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Single-cell Motility Analysis of Tethered Human Spermatozoa

William M. Skinner1, Nadja Mannowetz1, Polina V. Lishko1,*, and Nadia R. Roan2,3,*

1Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA

2Department of Urology, University of California, San Francisco, CA, USA

3Gladstone Institute of Virology and Immunology, San Francisco, CA, USA

Abstract

Vigorous sperm flagellar motility is essential for fertilization, and so the quantitative measurement 

of motility is a useful tool to assess the intrinsic fertility potential of sperm cells and explore how 

various factors can alter sperm’s ability to reach the egg and penetrate its protective layers. Human 

sperm beat their flagella many times each second, and so recording and accurately quantifying this 

movement requires a high-speed camera. The aim of this protocol is to provide a detailed 

description of the tools required for quantitative beat frequency measurement of tethered human 

sperm at the single-cell level and to describe methods for investigating the effects of intracellular 

or extracellular factors on flagellar motion. This assay complements bulk measurements of sperm 

parameters using commercially-available systems for computer-assisted sperm analysis (CASA).
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[Background]

Sperm motility assessment using beat frequency analysis with the help of high-speed 

cinemicrography has historically been an important tool to analyze sperm well-being (Katz 

et al., 1982; Mack et al., 1988). The basal beat frequency (BF) of mammalian spermatozoa 

varies greatly, with human sperm having one of the highest frequencies–sometimes 

exceeding 20 Hz (Smith et al., 2013; Saggiorato et al., 2017)–and many factors are known to 

affect the BF. These factors can be extracellular, such as the composition of oviductal fluid 

and seminal plasma, hormones, drugs or environmental toxins, and temperature; or 

intracellular, like sperm pHi, calcium concentration ([Ca2+]i), and plasma membrane 

potential (Turner, 2006; Suarez, 2008). Additionally, as mammalian spermatozoa acquire 
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their full fertilizing potential during their final maturation in the female reproductive tract–a 

process called capacitation (Austin, 1951; Chang, 1951)–they increase the amplitude and 

asymmetry of their flagellar waveform, while decreasing their BF. This motility pattern is 

known as “hyperactivation” (Suarez et al., 1993). Both flagellar wave shape and BF can 

serve as an important indicator of sperm fertility (White and Aitken, 1989; Uhler et al., 
1992; Suarez et al., 1993). While CASA (Computer-Assisted Sperm Analysis) is an 

excellent and reliable tool widely used in clinics and research laboratories (Cooper and 

Yeung, 2006; Lu et al., 2014), it is designed to specifically track the motion of the sperm 

head only and is not reliable to analyze the shape of flagellar motion. In order to accurately 

count BF and fully resolve the shape of the flagellar motion of human sperm cells, high-

speed camera recordings with a frame rate of approximately 1,000 frames per second are 

required. Here we will describe a method to perform frame-by-frame analysis using high-

speed camera recordings which can help detect motility defects, assess capacitation state, 

and evaluate the effects of different treatments on human sperm cells. We describe how the 

system is set up and use exposure of sperm cells to SEM1(86–107) fibrils (semen-derived 

amyloid fibrils previously shown to enhance HIV infection and participate in excess/

defective sperm removal) (Roan et al., 2011 and 2017) as an example of how an exogenous 

agent can affect sperm motility at the single-cell level.

As with many other human-derived cells, human sperm samples constitute a biosafety 

hazard. Therefore, all work with such materials should be performed in BSL-2 approved 

spaces. Moreover, all personnel should be properly trained, including undergoing annual 

bloodborne pathogen training per institutional guidelines. Lab personnel are also advised to 

undergo immunization against Hepatitis B.

