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RESEARCH ARTICLE
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Abstract

Several arenaviruses cause hemorrhagic fever (HF) diseases that are associated with high

morbidity and mortality in humans. Accordingly, HF arenaviruses have been listed as top-

priority emerging diseases for which countermeasures are urgently needed. Because are-

navirus nucleoprotein (NP) plays critical roles in both virus multiplication and immune-eva-

sion, we used an unbiased proteomic approach to identify NP-interacting proteins in human

cells. DDX3, a DEAD-box ATP-dependent-RNA-helicase, interacted with NP in both NP-

transfected and virus-infected cells. Importantly, DDX3 deficiency compromised the propa-

gation of both Old and New World arenaviruses, including the HF arenaviruses Lassa and

Junin viruses. The DDX3 role in promoting arenavirus multiplication associated with both a

previously un-recognized DDX3 inhibitory role in type I interferon production in arenavirus

infected cells and a positive DDX3 effect on arenavirus RNA synthesis that was dependent

on its ATPase and Helicase activities. Our results uncover novel mechanisms used by are-

naviruses to exploit the host machinery and subvert immunity, singling out DDX3 as a poten-

tial host target for developing new therapies against highly pathogenic arenaviruses.

Author summary

Arenaviruses include severe pathogens causing hemorrhagic fevers and have been recently

incorporated by the World Health Organization in a list of critical emerging diseases for

which additional research and identification of clinical targets is urgently required. A
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better understanding of how viral proteins interact with host cellular factors to favor are-

navirus multiplication can illuminate novel pipelines on therapeutic strategies. Here we

demonstrated that the ATP-dependent RNA helicase DDX3 interacted with the arenavi-

rus nucleoprotein, which displays fundamental functions in different steps of the viral-

cycle. Our work also revealed an unexpected new biology on the role that DDX3 might

play during viral infections. In sharp contrast to previous studies showing DDX3 enhance-

ment of IFN-I induction, we demonstrated that DDX3 suppressed IFN-I production, con-

tributing to a DDX3 pro-viral effect late after arenavirus infection. We also showed that

early after infection, DDX3 pro-viral role was IFN-I independent and was mediated by

facilitation of viral RNA synthesis via DDX3 ATPase and Helicase activities. Altogether,

our study established DDX3 as a critical host interacting partner of the arenavirus nucleo-

protein and demonstrated two previously unrecognized DDX3-dependent strategies by

which these deadly viruses exploit the host cellular machinery and suppress immunity.

Introduction

Arenaviruses include highly pathogenic hemorrhagic fever (HF) viruses endemic to West Africa

and South America. Lassa virus (LASV), is an Old World (OW) arenavirus highly prevalent in

West Africa where it causes about 300,000 infections and> 5,000 deaths yearly due to Lassa fever

(LF), with mortality rates rising up to 50% for hospitalized patients in some outbreaks and to 90%

for women in the last month of pregnancy [1,2]. Notably, increased travelling has resulted in the

importation of LF cases to Europe and United States, underscoring the global risk represented by

this virus [3]. Likewise, several New World (NW) arenaviruses including Junin (JUNV), Machupo

(MACV), Guanarito and Sabia, as well as the more recently reported Whitewater Arroyo and

Chapare viruses, cause human hemorrhagic fevers with ~30% mortality [4]. In addition, mount-

ing evidence indicates that lymphocytic choriomeningitis virus (LCMV), a globally distributed

OW arenavirus, is a neglected human pathogen that causes congenital defects and poses a special

threat to immunocompromised individuals [5,6]. The live-attenuated vaccine Candid#1 has been

shown to be effective against Argentine HF caused by JUNV [7], but Candid#1 is only licensed in

Argentina and it does not protect against other HF arenaviral diseases. There are no other licensed

arenavirus vaccines and, with the exception of the treatment with immune plasma that is res-

tricted to JUNV infections in endemic areas [8], anti-arenaviral therapy is limited to an off-label

use of the nucleoside analog ribavirin that is only partially effective [9]. Accordingly, the World

Health Organization (WHO) recently included Arenaviral HF in a list of emerging diseases for

which additional research and identification of clinical targets are urgently needed [10]. A better

understanding of how viral proteins interact with host cellular factors to enable arenavirus propa-

gation could aid this task.

Arenaviruses are enveloped viruses with a negative-sense RNA genome, consisting of two sin-

gle-stranded segments named S (ca. 3.4 kb) and L (ca. 7.2 kb). The nucleoprotein (NP), encoded

by the S segment, is the most abundant viral protein and plays critical roles in different steps of the

arenavirus life cycle [4,11–14]. In addition, the arenavirus NP counteracts the host type I interferon

(IFN-I) response during viral infection by preventing the activation and nuclear translocation of

interferon regulatory factor 3 (IRF-3), and subsequent induction of IFN-I production [15,16]. Are-

navirus-NP has also been shown to inhibit nuclear translocation and transcriptional activity of

NF-κB [17]. The anti-IFN-I activity of arenavirus NP was mapped to its C-terminal region and

was associated to a folding domain corresponding to a functional 3’-5’ exonuclease of the DEDDH

family [18,19]. NP has also been shown to interact with IKKε [20], MDA5 and RIG-I [21] which
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are involved in the IRF-3 and NF-κB signaling pathways [22]. Moreover, it was recently demon-

strated that JUNV NP can also subvert immune responses by associating to the dsRNA-activated

protein kinase (PKR), a well-characterized antiviral protein that inhibits cap-dependent protein

translation initiation via phosphorylation of eIF2α [23]. Thus, the arenavirus NP plays essential

roles in viral multiplication and the virus’s ability to counteract key components of the host’s anti-

viral innate immune response. Targeting NP-host cell protein interactions required for NP to exe-

cute its functions could facilitate novel strategies to curtail arenavirus life cycle.

In the present study, we pursued an unbiased approach to identify novel host factors tar-

geted by the arenavirus NP that could contribute to viral multiplication or be exploited by the

virus to subvert the immune response. We found that DDX3, a DEAD (Asp-Glu-Ala-Asp)-

box ATP-dependent RNA helicase, interacted with LCMV NP and was critical for supporting

optimal LCMV growth, a finding that was extended to both OW and NW arenavirus infec-

tions in human cells. Strikingly, and in contrast to roles previously ascribed to DDX3 in pro-

moting IFN-I [24,25], we observed that DDX3 contributed to IFN-I suppression upon

arenavirus infection, partially explaining its pro-viral effect late in infection. In contrast, the

early pro-viral effect of DDX3 was IFN-I independent and was explained by DDX3 positive

effect on viral RNA synthesis. Our results uncovered previously unrecognized maneuvers

evolved in highly pathogenic arenaviruses to favor their own growth by exploiting the host

machinery and evading the immune system, raising DDX3 as a potential universal target for

the rational design of antiviral therapies against arenaviruses infections.

Results

Unbiased identification of LASV and LCMV NP interacting proteins in

human cells

To identify novel host proteins that could take part in protein-protein interactions with the are-

navirus NP, we applied an unbiased proteomics approach. We used a human lung epithelial cell

line, A549 that was transfected with plasmids expressing either LCMV or LASV NPs fused to

HA tag (NP-HA). As negative controls we included cells transfected with a plasmid encoding

an HA-tagged protein unrelated to the arenavirus NP but with a similar molecular weight, the

ubiquitin carboxyl-terminal hydrolase 14 (HA-USP14), as well as cells infected with a newly

generated recombinant tri-segmented LCMV, expressing HA-tagged GFP (3rLCMV-HA-GFP,

S1A Fig). Cell lysates were immunoprecipitated with anti-HA monoclonal antibody (S1B Fig)

followed by mass spectrometry to identify interacting peptides, using a criteria of at least 2

unique tryptic peptides with a degree of confidence of 99% to identify each hit. This approach

revealed a number of NP-interacting host proteins for witch at least two tryptic peptides were

detected with LCMV, LASV, or both, NP-HA samples but none (Table 1) or only one tryptic

peptide (S1A Table) detected in negative controls. Potential NP-interacting proteins excluded

due to detection in only one of the two negative control samples are shown in S1B and S1C

Table. Thus, after conducting an unbiased proteomics approach in human cells, we pinpointed

a selected number of host proteins as novel candidates involved in protein-protein interactions

with LCMV and/or LASV NP.

Functional screening with NP interacting candidates singled out DDX3

To functionally characterize the role of newly identified NP-interacting candidates in arenavi-

rus infection, we conducted a loss-of-function assay to monitor viral growth in cells treated

with small interfering RNAs (siRNAs) directed against selected NP interacting candidates

(Table 1, Bold). To select these candidates, hits in Table 1 were prioritized by further filtering

DDX3 is exploited by Arenaviruses
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Table 1. Host proteins interacting with the NP of LCMV, LASV, or both.

GI Annotation LCMV LASV Total NSC

41399285 Chaperonin (HSPD1) 3 3 6 0.03892668

55956788 Nucleolin # 3 1 4 0.011823951

7705813 Ribosomal protein L26-like 1 2 1 3 0.01543909

4506633 Ribosomal protein L31 isoform 1 1 2 3 0.012745707

4506619 Ribosomal protein L24 2 1 3 0.010694274

4506623 Ribosomal protein L27 2 1 3 0.008230397

15431297 Ribosomal protein L13 1 2 3 0.007550774

4506607 Ribosomal protein L18 2 1 3 0.005953904

57863257 T-complex protein 1 isoform a 0 2 2 0.020058442

57013276 Tubulin, alpha, ubiquitous # 1 1 2 0.019521338

4502643 Chaperonin containing TCP1, subunit 6A isoform a 0 2 2 0.01500201

4506671 Ribosomal protein P2 1 1 2 0.012759599

48762932 Chaperonin containing TCP1, subunit 8 (theta) 0 2 2 0.012183282

63162572 Chaperonin containing TCP1, subunit 3 isoform a 0 2 2 0.011693309

4506703 Ribosomal protein S24 isoform c 1 1 2 0.011032736

4506701 Ribosomal protein S23 1 1 2 0.010261216

4504351 Delta globin # 2 0 2 0.010124655

5453603 Chaperonin containing TCP1, subunit 2 0 2 2 0.008933907

38455427 Chaperonin containing TCP1, subunit 4 (delta) 0 2 2 0.008867607

4506741 Ribosomal protein S7 1 1 2 0.00756368

4506667 Ribosomal protein P0 1 1 2 0.00526533

117190254 Heterogeneous nuclear ribonucleoprotein C isoform b 1 1 2 0.005008034

156071459 Solute carrier family 25, member 5 (SLC25A5) 1 1 2 0.004924006

4758138 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) 1 1 2 0.004779654

4506725 Ribosomal protein S4, X-linked X isoform 1 1 2 0.00423095

4557871 Transferrin (TF) 2 0 2 0.00213227

4885661 Viral oncogene yes-1 homolog 1 (YES1) 2 0 2 0.001370464

16751921 Dermcidin preproprotein (DC) 1 0 1 0.119585846

4759160 Small nuclear ribonucleoprotein polypeptide D3 1 0 1 0.017718147

4504347 Alpha 1 globin (HGB) 1 0 1 0.015721736

24307939 Chaperonin containing TCP1, subunit 5 0 1 1 0.012340921

5453607 Chaperonin containing TCP1, subunit 7 isoform a 0 1 1 0.011736379

15431288 Ribosomal protein l10a 1 0 1 0.010316443

58331185 Chaperonin containing TCP1, subunit 7 isoform b 0 1 1 0.009847254

4506743 Ribosomal protein S8 0 1 1 0.008024566

4503471 Eukaryotic translation elongation factor 1 alpha 1 # 1 0 1 0.006352181

5902102 Small nuclear ribonucleoprotein D1 polypeptide 16kda 1 0 1 0.006253464

4759156 Small nuclear ribonucleoprotein polypeptide A 1 0 1 0.005277746

63252906 Tropomyosin 1 alpha chain isoform 7 (TPM) 1 0 1 0.005240579

17105394 Ribosomal protein l23a 1 0 1 0.004703057

66912162 Histone cluster 2, h2bf # 1 0 1 0.004441802

4506685 Ribosomal protein S13 0 1 1 0.003684569

51477708 Heterogeneous nuclear ribonucleoprotein D isoform d 1 0 1 0.003543757

5174431 Ribosomal protein L10 1 0 1 0.003428397

47271443 Splicing factor, arginine/serine-rich 2 # 1 0 1 0.00336725

76496472 Ribosomal protein L3 isoform b 0 1 1 0.003143333

57863259 T-complex protein 1 isoform b 1 0 1 0.001829618

(Continued)
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out proteins that were detected in THP1 negative control cells from previous unrelated mass

spectrometry studies, as well as arbitrarily excluding ribosomal and ribonucleoproteins. A549

cells were incubated with targeting siRNA or scrambled siRNA (Scr1-siRNA or Scr2-siRNA)

prior to LCMV infection. Approximately 90% of the cells incorporated siRNA oligonucleo-

tides (S1C Fig) and cell viability was comparable for all siRNAs tested (S1D Fig, representative

result is shown). Cells transfected with DDX3-specific, but not scrambled, siRNA showed both

reduced levels of DDX3 protein expression (S1E Fig) and a reduction of LCMV titers (i.e. ~0.5

log) (Fig 1A). Overall, these results singled-out DDX3 as a host factor that could potentially

play a pro-viral role in arenavirus life cycle. It is worth noting that we may have failed to iden-

tify hits for which siRNA-mediated knock-down of protein expression was not robust enough

to affect LCMV multiplication.

DDX3 associated to LCMV NP under both transfection and infection

conditions

We next attempted to validate arenavirus NP interaction with DDX3. For that we transfected

cells with plasmids encoding LCMV or LASV HA-tagged NPs, and as negative controls we used

cells transfected with HA-USP14 or infected with 3rLCMV-HA-GFP. Cell lysates were immu-

noprecipitated with an anti-HA mAb, and analyzed by immunoblotting with an anti-DDX3

Ab. DDX3 levels were higher in immunoprecipates from cells transfected with LCMV or LASV

NP-HA than in the negative control samples (Fig 1B, top panel). Similar levels of DDX3 and

GAPDH were detected in input lysates from all samples (Fig 1B, middle and bottom panels).

