differences between converters, non-converters and 

controls for all examined metrics (PFDR > 0.10) in the present sample with both baseline and 

follow-up scans (N = 120). The results remained non-significant when including all subjects 

with baseline scans (N = 435, PFDR > 0.79).
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3.2. Group differences in change rates

We observed significant group differences in change rates of two examined metrics: 

global efficiency (PFDR = 0.006) and average node diversity (PFDR = 0.001). Post-hoc 

analyses showed that the change rate in global efficiency was significantly different between 

converters and controls (P = 0.004, Hedge’s g = 1.12), and approaching significance in the 

contrast between converters and non-converters (P = 0.052, Hedge’s g = 1.05). Here, unlike 

the groups of controls and non-converters that had positive mean change rates, as a group 

converters had a negative change rate (Fig. 1A). Moreover, post-hoc analyses for average 

node diversity showed that converters had significantly larger positive change rates than 

both non-converters (P = 0.001, Hedge’s g = 1.27) and controls (P < 0.001, Hedge’s g = 

1.28, Fig. 1B), suggesting that conversion to psychosis may be associated with a progressive 

decrease in global efficiency but also a progressive increase in node diversity, reflecting less 

integration and consistency in functional network organization.

To further ensure that our finding on network efficiency was not driven by a single threshold 

during network construction, we compared the change rates of global efficiency between 

groups for each of the 31 densities used in the study (from 0.10 to 0.40). The results showed 

significant group effects on vast majority of densities (27 out of 31 densities, P < 0.048, see 

Fig. S1), suggesting that the observed differences are not driven by any potential nuisance 

densities.

Given the results just summarized, we further investigated which brain systems were 

particularly involved in the differences between groups. For this, we calculated change rates 

of local efficiency and node diversity for each of nine well-established networks (Power 

et al., 2011): sensorimotor, visual, auditory, default-mode, frontoparietal, cingulo-opercular, 

salience, subcortical and attention. Here, each of the 90 nodes was assigned to one or more 

systems based on Power et al. (2011). Of note, Power’s study employed a different atlas 

with 264 nodes. As a result, some of the nodes in our study have been assigned to more 

than one network (in case different subregions of that node were allocated into different 

networks in Power’s study, see Table S2 for details). Change rates of local efficiency and 

node diversity were computed for each node and then averaged across nodes for each of 

the nine networks. The same ANCOVA model described above was used to test the group 

differences of the derived measures for each network, and significance was set at P < 0.05 

after FDR correction for nine networks.

Our results revealed significant group differences in the change rate of local efficiency in 

the default-mode network (PFDR = 0.004, Fig. 1C). Similar to the pattern observed for 

global efficiency, on average converters showed a negative change rate in local efficiency in 

the default-mode network, compared with positive change rates among non-converters and 

controls. In contrast, no significant group differences were detected for other networks when 

controlling for multiple comparisons, suggesting that the progressive decrease of global 

efficiency was primarily driven by the local efficiency change in the default-mode network.

The analysis of change rate of node diversity demonstrated significant group differences 

for all of the nine examined networks (PFDR < 0.046, Fig. 1D). In particular, while non

converters and controls did not show significant changes in node diversity from baseline 
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to follow-up (change rates approximately equaled to 0), converters showed significantly 

positive change rates for all nine networks, indicating that the progressive increase of node 

diversity in converters is not circumscribed but widely distributed across the whole brain.

3.3. Association between change rates

We then investigated whether the change rates of these two measures reflected independent 

phenomena or shared neural mechanisms. Our analysis revealed significant negative 

correlations between change rate of network efficiency and change rate of network diversity 

both in the whole sample (R = −0.57, P < 0.001) and in the converter group (R = −0.89, P 
= 0.003, Fig. 2), suggesting that these two functional alterations are highly dependent and 

possibly reflect shared underlying mechanisms.

