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ABSTRACT OF THE THESIS

Maestro: Comprehensive, Multi-Stage Spectrum Identification in Protein Mass Spectrometry

by

Julie Standig Wertz

Master of Science in Computer Science

University of California, San Diego, 2017

Professor Nuno Bandeira, Chair

Tandem mass spectrometry has become a leading method of analyzing large-scale proteomics data,

necessitating fast and accurate computational methods of interpreting mass spectrometer output to identify

the contents of protein samples. A wide array of algorithms have been developed to this end – protein

database searches are a common approach, but other types of searches, such as spectral library searches,

and post-translational modification-based searches, may also be valuable tools. It is often advantageous to

run a single dataset through multiple algorithms, given that one search algorithm may be able to identify

spectra that other algorithms cannot identify, or identify certain types of spectra more quickly than other

algorithms. However, combining the results from multiple searches manually is time-consuming and prone

to error, and can make interpretation of the results difficult. The Maestro workflow is introduced here, which

runs spectra automatically through multiple search algorithms, aggregates the results, and produces in-depth

analyses and visualizations of the data. Maestro identifies a wide variety of peptides and modifications.
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Chapter 1

Introduction

1.1 Mass Spectrometry

Mass spectrometry is a technique used to analyze the molecular mass and composition of a sam-

ple. In order to perform this analysis, the mass spectrometer first ionizes the sample. Ionization can be

accomplished using various techniques, commonly electrospray ionization (ESI) [8] or matrix-assisted laser

desorption/ionization (MALDI) [14]. Using ESI, a solution containing the sample is transported through a

capillary tube, and a high voltage is applied. The charged molecules repel each other upon exiting the capil-

lary, and after evaporation of the solvent, individual molecules of the sample remain. ESI is a soft ionization

method, meaning that it generally does not cause fragmentation of molecular ions. MALDI is another soft

ionization method, in which the sample is applied to a matrix, and ions are then released from the matrix via

laser. Different ionization methods produce varying degrees of fragmentation and may differ in sensitivity,

and in how effectively certain types of samples can be ionized.

After ionization, a mass analyzer separates the ions by their mass-to-charge ratio. Types of mass

analyzers include quadrupoles, ion traps, time-of-flight, Fourier transform ion cyclotron resonance, and

magnetic sector analyzers. The type of mass analyzer used affects how accurately the mass-to-charge ratio of

each peak can be resolved, the range of mass-to-charge ratios covered, and how many spectra are generated

per time period. A given mass analyzer may only be compatible with certain ionization methods. Once the

ions have been separated by mass-to-charge ratio, a detector records the ion charge/ current, and a plot of
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intensity with respect to mass-to-charge ratio is produced.

1.2 Tandem Mass Spectrometry

In tandem mass spectrometry (MS/MS), ions at a specific mass-to-charge ratio are isolated and

fragmented. This entails multiple stages of mass analysis, with ion fragmentation taking place between

stages. The spectra obtained from the first round of MS are called MS or MS1 spectra and the spectra

obtained from the second round are called MS/MS or MS2 spectra. MS1 spectra are representative of

intact peptide (precursor) ions, before fragmentation, and MS2 spectra characterize the product ions that are

obtained after fragmentation. MS/MS can be performed either by combining multiple mass analyzers, or by

using a single mass analyzer and performing each stage of analysis in sequence.

Various fragmentation methods may be used. Collision-induced dissociation (CID) [31] utilizes

collisions between ions and neutral molecules to produce fragment ions. Electron-transfer dissociation

(ETD) [26] induces cation fragmentation via electron transfer, and works well for highly-charged ions and

long peptides. Higher-energy collisional dissociation (HCD) [23] is a type of CID used in conjunction with

certain ion trap mass analyzers. It can be advantageous to use CID over ETD when analyzing small and

singly-charged peptides, while ETD is preferable for large and multiply-charged peptides, and peptides with

post-translational modifications (PTMs).

MS/MS has become a common method of identifying the proteins in a sample. Proteins can be

identified by first purifying them, and digesting them into shorter peptides using a protease such as trypsin.

The peptides are then fragmented via MS/MS, and the mass-to-charge ratios of the fragments are analyzed.

The resulting spectra are characteristic of the peptides that produced them. Computational methods such as

sequence database, spectral library, and blind searches can be used to identify the peptide corresponding to

each spectrum.
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1.3 Clustering

Individual peptides are frequently seen in multiple spectra in tandem mass spectrometry datasets

(a single peptide may be repeatedly selected for fragmentation), creating redundancy when determining the

set of peptides in a sample. Spectra that are similar to each other (that presumably originate from the same

peptide) can be clustered together, so that once one spectrum in a cluster is identified, the other spectra in its

cluster receive the same peptide identification. Clustering often speeds up analysis considerably, by reducing

the number of spectra to be identified. It can also result in an increase in identifications, since the consensus

spectrum for a cluster can be higher-quality, and therefore easier to identify, than some of its component

spectra. Clustering can also reveal spectra that occur in multiple runs, even if they are not identified.

MS-Cluster is a clustering algorithm that is able to rapidly process large quantities of spectra [9].

The clustering algorithm starts with each spectrum as an individual node, and performs multiple rounds of

merging nodes above a certain similarity threshold. The threshold is decreased each round. When combining

spectra, a consensus spectrum is generated by combining the peaks in each spectrum in the cluster. To

produce a consensus peak for a peak common to multiple spectra, the scaled sum of the peak intensities

and a weighted average of the peak masses are used. Peaks that have low intensity relative to nearby peaks

are filtered out. A normalized dot-product is used to determine similarity between consensus spectra. Two

heuristics are used to improve clustering efficiency: pairs of spectra that have no overlap in their five highest-

intensity peaks are ignored, and spectral similarity computations from earlier rounds of clustering are taken

into account in later rounds.

1.4 Molecular Networking

Molecular networking [30] [29] can be used to identify groups of similar spectra using a spectral

networks-based approach [1] [13]. Spectral networks analysis avoids having to search spectra against a

database by creating pairs of peptides — peptides that differ by a single modification are paired, and peptides

for which one is a substring of the other are paired. Edges between the spectra corresponding to paired

peptides are created, forming a spectral network. The vertices of the network are clusters, and the edges are

3



cluster pairs.

Rather than using 3-to-4-amino acid tags to reconstruct the peptide sequence (as with database

search), 7-to-9-amino acid peptides can be looked up in a hash of the database. This means that when

identifying one spectrum in a spectral pair, the spectrum of the neighboring peptide can be used directly,

without searching a database to find the peptide that corresponds to the query spectrum. The peptides can

be reconstructed de novo.

Modifications are discovered by identifying a difference in parent mass between the spectra in a

spectral pair. Once a spectrum is identified, spectral networking allows the masses of modifications on

neighboring peptides to be found, as well as the approximate amino acids on which the modifications oc-

curred. Unannotated neighboring spectra are annotated using this information. Unannotated spectra paired

to the neighboring spectra are then annotated based on the annotations of the neighboring spectra. Annota-

tions are propagated with each iteration in this way until the search is completed.

Spectral networking has several applications. It can be used for shotgun protein sequencing, by

digesting a protein sample and forming a network from the resulting spectra. It also works especially well

when finding uncommon PTMs; these might not be included in a spectral library or sequence database, but

spectral networks analysis does not require knowing possible modifications in advance. Spectral pairing

confers certain advantages. The pairing of unmodified and modified peptides helps to reduce noise. The

spectral pairing approach takes advantage of the pairing of overlapping peptides, which is beneficial when

processing nontryptic peptides, and tryptic peptides paired with semitryptic peptides. A disadvantage of

spectral networking is that it has difficulty distinguishing modifications with small offsets from noise.

1.5 Database Search

A common method of identifying the peptides represented by mass spectra is to perform a sequence

database search [2] [4] [7] [11] [27]. This involves comparing each spectrum to a database of known protein

sequences (often in FASTA format) belonging to the organism of interest. Common contaminants, sequences

containing mutations, and decoys are often included in the database.

In order to ascertain a peptide from a spectrum, the chain of differences in mass-to-charge ratio
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between spectrum peaks is considered. Specific sequences of differences are known to correspond to certain

peptides of length 3 to 5 amino acids, known as peptide sequence tags. The protein sequences in the database

are virtually fragmented using same the fragmentation method that was used to process the original protein

sample. Only database peptides that have a similar mass to the precursor mass are considered as matches;

a parent/ precursor mass tolerance threshold defines how similar these two masses need to be. The optimal

setting for this parameter depends on the accuracy of the MS1 mass analyzer.

The peptide sequence tags inferred from a spectrum are combined with the flanking masses and

compared to the fragmented database protein sequences with appropriate parent mass in order to find the

protein sequence that corresponds to that spectrum. Using this method allows for the discovery of post-

translational modifications, since the mass of the inferred peptide will differ from the database mass if a

PTM is present. PTM discovery requires that peptides with certain characteristic mass deviations relative

to query spectra be included as candidates for spectrum identification. Possible sources of mass deviation

include static mass changes to residues (such as cysteine alkylation), or changes that may occur on some

residues and not on others (such as oxidation and lysine methylation).

In order to score peptide-spectrum matches, the query spectrum is compared to the spectrum pre-

dicted based on a given database peptide sequence. The number of matching peaks and peak intensities,

possibly ignoring low-intensity peaks, are taken into account in computing the score. A shift in mass-to-

charge ratio of one spectrum relative to the other may be applied. The scoring algorithm may also take into

account how much better the best match is than other matches.

1.6 Library Search

In order to obtain high specificity in identifying the peptides corresponding to MS/MS spectra, it

can be advantageous to perform a spectral library search [5] [20] [25] [34]. With this method, each query

spectrum is compared to a library of previously-identified spectra collected under similar conditions, and the

similarity between pairs of spectra is examined in order to match the query spectrum to a library spectrum.

This type of search was originally used to identify small molecules, but has since proven useful in identifying

proteins, as well.
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In order to create a spectral library, a protein sample obtained from the organism of interest is an-

alyzed using a method such as sequence database search. Multiple spectra are usually obtained for each

library peptide. One method of combining the peptides corresponding to each spectrum is to create a con-

sensus spectrum averaging the individual spectra, thus lowering redundancy and reducing the amount of

noise in the library spectrum. High-quality spectra are often weighted more heavily than low-quality spectra

in forming a consensus. Spectra with more replicates are more likely to produce a high-quality consensus

spectrum, and are usually more likely to be included in a library than spectra with fewer replicates. (Some

libraries exclude spectra with no replicates.) Alternatively, the highest-quality spectrum is sometimes re-

tained in the library instead of forming a consensus. This method generally results in lower-quality spectra

than the consensus method. Comprehensive spectral libraries are available from various sources, notably the

National Institute of Standard and Technology (NIST). One disadvantage of performing a spectral library

search is that it limits the number of modified peptides that can be identified, since spectral libraries typically

include few spectra representing modified peptides.

