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ABSTRACT OF THE DISSERTATION

Network community-based analysis of complex vortical flows:

Laminar and turbulent flows

by

Muralikrishnan Gopalakrishnan Meena

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2020

Professor Kunihiko Taira, Chair

The nonlinear interactions amongst vortical structures in fluid flows make their characteri-

zation and control a challenge, particularly in turbulence. In this work, a network (graph)

community-based framework is introduced to formulate reduced-order models and perform

flow-modification of complex laminar and turbulent vortical flows. The present framework

represents the vortical interactions on a network, where the vortical elements are viewed as

the nodes and the vortical interactions are regarded as edges weighted by induced veloc-

ity from the Biot–Savart law. This formulation enables the use of circulation and spatial

arrangement of vortical elements for structure extraction from a flow field. The network-

based community detection algorithm is used to identify closely interacting vortical elements,

called communities. The methodology is used to extract communities of vortical elements in

two- and three-dimensional flows, namely for a collection of discrete point vortices, laminar

cylinder and airfoil wakes, and decaying two- and three-dimensional isotropic turbulence.

We introduce a community-based reduced-order modeling formulation to capture key

interactions amongst coherent structures in high-dimensional unsteady vortical flows. The

overall interaction-based physics of the high-dimensional flow field is distilled into the vortical

community centroids, considerably reducing the system dimension. Taking advantage of the

vortical interactions, the proposed methodology is applied to formulate reduced-order models

for the inter-community dynamics of vortical flows and predict lift and drag forces on bodies
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in wake flows. We demonstrate the capabilities of these models by accurately capturing the

macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady

aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present

formulation is found to be robust against simulated experimental noise and turbulence due

to its integrating nature of the system reduction.

Furthermore, we show that the inter- and intra-community interactions can be used to

identify the communities which have the strongest and weakest interactions amongst them.

These vortical communities are referred to as the connector and peripheral communities,

respectively. We demonstrate the influence of the network-based structures to modify the

dynamics of a collection of discrete point vortices. Taking advantage of the strong inter-

community interactions, connector community can significantly modify the collective dy-

namics of vortices through the application of multiple impulse perturbations. We then apply

the community-based framework to extract influential structures in isotropic turbulence.

The connector and peripheral communities extracted from turbulent flows resemble shear-

layer and vortex-core like structures, respectively. The influence of the connector structures

on the flow field and their neighboring vortical structures is analyzed by adding impulse

perturbations to the connectors in direct numerical simulations. The findings are compared

with the cases of perturbing the strongest vortex tube and shear-layer regions. We find

that perturbing the connector structures enhances local turbulent mixing beyond what are

achieved by the other cases.
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CHAPTER 1

Introduction

1.1 Motivation

Analysis of turbulence remains as one of the most complex problems in science and engi-

neering due to the strong nonlinear dynamics and multi-scale properties of fluid flows [59].

As turbulence is ubiquitous in nature and engineering problems, the modification of its dy-

namics has been an active field of study [20]. For modeling and controlling their dynamics,

it is important to understand the interactions amongst the vortical structures. Insights from

such endeavors can support applications including flow separation control [13] and mixing

enhancement [126]. What makes this control problem challenging is that a large amount of

energy is generally required to modify large-scale vortical structures to achieve flow modifi-

cation.

To achieve flow modification with low level of energy input, it is critical to identify

important vortical structures in the flow. Various techniques have been introduced to extract

flow structures. Reduced representation of the flow field using approaches such as the proper

orthogonal decomposition (POD; [83]) and dynamic mode decomposition (DMD; [122]), are

tools which have shown great ability to extract the dominant features of the flow [129, 132].

Measures like Q-criterion [57], λ2-criterion [64], Γ-criterion [43], and finite-time Lyapunov

exponent [50, 51], can be used to identify highly rotational and strained regions of the flow

[31, 22]. Recently, machine learning inspired methods have also been used to extract the

dominant vortical structures in turbulence [65].

Even with the available strategies to identify coherent structures, the quantification and

analysis of vortical interactions is a challenge as every element in the flow field interact with
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others. If the given flow field is spatially discretized into n discrete cells, the number of

interactions amongst the cells to be accounted for will be n(n − 1). This is particularly

crucial in turbulence with high dimensions. The field of network science has paved the way

for analyzing complex interactions amongst a set of connected elements [16, 99, 9]. The-

oretical and computational tool-sets developed in this field have inspired in-depth studies

on the structural and dynamical characteristics of various networks, including biological,

social, transportation, information, and power-grid networks [140, 127, 111, 1]. In general,

these networks have well-defined graph structures comprised of sets of discrete nodes. With

such graph structure at hand, graph theory, linear algebra, data science, dynamical systems

theory, and control theory can be applied in harmony to study complex networked dynamics

[15, 106]. For example, one can examine problems such as disease and information trans-

mission on social networks [119], and development of cyber-security strategies for combating

attacks on the world wide web, while maintaining key connectivity [2, 30].

Complex interactions prevalent in fluid flows also exhibit great richness in their dynamics,

as seen in unsteady vortical and turbulent flows. Nonetheless, the application of network-

theoretic techniques on the analysis of fluid flows remains fairly limited. One of the major

challenges in extending network analysis to fluid flows is the extraction of the underlying

network structure that can appropriately describe their high-dimensional kinematics and dy-

namics. In recent years, network formulations have been introduced to quantify and capture

the interactions in fluid flows. The induced velocity among vortical elements [94], Lagrangian

motion of fluid elements [124, 49], oscillator-based representation of the energy fluctuations

[93], time series of fluid flow properties [120], and triadic interactions in turbulence [46] have

been studied using a network-theoretic framework. The formulations have been extended

to characterize various turbulent flows, including two-dimensional isotropic turbulence [133],

turbulent premixed flames and combustors [125, 37, 76], wall turbulence [62], mixing in

turbulent channel flow [60, 61], and isotropic magnetohydrodynamic turbulence [47, 48].

Various network-based clustering techniques have been used in the past to extract closely

connected nodes. Community detection of networks has received attention in various data-

rich fields [103, 90, 34]. Aggregating nodes of a network with high density of intra-group
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interactions into communities has a lot of implications in reduction of system complexity.

Each community or cluster can then be utilized to describe characteristics of the global

system [135]. In the field of fluid mechanics, image sequences have been used to reconstruct

the flow field using the Frobenius–Perron operator and community detection is implemented

to identify key structures in the phase space [17]. In another work, spectral clustering has

been considered for vortex detection in a Lagrangian-based framework of fluid flow networks

[49]. A coherent structure coloring technique also builds on a Lagrangian framework to

identify coherent structures in complex flows [121, 58]. The methodology presented in the

current work complements these efforts in extracting communities in fluid flows from the

underlying vortical connectivity structure, instead of fluid trajectories. The current work

does not strive towards an alternative definition for identifying a vortex.

The characterization of interactions among the vortical elements is challenging due to

the high-dimensional nature of system. Thus, there is a need to reduce the dimension of the

system, while preserving the overall interaction structure and dynamics. In the present work,

we reduce the order of a complex nonlinear system, particularly of unsteady wake flows, by

identifying communities in the fluid flow network representing interactions amongst the vor-

tical elements [38]. Furthermore, we model their dynamical characteristics and other system

outputs in a computationally tractable manner. In a recent work, we have utilized random-

ized linear algebraic techniques to form reduced dimensional representation and measures of

the vortical network [7], further extending the dimension reduction endeavor. While several

works in literature take advantage of the community structure to describe system behavior

like evolving networks and mobility models [137, 92], studies focusing on a community-based

reduced-order formulation to describe the dynamics and other outputs of a system are limited

in literature and the fluid mechanics community.

Moreover, a key attribute missing in clustering approaches is to take advantage of the

inter- and intra-cluster interactions to identify the important interactions and clusters in

the flow. Moreover, modifying the system dynamics by taking advantage of the interac-

tions amongst the clusters have not yet been explored. In the present study, we use the

intra- and inter-cluster interactions extracted from a network-based framework for identify-

3



ing important flow-modifying vortical structures. We use the community detection algorithm

[38] to extract closely connected vortical elements in two- and three-dimensional isotropic

turbulence. The interactions amongst the communities are used to identify key turbulent

flow-modifying structures [39, 40]. The goal of this network-based framework is not to alter

the global turbulent flow, but to influence certain key vortical structures in the complex

background of isotropic turbulence.

An alternate approach for system order reduction and imposing control of complex dy-

namical systems considers discretizing the phase-space through clustering. Recently, clus-

tering and deflation operations have been performed to capture flipping dynamics in mixing

layers [70, 95] and turbulent shear flows [123]. These approaches are founded on analyz-

ing time-series data. This differs from the current approach where network-based physical

structures (communities) are extracted and low-dimensional models are deduced based on

these communities. Furthermore, the interactions amongst the communities are evaluated to

identify key flow modifying structures. In the current work, the community detection proce-

dure focuses on extracting coherent structures in vortical flows purely from specification of

a network representing physical interactions between vortical elements. The use of network

theory and community-based concepts to describe the complex nature of fluid flows is novel

and attractive, especially since they can capture the interactive dynamics and lead to mod-

els that are amicable to preserving key interactions in a reduced order manner. While the

present work discusses the formulation in the context of vortical flows, the overall approach

is applicable to a wide range of networked dynamics and continuum mechanics problems.

1.2 Overview

An overview of the community-based analysis, illustrated using to a model point-vortex

problem, is presented in figure 1.1. In what follows, we first introduce the network represen-

tation of vortical interactions in section 2.1. We introduce the network-based measures of

node strength and community detection to identify closely connected nodes in sections 2.2

and 2.3, respectively. The network-based measures are demonstrated in a model fluid flow
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problem of ideal point-vortex dynamics. We discuss the general approach for the community-

based dimension reduction of networked systems in section 2.3.1. We describe the procedure

for modeling the overall networked dynamics of the system and predicting observable (auxil-

iary) variables of the system. We then introduce the intra- and inter-community interaction

strengths to identify important flow modifying nodes in section 2.3.2. We demonstrate the

community-based framework for modeling and modifying vortical flows in chapter 3. With

a reduced community-based representation of the vortical flows, we develop a nonlinear

reduced-order model to predict the overall dynamics of the communities and the aerody-

namic forces, which are described in section 3.1. We demonstrate the capability of the present

community-based reduced-order model using canonical two-dimensional vortical flows and

discuss its robustness against perturbations in the flow field data. The influence of the ex-

tracted nodes to modify the dynamics of a collection of discrete point vortices is assessed

in section 3.2.1. We then employ the community-based formulation to extract influential

structures in two- and three-dimensional isotropic turbulence, described in section 3.2.2.

The vortical network of two- and three-dimensional isotropic turbulence is characterized.

We then demonstrate the use of community-based influential structures to modify the tur-

bulent flows. Finally, concluding remarks and future works for the present formulations are

provided in chapter 4.
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Figure 1.1: An overview of the community-based procedure for reduced-order modeling and
flow modification.
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CHAPTER 2

Theory and methods

Fluid flows pose one of the most nonlinear, multi-scale phenomena in nature. The Navier–

Stokes equations that describe the high-dimensional dynamics of incompressible flows are

ut + u · ∇u = −∇p+Re−1∇2u, (2.1)

∇ · u = 0, (2.2)

where u represents the velocity, p denotes the pressure, and Re is the Reynolds number. The

above formulation can be equivalently represented for the vorticity field ω = ∇× u with

ωt + u · ∇ω = ω · ∇u+Re−1∇2ω. (2.3)

As the vorticity field describes unsteady motion of fluid flows, we take the viewpoint that

key flow features are represented as vortical elements in the present study and examine the

interactions among the vortical elements.

We discretize the vorticity field in a Lagrangian and Eulerian perspective. The discrete

vortical elements are referred to as nodes in the present work. To quantify the interactions

amongst the vortical nodes, we consider the induced velocity imposed upon each other.

The Biot–Savart law provides the induced velocity from a vortical element as a function of

circulation and relative position of the vortical elements, expressed as

u(r, t) =
1

2(nd − 1)π

∫

V

ω(r′, t)× (r − r′)
‖r − r′‖nd

2

dV ′, (2.4)

where u(r, t) is the induced velocity at location r in the domain from a collection of vortical
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Figure 2.1: Interactions between two vortical elements in vortical structures extracted from
three-dimensional isotropic turbulent flow. The vortical structures are visualized by isosur-
face of Q-criterion [57] coloured with ‖ω‖2. The vortical elements are shown for the spatial
grid cells.

elements enclosed in volume V with a vorticity distribution of ω(r′, t) at positions r′. Here,

nd is the spatial dimension of the flow field. Furthermore, the influence of a vortical node

(element) i on node j can be written as

uj←i =
Γidl

2(nd − 1)π

sin θ

‖rj − ri‖nd−1
2

, (2.5)

where Γ = ‖ω(r, t)‖2dS is the circulation of a vortical element of area dS and length dl, and

θ is the angle between the vorticity and distance vectors. As an example, we illustrate the

interactions between two vortical nodes in figure 2.1. Here, element i has higher vorticity

magnitude compared to element j. Thus, the velocity induced by i onto j is higher than

that imposed by j onto i, yielding an asymmetric interaction.

2.1 Network theoretic description of vortical interactions

The Navier–Stokes equations governing the dynamics of the vortical elements in a flow are

complex to solve due to the presence of the nonlinear terms, requiring a full computational

fluid dynamics solver [71]. Resolving the full dynamics through numerical as well as exper-

imental methods requires resources and sometimes pose major challenges, especially when
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the Reynolds number is high, giving rise to turbulence. Furthermore, characterizing the

interaction-based behavior of vortical elements can be a challenge in high-Reynolds number

turbulence, particularly with high degrees of freedom needed to discretize the flows. To

facilitate the analysis of high-dimensional dynamics, we leverage the analytical approaches

in graph theory [16] and network science [104]. Here, we establish a network-theoretic rep-

resentation of the vortical interactions in a flow field. We construct a network (graph) G

comprised of vortical nodes V connected by edges E holding edge weights W based on in-

duced velocity. Given this definition G = G (V ,E ,W ) for the network, we can quantify the

important nodes in vortical flows.

Vortical elements on the network can be described through a Lagrangian or Eulerian

perspective as shown in figure 2.2. In the Lagrangian description, the vortical elements are

approximated using a collection of discrete point vortices (line vortices). The motion of

the vortical structures can be captured by modeling the dynamics of these point vortices.

The number of nodes depend on the number of point vortices used to discretize the vortical

structures in the flow field. The strength of each point vortex is given by the circulation

corresponding to the local area covered by the point vortex while discretizing the vortical

structure.

A continuous representation of the flow field can also adopt an Eulerian description,

where Cartesian discretization of the flow with vortical elements within the grids correspond

to nodes of the network, as shown in figure 2.2. The vortical elements within each grid cell

keep changing with time according to the flow dynamics. The circulation over the grid cell is

used as the circulation of the node. To highlight the generality of our current approach, we

include discussions on both network formulations in sections 3.1 and 3.2. Furthermore, the

demonstration of the current methodology for both Lagrangian and Eulerian description of

flow fields extends the applicability of fluid trajectory-based vortex identification methods

[49, 121] to formulate reduced-order models and extract influential structures.