3.4. Association with cortical thickness

Correlation analyses identified significant correlations between rate of cortical thinning in 

the prefrontal region and increasing mean node diversity over time (R = −0.28, P = 0.002 

and R = −0.40, P < 0.001 for left and right hemisphere, respectively, Fig. 3A, B). Within the 

CHR-C group, change rates of both global efficiency and node diversity were significantly 

correlated with change rates of cortical thickness in both hemispheres (R2 > 0.56, P < 0.03 

and R2 > 0.81, P < 0.003 for global efficiency and mean node diversity, respectively, Fig. 

3A–D). In contrast, no significant correlations were found within the CHR-NC and HC 

groups.

3.5. Associations with clinical symptoms and memory ability

In the whole sample, a significant positive correlation was found between change rate of 

mean node diversity and baseline disorganization symptoms (R = 0.21, P = 0.02). Within 

the group of CHR-C, trend-level negative correlations were observed between change rates 

of both metrics and baseline negative symptoms, with relatively large effect sizes (all R2 > 

0.23, Fig. S2).

Change rates of both metrics were significantly correlated with BVMT-R total recall scores 

at baseline (R = 0.18, P = 0.04 for global efficiency and R = −0.37, P < 0.001 for mean 

node diversity, Fig. 4A, B). The correlations were also significant when analyzed within the 

CHR-C group (R2 = 0.52, P = 0.04 for global efficiency and R2 = 0.64, P = 0.02 for mean 

node diversity) but not within the CHR-NC and HC groups. These findings suggest that 

baseline memory ability is predictive of change rates of resting-state network measures in 

converters.

3.6. Results after excluding outlier in the converter group

Given the small sample size of this study, the reported findings may be vulnerable to 

outliers in our sample. To address this issue, we repeated the entire statistical process after 

excluding potential outliers in each group. Here, an outlier was defined as a subject whose 

measurements are larger than two standard deviations from the group mean. This resulted 

in removal of one subject from the converter group. After excluding this subject from the 

analyses, we still observed significant group effects of change rates of network efficiency 

and network diversity at P < 0.05 level (Puncorrected = 0.04 for both measures), although these 
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findings cannot survive multiple correction for all five examined properties. Specifically, 

similar to results summarized above, converters showed decreased change rate of global 

efficiency (P = 0.03, Hedge’s g = 0.82) and increased change rate of network diversity (P = 

0.01, Hedge’s g = 0.96) compared with controls. The change rates of both measures were 

significantly correlated in converters (R = −0.92, P = 0.003) and in the whole sample (R = 

−0.54, P < 0.001). However, the associations of these measures with cortical thinning rate 

and baseline memory scores were no longer significant with this outlier excluded. Summary 

of results after outlier exclusion was presented in Table S1.

4. Discussion

Using resting-state fMRI, this multisite longitudinal study found that CHR subjects who 

converted to psychosis showed a progressive decrease in global efficiency and increase in 

network diversity from baseline to the point of conversion. These effects were primarily 

driven by progressive changes in local efficiency in the default-mode network (DMN) and 

changes in node diversity across the whole brain. Moreover, the identified alterations were 

correlated with each other and with progressive gray matter changes in the prefrontal cortex 

in converters, and could be predicted by subjects’ memory scores at baseline. These results 

provide preliminary evidence for functional network reorganization during the progression 

from a prodromal to fully psychotic state.

Deficits in network efficiency are among the most consistent findings in schizophrenia and 

other psychotic disorders and may serve as a transdiagnostic biomarker for the psychosis 

spectrum (Sheffield et al., 2017). Such deficiency has been reported in functional networks 

during resting state (Liu et al., 2008; Sheffield et al., 2017; Zhu et al., 2016) and active 

tasks (Wang et al., 2010; Yu et al., 2011), as well as in structural networks constructed from 

diffusion tensor imaging (DTI) (Wang et al., 2012; Yan et al., 2015), and are associated with 

severity of psychotic symptoms (Wang et al., 2012; Zhu et al., 2016) and cognitive ability 