In computing the similarity between a library and query spectrum, it is important to allow for the

matching of spectra that are not completely identical — factors such as noise and contaminants can cause

two spectra to be slightly different from each other, even though both spectra represent the same peptide.

However, if this similarity threshold is set too low, there is an increased likelihood of an experimental

spectrum being incorrectly matched to a library spectrum that does not correspond to that peptide. In order

to maximize the number of correct matches while minimizing the number of incorrect matches, spectra can

be preprocessed to remove low-quality spectra and low-intensity peaks.

A scoring function can be applied to quantify the extent to which two spectra are similar. One way

to compute score is to bin peak intensity by mass-to-charge ratio, resulting in an intensity vector with one

entry for each bin. The intensity vector of one spectrum is then compared with the intensity vector of the

other spectrum in order to determine similarity. By comparing vectors, the number of peaks shared between

the two spectra (which does not take intensity into account), and the dot product (cosine) of the two vectors

(which strongly weights intensity) can be computed, for instance. How much better the best match of a

library spectrum to a query spectrum is than other matches is also an indication of the quality of the match
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(this difference will generally be large for a good match).

The score boundary between a spectrum being considered unidentified and considered identified is

often defined by target-decoy searching. This involves including decoy spectra in the library that are not

intended to match with any of the query spectra. A target ratio of false (decoy) matches to real (target)

matches is set, and the score cut-off is determined accordingly. The decoy-to-target ratio is called the false

discovery rate (FDR).

1.7 M-SPLIT

Mixture-Spectrum Partitioning using a Library of Identified Tandem mass spectra (M-SPLIT) is a

spectral library search method that allows for the identification of spectra generated from individual peptides,

as well as from mixtures containing two different peptides [28]. This type of mixture can arise when two

peptides elute from the chromatography column at similar times, which can occur due to PTMs, for instance.

M-SPLIT allows for more spectra to potentially be identified for a given amount of time spent on data

collection than a search method which does not handle mixtures, and is effective at peptide ratios of up to

10:1 (although at higher ratios it becomes more difficult to distinguish peaks produced by the less-abundant

peptide from noise).

In order to identify a mixture spectrum, the mixture is represented as a linear combination of in-

dividual library spectra. It is very time-consuming to search all pairs of spectra in the spectral library to

determine which two comprise the mixture corresponding to a given query spectrum. Therefore, projected

cosine-based filtration and branch-and-bound strategies are employed to reduce the number of candidate

spectrum pairs. Projected cosine filtration constrains the number of individual spectra considered, while the

branch-and-bound strategy constrains the number of pairs of spectra that are considered as matches to the

query mixture spectrum.

When considering the similarity between a library spectrum and a query mixture spectrum, the query

spectrum peaks that do not correspond to any peak in the library spectrum (which might arise from the other

mixture component) are ignored. After subtraction of non-shared peaks, the cosine similarity of two spectra

is determined. Using this projected cosine-based method, the library spectra which best correspond to the

7



query mixture spectrum are retained, while lower-scoring spectra are eliminated from consideration.

In order to perform branch-and-bound filtration, library spectra are sorted by cosine similarity to

the query mixture spectrum. Every spectrum paired with a possible correct spectrum will have a cosine that

is close to the highest cosine; specifically, the upper bound on the cosine will be greater than the highest

cosine. Thus, the library spectrum with highest cosine similarity to the mixture spectrum is paired with

other library spectra until a spectrum is found such that the upper bound of the cosine of the pair of library

spectra with respect to the mixture spectrum is lower than the current highest cosine of any library spectrum

pair with respect to the mixture spectrum. The original highest-similarity spectrum is then deleted from the

library, and the process is repeated with the new highest-similarity spectrum.

In order to calculate cosine similarity between the mixture spectrum and library spectra, it is im-

portant to accurately estimate the ratio of the abundance of one library individual peptide spectrum to the

abundance of the other library spectrum. One method of making this estimation is to remove peaks from

the mixture spectrum that are in the library spectrum of the dominant peptide, and to calculate the ratio

from the residual spectrum. It is also feasible to choose the ratio that maximizes cosine similarity between

the mixture spectrum and the combination of library spectra. (This method performs better with uneven

mixtures than the residual spectrum method.)

A given query spectrum must be established as either unidentified, as a single-peptide spectrum, or

as a mixture spectrum. If the mixture cosine similarity is significantly higher than the cosine similarity for

either individual library spectrum with respect to the query spectrum, the query spectrum is identified as

a mixture. If the cosine similarities for both individual library spectra are low, the spectrum is considered

unidentified.

1.8 MS-GF+

MS-GF+ [18] is a general-purpose sequence database search algorithm that extends MS-GFDB [17],

which extends MS-GF (Mass Spectrometry - Generating Function) [16]. It works with several different

fragmentation methods and enzymes. MS-GF+ can recognize post-translational modifications, which are

specified as an input to the search.
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In order to match peptides in the database with query spectra, a suffix array of the database is

created, and each peptide in the suffix array is compared to spectra with a matching precursor mass. The

quality and statistical significance of peptide-spectrum matches must then be determined. The spectrum is

converted into a spectral vector (prefix residue mass spectrum), which has a score associated with each mass

less than or equal to the parent mass. (This score is related to the probability that the peptide represented

by the spectrum has a prefix with the given mass.) Masses are rounded to the nearest integer so that scores

can be calculated quickly, and rescaled in order to reduce rounding errors. The score of a peptide-spectrum

match is defined as the dot product of the vector representing the prefix residue mass spectrum and the

vector representing the spectrum of the peptide. The statistical significance of each peptide-spectrum match

is calculated using an E-value, based on the score distribution of all peptides.

In order to adhere to a given false discovery rate, a decoy database is generated by reversing each

protein in the target database, and concatenated to the target database. The search is performed against the

combined database, and an E-value threshold is chosen such that the given false discovery rate is maintained.

1.9 MODa

MODification via alignment (MODa) is a search algorithm that focuses on improving identification

of spectra obtained from samples containing modified peptides [21]. Whereas most search methods require

that possible PTMs be specified prior to the search, MODa does not have this requirement. Rather, MODa

is an unrestrictive/ blind algorithm, meaning that PTMs are determined directly from experimental data and

every PTM type is searched for simultaneously. Using an unrestrictive algorithm often means that a large

proportion of spectra receive the wrong peptide identification (these identifications are referred to as false

positives), or fail to be identified by the search (false negatives), at a given FDR. The possibility of multiple

PTMs occurring on a single peptide also introduces a large amount of variability in the possible composition

of the peptide including PTMs, compounding the issue of false negatives and false positives.

Despite the large search space, MODa performs a comparatively fast and accurate unrestrictive

search, and constrains the number of false negatives and false positives. These results are achieved in

part by inferring multiple 2-to-4-amino acid sequence tags from each spectrum and aligning those to a
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protein database. Using sequence tags means that fewer database peptides need to be considered as matches

for each spectrum, and also allows for PTMs to be identified by calculating the mass differences between

experimental and theoretical peptides (this alignment is performed using dynamic programming).

The MODa algorithm addresses the possibility of multiple PTMs occurring on a single peptide

by allowing for an unlimited number of modifications per peptide (peptides with more than one different

tag indicate the presence of database peptides with multiple PTMs). MODa is particularly useful when

attempting to identify new or uncommon PTMs, since many other unrestrictive searches run slowly, and

searches that require specifying PTMs in advance are unlikely to identify rare PTMs.
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Chapter 2

Maestro Workflow Implementation

2.1 Workflow Overview

Each method of peptide identification has advantages over other methods, in terms of speed, flexibil-

ity, specificity, and other metrics. Thus, when analyzing a set of spectra, it is beneficial to combine multiple

types of searches in order to efficiently identify as many peptides as possible. It is also important to provide

automatic analysis and visualization of the search results in order to allow for the user to easily focus in on

interesting data, obtain a summary of the results, acquire in-depth information about each spectrum/ cluster/

network, or meet other objectives.

The Maestro workflow was created to this end, and combines the previously-described M-SPLIT,

MS-GF+, and MODa algorithms into a single, comprehensive workflow. The workflow starts by pre-

processing spectra and clustering them using MS-Cluster. M-SPLIT is then run on all spectra, MS-GF+

is run on the spectra that were not identified by M-SPLIT after FDR filtering, then MODa is run on the

spectra that were not identified by M-SPLIT or MS-GF+ after FDR filtering. MODa is run with a reduced

database that contains only proteins corresponding to clusters identified by M-SPLIT or MS-GF+. Peptide

variant-level FDR is performed on the clusters passing cluster-level FDR, to determine which variants were

identified. Molecular networking is not directly used for identification, but is performed alongside the three

identification algorithms for verification purposes. Extensive data analysis and compilation of the results

from the search algorithms, clustering, molecular networking, and other workflow nodes, is added to the
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end of the workflow. The main workflow is shown in Figure 2.1(a). The result view generation part of the

workflow is shown in Figure 2.1(b).

Figure 2.1 a) Main workflow. Spectra are clustered with MS-Cluster, and M-SPLIT library search is run
on the full set of clusters. The M-SPLIT PSMs are FDR-filtered, and MS-GF+ database search is run on
the clusters that were not identified by M-SPLIT. The MS-GF+ results are FDR-filtered, and MODa blind
search is run on the clusters that were not identified by either M-SPLIT or MS-GF+. Variant-level FDR
is performed on the set of combined PSMs from the three algorithms. Additionally, spectral networks are
created from the set of clusters, and spectral counting is performed based on the group membership of the
input spectra.
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Figure 2.1 b) Creation of result views. At the conclusion of the search, the PSMs from each algorithm
are combined with spectral networking results, as well as information about each spectrum. Per-spectrum
results are created. Peptide modifications are converted into a standard format, and spectral counting is
performed based on the group membership of each spectrum. These processed results are further processed
in order to create several result views, including per-peptide and per-cluster views, a spectral networks view,
a search summary page, a network pairs view, and a peptide pairs view.

2.2 ProteoSAFe Environment

The computational mass spectrometry platform ProteoSAFe (Proteomics Environment which is

Scalable in utilizing distributed computing, Accessible via reconfigurable, easy-to-learn user interfaces, and

Flexible in tool chaining) was used to create and run the workflow. ProteoSAFe allows for developer-created

tools to be combined into workflows via XML workflow designations.

To run a workflow, first the user selects a workflow from the menu. Parameters for that particular

workflow are displayed. The user selects values for these parameters, and submits the task. A graphic all of

the nodes (tools) in the workflow, with colors indicating how far the task has progressed, is then displayed.