These results validated that DDX3 interacted with both LCMV and LASV NPs in transfected

cells. Consistently with these findings, confocal microscopy analysis of LCMV-infected cells

showed partial co-localization of DDX3 and NP (Fig 1C and S2 Table). To further confirm that

NP and DDX3 interact in the context of arenavirus infection, we generated a recombinant

LCMV expressing an HA-tagged version of NP (Fig 1D). Viral titers of rLCMV-NP-HA stocks

produced in BHK-21 cells were typically ~1x10 7 PFU/ml, ~1 log lower than those obtained

with WT rLCMV (1x108 PFU/ml), but no differences in size or shape of plaques were observed

and importantly both viruses replicated to similar titers in vivo, revealing no gross changes in

viral fitness (S1F Fig). DDX3 was immunoprecipitated from cells infected with rLCMV-NP-HA

but not from control samples infected with 3rLCMV-HA-GFP (Fig 1E. top panel). In addition

to full-length NP-HA (~63 kDa), and consistent with previous studies indicating arenavirus NP

cleavage [26–28], we also detected a 25 kDa fragment of NP-HA in samples derived from

rLCMV-NP-HA infected cells (Fig 1E, both bottom panels). DDX3 expression in input samples,

as well as HA-GFP in immunoprecipitates derived from 3rLCMV-HA-GFP infected cells, were

Table 1. (Continued)

GI Annotation LCMV LASV Total NSC

55770868 Tubulin, beta polypeptide 4, member Q # 1 0 1 0.0016905

70906435 Fibrinogen, beta chain preproprotein (FG) 1 0 1 0.001515605

15431310 Keratin 14 1 0 1 0.001185735

87196351 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3 (DDX3) 1 0 1 0.000845418

110431348 Deleted in colorectal carcinoma (DCC) 1 0 1 0.000514279

Hits were considered positive when 2 unique tryptic peptides were detected in either LCMV or LASV samples and never detected in negative controls (HA-USP14 or

3rLCMV-HA-GFP). Samples belong to 4 independent experiments. Hits were first ranked in groups according to the number of times detected (6 to 1) in the 8 samples

(4 LCMV + 4 LASV). Within each group, hits were ranked according to the highest NSC (Normalized spectral counts) value detected for each hit. #Hits detected in

THP1 negative controls from unrelated MS studies. Bold: Hits selected for siRNA functional screening. GI: Gene identification (NCBI databank).

https://doi.org/10.1371/journal.ppat.1007125.t001
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Fig 1. DDX3 interacted with LASV and LCMV NPs and promoted LCMV growth in human cells. A. A549 cells were transfected for

60h with targeting siRNAs specific for DDX3 or scrambled siRNA controls followed by infection with LCMV Cl13 (M.O.I. 0.005). Viral

titers in cell culture supernatants harvested 24 and 72 h.p.i. are shown. B. A549 cells were transfected for 24h with plasmids encoding

LCMV-NP-HA, LASV-NP-HA or HA-USP14, or infected with 3rLCMV-HA-GFP, lysed and immunoprecipitated with anti-HA agarose

DDX3 is exploited by Arenaviruses
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readily detectable (Fig 1E, middle panels). Together these results demonstrated that DDX3 asso-

ciated with OW arenavirus NP both in transfected and infected cells.

DDX3 promoted LCMV and LASV growth in human cells

To further investigate the role of DDX3 in OW arenavirus infection we generated two DDX3

knockout (ko) cell lines by using different non-overlapping RNA guides and CRISPR/Cas9

gene editing, and processed in parallel a control cell line transfected with a plasmid lacking

RNA-guides (WT-pCas9). Immunoblot of cell lysates showed that DDX3 was undetectable (or

barely detected) in both ko cell lines (S2A Fig). To investigate the impact of DDX3 gene deletion

on LCMV viral growth, the DDX3 ko cell lines, WT and WT-pCas9 control cells were infected

with LCMV and viral RNA synthesis and production of infectious progeny were monitored

over time. Cell viability at the time of infection was similar for all cell lines (S2B Fig). Instead,

production of LCMV infectious progeny was largely reduced (i.e. ~ 2 log) at all times examined,

which correlated with reduced levels of viral RNA in DDX3 ko cells at 8 and 24 h p.i. (Figs 1F

and S2C). Conversely, when DDX3 ko cells were infected with Sendai virus (SeV) we did not

observe any reduction in viral RNA (S2D Fig). Importantly, reconstitution of DDX3 protein

expression in DDX3 ko cells transduced with a retrovirus (RV) encoding DDX3 (S2E Fig)

resulted in significantly increased viral RNA levels compared to DDX3 ko cells transduced with

empty RV (Fig 1G). Overexpression of DDX3 in WT cells transduced with DDX3-RV did not

however cause any significant changes in viral RNA amounts respect to WT cells transduced

with empty RV (Fig 1G, blue bars). These data supported that reduced LCMV growth in DDX3

ko cells was due to lack of DDX3 expression rather than off-target effects.

We next evaluated the role of DDX3 during infection with the HF OW arenavirus LASV.

For that, we performed similar infection experiments in WT versus DDX3 ko cell lines in BSL-

4. Quantification of infected cells via confocal microscopy revealed a significant reduction in

LASV growth in both DDX3 ko cell lines compared to WT controls at all the M.O.I. tested (Fig

2A and 2B). Consistently, we detected 100 to 1000-fold less LASV RNA in the culture superna-

tants of both DDX3 ko versus WT cell lines (Fig 2C). LASV infection rates were increased in

both DDX3 ko cell lines when DDX3 expression was reconstituted via RV transduction, reach-

ing statistical significance at M.O.I. 0.05 and 0.1 (Fig 2D).

These observations provided strong evidence that DDX3 promoted optimal viral growth

during infection with OW arenaviruses LCMV and LASV in human cells.

DDX3 contributed to the IFN-I suppression observed upon arenavirus

infection

DDX3 was previously shown to interact with several components of the IFN-I pathway and to

enhance IFN-I production [24,25,29,30]. To investigate a putative role for DDX3 in IFN-I

induction after arenavirus infection we quantified IFNβ transcript levels in WT and DDX3 ko

beads (IP HA); eluates were analyzed by Immunoblot (IB). Immunoblots with anti-DDX3 and anti-GAPDH (load control) Abs were

performed in input samples. C. LCMV infected A549 cells (M.O.I 1) were stained for DDX3 (green), LCMV NP (red) and DAPI and

processed for Confocal Microscopy. Graphs on the right represent overlapping NP and DDX3 fluorescence intensities. D. Schematics of

the genome of rLCMV-NP-HA. White: ORFs of viral proteins. Pink: HA tag. Black: viral untranslated regions. E. A549 cells were infected

with rLCMV-NP-HA or 3rLCMV-HA-GFP for 24h, lysed in buffer containing RNAseA 0.1 mg/ml, immunoprecipitated (IP) and

analyzed by Immunoblot (IB). (>) indicates NP-HA cleaved band. F. Viral titers in supernatants from DDX3 ko-1, DDX3 ko-2, WT-

pCas9 (control) and WT A549 cells infected with LCMV Cl13 (M.O.I. 0.5) were quantified at 24, 48 and 72 h.p.i. G. DDX3 ko-1 and WT

A549 cells transduced with RV expressing DDX3 or empty-RV were infected with LCMV Cl13 (M.O.I. 0.5) for 24h and viral RNA levels

(lcmvgp) were determined relative to gapdh by RT-qPCR and represented as relative fold expression. (B&E) Numbers on the right: MW

(kDa). Data are representative of 2 (A, E and G) or 4 (B, C and F) independent experiments. � p<0.05, �� p<0.01, ���p<0.001. Stars

colors represent: DDX3 vs. Scr1 (blue) or Scr2 (black) (A) and WT A549 vs DDX3 ko-1 (red) or vs DDX3 ko-2 (black) (F).

https://doi.org/10.1371/journal.ppat.1007125.g001
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cells after LCMV infection. Consistent with the potent capacity of arenaviruses to suppress

IFN-I induction [15,16,31–33], IFNβ was undetectable in WT cells infected with LCMV (Fig

3A, blue line). Strikingly, increasing amounts of IFNβ transcript were detected in DDX3 ko

cells during the first 24 hours after LCMV infection (Fig 3A, red line). While this effect was

more profound at M.O.I. 0.5, it was also significant at M.O.I. 0.1 and 2.5 (S3A Fig) and it was

attenuated when DDX3 levels were reconstituted in DDX3 ko cells, at both 24 and 48 h.p.i (Fig

3B, left panel). Similar results were obtained when IFN-I bioactivity was quantified in the cul-

ture supernatant at 48 h.p.i (Fig 3B, right panel) and when expression of IFN-I stimulated

genes (ISGs) MX1 and ISG15 was determined at 24 and 48 h.p.i (S3B and S3C Fig). These find-

ings are in sharp contrast to the previously reported role of DDX3 in promoting IFN-I induc-

tion [24,25] and revealed for the first time a suppressive role of DDX3 on IFNβ transcription,

suggesting that the influence of DDX3 on IFN-I production is context dependent.

Fig 2. DDX3 promoted LASV growth in human cells. A to C. DDX3 ko-1, DDX3 ko-2 and WT A549 cells were infected with LASV (strain

Josiah) at low M.O.I. (0.01, 0.05 and 0.1) for 48h or at high M.O.I. (0.5 and 3) for 24h. A-B. Cells were stained with Hoechst and anti-LASV

antibodies, for confocal microscopy. A. Representative images are shown for infections at M.O.I. = 0.1. B. Percentage of infected cells were

calculated by high-content quantitative image-based analysis. Left panel: GP+ cells at 48 h.p.i.; Right panel: NP+ cells at 24 h.p.i. C. Absolute

copy numbers of viral RNA were determined in tissue culture supernatants by qRT-PCR. Representative results are shown for infections at M.O.

I. = 0.01. D. DDX3 ko-1, DDX3 ko-2 and WT A549 cells were transduced with empty-RV (EV-RV) or RV encoding DDX3 (DDX3-RV) prior to

LASV infection and then processed as in B. All data are representative of 2 independent experiments. � p<0.05, �� p<0.01, ���p<0.001. Star

colors represent: WT-A549 vs. DDX3 ko-1 (red) or vs. DDX3 ko-2 (black) (B) and DDX3 ko-1+EV-RV vs DDX3 ko-1+DDX3-RV (red) or

DDX3 ko-2+EV-RV vs DDX3 ko-2+DDX3-RV (black) (D).

https://doi.org/10.1371/journal.ppat.1007125.g002
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Fig 3. DDX3 contributed to IFN-I suppression and viral replication/transcription after arenavirus infection in human cells. A. DDX3 ko-1,

DDX3 ko-2 and WT A549 cells were infected with LCMV Cl13 (M.O.I. 0.5) for the indicated times. Total RNA in cell lysates was extracted and

normalized interferon transcript levels (ifnb/gapdh) determined by qRT-PCR and represented as relative fold expression. B. DDX3 ko-1 and WT

A549 cells were transduced with empty-RV (EV-RV) or RV encoding DDX3 (DDX3-RV) before infection, and processed as in A for quantification

of ifnb/gapdh transcripts via qRT-PCR (B, left panel) or determination of bioactive IFN-I levels in cell culture supernatants at indicated h.p.i. (B,

right panel). C. DDX3 ko-1 and WT A549 cells were pre-incubated for 2 h and infected with LCMV Cl13 (M.O.I. 0.5) in the presence of anti-

IFNAR mAb (IFNAR Ab, solid lines) or Isotype control (Iso Ab, broken lines), which were left for the remaining of the culture. Viral titers were

determined at indicated h.p.i. D. Translation assay performed in HEK-293T cells treated with DDX3 or scrambled (Scr) siRNA. E. Minireplicon
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To test whether increased IFN-I levels could contribute to the diminished LCMV growth in

the absence of DDX3, we incubated WT and DDX3 ko cells with anti-IFN-I receptor (IFNAR)

mAb or isotype control before and throughout LCMV infection. We observed an 11-fold inc-

rease in LCMV titers at 72 (but not 24 or 48) h.p.i. in DDX3 ko cells incubated with anti-

IFNAR versus isotype mAb, in contrast to a 3-fold increase when anti-IFNAR was blocked in

WT cells (Fig 3C). These results suggested that while the pro-viral effect of DDX3 was partially

due to IFN-I suppression at late time points after infection, the early DDX3 pro-viral activity

was independent of IFN-I signaling. This was consistent with significant reduction of LCMV

RNA levels following DDX3 depletion via DDX3-specific (compared to scrambled) siRNA in

Vero cells, which naturally lack the IFN-I system [34] (S3D and S3E Fig).

Altogether these results pointed to an IFN-I independent, early mechanism involved in

DDX3 enhancement of arenavirus propagation, and also revealed a previously unrecognized

role of DDX3 as a suppressor of IFNβ transcription, partially explaining DDX3 pro-viral role

late after LCMV infection.

DDX3 promoted arenavirus replication/transcription in an ATPase and

helicase dependent manner

Given that DDX3 is able to promote translation of both viral and cellular mRNAs [35,36], we

next investigated whether DDX3 also played a role in arenavirus mRNA translation. For that

we used a recently reported arenavirus translation assay based on capped synthetic RNAs car-

rying the reporter firefly Luciferase (FLUC) open reading frame [37]. Quantification of the

luciferase reporter activity after transfection of a Tacaribe (TCRV) mRNA analog, or a cell-like

transcript as control, in cells treated with DDX3-specific siRNA, indicated that the translation

of both the viral and cellular mRNA analogs was unchanged compared to control cells trans-

fected with scrambled siRNA (Figs 3D and S4A). These results suggested that the reduction in

viral growth observed in DDX3 deficient cells was unlikely due to reduced RNA translation.

