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Magnetic anisotropy in permalloy antidot square lattice
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Magnetic anisotropy of Permalloy (Py) antidot square lattice was investigated by torquemetry method using Rotation Magneto-Optic
Kerr Effect (ROTMOKE). We find that there exists a field-dependent 4-fold magnetic anisotropy with the easy magnetization axis along
the [11] axis of the antidot square lattice. In addition, there also exists an artifact of a uniaxial magnetic anisotropy in ROTMOKE result.
We show that both observations are due to the period wiggling of the magnetization in space which was confirmed by magnetic imaging
using magnetic transmission soft x-ray microscopy (MTXM). Micromagnetic simulation from MuMax3 supports the wiggling structure of
the magnetization, as well as reproduces the artifact of the uniaxial anisotropy. An oversimplified model was developed based on the
periodic wiggling of the magnetization and successfully explored the physical origin of the field-dependent 4-fold anisotropy and the
artifact of the uniaxial anisotropy.

PACS numbers: 75.70.Ak

1. Introduction

Artificial magnetic nanostructures have attracted much
interest  due to their novel magnetic properties as well  as
their  application  potentials  in  spintronics technology  [1].
While  layered  magnetic  nanostructures  usually  employ
interfacial/interlayer  interactions  to  generate  various
magnetoelectronic  properties  such  as  the  giant
magnetoresistance  [2,3]  and  tunneling  magnetoresistance
[4,5],  magnetic  dots/antidots  are  generally  aimed  to
modulate spins laterally to create new magnetic states such

as  spin  ice  states  [6],  and  magnetic  vortices/skyrmions
[7,8,9].  For  the  latter  topic  of  magnetic  dot/antidot
nanostructures,  array  of  periodically  distributed  dots  or
holes(antidots)  are  usually  created  to  modulate  the
magnetization  of  a  thin  film  at  sub-micron  length  scale
using various methods such as lithography, shadow mask
growth, and self-assembly, etc [10]. 

In  terms  of  experimental  techniques,  magnetic
measurement usually involves two types of techniques with
one measuring the macroscopic magnetization such as the
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torquemetry  [11],  hysteresis  loop  comparison  [12],  and
Ferromagnetic  Resonance  (FMR)  [13],  etc.,  with  another
probing the spatial distribution of the magnetization such as
magnetic  force  microscopy  (MFM)  [14],  photoemission
electron  microscopy  (PEEM)  [15],  and  scanning  electron
microscopy with spin polarization (SEMPA) [16], etc. Each
technique has its strength but also weakness. For example,
macroscopic  measurement  can  usually  retrieve  the
anisotropy  value  from  experiment  but  cannot  reveal  the
microscopic origin. MFM has a high spatial resolution but
probes  only  the  stray  field  produced  by  the  magnetic
charges  thus usually has  to combine with micromagnetic
simulation  to  reconstruct  the  in-plane  magnetization
distribution.  In  contrast,  PEEM  and  SEMPA  can  probe
magnetic component directly in all directions but have to be
operated  in  the  absence  of  external  magnetic  field.  As a
practical  approach,  there  is  a  need  to  employ  several
complimentary  measurement  techniques  in  order  to  gain
comprehensive information of the magnetic nanostructures.

In terms of magnetic properties in magnetic dot/antidot
structures,  magnetic  anisotropy  has  been  one  of  the
intensely  investigated  properties  because  of  its  important
role in high-density magnetic recording [17,18]. The overall
goal of this research direction is to achieve a programable
magnetic anisotropy [19] by tailoring the geometry of the
system such as the shape, size, and spatial distribution of
the dot/antidot, etc [20,21,22]. Most of the studies have taken
the advantage of magnetic shape anisotropy that magnetic
charges at  the dot/antidot boundaries introduce additional
magnetic dipolar interaction. A representative system is the
square lattice of magnetic dots/antidots synthesized from a
magnetic thin film. It  was found that  a 4-fold anisotropy
could  be  induced  in  such  system  with  the  hard
magnetization axis along the directions connecting nearest
neighboring  dots/antidots  [13, 23,24,25,26,27].  Although
numeric micromagnetic simulations suggest  none-uniform
spin  configurations  in  the  patterned  nanostructures
[23,28,29,30,31], it has more or less remained obscure on the
relation  between  the  magnetic  anisotropy  and  the  spin
configuration in space. In particular, it is puzzling that the
anisotropy magnitude decreases with increasing the applied
magnetic  field  although  such  dependence  offers  a  new
opportunity to tailor the magnetic anisotropy [32]. It is even
more  mysterious  that  the  torquemetry  measurement
indicates  the  existence  of  a  uniaxial  anisotropy  which