Each human spermatozoon has a head of about 5 μm connected to a 45 μm tail (flagellum) 

which is about 0.5 μm in diameter (Miller et al., 2018). To observe such a small object, 

specialized high-resolution optics are required. Using a microscope equipped with 

Differential Interference Contrast (DIC) or Hoffman Modulation Contrast (HMC) optics is 

highly recommended over phase-contrast optics since DIC/HMC makes it easier to track the 

precise motion of the tiny flagellum (Lishko et al., 2013). The measurement rig is composed 

of an inverted microscope (such as the Olympus IX71 or Nikon Ti series) positioned on a 

vibration-damping air table and connected to a high-speed camera that can acquire 1,000 

frames per second (Figure 1).

It is highly recommended to use an Olympus UPlanSApo 60x water immersion objective or 

similar lens, with numerical aperture of 1.20. Such an objective features a long working 

distance (0.28 mm) and an adjustment collar which can compensate for the thickness of 

coverslips between 0.13 and 0.21 mm. This combination of long working distance and 

adjustable collar allows for observations through two 0.13 mm thickness coverslips: one 

coverslip serving as a glass bottom of the recording chamber, plus an additional round 5 mm 

diameter coverslip placed into the recording chamber, with sperm cells deposited on top. 

This objective can also allow for observation of free-swimming sperm cells in solution. As 

will be discussed below, depositing sperm cells on easily exchangeable round 5 mm 

diameter coverslips (rather than on the bottom of the recording chamber directly) is a 

convenient way to load fresh sperm cells into the recording chamber and quickly exchange 
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samples of cells that have been exposed to different conditions. In addition to the 60x 

objective, inverted microscopes are equipped with 10x eyepieces and an optional 1.6x 

internal magnification. The regular internal magnification of the microscope (a total of 600x) 

is used to locate the appropriate sperm cell to record. If higher magnification is needed, the 

1.6x internal magnification is engaged for a total of 960x.

The assembled rig is positioned on a vibration-damping air table (e.g., Newport or TMC). 

The absence of any vibration is an essential part of a successful video recording since even a 

slight vibration will ultimately compromise the recording (Figure 1).

Finally, it is suggested to use a Warner Instruments RC-24E perfusion chamber connected 

via a manifold to a gravity-fed perfusion system (Figure 2). The RC-24E is a low-volume 

diamond-shaped chamber with laminar flow and relatively fast solution exchange rates. A 

round 5 mm diameter coverslip fits perfectly into the diamond-shape opening of this 

chamber. To perfuse a solution through the recording chamber, a simple self-made gravity-

fed perfusion system with a Teflon manifold (Figure 3) allows one to connect the recording 

chamber to up to 8 separate perfusion lines. It is important to ensure that the tubing used for 

perfusion of bath solution with human sperm does not leach plasticizers or phthalates into 

the solutions since such chemicals can significantly alter sperm motility (Fredricsson et al., 
1993). A small diameter polytetrafluoroethylene (PTFE, commonly known as Teflon) tubing 

is highly recommended as the main perfusion tubing. As this tubing is rather stiff, flexible 

connections are made using high purity silicon tubing that fits over the PTFE tubing (Lishko 

et al., 2013). In addition, syringes that lack any lubricant (e.g., Air Tite Norm-Ject brand) are 

strongly recommended for injection of perfusion materials, since mineral oil or other 

lubricating additives can interfere with sperm ion channels, and hence impair flagellar 

motility.

Materials and Reagents

1. Polypropylene sterile sample collection containers (SARSTEDT, catalog 

number: 75.9922.745)

2. Centrifuge Tubes, 50 ml and 15 ml (Olympus Plastics, catalog numbers: 28–106 

and 28–101)

3. Positive Displacement Pipettes and Tips (Gilson, MICROMAN)

4. Micropipettes and Tips (Gilson, Pipetman)

5. 5 mm round coverslips (WPI, catalog number: 502040)

6. 0.22 μm Polyethersulfone (PES) Vacuum-Driven Filter System, 500 ml and 1 L 

(Olympus Plastics, catalog numbers: 25–227 and 25–229)