If a node has a green border, that indicates that the task has completed. Nodes in progress are displayed

with an orange border, and nodes with a black border have not yet been run. Each tool in the workflow is

run on a computing cluster, and execution may be parallelized on a per-file basis. A running or completed

task has a "Clone" button, which directs the user to the input form, filled out with the exact parameters used

for the task. This is useful for seeing what parameters were used for a task, and for re-running a task with
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minor changes. Tasks may also be restarted (which is useful in case a task encounters an error which was

subsequently fixed), and deleted.

Once a task has completed, result views are displayed. One type of available result view is a server-

side table with customizable columns, filtering and sorting functionality, and various other features. Pro-

teoSAFe can invoke Lorikeet (see below) to display spectra from within these tables.

The implementation of each tool unique to this workflow will be described in detail. Pre-existing

tools that are important to the workflow will be mentioned, as well.

2.3 Mass Correction, Charge Correction, and Kullback-Leibler Filtering

Precursor mass and charge correction are performed by precursor isotopic patterns in MS1 survey

scans considering that a) the assigned precursor mass could be 1 isotope below or up to 3 isotopes above

the theoretical mass of the peptide and b) the precursor charge is in the range of 1 to 5. Precursor mass and

charge are then assigned by minimizing the Kullback-Leibler (KL) distance between the experimental and

the theoretical isotopic patterns at each precursor mass/charge; theoretical distributions are calculated using

averagine masses [22].

The workflow can also remove spectra whose precursor isotope patterns are not similar enough to

the theoretical isotope pattern or not free from interference (e.g., coeluting precursors). The parameter "KL

Filtering Threshold" (under "Advanced Filtering Options") indicates the KL threshold for the maximum

divergence between the experimental and theoretical isotope patterns, where the theoretical distributions are

calculated using averagine masses (as for precursor mass/charge reassignments) and also required to have

zero intensity between theoretical isotope peaks. Spectra from precursors with isotope patterns having a KL

divergence above the threshold are removed from further analysis. If the KL filtering threshold is set to 0,

no spectra are filtered out, but mass correction and charge correction are still performed.
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2.4 Clustering

If the "Run MS Cluster" parameter is selected, similar spectra are clustered together via the MS-

Cluster algorithm.

2.5 Molecular Networking

Spectral networks are created from the spectral clusters. Each network node (cluster) contains

associated information such as the consensus spectrum, cluster index, parent mass, number of spectra in the

cluster, default groups to which the cluster belongs, charge, and peptide identification (if the cluster was

identified). Each network pair (pair of nodes connected by an edge) also contains associated information,

such as the cosine and difference in mass-to-charge ratio between the two clusters. These spectral networks

can be used for several purposes, including manually validating clustering and identifications, inferring

identifications for clusters that were not identified or that were incorrectly identified, and exploring peptide

diversity.

2.6 Tag-based Pair Filtering

First, spectra are deconvoluted (peaks are converted to charge 1). If "Tag-based Pair Filter" in the

input form is set to "yes", a tag file is generated. The number of tags per spectrum is also specified in the

input form. Spectral pairs are then filtered, using tags if they were generated.

2.7 Parallelization on Spectrum Files

An MGF-format file with the combined contents of the mass-corrected input spectrum files, is split

into 20 smaller MGF files, assuming that the original file is sufficiently large. These smaller MGF files are

used as inputs during further workflow steps that use input spectra, since it is convenient for input spectrum

files to be in MGF format, and the division of input files allows for per-file parallelization.

15



2.8 M-SPLIT

An M-SPLIT spectral library search is then performed on the spectra. The M-SPLIT results from

each file are merged and filtered according to the spectrum-level false discovery rate specified by the user.

A support vector machine (SVM) is used to determine significance of the results. This step is performed

using the SVM-Light package. FDR filtering is performed separately on non-mixtures/ first components of

mixtures (using the SVM1 score), and second components of mixtures (using the SVM2 score).

2.9 Subtraction of Identified Spectra

Spectra identified by M-SPLIT are eliminated from further processing by creating copies of the

input spectrum files that exclude the spectra identified by M-SPLIT. This decreases the number of spectra

run through subsequent search algorithms, which allows those searches to run faster.

2.10 MS-GF+

After removal of the spectra not identified by M-SPLIT, an MS-GF+ sequence database search is

performed on the remaining spectra, followed by spectrum-level FDR filtering based on E-value.

2.11 MODa

Spectra that were identified by MS-GF+ are removed. A reduced database is created that contains

only proteins corresponding to clusters identified by M-SPLIT or MS-GF+. This strategy can speed up

MODa analysis, and is likely to produce more results at a given FDR than would be obtained with the

full database. A MODa search is then performed on the spectra that were not identified by M-SPLIT or

MS-GF+ against the reduced database, followed by spectrum-level FDR filtering. When performing FDR

filtering, results are split by charge state and tripticity (whether the peptide has 0, 1 or 2 proper N-terminal

and C-terminal tryptic cleavages, using a probability value between 0 and 1 computed by MODa).
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2.12 Standardization of Peptide Modification Format

Peptides identified by all three algorithms are converted to a standard format. Non-N-terminal

modifications are converted to the form (m, n), where m is the residue on which the modification occurs and

n is the offset. N-terminal modifications are changed to the form [n]. Default flanking residues (hyphens)

are added to peptides that lack flanking residues. All cysteine residues in each peptide string are modified

with the protecting group mass if not otherwise modified.

2.13 Protein Reassignment

Since some algorithms only output a single protein containing a given peptide, the list of all proteins

corresponding to each peptide must be found separately. Each peptide is mapped to the protein database,

and a column containing a semicolon-separated list of all of the proteins containing the peptide string is

added to the result files.

2.14 MzTab Conversion

An MzTab-formatted result file [12] is created based on the identified raw input spectra.

2.15 Peptide Variant Analysis

If a group of peptides have the same amino acid sequence, and the sum of their modification mass

offsets are within the parent mass tolerance of each other, these peptides are considered to represent the same

variant (and therefore belong to the same variant group). Variant analysis is used instead of peptide analysis

because modifications are often localized incorrectly, and it is difficult to determine whether modifications

are accurate without manually inspecting the spectra. Any two peptides in the same variant group may

contain the same underlying modification.

A variant-level false discovery rate (as specified in the input form) is used to determine which vari-

ants to output. This is calculated using the q-score, which is comparable across different search algorithms,
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and is defined as the ratio of target matches to decoy matches at or above the current position in the list of

peptide-spectrum matches sorted by score or E-value. Q-scores are obtained separately from the spectrum-

level false discovery rate results for non-mixtures/ first components of mixtures identified by M-SPLIT,

second component of mixtures identified by M-SPLIT, MSGF+, and MODa. The peptide-spectrum match

with the highest q-score for a given variant is chosen as the representative of that variant. The q-score

threshold is then determined using the representative target and decoy peptide-spectrum matches, and the

variants passing the threshold are retained.

Peptide variant regions (PVRs) are computed based on the variant-level FDR output. A PVR is a

region of a protein where at least half of each identified peptide in the region overlaps with another identified

peptide in the region.

2.16 Peptide Pair Categorization

MS-GF+ and MODa peptides are grouped into one (or more) of 7 categories by comparing them

with peptides identified by the other searches. Peptides identified by MS-GF+ are compared with peptides

identified by M-SPLIT, and peptides identified by MODa are compared with peptides identified by M-

SPLIT and with peptides identified by MS-GF+. The possible categories for an MSGF+-MSPLIT peptide

pair (meaning that each MS-GF+ peptide is being grouped with respect to the set of M-SPLIT peptides) are

as follows:

Category 0: The MS-GF+ peptide has exact same sequence, the same number of modifications, and

the same charge as an M-SPLIT peptide.

Category 1: The MS-GF+ peptide has the exact same sequence, the same number of modifications,

and a different charge from an M-SPLIT peptide.

Category 2: The MS-GF+ peptide sequence is contained within an M-SPLIT peptide sequence.

Category 3: An M-SPLIT peptide sequence is contained within the MS-GF+ peptide sequence.

Category 4: An M-SPLIT peptide has the exact same sequence and more modifications than the

MS-GF+ peptide.
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Category 5: An M-SPLIT peptide has the exact same sequence and fewer modifications than the

MS-GF+ peptide.

Category 6: Exactly one residue is changed to another in the MS-GF+ peptide with respect to an

M-SPLIT peptide.

Category 7: Other.

The categories for the other two types of peptide pairs (MODA-MSPLIT pairs and MODA-MSGF+

pairs) are defined analogously. It is possible for one peptide to be in multiple categories (e.g., an MS-GF+

peptide is identical to one M-SPLIT peptide and is a substring of another M-SPLIT peptide).

2.17 Grouping/ Counts: Aggregation of Results from Each Search

Information from the M-SPLIT, MS-GF+, and MODa searches, as well as group mapping, cluster

and network information files, is compiled into four files containing extensive information about each cluster.

A file containing clusters identified by cluster-level FDR, a file containing peptide variants identified by

variant-level FDR, and a file containing proteins for which component variants were identified, are produced.

Two versions of the cluster-level FDR file are produced, one in which each mixture component is listed in a

separate row, and one in which mixtures are listed as single-line entries with exclamation-point delimiters.

These output files are directly shown in various result views, including the "Identified Clusters", "Identified

Variants", "Identified Variants (Merged Protein Regions)", and "Identified Proteins" views (see below).

To perform spectral counting, the number of spectra for each variant (variant spectrum count) is

calculated by adding up the spectra in the clusters identified as that variant. The variant spectrum count

is stored separately for each default and user-defined group, so that the spectra per variant in each group

can be determined in addition to the total spectra per variant. The overall and per-group protein spectrum

counts, and overall and per-group unique protein spectrum counts (in which the peptide maps only to a single

protein) are determined in the same way. Variant, protein, and unique protein spectrum counts are calculated

separately aggregating over clusters and aggregating over variants. This produces spectrum counts for each

cluster (to be used in result views that group by cluster) as well as for each variant (to be used in result
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views that group by variant). For the latter, the protein and unique protein spectrum counts are calculated

using the protein for each non-merged variant (rather than the list of all proteins) and sum over each cluster

corresponding to the peptide, not just the representative cluster for the variant. Variant counts are only

summed over the representative cluster for the variant, not all clusters identified as the variant. Outlier

default and user groups are determined by taking the base-2 logarithm of the ratio of the highest number of

spectra in a group to the second-highest number of spectra in a group, or the lowest number of spectra in a

group to the second-lowest number of spectra in a group, whichever has greater absolute value (100 is used

in place of infinity and -100 is used in place of negative infinity). The outlier group is considered to be the

group with the largest absolute outlier group ratio.