should  be  absent  in  a  4-fold  symmetric  arrays  of
dots/antidots [23]. 

In  this  paper,  we  report  a  systematic  study  of  the
magnetic  anisotropy  in  permalloy  (Py)  antidot  square
arrays.  Using  rotational  magneto-optic  Kerr  effect
(ROTMOKE), we show a clear dependence of the magnetic
anisotropy  on  the  magnetic  field  strength,  indicating  a
spatial  variation of the magnetization as the origin of the
magnetic  anisotropy.  By  imaging  the  magnetic  structure
using  full  field  magnetic  transmission  soft  X-ray
microscopy  (MTXM),  we  directly  revealed the  in-plane
wiggling  of  the  Py  magnetization  and  its  behavior  at
different external magnetic fields. This spatial variation of
the magnetization also explains the  artifact of the uniaxial
anisotropy  appeared  in  torquemetry  measurement.  We
further performed micromagnetic simulation and the result
agrees nicely of the experimental observations. Finally, we
offered a simplified model to reveal the physical origin of
the  real  4-fold  anisotropy  and  the  artifact  of  uniaxial
anisotropy.

2. Experiment

Square lattice  of  Py  antidots  was  prepared  by
depositing  Py  on  top  of  Quantifoil  holey  carbon  grid  at
room temperature by an e-beam evaporator in an ultrahigh
vacuum system with a base pressure  of  5×10-10 Torr.  Py
was  chosen  because  it  has  negligibly  small  magnetic
anisotropy so that magnetic anisotropy in Py antidot square
arrays  comes  entirely  from  the  patterned  structure.  The
holey carbon grid is made of a 15 nm thick holey carbon
film containing  a  square  array  of  1μm-diameter  circular
holes  with a center-to-center  distance  of  1.6μm. Py film
deposited on top of this holey carbon grid naturally forms a
film with arrays of antidot forming at the locations of the
holes. The circular shape of the antidot ensures that each
dot alone doesn’t generate magnetic anisotropy so that the
macroscopic anisotropy has to come from the global antidot
square lattice. SEM image confirms the formation of the Py
antidots with desired sizes (Fig. 1).
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Fig. 1: SEM image of 70 nm-thick Py antidots square array
on Quantifoil holey carbon grid. 

ROTMOKE  measurement  was  performed  at  room
temperature  on  the  Py  antidot  sample.  The  in-plane
projection of the incident laser beam was set to be parallel
to  the  nearest  neighbor  antidots  axis.  As  an  in-plane
magnetic  field rotates  in  the  film plane,  the  ROTMOKE
measures  the  projection  of  the  magnetization  along  the
optical  plane  from  which  the  angle  between  the
magnetization  and  the  optical  plane  could  be  retrieved.
Then the angular difference between the magnetic field and
the magnetization contains the information of the magnetic
anisotropy.  Detailed  description  of  the  ROTMOKE
instrument and principle can be found in our previous paper
[33].  

MTXM  measurement  was  performed  at  room
temperature  at  beamline  6.1.2  of  the  Advanced  Light
Source  at  Lawrence  Berkeley  National  Laboratory.  Off-
orbit emitted radiation provides elliptically polarized x-rays
which  illuminates  the  sample  after  passing  a  condenser
zone plate.  Another micro zone plate then projects a full
field image onto a CCD camera that is sensitive to soft x-
rays. External magnetic field generated by a solenoid was
applied along the x-ray direction so in-plane magnetic field
was obtained by tilting the sample at 60o to the x-ray beam,
the  absorption  of  x-ray  transmitted  through  the  Py  film
depends on the relative angle between the beam direction
and  the  local  magnetization  [known  as  x-ray  magnetic
circular  dichroism  (XMCD)],  which  gives  magnetic
contrast  in  the  image  that  directly  shows  the  in-plane
magnetization components in the sample [34]. 