7. MLA Pipette Tips, 200 μl (Vista Labs, catalog number: 9025)

8. Osmolarity Calibration Standard (ELITech, OPTIMOLE, catalog number: 

OA-029)
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9. Osmometer Paper Sample Disks (Wescor, VAPRO Sample Disks, catalog 

number: SS-033)

10. Sodium Chloride (NaCl) (Sigma-Aldrich, catalog number: S7653)

11. Potassium Chloride (KCl) (Fisher Scientific, catalog number: P217)

12. Magnesium Sulfate Heptahydrate (MgSO4·7H2O) (Sigma-Aldrich, catalog 

number: 63140)

13. Monopotassium Phosphate (KH2PO4) (Sigma-Aldrich, catalog number: 60216)

14. Calcium Chloride Dihydrate (CaCl2·2H2O) (Sigma-Aldrich, catalog number: 

21097)

15. HEPES (Fisher Scientific, catalog number: BP310)

16. D-(+)-Glucose (C6H12O6) (Sigma-Aldrich, catalog number: G8270)

17. Sodium Lactate (C3H5NaO3) (Sigma-Aldrich, catalog number: L7900)

18. Sodium Pyruvate (C3H3NaO3) (Sigma-Aldrich, catalog number: P2256)

19. Sodium Hydroxide (NaOH) (Sigma-Aldrich, catalog number: 221465)

20. Sodium Bicarbonate (NaHCO3) (Sigma-Aldrich, catalog number: S5761)

21. Fetal Bovine Serum (FBS) (Gibco, catalog number: 16000036)

22. Hydrochloric Acid (HCl) (Fisher Scientific, catalog number: A144S)

23. Human fibrillogenic peptide SEM1(86–107) (Celtek and CPC Scientific, 

sequence: DLNALHKTTKSQRHLGGSQQLL)

24. pH 4.0 Standard, Red (EMD Chemicals, catalog number: BX1628–1)

25. pH 7.00 Standard, Yellow (Fisher Scientific, catalog number: SB107–500)

26. pH 10.00 Standard, Blue (Fisher Scientific, catalog number: SB115–500)

27. Phosphate-Buffered Saline (PBS) (Fisher Scientific, catalog number: BP665–1)

28. 70% Ethanol (Decon Labs, catalog number: V1001)

29. Human Tubal Fluid (HTF) Solution (see Recipes)

30. High-Saline solution (HS) (see Recipes)

31. Capacitation media (see Recipes)

32. Motility disrupting reagents and control reagents (see Recipes)

Equipment

A. General

1. Incubator (Fischer Scientific, Isotemp Incubator)

2. CO2 Incubator (for capacitation) (Eppendorf, Galaxy 170S, catalog 

number: CO17101001)
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3. Water Filter (Millipore, Milli-Q, Advantage, catalog number: A10-

TOC)

4. Balances (Mettler Toledo, models: XS2002S and XS105)

5. pH Meter (Denver Instruments, Ultra Basic UB-10)

6. Vapor Pressure Osmometer (Wescor, model 5600)

7. 10 μl Fixed volume MLA pipette (Vista Labs, catalog number: 1051C)

8. Forceps (Excelta, catalog number: 5-S-SE)

9. Thermomixer (Eppendorf) for generation of semen amyloid fibrils

10. 4 °C refrigerator

11. Hemacytometer (Hausser Scientific, Reichert Bright-Line, catalog 

number: 1483)

12. Slanted Tube Rack for 50 ml Tubes (Bel-Art, catalog number: F18794–

0028)

B. Microscopy (Figure 1)

1. Inverted microscope (Olympus, model: IX-71)

2. Water immersion objective (Olympus, UPlanSApo, 60x, 1.20 W, ∞/

0.13–0.21/FN26.5, catalog number: UPLSAPO 60XW)

3. Digital high-speed camera (NAC Image Technology, Memrecam GX-1 

or similar type of high-speed camera)

4. Light source (Olympus, 100 W halogen lamp housing U-LH100L-3 

with lamp 12V100WHAL)