Each output file contains for each cluster/ variant/ protein the algorithm, filename, cluster index,

peptide, unmodified peptide, identification charge, groups to which the cluster belongs, number of network

neighbors, user groups, default groups, proteins, precursor charge, number of network neighbors for the

peptide, number of network neighbors for the variant, number of network neighbors for the protein, number

of modifications, sum of modifications, list of modifications, start amino acid on the protein, end amino

acid on the protein, variant group, spectral network component index, spectral network component indices

for the variant, protein region, FDR, spectral probability, MQ score, exact mass, variant-level FDR, variants

per unmodified peptide, cluster indices corresponding to the variant, spectral counts, and other information.

Total and per-default and per-user group counts and outlier groups and outlier group ratios are output for

clusters, peptides, peptide variants, proteins, and unique proteins (proteins for which the peptide maps only

to that protein).

2.18 Spectral Networks

An interactive spectral network visualization is created from the nodes and edges in the network,

and the spectrum identifications, using JavaScript code that invokes Cytoscape. This code makes use of the

Cytoscape.js library [10].
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2.19 Variant Networks

Peptide variant networks are created from spectral network nodes and edges. This is done by merg-

ing the spectral network nodes corresponding to each variant group into a single node. The edge with the

highest cosine is chosen as the representative edge between variant nodes. Edges between variants that do

not have any protein variant regions in common, are removed. Network components containing the same

unmodified peptide are merged. Variant networks consist only of identified nodes.

2.20 Network Pair QC

Actual and theoretical network edges are output by this tool. For each network pair, the output shows

basic information about each PSM in the pair, and indicates whether the pair is present in the network, and

whether the pair is correct.

2.21 Summarization of Results

This tool produces an HTML file containing the overall statistics displayed in the "Summary Re-

port" result view. The precursor charges and default groups corresponding to each cluster index are obtained

from a cluster information file. The modifications searched for during MS-GF+ are obtained from a param-

eters file. Each type of modification has a name, an offset, residues, and options associated with it, which

are included in the tool output. The Spectrum Counts output file is parsed to obtain the number of raw and

identified spectra for each precursor charge, number of clusters for each precursor charge, number of clus-

ters identified by each workflow (M-SPLIT, MS-GF+, and MODa) for each precursor charge, and unique

unmodified versions of peptide sequences in each group. The fifteen most common mass offsets, and the

number of occurrences of each, are also included in the output file.
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2.22 Spectrum Viewer

Lorikeet is a JQuery plugin for visualizing, annotating, and analyzing MS/MS spectra, and works

with both unmodified and modified peptides [24]. The spectrum filename, scan number, and peptide annota-

tion may be passed as parameters to Lorikeet. When a Lorikeet icon in a ProteoSAFe result table is clicked,

an image of the annotated spectrum is shown. The user can change the annotation, choose which type of ions

to display, change the scaling of the spectrum, and manipulate various other spectrum parameters. Peptide

peaks that are present in the spectrum are highlighted with colors corresponding to the ion type. Peptide

modifications are supported.
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Chapter 3

Running the Maestro Workflow

In order to run the workflow, the first step is to visit the ProteoSAFe website and to select "Maestro"

from the Workflow category. The following parameters are then specified:

3.1 Basic Options

Spectral library: The spectral library is matched to experimental spectra during the M-SPLIT por-

tion of the search. Built-in NIST, SWATH Atlas, and MassIVE-KB libraries are present in the CCMS_SpectralLibraries

directory in the Select Input Files window.

Spectrum files: At least one input MS/MS spectrum file is required. Possible formats include

mzXML, MGF and mzML. If spectrum files are grouped using default groups G1 through G6, or using

groups specified in a group mapping file uploaded by the user, group-specific results and statistics will be

provided after completion of the search. Spectra derived from the same type of tissue might be grouped

together, for instance.

Sequence database: Experimental spectra are compared to the sequences in the selected protein

database. Built-in human, mouse, and yeast Uniprot databases are present in the CCMS_ProteomeDatabases

directory in the Select Input Files window.

Group mapping: A group mapping file can be used instead of or alongside assigning default groups

in the input file selection window. A maximum of 16 user-defined groups will be displayed in result views,
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although downloaded result view files will contain all groups.

Attribute mapping: An attribute file can be used to further organize groups, in which case the at-

tributes will appear as columns in the output.

Instrument: The type of tandem mass spectrometer used to generate the spectra. Options are ESI-

ION-TRAP and QTOF. The instrument type is used to determine scoring.

Cysteine protecting group: The modification that was made to the cysteine residues in the protein

sample in order to decrease cysteine side-chain reactivity. Options are carbamidomethylation (+57), car-

boxymethylation (+58), NIPIA/NIPCAM (+99), and none.

Number of allowed 13C: The number of mass units by which the molecular ion peak can be shifted.

Carbon-13 (a naturally-occurring isotope) shifts the molecular ion peak one mass unit higher. Options are 0

through 2.

Parent mass tolerance: Parent mass tolerance (PMT) is the maximum precursor mass difference be-

tween a known spectrum and a query spectrum, in order for them to be considered as a possible match. PMT

can be specified in daltons (absolute units) or parts per million (fractional units), and should be determined

based on the accuracy of the mass analyzer. For certain types of mass analyzers, mass accuracy might differ

between higher and lower masses, in which case it is preferable to specify mass tolerance in ppm. PMT is

specified separately for M-SPLIT, MS-GF+, and MODa, and peptide variants.

Fragmentation method: Method by which molecular ions were fragmented. Options are "Specified

in spectrum file", "CID", "ETD", "HCD", and "Merge spectra from the same precursor". The last option

indicates that multiple spectra were acquired from the same precursor ion (CID/ETD pairs may have been

obtained, for instance), and that the aggregate spectrum should be searched instead of the individual spectra.

Protease: The enzyme used for protein digestion. Options are trypsin, chymotrypsin, Lys-C, Lys-N,

Arg-C, Glu-C, Asp-N, and none. During database search, the protein database is virtually digested using

this enzyme to obtain the known PSMs.

Number of allowed non-enzymatic termini: Maximum number of termini that do not match the

cleavage specificity of the selected enzyme. PSMs with non-enzymatic termini receive a lower score. Op-

tions are 0 through 2.
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Ion tolerance: Maximum shift of b and y peaks from expected masses, in daltons. Ion tolerance is

important (along with parent mass tolerance) in reducing false positive identifications.

Include common contaminants: If this parameter is selected, common contaminants (trypsin and

keratin) are included in the database used for database search.

Clustering on/ off: If selected, similar spectra will be clustered together using the MS-Cluster algo-

rithm at the beginning of the workflow.

Minimum cluster size: The minimum number of spectra in a cluster for the cluster to be retained.

3.2 Advanced Spectral Network Options

Minimum pair cosine: The score threshold in order for a pair to be accepted in the network.

Maximum connected component size: The maximum size of a connected component in order for it

to be included in the network. For networks that are larger than this size, the network will be divided into

smaller networks by increasing the cosine threshold for the particular network.

Minimum matched peaks: The minimum number of common peaks between two spectra for inclu-

sion in the network.

Apply tag-based pair filter: Whether to use tags to filter network edges.

Number of tags per spectrum: Minimum tag size to use for tag-based network pair filter.

Deconvolute MS/MS: Convert multiply-charged peaks to a charge state of 1.

3.3 Advanced Filtering Options

PSM-Level FDR: The false discovery rate (FDR) is used for statistical validation of the results and

is defined as the target ratio of decoy (false) matches to target matches. The FDR determines the score

threshold of spectrum or peptide matches, in order for a spectrum to be considered identified. FDR is

specified separately for M-SPLIT, MS-GF+, and MODa.

Variant-Level FDR: Variant-level FDR used to filter results from each algorithm. This is specified

separately for M-SPLIT, MS-GF+, and MODa.
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Overall Variant-Level FDR: Variant-level FDR used to filter combined results from all three algo-

rithms.

Standard deviation for peak filtering: The least intense spectrum peaks (relative to the 25 percent of

peaks with lowest peak intensity) are filtered out according to this parameter.

Filter precursor window: If selected, peaks near the precursor mass are removed.

Filter peaks in 50Da window: If selected, every peak that is not within the top 6 most intense peaks

in the range from 50 daltons below its mass-to-charge ratio to 50 daltons above, will be removed.

Minimum peak intensity: The lowest possible intensity in order for a peak to be retained in a spec-

trum.

M-SPLIT SVM1 Threshold: M-SPLIT PSMs with SVM1 scores below this threshold will be fil-

tered out prior to FDR calculation.

KL Filtering Threshold: Spectra with a Kullback-Leibler divergence above this value will be filtered

out at the beginning of the workflow.

3.4 Allowed Post-Translational Modifications

MODa Blind mode: Options are blind search and multi-blind search. For blind search, only one

modification per peptide is allowed, whereas for multi-blind search, multiple modifications can occur on a

single peptide.

Modification mass range: The mass range of modifications to be considered. Specified in daltons.

Maximum number of PTMs per peptide: Indicates specifically how many PTMs can occur per pep-

tide (as opposed to blind mode, which indicates only whether one or more than one modification per peptide

is permitted).

PTMs: Possible post-translational modifications to be considered. Options are oxidation, lysine

methylation, pyroglutamate formation, phosphorylation, N-terminal carbamylation, N-terminal acetylation,

and deamidation. The user can also specify custom modifications.
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Chapter 4

Maestro Result Views

4.1 Search Result Summary

This view is a good place to start when looking at results, and is an HTML file consisting of sev-

eral tables. The first table displays overall information about the search, such as how many spectra were

searched and identified, how many spectra are in networks, how many clusters were created and identified,

and how many variants and proteins were discovered. These numbers are listed in total, and per charge

(Figure 4.1(a)). The prevalence of searched modifications is shown in the next table. It lists each searched

modification, and how many PSMs containing that modification were found (Figure 4.1(b)). The prevalence

of discovered modifications is shown in the next table. The number of PSMs and variants at various mass

offsets, and the most common amino acids on which each mass offset occurs, are listed. This may be used

to discover modifications that were not searched, but should have been (Figure 4.1(c)). Three tables relating

to spectral networks are shown. One shows network size with respect to percent identified. Networks with

many spectra, but a low percent identified, suggest the presence of non-peptides or peptides missing from

the library and database. The other network tables help assess the accuracy of networking. The number

of true positive, false positive, and false negative network pairs are displayed, along with the precision and

recall for different cosine thresholds. This information can be used, for instance, to decide on an appropriate

cosine threshold for finding rare modifications (Figure 4.1(d)). The groups section gives insight into how

many differentially-present peptides and proteins were found in each group, was well as which groups tend
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to co-occur in clusters. One table in this section shows the number of peptide sequences, variants, proteins,

and unidentified clusters in each group, and can be filtered by spectrum count and group outlier ratio. An-

other lists the number of clusters that contain spectra from each top combination of groups (Figure 4.1(e)).

