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Abstract 
 

The Context Dependent Sentence Abstraction (CDSA) 
model and Latent Semantic Analysis (LSA) were 
compared in their ability to predict sentence similarity.   
Evidence supports the conclusion that the CDSA model 
better predicts human ratings for short phrases and 
sentences than does LSA.  Alternative theoretical reasons 
are given for this finding. 

 
Introduction  

Researchers in many disciplines within cognitive science 
have proposed and tested theoretical claims about the 
meaning of natural language expressions. One of the 
contemporary models is Latent Semantic Analysis (LSA; 
Landauer & Dumais, 1997). LSA is a statistical, corpus 
based technique for representing world knowledge. It 
computes similarity comparisons between words or 
documents by capitalizing on the fact that words are similar 
when they are surrounded by similar words (i.e., the 
company a word keeps).  

LSA takes quantitative information about co-occurrences 
of words in documents (paragraphs and sentences) and 
translates this into a K-dimensional space. The input of LSA 
is a large co-occurrence matrix that specifies the frequency 
of words in documents. LSA reduces each document and 
word into a lower dimensional space by using singular value 
decomposition. This way, the initially extremely large word-
by-document co-occurrence matrix is typically reduced to 
about 300 dimensions. Each word ends up being a K-
dimensional vector. The semantic relationship between 
words can be estimated by taking the cosine (normalized dot 
product) between two vectors. Although LSA performance 

has been shown to be impressive at the paragraph level 
(Foltz, Gilliam, & Kendall, 2000; Landauer, Laham, 
Rehder, & Schreiner, 1997), other research has found 
limitations of LSA at the sentence level (Kintsch, 2001).  In 
this paper we will present the Context Dependent Sentence 
Abstraction (CDSA) model, a corpus-based model that 
builds sentence meanings based on combinations of pooled 
adjacent neighbors of individual words.   We will first 
discuss a weakness with vector representational systems 
(e.g., LSA) in handling sentence comprehension and then 
turn to a description of the CDSA model, with evidence 
supporting it. 
 
A  weakness with LSA 
One major strength of LSA is its versatility and simplicity in 
handling word meaning and sentence meaning by the use of 
vector representations. It could be argued, however, that 
there are potential theoretical problems with combining 
word vectors to form sentences.  For example, the meaning 
created from a sentence in LSA is a linear combination of 
word vectors, without eliminating information for any word.  
Consider the sentence the cow ate in the field. In LSA all 
information about cows (e.g., animal, milk, burger), ate 
(e.g., food, grocery, digest), and field (e.g., grass, baseball, 
football) may be included in the sentence representation.  It 
could be argued that this assumption is not theoretically 
plausible because much of this associated information is not 
relevant to the word in context.  There must be constraints 
that narrow down the vast array of information that may be 
“primed” in the first stages of sentence comprehension.  
Indeed, Kintsch’s construction-integration model (1998) has 
attempted to explain this convergence of activated 
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information by principles that guide the integration 
mechanisms.   

Whereas the standard use of LSA is based on the 
assumption that a sentence’s meaning is the sum of all the 
individual word meanings, there are extensions. Kintsch’s 
predication algorithm (2001) tries to build meaning of a 
sentence by using syntactical information and LSA to create 
dependencies between subjects, predicates, and objects.    
For example, consider the sentences the horse ran and the 
color ran.  The context established by ran has different 
meanings in these two sentences. Therefore, in the 
predication algorithm, constraints are made on what ran 
means in these sentences.  The first step is to find the near 
neighbors of the word ran (i.e., words that give the highest 
cosine to ran).  For the horse example, all the neighbors of 
ran are compared to the word horse.  This provides words 
like walk, gallop, crawl, rode, etc.  These neighbors of ran 
that are closest to horse (i.e., highest cosine) are then 
included into the vector for the sentence the horse ran.  The 
same is done for the color example, resulting in different 
overall meanings. Including this additional information has 
been shown to more accurately capture the meaning of a 
sentence when we consider metaphor and causal inferences 
(Kintsch, 2001). 