5. Light source power supply (Olympus, catalog number: TH4–100)

6. Vibration Isolation Table (Newport, Vision IsoStation)

7. Recording chamber (Warner Instruments, RC-24E); A rectangular 

coverslip (Corning, 24 × 40 mm Rectangular #1 Cover Glass, 

thickness .13 mm, catalog number: 2975–244) is glued to the bottom of 

the chamber with SYLGARD 184 (Dow Corning, Midland, MI) 

according to the manufacturer’s instructions. Grease is not 

recommended since it can leach into the chamber and alter the 

physiological properties of sperm cells.

C. Perfusion and Suction (Figures 2 and 3)

1. Teflon 8-position perfusion manifold (Warner Instruments, MP-8, 

catalog number: 64–0211)

2. Suction control (B. Braun, Exadrop, Germany)

3. Suction tube (Warner Instruments, ST-QE1, catalog number: 64–1403)
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4. Magnetic clamps for suction tube (Warner Instruments, MAG-1, catalog 

number: 64–0358; and MAG-7, catalog number: 64–1554)

5. Polytetrafluoroethylene (PTFE) perfusion tubing (Microbore PTFE 

Tubing, 0.022” ID × 0.042” OD) (Cole-Parmer, catalog number: 

EW-06417–21)

6. Silicone Connector Tubing (Platinum-Cured Silicone Tubing, 1/32” ID 

× 3/32” OD) (Cole-Parmer, catalog number: EW-95802–01)

7. Manifold Connector Tubing (PTFE Tubing, 1/32” ID × 1/16” OD) 

(Cole-Parmer, catalog number: EW-06407–41)

8. Stopcock with Luer Connections; 4-way; Male Lock (Cole-Parmer, 

catalog number: EW-30600–09)

9. Female Luer Hose Barb Adapter, 1/16” (Cole-Parmer, catalog number: 

EW-45508–00)

10. Syringes (Air-Tite, Norm-Ject Luer Lock Syringe, catalog number: 

AL20 and AL3)

Software

1. Memrecam GXLink software, version 3.20 (NAC Image Technology)

2. ImageJ version 1.44 (http://rsb.info.nih.gov/ij/)

3. Statistical Analysis Software (OriginLabs, Origin, or equivalent)

Procedure

A. Sperm collection and purification–”Swim-up”

1. Obtain approval from your organization’s Institutional Review Board to 

conduct studies involving human subjects. Recruit healthy male 

volunteers of reproductive age older than 21 years to provide semen 

samples. Freshly ejaculated semen samples should be collected by 

masturbation into sterile polypropylene sample containers. Ensure that 

the sample containers chosen are clear of plasticizers, which can 

negatively affect sperm quality. Advise donors to avoid sexual activity 

for 3 days before collecting a sample. Ask donors to record the time of 

collection, and to deliver the sample to the lab within 30 min of 

collection. (Figure 4)

2. The human ejaculate sample should be left at room temperature for 30–

60 min from the time of collection to allow it to gradually become less 

viscous (through the action of seminal proteases). This eases pipetting 

of the semen and ensures complete release of sperm cells from the 

seminal plasma, which contains sperm-binding proteins such as 

semenogelins. However, it is essential to start the “swim-up” (Step A4 
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and Figure 4) within 1 h after collection to prevent the seminal 

proteases from damaging the sperm cells.

3. Add 7 ml of HTF (Human Tubal Fluid) solution to a 50 ml centrifuge 

tube and warm it to approximately 37 °C in the incubator. Visually 

assess the volume of the ejaculate–if the volume is greater than 1 ml, 

prepare multiple tubes of HTF solution (Figure 4).

4. Once the HTF is warm, carefully underlay 1 ml of liquefied ejaculate to 

the bottom of each tube (Figure 5). Use of a positive displacement 

pipette greatly facilitates this process. Avoid agitating the semen, or 

introducing bubbles, which can lift strands of semen to the surface of 

the HTF buffer. If strings of semen persist when removing the pipette 

from the semen sample, more liquification time is needed.