Thus, we next investigated DDX3 role in arenavirus replication/transcription by using a well-

established LCMV minireplicon system that assesses the activity of the intracellularly reconsti-

tuted viral ribonucleoprotein (vRNP) responsible for directing viral RNA replication and gene

transcription [12]. We used a LCMV S segment-based minigenone (MG) where the Gaussia
luciferase (Gluc) and GFP reporter genes substituted for GPC and NP genes, respectively,

within the S genome RNA (MG/Gluc-GFP). Levels of GFP expression in cells transfected with

MG/Gluc-GFP together with plasmids expressing the viral trans-acting factors NP and L poly-

merase, serve as surrogate of the vRNP activity. GFP signal showed a 60% drop in minireplicon

activity in DDX3 ko cells compared to WT controls (Fig 3E), which was significantly increased

when DDX3 ko cells were transfected with a DDX3-encoding, but not empty, plasmid (Fig

3F). We next attempted to further characterize the mechanism underlying DDX3 role in

LCMV multiplication. To address if the enzymatic activity of DDX3 was critical for viral repli-

cation, we examined the MG activity in DDX3 ko cells that were complemented via transfec-

tion with either WT DDX3, or the mutant forms of DDX3 K230E or S382A/T384A that have

been shown to lack the ability to hydrolyze ATP or unwind RNA, respectively [38,39]. WT,

but none of the mutants, DDX3 increased levels of MG activity (Fig 3G), indicating a critical

assay performed in DDX3 ko-1 or WT A549 cells. F and G. DDX3 ko-1 or WT cells were transfected with 0.4 μg of empty plasmid, plasmid

expressing DDX3 (F-G) or the indicated point-mutant DDX3 (G) and used for minireplicon assay. 100% value was given to WT A549 transfected

with empty plasmid. Data are representative of 2 (A-C & E-F) or 3 (D & G) independent experiments. � p<0.05, �� p<0.01, ���p<0.001. Stars

represent: DDX3ko vs WT (blue) or DDX3 ko at the indicated h.p.i. versus DDX3 ko at time = 0 (red) (A), DDX3 ko-EV vs WT-EV (black) or vs

DDX3 ko-RV-DDX3 (red) (B), DDX3 ko-IFNAR vs WT-IFNAR (black) or vs DDX3 ko-Isotype (red) (C).

https://doi.org/10.1371/journal.ppat.1007125.g003
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role for both the ATPase and Helicase activities in promoting optimal levels of LCMV RNA

synthesis. Tissue culture supernatants from either WT or DDX3 ko cells with an intracellularly

reconstituted active vRNP had undetectable levels (< 10 I.U./ml.) of bioactive IFN-I. In addi-

tion, treatment with an anti-human IFNAR did not alter LCMV MG-directed GFP expression

levels in either A549 WT or DDX3 ko cells (S4B Fig). Although we cannot exclude a potential

impact of ISGs directly induced in response to IRF-3 and/or IRF-7 activation [40,41], these

results ruled out a potential IFN-I-mediated inhibitory effect on the vRNP activity in our cell-

based MG system. Together, these findings suggested that the pro-viral role of DDX3 on are-

navirus multiplication was likely related to DDX3’s ability to promote RNA synthesis mediated

by the arenavirus vRNP, and that this function of DDX3 was dependent on its ATPase and

helicase activities.

DDX3 interacted with New World arenavirus NPs and promoted JUNV

growth in human cells

We next investigated whether DDX3-NP interaction was also conserved in NW arenaviruses.

For that, cells were transfected with a plasmid expressing JUNV NP tagged with HA and cell

lysates were examined by immunoprecipitation with anti-HA mAb followed by Immunoblot

with anti-DDX3 Ab. DDX3 levels were significantly enriched in immunoprecipitates from

cells transfected with plasmid encoding JUNV HA-tagged NP compared to cells transfected

with empty plasmid (Fig 4A), indicating that DDX3 interacted with JUNV NP. We next inves-

tigated whether DDX3 also played a pro-viral role in NW arenavirus growth. For this, we first

infected the two DDX3 ko cell lines (Figs 4B, 4D and S5A) with the vaccine strain of JUNV

(Candid#1) [7] and monitored viral growth by confocal microscopy, using both anti-GP and

anti-NP antibodies. The number of cells infected with Candid#1 was dramatically reduced in

both DDX3 ko cell lines compared to WT cells at all M.O.I. tested and regardless of the anti-

body used for detection (Figs 4B, 4D and S5A). Importantly, DDX3 reconstitution resulted in

a significant increase in infection rate, which reached statistical significance at M.O.I. 1 (Fig

4C). Likewise, we observed a ~2 log reduction in intracellular levels of Candid#1 RNA levels in

DDX3 ko compared to WT cells (Fig 4E), and upon DDX3 reconstitution, levels of viral RNA

in DDX3 ko cells were significantly increased (Fig 4F). However, we did not detect differences

in intracellular levels of IFNβ transcripts between WT and DDX3 ko cells infected with Can-

did#1 (S5C Fig), not even after DDX3 protein expression restoration (S5D Fig). These results

suggested that in contrast to its critical anti-IFN-I role in LCMV infection, DDX3 exerted a

dispensable role in IFNB induction after JUNV infection. To evaluate the DDX3 role in the

multiplication of a highly pathogenic strain of JUNV, both DDX3 ko cell lines were infected

with JUNV Romero strain in BSL-4. Quantification of infected cells (Figs 4G and S5B) and

JUNV RNA levels in cell culture supernatants (Fig 4H) indicated a dramatic decrease in both

parameters in DDX3 ko versus WT control cells, regardless of the M.O.I. used. This effect was

partly reverted in both DDX3 ko cell lines when DDX3 expression was reconstituted, reaching

statistical significance at all M.O.I. tested (Fig 4I). These results indicated that, as with OW are-

naviruses, the NP of NW arenaviruses interacted with DDX3 and that this helicase was

required for optimal growth of JUNV in human cells.

Discussion

Arenaviruses are endemic in their natural rodent hosts and often infect humans, with LASV

causing thousands of lethal hemorrhagic fever cases each year [1–3]. Moreover, these viruses

have been listed among the top priority emerging pathogens that are likely to cause a severe

outbreak in the near future [10]. Currently there is no FDA-approved vaccine against
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Fig 4. DDX3 interacted with JUNV NP and promoted JUNV growth in human cells. A. A549 cells were transfected with plasmid encoding

JUNV NP-HA for 24h, lysed and immunoprecipitated with anti-HA agarose beads (IP HA). Eluates (upper panel) or input samples (load control,

lower panel) were analyzed by Immunoblotting (IB) with anti-DDX3 or anti-GAPDH, respectively. B-I. DDX3 ko-1, DDX3 ko-2 and WT A549

cells were infected with JUNV Candid 1 (B-F) or Romero (G-I) strains at the indicated M.O.I. for 24h. Cells were stained with anti-GP antibodies

and Hoechst, for confocal microscopy. Representative images for infected cells are shown (D). Numbers of infected cells were determined by high-

content quantitative image-based analysis (B-C and G and I). Normalized viral RNA levels (junv/gapdh) represented as relative fold expression (E

and F) and absolute copy numbers (H) of viral RNA in tissue culture supernatants were determined by qRT-PCR. When indicated, (C, F and I)

DDX3 ko and WT A549 cells were transduced with empty-RV (EV-RV) or RV encoding DDX3 (DDX3-RV) before infection, and processed for

confocal microscopy (C and I) or qRT-PCR (F). Data are representative of 2 independent experiments. � p<0.05, ��p<0.01,��� p<0.005,
����p<0.001. Star colors represent: DDX3 ko-EV vs WT-EV (black) or vs DDX3 ko-RV-DDX3 (red) (C), WT vs DDX3 ko-1 (red) or DDX3 ko-2

(black) (E & G) and DDX3 ko-1 + EV-RV vs DDX3 ko-1 + DDX3-RV (red) or DDX3 ko-2 + EV-RV vs DDX3 ko-2 + DDX3-RV (black) (I).

https://doi.org/10.1371/journal.ppat.1007125.g004
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arenavirus infections and there are limited therapeutic options that include Ribavirin, a com-

pound with many side effects that requires administration in the first days of infection to show

partial effectiveness [9]. Thus, there is an urgent need to develop new strategies to treat or pre-

vent arenavirus infection in humans. A better understanding of arenavirus host interactions

will not only inform about fundamental cellular processes exploited or subverted by these

viruses, but could also help identify such intervention strategies. Given that therapeutic target-

ing of host (rather than viral) factors would minimize arenavirus escape mutants, we used an

unbiased approach to identify arenavirus interacting candidates in human cells. Because of its

abundant expression and key role in viral fitness and immune-evasion, we focused on host fac-

tors that interact with the viral protein NP. Among several newly identified NP interacting

candidates, we established DDX3, an ATP-dependent RNA helicase, as an arenavirus target

that is exploited to suppress host immunity and promote viral replication/transcription.

Notably, we have biochemically validated NP-DDX3 interaction in both NP-transfected

and virus-infected cells, for both OW and NW arenaviruses. These results are consistent with a

very recent report that examined the interactome of LCMV and JUNV NPs via mass spec-

trometry and documented (but did not biochemically validate or functionally characterize)

DDX3 among numerous other NP interacting candidates [23]. While some of the NP-interact-

ing proteins reported by King et al. (e.g. DDX3, DDX5, SCLC25A5, HSPD1 and TPM) were

also detected in our study, other candidates were detected in only one of the two studies. These

discrepancies could be related to the use of LCMV-infected cells [23] versus NP-transfected

cells in our initial mass spectrometry approach, by the lower sensitivity of our method (i.e.

lower spectral count values) and/or by the more stringent cut-off criteria that we used based

on 99% confidence for peptide detection and absence of hits in two negative controls. Interest-

ingly, neither we, nor King et al. [23] detected some previously documented NP-interacting

host proteins including IKKε, MDA5 and RIG-I [20,21]. Most importantly, our functional

studies demonstrated that DDX3 was critical for optimal arenavirus multiplication, as DDX3

inhibition via either siRNA or CRISPR/Cas9 gene editing led to a significant reduction in viral

titers after infection not only with LCMV, but also with the HF arenaviruses LASV and JUNV.

Thus, although targeting DDX3 should be carefully weighed in the context of its many physio-

logical roles [42–45], our results raised the attractive possibility that treatment with DDX3

inhibitors could be a viable and broadly-effective approach to curtail viral replication and alle-

viate arenavirus infections in humans, either alone or in combination with ribavirin. Interest-

ingly, DDX3 appears to represent a convergent viral target, as it has been reported to interact

with multiple types of viral proteins [24,46–49]. Although the outcome of these interactions

has revealed both pro-viral and antiviral effects of DDX3, the fact that DDX3 is targeted by dis-

tantly related viruses, suggests an important role for DDX3 in antiviral defense.

In other infections a pro-viral role of DDX3 has been related to distinct mechanisms [50].

While DDX3 helicase activity is crucial for Japanese encephalitis virus and norovirus replication

via an unknown mechanism [51,52], upon West Nile virus infection DDX3 is known to be

sequestered from stress granules and processing bodies towards viral replication sites [53]. As

for human immunodeficiency virus (HIV) infection, DDX3 is important for both the nuclear

export of unspliced vRNA and the translation of HIV transcripts [48,54]. DDX3 specifically

represses cap-dependent translation but enhances hepatitis C virus (HCV) internal ribosome in
vitro, leading to the proposal that DDX3 may selectively stimulate IRES-directed translation

and augment HCV viral growth [55]. Here, we showed that DDX3 deletion resulted in inhibi-

tion of arenavirus multiplication that correlated with a decrease in vRNP activity as determined

in a cell-based LCMV minireplicon assay. Our results also showed that both ATPase [38] and

helicase [39] activities of DDX3 were involved in promoting LCMV replication. Because DDX3

is involved in dsRNA unwinding via its helicase domain [38], it is possible that NP interacts
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with DDX3 to recruit a helicase activity into the virus replication complex to facilitate RNA syn-

thesis by the arenavirus polymerase. In addition, given that DDX3 is critical for stress granule

(SG) formation [56], it is possible that arenavirus NP interaction with DDX3 has evolved to

recruit SG (and other) proteins into the replication transcription complexes (RTC) organelles

[57], thereby facilitating viral replication. However, we cannot rule out that, similarly to the situ-

ation documented for HCV [46], DDX3 role in arenavirus multiplication may not require its

physical interaction with NP. Likewise, although the diminished LCMV growth in DDX3-de-

prived Vero cells indicated that the DDX3 pro-viral effect was at least partially independent of

the IFN-I system, a possible additional role of the IFN response in inhibition of the vRNP activ-

ity remains to be elucidated. While our results from studies involving IFNAR blockade provided

evidence that IFN-I levels did not contribute to the reduced LCMV minigenome activity or

growth in DDX3 deprived cells early after infection, we cannot formally rule out the potential

impact of a non-canonical up-regulation of antiviral ISGs (e.g. IFIT1 or ISG15), which can be

directly induced in response to IRF-3 and/or IRF-7 activation [40,41].

DDX3 has been shown to promote the expression of pro-inflammatory cytokines and/or

IFNβ in response to different stimuli including Poly (I:C) and SeV infection [58,59] and this

activity has been proposed to mediate its antiviral effect against vesicular stomatitis virus

[60,61]. Notably, DDX3 enhances IFN-I induction via interaction with IKKε or TBK1

[24,25,30] and also binds to RIG-I and MDA5 [61]. DDX3 can also act as a transcriptional reg-

ulator by interacting with IFNβ promoter [25]. Recently, DDX3 has also been reported to initi-

ate MAVS signaling by sensing abortive RNA in HIV infected dendritic cells [60]. Strikingly,

our experiments revealed a novel and unexpected role for DDX3 in suppressing IFNβ tran-

scription upon LCMV infection. Such IFN-I suppression appeared to only partially contribute

to DDX3 pro-viral activity late in infection, but this effect is expected to be amplified in vivo
considering that studies in IFN-AR deficient animal models demonstrated critical roles played

by IFN-I in promoting activation of almost all immune cells [62] and protection against arena-

virus multiplication [63–65]. Although IFNAR blockade has been shown to relieve immuno-

suppression during chronic LCMV infection in mice, it also enhanced viral titers initially

[66,67]. Furthermore, treatment with rIFNα/β promotes viral clearance after infection with an

otherwise persistent LCMV variant [68].