Kintsch’s predication algorithm (2001) therefore imposes 
augmentations and constraints on the standard use of LSA. 
However, this algorithm still may not go the distance in 
solving the problem of information overload mentioned 
earlier.   That is, predicating the verb ate to cow does give 
relevant information like graze, but all information about 
cows and ate are also included.  To successfully implement 
context in the given example, we would want to include 
only information about “cows eating”, not about “cows and 
ate and graze and field and pasture”.  While the predication 
algorithm solves some problems by adding information, it 
also may be limited by not taking any information away. 
 
T he need for contextual constraints 
Computational representations like LSA go beyond general 
word meanings, but may not adequately handle contextual 
constraints.  LSA may go some distance in handling 
proposition meanings that constrain words in context 
(Kintsch, 1998), but there still is a large landscape of 
representations and algorithms for combining information 
from words.  We propose a new way of implementing 
contextual constraints.  These contextual constraints are first 
built from simple individual word meanings that get 
established over time from their occurrences in the 
environment. But as sentences are constructed, similarities 
between the words in the constrained construction build a 
new meaning different from the sum of its parts.  
 

The CDS  Model A 
Associationist frameworks (Landauer, 2002; Louwerse & 
Ventura, in press; Smith, Jones, & Landau, 1992) assume 
that it is critically important to measure and model the 
correlations between occurrences or events in the 

environment.  We pursued a corpus-based model of word 
and sentence meaning, called the Context Dependent 
Sentence Abstraction (CDSA) model.  In the CDSA model, 
semantic information within any word w is the pooled 
words that co-occur with word w in every context.  One of 
the goals of this model is to try and capture the associations 
between words under a new level of specificity that 
considers the pool of their surrounding words.      

In order to implement this model, it was necessary to 
make decisions about the learning rule and training set to be 
used. For this model, the deciding factor in each of these 
cases was psychological plausibility. That is, this model 
considers a corpus of prior experiences with words in 
context and the theoretical weights between words that 
change with experience, as opposed to a priori sets of 
features that are dictated by a brittle, symbolic model.  The 
central question is how these weights change with 
experience.  The proposed CDSA claims that they change 
by accumulating specific sentence exemplars.   

Consider two words chair and table.   The central 
question to be asked is what are all the possible relevant or 
useful relations that can exist between these two concepts?    
Each word has a neighborhood set that includes all words 
that co-occur with the target word.  These words are the 
extensional meaning of the target word and serve as the 
basis for all associations.     The neighborhood intersection 
is the relation that occurs when two words share similar co-
occurrences with other words.   Much like LSA, words 
become associated by their occurrence with many of the 
same words.  For example, food and eat may become 
associated because they both occur with words such as 
hungry and table.   Therefore the neighborhood set N for 
any word w is all the information we have in the exemplars 
for a word.    
       
N eighbor weights 
The neighborhood set for any word is intended to represent 
the meaning of a word from a corpus.   But there were 
several theoretical challenges that arose when we developed 
the model.  One dealt with how to differentially weight 
neighborhood words.   We assigned neighborhood weights 
to each neighborhood word n of word w according to 
Equation (1).   
 

( )
( ) ( )nfwf

wnf
wn

|
=λ      (1) 

                                 
The expression f(n|w) designates the frequency of 
occurrence of the neighbor word n to target word w, 
whereas f(n) is the total frequency of the neighbor word n, 
and f(w) is the total frequency of the target word w. This 
formula essentially restricts the weights for the neighbor 
words as being between 0 and 1 in most cases.  We adopted 
this simple assumption but we acknowledge that there are 
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other ways to guarantee the range of the weights being 
within 0 and 1.   

Therefore, the weighting function was aimed at giving 
more importance to words that consistently co-occur and 
less importance to words that occur frequently in the corpus.  
Additionally, rare co-occurrences may be given low weights 
because they do not consistently co-occur with the target 
word.          

