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Abstract
Purpose This study explores the biomechanics underlying the sit-to-stand (STS) functional maneuver in chronic LBP patients 
to understand how different spinal disorders and levels of pain severity relate to unique compensatory biomechanical behav-
iors. This work stands to further our understanding of the relationship between spinal loading and symptoms in LBP patients.
Methods We collected in-clinic motion data from 44 non-specific LBP (NS-LBP) and 42 spinal deformity LBP (SD-LBP) 
patients during routine clinical visits. An RGB-depth camera tracked 3D joint positions from the frontal view during unas-
sisted, repeated STS maneuvers. Patient-reported outcomes (PROs) for back pain (VAS) and low back disability (ODI) were 
collected during the same clinical visit.
Results Between patient groups, SD-LBP patients had 14.3% greater dynamic sagittal vertical alignment (dSVA) and 10.1% 
greater peak spine torque compared to NS-LBP patients (p < 0.001). SD-LBP patients also had 11.8% greater hip torque 
(p < 0.001) and 86.7% greater knee torque (p = 0.04) compared to NS-LBP patients. There were no significant differences 
between patient groups in regard to anterior or vertical torso velocities, but anterior and vertical torso velocities correlated 
with both VAS (r = − 0.38, p < 0.001) and ODI (r = − 0.29, p = 0.01). PROs did not correlate with other variables.
Conclusion Patients with LBP differ in movement biomechanics during an STS transfer as severity of symptoms may relate 
to different compensatory strategies that affect spinal loading. Further research aims to establish relationships between 
movement and PROs and to inform targeted rehabilitation approaches.

Keywords Low back pain · Biomechanics · Motion analysis

Introduction

Low back pain (LBP) is a major health problem in the U.S, 
present in 19.6% of adults between 20 and 59 years old [1]. 
LBP is difficult to diagnose due to its diverse and multi-
faceted etiology [2]. Patient-reported outcomes (PROs) for 
pain, disability, and health-related quality of life reflect 
patient experience, yet are difficult to link to specific under-
lying pathology [3]. Rather than subjective PROs, objective 

measurements of biomechanical function may better clarify 
associations between functional disability and pathology. In 
particular, biomechanical compensation, which occurs when 
people with LBP alter their physical behavior, creates abnor-
mal and ineffective movement patterns that may negatively 
impact spinal loading [4].

A common in-clinic functional test that can distinguish 
the effect of LBP on physical function is the sit-to-stand 
(STS) transfer [5]. Current STS protocols assess the duration 
for a patient to complete five repeated STS transfers. While 
many studies confirm that the effect of LBP significantly 
increases the STS time [6], only few explore the compen-
satory biomechanics adopted by LBP patients during the 
STS test. Prior research has shown that LBP patients had 
decreased velocity of the trunk and hip compared to controls 
in an STS test [7]. Patients with LBP also have decreased 
lumbar and hip mobility [8]. However, there has been no 
established consensus regarding motion of the lumbar spine, 
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as there is disagreement between studies. It has been estab-
lished that patients with LBP have changes in their kinemat-
ics compared to controls, but there is a lack of the literature 
addressing the specific kinematics in regard to an isolated 
STS movement, specifically regarding spinal loading and 
sagittal alignment.

In this study, we conducted non-invasive in-clinic motion 
assessments of chronic LBP patient groups and compared 
their compensatory biomechanical behaviors. Two distinct 
chronic LBP patient subgroups were included: non-specific 
low back pain (NS-LBP) patients and spinal deformity 
patients with LBP (SD-LBP). We assessed compensatory 
biomechanics using novel markerless depth mapping tech-
nology [10] and compared computed kinematics and kinet-
ics of the trunk and lower extremities between groups and 
in relation to PROs. We hypothesized that compensatory 
biomechanical behaviors are adopted by both LBP patient 
groups, with more compromised kinematics and spinal load-
ing occurring among patients with more severe symptoms. 
The purpose of this study is to investigate the biomechan-
ics underlying the STS functional maneuver in chronic LBP 
patients in order to understand how different spinal disorders 
and levels of pain severity relate to unique compensatory 
biomechanical behaviors. This work stands to further our 
understanding of the relationship between spinal loading and 
symptoms in LBP patients and may inform targeted rehabili-
tation approaches for specific spinal disorders and patient 
populations.