3. Result and Discussion

3.1 MOKE and ROTMOKE result

We first present result of hysteresis loop measured by
magnetic-optic  Kerr  effect  (MOKE)  and  torque  curve
measured by ROTMOKE on 70 nm thick Py antidot arrays.
[10]  and  [11]  directions  of  the  antidot  square  array  are
defined in Fig.1.  Hysteresis loops for magnetic field along
[10] and [11] axes show clearly that it is easier to saturate
the  magnetization  in  [11]  direction  than  [10]  direction,
showing that the magnetic easy axis is parallel to [10] axis.

Next,  we present  the  ROTMOKE result.  For an  in-
plane  magnetic  field  applied  to  the  film  with  uniform
magnetization, the magnetic energy per unit volume is

E=−H M S cos (θ−φ )−K 2 cos2
(φ−φ2 )+K 4 sin2

( φ ) cos2
(φ )

(1)

where  M S is  the  saturation  magnetization,  H  is  the
magnitude of the applied magnetic field, K 2 is the uniaxial
magnetic anisotropy, K 4 is the 4-fold magnetic anisotropy,
and  θ and  φ are the angles of the magnetic filed and the
magnetization relative to the [10] direction of the antidots
lattice, respectively.  φ2 defines the easy (K2>0) or hard (
K2<0)  magnetization  axis  of  the  uniaxial  magnetic
anisotropy. Minimizing the energy with respect to  φ leads
to the magnetic torque [l (φ )] needed to achieve equilibrium
state. 

l (φ )≡ Hsin (θ−φ )=
1
2 H K2

sin [2(φ−φ2)¿]+
1
4 HK 4

sin  (4 φ)¿

, (2)

where HK 2
=2K 2/ M s ,HK 4

=2K 4/ M s are the uniaxial
anisotropy  and  4-fold  magnetic  anisotropy  fields,
respectively.  
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Fig. 2: Hysteresis loop along [10] and [11] directions of the
Py  antidot  square  lattice  measured  by  MOKE.
Hysteresis loop fully closes at around 500 Oe.

To have a unique magnetic torque at a given magnetic
field,  the  field  has  to  be  strong  enough  to  wipe  out  all
irreversible  magnetic  domains.  Therefore,  we  performed
ROTMOKE measurement  with the magnetic field greater
than ~500 Oe above which the hysteresis disappears even
along the hard axis (Fig. 2). For a given direction of the
field (θ), the magnetization angle (φ) is determined from
the ROTMOKE signal which is proportional to cosφ. Then
the  magnetic  torque  of  Hsin (θ−φ ) is  constructed  as  a
function of  φ. Fig. 3 depicts a representative ROTMOKE
result at H=600 Oe. 

The  magnetic  torque  oscillates  with  φ with  a
periodicity of 90o [Fig. 3(a)], showing the existence of a 4-
fold  magnetic  anisotropy.  Looking  in  details,  the  4-fold
oscillation of the torque doesn’t have the same peak height.
In fact, the 1st and 3rd peaks have the same height which is
less than the height of the 2nd and 4th peaks. This behavior
indicates the existence a uniaxial anisotropy (HK 2

≠0  ) in
addition  to  the  4-fold anisotropy (HK 4).  A fitting  of  the
experimental  data using eqn. (2) yields  HK 2

=−104± 4
Oe,  φ2=−2.2± 1.3° ,  and  HK 4

=−181 ±10 Oe.  The
negative value of HK 4 indicates that [10] and [01] axes are
the hard magnetization axes and [11] and [11́] axes are the
easy magnetization axes of the 4-fold magnetic anisotropy.