Some important assumptions had to be made in order to 
build relevant associations to target words most effectively.  
The next section will explain the procedures of the 
algorithm written to perform these operations.   
 
N eighborhood Intersection Algorithm 
In order to construct the neighborhood set for any word, an 
algorithm was written that pooled all words N that co-
occurred with the target word w.  We used the Touchstone 
Applied Science Associates (TASA) corpus because of its 
size (750,000 sentences) and diversity of topics (reading a 
diversity of texts up to college level). Each sentence in the 
corpus served as the context for direct co-occurrence. So for 
entire set of sentence sentences (s1...sC) that target word w 
occurs in, every unique word in (s1...sC) is pooled into the 
neighborhood set N.  For example the neighborhood of 
chair may consist of:  table, sit, leg, baby, kitchen, talk, etc.  
This represents the neighborhood N of each target word w.  
Each word in the set (n1...nK) of N is weighted by the 
function described in equation (1).  To evaluate the relation 
between any two words w1 and w2, we follow the following 
algorithmic procedure: 
 

1. Pool neighborhood sets for w1 and w2 (N1 and N2 
respectively), computing the weights for all the 
neighbor words using Equation (1).   

2. Calculate neighborhood intersection as follows:   
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The numerator is the summation of weights over the 
intersection of the neighborhood sets (N1 and N2) whereas 
the denominator is the summation of weights over the union 
of the two neighborhood sets.  This formula produces a 
value between 0 and 1.   

In the next section we will discuss how the CDSA model 
was evaluated. 

 
C DSA Model Evaluation 
In four experiments we evaluated the CDSA model against 
LSA and human raters.  The estimations of word and 
sentence meanings in the CDSA model and LSA were 
trained on the TASA corpus.   Ratings in all four 

experiments were made by 10 undergraduate psychology 
students who were instructed to rate the similarity of various 
pairs of words (i.e., primarily from words from Spellman, 
Holyoak, & Morrison, 2001) on a 6-point scale that varied 
from 1 (very unrelated) to 6 (very related).   A rating of 1 or 
2 meant the rater could not easily find a functional or 
physical relationship between the word pairs (e.g. fish-
office). The mean among the raters for each pair was taken 
as the basic data to test the models.        
 

Experiment 1  
Word Pairs A total of 64 word pairs was constructed that 
had a frequency over 10 in the TASA corpus.  Some of the 
words were expected to be unrelated (e.g., chair-hear) and 
some related (e.g., chair-sit) in order to provide a sensitive 
range of values.   
 
R esults and Discussion  
Human ratings (M = 3.57, SD = 2.20) were significantly 
correlated with the values produced by the CDSA model, r 
= .71, p < .001, and with LSA cosines, r = .78, p < .001.  So 
both models fared quite well in accounting for the ratings of 
word pairs.    

Neighborhood intersection estimation shared a relation to 
human ratings, so we might conclude that this type of 
association between words is used in human judgments.   
That is, by using all the co-occurrence information about a 
word, one can capture the meaning of a word.   As can be 
seen, LSA was slightly more predictive of word relations 
than the CDSA model, although the difference was not 
statistically significant. 

  The lack of difference between models may be due to 
the construction of neighborhood sets for a single word in 
the CDSA model.  Since there are many neighbors that exist 
for any particular word, there are many degrees of freedom 
that exist for determining the meaning for a single word.  
For instance, if one is asked to give an association to the 
word cow, there are many possible associations (e.g., 
animal, milk, burger, etc), which will lead to a very general 
non-specific representation of a single word.    

The purpose of Experiment 2 is to try to use the model to 
represent the meaning of word-pairs.  This involves 
imposing constraints on the neighbors for each pair in order 
to more accurately represent the contextual meaning of the 
pair.   For instance, cow-graze should give a more specific 
representation of cow than cow without a context because 
constraints are built on the meaning of cow.  These 
constraints initially involve measuring the neighborhood 
overlap between the neighbors of cow and the neighbors of 
graze, which then are used to compare to another set of 
information (e.g., word, sentence).    