(Sheffield et al., 2017; Yan et al., 2015), suggesting a robust network-based biological trait 

underlying psychosis. In line with these findings, our results further showed a progressive 

decrease of resting-state network efficiency in converters and correlations between this 

change and gray matter loss in the prefrontal cortex. These results suggest that increasingly 

diminished network integration is implicated in the development of psychosis, which may 

be explained, at least in part, by changes in gray matter structure. Moreover, several 

lines of evidence have further suggested that declines in network efficiency may relate 

to aberrant synaptic and neurotransmitter functioning. This interpretation is supported by 

the fact that the administration of a N-methyl-D-aspartic acid (NMDA) receptor antagonist 

can induce chronic disruption of brain global efficiency in animals that resembles findings 

in patients with schizophrenia (Dawson et al., 2014), and that lower global efficiency 

at baseline is associated with worse response to antipsychotic medication at follow-up 

(Crossley et al., 2017). Since glutamate receptor-mediated neural plasticity is pivotal to 

synaptic pruning (Bear and Malenka, 1994), which can be further regulated by dopamine 

signaling (Calabresi et al., 2007), these findings echo the prevailing model interpreting the 

onset of psychosis and further suggest that altered network efficiency may participate in a 

cascade of events from excessive synaptic elimination to brain dysconnectivity that underlies 

psychosis development.
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Intriguingly, the reduced efficiency is primarily driven by changes in the DMN, a 

brain system that is activated during rest but deactivated during attention-demanding 

tasks (Buckner et al., 2008). A large body of work has shown that patients with 

psychosis have attenuated DMN deactivation during active tasks but enhanced within-DMN 

connections during resting state (Meyer-Lindenberg et al., 2001; Pomarol-Clotet et al., 2008; 

Satterthwaite et al., 2015; Whitfield-Gabrieli et al., 2009), which may relate to exaggerated 

internally-focused thoughts and self-reference during rest and failure in suppression of 

these thoughts during task (Whitfield-Gabrieli and Ford, 2012). These abnormalities have 

also been shown in subjects both at CHR (Falkenberg et al., 2015) and at genetic high 

risk (Whitfield-Gabrieli et al., 2009), suggesting a neuro-biological trait that exists even 

before the onset of psychosis. Here, our results extend prior findings by showing a critical 

association between deficits in DMN efficiency and the development of psychosis. It 

has been argued that the DMN dysfunction may be a consequence of diminished top–

down regulation by the frontoparietal cognitive control network (Satterthwaite et al., 2015; 

Whitfield-Gabrieli and Ford, 2012), a neural mechanism that may as well lead to changes in 

DMN efficiency.

This study also found that conversion to psychosis is associated with a progressive increase 

in node diversity across all systems in the brain, which is negatively associated with change 

rate of cortical thickness in the prefrontal cortex and global efficiency. These results are in 

parallel with prior work revealing increased node diversity in patients with schizophrenia 

(Lynall et al., 2010), suggesting that the overall connectivity pattern becomes increasingly 

unstable and heterogeneous as psychosis develops, a phenomenon that may share the same 

underlying neural mechanisms with changes in cortical thickness and network efficiency. 

While such alteration was originally detected across all examined networks in the brain, the 

more stringent analysis after excluding the outlier showed that this change mainly occurred 

within the frontoparietal, default-mode, salience, subcortical and visual networks (Table S1). 

Since these networks are critical for high-order cognitive functioning in humans (Seeley 

et al., 2007; Spreng et al., 2010; Zanto and Gazzaley, 2013) and have been consistently 

reported to be implicated in schizophrenia (Baker et al., 2014; Cole et al., 2014; White et 

al., 2010; Whitfield-Gabrieli et al., 2009), the increased heterogeneity in cognitive networks 

may relate to disability of maintaining coherent and logical thoughts and difficulty in 

sustaining goal-directed attention in psychotic patients.