Fig. 3: ROTMOKE result.  Magnetic  torque  l (φ) at  H =
600 Oe  with  the  optical  plane  parallel  to  a,  [10]
axis, and b, [01] axis of the sample, respectively. In
experiment, (a) and (b) were achieved by fixing the
optical  plane  in  space  but  rotating sample by 90o

around the surface normal direction. The identical
result of a and b shows that the uniaxial anisotropy
is an artifact.  c, Redefined torque L (φ) using eqn.
(3)  to  eliminate  the  artifact  of  the  uniaxial
anisotropy. Red lines are fitting curves  using eqn.
(2).

In a system with a perfect 4-fold symmetry, uniaxial
magnetic  anisotropy  is  forbidden.  However,  uniaxial
anisotropy  could  be  induced  by  breaking  the  4-fold
symmetry such as by different lengths of the antidot along
[10] and [01] axes [32] or by off-normal growth of the Py
film  [35].  Indeed  uniaxial  anisotropy  was  shown  in
torquemetry  measurement  in  square  arrays  of  antidots
before without a clear  explanation [23].  We checked our
sample carefully and find no evidence of elliptical shape of
the antidots (Fig. 1).  We also grew the Py carefully with
normal directional growth by facing the evaporator directly
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to  the  substrate.  Therefore,  we  believe  that  the  uniaxial
anisotropy  should  be  an  artifact  appeared  in  the  torque
measurement. To prove this artifact, we rotated the sample
by 90o and performed the ROTMOKE measurement again.
If the uniaxial anisotropy were real, the easy magnetization
axis of the uniaxial anisotropy should be changed by 90o

(e.g.,  φ2 should increase by 90o) while keeping the 4-fold
anisotropy unchanged. Consequently, the magnitudes of the
four  peaks  in  Fig.  3(a)  would  have  been  changed
accordingly with the height of the 1st and 3rd peaks greater
than the height of the 2nd and 4th peaks. Our ROTMOKE
result  after  the  sample  rotation  [Fig.  3(b)],  however,  is
identical  to  the  ROTMOKE  result  before  the  sample
rotation [Fig. 3(a)]. In fact, the same fitting applied to Fig.
3(a) fits Fig. 3(b) perfectly (red color solid line),  proving
that  the  uniaxial  anisotropy  is  an  artifact  in  the  torque
measurement rather than a real existence in the sample. We
will discuss the origin of this artifact later in the paper. 

To eliminate the artifact of the uniaxial anisotropy in
the torque, we reinforce the 4-fold symmetry by redefining
the torque as:

L (φ )=
1
2 [ l (φ )+ l (φ+900

) ] , 00≤ φ ≤1800(3).

L (φ) obtained  in  this  way  [Fig.  3(c)]  eliminates  the
artifact  of the uniaxial anisotropy  and can be fitted using
eqn. (2) with HK 2

=0 to obtain the 4-fold anisotropy HK 4.
In fact, the HK 4 obtained in this way has the same value as
the fitting result of HK 4 obtained from Fig. 3(a) within the
error bar from the fittings. 

Fig. 4: HK4 from  ROTMOKE  experiment  and  MuMax3
simulation  above  500  Oe.  Dashed  line  represents

HK 4 ∝1/ H  relation  from  the  over-simplified
model.

Fig. 4  shows the  fitting  result of  HK 4 (blue squares)
above 500 Oe (below 500 Oe irreversible hysteresis appears
so that ROTMOKE method is no longer valid). The result
shows that  magnitude of  the  4-fold  anisotropy  decreases
with increasing the field, in agreement with result reported
in literature [23]. Moreover, we find that the magnitude of
the  4-fold  anisotropy  decreases  monotonically  with
increasing the magnetic field. This behavior implies that the
4-fold  magnetic  anisotropy should vanish  in  the  limit  of
H → ∞. Note that magnetization becomes uniform (∇ M⃗
=0) in the limit of  H → ∞ and that the magnetic charge
distribution  at  the  boundary  of  a  circular  disk  with  a
uniform magnetization corresponds to a magnetic moment
at  the  center  of  each  antidot,  the  vanish  of  the  4-fold
magnetic anisotropy is nothing but the expected fact  that
magnetic  dipolar  interaction  does  give  a  4-fold  shape
anisotropy for a uniform magnetization in a square lattice
(we will give a rigorous proof of this assertion later in this
paper). Therefore the none zero 4-fold magnetic anisotropy
in  our  antidot  square  lattice  must  come  from  a  none-
uniform magnetization in space at finite magnetic field.