 
Experiment 2  

A central theoretical assumption in Experiment 1 was the 
idea that neighborhood intersection plays a prominent role 
in the relation between words.  But how can the current 
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model account for conceptual relationships beyond the word 
level?  Figure 1 gives an illustration of how this could be 
done.  If two pairs are being compared, the neighborhood 
overlap of each pair is pooled into F1 and F2.  Then the 
intersection (Equation 2) is calculated to access the 
similarity between the two pairs.  This constrains the 
degrees of freedom for the pair, which eliminates any 
information that is not mutually shared by both words in the 
pair (i.e., the problem found in Kintsch’s predication 
algorithm). Therefore, each word is always dependent on 
the context in which it appears. As the context for a word 
becomes more specific (i.e., as reflected by the number of 
unique words it appears with), the less likely that the same 
context will be associated with any random word.  For 
instance, chair-sit has a smaller neighborhood set than the 
sum of neighbors for chair and the neighbors for sit.  This 
assumption therefore states that word pairs, or even 
sentences, are different than the sum of its parts, an 
assumption quite different from current models of 
associative learning like LSA.    

Additionally the union of the neighborhood weights (i.e., 
the entire neighbor weights of all words in each pair) was 
calculated for F to compare the effectiveness of intersecting 
the neighborhoods. 
 
Word Pairs We constructed 53 word pairs that had a 
frequency over 10 in the TASA corpus.  Separate sets of 
pairs were intended to be unrelated (e.g., bear/cave—
pen/write), related by analogy (e.g., bear/cave—fish/pond), 
or related by both analogy and semantic relation (e.g., 
teeth/bite—leg/kick).   
 
R esults and Discussion 
Human ratings (M = 3.46, SD = 1.62) were significantly 
correlated with CDSA intersection, r = .60, p < .001, and 
union, r = .51, p < .001.    LSA cosines were also related to 
human similarity ratings, r = .64, p < .001.   

It appears that imposing context reduced the correlation 
with rated similarity of 2-word pairs, compared with single-
word pairs.  As can be seen LSA performance also drops.  
Most notably, the union of neighbor sets does not perform 
as well as the intersection version of the CDSA model.  

 

       

The purpose of Experiment 3 was to examine how 
performance would be affected by implementing more 
context through comparison of 3-word phrases. 
 

Experiment 3  
The process we used in building constraints on three-word 
combinations involves a multinomial neighborhood overlap 
(N-O) among all neighborhood pairs.   Each neighbor that is 
shared by at least two neighborhoods is then pooled into F.  
Figure 2 gives an illustration of how this can be achieved.. 
                                   

Figure 1:  The recursive nature of neighborhood overlap.  
The neighborhood overlap (F1) of chair (N1) and sit (N2) is 
intersected with to the neighborhood overlap (F2) of bed 
(N3) and lay (N4 ).   

Figure 2:  3-word neighborhood overlap for two 3-word 
combinations.   The neighbors of each combination are 
compared for neighborhood overlap, which are then pooled 
into a neighborhood F for each pair. 

 
M odel modifications 
Neighborhoods were first built on words within the pair as 
described in equation 1.  As described in Figure 1, the 
neighborhood N1 of chair is intersected with the 
neighborhood N2 of sit to yield a new neighborhood F1 that 
represents the “chair sit” neighborhood.  Since any shared 
neighbor in N1 and N2 each have a separate weight, the 
average of the two weights (Equation (3)) is calculated to 
represent the new weight for each neighbor in F1.  
 

[ ]
211 2

1
2 wnwnwwn λλλ +=        (3) 

  
In the same manner, we obtain F2. Once F1 and F2 have 
been calculated for both word-pairs, the neighborhood 
intersection is calculated (as described in Equation (2)), to 
access the relationship between the 2-word pairs.  

M odel Modifications 
Equation 3 is used to compute weights for the words that are 
in the intersection of any two neighborhoods (o1, o2, and o3).   