Methods

Sample

With IRB approval, we collected in-clinic motion analysis 
and outcomes data from patients during routine clinical 
visits. This study includes NS-LBP patients and SD-LBP 
patients. NS-LBP patients had at least 6 months of LBP 
symptoms and no clear underlying condition responsible for 
pain symptoms. SD-LBP patients also had at least 6 months 
of LBP symptoms, but also had spinal deformity conditions 
including adult degenerative scoliosis and hyperkyphosis 
and presented sagittal imbalance of at least 40 mm on stand-
ing radiography. Subjects were excluded if they had pain or 
dysfunction in the cervical spine or thoracic spinal regions. 
Additionally, subjects were excluded if they had unrelated 
pain or dysfunction in the lower extremities. All of the sub-
jects were able to walk independently and perform an unas-
sisted STS maneuver.

In‑clinic motion analysis and biomechanical 
modeling

Patients were asked to complete a maximum of nine unas-
sisted STS maneuvers (three separate trials of three con-
tinuous maneuvers each). An RGB-depth camera (Kinect 2, 
Microsoft, Inc.) was placed in the frontal view and tracked 
3D joint positions. Joint location estimates were filtered 
using an unscented Kalman filter (UKF) and an allometri-
cally scaled, patient-specific rigid body model. The com-
puted kinematic, kinetic, and dynamic parameters were then 
used to estimate maximum torque at the L5-S1 using a sagit-
tal plane model of intra-abdominal pressure and the spine 
extensors. The acquisition of STS kinematic, kinetic, and 
dynamic metrics from the depth camera system has been 
validated [9, 10].

Outcomes

The kinematic, kinetic, and dynamic metrics obtained from 
the STS were total time, peak excursion of normalized sagit-
tal vertical alignment (dynamic SVA, dSVA; dimless), nor-
malized peak anterior and vertical velocities for the torso 
(1/s), and normalized peak torques (dimless) at L5S1 and the 
hip and knee joints (Fig. 1). These variables are normalized 
by height measurements and are mostly dimensionless (dim-
less). dSVA is defined as the peak sagittal distance between 
the hip and shoulder centers and uses height as its scaling 
variable. The anterior and vertical torso velocities are the 
peak velocities of the torso in those directions. In addition, 
we collected patient-reported outcomes for back pain using 

SVA
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Fig. 1  Joint centers sensed and processed to obtain kinematic, 
dynamic, and biomechanical metrics



1891European Spine Journal (2022) 31:1889–1896 

1 3

the visual analog scale (VAS) (0–10) and for low back dis-
ability using the Oswestry Disability Index (ODI) (0–100) 
attained during the same clinical visit. For analysis, patients 
were grouped by low VAS (≤ 5.0) and high VAS (> 5.0) and 
by low ODI (≤ 50) and high ODI (> 50).

Statistical analyses

STS data used for statistical analysis were averaged over 
multiple STS trials per subject. Between NS-LBP and SD-
LBP patient groups, biomechanical variables and differ-
ences between patient groups in terms of VAS and ODI were 
compared using unpaired t tests. Significance was based on 
p < 0.05. All statistical analyses were done using R 1.1.463 
(RStudio, Boston, MA, USA).

Results

This study examines 86 subjects, including 44 NS-LBP 
patients (mean age: 54.1 ± 17.4) and 42 SD-LBP patients 
(mean age: 62.9 ± 11.9; Table 1). For the two patient groups 
pooled, mean VAS was 5.69 (± 2.84), and mean ODI was 
50.0 (± 16.2). Mean VAS was significantly lower for the 
NS-LBP group (4.62 ± 2.36) compared to the SD-LBP group 
(6.91 ± 2.89; p < 0.001). Mean ODI was not significantly 
different between the NS-LBP (50.7 ± 16.5) and SD-LBP 
(49.1 ± 16.1) groups.

Peak torso velocity and dynamic sagittal balance

There were differences between chronic LBP patient groups 
in regard to dynamic sagittal balance. dSVA for the SD-LBP 
patients was 14.3% greater compared to NS-LBP patients 

(p < 0.001, Table 2, Fig. 2). There were no differences in 
anterior or vertical torso velocity between patient groups.