5. Place the tubes in a 37 °C incubator for 1 h, in a stand that holds them 

at a 45° angle, in order to increase the surface area for swim-up. If the 

incubator is a CO2 incubator, close the cap tightly to prevent 

acidification of buffer–CO2 is not required for this procedure. During 

this incubation, motile sperm will gradually swim out of the semen 

sample and up into the HTF supernatant, thereby cleansing themselves 

of most residual seminal proteins. Purifying human spermatozoa using 

this “swim-up” technique avoids sperm damage induced by the G-

forces of the centrifugation used in other purification procedures 

(Figure 5).

6. After 1 h, the supernatant should contain only motile sperm. Carefully 

collect about 2–3 ml of the supernatant from each tube, merging the 

supernatant from all HTF tubes into a single separate 15 ml conical tube 

(Figures 5 and 6). The most motile sperm are found in the upper 

sections of the supernatant, so to gather only highly motile sperm, 

pipette from near the surface of the supernatant. To avoid gathering any 

seminal plasma, do not attempt to remove all of the supernatant–leave 

several milliliters of HTF remaining above the seminal plasma. Discard 

HTF and semen tubes after removal of supernatant.

7. Let the 15 ml tube stand vertically for about 30–60 min at RT. 

Spermatozoa will concentrate at the bottom (where a white cloud will 

form) as they gradually become less motile due to HTF solution’s 

relatively low sodium concentration. When submersed in HS solution 

(which has a higher sodium concentration) these sperm cells will 

resume their aggressive motility (Figure 6).

8. Remove the supernatant from the tube to concentrate the cells, and 

gently resuspend the cloud of cells in the remaining HTF solution 

(Figure 6). A normal ejaculate should contain at least 15 × 106 sperm 

cells per ml (WHO, 2010), but sperm counts vary widely between 

different samples, so technicians will need to develop an intuition of 
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how much supernatant to leave in the tube, based on the size of the 

sperm cloud, in order to reach the desired concentration of cells. If cell 

concentration is outside of the desired range in downstream 

applications, the technician can use more or less of this sperm solution, 

or if needed, dilute it with more HTF or allow the cells to settle again 

and remove additional supernatant.

9. Take an aliquot of the sperm suspension and determine the cell 

concentration using a hemacytometer.

B. Recording high-speed video of sperm motility

1. Place a 5 mm diameter coverslip in the main diamond-shaped well of 

the recording chamber. Then fill the recording chamber with ~300 μl of 

room temperature HS solution, making sure that all wells (including the 

main well and the suction wells) have liquid in them, and that no air 

bubbles are blocking the covered connection lane between the front and 

back wells. Ensure that the coverslip is fully submerged and flat on the 

bottom of the recording chamber, with no bubbles underneath it, by 

tapping it down with a pipette tip or forceps.

2. Take 20–50 μl of the concentrated sperm cell suspension from the 

storage tube, and gently add it to the HS solution above the coverslip. 

Although spermatozoa are motile, many will accumulate on the surface 

of the coverslip, where their heads will adhere electrostatically, while 

their flagella will vigorously beat in the solution just above the 

coverslip. Allow sperm cells to sediment onto the coverslip for 10–30 

min at room temperature.

3. If capacitated cells are needed, first allow cells to adhere to the 

coverslip, then perfuse the recording chamber with capacitation media 

and incubate cells at 37 °C for 4 h in a 5% CO2 incubator (Lishko et al., 
2010). It is essential to use a CO2 incubator at this step as capacitation 

media contains sodium bicarbonate, which together with atmospheric 

CO2 maintains the required pH during the capacitation process. It is 

recommended to adhere the cells before adding capacitation media 

because the FBS in the capacitation media makes the sperm adhere less 

strongly to the coverslip.