It is possible that in the absence of DDX3 protein, arenavirus NP may not be able to access

the IKKε complex, MDA5 and/or RIG-I, as has been reported in WT cells [20,21] leading to

the NP failure to inhibit IFN-I production. It is also tempting to speculate that arenavirus NP

exploits DDX3 to sequester DDX3-interacting proteins that participate in IFN-I induction (i.e.

IKKε, TBK1, RIG-I, MDA5 and/or MAVS) [22,62], counteracting the formation of macromo-

lecular complexes required for IFN-I synthesis. Furthermore, it has previously been shown

that the N-terminus of DDX3 is necessary for IFN-I induction and that DDX3 mutants lacking

this region can have IFN-I inhibitory effects [24]. Thus, it is also possible that different DDX3

regions might be involved in DDX3 facilitation of IFN-I induction

[24,25,30,38,39,60,61,69,70] versus DDX3-mediated IFN-I suppression upon arenavirus infec-

tion. In addition, the possible requirement of DDX3 in the formation of RTC organelles may

diminish IFN-I induction by enabling the compartmentalization of viral RNA replication and

transcription; therefore limiting recognition of dsRNA intermediates by innate sensing recep-

tors. Finally, we cannot rule out the possibility that DDX3 suppression of IFN-I response

could be unrelated to its binding to arenavirus NP. In support of this possibility, DDX3 associ-

ation with NP did not seem to be sufficient for suppressing IFN-I transcription, as IFNB induc-

tion was detected after JUNV infection and this was unaffected by DDX3 deficiency. Of note,

our results were consistent with a previous report describing a distinct IFN-I response in OW

versus NW arenaviruses and providing evidence that both the non-pathogenic Candid#1 and
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pathogenic Romero strains of JUNV are capable of activating the IFN-I pathway in human

A549 cells, with higher levels of IFNβ in Candid#1 than in Romero JUNV-infected cells

[71,72]. Thus, although further studies are necessary to fully understand the underlying mech-

anisms, it is remarkable that deletion of a single host protein (i.e. DDX3) resulted in (at least

partial) counteraction of the long-evolved capacity of arenavirus to suppress IFNβ induction

[15,16,33].

Our findings using an unbiased proteomic approach followed by biochemical validation in

infected cells, identified DDX3 as a novel interacting partner of OW and NW arenavirus NP.

Importantly, we have also uncovered two previously unrecognized DDX3-dependent strate-

gies by which arenaviruses might counteract the host cell IFN-I response and exploit the host

cellular machinery to maximize their multiplication. These findings provide the fundamental

knowledge to consider DDX3 inhibitors as a potential therapeutic approach to treat infections

by human pathogenic arenaviruses.

Material and methods

Cells

A549 (Human lung epithelial cells, ATCC CCL-185, Manassas, VA), BHK-21 (Newborn Hamster

kidney fibroblast cells, ATCC CCL-10) and HEK-293T (Human epithelial kidney cells, ATCC

CRL-11268) were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (11965–118, Gibco,

Grand Island, NY, USA) supplemented with 2 mM L-glutamine (25030081, Thermo Scientific),

50 U/mL penicillin-streptomycin (15140–163, Gibco), plus 10% heat-inactivated FBS (Lonza).

BHK-21 were also supplemented with 20% Tryptose Phosphate Broth (18050039, Thermo Scien-

tific). HEK-293T cells were supplemented with sodium pyruvate (1 mM) and non-essential

amino acids (0.1 mM). HEK-Blue IFN-α/β cell line (InvivoGen) was maintained in HEK-293T

media supplemented with 10μg/ml blasticidin (InvivoGen) and 200 μg/ml Zeocin (InvivoGen).

Vero E6 cells (Cercopithecus aethiops kidney epithelial cells, ATCC CCL-81) were cultured in

Minimum Eagle Medium (MEM) (11095–080, Gibco), supplemented with 2 mM L-glutamine,

50 U/mL penicillin-streptomycin and 7.5% heat-inactivated FBS. A549, BHK-21, HEK-293T and

Vero E6 cell lines were originally provided by J.C. de la Torre (The Scripps Research Institute, La

Jolla, CA) and HEK-Blue IFN-α/β cell line by S. Sharma (La Jolla Institute for Allergy and Immu-

nology, La Jolla, CA)

Viruses

LCMV Cl13 stocks were produced in BHK-21 cells and viral titers were determined by M6

well plaque assay on Vero cells. LCMV Cl13 infections were performed in BSL-2 facilities as

previously described [73]. All work with highly pathogenic arenaviruses was performed at the

United States Army Medical Research Institute of Infectious Diseases (USAMRIID) at Fort

Detrick, Frederick, MD, USA, within maximum containment (BSL-4). JUNV Romero or Can-

did#1 strain and LASV Josiah strain viruses were propagated in Vero cells and viral infectivity

was titrated by plaque assays as previously reported [74]. Sendai Virus infections were per-

formed with Cantell strain.

Generation of recombinant viruses

3rLCMV-HA-GFP was generated by modifying the previously described 3rLCMV-GFP virus

[75] through the insertion of a HA-FLAG tag sequence (YPYDVPDYADYKDDDDK) in the

N-terminal end of the GFP ORF (located in place of NP ORF) in one of the pol-I S vectors

by multi-fragment assembly [76] using Phusion High Fidelity Polymerase (Thermofisher
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Scientific). For the viral rescue, BHK-21 cells (2 x 106 cells per M6 well) were transfected for 5h

by using 2μl of Lipofectamine 2000 (Invitrogen) per microgram of plasmid DNA. The plasmid

mixture was composed of 0.8μg of pC-NP, 1μg of pC-L, 1.4μg of pol-I L and 0.8μg of each of

the two pol-I S vectors. We confirmed expression of HA-GFP protein (~27kDA) in cells inf-

ected with 3rLCMV-HA-GFP by flow cytometry and Immunoblot with anti-HA Ab. Recom-

binant rLCMV-NP-HA was generated similarly, but using one single pol-I S vector expressing

a modified NP ORF with the HA tag coding sequence on its C-terminal domain, as mentioned

for 3rLCMV-HA-GFP. Primers for LCMV-HA-GFP: 1st round (addition of FLAG sequence):

Fragment 1 (Fr1-Fw: CGGACATCTGGTCGACCTCCAGCATCG and Fr1-Rv: GATTACA

AGGATGACGACGATAAGTAAGACCCTCTGGGCCTCCCTGACTCTCCACCTCTTTC

GAG) and Fragment 2 (Fr2-Fw: CTTATCGTCGTCATCCTTGTAATCCATCTTGTTGCT

CAATGGTTTCTCAAGACAAATGCGCAATCAAATGC and Fr2-Rv: CGATGCTGGAG

GTCGACCAGATGTCCG). 2nd round (addition of HA sequence): Fragment 3 (Fr1-Fw and

Fr3-Rv: TACCCTTATGATGTCCCAGATTATGCCGATTACAAGGATGACGACGAT

AAGGTGAGC) and Fragment 4 (Fr4-Fw: GGCATAATCTGGGACATCATAAGGGTAC

ATCTTGTTGCTCAATGGTTTCTCAAGACAAATGCGCAATC and Fr2-Rv). Primers for

rLCMV-NP-HA: Fragment 5 (Fr5-Fw: CCTACAGAAGGATGGGTCAGATTGTGACAAT

GTTTGAGGCTC and Fr5-Rv: TCCGGAGCCTACCCTTATGATGTCCCAGATTATGCCT

AAGACCCTCTGGGCCTCCCTGACTCTCCACCTCTTTCGAGGTGG, Fragment 6

(Fr6-Fw: GGCATAATCTGGGACATCATAAGGGTAGGCTCCGGAGAGTGTCACAACA

TTTGGGCCTCTAAAAATTAGGTCATGTGGCAG and Fr6-Rv: GGTTGGACTTCTCTG

AGGTCAGCAATGTTCAG) and Fragment 7 (Fr7-Fw: CTGAACATTGCTGACCTCAGAG

AAGTCCAACC and Fr7-Rv: GAGCCTCAAACATTGTCACAATCTGACCCATCCTTCT

GTAGG).

Plasmids

pol-I S, pol-I L, pC-L, pC-NP, as well as pCAGGS plasmids encoding LASV, JUNV, MACV

and TCRV NPs are described elsewhere [16]. HA-USP14: plasmid encoding ubiquitin-specific

protease 14 fused to HA epitope to its N-terminal end [77]. Plasmid expressing DDX3 was

constructed by inserting DDX3 cDNA in pCIneo-HA vector in EcoRI/NotI sites as previously

described [78]. pSpCas9(BB)-2A-GFP construct is described in [79]. Plasmids expressing

DDX3 S382A/T384A were generated by inverse PCR [80] using 5’ phosphorylated primers

Fw: CTGCTTTTCCTAAGGAAATACAGATG Rv: CAGCAAACATCATAGTGTGGCG-

GAC) and Phusion High-Fidelity DNA Polymerase (ThermoFisher) according to manufactur-

er’s protocol. S382A/T384A Point mutations were confirmed by DNA sequencing.

Mice

C57BL/6 mice were purchased from The Jackson laboratory (Bar Harbor, ME). All mice were

bred and maintained in a closed breeding facility and mouse handling conformed to the

requirements of the National Institutes of Health and the Institutional Animal Care and Use

Guidelines of UCSD. 6–8 weeks old mice were infected i.v with 5 x 106 PFU of rLCMV or

rLCMV-NP-HA.

Antibodies

Anti-HA-Tag (C29F4) Rabbit mAb #3724 (dilution 1:3500), Anti-GAPDH (14C10) Rabbit

mAb #2118 (1:5000), Anti-rabbit IgG, HRP-linked Antibody (1:5000) were obtained from Cell

Signaling Technologies. Anti-DDX3 Rabbit Ab (1:5000, SAB3500206) was obtained from

Sigma-Aldrich. Goat anti-rabbit-AlexaFluor488 (#a11034) and goat-anti mouse-AlexaFluor568

DDX3 is exploited by Arenaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007125 July 12, 2018 16 / 28

https://doi.org/10.1371/journal.ppat.1007125


(#a11004) conjugates were purchased from Thermo-Fisher (dilution 1:1000). Anti-IFNAR

antibody (#21385–1, PBL Interferon Source) and Isotype control IgG2a antibody (#554126,

BD Pharmingen Product) were both used at 5 μg/ml. Anti-LASV (anti-GP: L-52-161-6, anti-

NP: L-52-2159-15) and anti-JUNV (anti-GP: GD01, anti-NP: Y-MAO3-BE06) antibodies were

obtained from the US Army research Institute of Infectious Diseases (USAMRIID) archives

(PMID: 20686043, PMID: 22607481).

Immunoprecipitation and immunoblot

A549 cells (100,000 cells/ml) were plated on M12 wells. For Mass-spectrometry, four M12 plates

were used for each experimental condition. Cells were transfected with 1μg of plasmid/well, encod-

ing different arenavirus nucleoproteins fused to HA epitope in its C-terminal end (NP-HA [81] or

plasmid encoding HA-USP14. Alternatively, cells were infected with 3rLCMV-HA-GFP with an

m.o.i of 0.05. Media was replaced 6h later, and 24 h.p.t. cells were washed twice with PBS and lysed

with 200 μl/well of Immunoprecipitation lysis buffer (Pierce IP Lysis Buffer, Thermo Scientific),

supplemented with Complete EDTA-Free Protease Inhibitor Cocktail tablet (04693159001, Roche

Applied Science). When indicated, samples were treated with 100 μg/mL RNAseA for 20 minutes

before co-immunoprecipitation. All lysates were cleared by centrifugation at 12.000 rpm for 30

min at 4˚C. After protein quantification, lysates were incubated at a ratio of 1mg lysate/50μL of

resin (mouse monoclonal anti-HA antibody (clone HA-7) conjugated to agarose beads, A2095,

Sigma-Aldrich), rotating overnight at 4˚C. Beads were then washed 4 times with IP Lysis Buffer

and 2 times with PBS. For IP:IB experiments, co-immunoprecipitated proteins were recovered

with one volume of 4X Laemmli sample buffer (Bio-Rad) containing 2-ME and for Mass-Spec-

trometry, with 200 μl of 250μg/mL HA-peptide (I2149, Sigma Aldrich) per 50 μl of resin. Aliquots

of eluates were resolved by 10% SDS-PAGE, transferred to PVDF membranes (EMD Millipore)

and blocked for 1h at RT with 3% non-fat dry milk in PBS containing 0.1% Tween-20, Membranes

were probed with the desired primary antibody (incubated overnight at 4˚C), followed by incuba-

tion with HPR-conjugated antibody (1h at RT) and visualized using SuperSignal West Pico PLUS

Chemiluminescent Substrate (34580, Thermo Scientific). Alternatively, gels were stained with Sil-

ver Quest Silver Staining Kit (LC6070, Thermo Scientific), following manufacturer’s instructions.

Mass spectrometry

Proteins present in eluates were concentrated using Ultra-4, membrane PLGC Ultracel-PL

(UFC801024, Amicon) and resuspended in TNE (50 mM Tris pH 8.0, 100 mM NaCl, 1 mM

EDTA) buffer. Samples were adjusted to 0.1% RapiGest SF reagent (Waters Corp.) and boiled

for 5 min, followed by addition of TCEP (Tris (2-carboxyethyl) phosphine) to 1 mM final con-

centration and incubation at 37˚C for 30 min. Samples were carboxymethylated with 0.5 mg/ml

of iodoacetamide for 30 min at 37˚C, followed by neutralization with 2 mM TCEP, and digested

with trypsin (trypsin:protein ratio—1:50) overnight at 37˚C. RapiGest was degraded and re-

moved by treatment with 250 mM HCl at 37˚C for 1 h, followed by centrifugation at 14,000

rpm for 30 min at 4˚C. The soluble fraction was applied to a C18 desalting column (Thermo

Scientific, PI-87782). Desalted peptides were eluted from the C18 column into the mass spec-

trometer using a linear gradient (5–80%) of ACN (Acetonitrile) at a flow rate of 250 μl/min for

1h. The buffers used to create the ACN gradient were: Buffer A (98% H2O, 2% ACN, 0.1% for-

mic acid, and 0.005% TFA) and Buffer B (100% ACN, 0.1% formic acid, and 0.005% TFA).