3.2 Magnetic images

To prove the none-uniformity of the magnetization in
space, we obtained magnetic images of 100 nm thick Py
antidot square lattice using MTXM at  room temperature.
The MTXM images (Fig. 5) with an in-plane magnetic field
show  clearly  that  the  magnetization  is  not  aligned
uniformly to the field direction. Instead, the magnetization
tends to move away from the field direction especially at
low  magnetic  field.  In  particular,  the  magnetization  in
region between two nearest-neighbor antidots tends to be
parallel  to  the  antidot  boundary,  resulting  a  periodic
wiggling  of  the  magnetization  around  the  antidot  square
lattice.  The  wiggling  amplitude  of  the  magnetic  texture
reduces  gradually  with  increasing  magnetic  field,
approaching a uniform saturation magnetization to the field
direction as the in-plane field increases to 1 kOe which is
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the  maximum  in-plane  field  available  at  the  MTXM
beamline. 

Fig. 5: Experimental  images  from MTXM and  simulated
images  from  MuMax3.  a,  d,  g: Experimental
MTXM images with in-plane magnetic field of 400,
600 and 800 Oe, respectively, along the direction as
shown on the top left.  b,  e,  h: Simulated MTXM
images with the x-component of magnetization (Mx)
represented  by  the  greyscale  colormap  shown  on
top.  c, f, i: Colored  images  showing  the
magnetization direction in space. The colormap on
top shows the magnetization angle  φ (M) relative
to the field direction.

Qualitatively, the wiggling of the magnetization can be
understood  by  considering  the  magnetic  charges  at  the
antidot  boundary.  For a uniform magnetization along the
field direction, magnetic charges are induced at the antidot
boundary.  To  reduce  the  magnetic  dipolar  interaction
energy, magnetic charges at the antidot boundary should be
reduced by rotating the magnetization between two nearest-
neighbor  antidots along [10] axis towards the [01] or [01́]
direction.  Similarly,  the  magnetization  between  two
nearest-neighbor  dotes  along  [01]  axis  should  rotate
towards  [10]  or  [1́0]  direction  to  reduce  the  magnetic
charges  at  the  antidot  boundary.  Therefore,  a  uniform
magnetization  in  the  field  direction  should  rotate  in

opposite directions along the [10] and [01] axes to reduce
the magnetic charges at the antidot boundaries, leading to a
periodic wiggling of the magnetization in the antidot square
lattice.  Since  this  wiggling  of  magnetization  is  at  the
expanse of  Zeeman energy by rotating the magnetization
away  from  the  magnetic  field  direction,  the  wiggling
amplitude should be obviously reduced by increasing the
magnetic field. 

3.3 Micromagnetic simulation

To have a quantitative analysis, we have to consider a
continuous variation of the magnetization in  whole space.
To do so, we performed micromagnetic  simulation using
MuMax3 on a 100nm Py thick antidot film with the same
geometry parameters as in the experiment. The  simulation
result  (Fig.  5) indeed  shows the  same trend  of  wiggling
magnetization as observed by the MTXM with the wiggling
amplitude  decreasing  with  increasing  magnetic  field.
Furthermore,  we  find  that  the  wiggling  magnetization
follows  exactly  4-fold  symmetry  as  the  magnetic  field
direction rotates. This is expected because in simulation we
could  ensure  a  prefect  4-fold  symmetry  of  the  antidot
system. 