4. With the microscope in Differential Interference Contrast mode, add a 

~50 μl droplet of water directly onto the 60x objective, place the 

recording chamber into the stage adapter and mount the adapter on the 

microscope stage, then put the perfusion and suction lines into place, as 

shown in Figure 2. Then turn the light source on and find the correct 

focal plane for the upper surface of the coverslip. It is often helpful to 

do this by first finding an edge of the coverslip and then gradually 

adjusting the focal plane upwards–you will first encounter the glass 
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bottom of the recording chamber, then the lower surface of the 

coverslip, then the upper surface of the coverslip.

5. At this point, it is often useful to turn on HS perfusion to remove debris 

and excess spermatozoa from the recording chamber. For capacitated 

sperm, one must avoid turning on perfusion immediately after a fresh 

coverslip is placed into the perfusion chamber to ensure that the largest 

number of capacitated spermatozoa are attached and available for 

analysis. In this case, after the appropriate cell is chosen and recorded, 

the perfusion can be turned on. Ensure that the HS solution in the 

syringe has reached room temperature (~24 °C) before starting 

perfusion. If incubation at a warmer temperature is required, you may 

place the recording chamber and stage adapter into the incubator, or use 

a built-in electrical heater in the stage adapter or incorporated into the 

perfusion line.

6. Assess the sperm cells for strict morphology, overall motility, and 

concentration using WHO guidelines (WHO, 2010). Morphologically 

normal sperm cells (Kruger et al., 1987) can then be sampled for 

movement analysis. Morphological abnormalities of sperm include 

vacuolated, round, amorphous, tapering, pyriform, megalocephalic or 

microcephalic heads; asymmetrical, bent or thin midpiece; and various 

tail defects. Sperm motility should always be confirmed and recorded 

before any motility-altering drug/compound treatment is administered.

7. Once appropriate cells are identified, switch the optical routing to the 

camera mode, and activate the camera to record video. It is useful to 

find a field of view with enough sperm cells to allow for multiple 

measurements from the same video, but for accurate measurements, 

assess cells whose flagella do not overlap with other nearby cells. Gain, 

frame rate, and many other recording settings can be adjusted in the 

GXLink software. We use a frame rate of 1,000 frames per second to 

facilitate beat frequency calculations since 1 frame then corresponds to 

an interval of approximately 1 ms.

8. Once video has been captured of control cells, perfuse or pipette in 

treatment compounds (e.g., 50 μg/ml SEM1(86–107) fibrils or the 

corresponding monomeric peptide control), wait 10 min, and then 

record additional videos. After all needed video has been recorded, 

carefully remove the coverslip from the recording chamber with 

forceps, and then discard it. If treatment with several different 

compounds is required, cells can also be seeded onto coverslips and 

incubated simultaneously in separate wells of a cell-culture dish, then 

each coverslip can be carefully transferred one at a time into the 

recording chamber for imaging. Ensure that the cells remain covered 

with liquid at all times.
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Once all needed recordings have been made, remove the coverslip from 

the recording chamber, aspirate the remaining solution in the recording 

chamber, and clean by rinsing it with water and 70% ethanol, followed 

by a triple rinse with deionized water (18 MΩ). Avoid prolonged 

exposure of the chamber plastic to alcohols. The chamber can be reused 

indefinitely.

Data analysis

1. Videos recorded in the GXLink software can be exported in a variety of formats. 

For quantitative analysis, export the movie as a series of images in 8-bit TIFF 

format.

2. Import these TIFF files as an image stack in ImageJ. Use the marker tool to mark 

a point touching the edge of a sperm’s flagellum, near the midpiece, when it is at 

its maximum displacement from center. Then scroll through the images until the 

flagellum touches that marker again (Figure 7). The number of frames between 

the two touches of the marker point represents the Period (T), in milliseconds, 

which is the time required to complete one full flagellar stroke (if the frames 

were collected at 1,000 frames per second, where 1 frame equals 1 ms). Since 

Beat Frequency (BF) is measured in Hz, use the following equation to determine 

BF of the sperm tail:

BF = 1000
T

Collect frequency measurements for a statistically appropriate number of cells, 

and evaluate the data with the statistical analysis software of your choice.