Analysis of desalted-peptides was performed by ultra high-pressure liquid chromatography

(UPLC) coupled with tandem mass spectroscopy (LC-MS/MS) using nano-spray ionization.

Nano-spray ionization was done using a TripleTof 5600 hybrid mass spectrometer (ABSCIEX)

interfaced with nano-scale reversed-phase UPLC (Waters corporation nano ACQUITY) using
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a 20 cm-75 micron ID glass capillary packed with 2.5-μm C18 (130) CSH beads (Waters corpo-

ration). MS/MS data were acquired in a data-dependent manner in which the MS1 data was

acquired for 250 ms at m/z of 400 to 1250 Da and the MS/MS data was acquired from m/z of 50

to 2,000 Da. The Independent data acquisition (IDA) parameters were as follows; MS1-TOF

acquisition time of 250 milliseconds, followed by 50 MS2 events of 48 milliseconds acquisition

time for each event. The threshold to trigger MS2 event was set to 150 counts when the ion had

the charge state +2, +3 and +4. The ion exclusion time was set to 4 seconds. Finally, the collected

data were analyzed using Protein Pilot 4.5 (ABSCIEX) for peptide identifications. Identified

proteins were considered specific when at least two or more unique tryptic peptides were

detected with a degree of confidence of 99% [82], and were never present in HA-USP14 or

3rLCMV-HA-GFP negative controls. Spectral count normalization (NSC) was used to estimate

the relative protein abundance as described in [83]. Hits identified in 4 independent experi-

ments were ranked as depicted in Table 1.

siRNA

A549 cells were transfected (in triplicate) with 100nM siRNA (siGENOME Smartpool, Dhar-

macon) directed to each of the 11 selected hits listed in Table 1 (Bold), using Hi-Perfect reagent

(Qiagen) and media was replenished 6 hours post-transfection, according to manufacturer’s

protocol. As control, cells were transfected with scrambled siRNA Pool 1 (Scr1) or Pool 2

(Scr2) (Dharmacon). siRNA transfection efficiency was evaluated using siGLO RNAi control

(Dharmacon) and flow cytometry (FITC channel).

DDX3-knockout A549 cell lines

DDX3 ko-1 and DDX3 ko-2 cell lines were generated by CRISPR/Cas9-mediated genome

engineering following the protocol and algorithm described by [79] A target sequence in the

first (DDX3 ko-1) or fifth (DDX3 ko-2) of human DDX3 was chosen and appropriate oligonu-

cleotides were cloned into the BbsI site of pSpCas9(BB)-2A-GFP plasmid. (Primers: DDX3-Ex-

on1-Fw: CACCGAGTGGAAAATGCGCTCGGGC, DDX3-Exon1-Rv: AAACGCCCGAG

CGCATTTTCCACTC and DDX3-Exon5-Fw: CACCGCGGAGTGATTACGATGGCAT,

DDX3-Exon5-Rv: AAACATGCCATCGTAATCACTCCGC. The plasmid was transfected for

24 hours, and the GFP-positive population was sorted by single-cell flow cytometry on a 96

well culture plate using a BD FACS Aria II Cell-Sorter. As control, A549 were transfected with

empty plasmid (WT-pCas9 cells). Cells were expanded, maintained for a minimum of ten pas-

sages before their use and tested for DDX3 expression by Immunoblot with the aforemen-

tioned anti-DDX3 Ab.

Cell viability

A549 cell viability was evaluated after knockdown with different siRNAs and after stable ko of

DDX3 gene, prior to viral infection with LCMV, using Ghost-dye (Tombo Biosciences) and

analysed using a BD LSRII Cytometer and FlowJo software (Treestar, Inc., Ashland, OR, USA).

Retroviral mediated DDX3 reconstitution

DDX3 gene was cloned into pMD145, a derivative of pMD143 [84] with a P2A site instead of

T2A, and retrovirus was assembled in Phoenix-AMPHO (ATCC CRL-3213) retrovirus packag-

ing cell line after transfection with TransIT-293 transfection reagent (Mirus Bio LLC). The

empty vector was also used as a negative control. After 48 hours, supernatant was collected, fil-

tered and used for A549 transduction using 20μg/mL DEAE/Dextran. Plates were centrifuged at
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1200xg for 40 minutes at room temperature and transduced cells were selected with 1.5μg/mL

Puromycin.

Colocalization analysis

A549 WT cells plated on Poly-D-lysine coated coverslips were infected or not with LCMV

(MOI 1) for 24 hours, fixed with ice-cold 4% paraformaldehyde for 1h at 4˚C and permeabi-

lized with 0.3% Triton X-100. Cells were incubated overnight with primary antibodies against

DDX3 and LCMV NP and for 45 min with secondary antibodies (Alexa Fluor488 conjugated

goat anti-rabbit and Alexa Fluor568 conjugated goat anti-mouse, respectively). Coverslips were

mounted using Prolong Gold Mountant Antifade with DAPI. Images were acquired with a

Zeiss LSM 880 confocal microscope using the Fast Airyscan module and processed in ImageJ.

One z-slice from each z-stack was manually selected by visually determining the maximum

number of NP foci and used for analysis in ImageJ. Colocalization line scans were assessed by

the methodology described in Aulas et al. (2017) [85]. Briefly, a line was drawn across a region

of interest within the boundary of the cytoplasm. Intensity was measured over the line using

the Plot Profile option and results were exported to Excel to generate intensity line graphs.

Then intensity was plotted according to arbitrary distance for each channel. For foci co-occur-

rence quantification, each image was background subtracted using a rolling ball radius of 5.0

pixels, thresholded (Otsu’s Method), and binarized to identify foci location [86,87]. The total

number of NP foci were counted using ImageJ’s Analyze Particles module. Afterward, masks

corresponding to NP foci and DDX3 foci were multiplied to generate a mask representing

overlapping foci. Overlap was defined by a minimum of 10 pixel overlap and foci were counted

using ImageJ’s Analyze Particles module. For quantitative colocalization analysis, Pearson’s,

Manders’, and overlap coefficients were calculated using the ImageJ JACoP plugin with auto-

matically set thresholds [88–90].

Quantitative image-based analysis in BSL-4 facilities

Virus-infected cells were fixed in 10% buffered formalin for 72 h and blocked in 3% bovine

serum albumin-PBS for 1 h. Cells were then stained with murine mAbs against JUNV or

LASV glycoprotein (GD01, L-52-161-6 antibodies, respectively,) or JUNV or LASV nucleopro-

tein (Y-MAO3-BE06, L52-2159-15 antibodies, respectively), at 1:1,000 dilution in blocking

solution, followed by Alexa Fluor 488-conjugated goat anti-mouse IgG (1:1,000 dilution in

blocking solution). All infected cells were also stained with Hoechst 33342 and HCS Cell Mask

Red (ThermoFisher) for nuclei and cytoplasm detection, respectively. High-content quantita-

tive imaging data were acquired and analyzed on an Opera confocal reader (model 3842 and

5025; quadruple excitation high sensitivity; Perkin-Elmer), at two exposures using a ×10 air

objective lens as described previously [91]. Analysis of the images was accomplished within the

Opera environment using standard Acapella scripts. Nuclei and cytoplasm staining were used

to determine total cell number and cell borders, respectively. Mock-infected cells were used to

establish a threshold for virus-specific staining. Quantification of virus positive cells was subse-

quently performed based on mean fluorescent intensities in the virus-specific staining channel.

Infection rates were then determined by dividing the number of virus positive cells by the total

number of cells measured.

qPCR

For BSL-2 analyses total RNA was extracted using RNeasy kits (Qiagen), and reverse tran-

scribed into cDNA using MMLV RT (Invitrogen). cDNA quantification was performed using

SYBR Green PCR kits (Applied Biosystems) and a Real-Time PCR Detection System (ABI).
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For BSL-4 infections, viral RNA yields from the media were determined by qRT-PCR as previ-

ously described [91]. Briefly, RNA was extracted with Trizol (Thermo Fischer Scientific) and

the Ambion Blood RNA Isolation Kit (Thermo Fischer Scientific). The assay was performed

with RNA Ultra Sense one-step kit (Thermo Fisher Scientific) and TaqMan Probe (ABI,

Thermo Fischer Scientific) following the manufacturer’s instructions. The primers used were:

LCMV-GP-Fw: CATTCACCTGGACTTTGTCAGACTC, LCMV-GP-Rv: GCAACTGCTG

TGTTCCCGAAA, LCMV-NP-Fw: GCATTGTCTGGCTGTAGCTTA, LCMV-NP-Rv: CAAT

GACGTTGTACAAGCGC; JUNV-NP-Fw: CGCCAACTCCATCAGTTCATC, JUNV-NP-Rv:

CCATGAGGAGTGTTCAACGAAA; probe JUNV NP Prb: 5-6FAM- TCCCCAGATCTCCC

ACCTTGAAAACTG-TAMRA; LASV-GPC-Fw: GCAGTGCTGAAAGGTCTGTACAA,

LASV-GPC-Rv: AGGAGGAAAGTGACCAAACCAA, probe LASV-GPC: 5-6FAM-TTTGC

AACGTGTGGCCT-TAMRA; SeV-NP-Fw: TGCCCTGGAAGATGAGTTAG, SeV-NP-Rv:

GCCTGTTGGTTTGTGGTAAG; huIFNb Fw: AAACTCATGAGCAGTCTGCA, huIFNb-Rv:

AGGAGATCTTCAGTTTCGGAGG huGAPDH-Fw: TGATGACATCAAGAAGGTGGTG

AAG and huGAPDH-Rv: TCCTTGGAGGCCATGTGGGCCAT. Serial 10-fold dilutions of

the assayed (102 to 107 copies) virus RNA were used as standards. Relative expression levels

were determined by using the comparative cycle threshold method.

Bioactive IFN-I

Human IFN-I bioactivity in tissue culture supernatants was measured with reference to a

recombinant human IFN-β standard (InvivoGen) using HEK-BlueIFN-α/β cell line (Invivo-

Gen) and QUANTI-Blue detection reagent, following manufacturer’s instructions. In minire-

plicon assays, levels of bioactive IFN-I in tissue culture supernatants were determined by

evaluating protection capacity against cytopathic effect (CPE) after 24h infection of Vero cells

with VSV at moi = 0.1. As control, cells were treated with either 1000, 100 and 10 I.U./ml of

IFN-I for 16 hours. Under these conditions, 10 I.U./ml protected against VSV induced CPE.

Minireplicon and translation assay

LCMV minireplicon system was assayed as described elsewhere [92]. Briefly, WT and DDX3 ko

A549 cells were transiently co-transfected, using Lipofectamine 2000, with 0.6 μg of pCAGGS L,

0.15 μg of pCAGGS NP and 0.5 μg of the dual-reporter (green fluorescent protein (GFP) and

Gaussia luciferase (Gluc)) minigenome (MG) plasmid. These constructs were driven by the

human polymerase-I promoter [93]. To normalize transfection efficiencies, 0.1 μg of a mamma-

lian expression vector encoding Cypridina noctiluca luciferase (Cluc) under the control of the

constitutively active simian virus 40 (SV40) promoter (pSV40-Cluc; New England BioLabs),

were included in the transfection mix. GFP expression was determined by fluorescence micros-

copy using a Leica fluorescence microscope. Microscope images were pseudocolored using

Adobe Photoshop CS4 (v11.0) software and by luminometry (Gluc) using a Lumicount lumin-

ometer (Packard). Cells were also subjected to flow cytometry analysis at 72 h post-transfection,

and percentages of GFP-positive (GFP+) cells and mean fluorescence intensities (MFI) of the

FL1-gated cell population were determined using FlowJo software (Tree Star). Luciferase gene

activities were determined using Biolux Gaussia and Cypridina Luciferase Assay kits (New

England BioLabs) using a Lumicount luminometer (Packard). Reporter gene activation (Gluc) is

indicated as fold induction over cells transfected with a negative pCAGGS empty plasmid con-

trol instead of the viral NP. The translation assay was performed as indicated in [37]. Capped

synthetic RNAs were obtained by in vitro transcription from T7 promoter-controlled constructs.

The virus-like mRNA (5’wt/3’wt_2), mimicking the TCRV NP mRNA comprises a 5-nt nonviral

sequence preceding the viral 5’UTR, which is fused to the reporter firefly Luciferase (FLUC)
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open reading frame followed by the viral 3’ UTR. The cell-like 5’βGlo/3’poly(A) transcript bears

the 5’UTR from human β-globin, and a 53-nt 3’ poly(A) tail flanking the FLUC coding sequence.

Briefly, HEK-293T cells were grown in 24 well plates, transfected with 50 pmol of siRNAs against

DDX3 or scrambled siRNA pool 1 (Scr), and 42 hours later transfected again with 200 ng per

well of the indicated capped synthetic RNA. As internal control, 75 ng/well of a Renilla Lucifer-

ase (RLUC)-expressing non-capped mRNA was added to the transfection mix. Following 6h

incubation, lysis of transfected cells and quantification of FLUC and RLUC activities on a Biotek

FLx800 luminometer were performed using Dual-luciferase reporter assay system (Promega),

according to the manufacturer’s instructions. FLUC activity was normalized against the corre-

sponding value of RLUC activity in each experimental condition. For each transcript, mean

FLUC values (+/- standard deviation; SD) determined in depleted cells, are shown as a percent-

age of those in control cells, taken as 100%.

Statistics

Statistical differences were determined by Student’s t test or by one-way or two-way analysis of

variance (ANOVA) followed by Bonferroni post-hoc analysis using the GraphPad Prism 5

software (La Jolla, CA). For the Translation assay, statistical analyses were performed using the

SPSS 17.0 statistical software package (SPSS, Inc., Chicago, IL, USA).