Then  the  interesting  question  is  if  an  artifact  of
uniaxial anisotropy would appear in the ROTMOKE torque
measurement from a simulation on a perfect 4-fold antidot
square  lattice?  To  answer  this  question,  we performed
micromagnetic simulation of the process of ROTMOKE via
MuMax3 on a 10×10 Py antidot square lattice (70 nm Py
thickness,  1μm-diameter  hole,  and  1.6μm period)  for  a
rotating in-plane magnetic field of H=500 ~ 700  Oe. For
each step of the magnetic field angle (θ), equilibrium state
of  the  magnetization  in  the  MuMax3  simulation  was
achieved  by  relaxing  the  equilibrium  state  of  the
magnetization of the previous step. Because of the perfect
4-fold symmetry of our system, it turns out that simulation
was needed only for  00 ≤θ ≤ 9 00 and simulation result

for 900 ≤θ ≤36 00 can be simply obtained by extending

the result of  00 ≤θ ≤ 9 00 to the corresponding angular
range. In this way, we obtained the magnetic state in the
whole range of field angle  from  00 to  3600 with  50 per
step.  Next,  for  each  field  angle  θ,  we  calculated  the
averaged projection of the magnetization to the [10] axis (
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M x=
1
N ∑

i=1

N

cosφ i) which is what ROTMOKE measures

directly in experiment. The maximum value of M x among
all field angles is set to be the saturation magnetization (M s

)  and  then  the  averaged  magnetization  angle

φ ≡ arccos(
M x

M s ) and  magnetic  torque

l (φ )=Hsin(θ−φ) were  obtained  from  the  simulation
and compared to the experimental ROTMOKE result. One
of the simulated torque curves is shown in Fig. 6.

Fig. 6: An example of simulated torque l (φ ) via MuMax3
at H = 600 Oe.

The  l (φ )vs φ  relation  obtained  from the  simulation
agrees nicely with the ROTMOKE experiment result. HK 4

values obtained by fitting the simulated l (φ )vs φ  at several
field strengths are shown in Fig. 4 for comparison with the
experimental  result.  We  would  like  to  point  out  a  few
essential features from the simulation. First, it is clear that
the magnetic anisotropy arises from the none-uniformity of
the magnetization in space,  i.e.,  it  is  the wiggling of  the
magnetization in space that makes the spatially averaged  φ
different  from the  θ. Specifically,  it  is  the magnetization
between  nearest  neighbor  antidots,  which  prefers  its
orientation parallel to [10] or [01] axis, that results in the
macroscopic  magnetic  anisotropy.  Second,  the  different
peak heights in l (φ ) (e.g., the 1st and 3rd peak heights are
less than the 2nd and 4th peak heights) show that an artifact
of  uniaxial  anisotropy appears  in the simulated  l (φ )vsφ
relation,  in  agreement  with  the  experimental  observation
[Fig. 3(a) and (b)].  As shown in the next section, it is the

broadening of the angular distribution of the magnetization
that leads to the artifact of the uniaxial anisotropy.

3.4 Simplified model

While  the  micromagnetic  simulation  successfully
reproduces experimental result, physical origin of the result
also  becomes  obscured  somewhat  in  the  numerical
calculations.  To  explore  the  physical  origin,  we  here
discuss  an  oversimplified  model  to  explain  the  4-fold
magnetic anisotropy and the artifact of uniaxial anisotropy
in terms of the magnetization wiggling in space. We start
by considering a two-dimensional antidot square lattice in
xy plane with an in-plane magnetization. The total dipolar
energy of the system is

Ed=∑
m⃗ ( r⃗ ) ∙ m⃗ ( r⃗ ' )−3 m⃗ ( r⃗ ) ∙ (^⃗r−r⃗ ' )m⃗ ( r⃗ ' ) ∙ (^⃗r−r⃗ ' )

|r⃗−r⃗ '
|
3

(4)

Using  φ (r⃗ ) to  specify  the  local  angle  between  the
local  magnetic  moment  and  the  [10]  axis  of  the  antidot
square lattice, it is easy to show that the change of dipolar
energy due to magnetization wiggling of φ (r⃗ )=φM +δ φ(
r⃗ ) to the leading order of δ φ(r⃗ ) is 

δ E d=3sin (2 φM )∑
[δφ ( r⃗ )+δφ ( r⃗ ' ) ] [ ( x−x '

)
2
− ( y−y '

)
2
]

2|⃗r−r⃗ '|
5

.    (5)

We  have  employed  the  result  of

∑
δφ ( r⃗ ) ( x−x '

) ( y−y '
)

|r⃗−r⃗ '|
5 =∑

δφ ( r⃗ ' ) ( x−x '
) ( y−y '

)

|r⃗−r⃗ '|
5 =0

in the derivation because of the inversion symmetry and the
4-fold symmetry of the antidot square lattice with circular
shaped antidot.