A peptide section shows the similarity between peptides identified by different search algorithms. A table

shows each combination of algorithms, and the number of peptide pairs for which the two peptides are the

same, the peptides are the same but have different charges, one peptide is a substring of the other, one pep-

tide has more modifications than the other, one amino acid is changed in one peptide with respect to the

other, and none of the above (Figure 4.1(f)).
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Figure 4.1 a) Identification Results section of the Summary Report view
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Figure 4.1 b) Searched Modifications section of the Summary Report view.
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Figure 4.1 c) Discovered Modifications section of the Summary Report view.
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Figure 4.1 d) Spectral Networks section of the Summary Report view.
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Figure 4.1 e) Groups section of the Summary Report view.
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Figure 4.1 f) Peptides section of the Summary Report view.

4.2 Identified Clusters

This view contains the combined PSM-level results from all three search algorithms (Figure 4.2).

Basic information about each cluster is shown, as well as information useful for delving into the results.

Various spectral counting calculations are displayed for each cluster, such as the total spectra in the cluster,

the number of spectra per default group and user-defined group, and the number of spectra identified as the

variant. These numbers allow for an estimation of how frequently a given peptide occurred in the sample, and

which peptides might be group-specific. (The Identified Peptide Variants result view has more information

on this.) A link to a visualization of the spectral network containing the cluster is shown, allowing for easy

viewing of different versions of the peptide that are present in the dataset (e.g., different modifications).

The PSM and Variant FDR are also listed here, providing an indication of the confidence of the match. An

interactive visualization of each spectrum is shown, showing which peaks are matched by the annotation,

and allowing for the annotation, ion types, mass tolerance, and other parameters to be adjusted.
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Figure 4.2 Selection of columns from the Identified Clusters view.

4.3 Identified Peptide Variants

Peptides with the same sequence and a similar total modification mass are grouped together as a

peptide variant. This view contains each peptide variant in the dataset, and is useful for looking at the set

of variants for a given peptide sequence, or looking at the set of peptides that contain a given modification

mass. For each variant, the number of spectra assigned to the variant is shown, and this number is also

broken down by user-defined group and default group (Figure 4.3). The outlier group and outlier group ratio

are shown, providing an estimation of how group-specific the variant is. Sorting or filtering by the outlier

group ratio is useful for viewing the variants that are disproportionately present or absent in one group with

respect to the other groups. The number of variants corresponding to the peptide sequence is also displayed,

allowing an estimation of how diverse the peptide is. The view contains information about the protein region

(i.e., the region on the protein where the peptide occurs).
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Figure 4.3 Selection of columns from the Identified Variants view, showing highly-differential variants.

4.4 Identified Peptide Variants by Protein Region

This view can be used to look at peptides covering a region of interest in a protein (this region

may be a functional site, etc.), or peptides covering a certain amino acid sequence. This is the same as

the Identified Peptide Variants view, except that instead of each protein region for a given variant being

merged into one row, each protein region is listed in a separate row. This view also displays information

that the Identified Peptide Variants view does not – specifically, the start and end amino acid on the protein

(Figure 4.4).

Figure 4.4 Selection of columns from the Identified Variants per Protein Region view, showing variants and
corresponding regions for the protein sp|Q9NU97|UFSP2_HUMAN.

4.5 Identified Proteins

This view lists each protein that contains identified variants, and is useful for directly looking at

biologically-relevant information. For each protein, the number of spectra that map to it is listed, and

broken down by group (Figure 4.5). This can be used to look at which proteins are commonly seen in a

certain group (by filtering by the number of spectra present in that group). Since some peptide sequences

may map to multiple proteins, and therefore may not be indicative of the given protein, the number of spectra
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that uniquely map to the protein (i.e., do not map to any other proteins) is also shown.

Figure 4.5 Selected columns from the Identified Proteins view, showing proteins that have a high ratio of
spectra in group G1 to group G2, considering spectra that uniquely map to each protein.

4.6 Identified Protein Regions

This view can be used to get an overview of the protein regions present in the dataset. It lists each

protein region found, and the number of variants that map to it (Figure 4.6). Sorting by the number of

variants reveals which regions have the most coverage/ diversity.

Figure 4.6 Protein regions that have many corresponding peptide variants in the Identified Protein Regions
view.

4.7 Identified Spectra

All of the unclustered spectra that were are identified, are displayed here. This view may be useful

for looking at a cluster in depth (via its component spectra), or for looking at spectrum-specific information

such as original filename (which can be used to find experimental details), precursor intensity, and retention

time (Figure 4.7). Both the input spectrum and the cluster consensus spectrum are shown in the spectrum
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viewer. This view also contains identifications, and loads more quickly than the All Spectra view for large

datasets.

Figure 4.7 Identified Spectra view.

4.8 All Clusters

All clusters, whether identified or not, are listed in this view (Figure 4.8). This can be used to look

at clusters that did not get identified. This view also contains per-group spectral counting information. The

view can be filtered by mass or charge to narrow down results, or sorted by the number of spectra to see the

smallest/ largest clusters.

Figure 4.8 All Clusters view.

4.9 All Spectra

All spectra, whether identified or not, are listed in this view (Figure 4.9). This can be used to look

at spectra that did not get identified, and view these spectra in the spectrum viewer along with possible an-
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notations. Values such as precursor intensity, retention time, parent mass, and Kullback-Leibler divergence

are shown. The unannotated input spectrum and cluster consensus spectrum are displayed in the spectrum

viewer.

Figure 4.9 All Spectra view.

4.10 MzTab Result Files

It may be useful to have results in a standardized format, if further processing is required. This view

contains the results converted into the community standard mzTab format (Figure 4.10). These results can

be directly used for MassIVE dataset submission, running the Results Comparison workflow, etc.
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Figure 4.10 Selected columns from the PSM results within the MzTab Result Files view.

4.11 M-SPLIT Clusters

Since the overall views cannot include algorithm-specific columns, per-algorithm result views are

displayed. Each algorithm contains scores that are specific to it. In the M-SPLIT library search result views,

the query spectrum is displayed next to its matching library spectrum (Figure 4.11). The M-SPLIT result

views also show mixtures, which are separated into components in the overall views.

Figure 4.11 Selected columns from the M-SPLIT Clusters view, sorted by decreasing cosine score.
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4.12 M-SPLIT Peptides

This view has the same columns as the M-SPLIT Clusters view, but groups M-SPLIT identifications

by unmodified peptide instead of showing each cluster individually.

4.13 M-SPLIT Proteins

This view has the same columns as the M-SPLIT Clusters view, but groups M-SPLIT identifications

by protein instead of showing each cluster individually.

4.14 MS-GF+ Clusters

This view shows clusters identified by MS-GF+ database search, and contains spectral probabilities

and other columns specific to MS-GF+ scoring (Figure 4.12).

Figure 4.12 Selected columns from the MS-GF+ Clusters view, sorted by decreasing spectral probability.

4.15 MS-GF+ Peptides

This view has the same columns as the MS-GF+ Clusters view, but groups MS-GF+ identifications

by unmodified peptide instead of showing each cluster individually.
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4.16 MS-GF+ Proteins

This view has the same columns as the MS-GF+ Clusters view, but groups MS-GF+ identifications

by protein instead of showing each cluster individually.

4.17 MODa Clusters

MODa views can be used to look at peptides with unexpected modifications. This view shows

clusters identified by MODa blind search, and contains columns specific to MODa scoring (Figure 4.13).

Figure 4.13 Selected columns from the MODa Clusters view.

4.18 MODa Peptides

This view has the same columns as the MODa Clusters view, but groups MODa identifications by

unmodified peptide instead of showing each cluster individually.

4.19 MODa Proteins

This view has the same columns as the MODa Clusters view, but groups MODa identifications by

protein instead of showing each cluster individually.
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4.20 Identified Network Pairs

This view compares identified clusters based on spectral alignment. Each pair of identified clusters

in the network is shown, as well as theoretical pairs that were not discovered by spectral networking (Fig-

ure 4.14). This may be useful for finding clusters that have similar identifications, that were not paired in

the network. The cosine and mass difference between each pair is listed, as well as whether the pair is in the

network, and whether the pairing is correct (based on prefix residue masses).

Figure 4.14 Selected columns from the Identified Network Pairs view.

4.21 Network Pair Modifications

This view offers a look at the frequency of parent mass differences based on spectral alignment of

network pairs. For each mass offset in the network, this view shows how many network pairs contain a PSM

with that offset. This number is broken down by cosine bin (Figure 4.15).
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Figure 4.15 Top 10 most common mass offsets with a cosine between 0.85 and 0.95 via the Network Pair
Modifications view.

4.22 All Network Pairs

This view shows all of the cluster pairs detected by spectral alignment (spectral network edges),

whether identified or not. The cosine and mass difference between each pair is listed in the view (Fig-

ure 4.16). This can be used to look at unidentified pairs in the spectrum viewer, and check possible anno-

tations. It may also be useful to to obtain all of the pairs with a certain mass difference, by applying mass

difference filters.

Figure 4.16 All Network Pairs view.
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4.23 Peptide Pairs

This view can be used to look at peptide agreement between search algorithms. Each pair of peptides

is categorized based on whether the peptides are the same, the peptides have a charge difference between

them, one peptide is a substring of the other, one peptide has more or fewer modifications than the other, or

one residue is changed in one peptide with respect to the other (Figure 4.17).

Figure 4.17 Selected columns from the Peptide Pairs view, showing peptide pairs for which a residue is
changed in a MODa peptide with respect to an MS-GF+ peptide.

4.24 Peptide Modifications

This view can be used to look at the frequency of modifications across all variants. A table is shown

listing the number of occurrences of each mass offset on each amino acid (Figure 4.18).
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Figure 4.18 Selected columns from the Peptide Modifications view, sorted by the most common modifica-
tions.

4.25 Spectral Networks

Spectral networks can be used to extrapolate identifications of correctly-identified spectra in a net-

work component to incorrectly-identified or unidentified spectra in the component, and assess why those

spectra are missed by identification algorithms. They are also useful for determining the different versions

of a peptide that are present in the dataset. This view shows information about each spectral network com-

ponent, as well as an interactive visualization of each component (Figure 4.19). Information shown about

each component includes a listing of the clusters in the network, a listing of the peptides in the network, the

number of spectra in the network (overall and per group), and the percentage of clusters in the network that

were identified.
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Figure 4.19 Visualization of a spectral network in the Spectral Networks view. Nodes are sized by spectral
count and colored by group ratio.