In the current method, a snapshot of the velocity or vorticity field of any incompress-

ible fluid flow problem is solely required to represent the flow field in the above network

formulation, as shown in figure 2.2. We have observed that the inviscid approximation of
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Figure 2.2: Lagrangian and Eulerian network descriptions of a flow field. Nodes (discrete
point vortices and Cartesian cells) and edges (magnitude of induced velocity ‖uj←i‖) of the
vortical network in each descriptions are also shown.

the Biot–Savart law is able to capture the interaction physics in viscous flows effectively

through this network definition [94, 133]. Also, the network representations of time series of

snapshots can describe the time evolution of interactions among the vortical structures.

The collection of connectivity amongst the nodes can be represented by the adjacency

matrix A, which holds the edge weights as its elements. For the vortical interaction network,

A can be defined using the normalized induced velocity [94, 133] as

Aij =
‖ui←j‖2

u∗
, (2.6)

where u∗ is a characteristic velocity of the flow. For a flow field with n vortical nodes, the

adjacency matrix A ∈ Rn×n. The above formulation gives an asymmetric adjacency matrix,

representing a directed network. Adding directions to the links helps differentiate between

the influential and influenced nodes. Non-dimensionalization is important for the analysis of

turbulent flows over a range of Reynolds number. The details of the non-dimensionalization

will be discussed in section 3.2.2.1.
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Let us discuss the role of A on network dynamics and appropriate measures to identify

influential nodes. Consider a general dynamical system for n state vectors xi ∈ Rpv holding

pv variables over a network. The general interaction-based dynamics of the elements can be

expressed as

ẋi = f(xi) +
n∑

j=1

Aijg(xi,xj), i = 1, 2, . . . , n, (2.7)

where function f(xi) represents the intrinsic dynamics of node i and function g(xi,xj)

describes the interactive dynamics between nodes i and j. We consider the model fluid

flow problem of ideal point-vortex dynamics [5, 108] to demonstrate the interaction-based

dynamics of vortical elements and identify important vortical nodes using the network-based

approach.

Let us take a collection of n = 100 discrete point vortices, initialized on an infinite two-

dimensional domain as shown in figure 2.3. These vortices are arranged into five groups at

the initial time. The vortices are coloured by their circulations Γi, which is kept constant

over time in the inviscid flow. The circulations have a normal distribution about a mean of

Γ = 0.1 and a standard deviation of σΓ = 0.008. This canonical model problem portrays

the nonlinear dynamics of vortical structures found in various flows [94]. The transparent

gray edges visualize all interactions amongst the nodes, based on equation 2.6. Here, we

use u∗ = Γtot/(2πR0) where Γtot =
∑n

i Γi is the total circulation of the system and R0 is

the average radial distance of the centroid of the clusters from the geometric center of the

overall system at initial condition. The spatial variables are non-dimensionalized by R0. The

Biot–Savart law governs the dynamics of the point vortices, which can be expressed in terms

of equation 2.7 for which f(ri) = 0 and g(ri, rj) = u∗k̂ × (ri − rj)/‖ri − rj‖2. Here, k̂ is

the out-of-plane unit normal vector. We use this dynamical systems example to demonstrate

the evaluation of important network measures pertinent to the interactive dynamics of the

vortical elements.
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Figure 2.3: A collection of discrete point vortices. The gray shade represents their circulation.
The gray lines denote the web of interactions amongst them, with the transparency indicating
the normalized magnitude of induced velocity.

2.2 Node strength

The node strength measures the ability of a node to be influential (out-strength) or be

influenced (in-strength) in the network. The out- and in-strengths of a node are defined by

sout
i =

∑

j

Aji and sin
i =

∑

j

Aij, (2.8)

respectively. These measures are useful to identify the node with collection of significant

connections in a network.

For the vortical networks, the present definition of edge weight from equation 2.6 is based

on the out-strength. Herein, the node strength, si, is taken to be the out-strength, unless

specified. A relation between the node strength and enstrophy Ω(r, t) of a vortical element

can be obtained using equation 2.5 as

si =
Γidl

2(nd − 1)π

∑

j

sin θ

‖rj − ri‖nd−1
2

=
C

2(nd − 1)π

√
ΩidV, (2.9)

where the sum of distance components C is constant in a fully periodic domain or can be

inferred given the location of the nodes. This relationship reveals that si ∝
√

Ωi. This is

particularly useful to determine the node strength distribution p(s) of a vortical network.
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The distribution is dependent on the enstrophy distribution p(Ω). The latter is usually a

known or measurable flow statistics. The relation applied to an analytical vortex solution is

shown in Appendix A. Distribution p(s) gives a global picture of the nature of connectivity

in the network and is used to identify the type of the network [9]. The distribution is also

useful to identify nodes with high s, which is referred to as the hub nodes. These nodes

have been found to be important to assess the robustness of the network dynamics against

random and targeted perturbations [2, 133].

2.3 Community detection

Identifying closely connected vortical nodes is important towards revealing key local groups

on the network. Such modular groups of nodes with high connectivity amongst each other

are referred to as communities [107, 101, 103]. In the discussion herein, a network community

is considered as a group of nodes that are strongly connected and behave collectively in a

dynamically similar manner. Nodes in a particular community interact in a similar manner

compared to the rest of the nodes or communities in the network. One approach to find

the communities is to measure the overall modular nature of a network using modularity.

Modularity is a measure representing the difference between the fraction of edges within a

community and the expected value for a randomly generated network with same size and

degree distribution. Modularity M for a directed network given by [79]

M =
1

2ne

∑

ij

[
Aij − γM

sin
i s

out
j

2ne

]
δ(ci, cj), (2.10)

where ne is the total number of edges in the network, γM is the modularity resolution param-

eter to weigh the presence of small or large communities in the network [115, 35], δ(ci, cj)

is the Kronecker delta, ci ∈ Ĉk is the label of the community to which element i is as-

signed and Ĉk is the set of k-th network community. Here, k = 1, 2, . . . ,m, with m being

the total number of communities. Higher positive values of modularity indicate more edges

within communities than what is expected on the basis of chance, portraying a high modu-
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lar structure of the network. Thus, the communities can be identified by maximizing M by

regrouping the nodes. Here, the number of communities m is unspecified and determined

by the algorithm. Various algorithms are available to identify the communities in a net-

work [34]. In the present study, we adopt the method by Blondel et al. [14] to identify the

communities in large vortical networks with accuracy and low computational cost [34]. We

herein refer to these network communities on vortical networks as the vortical communities

[38]. Also, for vortical flows, γM can be set based on the plateau effect on the number of

vortical communities identified with change in γM for a given Reynolds number. Note that

community detection defers from graph partitioning [104]. While modularity maximization

is only one of the techniques to perform community detection, other techniques such as using

eigenvectors of matrices, spectral methods, and using random walks [102, 105, 113, 139] can

be applied to detect community structure depending on the problem at hand.

The extraction of vortical elements behaving or interacting in similar manner to form a

vortex structure or cluster can be defined as a vortical community from a network-theoretic

perspective. Although these communities are key flow features, important in capturing

the interactions that govern the vortical flow dynamics, we do not propose the current

methodology as an alternative definition for identifying a vortex. In this study, the definition

of a vortical community need not necessarily align with the definition of a vortex in the fluid

dynamics literature, since the present objective is to construct a network-based reduced

dynamical model and extract influential regions of the flow. The Biot–Savart law used to

describe the interaction physics can be applied to any fluid flow in general, provided it is

used to describe the induced velocity among vortical structures kinematically. This physical

interaction-based definition of the network supplements the properties of the community

detection methodology to define a networked structure in the fluid flow system. This might

be limited when using other graph partitioning techniques [49, 121] based on fluid trajectories

to extract the vortical structures.
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2.3.1 Community-based reduced order modelling

For many problems, networks are comprised of a large number of nodes (i.e., n � 1). The

analysis, simulation, and modeling of dynamics on such large networks requires significant

computational resources and calls for techniques to reduce the computational complexity of

the problem, while retaining the essence of the key physics. In the present approach, we

classify the nodes into network communities based on the adjacency matrix A and reduce

the state dynamics of the overall system to the community-based (centroid-based) dynamics.

We illustrate the overall procedure of the present community-based model reduction

technique in figure 2.4. Let us consider an aggregate state vector x comprised of the state

vectors from all nodes {xi}ni=1:

x ≡




x1

x2

...

xn



∈ Rnp . (2.11)

With the network communities identified, we can order the above aggregate state variable to

sort the entries based on the communities to which they belong. It is possible to construct

a permutation matrix P equivalently that would take the left vector x to the middle vector

Px in figure 2.4. The main objective here is to determine the reduced graph G̃ representing

the interactions amongst the communities.

With the elements of x grouped into respective communities, we can reduce the state

variables of each communities to their respective centroids. That is, we define a centroid of

community k based on an appropriate weighing variable of the system, κi,

ξk ≡
∑

i∈Ck
κixi∑

i∈Ck
κi

, k = 1, 2, . . . ,m, (2.12)

where m � n. Accordingly, we can define an aggregate community centroid-based state
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Figure 2.4: Overview of the community-based reduction of a networked dynamical system.

vector ξ

ξ ≡




ξ1

ξ2

...

ξm



∈ Rmp , (2.13)

which is reduced from Px in figure 2.4. We now intend to capture the overall dynamics of

the system by tracking the community centroids in a macroscopic manner, instead of being

concerned of each and every member of the community.

Let us now perform a community-based average (equation 2.12) of the governing equa-

tion 2.7 to find

ξ̇k =

∑
i∈Ck

κif(xi)∑
i∈Ck

κi
+

n∑

j=1

∑
i∈Ck

κiAijg(xi,xj)∑
i∈Ck

κi
(2.14)

for k = 1, . . . ,m. It is further desirable to have the right hand side of the above equation

be dependent on ξ instead of x. The reduction can further be simplified if f is a linear
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function, in which case, we have

ξ̇k = f(ξk) +
n∑

j=1

∑
i∈Ck

κiAijg(xi,xj)∑
i∈Ck

κi

= f(ξk) +
m∑

p=1

∑
j∈Cp

∑
i∈Ck

κiAijg(xi,xj)∑
i∈Ck

κi
.

(2.15)

We note that the averaging of the nonlinear term g in general cannot be further simplified.

However, we can approximate this nonlinear term as a function of ξ. That is, we can reduce

the governing equation to the form of

ξ̇k = f(ξk) +
m∑

p=1

Ãkpg̃(ξk, ξp) (2.16)

based on the centroid-based state variable ξ.

The governing equation of the above form can be derived using two approaches. If the

networked dynamics is well known from theory, we can use the same interaction function g

for g̃ and the same form of the network edge weights. This implicitly assumes that the edge

weight can be quantified in the same manner. It should be noted that reduced adjacency

matrix Ã ∈ Rm×m is much smaller in size compared to the original matrix A ∈ Rn×n. While

this approach appears simple, the use of the original forms for g̃ and Ã generally leads to an

approximate model.

An alternative approach is to determine Ã and g̃ numerically through system identifi-

cation [96]. For systems with no a priori knowledge of the network structure, one can find

the adjacency matrix A based on system identification or network inference [75, 55, 28, 96].

Data-based techniques can be used to find the reduced adjacency matrix and the interaction

function if time-series data of the dynamical systems are available for ξ(t). One can pursue

algorithms that minimizes the L2 measure or the L1 norm to promote sparsity within the

derived model. Nonlinear system identification method, such as SINDy (sparse identification

of nonlinear dynamics), has enabled the sparse identification of governing equations [21]. In

the examples we consider later, we use both of the aforementioned approaches.
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By establishing the community-based model of the networked dynamics, we can extend

the present approach to model an observable or auxiliary variable y ∈ Rq that is dependent

on the state dynamics. That is, for such variables that satisfies

y = h(x) or ẏ = h(x,y), (2.17)

we seek a reduced-order model

y = h̃(ξ), or ẏ = h̃(ξ,y) (2.18)

based on the centroid variable ξ. The function h̃ can be modeled through nonlinear regression

analysis [11]. Again, it is possible to develop a model based on the use of different norms

as mentioned above. To fit an appropriate model, a library of the possible nonlinear basis

functions Θ(ξ,y) can be constructed so that

ẏ = Θ(ξ,y)B. (2.19)

For example, Θ can consist of a library of polynomials and trigonometric terms of ξ and y

[96, 21]. These terms, along with ẏ, are compiled from a time series of data for a training

period of −T ≤ t ≤ 0. From such a library, the regression coefficients B can be determined

by a matrix solver. Moreover, it is possible to consider sparse regression for solving B

following the sequential thresholding least-squares algorithm implemented in SINDy [21],

further simplifying the governing equation in the case of ẏ = h̃(ξ,y). Once these models

are developed, they can be used to estimate the output variable y or predict it based on

training data and a given initial condition.

The implications of the formulations discussed above pertains towards analyzing the over-

all dynamics of high-dimensional systems with an intrinsic community structure. Also, this

is achieved solely through utilizing data inspired network-based techniques taking advantage

of the interaction-based physics. With such techniques, one need not track all elements in-

volved in the system, whereas just capture the community centroids in the system to uncover
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the overall networked dynamics and other auxiliary variables of the system.

2.3.1.1 Community-based reduction of vortical flows

To reduce the dimension of the fluid flow system, we distill the vortical communities (coher-

ent network structures) to their controids. We use the community detection methodology

described in section 2.3 to identify these coherent structures or vortical communities from the

given data. The procedure for identifying communities in the vortical network of a collection

of discrete point vortices is portrayed in figure 2.4. Once the communities are detected from

the flow field, the centroid of each identified community is calculated by

ξk ≡
∑

i∈Ck
Γiri∑

i∈Ck
Γi

, k = 1, 2, . . . ,m (2.20)

and the total circulation of each community,
∑

i∈Ck
Γi, is concentrated to the community

centroid, distilling the vortical community into a point vortex at the community centroid.

The vortical network is redefined using the circulation and position vector of each community

centroid, thus reducing the dimension of the system significantly. Although it is not per-

formed here, it is possible to consider a bipartite graph to relate the reduced centroid-based

network to the original dense vortical network using an incidence matrix [104].

With the formulation established for vortical flows, we can model the overall dynamics

of the original high-dimensional networked fluid flow system using the present community-

based approach. In section 3.1.1, we demonstrate the effectiveness of the present formulation

to capture the macroscopic motion of vortices in nonlinear flows. Furthermore, we can

formulate other auxiliary variables in fluid flow problems, like unsteady lift and drag forces

on bodies, solely using the properties of the community centroid variable ξ. Two examples are

considered to highlight the ability to develop models that can capture aerodynamic forces on

bodies imposed by the unsteady wake flows based on extracted vortical communities. These

applications are presented in section 3.1.2.
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2.3.2 Community-based extraction of influential structures

The identification of vortical communities allows us to use various community-based mea-

sures to analyze the connectivity within and amongst the communities. The community

information can then be used to decompose the term with the adjacency matrix in equa-

tion 2.7 as

ẋi = f(xi) +
∑

j,cj=ci

Aijg(xi,xj) +
∑

j,cj 6=ci

Aijg(xi,xj). (2.21)

The second term on the right-hand side represents the interaction of node i with the nodes in

its own community and the third term denotes the interaction of node i with the nodes in the

other communities. The former represents the intra-community interactions and the latter

term captures the inter-community interactions of node i. This gives a community-based

dynamical systems equation for the elements of a network, emphasizing local influences of

the communities. An illustration of the above procedure applied to the system of point

vortices is shown in figure 2.5. The network with no distinction of the weighted edges is

shown in figure 2.5 (left). The community detection algorithm classifies the nodes into

several communities, highlighted by the coloured circles in figure 2.5 (right). The intra- and

inter-community edges are shown in red and blue, respectively.