Data availability

Mass spectrometry results were deposited in http://www.peptideatlas.org/PASS/PASS01114.
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Supporting information

S1 Fig. Newly generated recombinant viruses, mass spectrometry and siRNA control

assays. A. Schematic representation of 3rLCMV-HA-GFP genome. White: ORFs of viral pro-

teins. Green: GFP ORF. Pink: HA-tag. Black: Viral untranslated regions. B. MS input samples

were resolved in 10% SDS-PAGE, followed by silver-staining (left panel) or Immunoblot with

anti-HA Ab (middle panel). Whole cell lysates were also probed with anti-HA Ab (right

panel). Numbers on the right: MW (kDa). C-E. A549 cells were transfected with DDX3-speci-

fic or scrambled siRNAs (or just vehicle, Veh) for 60 h. SiRNA uptake at 6 hours post-transfec-

tion, using siGLO-siRNA (FSC: Forward scatter) (C) and cell viability at the time of the

infection (D), were determined by flow cytometry; cell lysates were analyzed by Immunoblot-

ting with anti-DDX3 Ab (IB:DDX3) or anti-GAPDH Ab (IB:GAPDH) (E). F. C57BL/6 mice

were infected with 5x10 6 PFU of recombinant WT LCMV (blue) or rLCMV-NP-HA (red)

(Passage 3). Serum was obtained 9 d.p.i. and viral titers determined by plaque assays.

(TIF)

S2 Fig. DDX3 expression, viability and viral RNA in WT versus DDX3 ko cell lines. A.

DDX3 ko-1, DDX3 ko-2, WT A549 and A549-pCas9 control cells were analyzed by Immuno-

blot with anti-DDX3 (IB:DDX3) or anti-GAPDH Ab as loading control (IB:GAPDH). B. Cell

viability quantification at the time of the infection with LCMV Cl13. C-D. qRT-PCR to
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determine relative fold expression of viral RNA levels at the indicated h.p.i. with LCMV Cl13

(C) or SeV (D). E DDX3 ko-1 and WT A549 cells were transduced with empty-RV (EV-RV)

or RV encoding DDX3 (DDX3-RV), and processed as in A. All data are representative of 2

independent experiments. Star colors represent WT vs DDX3 ko-1 (red) or DDX3 ko-2

(Black). � p<0.05.

(TIF)

S3 Fig. DDX3 suppressed IFN-I response and promoted LCMV growth in Vero Cells. A.

DDX3 ko-1, DDX3 ko-2 and WT A549 cells were infected with LCMV Cl13 for 24 hs at the

indicated M.O.I and relative fold expression of ifnb/gapdh transcripts were determined by

qRT-PCR in cell lysates. B-C. DDX3 ko-1 and WT A549 cells were transduced with empty-RV

(EV-RV) or RV encoding DDX3 (DDX3-RV), infected with LCMV Cl13 (M.O.I 0.5) and pro-

cessed for quantification of mx1/gapdh and isg15/gapdh transcripts as in A. D-E. Vero cells

were transfected with DDX3-specific or scrambled siRNAs for 60h. Cells were analyzed by

Immunoblotting with anti-DDX3 (IB:DDX3) or anti-GAPDH Ab as loading control (IB:

GAPDH) (D). Relative fold expression of viral RNA (lcmvnp/gapdh) was quantified via

qRT-PCR after infection with LCMV Cl13 at M.O.I 0.5 for the indicated times (E). All data

represent 2 independent experiments. � p<0.05, �� p<0.01, ���p<0.005, ����p<0.001. Star col-

ors represent WT A549 vs DDX3ko-1 (red) or vs DDX3ko-2 (black) (A); DDX3 ko-1+EV-RV

vs DDX3 ko-1+DDX3-RV (black) (B & C).

(TIF)

S4 Fig. DDX3 promoted early Arenavirus replication independently of IFN-I response. A.

HEK-293T cells were transfected with DDX3-specific or scrambled siRNA for 60 hs followed

by transfection with viral or cellular mRNA analogs. Cell lysates were processed for Immuno-

blot with anti-DDX3 (IB:DDX3) or anti-GAPDH Ab as loading control (IB:GAPDH). B. WT

A549 (blue bars) or DDX3 ko-1 cells (red bars) were pre-incubated for 2 h with anti-IFNAR

mAb (IFNAR Ab), transfected with empty plasmid or plasmid expressing DDX3 and used for

minigenome assay. 100% value was given to WT A549 cells transfected with empty plasmid.

Data are representative of 3 (A) or 2 (B) independent experiments.

(TIF)

S5 Fig. DDX3 promoted viral growth but did not affect IFN-I production after JUNV

infection. (A-B) DDX3 ko-1 and WT A549 cells were infected with JUNV Candid#1 (A) or

Romero (B) strains for 24h at the indicated M.O.I. Cells were stained with anti-JUNV NP anti-

body and Hoechst and processed for confocal microscopy. Percentage of positive cells were

determined by high-content quantitative image-based analysis. C-D. DDX3 ko-1, DDX3 ko-2

and WT A549 cells were infected with JUNV Candid#1 at M.O.I. = 0.5. In D, DDX3 ko-1 and

WT A549 cells were transduced with empty-RV (EV-RV) or RV encoding DDX3 (DDX3-RV)

before infection. Infb levels relative to gapdh were determined as relative fold expression by

qRT-PCR at 48 h.p.i. Data are representative of 2 independent experiments. �p<0.05,
��p<0.001. Stars colors represent: DDX3 ko vs WT (black) (A-B), WT vs DDX3ko-1(red) or

WT vs DDX3ko-2 (black) (C).

(TIF)

S1 Table. Proteins excluded due to detection in negative controls. List of proteins detected

in at least one out of 4 LCMV or 4 LASV samples (8 samples in total) and also detected, with

only 1 unique tryptic peptide in either of the two negative controls (a) or with�2 unique tryp-

tic peptides, in HA-USP14 (b) or 3rLCMVGFP-HA (c) samples. The Normalized Spectral

Counts (NSC) values were calculated for each hit in the respective negative control and the

maximum value in 4 independent experiments is depicted in the sixth column (NSC). GI:
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Gene identity (NCBI data bank).

(DOCX)

S2 Table. Pearson’s Coefficient and Overlap Coefficient for DDX3 and NP colocalization

in LCMV infected cells. Pearson’s Correlation Coefficient (PCC) was used as the measure of

how well red signal correlates with green signal based on linear regression. Overlap Coefficient

was used as the measure of how well two fluorescence intensities overlap. Thresholded Man-

ders Coefficient 1 and 2 (tM1 and tM2) were used as the ratio of red or green, respectively, that

co-occurs with the opposite fluorescence.

(DOCX)
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Data curation: Marı́a Eugenia Loureiro, Simone Dallari.

Formal analysis: Marı́a Eugenia Loureiro, Andre Luiz Zorzetto-Fernandes, Vince Harjono,

Brian M. Zid.

Funding acquisition: Elina Zúñiga.
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Juan Carlos de la Torre, Sina Bavari.

DDX3 is exploited by Arenaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007125 July 12, 2018 23 / 28

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007125.s007
https://doi.org/10.1371/journal.ppat.1007125


References
1. Fisher-Hoch SP, Tomori O, Nasidi A, Perez-Oronoz GI, Fakile Y, et al. (1995) Review of cases of noso-

comial Lassa fever in Nigeria: the high price of poor medical practice. BMJ 311: 857–859. PMID:

7580496

2. Shaffer JG, Grant DS, Schieffelin JS, Boisen ML, Goba A, et al. (2014) Lassa fever in post-conflict sierra

leone. PLoS Negl Trop Dis 8: e2748. https://doi.org/10.1371/journal.pntd.0002748 PMID: 24651047

3. Fischer WA 2nd, Wohl DA (2017) Moving Lassa Fever Research and Care Into the 21st Century. J

Infect Dis 215: 1779–1781. https://doi.org/10.1093/infdis/jix206 PMID: 28863471

4. Kerber R, Reindl S, Romanowski V, Gomez RM, Ogbaini-Emovon E, et al. (2015) Research efforts to

control highly pathogenic arenaviruses: a summary of the progress and gaps. J Clin Virol 64: 120–127.

https://doi.org/10.1016/j.jcv.2014.12.004 PMID: 25549822

5. Amman BR, Pavlin BI, Albarino CG, Comer JA, Erickson BR, et al. (2007) Pet rodents and fatal lympho-

cytic choriomeningitis in transplant patients. Emerg Infect Dis 13: 719–725. https://doi.org/10.3201/

eid1305.061269 PMID: 17553250

6. Bonthius DJ, Wright R, Tseng B, Barton L, Marco E, et al. (2007) Congenital lymphocytic choriomeningi-

tis virus infection: spectrum of disease. Ann Neurol 62: 347–355. https://doi.org/10.1002/ana.21161

PMID: 17557350

7. Ambrosio A, Saavedra M, Mariani M, Gamboa G, Maiza A (2011) Argentine hemorrhagic fever vac-

cines. Hum Vaccin 7: 694–700. PMID: 21451263

8. Enria DA, Briggiler AM, Sanchez Z (2008) Treatment of Argentine hemorrhagic fever. Antiviral Res 78:

132–139. https://doi.org/10.1016/j.antiviral.2007.10.010 PMID: 18054395

9. McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, et al. (1986) Lassa fever. Effective therapy

with ribavirin. N Engl J Med 314: 20–26. https://doi.org/10.1056/NEJM198601023140104 PMID: 3940312

10. WHO WHO (2016) List of Blueprint priority diseases. http://www.who.int/blueprint/priority-diseases/en/.

11. Casabona JC, Levingston Macleod JM, Loureiro ME, Gomez GA, Lopez N (2009) The RING domain

and the L79 residue of Z protein are involved in both the rescue of nucleocapsids and the incorporation

of glycoproteins into infectious chimeric arenavirus-like particles. J Virol 83: 7029–7039. https://doi.org/

10.1128/JVI.00329-09 PMID: 19420075

12. Lee KJ, Novella IS, Teng MN, Oldstone MB, de La Torre JC (2000) NP and L proteins of lymphocytic

choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic

RNA analogs. J Virol 74: 3470–3477. PMID: 10729120

13. Lopez N, Jacamo R, Franze-Fernandez MT (2001) Transcription and RNA replication of tacaribe virus

genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes.

J Virol 75: 12241–12251. https://doi.org/10.1128/JVI.75.24.12241-12251.2001 PMID: 11711615

14. Shtanko O, Watanabe S, Jasenosky LD, Watanabe T, Kawaoka Y (2011) ALIX/AIP1 is required for NP

incorporation into Mopeia virus Z-induced virus-like particles. J Virol 85: 3631–3641. https://doi.org/10.

1128/JVI.01984-10 PMID: 21248028

15. Martinez-Sobrido L, Zuniga EI, Rosario D, Garcia-Sastre A, de la Torre JC (2006) Inhibition of the type I

interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis

virus. J Virol 80: 9192–9199. https://doi.org/10.1128/JVI.00555-06 PMID: 16940530

16. Martinez-Sobrido L, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2007) Differential inhibition

of type I interferon induction by arenavirus nucleoproteins. J Virol 81: 12696–12703. https://doi.org/10.

1128/JVI.00882-07 PMID: 17804508

17. Rodrigo WW, Ortiz-Riano E, Pythoud C, Kunz S, de la Torre JC, et al. (2012) Arenavirus nucleoproteins

prevent activation of nuclear factor kappa B. J Virol 86: 8185–8197. https://doi.org/10.1128/JVI.07240-

11 PMID: 22623788

18. Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO (2011) Structure of the Lassa virus

nucleoprotein reveals a dsRNA-specific 3’ to 5’ exonuclease activity essential for immune suppression.

Proc Natl Acad Sci U S A 108: 2396–2401. https://doi.org/10.1073/pnas.1016404108 PMID: 21262835

19. Qi X, Lan S, Wang W, Schelde LM, Dong H, et al. (2010) Cap binding and immune evasion revealed by

Lassa nucleoprotein structure. Nature 468: 779–783. https://doi.org/10.1038/nature09605 PMID:

21085117

20. Pythoud C, Rodrigo WW, Pasqual G, Rothenberger S, Martinez-Sobrido L, et al. (2012) Arenavirus

nucleoprotein targets interferon regulatory factor-activating kinase IKKepsilon. J Virol 86: 7728–7738.

https://doi.org/10.1128/JVI.00187-12 PMID: 22532683

21. Zhou S, Cerny AM, Zacharia A, Fitzgerald KA, Kurt-Jones EA, et al. (2010) Induction and inhibition of

type I interferon responses by distinct components of lymphocytic choriomeningitis virus. J Virol 84:

9452–9462. https://doi.org/10.1128/JVI.00155-10 PMID: 20592086

DDX3 is exploited by Arenaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007125 July 12, 2018 24 / 28

http://www.ncbi.nlm.nih.gov/pubmed/7580496
https://doi.org/10.1371/journal.pntd.0002748
http://www.ncbi.nlm.nih.gov/pubmed/24651047
https://doi.org/10.1093/infdis/jix206
http://www.ncbi.nlm.nih.gov/pubmed/28863471
https://doi.org/10.1016/j.jcv.2014.12.004
http://www.ncbi.nlm.nih.gov/pubmed/25549822
https://doi.org/10.3201/eid1305.061269
https://doi.org/10.3201/eid1305.061269
http://www.ncbi.nlm.nih.gov/pubmed/17553250
https://doi.org/10.1002/ana.21161
http://www.ncbi.nlm.nih.gov/pubmed/17557350
http://www.ncbi.nlm.nih.gov/pubmed/21451263
https://doi.org/10.1016/j.antiviral.2007.10.010
http://www.ncbi.nlm.nih.gov/pubmed/18054395
https://doi.org/10.1056/NEJM198601023140104
http://www.ncbi.nlm.nih.gov/pubmed/3940312
http://www.who.int/blueprint/priority-diseases/en/
https://doi.org/10.1128/JVI.00329-09
https://doi.org/10.1128/JVI.00329-09
http://www.ncbi.nlm.nih.gov/pubmed/19420075
http://www.ncbi.nlm.nih.gov/pubmed/10729120
https://doi.org/10.1128/JVI.75.24.12241-12251.2001
http://www.ncbi.nlm.nih.gov/pubmed/11711615
https://doi.org/10.1128/JVI.01984-10
https://doi.org/10.1128/JVI.01984-10
http://www.ncbi.nlm.nih.gov/pubmed/21248028
https://doi.org/10.1128/JVI.00555-06
http://www.ncbi.nlm.nih.gov/pubmed/16940530
https://doi.org/10.1128/JVI.00882-07
https://doi.org/10.1128/JVI.00882-07
http://www.ncbi.nlm.nih.gov/pubmed/17804508
https://doi.org/10.1128/JVI.07240-11
https://doi.org/10.1128/JVI.07240-11
http://www.ncbi.nlm.nih.gov/pubmed/22623788
https://doi.org/10.1073/pnas.1016404108
http://www.ncbi.nlm.nih.gov/pubmed/21262835
https://doi.org/10.1038/nature09605
http://www.ncbi.nlm.nih.gov/pubmed/21085117
https://doi.org/10.1128/JVI.00187-12
http://www.ncbi.nlm.nih.gov/pubmed/22532683
https://doi.org/10.1128/JVI.00155-10
http://www.ncbi.nlm.nih.gov/pubmed/20592086
https://doi.org/10.1371/journal.ppat.1007125


22. Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immu-

nol 32: 461–488. https://doi.org/10.1146/annurev-immunol-032713-120156 PMID: 24655297

23. King BR, Hershkowitz D, Eisenhauer PL, Weir ME, Ziegler CM, et al. (2017) A Map of the Arenavirus

Nucleoprotein-Host Protein Interactome Reveals that Junin Virus Selectively Impairs the Antiviral Activ-

ity of Double-Stranded RNA-Activated Protein Kinase (PKR). J Virol 91.