4.26 Peptide Variant Networks

In order to look at the versions of a peptide present, variant networks may be more useful than

spectral networks. Variant networks show all of the variants in each protein region, even if some of the
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variants are in separate spectral network components. Each variant is also shown in a single node in this

view, whereas spectral networks often contain the same peptide in multiple clusters, cluttering the network

visualization. This view shows information about each variant network component, as well as an interactive

visualization of each component (Figure 4.20). Information shown about each component includes a listing

of the variants in the network, a listing of the clusters in the network, and the number of variants in the

network.

Figure 4.20 Visualization of a variant network in the Variant Networks view.
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Chapter 5

Results

5.1 Maestro identifies more PSMs than individual search algorithms

A modified version of Maestro was created that runs M-SPLIT, MS-GF+, and MODa individually

on all input spectra, and does not remove identified spectra or run MODa on a reduced protein database.

This workflow was run on a proteome-wide HEK 293 dataset [3] in a semi-tryptic search with an ion toler-

ance of 0.01Da; searched modifications of oxidation, pyroglutamate formation, phosphorylation, N-terminal

carbamylation, and N-terminal acetylation; and parent mass tolerances of 2.5Da, 5ppm, and 0.05Da for M-

SPLIT, MS-GF+, and MODa, respectively. An FDR of 1 percent was applied. M-SPLIT identified 160603

clusters, MS-GF+ identified 137322 clusters, and MODa identified 194385 clusters. Maestro run with the

same parameters and filtered at 1 percent FDR identified 230527 clusters – significantly more than any

individual search algorithm.

5.2 Maestro discovers a wide variety of peptides and modifications

To evaluate discovery of peptide variants, Maestro was run on the above HEK 293 dataset and

filtered at 1 percent FDR. Over 1100 different modifications (mass offsets on a particular amino acid) were

initially found. These modifications were searched in the Unimod protein modification database [6], and

evaluated for plausibility based on presence in spectral networks, cosine to network neighbors identified as
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the unmodified version of the peptide, the presence of network neighbors with a different peptide sequence,

the number of spectrum peaks surrounding the putative modification, and other factors. 371 modifications

were found to have strong evidence supporting their presence (Figure 5.1).

Figure 5.1 Several hundred different modifications were found, with supporting evidence, when running
Maestro on a deep HEK 293 dataset and comparing the resulting PSMs to the Unimod database. A portion
of these is shown here.

In order to compare Maestro to existing PTM discovery tools, Maestro and MSFragger were both

run on the same dataset. MSFragger is a database search tool that makes use of fragment ion indexing to

perform fast open searches [19]. An open MSFragger search and an unclustered Maestro search were run

on the above dataset. Both were filtered at 1 percent PSM-level and variant-level FDR. Maestro identified

148690 unmodified peptides total, whereas MSFragger identified 120899. There were 106624 peptides

identified by both searches, while Maestro alone identified 42066 peptides, and MSFragger alone identified

14275 peptides (Figure 5.2).
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Figure 5.2 Overlap between Maestro and MSFragger identifications. PSM-level results are shown on the
left and peptide-level results are shown on the right. Maestro and MSFragger identified 499167 PSMs in
common on a HEK 293 dataset, while Maestro identified 163955 PSMs that MSFragger did not identify,
and MSFragger identified 77780 PSMs that Maestro did not identify. Maestro and MSFragger identified
106624 peptides in common, while Maestro identified 42066 peptides that MSFragger did not identify, and
MSFragger identified 14275 peptides that Maestro did not identify.

Maestro was run on multiple cancer and non-cancer colon datasets in a single search [15] [32] [33],

and filtered at 1 percent FDR. This revealed a wide variety of peptide modifications. 26 protein regions

had over 100 different associated variants, and 83 protein regions had over 50 different associated variants

(Figure 5.3).
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Figure 5.3 a) Distribution of variants per peptide and protein region, from a Maestro run on a mixture of
cancer and non-cancer colon datasets. The number of unmodified peptides that has each number of variants
is shown on the top, and the number of protein regions that has each number of variants is shown on the
bottom.
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Figure 5.3 b) Highly-variable protein region with 101 different variants, from a Maestro run on a mixture of
cancer and non-cancer colon datasets. Modified amino acids are shown in red, with associated mass offsets
above.
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Chapter 6

Discussion

Maestro makes use of the unique advantages of library search, database search, and blind PTM

search to maximize the number of PSMs found at a given FDR, and find a large number of peptide variants.

Library search has high sensitivity, and helps identify mixtures and short peptides that might be missed by

database search. Database search increases the search space to identify peptides that are not in the library.

Blind search allows for the discovery of unanticipated modifications and highly-modified peptides. It has

been demonstrated that by using this strategy, Maestro is able to identify substantially more PSMs at a given

FDR than individual search algorithms, and more unique peptides than current tools designed for PTM

discovery.

Maestro also produces many result views that aid in interpreting results, and particularly in assessing

variant diversity. The Identified Peptide Variants, Identified Peptide Variants by Protein Region, Identified

Protein Regions, Identified Network Pairs, Network Pair Modifications, All Network Pairs, Peptide Pairs,

Peptide Modifications, Spectral Networks, and Peptide Variant Networks views allow for the variants in a

dataset to be viewed and interpreted in a number of ways.

There are many ways in which Maestro could be extended – for example, by adding support for

isotopically-labeled data, employing a more rigorous method of computing spectral network alignments, or

using Unimod to automatically label and classify peptide modifications. These paths are currently being

explored.
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Chapter 7

Appendix I: Result View Details

The combined results from M-SPLIT, MS-GF+, and MODa searches, along with other information

about spectra, clusters, spectral networks, etc., are analyzed and displayed in several different ways. The

following result views are shown to the user at the conclusion of their task.

7.1 Search Result Summary

This view contains overall information about the search results. Several HTML tables are shown,

containing aggregate statistics relating to input spectra, clustering, cluster identification, post-translational

modifications, and spectral networks. Some statistics are displayed as text and some as hyperlinks to relevant

result views.

The first table, titled "Identification Results", contains the following statistics, in total and for each

charge.

• Original MS/MS Spectra: Number of raw input spectra, grouped by charge.

• Filtered, Charge-Corrected MS/MS Spectra: Number of input spectra after Kullback-Leibler diver-

gence filtering and charge correction and other pre-filtering, grouped by corrected charge (links to All

Spectra view pre-filtered by charge).

• Identified MS/MS Spectra: Number and percentage of spectra identified by M-SPLIT, MS-GF+, or
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MODa, grouped by original charge. Percentage is calculated as identified spectra divided by total

spectra.

• Clusters: Number of clusters of spectra, grouped by original charge (links to All Clusters view).

• Identified Clusters: Number and percentage of identified clusters, grouped by original charge (links to

Identified Clusters view pre-filtered by charge). Percentage is calculated as identified clusters divided

by total clusters.

• Identified M-SPLIT Clusters: Number and percentage of clusters identified by M-SPLIT, grouped by

identification charge (links to M-SPLIT Clusters view pre-filtered by charge). Percentage is calculated

as clusters identified by M-SPLIT divided by clusters identified.

• Identified MS-GF+ Clusters: Number and percentage of clusters identified by MS-GF+, grouped by

identification charge (links to MS-GF+ Clusters view pre-filtered by charge). Percentage is calculated

as clusters identified by MS-GF+ divided by clusters identified.

• Identified MODa Clusters: Number and percentage of clusters identified by MODa, grouped by iden-

tification charge (links to MODa Clusters view pre-filtered by charge). Percentage is calculated as

clusters identified by MODa divided by clusters identified.

• Clusters in Networks: Number and percentage of clusters that belong to spectral networks, grouped

by original charge. Percentage is calculated as clusters in networks divided by clusters.

• Identified Clusters in Networks: Number and percentage of clusters that belong to networks and

were identified by M-SPLIT, MS-GF+, or MODa, grouped by identification charge. Percentage is

calculated as identified clusters in networks divided by clusters in networks.

• Unidentified Clusters With Edges to Identified Clusters: Number and percentage of clusters that are

immediate neighbors of (adjacent to in the network) identified clusters, but are not identified them-

selves, grouped by original charge. Percentage is calculated as immediate neighbor clusters divided

by clusters.
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• Unidentified Clusters in Networks with Identified Clusters, With No Edges to Them: Number and per-

centage of clusters that are in networks with identified clusters, but are not immediate neighbors and

are not identified themselves, grouped by original charge. Percentage is calculated as other neighbor

clusters divided by clusters.

• Unidentified Clusters in Networks With No Identified Clusters: Number and percentage of clusters

in networks containing no identified clusters, grouped by original charge. Percentage is calculated as

clusters with no identifications in the network divided by clusters.

• Clusters Identified or in Networks: Number and percentage of clusters that were identified and/or are

in a network, grouped by original charge. Percentage is calculated as clusters identified or in networks

divided by clusters.

• Peptide Variants: Number of identified peptide variants, grouped by representative spectrum precursor

charge (links to Identified Peptide Variants view pre-filtered by charge).

• Proteins: Number of proteins that have mapping peptide identifications (links to Identified Proteins

view). For each charge, the number of proteins containing any variant whose representative spectrum

has that precursor charge, is displayed.

Charge categories are 1, 2, 3, 4 or greater, and undetermined.

Two tables relating to post-translational modifications are displayed. The first, titled "All Searched

Mods (MS-GF+)" shows default modifications searched for during MS-GF+. The following information

about each modification is shown:

• Name of the modification (Oxidation, Lysine Methylation, Pyroglutamate Formation, Phosphoryla-

tion, N-terminal Carbamylation, N-terminal Acetylation, or Deamidation)

• Mass offset

• Amino acids on which the modification can occur (an asterisk means that the modification can occur

on any amino acid)
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• Options (whether the modification is optional or fixed, whether it is N-terminal)

• Number of clusters with that modification

The second PTM table, titled "Top 15 Discovered Mods (MODa)", shows the top 15 modifications

discovered during MODa blind search. For each modification, the following information is shown:

• Mass offset

• Total clusters with a modification at given mass offset

• Total variants (distinct peptides) with a modification at given mass offset

• The top five amino acids on which the modification occurs, and the total modifications found on each

of these, for given mass offset

A section titled "Spectral Networks" contains three tables.

The first displays the number of components at various network size and percent identified bins.

Network size bins are 2, 3, 4, 5, 6-10, 11-15, 16-30, 31-50, 51-100, and 101 or greater. Percent identified

bins are 0, 1-24, 25-49, 50-74, 75-89, 90-99, and 100.