There was no overall correlation between VAS and dSVA 
(Fig. 3; Table 3), but VAS negatively correlated with ante-
rior torso velocity (r = − 0.38, p < 0.001, Fig. 4) and verti-
cal torso velocity (r = − 0.35, p = 0.002; Fig. 4). Within the 
NS-LBP patient group, patients with high VAS had 20% 
lower vertical torso velocity compared to those with low 
VAS (p < 0.05, Table 3). Between patient groups, SD-LBP 
patients with low VAS had 16.7% lower anterior torso veloc-
ity compared to NS-LBP patients with low VAS (p = 0.04, 
Table 3).

There was no overall correlation between ODI and dSVA 
(r = 0.19, Fig. 3), but ODI negatively correlated with anterior 
torso velocity (r = − 0.29, p = 0.01, Fig. 4) and vertical torso 
velocity (r = − 0.44, p < 0.001; Fig. 4). For patients with 
low ODI, NS-LBP patients had a 23.5% lower dSVA com-
pared to SD-LBP patients (p = 0.001). For NS-LBP patients, 
those with high ODI had 15% greater dSVA compared to 
those with low ODI (p = 0.02, Table 4). NS-LBP patients 
with high ODI also had 16.7% lower vertical torso veloc-
ity compared to NS-LBP patients with low ODI (p = 0.003, 
Table 4). For SD-LBP patients, those with high ODI had 
31.3% lower vertical torso velocity compared to those with 
low ODI (p = 0.02, Table 4).

Peak load on the lower back

There were significant differences between patient groups 
for peak torque on the lower back. SD-LBP patients had 
10.1% greater spine torque compared to NS-LBP patients 
(p = 0.003, Table 2, Fig. 2). There was no significant overall 
correlation between either VAS or ODI with spine torque 
(Fig. 3), but SD-LBP patients with high VAS had 12.8% 

Table 1  Demographics, VAS, 
and ODI for each group

Count Age (years) Sex VAS ODI

Total 86 58.39 ± 15.50 35 M, 51 F 5.69 ± 2.84 50.0 ± 16.2
NS-LBP 44 54.11 ± 17.35 22 M, 22 F 4.62 ± 2.36 50.7 ± 16.5
SD-LBP 42 62.88 ± 11.94 13 M, 29 F 6.91 ± 2.89 49.1 ± 16.1

Table 2  Normalized 
biomechanical metrics for 
controls, all LBP patients, 
NS-LBP patients, and SD-LBP 
patients and between-group 
comparisons

All Patients NS-LBP SD-LBP SD-LBP 
compared to 
NS-LBP

dSVA (dimless) 0.19 ± 0.03 0.18 ± 0.03 0.21 ± 0.03 14.3%, p < 0.001
Peak anterior torso velocity (1/s) 0.52 ± 0.15 0.6 ± 0.14 0.53 ± 0.16 n.s
Peak vertical torso velocity (1/s) 0.36 ± 0.11 0.4 ± 0.11 0.37 ± 0.12 n.s
Max L5S1 flexion torque(dimless) 0.71 ± 0.11 0.71 ± 0.11 0.79 ± 0.1 10.1%, p = 0.003
Max hip flexion torque (dimless) 0.83 ± 0.15 0.82 ± 0.15 0.93 ± 0.13 11.8%, p < 0.001
Max knee flexion torque (dimless)  − 0.17 ± 0.24  − 0.02 ± 0.25  − 0.15 ± 0.28 p = 0.04
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greater spine torque compared to NS-LBP patients with high 
VAS (p = 0.002, Table 3, Fig. 5). Also, SD-LBP patients 
with low ODI had 11.5% greater spine torque than NS-LBP 
patients with low ODI (p = 0.01, Table 4, Fig. 5).

Lower extremity

There were significant differences between patient groups in 
regard to peak hip and peak knee torque. SD-LBP patients 
had 11.8% greater peak hip torque compared to NS-LBP 
patients (p < 0.001). NS-LBP and SD-LBP patients had 
peak torque in the knee with flexion compared to extension. 

SD-LBP patients had 86.7% greater peak knee torque com-
pared to NS-LBP patients (p = 0.04; Table 2, Fig. 2).

There was no overall correlation between VAS and hip 
torque, but in patients with high VAS, SD-LBP patients 
had 16.3% greater peak hip torque compared to NS-LBP 
patients (p = 0.002, Table 3). There was a significant corre-
lation between VAS and knee torque (r = − 0.28, p = 0.01), 
but no differences within or between patient groups when 
stratifying by high/low VAS or ODI.