Let us quantify the local influence of a node using the above formulation. Similar to how

the node strength is defined in equation 2.8, the strength of node i to influence all nodes in

community k can be defined as

si,k =
∑

j,cj∈Ĉk

Aji. (2.22)

Moreover, the strength of a node on the network can be separated into intra- and inter-

community strengths as

sintra
i =

∑

j,cj=ci

Aji = si,ci and sinter
i =

∑

j,cj 6=ci

Aji =
∑

k,k 6=ci

si,k, (2.23)

respectively. These community-based strengths can be used to quantify the interactions with

respect to communities.
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Figure 2.5: Overview of the community-based decomposition of networked dynamics using
intra- and inter-community interactions.

The intra-community strength can be normalized as the within-module z -score [44] given

by

Zi =
sintra
i − sintra

i

σsintrai

, (2.24)

where sintra
i and σsintrai

are the mean and standard deviation of sintra
i over all nodes in the

community of i. The within-module z -score identifies the most well-connected node inside a

community or the hub node of a community. Note that the hub node of a community need

not be well-connected with the other communities in the network.

A relative measure of inter-community strength of a node, quantified by how well-

distributed its edges are amongst communities, can be given by the participation coefficient

[44]

Pi = 1−
[(

sinter
i

si

)2

+

(
sintra
i

si

)2
]
. (2.25)

When Pi ≈ 1, edge weights of node i are equally connected among all communities and

Pi = 0 when the node is only connected to its own community. Note that si,k, Zi, and Pi

can be evaluated for both in- and out-edges. In the present study, we evaluate the out-edge

based measures following the definition of edge weight from equation 2.6.
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(a) (b)

Figure 2.6: (a) Distribution of the discrete point vortices in the P −Z map. (b) Position of
the important nodes in physical space.

The P − Z map of the nodes is an important feature space for revealing key elements

within and amongst the communities [45, 117, 34]. The P − Z map for the system of point

vortices is shown in figure 2.6 (a). The nodes on the left side of the P − Z map have very

low inter-community interactions and are isolated groups, called peripherals. On the other

hand, the nodes on the right side have high inter-community interactions making them well-

connected to most communities and are called connectors. The nodes on the top region with

high Z value have the strongest interactions within the respective communities. Note that

the name peripheral need not refer to nodes at the physical perimeter of the domain. The

strongest peripheral nodes will have high influence within their communities but the least

influence on other communities. In contrast, the strongest connector nodes will have the

highest influence amongst communities, particularly on the neighbouring communities, and

high influence within their own community.

We use the P − Z feature space to search for the strongest peripheral and connector

nodes in a network, herein referred to as simply peripheral and connector nodes. We find

the average Pi of each community k, denoted as Pk. The peripheral node of a network is the

node i given by maxi,ci=k Zi, belonging to the community k with mink Pk. The connector
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node i is given by maxi,ci=k Zi, belonging to community k with maxk Pk. The connector,

peripheral, and hub nodes of the discrete point vortex system are indicated in figure 2.6 (a).

The P −Z values for the nodes suggest that the hub node would have similar characteristics

as the peripheral node. The three important nodes are also highlighted in the physical space

as shown in figure 2.6 (b). The positions of the peripheral and connector nodes suggest

that an influential node need not be located at the geometric center of the community.

The observations signify the need to consider inter- and intra-community interactions for

identifying important nodes. Let us now demonstrate how the behavior of the networked

system can be modified using these measures.
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CHAPTER 3

Applications

3.1 Community-based reduced-order modelling

In this section, we take the network community-based reduced-order modeling technique

described in section 2.3.1 to study two types of vortical flows. First, we consider a group of

discrete point vortices and model their collective motion based on the community centroids.

Second, we consider unsteady wake flows behind a circular cylinder and an airfoil with a

flap, whose wakes are described by the motion of vortical communities. The properties

of these communities are then used to derive reduced-order models to predict the forces

imposed on the bodies. These flows, familiar in the field of fluid dynamics, are chosen

to validate the present approach. These model problems highlight the capabilities of the

network community-based modeling technique to significantly reduce the dimensions of the

complex nonlinear flow physics, while retaining the important interactions present in the

flows.

3.1.1 Reduced-order point-vortex dynamics

We first study the unsteady dynamics of a collection of discrete point vortices as shown in

figure 3.1 (also in figure 2.4). As we aim to capture the time-varying behavior of a collection of

vortices, the Lagrangian description is apt to construct the community-based reduced order

model. We consider the same model problem setup with n = 100 discrete point vortices used

in section 2.1. This forms a complete graph (dense network) of vortical interactions as shown

in figure 3.1 (top left) resulting from velocity induced by the vortices on each other. The

vortical network does not contain any self-loops as a vortex does not induce velocity upon
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Figure 3.1: Community-based networked dynamics of point vortices. The network structure
and adjacency matrix at initial time (t0), overall dynamics, and error between the community
centroid dynamics for both the original dense (n = 100) and the community-based reduced
(m = 5) point vortex systems are shown.

itself. Thus, the total number of interactions in the original vortical network is n(n − 1).

The adjacency matrix corresponding to the vortical interactions is shown adjacent to the

dense network in figure 3.1. The colors in the adjacency matrix denote the edge weights.

Using modularity maximization algorithm described in section 2.3, the set of point

vortices are separated into m = 5 communities. In this problem, there are strong intra-

community ties in the original adjacency matrix, which enables a clear decomposition of the

group of vortices into communities. For each community, we can determine the vortical com-

munity centroid using equation (2.20). The resulting reduced network of these community

centroids is shown in figure 3.1 (top right). The number of interactions have been reduced

to m(m− 1).
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The adjacency matrix for the reduced community network is given by

Ãkp =

∑
j∈Cp

Γj

2π
∥∥ξk − ξp

∥∥
2

, (3.1)

where the state vector ξ contains only the position information of the community centroids.

The circulation Γ of the vortices do not change in time as the flow is inviscid. Here, the edge

weights for the reduced graph are quantified in the same manner as in the original network,

but now for the community centroids. Note that the reduced network weights conserve the

total circulation of the system, as all circulations within the community are summed. The

reduced adjacency matrix is shown in figure 3.1 next to the reduced centroid network. As the

communities with strong intra-community ties are reduced to their representative centroids,

the reduced adjacency matrix highlights the interactions between communities. We see a

strong interaction between communities 1 and 2. Community 3 experiences weak influence

from all other communities, except from community 4, due to community 3 being placed far

from the rest of the communities.

The interaction-based dynamics of the discrete point vortex system is governed by the

Biot-Savart law given by equation 2.4. This can be treated as a networked dynamical system

given by equation 2.7 with a time-varying network, as previously mentioned in section 2.1.

As the position of the point vortices changes over time, the adjacency matrix can be up-

dated accordingly. Trajectories based on the full nonlinear dynamics of the full system with

n = 100 vortices are shown in figure 3.1 (bottom left). Shown in figure 3.1 (bottom left)

are the vortical positions for the communities at representative times. Also superposed in

dashed lines are the trajectories of the community centroids (ξc) to track their bulk mo-

tion. Although, these centroids are defined according to equation 2.20, these are computed

a posteriori considering updated positions of all the vortices within the communities.

Reducing the system to the community centroid-based representation, we can solve for

the dynamics of the community centroids using equation 2.16. For the community centroid
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dynamics of vortical flows, f(ξk) = 0 and the interaction function g̃ takes the form of

g̃(ξk, ξp) =
k̂ × (ξk − ξp)
‖ξk − ξp‖2

. (3.2)

Note that g and g̃ are of the same form. Using equations 3.1 and 3.2 in equation 2.16, we

can solve for the dynamics of the community centroids as shown in figure 3.1 (bottom right).

Here again, time-varying reduced adjacency matrices are computed for the dynamics of the

centroids. Upon comparing the dynamics of the original system and the community-based

reduced-order model, it can be seen that the community-based model accurately tracks the

bulk motion of the communities. The errors in the centroid trajectories (‖ξc − ξ‖2/R0)

determined by the community-based reduced-order model are shown in figure 3.1 (bottom

center). The error level is limited to O(10−2) for all communities over the course of the

rotational motion. The community-based model tracks the unsteady dynamics of all discrete

vortex communities in an accurate manner.

The application of the network community-based reduced-order model to the analysis of

point vortex dynamics has shown its effectiveness to accurately capture the inter-community

interactions and the macroscopic dynamics of the overall system. The fact that the present

model can handle the nonlinear flow dynamics its shows potential to capture the essential

physics for a variety of vortex dominated flows in a computationally tractable manner. In

the next example, we demonstrate that the present formulation can be used for unsteady

wake flows that have a continuous flow field representation over the spatial domain. Even

with the added complexity, we show that this network-based model can serve as a basis to

develop a nonlinear model to predict unsteady forces on the body.

3.1.2 Reduced-order wake force modeling

Fluid flow past solid bodies leads to the formation of complex, unsteady, nonlinear flow

modifications in the wake. The laminar or turbulent wake gives rise to the formation and

interaction of vortical structures, causing unsteady aerodynamic forces on the body. Here,

the objective is to understand the dynamics of these flows based on network-theoretic ap-
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proaches to model and predict the forces on the body. Thus, we formulate reduced-order

models for these observable (auxiliary) variables of the flow. In particular, we consider the

modeling of aerodynamic lift and drag forces (CL and CD, respectively), using the properties

of the community-based centroids, as outlined in section 2.3.1.

As an example, we choose to model as y in equation (2.18) the lift and drag coefficients

(CL, CD), defined as

CL ≡
Fy

1
2
ρu2
∞S

and CD ≡
Fx

1
2
ρu2
∞S

, (3.3)

respectively. In the above non-dimensionalization, Fy and Fx are the lift and drag forces on

the body, ρ is the fluid density, u∞ is the freestream velocity, and S is the characteristic

body surface area. The formation and interaction of the vortical structures lead to action of

impulsive forces on the body [118, 108]. Thus, following the definition of induced velocity in

equation 2.5, it is sensible to select the circulation Γ and inverse of the position 1/‖ξ‖2 of

the vortex community centroids, as the basis functions in equation 2.19 to model ẏ. Note

that the state vector ξ contains only the position vector of the community centroids. The

circulation of each community is measured over time and varies in time due to the vorticity

profile diffusing across the community boundary. We also consider the equivalent circulation

on the body (Γ0) to be a basis function, which is related to the unsteady lift force through

the Kutta–Joukowski theorem [10, 3].

A polynomial combination of the aforementioned basis functions, summed over the m

centroids, forms a library Θ to solve for B in equation 2.19. The order of polynomial library

depends on the complexity of the vortical community dynamics of the wake. Stronger the

nonlinearity in the wake caused by vortical communities, more complex the unsteady force

on the body, and thus higher order combination of the basis functions is required to construct

the reduced-order model. For all problems discussed in the current study, the third-order

polynomial library is found sufficient to capture both the vortical interactions as well as the

multiple frequencies appearing in the forces. As such, we arrive at the reduced-order model
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for y as,

Ẏ = ΘB =
[
Θ1 Θ2 Θ3

]



B1

B2

B3


 (3.4)

where

Ẏ
T

=
[
ẏT (t1), ẏT (t2) . . . ẏT (tq)

]
(3.5)

and

Θ1 =
m∑

i=0

[
f 1
i , f

2
i

]
(3.6)

Θ2 =
m∑

i,j=0

[
f 1
i f

1
j , f

1
i f

2
j , f

2
i f

2
j

]
(3.7)

Θ3 =
m∑

i,j,k=0

[
f 1
i f

1
j f

1
k , f

1
i f

1
j f

2
k , f

1
i f

2
j f

2
k , f

2
i f

2
j f

2
k

]
(3.8)

given

f 1
i =

1

‖ξi(t)‖2

, f 2
i = Γi(t), Γ0 = −CL(t)

ρu∞
. (3.9)

where Γ0 is the equivalent circulation on the body due to lift force and ξ0 is the position of

the body. In the current work, we set ξ0 = 0 and exclude terms that contain 1/‖ξ0‖2.

We construct matrices Ẏ ∈ Rq×2 and Θ ∈ Rq×9 using q discrete time-series data over

a training period. The coefficient matrix B ∈ R9×2 is determined in this study using the

Moore–Penrose inverse. One can alternatively use a sparse matrix solver such as LASSO

[134, 54]. For the problems we consider below, the flow fields are reduced to a small number

of community centroids, and does not necessitate the use of sparse solvers. For the wake

flow problems analyzed in the current work, a training period of three cycles is found to

result in convergence of the coefficients. To predict the forces, equation 3.4 can then be time

integrated with Γ and 1/‖ξ‖2 of the vortex community centroids provided from corresponding

time-series snapshots. Below, we apply these reduced-order formulations to predict lift and

drag forces due to fluid flow over a two-dimensional circular cylinder and an airfoil with a

flap.
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Figure 3.2: Network community-based reduction of the vortices in the von Kármán vortex
street and force modeling.

3.1.2.1 Unsteady force generated by wake of a circular cylinder

One of the fundamental phenomena in fluid dynamics is the formation of the von Kármán

vortex street in bluff body wakes. In particular, the wake of a circular cylinder, as depicted

in figure 3.2, serves as a canonical nonlinear problem in unsteady fluid dynamics. Even for

a laminar regime, the shedding of the wake vortices leads to generation of large amplitude

unsteady forces on the cylinder. Although there have been extensive discussions on the

mechanism of vortex shedding and its implication on unsteady forces [116], we focus here on

simply feeding the flow field data to extract the vortical communities and use the centroid

vector to develop a network-based force model. That is, we rely on the network-based frame-

work to decipher important vortical interactions and centroid quantities without depending

on the full Navier–Stokes equations, as depicted in figure 3.2.
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The unsteady vortical flow field data to be used in this analysis is derived from two-

dimensional direct numerical simulations (DNS), using the immersed boundary projection

method [130, 25, 71]. We consider incompressible flow over a circular cylinder at a diameter-

based Reynolds number of Re = 100. Extensive validation of this code and cylinder flow

simulations have been performed and are reported in [91]. Time resolved vorticity field snap-

shots are captured, and following the formulations in section 2.1, the network of interactions

among the vortical elements are defined for each snapshot using equation 2.6. Here, the edge

weights are non-dimensionalized by the freestream velocity, u∗ = u∞. In this example, fol-

lowing the Eulerian description discussed in figure 2.2 to represent the continuous flow field,

we take each and every Cartesian grid cell of size ∆x×∆y to represent a network node with

a circulation over the cell being denoted by Γ. For the grid resolution chosen in the current

study, the number of nodes and edges in the network scales to O(105) and O(1010) (following

a vorticity threshold of 95% of the maximum vorticity of original data, the number of nodes

reduces to ≈ 4000) respectively, as mentioned in figure 3.2. The strength distribution of the

cylinder wake network, and other laminar wakes, follow a power-law distribution, as shown

in figure A.1 in Appendix A. We concentrate on using the community-based formulations to

for reduced-order models for lift and drag.

Following the community detection procedure discussed in section 2.3, we identify differ-

ent vortical communities in the wake as illustrated in figure 3.2 (middle). For a given snap-

shot of the two-dimensional flow field, we decompose the flow field into positive and negative

vorticity fields. A directed version of the modularity maximization algorithm [100, 24, 79] is

applied to the two data sets comprising of vortical elements with clockwise (negative) and

counter-clockwise (positive) vorticity. Due to the unsigned edge weight, we need to separate

the two data sets as the current community detection procedure is unable to distinguish

spatially close vortical communities, usually the positive and negative vortical structures,

especially for wake flows. The resolution effects in the modularity maximization algorithm

[35, 114, 115] are also taken into consideration. We then create a community-based network

using the community centroids as shown in figure 3.2 (bottom). This reduces the number of

nodes and edges to 6 and 30 (no self-loops), respectively. We also consider the cylinder itself
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as a node since the Kutta–Joukowski theorem relates lift to the circulation of the cylinder.