Several limitations of this study need to be clearly acknowledged. First, given the very small 

sample size of converters, the results reported in this paper must be considered preliminary, 

but merit further replication tests in larger cohorts. In particular, as we sought to exclude 

potential outliers in the sample, this in turn, decreased the sample size and further reduced 

statistical power. Despite the fact that some of the findings became no longer significant 

after outlier exclusion, they did, however, still show a relatively large effect size, suggesting 

that the results reported in this study are not simply driven by a single outlier. Second, the 

results reported in this study may to certain degree influenced by the preselected brain atlas. 

In particular, in a supplementary analysis we tested the robustness of the findings using a 

different node definition based on the Power atlas (Power et al., 2011). This analysis showed 

that while the reported effects for differential change in network diversity were robust across 

both atlases, the change rate of network efficiency was no longer significant when using 
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Power atlas (see Supplementary materials), suggesting that this finding may depend on the 

coarseness of brain atlas when sample size is small, or may be compromised by the increase 

of total number of nodes in the network. Third, the follow-up scans for converters were 

acquired after the point of conversion. As a consequence, our study cannot be interpreted 

as isolating changes that occur prior to onset of psychosis. However, given the fact that 

progressive changes in network measures are associated with baseline cognitive ability, 

these changes are unlikely to be a secondary phenomenon. Fourth, medication effects may 

confound our findings and cannot be ruled out from our sample. Although examination of 

network measures separately by medication status cannot be done given the extremely small 

number of converters on medication, the reported results are unlikely to be solely caused 

by medications considering that converters and non-converters did not show significant 

differences in antipsychotic dosages at either baseline or follow-up. Fifth, while we have 

argued that some of the networks might particularly drive the global effect, we note that 

inter-network connectivity may contribute to such global changes to a certain degree as 

well. Sixth, while the primary analysis used “normalized change rates” to account for the 

different inter-scan intervals across subjects, we also ran the analysis on the absolute change 

in connectivity between baseline and follow-up. The results still showed a significant group 

effect on network diversity; however, the effect for network efficiency became no longer 

significant (see Supplementary materials), suggesting that changes in network efficiency 

may be more time dependent.

To sum up, individuals at CHR who converted to psychosis show progressive decreases in 

network efficiency and increases in network diversity. These findings provide preliminary 

evidence for longitudinal reconfiguration of resting-state brain networks during the 

development of psychosis. Further work is encouraged to replicate these findings in 

larger samples and to investigate the predictive power of these findings for psychosis in 

independent cohorts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Association between change rates of network measures and conversion to psychosis. 

Converters showed progressively reduced global efficiency compared with non-converters 

and controls (Panel A), which was primarily driven by changes of local efficiency in the 

default-mode network (Panel C). In contrast, the progressive increase in node diversity 

observed in converters (Panel B) was distributed across the whole brain (Panel D). CHR-C = 

converters; CHR-NC = non-converters; HC = healthy controls; SM = sensorimotor network; 

VIS = visual network; AUD = auditory network; DMN = default-mode network; FPN = 

frontoparietal network; CON = cingulo-opercular network; SAL = salience network; SUB = 

subcortical network; ATT = attention network. The overall effects remained significant when 

excluding an outlier in the converter group.
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Fig. 2. 
Association between change rate of network efficiency and change rate of network diversity 

stratified by outcome group. Two measures were significantly correlated with each other in 

converters and across all subjects. This association remained significant after excluding the 

outlier in the converter group (the subject at the top left of the graph).
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Fig. 3. 
Association between change rates of network measures and change rates of cortical 

thickness in the prefrontal cortex stratified by outcome group. Change rates of both node 

diversity (Panel A & B) and global efficiency (Panel C & D) were significantly correlated 

with change rates of cortical thickness in bilateral prefrontal cortex in converters. However, 

these associations became non-significant after excluding the outlier in the converter group.
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Fig. 4. 
Association between change rates of network measures and baseline visuospatial memory 

ability as quantified by the Brief Visuospatial Memory Test (BVMT) total recall scores. 

Baseline BVMT scores were significantly correlated with change rates of global efficiency 

and node diversity in converters. However, these associations became non-significant after 

excluding the outlier in the converter group.
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