The second contains the following information:

• Total network pairs (edges)

• Number of true positive spectral pairs (links to Identified Network Pairs view filtered to contain only

true positives)

• Percent true positives, calculated as true positives divided by total positives

• Number of false positives (links to Identified Network Pairs view filtered to contain only false posi-

tives)

• Percent false positives, calculated as false positives divided by total positives

• Number of false negatives (links to Identified Network Pairs view filtered to contain only false nega-

tives)
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The third Spectral Networks table contains the following information for cosine thresholds of 0.5,

0.6, 0.7, 0.8, and 0.9:

• Precision (proportion of detected network pairs at or above cosine threshold that are true positives)

• Recall (proportion of total correct network pairs that are at or above cosine threshold and are true

positives)

• Number of pairs at or above cosine threshold

• Percent of pairs at or above cosine threshold (calculated as pairs at or above threshold divided by total

pairs)

The "Groups" section contains two tables.

The first, titled "Outlier Group Counts", shows the number of unique peptide sequences (ignoring

modifications), peptide variants, proteins, and unidentified clusters in each default and each user-defined

group. Filtering options displayed underneath the table allow the user to specify a minimum absolute group

outlier ratio (base-2 logarithm of the ratio of the highest group count to the second-highest group count,

or the lowest group count to the second-lowest group count – whichever has greater absolute value) and

spectrum count to display. Minimum outlier ratio options are 0, 1, 2, 4, and infinity. Minimum spectrum

count options are 0, 4, and 7. Values are calculated separately for default and user-defined groups. These

values take into account only the highest-count or lowest-count group for each cluster (whichever has a

higher absolute outlier ratio). If there is a tie in the group outlier ratio, all outlier groups are counted.

A table titled "Top 10 Group Combinations" looks at the number of clusters, identified or not, that

belong to each combination of default groups, and to each combination of user groups. The ten default and

user group combinations with the most clusters are shown. Each group combination links to the All Clusters

view pre-filtered for that group combination.

A section titled "Peptides" analyzes all of the peptide pairs in which one of the peptides was iden-

tified by a different algorithm than the other. These pairs are grouped into one of seven categories. This is

done for each pair of algorithms (MSGF+ peptides are compared with M-SPLIT peptides, MODa peptides
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are compared with M-SPLIT peptides, and MODa peptides are compared with MSGF+ peptides). The cat-

egories are as follows for a comparison of an MS-GF+ peptide with an M-SPLIT peptide (the comparisons

for the other two algorithm pairs are defined analogously).

• Type 0: The MS-GF+ peptide has exact same sequence, the same number of modifications, and the

same charge as an M-SPLIT peptide.

• Type 1: The MS-GF+ peptide has the exact same sequence, the same number of modifications, and a

different charge from an M-SPLIT peptide.

• Type 2: The MS-GF+ peptide sequence is contained within an M-SPLIT peptide sequence.

• Type 3: An M-SPLIT peptide sequence is contained within the MS-GF+ peptide sequence.

• Type 4: An M-SPLIT peptide has the exact same sequence and more modifications than the MS-GF+

peptide.

• Type 5: An M-SPLIT peptide has the exact same sequence and fewer modifications than the MS-GF+

peptide.

• Type 6: Exactly one residue is changed to another in the MS-GF+ peptide with respect to an M-SPLIT

peptide.

• Type 7: Other. (There is no M-SPLIT peptide that corresponds to the MS-GF+ peptide.)

7.2 Identified Clusters

For each cluster identified according to a spectrum-level false discovery rate, the following infor-

mation is displayed in a ProteoSAFe table:

• Lorikeet icon (displays the mass spectrum when clicked)

• Filename (will show cluster filename if clustering was turned on, and original filename otherwise)

• Cluster index
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• Original charge

• Algorithm that identified the cluster

• Variant group (arbitrary group number assigned to each distinct peptide)

• Peptide identification

• Identification charge

• False discovery rate for cluster

• False discovery rate for peptide variant

• Unmodified peptide sequence (peptide with modifications removed)

• Protein region(s) (peptide variant regions on the protein)

• Protein(s) corresponding to peptide

• Spectral network component index for cluster, if any

• Number of network neighbors

• Number of spectra in the cluster

• Number of spectra in clusters assigned to this variant group

• Default groups to which the cluster belongs

• User-defined groups to which the cluster belongs

• Start location (amino acid) on protein

• End location (amino acid) on protein

• Protein region index(es)

• Number of modifications
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• All modification offsets in peptide, rounded to the nearest integer

• Number of spectra assigned to cluster that belong to each default and user-defined group (a separate

column is shown for each group)

7.3 Identified Peptide Variants

For each peptide variant group identified according to a variant-level false discovery rate, the fol-

lowing information is displayed in a ProteoSAFe table. Information for each protein region corresponding

to the variant is combined into one row, so that a single row is shown for each variant.

• Lorikeet icon (displays the mass spectrum when clicked)

• Variant group (arbitrary group number assigned to each distinct peptide)

• Peptide identification

• Parent mass

• Original charge

• Number of modifications

• All modification offsets in peptide, rounded to the nearest integer

• Protein region indices (for all protein regions corresponding to variant)

• Protein regions (all protein regions corresponding to variant)

• Proteins (for all protein regions corresponding to variant)

• Unmodified peptide sequence (peptide with modifications removed)

• False discovery rate for variant

• All proteins corresponding to peptide
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• Number of network neighbors

• Spectral network component indices for all clusters identified as variant

• Number of spectra in clusters assigned to this variant group

• Number of spectra in clusters identified as this peptide, ignoring modifications

• Number of spectra assigned to variant that belong to each default group (a separate column is shown

for each group)

• Outlier default group (default group with highest or lowest variant spectrum count for given variant;

see group ratio description)

• Outlier default group ratio (base-2 logarithm of the ratio of the highest group count to the second-

highest group count, or the lowest group count to the second-lowest group count – whichever has

greater absolute value; 100 is used in place of infinity and -100 is used in place of negative infinity)

• Number of spectra assigned to variant that belong to each user-defined group (a separate column is

shown for each group)

• Outlier user group (user group with highest or lowest variant spectrum count for given variant; see

group ratio description)

• Outlier user group ratio (base-2 logarithm of the ratio of the highest group count to the second-highest

group count, or the lowest group count to the second-lowest group count – whichever has greater

absolute value; 100 is used in place of infinity and -100 is used in place of negative infinity)

A dropdown arrow, when clicked, displays the information from the "Identified Clusters" view for each of

the clusters annotated as this variant.

7.4 Identified Proteins

For each protein corresponding to one or more variants identified according to a variant-level false

discovery rate, the following information is shown in a ProteoSAFe table:
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• Lorikeet icon (displays the mass spectrum when clicked)

• Protein

• Sum of network neighbors for all corresponding clusters

• Number of spectra identified as belonging to this protein, in total and listed separately for each default

and user group

• Number of spectra identified as belonging to this protein, only taking into account peptides that un-

ambiguously belong to/ are unique to this protein, in total and listed separately for each default and

user group

• Protein outlier default group (default group with highest or lowest protein spectrum count for given

protein; see group ratio description)

• Protein default group ratio (base-2 logarithm of the ratio of the highest group count to the second-

highest group count, or the lowest group count to the second-lowest group count – whichever has

greater absolute value; 100 is used in place of infinity and -100 is used in place of negative infinity)

• Unique protein outlier default group (default group with highest or lowest unique protein spectrum

count for given protein; see group ratio description)

• Unique protein default group ratio (base-2 logarithm of the ratio of the highest group count to the

second-highest group count, or the lowest group count to the second-lowest group count – whichever

has greater absolute value; 100 is used in place of infinity and -100 is used in place of negative infinity)

• Protein outlier user group (user group with highest or lowest protein spectrum count for given protein;

see group ratio description)

• Protein user group ratio (base-2 logarithm of the ratio of the highest group count to the second-highest

group count, or the lowest group count to the second-lowest group count – whichever has greater

absolute value; 100 is used in place of infinity and -100 is used in place of negative infinity)

64



• Unique protein outlier user group (user group with highest or lowest unique protein spectrum count

for given protein; see group ratio description)

• Unique protein user group ratio (base-2 logarithm of the ratio of the highest group count to the second-

highest group count, or the lowest group count to the second-lowest group count – whichever has

greater absolute value; 100 is used in place of infinity and -100 is used in place of negative infinity)

A dropdown arrow, when clicked, displays the information from the "Identified Peptide Variants" view for

each of the variants belonging to that protein.

7.5 All Clusters

This view contains information about all clusters, whether identified or not. For each cluster, the

following columns are displayed in a ProteoSAFe table:

• Lorikeet icon (displays the mass spectrum when clicked)

• Cluster index

• Link to Network Displayer view

• Number of spectra in the cluster

• Number of files corresponding to the cluster

• Precursor mass-to-charge ratio

• Precursor charge

• Precursor intensity

• Retention time

• Default groups to which the cluster belongs

• Peptide identification, if any
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• Number of spectra in each default group

• Outlier default group (default group with highest or lowest unique protein spectrum count for given

protein; see group ratio description)

• Outlier default group ratio (base-2 logarithm of the ratio of the highest group count to the second-

highest group count, or the lowest group count to the second-lowest group count – whichever has

greater absolute value; 100 is used in place of infinity and -100 is used in place of negative infinity)

• Number of spectra in each user-defined group

• Outlier user group (default group with highest or lowest unique protein spectrum count for given

protein; see group ratio description)

• Outlier user group ratio (base-2 logarithm of the ratio of the highest group count to the second-highest

group count, or the lowest group count to the second-lowest group count – whichever has greater

absolute value; 100 is used in place of infinity and -100 is used in place of negative infinity)

7.6 All Spectra

This view contains information about pre-identification spectra. For each spectrum, the following

information is displayed in a ProteoSAFe table:

• Lorikeet icon (displays the mass spectrum when clicked)

• Cluster index (cluster that given spectrum was grouped into)

• Filename

• Scan number

• Precursor intensity

• Retention time
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• Parent mass

• Precursor charge

• Kullback-Leibler divergence

7.7 Identified Spectra

For each identified spectrum, the following information is displayed in a ProteoSAFe table:

• Lorikeet icon (displays the mass spectrum when clicked)

• Cluster index (cluster that given spectrum was grouped into)

• Filename

• Scan number

• Cluster index

• Peptide sequence

• Protein

• Precursor intensity

• Retention time

• Parent mass

• Precursor charge

• False discovery rate for cluster

• Kullback-Leibler divergence
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7.8 mzTab Result Files

Displays result files in mzTab format.