There was no significance in the overall correlation 
between ODI and hip torque (r = 0.09), but between patients 
with low ODI, SD-LBP patients had 14.3% greater peak hip 

Fig. 2  Box plots for between-
group comparison in dSVA, 
torque, and torso velocities

Fig. 3  Correlations between 
dSVA and peak spine torque 
with VAS and ODI
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torque compared to NS-LBP patients (p = 0.003, Table 4). 
There was a significant correlation between ODI and knee 
torque (r = − 0.23, p = 0.04). Between patients with high 
ODI, SD-LBP patients had greater knee extension torque 
compared to NS-LBP patients (p = 0.02; Table 4).

Discussion

We observed that compensatory movements during STS dif-
fer between NS-LBP and SD-LBP patients. Dynamic SVA 
(dSVA) and spinal loading (peak spine torque) showed 
significant differences, as SD-LBP patients had 14.3% 
greater dSVA and 10.1% greater spine torque compared 

to NS-LBP patients, suggesting that spinal loading differs 
based on underlying disorder. Differences in hip and knee 
torque between patient groups also suggest different distri-
butions of load on the lower extremities that may reflect 
overall compensatory strategies in response to different spi-
nal conditions. Lastly, trunk kinematics and joint loading 
did not show a correlative relationship with patient-reported 
pain and disability across LBP patients, but we found that 
relationships between biomechanical metrics and PROs 
were specific to distinct LBP patient groups. Biomechani-
cal compensation as it relates to pain and disability in LBP 
patients may account for underlying conditions and available 
diagnoses.

Associations between LBP and decreased trunk velocity 
and flexion have been well described in prior work [5, 11, 
12]. The changes are thought to be adaptive movements to 
limit torso movement in order to avoid pain [13]. Perform-
ing dynamic movements using lower torso velocity seems to 
alleviate pain for LBP patients, but there has been no well-
defined relationship established between torso velocity and 
pain scores or pathology. This suggests that torso velocity 
alone is not sufficient enough to differentiate spinal condi-
tions or pain between patient groups and that there are other 
differences in the biomechanical movements between LBP 
patients, potentially reflected in spinal loading.

The SD-LBP and NS-LBP patient groups were distin-
guished by factors related to spinal loading, including 
increased dSVA and peak spine torque. Sagittal alignment 
is important to maintain balance without using an excess 
amount of energy, so an increase in SVA means increased 
work is required to maintain balance [14] and is associated 
with severity of LBP symptoms [15]. Realignment of SVA 
through thoracolumbar corrective fusion correlates with 

Table 3  Normalized biomechanical data for NS-LBP and SD-LBP 
patients classified by low and high VAS

NS-LBP SD-LBP
VAS Mean ± SD Mean ± SD

dSVA (dimless) Low 0.19 ± 0.03 0.21 ± 0.02
High 0.18 ± 0.03 0.21 ± 0.03

Peak anterior torso velocity 
(1/s)

Low 0.63 ± 0.15 0.57 ± 0.12
High 0.56 ± 0.11 0.48 ± 0.15

Peak vertical torso velocity 
(1/s)

Low 0.42 ± 0.11 0.4 ± 0.15
High 0.35 ± 0.1 0.34 ± 0.11

Max L5S1 flexion torque 
(dimless)

Low 0.73 ± 0.11 0.76 ± 0.09
High 0.68 ± 0.1 0.78 ± 0.09

Max Hip flexion torque (dim-
less)

Low 0.84 ± 0.15 0.9 ± 0.11
High 0.77 ± 0.14 0.92 ± 0.12

Max knee flexion torque (dim-
less)

Low 0.01 ± 0.24 0.001 ± 0.34
High  − 0.07 ± 0.27  − 0.23 ± 0.24

Fig. 4  Correlations between 
torso velocity with VAS and 
ODI
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reduced disability [16], and dSVA improves with spinal 
realignment surgery in adult spinal deformity patients [9], 
suggesting that correction of SVA reduces loading on the 
lower lumbar spine. Placing increased torque on the lumbar 
spine repetitively may be associated with worse long-term 
outcomes [17], even if surgery is performed [18]. Impli-
cations of these findings raise concern that compensatory 
movements that increase torque on the spine may contribute 
to the progression of spinal deformity. Further exploration 
of the relationship between spinal load and dSVA and the 
potential structural consequences may provide more insight 
into predicting surgical candidacy and could direct physical 
therapy programs to correct these movements as initial con-
servative management could improve outcomes.