3. To quantitate the effects of SEM1(86–107) fibrils or other agents on motility, 

BFs are calculated twice: first prior to perfusion of the agent, and then 10 min 

after the perfusion.

Notes

1. Once high-speed images have been captured, various methods exist to evaluate 

the beat frequency. In addition to the method described here, it is possible to 

choose a time window (e.g., 0.5 s or 1 s) and measure how many full beats are 

completed in this time window, then mathematically scale that number to beats 

per second (Roan et al., 2017). Others have used custom computer image 

analysis software to trace the pattern of flagellar motion and fit sinusoidal curves 

to it, or Fast Fourier Transform analysis to report beat frequency directly from 

the power spectrum of the intensity changes along a line scan perpendicular to 

the flagellar beat axis (Wennemuth et al., 2003; Burnett et al., 2010; Saggiorato 

et al., 2017; Muschol et al., 2018).

2. Beat Frequency (BF) should not be confused with Beat Crossing Frequency 

(BCF) as reported by CASA systems, which is defined as the number of times 
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the sperm head crosses the direction of movement of the free-swimming cell 

(Mortimer, 2000). Due to the sinusoidal nature of tethered flagellar motion, the 

BCF will generally be twice as large as the BF.

3. When mammalian spermatozoa are free-swimming, rather than tethered, their 

flagella move in all three dimensions, resulting in a roughly helical path, which 

complicates beat frequency analysis (Muschol et al., 2018).

Recipes

1. Human Tubal Fluid (HTF) Solution

Substance Molar mass (g/mol) Final concentration (mM) Weight

For 500 ml For 1,000 ml

NaCl 58.44 97.8 2.86 g 5.72 g

KCl 74.55 5 0.186 g 0.373 g

MgSO4·7H2O 246.48 0.2 24.6 mg 49.3 mg

KH2PO4 136.09 0.37 25.2 mg 50.4 mg

CaCl2·2H2O 147.02 2 0.147 g 0.294 g

HEPES 238.31 28 3.336 g 6.673 g

Sodium Lactate 
Solution (60% 
w/w)

112.06 20 1.5 ml 3 ml

Sodium Pyruvate 110 0.4 22 mg 44 mg

Glucose 180.2 3 0.270 g 0.540 g

a. Adjust pH to 7.3–7.4 with NaOH. Osmolarity should be 280 ± 5 mOsm, 

measured using a Vapor Pressure Osmometer

b. Filter through a sterile 0.2 μm PES filter and store the final solution at 

4 °C for up to one month. Sodium lactate solution is used instead of 

lactic acid due to sodium lactate’s greater stability and manufacturing 

consistency

2. High-Saline (HS) Solution

Substance Molar mass(g/mol) Concentration (mM) Weight (g)

For 500 ml For 1,000 ml

NaCl 58.44 135 3.945 g 7.889 g

KCl 74.56 5 0.186 g 0.373 g

CaCl2·2H2O 147.02 2 0.147 g 0.294 g

MgSO4·7H2O 246.48 1 0.123 g 0.247 g

HEPES 238.3 20 2.383 g 4.766 g

Glucose 180.2 5 0.451 g 0.901 g
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Substance Molar mass(g/mol) Concentration (mM) Weight (g)

For 500 ml For 1,000 ml

Sodium Lactate 
Solution (60% w/w)

112.06 10 0.75 ml 1.5 ml

Sodium Pyruvate 110 1 0.055 g 0.110 g

a. Adjust pH to 7.3–7.4 with NaOH. Osmolarity should be 320 ± 5 mOsm, 

measured using a Vapor Pressure Osmometer

b. Filter through a sterile 0.2 μm PES filter and store the final solution at 

4 °C for up to one month. Sodium lactate solution is used instead of 

lactic acid due to sodium lactate’s greater stability and manufacturing 

consistency

3. Capacitation media (Lishko et al., 2010)

In premade HS solution, add 20% Fetal Bovine Serum and 25 mM NaHCO3

Note: Capacitation media must be prepared freshly before each use and used 

within the same day.