1390



By making all possible intersections between each 
neighborhood N1,  N2, and N3, a select number of words may 
be counted three times.  Therefore neighbors shared by all 
three sets (o4; see figure 2) will be averaged (i.e., divided by 
3) and eliminated from any other N-O to avoid multiple 
counts.   The computation for the weights in the intersection 
of the three neighborhoods is simply an extension of 
equation 3, where the average is taken with three weights 
instead of two.  Additionally each neighbor in o4 is a special 
neighbor because it is shared by all neighbor sets.  Therefore 
these neighbors are multiplied by a constant of 3 (i.e., since 
there are three sets) to give greater importance to these 
context bound neighbors.  Once F1 and F2 have been pooled 
together by all the N-O for each pair, the neighborhood 
intersection is calculated (Equation 2), to access the 
relationship between the 3-word pairs.  

Additionally the union of the neighborhood weights (i.e., 
the entire neighbor weights of all words in each pair) was 
calculated for F to compare the effectiveness of intersecting 
the neighborhoods. 
 
Short phrases We constructed 58 three-word phrases that 
had a frequency over 10 in the TASA corpus.  Some pairs 
were intended to be unrelated (e.g., bird/nest/fly—
brush/paint/art), related by analogy-like relations (e.g., 
gun/shot/bullet — axe/chop/wood), and related by both 
analogy and semantic relation (e.g., dog/loud/bark—
cat/quiet/meow). 
 
R esults and Discussion 
Human ratings (M = 3.10, SD = 1.78) were significantly 
related to the CDSA intersection, r = .63, p < .001, and 
union, r = .44, p < .001.    LSA cosines were related to 
human similarity ratings, r = .47, p < .001.    The results 
give evidence that imposing context improves performance 
in calculating similarity. Furthermore, LSA performance 
continues to drop as more word context is introduced.  This 
in part could be due to the lack of constraints that are put in 
the sentence representation in LSA.    
 

Experiment 4  
The purpose of the present experiment is to test the CDSA 
model to sentences of varying lengths (i.e., sentences 
ranging from 4 to 6 words).  One challenge that arises in 
calculating sentence similarities is how to handle all the 
possible intersections between word neighbors within one 
sentence.  Therefore three conditions were tested on how to 
calculate the final sentence neighbor set F. First, a 
multinomial approach entailing N-O among all 
neighborhood sets was pooled to get F.  Weightings were 
computed between any N-O words as an extension of 
Equation 3, where the neighborhood intersections could 
entail 2-6 neighborhoods. 

Second, a word-chunking maximum likelihood approach 
was used that calculated a set P for every three words in a 
sentence (Johansson, 2000).   This chunking approach using 
a 3-word context to any target word was found to give equal 

performance to 5-word and 7-word contexts in syntactic 
tagging.  So if a sentence had five words, a multinomial    
N-O calculation between the 1st 2nd and 3rd word 
neighborhoods would produce P1 (i.e., as described in 
Experiment 3), then N-O would be calculated between the 
4th and 5th neighborhood words to produce P2 (as described 
in Experiment 2).  Then the N-O between P1 and P2 would 
be calculated to produce the final neighborhood F for the 
sentence.  The intersection between F1 and F2 (Equation 2) 
will give the final similarity between the two sentences.  
This word-chunking hypothesis is consistent with the 
intuition that adjacent words in a sentence constrain 
meaning more than nonadjacent words in a sentence.   

Finally, the union of the neighborhood weights (i.e., the 
entire neighbor weights of all words in each pair) was 
calculated for F to compare the effectiveness of intersecting 
the neighborhoods. 
 
Sentences We constructed 42 sentences whose words had a 
frequency over 10 in the TASA corpus.  Sentences pairs 
were constructed of varying length (e.g., blue bird fed 
babies nest tree -- bear protected cubs den; articles, 
pronouns and prepositions were removed).   Sentences were 
constructed so that about half were considered related and 
half unrelated. 
 