For  uniform  magnetization,  δφ ( r⃗ ) is  independent  of

position  so  that  φ (r⃗ )=φM+const . corresponds  to  a
uniform rotation of a uniform magnetization. Then eqn. (5)
yields  δ E d=0 because  a  4-fold  symmetry  yields

∑
( x−x '

)
2
−( y−y '

)
2

2|r⃗−r⃗ '|
5 =0. This is the result mentioned
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in previous sections that dipolar interaction from a uniform
magnetization  in  a  square  antidot  lattice  with  4-fold
symmetry doesn’t give raise any magnetic anisotropy.

To have a none-zero  δ E d, the  local magnetic moments
at   r⃗  and  r⃗ '  need to  twist  oppositely  [e.g.,  δφ ( r⃗ ))  and

δφ ( r⃗ ' ) have  opposite  signs]  as  ( x−x '
)
2
−( y−y '

)
2

changes  its  sign  under  the  action  of  x ↔ y.  This
corresponds to the scenario that the magnetization between
neighboring  antidots  along  [10]  axis  rotates  in  opposite
direction  as  the  magnetization  between  neighboring
antidots along [01] axis. In another word, the magnetization
needs to wiggle oppositely along the [01] and [01] axes in
order  to  give  raise  a  none-zero  magnetic  anisotropy  of
δ E d ≠0,  which  is  exactly  what  was  observed  in  our
experiment.  The  physical  origin  of  the  opposite  twisting
angles of the magnetization along [1] and [01] axes is that
the  neighboring  antidots  along  [10]  axis  prefer  the
magnetization  along  [01]  axis,  which  is  equivalent  to  a
local  uniaxial  anisotropy  with  [01]  axis  being  the
magnetization  easy  axis.  Similarly,  neighboring  antidots
along  [01]  axis  leads  to  an  equivalent  local  uniaxial
anisotropy with [10] axis being the magnetization easy axis.
To make this physical picture clearer, we further simplified
the model by breaking the magnetization texture into two

subsystems of M⃗ 1 and M⃗ 2 with M⃗ 1 and M⃗ 2 experiencing
local  uniaxial  anisotropies  (K)  of  [10]  and  [01]  easy
magnetization  axis,  respectively  (Fig.  7).  Although  not
accurate, this oversimplified model can catch the physical
origin of all experimental observations.

Fig. 7: In our oversimplified model,  M 1 and  M 2 are the
magnetizations of the two domains whose magnetic
easy  axes  are  parallel  to  [10]  and  [01]  axes,
respectively. As a magnetic field H is applied at an
angle θ to the [10] axis, M 1 and M 2 will tilt away

from their own easy axes, resulting angles of α and
β  to the [10] axis. In this case, α<θ< β.

Without the two local uniaxial magnetic anisotropies
or  in  the  limit  of  H → ∞,  it  is  obvious  that  a  uniform
magnetization  of  M⃗ 1=M⃗ 2 should  be  aligned  to  the

magnetization field direction (H⃗ ), leading to an absence of
the  magnetic  anisotropy.  Adding  the  weak  two  local
uniaxial anisotropies, M⃗ 1 should rotates slightly away from
the field direction towards its [10] easy axis (φ1<θ) and

M⃗ 2 should rotates  slightly away from the field direction
towards its [01] easy axis (φ2>θ), leading to the opposite

twisting  angles  of  M⃗ 1 and  M⃗ 2.  With  the  averaged

magnetization  angle of  φM ≡(φ2+φ1)/2 and  the small

twisting angle amplitude of δ ≡(φ2−φ1)/2, it is easy to
show that the magnetic energy is

E=−Kco s2φ1−H M S cos (θ−φ1 )

+K cos2 φ2−H M S cos (θ−φ2 )

¿2 cosδ [−Ksin ( 2 φM )sin δ−H M S cos (θ−φM ) ](6)

Minimizing the energy with respect to small  δ and φM ,
we obtained the following result.