Different vortical communities are shown in figure 3.2 (bottom) along with the centroids.

Here the nodes have varied sizes corresponding to their total network degree. The color and

transparency of the lines connecting the nodes depict the strength of connection between

them. The strong connection between adjacent communities in the wake is clearly depicted

through this reduced dimensional network. Also, the high influence of the near-field vortical

communities on the cylinder is evident.

To predict lift and drag on the cylinder, instantaneous training data of ẏ and the

community-based vortical centroids from the flow fields are used to determine the nine coef-

ficients in B in equation 3.4. Due to the high influence of the near-field vortical communities

and the time-periodic shedding of a positive vortex and a negative vortex, we only use the

information of the first two community centroids (m = 2) to model the forces even though we

show six vortical communities in the cylinder wake for visual clarity (figure 3.3 top). With

coefficients B determined, equation 3.4 is time integrated by providing time series of input

data (ξ and Γ) to predict CL and CD on the cylinder. The predicted forces from this model

are compared to the forces obtained from DNS in figure 3.3 (bottom), exhibiting agreement

where predictions are on top of the reference forces.

The reduced-order force model, relying solely on the information of the community-based

reduced vortical centroids, is able to accurately capture the effect of the vortex shedding

phenomena on the forces. The results from figure 3.3 (bottom) show that the reduced-

order force model accurately predicts the lift force with an error of 5.6% for L2 in time.

The lift force is predicted over more than twice the training period while maintaining this

accuracy, without any divergence later in time. The drag force, even with smaller level of

fluctuations, is also accurately predicted over a considerable period of time with an error

of 0.2%. Although the basis functions used depends on the vortical community formation

(shedding) frequency, the nonlinear combinations of the basis functions chosen to arrive at

equation 3.4 is able to model the fluctuations in the drag force, which are twice the vortex

shedding frequency for flow over a circular cylinder.
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Figure 3.3: Community-based reduced representation of a cylinder wake, and lift (CL) and
drag (CD) forces on the cylinder predicted using the centroid-based reduced-order model.
Resilience of the methodologies are tested using noisy flow field data.
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The resilience of the present model to perturbations or noise in the flow field (input

data) is also examined. Artificial noise with a signal-to-noise ratio of SNR = 0.1 is added

to the original vorticity field data to simulate noise in experiments or turbulence in the

flow. The community detection algorithm identifies the vortical communities from the noisy

data as shown in figure 3.3 (top right). The network structures of the communities in the

wake are still identified robustly even with the presence of noise. The forces are predicted

using this noisy data as shown in figure 3.3 (bottom). The shown results also exhibit the

resilience of the force-model towards noisy input data. The lift force prediction with the

noisy input hardly deviates form that obtained using the original clean data with an error of

6.1%. The drag force is also predicted accurately with an error of 0.4%. The resilience of the

model attributes to effects of both the vortical community detection and computation of the

centroid-based properties acting as an integration filter, effectively removing the influence of

external noise on the vorticity field. As demonstrated above, the use of the reduced-order

model allows for the unsteady vortical flow over a circular cylinder to be represented simply

through the information distilled to the vortical centroids.

3.1.2.2 Unsteady force on an airfoil with a Gurney flap

Next, we extend the application of the present community-based formulation to a more

complex flow. The intricate flow phenomena produced by the flow over an airfoil with a flow

modification device, Gurney flap [81], attached to the trailing edge is explored [41]. Flow

modification and control of airfoil wakes have been studied extensively for lift enhancement

and drag reduction [69]. Low-Reynolds number flows over airfoils with Gurney flaps at

high angles of attack generate a variety of strongly nonlinear, unsteady vortical flows posing

complex effects on lift and drag forces in both two- and three-dimensional settings [41].

Such two-dimensional incompressible flows over NACA 0012 airfoils can produce a wake

classified under the 2P regime [136, 42, 41], with periodic shedding of two pairs of positive

and negative vortices as depicted in figure 3.4 (top left). The vortex shedding attributes to

a nonlinear aerodynamic force characteristics on the airfoil. Detailed analysis of the various

wake regimes and associated aerodynamic forces generated by two- and three-dimensional
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Figure 3.4: Community-based reduced representation of a NACA 0012 airfoil wake classified
under the 2P regime, and lift (CL) and drag (CD) forces on the airfoil predicted using the
centroid-based reduced-order model. Resilience of the methodologies are tested using noisy
flow field data.

flows over the airfoil is provided in Appendix B.

We perform two-dimensional DNS of the flow over a NACA 0012 airfoil at an angle

of attack of 20◦ and flap height of 0.1c (c: chord length) with a chord-based Reynolds

number of Re = 1, 000 [41] using the immersed boundary projection method mentioned in

section 3.1.2.1. Details of the computational setup are provided in Appendix B. Following

the procedure used to analyze the cylinder wake, we capture time-resolved vorticity field

snapshots of the flow, and form the full dense vortical network for the 2P wake flow. Through

the community-based formulation, vortical communities are extracted from the full network

and vortical centroids are defined as shown in figure 3.4 (top). Along with the considerable

reduction in dimension attained, the complex nonlinear 2P wake with the two main and two
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secondary vortical structures are effectively captured by the network-theoretic techniques.

The high influence of the two near-field vortical communities being formed on the airfoil

is clearly depicted through the reduced network. The strong influence among the vortical

communities in the far-field is also revealed through the community-based network.

The effect of this vortical flow on lift and drag forces are modeled following the procedure

discussed for the cylinder problem. We use the position vector and circulation of the time

periodically shedding four vortical centroids (m = 4) to model the forces using equation 3.4.

We present the results of the lift and drag prediction compared to that from the DNS

in figure 3.4 (bottom). The complex 2P wake imposes highly fluctuating forces on the

airfoil with multiple peaks. The reduced-order model predicts this highly nonlinear time-

periodic lift curve accurately with an error of 8.8% for L2 in time. The multiple peaks

with varying amplitudes imposed by the shedding of the primary and secondary vortical

communities are effectively captured by the current community-based model. The drag

force, with comparatively less magnitude and small-scale fluctuations, is also captured with

an error of 12.7%. These results highlight the importance of effectively identifying the

vortical communities in the flow field.

To test the resilience of the force model to noise, we follow the same procedure as in the

cylinder problem by adding artificial noise to the flow field. Again, the voritcal communities

are effectively captured by the community detection procedure as shown in figure 3.4 (top

right), preserving the network structure observed for the original noiseless flow field. A time

series of this data is used to predict the forces and the results are depicted in figure 3.4 (bot-

tom). The lift force prediction based on the noisy flow field data remains accurate without

noticeable difference from the prediction based on clean data with an error of 8.8%. The drag

is also predicted well. The predicted drag curve deviates at later time, but the amplitude

of deviation is small compared to the mean of the CD curve, and the error is 13.2%. The

integrating effect of the community detection technique and the centroid-based calculations

is further exemplified here. These results show the ability of the network community-based

formulation to model forces on a body in a computationally reduced and robust manner.
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3.2 Community-based flow modification

In this section, we use the community-based decomposition of the networked-dynamics using

intra- and inter-community interaction described in section 2.3.2 to assess the influence

of the community-based connector and peripheral structures to modify complex vortical

flows. We first analyze the effects of the connector and peripheral communities on the

dynamics of a collection of discrete point vortices. Second, we implement the community-

based structure extraction procedure on two- and three-dimensional isotropic turbulence to

identify connectors and peripherals in turbulent flows. Impulse perturbations are added

to the extracted structures to assess their influence on turbulent flow modification. These

results demonstrate the ability of the community-based formulation to extract flow modifying

structures in a variety of complex vortical flows.

3.2.1 Modification of point-vortex dynamics

We analyze the influence of the connector, peripheral, and hub nodes identified using the

network-based measures on the dynamics of a collection of discrete point vortices. We con-

sider the same model problem setup with n = 100 discrete point vortices used in section 2.1.

Velocity based impulse perturbations are added to the communities corresponding to the

influential nodes. Based on the nodes, we refer to the perturbations as connector, periph-

eral, and hub-based perturbations. Positions of the perturbed communities at initial time

are shown in figure 2.6 (b). We identify the influential nodes only at initial time as we are

interested to explore the influence of the nodes on the system dynamics.

Impulse perturbations at discrete time nt∆t are added to the velocity field with time

step ∆t and nt = 0, 1, 2, . . . . The velocity of a perturbed node i at time t is given by

u(ri, t) + ũ(ri, t), where ũ(ri, t) = αêu(ri,t)δ(t− nt∆t), α is the amplitude of perturbation,

and êu(ri,t) is the unit vector in the direction of u(ri, t). Time is non-dimensionalized as
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tΓtot/(2πR
2
0). Amplitude of perturbation α is computed for a given energy ratio E of

E =

∑
i,ci∈Ĉp

‖ũ(ri, t)‖2
2

n∑
i

‖u(ri, t)‖2
2

, (3.10)

where Ĉp is the set of the perturbed community. We have analyzed the system dynamics

with E varied between 0.01− 0.1 and have found qualitative similarity in the results. Here,

we show the results of perturbations with E = 0.1 to portray significant changes in the

vortex trajectories. The time step between each perturbation is ∆tΓtot/(2πR
2
0) = 0.024.

The effect of the perturbations on system dynamics is assessed by observing the change

in trajectories of the community centroids, as shown in figure 3.5. The centroid location

ξk(t) of each community k is computed as

ξk(t) =

∑
i,ci∈Ĉk

Γiri(t)∑
i,ci∈Ĉk

Γi
. (3.11)

The connector-based perturbations achieve the largest deviations on the trajectories. The

peripheral and hub-based perturbations have significant influence only on their neighbouring

communities, communities 3 and 1, respectively. Regardless of the central location of the

hub community at initial time, the system dynamics is not changed compared to the extent

achieved by connector-based perturbations. This demonstration highlights the need to con-

sider the strengths and relative positions in a systematic manner to identify the influential

nodes.

Let us compare the community centroid trajectories in time, as shown in figure 3.6 (a).

The trajectories of all other communities show the most deviation from baseline with connector-

based perturbation, except for community 5. The trajectory of community 5, the peripheral

community, is modified significantly when it is perturbed. We have evaluated the P − Z

map using the in-edges (not shown), which also gives community 5 to be the peripheral

community. Thus, other communities have less influence on community 5. We concentrate

on the results at early times to assess the characteristics of the connector to influence its
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Figure 3.5: Trajectories of community centroids without and with connector (�), peripheral
(5), and hub-based (4) perturbations. Filled circles show initial position of the community
centroids.

neighbour and connect with other communities. The trajectory of community 4 is changed

significantly earlier in time with connector-based perturbations. This change in the tra-

jectory of communities 4, the spatially closest community to the connector, at early times

demonstrates the ability of a connector community to significantly influence its neighbour.

Neither of the peripheral and hub-based perturbations influence other communities, partic-

ularly their respective neighbours, at early times. Later, the connector-based perturbations

also significantly change the dynamics of community 3 by connecting through community

4, even though communities 1 and 3 are spatially far apart. The inter-community influence

demonstrates the connecting characteristics of a connector community.

Deviation of the trajectories from baseline is quantified in figure 3.6 (b). The observa-

tions quantitatively show the larger deviations in trajectories resulting from connector-based

perturbations. Considering the neighbours of the perturbed communities, a total change be-

tween 10 − 12% of the baseline is achieved for communities 3 and 4 using connector-based

perturbations. The corresponding changes using peripheral and hub-based perturbations are

around 5% for communities 3 and 1, respectively. The largest effect of the hub community is

on its own trajectory. These observations demonstrate the inference from the P−Z map that

the hub community can portray characteristics of a peripheral. The magnitude of change
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Figure 3.6: (a) Trajectories of community centroids subjected to perturbations compared
with baseline, ξb. Here, ∆ξ = ‖ξ(t)− ξb(t)‖2. (b) Total change in trajectory of community
centroids with respect to the baseline.

achieved by the connector-based perturbation on its own trajectory is more than thrice that

produced by peripheral and hub communities. Furthermore, the total change in trajectory

of community 3 is the highest using connector-based perturbation. For this model problem,

we have demonstrated that the connector node effectively modifies the global vortex dy-

namics. The present finding motivates the use of inter-community interactions to instigate

changes in the global system dynamics, based on the community-based decomposition of

system dynamics to identify key structures.

3.2.2 Flow modification of isotropic turbulence

Let us now consider the application of community-based flow modification to two- and three-

dimensional decaying homogeneous isotropic turbulence. The highly complex and multi-scale

properties of isotropic turbulence make it an apt choice to demonstrate the capability of the

present community-based framework. Isotropic turbulence is a canonical model problem for

a range of turbulent flows encountered in nature and engineering applications.
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3.2.2.1 Numerical setup

For the two- and three-dimensional isotropic turbulent flows, we use the Fourier spectral and

pseudo-spectral algorithms, respectively, to numerically solve the Navier-Stokes equations

[133, 23]. Direct numerical simulations (DNS) of the flows are performed in bi-periodic and

tri-periodic square and cubic domains of length L. For the simulations, the flow fields are

resolved such that kmaxη ≥ 1, where kmax is the maximum resolvable wavenumber of the

grid and η is the Kolmogorov length scale. We non-dimensionalize the spatial variables by

L, time by the large eddy turn-over time at initial time τe(t0).

The two-dimensional turbulent flows with an initial Taylor microscale based Reynolds

number of Reλ(t0) ≈ 4000 are obtained from DNS performed at a grid resolution of 1024×
1024. We use snapshots of the vorticity field, uniformly sub-sampled to a resolution of

128 × 128, to construct the vortical network. For three-dimensional isotropic turbulence,

flow fields with Reλ(t0) ≈ 40 are obtained from DNS performed with a grid resolution of

64× 64× 64. The three-dimensional flow fields are uniformly sub-sampled to a resolution of

32× 32× 32 for constructing the vortical network. Sub-sampling is performed in a manner

such that the network representation is not influenced.

The network representation can be made independent of the Reynolds number following

the non-dimensionalization of the edge weights using equation 2.6. We choose the charac-

teristic velocity

u∗ = V 1/ndΩ
1/2
tot = V 1/nd

(∫
‖ω‖2≥ωth

‖ω(r, t)‖2
2 dV

V

)1/2

, (3.12)

where Ωtot is the total enstrophy per unit area or volume of all the vortical elements enclosed

in a region of vorticity threshold ωth. We concentrate on vortical elements with high vorticity

[85], extracted through vorticity thresholding [67]. We can capture the overall interaction

behavior of the flow field even with the threshold. For both two- and three-dimensional flow

fields, we use a threshold of ωth = 0.05||ω(r)||∞. Detailed assessment on the influence of the

Reynolds number, grid, and ωth is provided in Appendix C.

41
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Figure 3.7: Enstrophy and node strength (squared) distributions of two- (a) and three-di-
mensional (b) isotropic turbulence.