4. Motility disrupting reagents and control reagents

a. Human fibrillogenic peptide SEM1(86–107) (Sequence: 

DLNALHKTTKSQRHLGGSQQLL) was custom-synthesized by a 

commercial vendor (Celtek and CPC Scientific) but can also be 

synthesized in-house. Peptide purity should be > 95%. The peptide can 

be dissolved at a concentration of 2.5 mg/ml in PBS (pH 7.0). This 

peptide serves as the monomeric peptide (negative) control and does not 

restrict sperm motility

b. To generate amyloid fibrils, the 2.5 mg/ml SEM1(86–107) peptide is 

agitated in 100 μl aliquots for 12 h at 37 °C at 1,400 rpm in an 

Eppendorf Thermomixer, after which the solution should look turbid as 

a result of fibril formation

c. Fibril formation can be confirmed by thioflavin T binding or electron 

microscopy (Roan et al., 2011)

d. We have previously found that cationic fibrils from semen [SEM1(86–

107) fibrils, SEVI fibrils, and Galago repeat fibrils] entrapped sperm 

cells, while monomeric peptides [unagitated SEM1(86–107), 

SEM1(68–85) and SEM1(108–159)] and non-cationic fibrils [Aβ(1–

42)] did not (Roan et al., 2017)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fully assembled high-speed video microscopy rig with perfusion setup, on a vibration-

isolation table
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Figure 2. Assembled perfusion chamber for recording.
A. The recording chamber is placed inside the stage adapter and connected to perfusion lines 

via a perfusion manifold. The suction line is attached to a metal suction tube, which is 

positioned on the stage adapter with a magnetic clamp. B. Top view of the same setup.
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Figure 3. Homemade perfusion line.
The large syringe is used to hold perfusion fluid, and the small syringe is used to purge air 

bubbles from the system. The Perfusion Manifold allows for up to 8 perfusion lines to be 

connected simultaneously. Extra manifold ports are blocked when not in use.
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Figure 4. Semen sample and tubes of HTF fluid.
The semen sample is in the collection container at right. The donor’s anonymized identity 

number and time of collection is labeled on the collection container (but redacted for 

publication). One ml of semen will be underlaid into each of the tubes of HTF on the left. In 

this case, only 3 tubes of HTF were used, as the ejaculate volume was roughly 3 ml.
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Figure 5. Semen sample before and after swim-up.
A. HTF fluid in falcon tube before addition of semen. B. One ml of semen carefully 

underlaid at the bottom of the tube. C. The same tube after 1 h of incubation at 37 °C. Note 

the supernatant is cloudier, and the boundary between the semen and the HTF fluid less 

defined. This shows that sperm has swum up into the supernatant. D. The same tube after 

removing several milliliters of supernatant.
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Figure 6. Sperm settling and concentration.
A. Three ml of HTF supernatant was removed from each swim-up tube and pooled into one 

15 ml conical tube. B. The cloud of sperm cells that have settled to the bottom of the tube 

after 30–60 min standing at RT. C. Several milliliters of supernatant removed to concentrate 

the sperm cells. D. Sperm cloud resuspended by gentle pipetting.
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Figure 7. Example frames illustrating the measurement of one full beat cycle of a human 
spermatozoa.
The numbers above each frame indicate specific frame position out of 2,310 frames 

collected. There is a 12-frame gap between each image displayed here, and the scale bars 

represent approximately 5 μm. The image was contrast enhanced in ImageJ for visual clarity. 

This spermatozoon has a period of 60 ms, and therefore a frequency of approximately 17 

Hz. Video (.avi) and TIFF files are included as supplemental materials.
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