Movement differences between patients extend to other 
joints, with SD-LBP patients having significantly higher 
peak torque on the hip and knee compared to NS-LBP 
patients. Patients with spinal disorders often have hip dys-
function [19, 20], so the increased loads on the hip seen in 
SD-LBP patients may be related to a compensatory move-
ment strategy to reduce loading on the lower back. Similarly, 

limitations in knee extension and emphasis on knee flexion 
have been proposed to be a compensatory mechanism for 
sagittal imbalance associated with LBP [21, 22]. Knowl-
edge of load distribution and transmission along the kinetic 
chain in LBP patients may help shape how physical therapy 
programs target not only core and lumbar musculature, but 
also lower extremity muscle groups to improve function and 
alleviate pain and disability.

Examining the relationship between PROs and biome-
chanical compensatory movement could be important to 
understanding patient-specific differences in pain and dis-
ability, but there has been no clear established relationship 
between PROs and biomechanical movement thus far. In 
the literature, trunk muscle mass and the duration of time 
taken to complete a five-repetition sit-to-stand test have both 
been found to correlate with patient-reported outcomes of 
ODI and VAS [5, 23]. In surgical patients, thoracolumbar 
corrective fusion to realign sagittal vertical axis has been 
found to correlate with ODI outcomes suggesting a correla-
tive relationship between SVA and ODI [15]. However, these 
studies do not establish a clear relationship between PROs 
and function or distinguish between patient groups. In our 
study, we found that torso velocity in both the vertical and 
anterior directions was found to weakly correlate with VAS 
and ODI, but dSVA and spine torque did not correlate with 
PROs within patient groups. Based on the literature and our 
findings, rigorous longitudinal collection of PROs is neces-
sary to determine more correlative relationships between 
biomechanics and pain and disability and to determine the 
effectiveness of therapy.

The primary limitation of this study is the lack of a con-
trol group as we were unable to obtain STS metrics from 
age-matched controls. Comparing to controls could provide 
further insight into the differences between LBP patient 
groups. In relation to data presented on controls within the 
literature, we would expect LBP patients to have lower torso 
velocity and greater loading on the lower back [7], and less 
lumbar lordosis with the spine being in a more flexed pos-
tural alignment [24]. We would also expect the kinematics in 
patients with less severe symptoms, such as in the NS-LBP 

Table 4  Normalized biomechanical data for NS-LBP and SD-LBP 
patients classified by low and high ODI

NS-LBP SD-LBP
ODI Mean ± SD Mean ± SD

dSVA (dimless) Low 0.17 ± 0.03 0.21 ± 0.03
High 0.2 ± 0.04 0.22 ± 0.02

Peak anterior torso velocity 
(1/s)

Low 0.63 ± 0.16 0.56 ± 0.15
High 0.56 ± 0.09 0.49 ± 0.17

Peak vertical torso velocity 
(1/s)

Low 0.44 ± 0.11 0.42 ± 0.12
High 0.34 ± 0.09 0.32 ± 0.11

Max L5S1 flexion torque 
(dimless)

Low 0.69 ± 0.12 0.78 ± 0.08
High 0.73 ± 0.1 0.78 ± 0.09

Max hip flexion torque (dim-
less)

Low 0.78 ± 0.15 0.91 ± 0.11
High 0.86 ± 0.14 0.93 ± 0.12

Max knee flexion torque (dim-
less)

Low  − 0.01 ± 0.21  − 0.05 ± 0.36
High  − 0.06 ± 0.27  − 0.25 ± 0.21

Fig. 5  Box plots of between-
group differences stratified by 
low and high VAS and ODI for 
peak spine torque
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group, to be an intermediate between controls and patients 
with more severe symptoms, such as in the SD-LBP group. 
Obtaining data from age-matched controls could provide fur-
ther insight into understanding compensatory movements in 
LBP patients, which can be used for targeted rehabilitation.

In conclusion, we found that different spinal disorders 
associated with LBP symptoms may relate to different 
compensatory strategies resulting in more or less load on 
the lumbar spine. The relationship between biomechanical 
compensation metrics, such as loading on the spine dur-
ing the STS, did not associate with severity of symptoms 
across LBP patients. These findings could inform targeted 
rehabilitation approaches for specific spinal disorders and 
patient populations.
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