3.2.2.2 Network characterization of isotropic turbulence

Let us first characterize the interactions amongst the vortical elements in two- and three-

dimensional isotropic turbulence. Following equation 2.9, we evaluate the node strength and

enstrophy distributions of the flow fields at an instant in time, presented in figure 3.7. The

node strength-enstrophy relations from equation 2.9 is shown here for isotropic turbulence.

Benzi et al. [12] found a power-law profile for the enstrophy distribution of two-dimensional

decaying isotropic turbulence. The distribution p(s2) also follows a power-law behavior

as observed in figure 3.7 (a). Taira et al. [133] analyzed the network structure of two-

dimensional decaying isotropic turbulence and found the undirected node strength (average

of in- and out-strength) distribution p(s) to follow a scale-free behavior if the energy spectrum

follows the k−3 profile.

For three-dimensional isotropic turbulence, the enstrophy distribution follows a stretched-

exponential profile, p(Ω) ∝ exp(−aΩΩb) [29]. We observe a stretched exponential profile for

p(s2) with the same exponent b as that of the enstrophy distribution, as shown in fig-

ure 3.7 (b). The difference of p(s2) for two- and three-dimensional flows can be attributed to

the components of vorticity. For three-dimensional turbulence, vorticity is spread over wide

scales of structures due to vortex stretching and tilting, which are absent in two-dimensional
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Figure 3.8: Comparing vortical structures with high node strength (gray contours),
Q-criterion (red-yellow contours), and strain (blue-green contours) for (a) two- and (b) three-
-dimensional isotropic turbulence. Only a slice is shown for (b).

flows.

The node strength distributions can be used to highlight vortical elements with high

node strength, as shown in figure 3.8. Isocontours of node strength, positive Q-criterion,

and magnitude of strain rate tensor ‖S‖2, for the two- and three-dimensional flow fields are

shown. For both flows, the high node strength regions align with those of high positive Q-

criterion (vortex core) and ‖S‖2 (high shear regions). The node strength-enstrophy relation

attributes to the alignment of the node strength with the Q and ‖S‖2 measures in physical

space. The observations show that the network-based node strength can indeed identify

strong vortex cores and shear-layers in turbulent flows.

Let us now use the community-based framework to extract vortical communities in

isotropic turbulence and identify influential regions to modify the flow using inter- and

intra-community strength measures. A demonstration of the community detection algo-

rithm and the corresponding P −Z map applied to a three-dimensional flow field are shown

in figure 3.9 (a) and (b). Here, the initial community detection procedure coarsely identifies

regions in the flow field. A clear distinction between connectors and peripherals is not ob-

served using the P −Z map. The continuous nature of the flow field and vortical structures
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Figure 3.9: (a) Community detection in a three-dimensional isotropic turbulence and (b) the
corresponding P − Z map. (c) Two-step community detection and (d) the corresponding
P −Z map. Connector and peripheral communities have distinct distributions in the P −Z
map.

being spatially close to each other can make it challenging for the community detection al-

gorithm to extract distinct vortical structures. Similar observations were made in a previous

study for laminar wakes [38].

We aid the community detection algorithm by decomposing the flow field into nodes

with Q > 0 and Q < 0. This is portrayed in figure 3.9 (c). The communities are identified

independently for the two networks. The difference in the number of communities compared

to the first step is due to the value of γM used, which was found to be similar for both the

steps for the given Reλ. The new community labels are used to evaluate the P − Z map

for the full adjacency matrix, as shown in figure 3.9 (d). The two-step community detection

procedure reveals the communities to broadly follow two correlations in the P −Z map. The
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communities on the left side of the map possess a negative correlation in the P − Z feature

space and the nodes on the left side exhibit no significant correlation. We classify the former

as peripheral and later as connector communities. The first group predominantly contains

nodes with Q > 0, the second group with Q < 0. Thus, most peripheral and connector

communities resemble vortex core and shear-layer type structures, respectively. Vortex cores

that are spatially isolated in the flow can attribute to their classification as peripherals.

Whereas, most shear-layer type structures being located amongst vortical structures make

them connectors. We observe similar results for two-dimensional isotropic turbulence and

for other cases at various Reλ. Given the classification of vortical structures into connector

and peripheral communities, we can now identify the important communities and analyze

their influence on the flow field.

3.2.2.3 Turbulent flow modification

We compute the Pk of each community k to quantify the strength of influence. The con-

nector and peripheral communities are the ones with maxk Pk and mink Pk, respectively, as

highlighted in figure 3.10 (a). The dominant nodes of the communities are determined based

on Z. The peripheral community corresponds to the vortical structure visualized in red and

the connector community is comprised of low circulation multi-vortical structures with both

strain and rotational regions visualized in blue in figure 3.10 (b).

We compare the influence of the connector structure to modify the flow with the strongest

vortex tube and shear-layer based regions, which are known to cause high flow modifications.

The vortex tube and shear-layer structures are identified by large amplitudes of Q > 0 and

Q < 0, respectively, herein denoted as Q+ and Q−. We do not present cases for the peripheral

structures as they usually align with Q+.

We add perturbations to the identified influential structures and track the changes to the

flow. Impulse perturbations at discrete time nt∆t are added to the velocity field with time

step ∆t and nt = 0, 1, 2, . . . . The perturbed velocity field at time t is given by u(r, t) +

ũ(r, r∗, t), where ũ(r, r∗, t) = αf̃(r, r∗, t), α is the amplitude of the perturbation added

45
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Figure 3.10: (a) Identifying the connector and peripheral in the P − Z map and (b) the
structures in physical space. (c) Local region around the connector structure.

to the perturbation f̃(r, r∗, t), and r∗ is the location of the influential structure. The

perturbation is given by

f(r, r∗, t) =
êu(r,t)√
2π∆V 2

np∑

i=1

exp

(−‖r − r∗i ‖2
2

2∆V 2

)
δ(t− nt∆t), (3.13)

where êu(r,t) is the unit vector in the direction of u(r, t), ∆V is the volume of the vortical

node (grid size), and r∗i are the locations of the np perturbed nodes. We normalize f(r, r∗, t)

to give f̃(r, r∗, t) such that
∫
V
‖f̃(r, r∗, t)‖2

2dV = 1. A prescribed forcing energy E of

E =

∫
V

‖ũ(r, r∗, t)‖2
2dV

∫
V

‖u(r, t)‖2
2dV

(3.14)

is used to compute the amplitude of perturbation α.

We first analyze the influence of the structures with a single perturbation at the initial

time. The perturbation amplitude α is chosen such that E = 0.04, which is a reasonable

magnitude for control. Based on the observations, we then employ multiple pulses. The

influential structures are tracked in time for given isocontours (or isosurfaces) of Q-criterion

and are subjected to impulse perturbations with time step ∆t/τe(t0) = 1 and 0.2 for two-

and three-dimensional flows, respectively. We have chosen the time step for these turbulent
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flows based on the single perturbation analysis to obtain significant flow modification. The

difference in time step for two- and three-dimensional isotropic turbulence is to consider

the distinct predictability horizon of small-scale motion in the flows [86, 80, 84]. While the

two-dimensional flow would have predictability horizons spanning over a few eddy turn-over

times, the present three-dimensional flow has a shorter time horizon.

We concentrate on the flow evolution around the neighbourhood of the perturbed struc-

tures, as shown in figure 3.10 (c). The peripheral-based or Q+ perturbations increases the

circulation of the vortex core. In contrast, modification of the behavior of multiple vortical

structures by the connector-based and Q− perturbations enhances local mixing in the flow, as

we discuss below. Based on the observations from the present study (for which the influential

structures are identified only at initial time), we have also performed preliminary analyses

with the structure identification procedure repeated as the flow evolves. We observe similar

results showing perturbation of the connector structures significantly enhancing turbulent

mixing compared to perturbing Q+ and Q− structures. In the present study, we concentrate

on the structures identified at initial time to characterize the influence of the network-based

structures on turbulence.

Local mixing enhancement

Mixing enhancement in turbulent flows plays a key role in various engineering applications.

Mixing enhancement by stirring have been attributed to generation of shear dominated

filaments in the flow field [126, 4, 112, 32]. Here, we analyze the effect of the perturbations to

enhance local mixing in isotropic turbulence based on the present network-based framework.

We use fluid particle tracking to quantify local mixing in the flow field. To quantify mixing,

we consider the use of two-species fluid tracking [27]. The first species is initialized one

integral length scale around the centroid of the perturbed structure, the region previously

shown in figure 3.10 (c), and the second over the rest of the flow field. Given the velocity
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field u(r, t), the time evolution of the fluid particle at rp is given by

drp
dt

= u(rp, t). (3.15)

A second-order accurate Runge–Kutta scheme is implemented for time integration [138].

Local mixing is quantified by measuring the information entropy using the two species

of particles in the domain [72, 26]. The flow field is discretized into cells and the entropy of

the two species of particles is evaluated for each cell. The total information entropy of the

whole domain at an instant in time is given by

S = −
nc∑

i=1

[
wi

2∑

k=1

(ni,k log ni,k)

]
, (3.16)

where nc is the number of cells with which the full domain is discretized, ni,k is the number

of particles of kth species in ith cell, and wi is the weight factor. If the ith cell contains no

particles or only particles of a single species, wi = 0, else wi = 1. Moreover, the relative

entropy measure κ [72] is given by

κ(t) =
S(t)− S(t0)

Smax − S(t0)
, (3.17)

where S(t0) is the entropy for initial particle distribution and Smax is the maximum possible

entropy increase over the domain, which is achieved when each cell contains equal number of

particles of each species. For each perturbation setup, we normalize κ by the baseline κbase

as κ̃(t) = [κ(t)− κbase(t)] /‖κbase(t)‖∞, thus measuring the mixing enhancement compared

to the baseline flow. The baseline flow field is initialized with particles in the same pattern

as each perturbed simulation to evaluate the respective κbase.

Ensemble averages of κ̃ for connector, Q+, and Q−-based perturbations performed on

a number of two- and three-dimensional isotropic turbulent flows are shown in figure 3.11.

For the two-dimensional isotropic turbulence with a single perturbation at initial time, the

connector-based perturbation achieves mixing enhancement similar to that of Q−. Both

connector-based and Q− perturbations outperforms Q+ for local mixing enhancement. With

48



(a) (b)

Connector
Q+

Q�

<latexit sha1_base64="R0M9oR0LC6uf6tlbg4osgY6IunE="></latexit>

Connector
Q+

Q�

<latexit sha1_base64="R0M9oR0LC6uf6tlbg4osgY6IunE=">AAAEhnicbVNLj9MwEPbulqWUVxeOXCLalZCAynk16W3FXjjuSuxDasvKcZw2quNEtgOqovxF7vwPriBcJ32layme0cz3eT7PxEFGYyEh/H10fNJ6cvq0/azz/MXLV6+7Z29uRZpzTG5wSlN+HyBBaMzIjYwlJfcZJygJKLkLFper/N0PwkWcsm9ymZFpgmYsjmKMpAo9dOeTgMxiVkQ0F3NKIll2iok+tghoTqzyMmWMYJnycjLZpDgJrbJ//f1jfzc644QwHf/cLzsTwsKdYx+6PTiAehmHjlk7PVCvq4ezk9NJmOI8IUxiioQYmzCT0wJxGWNKVIFckAzhBZqRsXIZSoiYFlpKaZyrSGhEKVcfk4aO7jIKlAixTAKFTJCci2ZuFXwsN85l5E+LmGW5JAxXhaKcGjI1Vv01wpirdtGlchDmsdJq4DniCEs1hb0q2XwpYizKzrmBcyHTpFKpQCGJ1Dh3p1DwWVAW8JPqmON42nqOCctDrL3GDkwfOisg9HxtXdcaNQh6jmu870J9sGm52kLHh6WxT0g5YjNyyLHXnJHfFLUklKY/t5SRNdLQ4cjZlGtQspxndKeKs4b6lXXdYZNS/3sbxnBYFfHWzANdVO61dmBDs+5rdZWRbTcp4WKvYUO7vrTnb+QdyELLLcGyVrBqtx9Bbmfn6mvqbfVyzOY7OXRurYHpDNxrq3fxpX5DbfAOvAcfgAk8cAG+gitwAzD4Bf6Av+Bfq90atNyWV0GPj2rOW7C3Whf/AZzkZ2I=</latexit>

Figure 3.11: Ensemble average of normalized relative particle entropy in time for (a) two-
and (b) three-dimensional isotropic turbulent flows subjected to connector-based, Q+, and
Q− perturbations. Lines — denote results for single perturbation and −− for multiple
perturbation. Ensemble is computed using 10 cases.

multiple pulses, connector-based perturbation generates entropy two times compared to the

baseline flow, which is 54% more than the Q− perturbations. The perturbation using Q+

just leads to strengthening of vortex cores without significant spreading of particles, which

will be visualized shortly.

Using the results of two-dimensional flows as a guideline, we perform the analysis on

three-dimensional flows, as shown in figure 3.11 (b). A single pulse add to the connector at

initial time generates κ̃ values 0.55 times that of the baseline flow, which is 20% more than

Q− perturbation. With multiple pulses, connector-based perturbations increase the entropy

by 1.4 times compared to the baseline flow, which is 17% more than the Q− perturbations.

Multiple pulses of Q+ perturbation under-performs compared to even the single connector-

based perturbation. According to the studies on mixing enhancement using stirrers [4, 32],

we expect the Q− perturbation to achieve better mixing. The present results are in agreement

with these studies.

With the above observations quantifying the effectiveness of connectors to modify tur-

bulence and enhance local turbulence mixing, let us analyze the flow fields. We consider

the time evolution of a two-dimensional isotropic decaying turbulent flow subject to mul-
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Figure 3.12: Time evolution of a two-dimensional isotropic turbulent flow subjected to mul-
tiple perturbations. Fluid tracers initialized around the perturbation are coloured by the
change in trajectory compared to the corresponding baseline trajectory.

tiple pulses of connector-based, Q+, and Q− perturbations, as shown in figure 3.12. The

fluid particle species initialized one integral length around the perturbation is shown. The

yellow-red colour gradient represents the amount of change in trajectories compared to the

corresponding baseline trajectory. A uniform colour distribution indicates effective mixing.

The connector-based perturbation achieves the narrowest range in colour distribution at the

final instant. Whilst Q+ and Q− perturbations achieve higher magnitudes of change in tra-

jectories for certain particles, highlighted in black, some particles are spread out least, as

highlighted in bright yellow.

Multiple pulses on the Q+ structure strengthens the vortex core, making a large distinct

vortex. The tracers rotate around the vortex core due to the vorticity. Only the tracers at

the boundary of the vortex are spread out significantly. The Q− perturbation, comprising
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of the strained region between the vortex-dipoles, forms a jet-like flow. With multiple per-

turbations, the jet-like flow spreads the tracers more effectively compared to that achieved

in the baseline and Q+ perturbations. These observations are in agreement with recent

findings that vortex-dipole like structures in two-dimensional isotropic turbulence promote

effective flow modification [66]. The connector structures are comprised of a long shear-layer

type vortical structure and near-by vortices of low vorticity. Multiple perturbations of the

shear-layer type structure lead to the formation of small scale vortices, which enhances flow

mixing compared to the baseline as well as Q+ and Q− perturbations.

The evolution of particle tracers in a three-dimensional turbulent flow subjected to mul-

tiple perturbations on connector, Q+, and Q− structures are presented in figure 3.13. Here,

the Q+, Q−, and connector structures are spatially located close to each other at the initial

time. The flow field at the final instant corresponding to connector-based perturbation has

the narrowest range in colour distribution of the tracers, depicting highest mixing enhance-

ment. The broadest range in colour distribution corresponds to Q+ perturbation, which

denotes the least mixing enhancement achieved. Multiple pulses of connector-based pertur-

bations lead to the generation of small scale structures. On the other hand, the vortical

structures decay in time with Q+ and Q− perturbations.