24. Schroder M, Baran M, Bowie AG (2008) Viral targeting of DEAD box protein 3 reveals its role in TBK1/

IKKepsilon-mediated IRF activation. EMBO J 27: 2147–2157. https://doi.org/10.1038/emboj.2008.143

PMID: 18636090

25. Soulat D, Burckstummer T, Westermayer S, Goncalves A, Bauch A, et al. (2008) The DEAD-

box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune

response. EMBO J 27: 2135–2146. https://doi.org/10.1038/emboj.2008.126 PMID: 18583960

26. Clegg JC, Lloyd G (1983) Structural and cell-associated proteins of Lassa virus. J Gen Virol 64: 1127–

1136. https://doi.org/10.1099/0022-1317-64-5-1127 PMID: 6405010

27. Harnish DG, Dimock K, Bishop DH, Rawls WE (1983) Gene mapping in Pichinde virus: assignment of

viral polypeptides to genomic L and S RNAs. J Virol 46: 638–641. PMID: 6302325

28. Wolff S, Becker S, Groseth A (2013) Cleavage of the Junin virus nucleoprotein serves a decoy function

to inhibit the induction of apoptosis during infection. J Virol 87: 224–233. https://doi.org/10.1128/JVI.

01929-12 PMID: 23077297

29. Oshiumi H, Ikeda M, Matsumoto M, Watanabe A, Takeuchi O, et al. (2010) Hepatitis C virus core protein

abrogates the DDX3 function that enhances IPS-1-mediated IFN-beta induction. PLoS One 5: e14258.

https://doi.org/10.1371/journal.pone.0014258 PMID: 21170385

30. Gu L, Fullam A, Brennan R, Schroder M (2013) Human DEAD box helicase 3 couples IkappaB kinase

epsilon to interferon regulatory factor 3 activation. Mol Cell Biol 33: 2004–2015. https://doi.org/10.1128/

MCB.01603-12 PMID: 23478265

31. Carnec X, Baize S, Reynard S, Diancourt L, Caro V, et al. (2011) Lassa virus nucleoprotein mutants

generated by reverse genetics induce a robust type I interferon response in human dendritic cells and

macrophages. J Virol 85: 12093–12097. https://doi.org/10.1128/JVI.00429-11 PMID: 21880754

32. Huang Q, Shao J, Lan S, Zhou Y, Xing J, et al. (2015) In vitro and in vivo characterizations of pichinde

viral nucleoprotein exoribonuclease functions. J Virol 89: 6595–6607. https://doi.org/10.1128/JVI.

00009-15 PMID: 25878103

33. Muller S, Geffers R, Gunther S (2007) Analysis of gene expression in Lassa virus-infected HuH-7 cells.

J Gen Virol 88: 1568–1575. https://doi.org/10.1099/vir.0.82529-0 PMID: 17412988

34. Emeny JM, Morgan MJ (1979) Regulation of the interferon system: evidence that Vero cells have a

genetic defect in interferon production. J Gen Virol 43: 247–252. https://doi.org/10.1099/0022-1317-43-

1-247 PMID: 113494

35. Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL, et al. (2008) Human DDX3 functions in translation

and interacts with the translation initiation factor eIF3. Nucleic Acids Res 36: 4708–4718. https://doi.

org/10.1093/nar/gkn454 PMID: 18628297

36. Soto-Rifo R, Rubilar PS, Limousin T, de Breyne S, Decimo D, et al. (2012) DEAD-box protein DDX3

associates with eIF4F to promote translation of selected mRNAs. EMBO J 31: 3745–3756. https://doi.

org/10.1038/emboj.2012.220 PMID: 22872150

37. Foscaldi S, D’Antuono A, Noval MG, de Prat Gay G, Scolaro L, et al. (2017) Regulation of Tacaribe

Mammarenavirus Translation: Positive 5’ and Negative 3’ Elements and Role of Key Cellular Factors. J

Virol 91.

38. Garbelli A, Beermann S, Di Cicco G, Dietrich U, Maga G (2011) A motif unique to the human DEAD-

box protein DDX3 is important for nucleic acid binding, ATP hydrolysis, RNA/DNA unwinding and HIV-1

replication. PLoS One 6: e19810. https://doi.org/10.1371/journal.pone.0019810 PMID: 21589879

39. Wang H, Kim S, Ryu WS (2009) DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse tran-

scription by incorporation into nucleocapsids. J Virol 83: 5815–5824. https://doi.org/10.1128/JVI.

00011-09 PMID: 19297497

40. Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, et al. (2002) Transcriptional profiling

of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimu-

lated genes. J Virol 76: 5532–5539. https://doi.org/10.1128/JVI.76.11.5532-5539.2002 PMID:

11991981

41. Radoshevich L, Impens F, Ribet D, Quereda JJ, Nam Tham T, et al. (2015) ISG15 counteracts Listeria

monocytogenes infection. Elife 4.

42. Ariumi Y (2014) Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral

infection. Front Genet 5: 423. https://doi.org/10.3389/fgene.2014.00423 PMID: 25538732

DDX3 is exploited by Arenaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007125 July 12, 2018 25 / 28

https://doi.org/10.1146/annurev-immunol-032713-120156
http://www.ncbi.nlm.nih.gov/pubmed/24655297
https://doi.org/10.1038/emboj.2008.143
http://www.ncbi.nlm.nih.gov/pubmed/18636090
https://doi.org/10.1038/emboj.2008.126
http://www.ncbi.nlm.nih.gov/pubmed/18583960
https://doi.org/10.1099/0022-1317-64-5-1127
http://www.ncbi.nlm.nih.gov/pubmed/6405010
http://www.ncbi.nlm.nih.gov/pubmed/6302325
https://doi.org/10.1128/JVI.01929-12
https://doi.org/10.1128/JVI.01929-12
http://www.ncbi.nlm.nih.gov/pubmed/23077297
https://doi.org/10.1371/journal.pone.0014258
http://www.ncbi.nlm.nih.gov/pubmed/21170385
https://doi.org/10.1128/MCB.01603-12
https://doi.org/10.1128/MCB.01603-12
http://www.ncbi.nlm.nih.gov/pubmed/23478265
https://doi.org/10.1128/JVI.00429-11
http://www.ncbi.nlm.nih.gov/pubmed/21880754
https://doi.org/10.1128/JVI.00009-15
https://doi.org/10.1128/JVI.00009-15
http://www.ncbi.nlm.nih.gov/pubmed/25878103
https://doi.org/10.1099/vir.0.82529-0
http://www.ncbi.nlm.nih.gov/pubmed/17412988
https://doi.org/10.1099/0022-1317-43-1-247
https://doi.org/10.1099/0022-1317-43-1-247
http://www.ncbi.nlm.nih.gov/pubmed/113494
https://doi.org/10.1093/nar/gkn454
https://doi.org/10.1093/nar/gkn454
http://www.ncbi.nlm.nih.gov/pubmed/18628297
https://doi.org/10.1038/emboj.2012.220
https://doi.org/10.1038/emboj.2012.220
http://www.ncbi.nlm.nih.gov/pubmed/22872150
https://doi.org/10.1371/journal.pone.0019810
http://www.ncbi.nlm.nih.gov/pubmed/21589879
https://doi.org/10.1128/JVI.00011-09
https://doi.org/10.1128/JVI.00011-09
http://www.ncbi.nlm.nih.gov/pubmed/19297497
https://doi.org/10.1128/JVI.76.11.5532-5539.2002
http://www.ncbi.nlm.nih.gov/pubmed/11991981
https://doi.org/10.3389/fgene.2014.00423
http://www.ncbi.nlm.nih.gov/pubmed/25538732
https://doi.org/10.1371/journal.ppat.1007125


43. Lai MC, Chang WC, Shieh SY, Tarn WY (2010) DDX3 regulates cell growth through translational control

of cyclin E1. Mol Cell Biol 30: 5444–5453. https://doi.org/10.1128/MCB.00560-10 PMID: 20837705

44. Chang PC, Chi CW, Chau GY, Li FY, Tsai YH, et al. (2006) DDX3, a DEAD box RNA helicase, is dereg-

ulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control.

Oncogene 25: 1991–2003. https://doi.org/10.1038/sj.onc.1209239 PMID: 16301996

45. Cruciat CM, Dolde C, de Groot RE, Ohkawara B, Reinhard C, et al. (2013) RNA helicase DDX3 is a reg-

ulatory subunit of casein kinase 1 in Wnt-beta-catenin signaling. Science 339: 1436–1441. https://doi.

org/10.1126/science.1231499 PMID: 23413191

46. Angus AG, Dalrymple D, Boulant S, McGivern DR, Clayton RF, et al. (2010) Requirement of cellular

DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein. J Gen Virol

91: 122–132. https://doi.org/10.1099/vir.0.015909-0 PMID: 19793905

47. Owsianka AM, Patel AH (1999) Hepatitis C virus core protein interacts with a human DEAD box protein

DDX3. Virology 257: 330–340. https://doi.org/10.1006/viro.1999.9659 PMID: 10329544

48. Lai MC, Wang SW, Cheng L, Tarn WY, Tsai SJ, et al. (2013) Human DDX3 interacts with the HIV-1 Tat

protein to facilitate viral mRNA translation. PLoS One 8: e68665. https://doi.org/10.1371/journal.pone.

0068665 PMID: 23840900

49. Thulasi Raman SN, Liu G, Pyo HM, Cui YC, Xu F, et al. (2016) DDX3 Interacts with Influenza A Virus

NS1 and NP Proteins and Exerts Antiviral Function through Regulation of Stress Granule Formation. J

Virol 90: 3661–3675. https://doi.org/10.1128/JVI.03010-15 PMID: 26792746

50. Valiente-Echeverria F, Hermoso MA, Soto-Rifo R (2015) RNA helicase DDX3: at the crossroad of viral

replication and antiviral immunity. Rev Med Virol 25: 286–299. https://doi.org/10.1002/rmv.1845 PMID:

26174373

51. Li C, Ge LL, Li PP, Wang Y, Dai JJ, et al. (2014) Cellular DDX3 regulates Japanese encephalitis virus

replication by interacting with viral un-translated regions. Virology 449: 70–81. https://doi.org/10.1016/j.

virol.2013.11.008 PMID: 24418539

52. Vashist S, Urena L, Chaudhry Y, Goodfellow I (2012) Identification of RNA-protein interaction networks

involved in the norovirus life cycle. J Virol 86: 11977–11990. https://doi.org/10.1128/JVI.00432-12

PMID: 22933270

53. Chahar HS, Chen S, Manjunath N (2013) P-body components LSM1, GW182, DDX3, DDX6 and XRN1

are recruited to WNV replication sites and positively regulate viral replication. Virology 436: 1–7. https://

doi.org/10.1016/j.virol.2012.09.041 PMID: 23102969

54. Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT (2004) Requirement of DDX3 DEAD box RNA

helicase for HIV-1 Rev-RRE export function. Cell 119: 381–392. https://doi.org/10.1016/j.cell.2004.09.

029 PMID: 15507209

55. Shih JW, Tsai TY, Chao CH, Wu Lee YH (2008) Candidate tumor suppressor DDX3 RNA helicase spe-

cifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene 27:

700–714. https://doi.org/10.1038/sj.onc.1210687 PMID: 17667941

56. Shih JW, Wang WT, Tsai TY, Kuo CY, Li HK, et al. (2012) Critical roles of RNA helicase DDX3 and its

interactions with eIF4E/PABP1 in stress granule assembly and stress response. Biochem J 441: 119–

129. https://doi.org/10.1042/BJ20110739 PMID: 21883093

57. Baird NL, York J, Nunberg JH (2012) Arenavirus infection induces discrete cytosolic structures for RNA

replication. J Virol 86: 11301–11310. https://doi.org/10.1128/JVI.01635-12 PMID: 22875974

58. Lai MC, Sun HS, Wang SW, Tarn WY (2016) DDX3 functions in antiviral innate immunity through trans-

lational control of PACT. FEBS J 283: 88–101. https://doi.org/10.1111/febs.13553 PMID: 26454002

59. Wang X, Wang R, Luo M, Li C, Wang HX, et al. (2017) (DEAD)-box RNA helicase 3 modulates NF-kap-

paB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget 8: 33197–

33213. https://doi.org/10.18632/oncotarget.16593 PMID: 28402257

60. Gringhuis SI, Hertoghs N, Kaptein TM, Zijlstra-Willems EM, Sarrami-Fooroshani R, et al. (2017) HIV-1

blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA

by the host helicase DDX3. Nat Immunol 18: 225–235. https://doi.org/10.1038/ni.3647 PMID:

28024153

61. Oshiumi H, Sakai K, Matsumoto M, Seya T (2010) DEAD/H BOX 3 (DDX3) helicase binds the RIG-I

adaptor IPS-1 to up-regulate IFN-beta-inducing potential. Eur J Immunol 40: 940–948. https://doi.org/

10.1002/eji.200940203 PMID: 20127681

62. Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente.