7.9 M-SPLIT Clusters

For each cluster identified by M-SPLIT, the following information is displayed in a ProteoSAFe

table:

• Lorikeet icon (displays the mass spectrum when clicked)

• Filename

• Cluster index

• Peptide sequence

• Protein

• All proteins containing peptide

• Charge

• Cosine(M, A+B) (where A is a spectrum corresponding to an individual peptide, B is a spectrum

corresponding to a different individual peptide, and M is a mixture spectrum represented as a linear

combination of A and B)

• Cosine(M, A)

• Cosine(A, B)

• Alpha (as estimated by optical cosine and by residual method)

• Residual alpha

• SVM1 score (support vector machine – this score determines whether the result is a match)

68



• SVM2 score (determines whether the result is a mixture match)

• Mean Kullback-Leibler divergence for spectra belonging to cluster

• Maximum Kullback-Leibler divergence for spectra belonging to cluster

• Spectral libraries containing peptide

7.10 M-SPLIT Peptides

For each unmodified peptide annotation, the following information is displayed in a ProteoSAFe

table:

• Lorikeet icon (displays the mass spectrum when clicked)

• Filename

• Cluster index

• Peptide sequence

• Protein

• All proteins containing peptide

• Charge

• Cosine(M, A+B) (where A is a spectrum corresponding to an individual peptide, B is a spectrum

corresponding to a different individual peptide, and M is a mixture spectrum represented as a linear

combination of A and B)

• Cosine(M, A)

• Cosine(A, B)

• Alpha (as estimated by optical cosine and by residual method)
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• Residual alpha

• SVM1 score (support vector machine – this score determines whether the result is a match)

• SVM2 score (determines whether the result is a mixture match)

• Mean Kullback-Leibler divergence for spectra belonging to cluster

• Maximum Kullback-Leibler divergence for spectra belonging to cluster

• Spectral libraries containing peptide

A dropdown arrow, when clicked, displays the information from the M-SPLIT Clusters view, for each cluster

annotated as that peptide.

7.11 M-SPLIT Proteins

For each protein corresponding to one or more peptide annotations of spectra, the following infor-

mation is displayed in a ProteoSAFe table:

• Protein (links to the M-SPLIT Clusters view, sliced to show information for each cluster correspond-

ing to this protein)

• Number of hits

• Number of unique unmodified peptides

• Number of unique modified peptides

A dropdown arrow, when clicked, displays the information from the M-SPLIT Clusters view, for each cluster

corresponding to that protein.

7.12 MS-GF+ Clusters

For each cluster identified by MS-GF+, the following information is displayed in a ProteoSAFe

table:
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• Lorikeet icon (displays the mass spectrum when clicked)

• Filename

• Cluster index

• Fragmentation method

• Peptide sequence

• Protein

• All proteins containing peptide

• Charge

• Raw score of the peptide-spectrum match

• Spectrum probability (the probability that a random peptide matched to the spectrum would produce

a score at least as high as the score of the peptide-spectrum match)

• Database E-value (the probability that a random database matched to the spectrum would produce a

score at least as high as the score of the peptide-spectrum match)

• False discovery rate

• Peptide-level false discovery rate

• Mean Kullback-Leibler divergence for spectra belonging to cluster

• Maximum Kullback-Leibler divergence for spectra belonging to cluster

7.13 MS-GF+ Peptides

For each peptide annotation, the following information is displayed in a ProteoSAFe table:

• Lorikeet icon (displays the mass spectrum when clicked)
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• Filename

• Cluster index

• Fragmentation method

• Peptide sequence

• Protein

• All proteins containing peptide

• Charge

• Raw score of the peptide-spectrum match

• Spectrum probability (the probability that a random peptide matched to the spectrum would produce

a score at least as high as the score of the peptide-spectrum match)

• Database E-value (the probability that a random database matched to the spectrum would produce a

score at least as high as the score of the peptide-spectrum match)

• False discovery rate

• Peptide-level false discovery rate

• Mean Kullback-Leibler divergence for spectra belonging to cluster

• Maximum Kullback-Leibler divergence for spectra belonging to cluster

A dropdown arrow, when clicked, displays the information from the MS-GF+ Clusters view, for each cluster

identified as that peptide.

7.14 MS-GF+ Proteins

For each protein corresponding to one or more peptide annotations of spectra, the following infor-

mation is displayed in a ProteoSAFe table:
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• Protein (links to the MS-GF+ Clusters view, sliced to show information for each cluster corresponding

to this protein)

• Number of hits

• Number of unique unmodified peptides

• Number of unique modified peptides

A dropdown arrow, when clicked, displays the information from the MS-GF+ Clusters view, for each cluster

corresponding to that protein.

7.15 MODa Clusters

For each cluster identified by MODa, the following information is displayed in a ProteoSAFe table:

• Lorikeet icon (displays the mass spectrum when clicked)

• Filename

• Cluster index

• Charge

• Observed molecular weight

• Calculated molecular weight

• Mass difference

• Match score

• Match probability

• Peptide sequence

• Protein
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• All proteins containing peptide

• Peptide position within the protein

• Mean Kullback-Leibler divergence for spectra belonging to cluster

• Maximum Kullback-Leibler divergence for spectra belonging to cluster

7.16 MODa Peptides

For each peptide annotation, the following information is displayed in a ProteoSAFe table:

• Lorikeet icon (displays the mass spectrum when clicked)

• Filename

• Cluster index

• Charge

• Observed molecular weight

• Calculated molecular weight

• Mass difference

• Match score

• Match probability

• Peptide sequence

• Protein

• All proteins containing peptide

• Peptide position within the protein

74



• Mean Kullback-Leibler divergence for spectra belonging to cluster

• Maximum Kullback-Leibler divergence for spectra belonging to cluster

A dropdown arrow, when clicked, displays the information from the MODa Clusters view, for each cluster

identified as that peptide.

7.17 MODa Proteins

For each protein corresponding to one or more peptide annotations of spectra, the following infor-

mation is displayed in a ProteoSAFe table:

• Protein (links to the MODa Clusters view, sliced to show information for each cluster corresponding

to this protein)

• Number of hits

• Number of unique unmodified peptides

• Number of unique modified peptides

A dropdown arrow, when clicked, displays the information from the MODa Clusters view, for each cluster

corresponding to that protein.

7.18 Identified Network Pairs

Pairs of peptides are displayed in a ProteoSAFe table. For each peptide, the following information

is displayed:

• Spectrum index

• Peptide sequence

• Protein
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• Charge

Additionally, for each peptide pair, the following information is displayed:

• Mass offsets present in both peptides, rounded to the nearest integer

• Cosine score of pair

• Mass-to-charge ratio difference of the pair

• Whether the pair is correct. 0 means the pair is incorrect, 1 means it is correct, and 2 means it is

ambiguous (the pair shares over 60% of prefix residue masses).

• Whether the pair is detected (the clusters are spectral network neighbors).

A Correct value of 1 (true) combined with an Detected value of 1 indicates a true positive, a Correct value

of 0 (false) and Detected value of 1 indicates a false positive, and a Correct value of 1 and Detected value of

0 indicates a false negative.

7.19 Network Pair Modifications

This table contains the number of peptide pairs at each mass offset, within each cosine bin. The

cosine bins are:

• Less than 0.45

• At least 0.45 and less than 0.55

• At least 0.55 and less than 0.65

• At least 0.65 and less than 0.75

• At least 0.75 and less than 0.85

• At least 0.85 and less than 0.95

• At least 0.95
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7.20 All Network Pairs

Shows the following information for each spectral network pair:

• Cluster index of first node in pair

• Cluster index of second node in pair

• Cosine score between the nodes

• Difference in mass-to-charge ratio between the nodes

7.21 Peptide Pairs

This view displays the grouping of MS-GF+ and MODa peptides into categories according to their

similarity to peptides identified by earlier workflows. Peptides identified by MS-GF+ (that were not iden-

tified by M-SPLIT) are compared with peptides identified by M-SPLIT, and peptides identified by MODa

(that were not identified by M-SPLIT or MS-GF+) are compared with peptides identified by M-SPLIT and

with peptides identified by MS-GF+.

The possible categories for an MS-GF+-M-SPLIT peptide pair (meaning that each MS-GF+ peptide

is being grouped with respect to the set of M-SPLIT peptides) are as follows:

Category 0: The MS-GF+ peptide has exact same sequence, the same number of modifications, and

the same charge as an M-SPLIT peptide.

Category 1: The MS-GF+ peptide has the exact same sequence, the same number of modifications,

and a different charge from an M-SPLIT peptide.

Category 2: The MS-GF+ peptide sequence is contained within an M-SPLIT peptide sequence.

Category 3: An M-SPLIT peptide sequence is contained within the MS-GF+ peptide sequence.

Category 4: An M-SPLIT peptide has the exact same sequence and more modifications than the

MS-GF+ peptide.

Category 5: An M-SPLIT peptide has the exact same sequence and fewer modifications than the

MS-GF+ peptide.
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Category 6: Exactly one residue is changed to another in the MS-GF+ peptide with respect to an

M-SPLIT peptide.

Category 7: Other. (There is no M-SPLIT peptide that corresponds to the MS-GF+ peptide.)

The categories for the other two types of peptide pairs (MODA-MSPLIT pairs and MODA-MSGF+

pairs) are defined analogously.

For each pair, this result view displays the following information in a ProteoSAFe table:

• Lorikeet icon that displays both spectra in the pair when clicked

• Description of category

• Category ID of the pair

• Workflow for each cluster in the pair

• Filename for each cluster in the pair

• Cluster index for each cluster in the pair

• Peptide sequence for each cluster in the pair

• Charge for each cluster in the pair

Peptides in Category 7 could not be paired with any other peptides, so rows containing peptides grouped

into Category 7 only include data for those peptides, and not for any paired peptides.

7.22 Peptide Modifications

This view shows the number of occurrences of each mass offset at each amino acid. The table

contains the following columns, for each mass offset:

• Column for each amino acid containing the number of modifications of the amino acid in the column

with the mass offset in the row

• C-terminus (whether the modification occurred at the C-terminus of the peptide)
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• N-terminus (whether the modification occurred at the N-terminus of the peptide)

• Sum (total modifications at the offset represented in the row)

7.23 Spectral Networks

This view is useful for analyzing the network associated with each cluster. It displays the following

information in a ProteoSAFe table, for each network component:

• Index of network component

• Link to Network Displayer view containing network visualization

• Link to Cluster Info view for given component index

• Number of clusters (nodes)

• Number of identified clusters

• Percentage of clusters that are identified

• Number of spectra, in total and per default group

• Peptides for all clusters in network component

• Unmodified peptides (peptides with modifications removed) for all clusters in network component

• Cluster indices for all clusters in network component

• Default groups for all clusters in network component

• User-defined groups for all clusters in network component

• Variant groups for all clusters in network component
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