Next, let us examine the local flow region around the perturbation to analyze the effect

of the network-based connector to modify its neighbouring vortical structures. We analyze

the time evolution of the local flow region around the connector, Q+, and Q− structures,

as presented in figure 3.14. The vortical structures are tracked using the isosurface of Q-

criterion, with a constant value of Q in time. A single pulse is added to the connector, Q+,

and Q− structures at the initial time. The perturbed structures at the initial time are shown

on the left column, visualized by the green isosurfaces. The neighbouring vortex tubes under

consideration in each case (row) are depicted by the blue and red isosurface. The growth

of maximum enstrophy, ‖Ω‖∞, is also evaluated to observe modification of the vortex cores

[33, 6]. We note that at time t/τe(0) = 0.34, the connector structure leads to modification of

both the neigboring vortex tubes and formation of smaller scale structures. These small-scale

structures induce enhanced local spreading of the fluid particles, as observed in figure 3.13.
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Figure 3.13: Time evolution of a three-dimensional isotropic turbulent flow subjected to
multiple perturbations. Vortical structures are depicted by isosurface of Q-criterion. Fluid
tracers initialized around the perturbation are coloured by the change in trajectory compared
to the corresponding baseline trajectory.
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Connector

Figure 3.14: Modification of two vortex tubes in a three-dimensional isotropic turbulent flow
using Q+, Q−, and connector-based perturbations. The connector effectively modifies both
the vortex cores as shown using the isosurface of Q-criterion and local growth of maximum
enstrophy ‖Ω‖∞ between time t/τe(0) = 0.12 and 0.2.
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Perturbation of the Q+ structure (shown in blue) leads to the increase in circulation of

the vortex core and eventual break-up of the blue isosurface at time t/τe(0) = 0.16. The

modification of the Q+ structure is also observed by the peak of ‖Ω‖∞ at t/τe(0) = 0.05. The

curved geometry of the Q+ vortex core at the initial time may instigate instabilities when

perturbation is added, resulting in the significant modification of the vortex core. Nonethe-

less, the Q+ perturbation has negligible influence on the neighbouring vortex highlighted

in red. Note that these observations are similar to the characteristics of a network-based

peripheral structure. The Q− structure is the strongest shear-layer structure, which is lo-

cated between the two neighbouring vortex tubes. Thus, the Q− perturbation results in the

modification of both the blue and red isosurfaces. Both the vortex cores decay in time with

no peaks appearing for ‖Ω‖∞ over time, suggesting lower modification of the vortex cores

achieved by the Q− structure compared to Q+ perturbation.

The connector structure is comprised of the shear-layer region between the two neigh-

bouring vortex tubes and an adjacent vortical structure with low circulation. This adjacent

vortical structure merely decays within a short time in the Q+ and Q− simulations. With

connector-based perturbation, the adjacent vortical structure connects with the two neigh-

bouring vortex tubes through the shear-layer, forming one large vortical structure highlighted

in purple at time t/τe(0) = 0.16. Eventually, the connection results in the significant break-

up of both the blue and red isosurfaces, leading to the formation of smaller scales of vortical

structures. The observations show the advantage of connectors to modify multiple vortical

structures compared to Q+ perturbations. The local growth of ‖Ω‖∞ between t/τe(0) = 0.13

and 0.2 denotes effective modification of the vortex cores compared to that achieved by Q−

perturbation. The connection amongst the vortical structures, in the form of vorticity, is

not aligned with the direction of rotation of the two neighbouring vortex tubes, which may

result in instabilities, leading to significant break-up of the vortex cores. The above illus-

trative examples demonstrate the ability of network-based methodologies to extract vortical

structures of low circulation that can effectively influence neighbouring vortical structures

in turbulent flows.
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CHAPTER 4

Concluding remarks

4.1 Summary

A network community-based formulation was introduced for reduced-order modelling and

extracting flow modifying structures in laminar and turbulent flows. Network theory was

used to represent the vortical interactions in two- and three-dimensional laminar and turbu-

lent flows, namely discrete point vortex system, laminar wake flows, and decaying isotropic

turbulence, as a vortical network. The network framework considered the vortical elements

in a flow as nodes of a graph and captured the web of interactions amongst them, quantified

by the induced velocity, as the weighted edges. The full vortical network representation (fol-

lowing either an Eulerian or Lagrangian description) was used to identify the communities or

modular structures in the unsteady flows through the modularity maximization algorithm.

The general dynamics equation for a networked system was recast using the community

information to obtain reduced-order models and modify the system dynamics.

A network-community based reduce-order formulation was considered to distill the high-

dimensional complex nonlinear interactions in unsteady vortical flows. We collapsed the

full vortical network through the centroid of each communities, considerably reducing the

dimension of the fluid flow. Furthermore, we extended the formulation to model and predict

observable variables of the system, such as lift and drag on bodies, relying solely on the

community-centroid properties. The network-community based reduce-order formulation

was applied to canonical vortical flow problems for validation. First, the current approach

was applied to model the dynamics of a collection of discrete point vortices. Instead of

tracking the dynamics of a large number of vortices, the overall dynamics of the discrete
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vortex communities was modeled using community-based networked dynamics. Second, we

have also modeled the lift and drag on bodies in wake flows using the community-based

reduced-order formulation. Relying on the properties of the community centroids in the wake,

models predicting lift and drag on the body were formulated through nonlinear regression

analysis. These formulations were applied on the two-dimensional flow field data of flow over

a circular cylinder and an airfoil with a Gurney flap. The community-based formulation was

able to effectively identify the key vortical communities in both the wake flows. Also, the

reduced-order force model could predict lift and drag forces on the cylinder as well as airfoil

with considerable accuracy. The resilience of these formulations against perturbations or

noise were also examined by adding artificial noise to the input data to simulate experimental

noise or turbulence. The proposed formulation can serve as a basis to tackle highly chaotic

and aperiodic flows. However, it is likely that techniques such as uncertainty quantification

needs to be incorporated to assess the confidence of the model.

Furthermore, we decomposed the governing equation for a networked system using the

intra- and inter-community interactions. The strengths of these interactions were used to

identify the connector and peripheral nodes, which have the highest and least influence on

other communities, respectively. The node with the maximum total interaction strength

was identified as the hub. The ability of these influential nodes to modify the networked

dynamics was demonstrated on a model fluid flow of a collection of discrete point vortices.

Impulse velocity perturbations were added to the connector, peripheral, and hub nodes

identified at the initial time. The connector community effectively modified trajectories

of the other communities compared to the hub and peripheral-based perturbations. We

then applied the community-based formulations to identify influential structures in two- and

three-dimensional isotropic turbulence. The connector and peripheral structures were found

to resemble shear-layer and vortex core type structures, respectively. Adding perturbations

to the connector structures, which have low vorticity, led to enhanced local flow mixing

compared to the effect of perturbing the strongest shear-layer and vortex tube.

56



4.2 Broader impacts and future work

The demonstrations of the community-based formulations, even though considered only

for fluid flow problems in the current work, have implications to applicability to high-

dimensional, nonlinear systems with intrinsic community-based coherent structures. Re-

cently, we are applying the community-based formulations to explore clustering of particles

in three-dimensional particle-laden turbulence [8]. Detailed assessment of the life time of par-

ticle clusters can be revealed by quantifying the interactions amongst the clusters. Efforts

are also taking place to incorporate the Lagrangian coherent structure extraction technique

to aid the community-detection procedure in turbulent flows [97]. Our study alludes to-

wards using the reduced-order methodology in effectively tracking the overall dynamics of

such systems and modeling observable variables. Furthermore, these models can possibly be

influenced by altering the interactions among the elements in the system. Coupling the for-

mulations for the dynamics and observable variables may also motivate studies on closed-loop

control by altering the inter-community interactions as demonstrated for open-loop control

by community-based flow modification. Within the current work, we have not addressed the

necessary computational effort for performing the network-based analysis. However, there

are emerging network-based characterization [7] and modeling techniques [94] for fluid flows

that can be leveraged to perform the present analysis with reduced computational resource.

With these developments, the present characterization and open-loop control offers a path-

way for future closed-loop flow control efforts to modify the dynamics of vortical structures

residing in a complex turbulent flow field.
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APPENDIX A

Analytical vortex solutions and network strength

Using equations 2.5 and 2.9, the node strength for vortical elements in two-dimensional flows

is given by

si =
ωz,idxdy

2π

∑

j

1

‖∆rij‖2

. (A.1)

For the Lamb–Oseen type of vortices, the vorticity distribution is given by

ωz(r, t) =
Γ

2πr2
c (t)

exp

(
− r2

r2
c (t)

)
. (A.2)

where rc =
√

4νt+ rc(0)2 is the core radius of the vortex. The strength of nodes in such a

flow field is given by

s(r) = C1 exp

(
−r

2

a2

)
(A.3)

for a particular instant in time, where a = rc and

C1 =
Γ

2πa2

(
dxdy

2π

∑ 1

‖∆r‖2

)
. (A.4)

Let X be an absolutely continuous random variable with support RX and probability

density function (pdf) fX(x), and g be a function monotonously decreasing and differentiable

on the support of X. Then, for Y = g(X), the support of Y is

RY = {y = g(x) : x ∈ RX} (A.5)
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and the pdf of Y is

fY (y) =




−fX(g−1(y))dg−1(y)

dy
if y ∈ RY

0 if y 6∈ RY .

(A.6)

Now, for the strength of nodes, we have an invertible, monotonously decreasing form

s = g(r) = C1 exp(−r
2

a2
) (A.7)

⇒ log s = logC1 −
r2

a2
(A.8)

⇒ r =
[
C2 − a2 log s

]1/2
= g−1(s) (A.9)

where C2 = logC1a
2. Thus, the pdf of s is given by

fS(s) =




−fRR(g−1(s))dg−1(s)

ds
if s ∈ RS

0 if s 6∈ RS

(A.10)

=




−fRR(r)dg−1(s)

ds
if s ∈ RS

0 if s 6∈ RS

(A.11)

OR =




−F ′RR(r)dg−1(s)

ds
if s ∈ RS

0 if s 6∈ RS

. (A.12)

Now, to find fRR(r) or FRR(r), we take the probability of finding a random point in a circular

or square two-dimensional domain or a spherical or cubic three-dimensional domain, with a

characteristic length (radius or length of square) of D. The cumulative density function of

a point inside the circle at a distance r from the center is given by

FD(r) = P (D ≤ r) =
area of circle with radius r

total area of circle
=

r2

D2
. (A.13)
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For a sphere, this would be F (r) = r3/D3. Thus, we can obtain the pdf as

fD(r) = F ′(r)dr (A.14)

=





2r
D2 for 2D

3r2

D3 for 3D

. (A.15)

Also, for the Lamb–Oseen vortex considered,

dg−1(s)

ds
= −a

2

2s

(
C2 − a2 log s

)−1/2
. (A.16)

Thus, the pdf of node strength for the Lamb–Oseen vortex is given by

f(s) =





a2r
D2s

(C2 − a2 log s)
−1/2

if s ∈ RS

0 if s 6∈ RS

(A.17)

=





a2

D2 s
−1 if s ∈ RS

0 if s 6∈ RS

(∵ r =
[
C2 − a2 log s

]1/2
). (A.18)

Thus, we can write p(s) = Cs−1 which follows the power-law distribution observed through

the numerical solution to the strength distribution shown in figure A.1. The distribution is

also observed for other analytical vortex solutions and laminar wakes.
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Figure A.1: Strength distribution of analytical and laminar wake flows.
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APPENDIX B

Airfoil wake modification with Gurney flap at

low-Reynolds number

In the present chapter, which is excerpted from our previous publication [41], we perform

an extensive parametric study to examine the influence of Gurney flap on the aerodynamic

characteristics and two-dimensional wake patterns behind NACA 0000, 0006, 0012 and 0018

airfoils. In the section below, the computational approach and setup for the study is de-

scribed. This is followed by the discussion of results from two-dimensional direct numerical

simulations (DNS) in Section B.2, where we first classify the four characteristic wake modes

observed. A detailed discussion of each wake mode is also provided. We then examine the

effects of the Gurney flap on lift, drag and lift-to-drag ratio for all airfoils. We also provide

in Section B.3 a brief analysis on the spanwise effects on the wake modes by performing

companion three-dimensional simulations. Concluding remarks are offered at the end of the

paper to summarize the findings and to discuss potential uses of Gurney flaps.

B.1 Computational approach

Two-dimensional DNS

We investigate the influence of Gurney flaps on the two-dimensional wake behind four dif-

ferent symmetric airfoils of NACA 0000 (flat plate), 0006, 0012 and 0018 at a chord-based

Reynolds number of Re ≡ u∞c/ν = 1000. Wide range of values for the Gurney flap height

and angle of attack are considered in this study for the setup shown in figure B.1(a). The

flow field and force data obtained for each case are analyzed in detail to acquire a knowledge
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Figure B.1: (a) A representative setup with NACA 0012 airfoil at α = 9◦ with Gurney flap
of h/c = 0.1 attached to the trailing-edge; (b) comparison of mean lift coefficient, CL, for
NACA 0012 airfoil at Re = 1000 with previous studies in literature [87, 56, 128, 82, 77].

on the underlying effect of flow control from the use of the Gurney flap on the airfoils for

aerodynamic performance enhancement.

The problem setup for the current work is depicted in figure B.1(a). Throughout this

paper, the length, time, and velocity are non-dimensionalized by the chord length c, convec-

tive time scale c/u∞, and the free stream velocity u∞, respectively unless otherwise noted.

Angles of attack α between 0◦ to 20◦ are considered for all the airfoils, of which Gurney flap

is attached to the trailing-edge perpendicular to the chord line. For all cases, Gurney flap

height of h/c between 0 to 0.15 are considered. The wing is placed in the domain with its

quarter chord at the origin with uniform flow prescribed at the inlet.

For the current analysis, the immersed boundary projection method [130, 25] is used to

simulate the flow. This method is based on a finite volume formulation and incorporates

the no-slip boundary condition along the immersed boundary into the projection operation.

The scheme is second-order accurate in time and has a spatial accuracy of higher than

first-order in the L2 norm. Moreover, a multi-domain technique is used to simulate the

flow over a body in free space. The scheme has been validated for a number of cases

[131, 63], and has been found robust and accurate [25]. Five nested levels of multi-domains
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are used with the finest level being (x/c, y/c) ∈ [−1, 1]× [−1, 1] and the largest domain being

(x/c, y/c) ∈ [−16, 16]× [−16, 16] in size. The time step for all cases is limited to a maximum

CFL number of 0.3.

In the current study, the drag and lift coefficients are defined as

CD ≡
Fx

1
2
ρu2
∞c

and CL ≡
Fy

1
2
ρu2
∞c
, (B.1)

respectively. The shedding frequency fs of lift is non-dimensionalized as the Strouhal number

St ≡ fsl
∗

u∞
, (B.2)

where the characteristic frontal length l∗ is taken to be

l∗ = c sin(α) + h cos(α), (B.3)

as illustrated in figure B.1(a). Grid convergence study was performed on the NACA 0012

airfoil without a flap at α = 10◦ for grid size ranging from 200 × 200 to 500 × 500. A

domain with 360× 360 grid resolution was found to be sufficient with less than 1% error in

‖CL‖∞ and St values, also capturing the wake structures effectively. Figure B.1(b) shows

the comparison of mean CL values of NACA 0012 airfoil at Re = 1000 with past studies

[87, 56, 128, 82, 77]. The results obtained from the current simulations are in agreement

with the data from literature.