Science 312: 879–882. https://doi.org/10.1126/science.1125676 PMID: 16690858

63. Yun NE, Poussard AL, Seregin AV, Walker AG, Smith JK, et al. (2012) Functional interferon system is

required for clearance of lassa virus. J Virol 86: 3389–3392. https://doi.org/10.1128/JVI.06284-11

PMID: 22238311

DDX3 is exploited by Arenaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007125 July 12, 2018 26 / 28

https://doi.org/10.1128/MCB.00560-10
http://www.ncbi.nlm.nih.gov/pubmed/20837705
https://doi.org/10.1038/sj.onc.1209239
http://www.ncbi.nlm.nih.gov/pubmed/16301996
https://doi.org/10.1126/science.1231499
https://doi.org/10.1126/science.1231499
http://www.ncbi.nlm.nih.gov/pubmed/23413191
https://doi.org/10.1099/vir.0.015909-0
http://www.ncbi.nlm.nih.gov/pubmed/19793905
https://doi.org/10.1006/viro.1999.9659
http://www.ncbi.nlm.nih.gov/pubmed/10329544
https://doi.org/10.1371/journal.pone.0068665
https://doi.org/10.1371/journal.pone.0068665
http://www.ncbi.nlm.nih.gov/pubmed/23840900
https://doi.org/10.1128/JVI.03010-15
http://www.ncbi.nlm.nih.gov/pubmed/26792746
https://doi.org/10.1002/rmv.1845
http://www.ncbi.nlm.nih.gov/pubmed/26174373
https://doi.org/10.1016/j.virol.2013.11.008
https://doi.org/10.1016/j.virol.2013.11.008
http://www.ncbi.nlm.nih.gov/pubmed/24418539
https://doi.org/10.1128/JVI.00432-12
http://www.ncbi.nlm.nih.gov/pubmed/22933270
https://doi.org/10.1016/j.virol.2012.09.041
https://doi.org/10.1016/j.virol.2012.09.041
http://www.ncbi.nlm.nih.gov/pubmed/23102969
https://doi.org/10.1016/j.cell.2004.09.029
https://doi.org/10.1016/j.cell.2004.09.029
http://www.ncbi.nlm.nih.gov/pubmed/15507209
https://doi.org/10.1038/sj.onc.1210687
http://www.ncbi.nlm.nih.gov/pubmed/17667941
https://doi.org/10.1042/BJ20110739
http://www.ncbi.nlm.nih.gov/pubmed/21883093
https://doi.org/10.1128/JVI.01635-12
http://www.ncbi.nlm.nih.gov/pubmed/22875974
https://doi.org/10.1111/febs.13553
http://www.ncbi.nlm.nih.gov/pubmed/26454002
https://doi.org/10.18632/oncotarget.16593
http://www.ncbi.nlm.nih.gov/pubmed/28402257
https://doi.org/10.1038/ni.3647
http://www.ncbi.nlm.nih.gov/pubmed/28024153
https://doi.org/10.1002/eji.200940203
https://doi.org/10.1002/eji.200940203
http://www.ncbi.nlm.nih.gov/pubmed/20127681
https://doi.org/10.1126/science.1125676
http://www.ncbi.nlm.nih.gov/pubmed/16690858
https://doi.org/10.1128/JVI.06284-11
http://www.ncbi.nlm.nih.gov/pubmed/22238311
https://doi.org/10.1371/journal.ppat.1007125


64. Kolokoltsova OA, Yun NE, Poussard AL, Smith JK, Smith JN, et al. (2010) Mice lacking alpha/beta and

gamma interferon receptors are susceptible to junin virus infection. J Virol 84: 13063–13067. https://

doi.org/10.1128/JVI.01389-10 PMID: 20926559

65. Ou R, Zhou S, Huang L, Moskophidis D (2001) Critical role for alpha/beta and gamma interferons in per-

sistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J Virol 75:

8407–8423. https://doi.org/10.1128/JVI.75.18.8407-8423.2001 PMID: 11507186

66. Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, et al. (2013) Blockade of chronic type I

interferon signaling to control persistent LCMV infection. Science 340: 202–207. https://doi.org/10.

1126/science.1235208 PMID: 23580528

67. Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, et al. (2013) Persistent LCMV infection is con-

trolled by blockade of type I interferon signaling. Science 340: 207–211. https://doi.org/10.1126/

science.1235214 PMID: 23580529

68. Wang Y, Swiecki M, Cella M, Alber G, Schreiber RD, et al. (2012) Timing and magnitude of type I inter-

feron responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection. Cell Host

Microbe 11: 631–642. https://doi.org/10.1016/j.chom.2012.05.003 PMID: 22704623

69. Li G, Feng T, Pan W, Shi X, Dai J (2015) DEAD-box RNA helicase DDX3X inhibits DENV replication via

regulating type one interferon pathway. Biochem Biophys Res Commun 456: 327–332. https://doi.org/

10.1016/j.bbrc.2014.11.080 PMID: 25437271

70. Gu L, Fullam A, McCormack N, Hohn Y, Schroder M (2017) DDX3 directly regulates TRAF3 ubiquitina-

tion and acts as a scaffold to co-ordinate assembly of signalling complexes downstream from MAVS.

Biochem J 474: 571–587. https://doi.org/10.1042/BCJ20160956 PMID: 27980081

71. Huang C, Kolokoltsova OA, Yun NE, Seregin AV, Ronca S, et al. (2015) Highly Pathogenic New World

and Old World Human Arenaviruses Induce Distinct Interferon Responses in Human Cells. J Virol 89:

7079–7088. https://doi.org/10.1128/JVI.00526-15 PMID: 25926656

72. Huang C, Kolokoltsova OA, Yun NE, Seregin AV, Poussard AL, et al. (2012) Junin virus infection acti-

vates the type I interferon pathway in a RIG-I-dependent manner. PLoS Negl Trop Dis 6: e1659. https://

doi.org/10.1371/journal.pntd.0001659 PMID: 22629479

73. Ahmed R, Salmi A, Butler LD, Chiller JM, Oldstone MB (1984) Selection of genetic variants of lympho-

cytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T

lymphocyte response and viral persistence. J Exp Med 160: 521–540. PMID: 6332167

74. Mudhasani R, Tran JP, Retterer C, Radoshitzky SR, Kota KP, et al. (2013) IFITM-2 and IFITM-3 but not

IFITM-1 restrict Rift Valley fever virus. J Virol 87: 8451–8464. https://doi.org/10.1128/JVI.03382-12

PMID: 23720721

75. Emonet SF, Garidou L, McGavern DB, de la Torre JC (2009) Generation of recombinant lymphocytic

choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest.

Proc Natl Acad Sci U S A 106: 3473–3478. https://doi.org/10.1073/pnas.0900088106 PMID: 19208813

76. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, et al. (2009) Enzymatic assembly of

DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345. https://doi.org/10.1038/

nmeth.1318 PMID: 19363495

77. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme inter-

action landscape. Cell 138: 389–403. https://doi.org/10.1016/j.cell.2009.04.042 PMID: 19615732

78. Pillai RS, Artus CG, Filipowicz W (2004) Tethering of human Ago proteins to mRNA mimics the miRNA-

mediated repression of protein synthesis. RNA 10: 1518–1525. https://doi.org/10.1261/rna.7131604

PMID: 15337849

79. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, et al. (2013) Genome engineering using the

CRISPR-Cas9 system. Nat Protoc 8: 2281–2308. https://doi.org/10.1038/nprot.2013.143 PMID:

24157548

80. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction.

Genetics 120: 621–623. PMID: 2852134

81. Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2012) Self-association of lymphocytic

choriomeningitis virus nucleoprotein is mediated by its N-terminal region and is not required for its anti-

interferon function. J Virol 86: 3307–3317. https://doi.org/10.1128/JVI.05503-11 PMID: 22258244

82. McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, et al. (1997) Direct analysis and identifica-

tion of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal

Chem 69: 767–776. PMID: 9043199

83. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, et al. (2006) Quantitative proteomic analysis

of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl

Acad Sci U S A 103: 18928–18933. https://doi.org/10.1073/pnas.0606379103 PMID: 17138671

DDX3 is exploited by Arenaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007125 July 12, 2018 27 / 28

https://doi.org/10.1128/JVI.01389-10
https://doi.org/10.1128/JVI.01389-10
http://www.ncbi.nlm.nih.gov/pubmed/20926559
https://doi.org/10.1128/JVI.75.18.8407-8423.2001
http://www.ncbi.nlm.nih.gov/pubmed/11507186
https://doi.org/10.1126/science.1235208
https://doi.org/10.1126/science.1235208
http://www.ncbi.nlm.nih.gov/pubmed/23580528
https://doi.org/10.1126/science.1235214
https://doi.org/10.1126/science.1235214
http://www.ncbi.nlm.nih.gov/pubmed/23580529
https://doi.org/10.1016/j.chom.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22704623
https://doi.org/10.1016/j.bbrc.2014.11.080
https://doi.org/10.1016/j.bbrc.2014.11.080
http://www.ncbi.nlm.nih.gov/pubmed/25437271
https://doi.org/10.1042/BCJ20160956
http://www.ncbi.nlm.nih.gov/pubmed/27980081
https://doi.org/10.1128/JVI.00526-15
http://www.ncbi.nlm.nih.gov/pubmed/25926656
https://doi.org/10.1371/journal.pntd.0001659
https://doi.org/10.1371/journal.pntd.0001659
http://www.ncbi.nlm.nih.gov/pubmed/22629479
http://www.ncbi.nlm.nih.gov/pubmed/6332167
https://doi.org/10.1128/JVI.03382-12
http://www.ncbi.nlm.nih.gov/pubmed/23720721
https://doi.org/10.1073/pnas.0900088106
http://www.ncbi.nlm.nih.gov/pubmed/19208813
https://doi.org/10.1038/nmeth.1318
https://doi.org/10.1038/nmeth.1318
http://www.ncbi.nlm.nih.gov/pubmed/19363495
https://doi.org/10.1016/j.cell.2009.04.042
http://www.ncbi.nlm.nih.gov/pubmed/19615732
https://doi.org/10.1261/rna.7131604
http://www.ncbi.nlm.nih.gov/pubmed/15337849
https://doi.org/10.1038/nprot.2013.143
http://www.ncbi.nlm.nih.gov/pubmed/24157548
http://www.ncbi.nlm.nih.gov/pubmed/2852134
https://doi.org/10.1128/JVI.05503-11
http://www.ncbi.nlm.nih.gov/pubmed/22258244
http://www.ncbi.nlm.nih.gov/pubmed/9043199
https://doi.org/10.1073/pnas.0606379103
http://www.ncbi.nlm.nih.gov/pubmed/17138671
https://doi.org/10.1371/journal.ppat.1007125


84. Daugherty MD, Schaller AM, Geballe AP, Malik HS (2016) Evolution-guided functional analyses reveal

diverse antiviral specificities encoded by IFIT1 genes in mammals. Elife 5.

85. Aulas A, Fay MM, Lyons SM, Achorn CA, Kedersha N, et al. (2017) Stress-specific differences in

assembly and composition of stress granules and related foci. J Cell Sci 130: 927–937. https://doi.org/

10.1242/jcs.199240 PMID: 28096475

86. Sternberg S (1983) Biomedical image processing. Computer 16: 22–34.

87. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Sys-

tems, Man, and Cybernetics 9: 62–66.

88. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy.

J Microsc 224: 213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x PMID: 17210054

89. Manders EM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour con-

focal images. Journal of Microscopy 169: 375–382.

90. Zinchuk V, Wu Y, Grossenbacher-Zinchuk O (2013) Bridging the gap between qualitative and quantita-

tive colocalization results in fluorescence microscopy studies. Sci Rep 3: 1365. https://doi.org/10.1038/

srep01365 PMID: 23455567

91. Radoshitzky SR, Dong L, Chi X, Clester JC, Retterer C, et al. (2010) Infectious Lassa virus, but not filo-

viruses, is restricted by BST-2/tetherin. J Virol 84: 10569–10580. https://doi.org/10.1128/JVI.00103-10

PMID: 20686043

92. Cheng BY, Ortiz-Riano E, de la Torre JC, Martinez-Sobrido L (2015) Arenavirus Genome Rearrange-

ment for the Development of Live Attenuated Vaccines. J Virol 89: 7373–7384. https://doi.org/10.1128/

JVI.00307-15 PMID: 25972555

93. Ortiz-Riano E, Cheng BY, Carlos de la Torre J, Martinez-Sobrido L (2013) Arenavirus reverse genetics

for vaccine development. J Gen Virol 94: 1175–1188. https://doi.org/10.1099/vir.0.051102-0 PMID:

23364194

DDX3 is exploited by Arenaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007125 July 12, 2018 28 / 28

https://doi.org/10.1242/jcs.199240
https://doi.org/10.1242/jcs.199240
http://www.ncbi.nlm.nih.gov/pubmed/28096475
https://doi.org/10.1111/j.1365-2818.2006.01706.x
http://www.ncbi.nlm.nih.gov/pubmed/17210054
https://doi.org/10.1038/srep01365
https://doi.org/10.1038/srep01365
http://www.ncbi.nlm.nih.gov/pubmed/23455567
https://doi.org/10.1128/JVI.00103-10
http://www.ncbi.nlm.nih.gov/pubmed/20686043
https://doi.org/10.1128/JVI.00307-15
https://doi.org/10.1128/JVI.00307-15
http://www.ncbi.nlm.nih.gov/pubmed/25972555
https://doi.org/10.1099/vir.0.051102-0
http://www.ncbi.nlm.nih.gov/pubmed/23364194
https://doi.org/10.1371/journal.ppat.1007125