R esults and Discussion 
Human ratings (M = 2.12, SD = 1.48) were significantly 
correlated to CDSA model 3 word chunking intersection, r 
= .69, p < .001, CDSA union, r = .65, p < .001, and the 
CDSA multinomial intersection, r = .56, p < .001.   LSA 
cosines were also related to human similarity ratings, r = 
.50, p < .001.   

The results give evidence that imposing context may be 
important when calculating sentence similarity.   By 
applying an arbitrary rule set to sentences of varying lengths 
seems to yield better performance than just making all 
possible intersections among neighbors.   Alternatively, the 
union of all the neighbors seems to perform just as well as a 
rule based intersection procedure.    Possible reasons for this 
will be discussed next.  
 

General Discussion  
In sentence comprehension, comprehenders must 
understand the nature of word context and the constraints 
one word places on another (Kintsch, 1998).  In other 
words, comprehenders will have to ask themselves: how 
does the meaning of one word affect the meaning of another 
word?   The most straightforward relationship among words 
is an additive one, where the meaning of one word has no 
influence on the meaning of another word.  In contrast, in 
the case of sentence comprehension, the levels of a one 
word can dramatically change the effects of another word.  
In this model, context refers to N-O among words in a 
sentence.  That is, changing levels of one word can 
dramatically affect the meaning of another word.  Thus, 
without structural constraints involving processes similar to 
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N-O, sentence meanings proceed in a radically different 
manner.   Many relations shared between the pairs in the 4 
experiments were abstract relations, ones that were only 
clearly established by filtering the individual word meanings 
and keeping shared information among words.    

The word-chunking N-O approach appears to perform 
better than the multinomial N-O approach among all 
neighbors.  Making all possible intersections among 
neighbors does not seem to be very psychologically 
plausible since it would involve making many comparisons 
between words that may not be relevant.  For instance, 
comparing the first word to the last word in a sentence may 
not be important in evaluating the meaning of a sentence. 

 
P ossible improvements 
As can be seen in experiment 4, N-O did not seem to help 
predict sentence similarity to a great extent over the union 
of all the neighborhoods in a sentence.  This may be due to 
the arbitrariness of the rules used to calculate N-O for 
varying sentence lengths.  For instance, if the sentence was 
6 words long, N-O would be calculated for the three words 
and the last three words.   With these two pools we would 
then calculate F.  This type of rule makes the assumption 
that all 6-word sentences follow the same syntactic 
structure.  This obviously will not do for all 6-word 
sentences.  Therefore, it seems likely that if the CDSA 
model was implemented with a syntactic parsing 
mechanism, it could give the correct word pairs to calculate 
N-O for any sentence.   
 

Conclusion  
The computational model presented here captures both word 
and sentence meaning. There are several reasons why using 
the CDSA model is advantageous.  First, it uses simple 
mechanisms that are psychologically plausible.  Second, it 
gives the freedom to add more information to the corpus at 
any time.  Since the measures derived are computed on-line 
on the corpus, dynamically adding text to the corpus is not a 
problem.   Essentially, many weights are changed between 
words as soon as text is added.      

The proposed computational model captures word and 
sentence meaning by appealing to constraints reflected in a 
corpus analysis. Embodiment theorists (Glenberg & 
Robertson, 2000) may claim that there is no meaning 
derived from a corpus analysis because the words are not 
grounded in sensory-motor experience.  In principle, one 
could have a more grounded corpus with units extensively 
embedded in sensory and motor experience.  The TASA 
corpus was simply readily available. Whether the episodic 
experiences are reflected in TASA or in sensory-motor 
experience, the theoretical assumptions of the CDSA model 
are that, specific exemplars and associative processes are 
sufficient to account for the judgments of meaning 
similarity.  The CDSA model uses simple mechanisms that 
rely on co-occurrences of words in exemplars. 

One additional advantage of the CDSA model is that it 
allows more information to be added to the corpus at any 

time.  Since the measures derived are computed on-line on 
the corpus, dynamically adding text to the corpus is not a 
problem.   Essentially, weights are changed between words 
as soon as text is added.      
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