Three-dimensional DNS

We also perform three-dimensional direct numerical simulations on selected cases from the

two-dimensional analysis to acquire an understanding of the spanwise effects on the wakes.

The analysis is performed on the NACA 0006 airfoil with Gurney flap of h/c = 0.08 and

α = 6◦, 12◦ and 18◦ at Re = 1000. The cases are selected to represent the characteristic wake

modes observed from the two-dimensional analysis. We use a finite-volume incompressible

flow solver, Cliff (CharLES software package), developed by Stanford University and Cascade
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Technologies to solve the three-dimensional incompressible Navier–Stokes equation [52, 53,

89, 73]. A spatial domain of (x/c, y/c, z/c) ∈ [−30, 30] × [−30, 30] × [0, 4] is considered.

The spanwise extent of 4c is chosen based on three-dimensional analysis for the baseline

cases without Gurney flap at similar Re range [98, 110]. A two-dimensional unstructured

spatial grid discretization is utilized and extruded in the spanwise direction with ∆z/c =

0.0625. The largest non-dimensional wall spacings along the suction side of the airfoil are

∆x = 0.004, ∆y = 0.007 and ∆z = 0.0625. The time step for all the simulations is set to

a maximum CFL number of 1.0. No-slip boundary condition is specified on the airfoil and

Gurney flap surfaces. An inflow boundary condition of u/u∞ = (1, 0, 0) is prescribed at the

inlet and symmetric boundary conditions at the far-field boundaries (top and bottom). A

convective outflow boundary condition is specified at the outflow to allow the wake structures

to leave the domain without disturbing the near-field solution. The flow is set to be periodic

in the spanwise direction.

A three-dimensional perturbation is introduced to ensure the three-dimensional structures

are sufficiently developed. Temporal convergence of the simulations is ensured through the

rms and time-averaged values of pressure and velocities, obtained from a probe data located

at the mid-span and 1c downstream of the trailing edge, having variations less than 2% in

time. The solver is validated with previous studies in literature [82, 77] and current two-

dimensional analysis for the NACA 0012 airfoil at α = 20◦ with the time-averaged CL having

less than 2% difference.

B.2 Analysis of two-dimensional flows

Findings from the two-dimensional numerical experiments performed for flow over the four

NACA airfoils with and without the Gurney flap attached to the trailing edge are discussed

here. The addition of the Gurney flap and changes in angle of attack and airfoil thickness

bring about various changes to the aerodynamic forces experienced by the airfoils. These

variations in the aerodynamic forces are caused by the flow modifications to the airfoil wake.

The observations on the airfoil wake modifications are first discussed followed by detailed
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analysis of the wake dynamics involved through the wake modifications. The effects on the

aerodynamic forces are analyzed towards the end of this section.

Wake mode classification

First, let us analyze the vorticity field around the airfoils at Re = 1000 for various Gurney

flap heights and angles of attack. We observe the formation of four distinct types of wakes

develop over the airfoil both with and without the Gurney flap.

The numerical simulations reveal that the flow fields can be characterized into four dif-

ferent regimes depending on the characteristics of vortex shedding. The far field wake de-

velopments of different regimes for a representative airfoil setup (NACA 0000 with Gurney

flap of h/c = 0.06) are summarized in figure B.2. The four types of flow regimes observed

are:

• Steady;

• 2S - periodic von Kármán vortex shedding;

• P - periodic shedding of single vortex pairs; and

• 2P - periodic shedding of two distinct vortex pairs.

These wake modes are classified on the basis of the flow structure of the wake, vortex

shedding frequency and force fluctuations. In this section, we discuss the difference in the

flow structure of the wake modes along with the vortex shedding frequencies corresponding

to each mode. The frequency spectra of the lift history for selected cases of all airfoils are

depicted in figure B.3. Sampling time sufficient to capture 30-50 dominant shedding cycles

is used to perform the spectral analysis. The flow transition through the regimes are clearly

evident by the abrupt changes in the St values with α for NACA 0000 case.

The nomenclature of the modes follows the wake mode classification performed by Williamson

and Roshko [136] on the analysis of wakes behind a cylinder in forced oscillation. The wake

modes observed in the current study correspond to the 2S, P and 2P wake modes defined
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Figure B.2: Instantaneous and time-averaged two-dimensional vorticity fields ωc/u∞, around
NACA 0000 with a Gurney flap of h/c = 0.06 at various α. The contour plots represent the
four characteristic regimes: steady, 2S, P and 2P.
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Ĉ
L

Ĉ
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Figure B.3: Frequency spectra for a range of α for NACA 0000, 0006, 0012, and 0018 airfoils
with Gurney flap. Dominant vortex shedding frequency - •, harmonic vortex shedding
frequency - �. Regions with dominant St ∈ [0.12, 0.18] are classified as 2S and P regimes
by the green and yellow regions respectively, and St ∈ [0.06, 0.10] as 2P regime by the red
region.

by Williamson and Roshko. These 2S, P and 2P modes are previously observed in studies

involving oscillating cylinder [109, 136, 19] as well as airfoils [74, 68, 77, 78]. In particu-

lar, the wake modes have also been observed for the baseline case of NACA 0012 airfoil at

Re = 1000 by Kurtulus [77, 78].

In the steady regime (figure B.2, α = 0◦), the wake is steady and the flow is attached to

the airfoil surface. This flow regime attributes to the lowest magnitude of drag experienced

by the airfoil compared to that in the other unsteady modes. With increase in α or h/c

values, the flow starts to become unsteady. With this, the wake is classified into the next

regime, the 2S mode.

The 2S mode (figure B.2, α = 6◦) is characterized by unsteady flow with periodic von

Kármán vortex shedding of alternating clockwise and counter-clockwise rotating vortices (2S

represents two single vortices). The time-averaged vorticity contour lines are below the center

of the wake. The wake height, observable from the time-averaged vorticity fields, is larger

compared to that of the steady regime denoting increase in drag experienced by the airfoil.

The smaller wake height for the 2S regime compared to the other unsteady regimes is also
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noticed. Also, a single peak in the frequency spectra, corresponding to the vortex shedding

phenomena, for the cases classified into the 2S regime can be observed in figure B.3. The

St values corresponding to the dominant vortex shedding frequency lie between [0.12, 0.18]

with increase in angle of attack through this regime. With further increase in α and h/c

values, the wake transitions to the next regime, the P mode.

The P mode (figure B.2, α = 9◦) is distinguished by periodic von Kármán shedding

of a single vortex pair (P represents a single vortex pair). The spatial separation between

two vortex pairs is distinctly larger compared to that observed between the single vortices

in the 2S mode. The time-averaged vorticity contour lines of the regime shifts above the

center of the wake, portraying decrease in lift experienced by the airfoil. Height of the wake

increases considerably compared to the 2S regime. This increases the drag force experienced

by the airfoil. Similar to the 2S regime, the cases classified in the P regime are characterized

by the occurrence of single peaks in the frequency spectra as seen from figure B.3. The St

corresponding to these dominant vortex shedding frequency saturates to values in [0.12, 0.18]

for this regime. Further increase in α and h/c values causes the wake transition to the

complex 2P mode.

The 2P mode (figure B.2, α = 15◦) is characterized by two pairs of vortices convecting

above and below the center of the wake (2P represents two vortex pairs). The time-averaged

vorticity field for the 2P regime evidently depicts the vortex pairs convecting away from

the center of the wake. Compared to all other regimes, the 2P wake is most prominent

and has the largest height amongst the four wake regimes. Consequently, the drag force

experienced by the airfoils for this regime is the highest compared to that of all the other

modes. Moreover, the downward force acting on the airfoil due to the upward displacement

of the mean flow reduces the lift enhancement. The frequency spectra for cases classified

in the 2P regime exhibits two prominent peaks, portraying the shedding of the two pairs of

vortices. Also, the St values corresponding to the dominant vortex shedding frequency drop

sharply from [0.12, 0.18] and saturates at values St ∈ [0.06, 0.1]. These observations from

the frequency spectra of lift compared to that of the 2S and P modes signify the occurrence

of the 2P mode. The occurrence of the 2P mode is found in baseline cases (without Gurney

69



flap) for NACA 0012 at Re = 1000 by Kurtulus [77, 78], but only at very high angles of

attack, α ∈ [23◦, 41◦]. By adding the Gurney flap, emergence of the 2P regime is seen for

lower α. This 2P mode may be a predominantly two-dimensional phenomenon and may

be suppressed by spanwise (three-dimensional) instabilities. We provide discussions on the

influence of three-dimensionality on the 2P wake in Section B.3. Thus, the emergence of the

2P mode should be used as a cautionary guide for the need of three-dimensional simulations

to further analyze the flow. In fact, one should avoid operating an airfoil in such 2P regime

in most cases, due to the large-scale unsteadiness. Nonetheless, we provide discussions on

the wake dynamics and aerodynamic characteristics of the 2P mode in Sections B.2 and B.2

to paint a complete description of the four wake regimes observed in two-dimensional flows.

We use the examination of the flow structure of the wake and the lift spectra to summarize

the wake regimes of all four airfoils using a wake classification diagram on the (α, h/c) plane.

Figure B.4 provides an overview of the simulations performed and the influence of the Gurney

flap on the wake modes for different airfoils. The baseline cases without flap are plotted on the

x-axis. Representative vorticity fields of different wake regimes observed are also portrayed

for each airfoil case. With the addition of the Gurney flap, transition of the unsteady wake

modes is shifted to lower angles of attack. The protruding flap disrupts the inflow, causing

the flow to be unsteady at lower angles of attack. The wake classification diagram shifts

towards the left axis of the (α, h/c) plane with increase in the Gurney flap height.

When the airfoil geometry is changed from flat plate to a thick airfoil, the occurrence of

the 2P regime is delayed to higher h/c and α values. Furthermore, the size of the steady

regime decreases. Increasing the thickness of the airfoil leads to a decrease in the influence

of the Gurney flap as the thickness of the airfoil overshadows the effect of the flap. As a

result of this, the complex 2P mode is revealed only at higher α and h/c values for thicker

airfoils.

The wake classification diagram provides a broad picture of the effect of adding Gurney

flap to the trailing edge of the airfoil. The diagram is useful to determine the nature of

flow at different h/c and α values for all the airfoils studied. The overall performance of

different airfoil-Gurney flap configurations can be understood from the diagram. This can
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(a) NACA 0000 (b) NACA 0006

(c) NACA 0012 (d) NACA 0018

Figure B.4: Wake classification diagram for NACA 0000, 0006, 0012, and 0018 airfoils are
illustrated. All cases simulated in the current study are categorized into different character-
istic wake regimes respect to h/c and α values. Different regimes are described by: steady
- blue, 2S - green, P - yellow, 2P - red and transition between two regimes - gray. The
boundaries for all the regimes are obtained by polynomial curve fitting.
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Figure B.5: Near-wake vortices for NACA 0012 with a Gurney flap of h/c = 0.1 at α = 20◦

(2P wake regime): (a) instantaneous vorticity field with (1) leading-edge vortex (LEV), (2)
trailing-edge vortex (TEV) and (3) secondary suction-side vortical structure, (b) time-aver-
aged vorticity field.

be used to determine the optimal geometric and angle of attack conditions for different

aerodynamic performance requirements. Depending on the necessity, the ideal airfoil and

corresponding Gurney flap configuration can be chosen. In Section B.3, we present insights

from companion three-dimensional simulations and the influence of three-dimensionality on

the wake dynamics.

Near-wake dynamics

Next, let us analyze the wake dynamics influencing the wake mode transitions, which is

responsible for the unsteady aerodynamic forces experienced by the airfoils. We in particular

focus on the difference in shear-layer roll-up and near-wake vortical structures that lead to

the formation of vortices further downstream. Mainly three regions are examined in detail:

suction and pressure sides of the airfoil, and vicinity of the Gurney flap. We depict the

canonical near-field wake vortical structures analyzed herein in figure B.5.

The main vortical structures observed at the near wake of the airfoil at different angles of

attack and Gurney flap heights comprise of the main clockwise rotating leading-edge vortex

(LEV) on the suction side and the main counter-clockwise rotating trailing-edge vortex
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Figure B.6: Illustration of near field flow of three cases classified under the (a) - (c) 2S, (d)
- (f) P, and (g) - (i) 2P regimes. The figure depicts instantaneous vorticity contour plots
of flow over NACA 0000 airfoil at α = 6◦, 12◦ and 15◦ with a Gurney flap of h/c = 0.06.
Corresponding instantaneous lift data, represented by the •, is also displayed on the bottom.
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(TEV) on the pressure side, visualized in figure B.5(a). Secondary LEV and TEV also shed

from the airfoil at high angles of attack or with a large Gurney flap (in the 2P regime). Apart

from these vortical structures, the formation of the secondary suction-side vortical structure

with positive vorticity between the leading-edge separation and suction-side wall, as shown

in figure B.5(a), is observed to be important for the wake dynamics. The formation of this

secondary structure is a result of the roll-up of the large LEV caused by the separated flow.

The formation and behavior of the structures vary with transition of the wake regime.

Let us present a brief summary of the near-wake dynamics, followed by specific details

for each wake mode. The formation and periodic shedding of LEV and TEV are expected at

moderate angles of attack for flow past an airfoil. Once a sufficiently strong LEV is formed,

the secondary suction-side vortical structure emerges on the suction surface. The increase

of circulation of the secondary vortical structure with substantial increase of strength of the

LEV is observed. Moreover, the strong influence of the LEV and the secondary vortical

structure at higher α and h/c (in the 2P regime) causes the TEV to roll-up onto the suction

side, eventually leading to transfer of vorticity from the secondary vortical structure to the

TEV, as depicted in figure B.5(a). Note that the Gurney flap supports this merger by locally

delaying the incoming flow as the TEV forms and merges with the secondary suction-side

vortical structure. This phenomenon is observed only at very high angles of attack or with a

substantially large Gurney flap, particularly in the 2P wake regime. The process results in a

broader wake, leading to increase in drag. Moreover, the mean flow is displaced upward with

respect to the center of the wake, which is evident for the 2P mode from the time-averaged

vorticity field in figure B.5(b), decreasing the lift enhancement.

For the 2S regime, figure B.6 (a)-(c), we observe the roll-up and convection of a vortical

structure with positive vorticity between the leading-edge separation and the suction-side

wall, visible at the trailing edge in figure 5(c). We refer to this vortical structure as the

secondary suction-side vortical structure for the 2S regime. The circulation of the secondary

suction-side vortical structure is small and is not strong enough to influence the TEV. The

LEV and TEV shed periodically as single vortices, and there is no upward shift of the flow

above the center of the wake. These are the reasons for the high lift-to-drag ratios, CL/CD,
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observed for cases in the 2S wake mode, which are further described in section B.2.

As the flow transitions to the P regime, figure B.6 (d)-(f), the circulation of the near-

wake vortical structures increase. The strengthened LEV and secondary suction-side vortical

structure influences the TEV to roll up along the outer walls of the Gurney flap with con-

siderable transfer of vorticity from the secondary structure to the TEV. The LEV and TEV

shed periodically but a distinct vortex pair is formed compared to the individual vortices

in the wake of the 2S regime. The wake width also increases and the flow shifts above the

center of the wake. This leads to the increase in drag, decrease in lift enhancement and fall

of the CL/CD curve, as further discussed in section B.2, for cases in the P regime.

In the 2P regime, figure B.6 (g)-(i), the circulation of the secondary suction-side vortical

structure is sizable enough to influence the TEV to roll-up onto the suction side, and the

vorticity from the secondary vortical structure is transferred to the TEV. The transfer and

accumulation of positive vorticity on the suction-side causes the main LEV to shed, followed

by the roll-up of the leading-edge shear layer to form the second LEV. The main TEV sheds

after considerable build-up of circulation due to the transfer of vorticity from the secondary

vortical structure. This leads to roll-up of the second TEV on the pressure side. By the

time the second LEV sheds from the trailing edge, the second TEV rolls-up along the outer

walls of the Gurney flap. The influence from the secondary vortical structure is not strong

enough for the roll-up of the second TEV onto the suction side. The second LEV convects

downward pairing up with the secondary TEV about 10c downstream. The wake width is

increased considerably compared to the other unsteady regimes, with the flow shifting above

and below the center of the wake. This wake dynamics lead to increase of drag, decrease of

lift enhancement and degradation of the CL/CD curve, which are described in section B.2.

Aerodynamic forces

Next, we examine the effects of the wake modifications on the aerodynamic forces from the

use of Gurney flaps. The main objective of attaching a Gurney flap to the trailing edge of

an airfoil is to enhance the lift force experienced by the airfoil. Current results show that
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Figure B.7: Lift coefficient CL over angle of attack α for NACA 0000, 0006, 0012 and 0018
airfoils with select Gurney flap heights. The time-averaged CL values are represented by the
solid lines and fluctuations in CL are represented by the shaded region for each configuration.
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at a low Reynolds number of Re = 1000, the Gurney flap is able to generate high levels of

lift forces. It is also seen that as the height of the flap is increased, lift also increases. The

lift coefficient, CL, of representative cases for each airfoil is shown in figure B.7, where the

time-averaged values, CL, are depicted by the solid lines and the fluctuations in the forces

are represented by the shaded regions. The blue lines for h/c = 0.00 cases depict the baseline

results without a Gurney flap for all the airfoils.

As discussed above, CL increases with α and h/c values for all airfoils. Lift force en-

hancement of more than twice the baseline values is achieved using Gurney flap, particularly

at h/c = 0.10 for all airfoils in almost all cases. Due to the presence of the Gurney flap,

effective camber of the airfoil increases, attributing to lift enhancement. Fluctuations in the

lift forces appear when the flow transitions from steady to unsteady state (2S regime). For

a given angle of attack, CL as well as the fluctuations of CL are amplified with increase in

Gurney flap height.

At higher angles of attack, sudden jumps or bursts in CL fluctuations are observed for

all the cases. The fluctuations in CL exhibits trends of sudden increase in magnitude with

increase in α, suggesting a transition from one flow regime to another with different Gurney

flap heights and angles of attack. The transitions correspond to the wake mode shift from

the 2S mode to the P mode, and then to the 2P mode. Thus, the airfoil experiences the

highest magnitude of CL as well as the fluctuations of CL when the wake is classified under

the 2P mode. Again, the transition of the wake from the steady regime through the 2P

regime can be evidently observed by the jagged growth of CL fluctuations with α for the

NACA 0000 airfoil. The transition of the wake from the P to the 2P mode is clearly observed

for the NACA 0006 and 0012 cases at high angles of attack.

The benefit of lift enhancement is however accompanied with a penalty of some drag

increase. The drag coefficients, CD, of representative cases for each airfoil are shown in

figure B.8. As it can be observed, CD increases with α and h/c values. The CD for all

cases have low values at lower angles of attack. The appearance of fluctuations in CD in

conjunction with the wake transition from the steady regime to the 2S regime is also observed

at lower α, but the magnitudes of the fluctuations are small. Also, the sudden and jagged
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variations in the fluctuations of CD with increase in α are small compared to that observed

for the CL fluctuations. The fluctuations in CD increase suddenly at high angles of attack

when the wake transition from the P mode to the 2P mode, also observed above for lift, for

all airfoils.

The thickness of the airfoil plays a major role on the aerodynamic forces experienced by

the airfoil. With increase in airfoil thickness, the effect of the Gurney flap is overshadowed.

As a result, different trends are observed for lift and drag on the airfoils. For the range

of angles of attack considered in this study, the magnitudes of CL and fluctuations in CL

decreases for thicker airfoils. Whereas, the drag force increases with airfoil thickness at low

angles of attack, which is expected for the baseline cases, but the trend reverses at higher

angles of attack and drag generated decreases for thicker airfoils compared to thinner airfoils.

Another behavior observed are for the lift and drag slopes. The lift slope, a = dCL/ dα

follow a jagged trend for thinner airfoils, whereas the slope is smoother for thicker airfoils.

The same is observed for the drag slope, although the fluctuations of the drag slope for

thinner airfoils are small compared to that of lift slope. All the above observations further

emphasizes the reduced influence from the Gurney flap due to the overshadowing effect of

the airfoil thickness.

Lift-to-drag ratio, CL/CD, for all airfoils is examined and depicted in figure B.9. With

increase in α, CL/CD increases drastically, reaching its maximum value, and then decreases

gradually. Significant enhancement of CL/CD is achieved with the utilization of a Gurney

flap. The CL/CD at lower angles of attack, in the range of α ∈ [0◦, 12◦], is observed to be

higher compared to baseline cases in general for all airfoils and flap heights. This range of α

is smaller for thinner airfoils (NACA 0000 and 0006) although the peak value of CL/CD is

higher compared to thicker airfoils (NACA 0012 and 0018). This range of α corresponds to

the steady and 2S regime for all the airfoils, where the drag remains low. At higher range

of α, CL/CD decreases and reach values close to the baseline values for the controlled cases

of all airfoils. These range of α corresponds to the P and 2P regimes of the respective air-

foils where the highest magnitude of drag is experienced by the airfoils. The CL/CD curves

degrade below the baseline cases for NACA 0000 and 0006 at higher α.
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Figure B.8: Drag coefficient CD over angle of attack α for NACA 0000, 0006, 0012 and 0018
airfoils with select Gurney flap heights. The time-averaged CD values are represented by the
solid lines and fluctuations in CD are represented by the shaded region for each configuration.
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Figure B.9: Lift-to-drag ratio CL/CD over angle of attack α for NACA 0000, 0006, 0012 and
0018 airfoils with Gurney flap.
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All the above observations show that an airfoil with a large Gurney flap at high angles of

attack experiences large forces. With increase in α, thinner airfoils (NACA 0000 and 0006)

experience the highest increase in lift and drag, whereas thicker airfoils (NACA 0012 and

0018) attributes with smoother lift and drag slopes. The enhanced lift-to-drag ratio brought

about by the Gurney flap is maintained over a wider range of α and h/c values in thicker

airfoils, while thinner airfoils experience higher magnitude of CL/CD over a narrower range

of α. Thus, for high levels of lift generation and CL/CD requirements, thinner airfoils can be

suitable amongst the considered airfoils. In contrast, to obtain the enhanced CL/CD over a

wider range of angles of attack and lower drag when Gurney flap is attached, thicker airfoils

perform well, although with a relatively lower magnitude of CL/CD.

B.3 Analysis of three-dimensional flows

Three-dimensional analysis is performed on the flow around the NACA 0006 airfoil with

Gurney flap of h/c = 0.08 at α = 6◦, 12◦ and 18◦ to examine the spanwise effects on the

wakes. The chosen angles of attack yield the 2S, P and 2P wake regimes, respectively,

for two-dimensional flow as shown in figure B.4(b). The three-dimensional flow fields and

the resulting force characteristics are summarized in figure B.10. We utilize the iso-surface

of Q-criterion [57] to visualize the three-dimensional airfoil wake. The aerodynamic force

characteristics of the three-dimensional flow are also compared to those obtained from the

two-dimensional analysis.

The cases with α = 6◦ and 12◦, classified as the 2S and P wakes, respectively, in two-

dimensional flow, remains two-dimensional with spanwise extension of the airfoil. Although

the 12◦ case shows some spanwise variations in the flow, it can be considered as nominally

two-dimensional. The instantaneous snapshots of the two cases show the presence of the al-

ternating positive and negative vortices leading to the formation of the Kármán vortex street,

previously observed in the two-dimensional analysis. The time-averaged flow field also corre-

sponds to that observed for a Kármán wake, and previously observed in the two-dimensional
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analysis. These observations suggest that the dominant vortex shedding frequency, lift and

drag forces, and the lift-to-drag ratio experienced by the airfoil are similar to those observed

in the two-dimensional analysis. This is noted from the similarity in the aerodynamic force

characteristics for the two-dimensional and three-dimensional results in figure B.10, further

highlighting the two-dimensional nature of the flow. The same criteria used in the two-

dimensional analysis are applied to classify the α = 6◦ and 12◦ cases under the 2S and P

wake regimes.

The case with α = 18◦, classified under the 2P regime for two-dimensional flow, is

influenced by the spanwise instabilities in the flow and results in a fully three-dimensional

flow with an underlying Kármán wake. The formation of the 2P wake mode is not observed.

The 2P wake structure is disrupted by the spanwise instabilities and the wake structure is

suppressed to a Kármán vortex street with spanwise variations. As seen from the top-view

of figure B.10, the cores of the positive and negative vortices in the Kármán street also

show spanwise variations. The time-averaged flow field depicts the reduction in the wake

thickness considerably compared to that observed in the two-dimensional 2P wake structure

(see figure B.2). This reflects in considerable reduction in the drag force experienced by the

airfoil compared to that for the two-dimensional 2P regime. The altered dynamics of the

shear layer roll-up leads to a reduction in the lift force compared to the two-dimensional

2P case. These inferences are observed from the aerodynamic force characteristics of the

α = 18◦ case in figure B.10. The considerable decrease in the drag force compensates for the

reduction in the lift enhancement experienced by the airfoil to maintain the lift-to-drag ratio.

The dominant shedding frequency of St = 0.155, similar to the values observed for that of

the 2S and P wake structures, substantiates the Kármán wake behavior for the dominant

vortical structures of the three-dimensional flow field.

We have observed that the two-dimensional analysis provides a foundation to understand

the occurrence of the 2S and P wake regimes for the three-dimensional spanwise-periodic

setup. The deviation with three-dimensional flow appears for the fully three-dimensional

flow for what would be the 2P wake regime in the two-dimensional setting. Nonetheless,

it should be noted that at higher Re, three-dimensionality of the wake structures can be
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instigated to even the flow classified as two-dimensional wake regimes at this Re. This

transition of the flow field of each particular wake regime from two-dimensional to three-

dimensional is beyond the scope of the current work, and the readers are referred to studies

which focus in such analyses [36, 18, 56]. Further analyses have to be performed to completely

understand these effects for the current problem. The novelty of the current work is in

understanding the transition of the wake regimes from steady through 2P or Kármán vortex

street having spanwise variations with change in different parameters of airfoil thickness,

angle of attack, effects of the Gurney flap and the flap height, and associated effects on the

force characteristics of the airfoil in an incompressible flow at Re = 1000.
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Figure B.10: Flow visualization and aerodynamic force characteristics of flow over the NACA
0006 airfoil with Gurney flap of h/c = 0.08 at α = 6◦, 12◦ and 18◦ with three-dimensional
DNS. Each row consists of the top and perspective views of instantaneous snapshots of
Q-criterion isosurface colored with ux, the time-averaged ux and the comparison of aero-
dynamic force characteristics between the respective cases of two-dimensional and three-di-
mensional analysis.
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APPENDIX C

Reynolds number and dimension reduction

independence of network measures

We assess the effect of Reynolds number on the network representation of vortical inter-

actions in isotropic turbulence by evaluating the node strength distribution for three- and

two-dimensional flow fields with various Reλ, as shown in figures C.1 (a) and (b), respec-

tively. The strength distributions of flows with different Reynolds numbers collapse to a

single curve with the use of appropriate non-dimensionalization for the edge weights. The

results suggest that the network formulation is able to capture the key characteristics of

the universal scaling of isotropic turbulence. The fine resolution of spatial discretization re-

quired to simulate turbulent flows also pose a challenge to analyze the interactions amongst

the vortical elements. We subsample the flow field to reduce the dimension of the flow field

being analyzed.

The effect of sub-sampling the turbulent flow field on the network measures is evaluated

by comparing the node strength distribution of various low resolution flow fields. A three-

dimensional flow field of Reλ = 40 with a grid resolution of 256 × 256 × 256 is used. We

sub-sample the data to various smaller grid resolutions and compute the node strengths, as

shown in figure C.1 (c). The node strength computed based on the non-dimensionalized edge

weight allows scaling of the distributions. The node strength distributions collapse into a

single distribution and converge with higher grid resolution. The kmax for each low-resolution

grid used in the node strength distribution computation is depicted in the energy spectra in

figure C.1 (d). The grid resolution using a 64×64×64 grid satisfies the kmaxη ≥ 1 condition.

Similar observations are also made for two-dimensional isotropic turbulence, as depicted in

figure C.1 (e). The results also demonstrate the application of network-based formulation
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Figure C.1: Collapse of node strength distribution with increase in Reynolds number for
(a) three- and (b) two-dimensional isotropic turbulence. (c) Convergence of node strength
distribution over sampling rate in three-dimensional turbulence of Reλ = 40. (d) Maximum
resolvable wave number for various grid resolution or sampling rate. (e) Convergence of node
strength distribution over sampling rate in two-dimensional turbulence of Reλ = 4930. (f)
Variation of enstrophy with vorticity threshold in two- and three-dimensional turbulence.
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from a discrete to continuous description of the flow field.

We only analyze vortical elements in the flow field with high vorticity, extracted through

vorticity threshold. The choice of the vorticity threshold of ωth = 0.05||ω(r)||∞ is given

by analyzing the effect of thresholding on the total enstrophy of the flow field, as shown in

figure C.1 (f). For both two- and three-dimensional turbulence, ωth = 0.05||ω(r)||∞ results

in retaining more than 98% of the enstrophy of the original flow field. This is similar to the

values used to analyze structures of high vorticity [67, 88], capturing the influential regions

of the flow.
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[27] G. Coppola, S. J. Sherwin, and J. Peiró. Nonlinear particle tracking for high-order
elements. Journal of Computational Physics, 172(1):356–386, 2001.

[28] R. De Smet and K. Marchal. Advantages and limitations of current network inference
methods. Nature Reviews Microbiology, 8(10):717–729, 2010.

[29] D. A. Donzis, P. K. Yeung, and K. R. Sreenivasan. Dissipation and enstrophy in
isotropic turbulence: resolution effects and scaling in direct numerical simulations.
Physics of Fluids, 20(4):045108, 2008.

[30] S. N. Dorogovtsev and J. Mendes. Evolution of networks: From biological nets to the
Internet and WWW. Oxford University Press, 2013.

[31] Y. Dubief and F. Delcayre. On coherent-vortex identification in turbulence. Journal
of Turbulence, 1(1):011–011, 2000.

[32] M. F. Eggl and P. J. Schmid. A gradient-based framework for maximizing mixing in
binary fluids. Journal of Computational Physics, 368:131–153, 2018.

89



[33] C. Foias and R. Temam. Gevrey class regularity for the solutions of the Navier–Stokes
equations. Journal of Functional Analysis, 87(2):359–369, 1989.

[34] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
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