δ=
K

H M S
sin (2φM ) (7)

H sin (θ−φM )=
−K 2

H M S
2 sin ( 4 φM )     (8)

Eqn. (8) corresponds to the torque eqn. (2) with a 4-fold

anisotropy  only  (HK 4
=

−12 K2

H M S
).  Therefore  our

oversimplified model not only reproduces correctly the 4-
fold anisotropy with [11] easy magnetization axis (HK 4

<0
) but also a monotonically decrease of the anisotropy with
increasing  the  magnetic  field.  In  fact,  the  HK 4

∝1/ H
relation in eqn. (8) describes the experimental result fairly
well (dashed line in  Fig. 4). The [11] easy magnetization
axis  can  be  understood  easily  from  this  oversimplified
model that for magnetic field applied in the [11] direction (
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H⃗ //[11]),  it  is  obvious that  M⃗ 1 and  M⃗ 2 should deviate

away  from  H⃗  direction  symmetrically  towards  [10]  and
[01],  respectively,  leading  to  an  averaged  magnetization

(M⃗ 1+M⃗ 2)/2 exactly  in  the  H⃗  direction  (e.g.  easy
magnetization axis).

Last, we would like to discuss the artifact  of a uniaxial
magnetic  anisotropy  in  ROTMOKE  measurement.
Precisely  speaking, ROTMOKE  measures  the  averaged
projection  of  the  magnetization  to  the  [10]  axis  (

cos φ́=
1
N ∑

i=1

N

cosφi) and then converts the result to the

averaged  magnetization  angle  by

φ́=arccos( 1
N ∑

i=1

N

cosφi).  For  uniform magnetization,

this  process  makes  no  difference  between  φ́ and  the
magnetization  angle  of  φM .  Fore  none-uniform
magnetization,  however,  the  magnetization  angle
determined  by  ROTMOKE  is  slightly  greater  than  the

averaged  magnetization  angle  (φ́>φM=
1
N ∑

i=1

N

φi).  It  is

this difference between φ́ and φM  that results in the artifact
of  a  uniaxial  anisotropy  in  ROTMOKE  simply because

Hsin (θ− φ́)≠ Hsin(θ−φM ).  To  understand  this
artifact more clearly, we again use the oversimplified model
to discuss how the difference between φ́ and φM  results in
a uniaxial anisotropy term in eqn. (8).  Using the relation of
cos φ́=¿ and eqn. (7), it  is easy to derive the difference
between φ́ and φM  for small δ.

φM=φ́−(
K

H M S )
2

sin (2 φ́ ) cos2
(φ́) (9)

Substitute eqn. (9) into eqn. (8) leads to

Hsin (θ−φ́ )=
−K2

2 H M S
2 sin (2 φ́ )−

5 K2

4 H M S
2 sin ( 4 φ́ )

(10)

The first term at the right side of eqn. (10) corresponds to
the uniaxial anisotropy in eqn (2) with HK 2

<0 and φ0=0
 , in agreement with experimental observation. While eqn.

(10) describes the experimental result qualitatively well, we
would  like  to  emphasize  that  the  oversimplified  model
ignores many factors such as the coupling between M⃗ 1 and

M⃗ 2 and the spatial variation within M⃗ 1 and M⃗ 2. All these

factors  are  expected  to  modify  the  strength  of  HK 2 and
HK 4 in  eqn.  (2)  from  the  model.  Nevertheless,  the
oversimplified model correctly reveals the physical origin
of the field-dependent 4-fold anisotropy and the artifact of
the uniaxial anisotropy.

3. Summary

In summary, we investigated the magnetic anisotropy
of Py antidot square lattice using ROTMOKE. We showed
that  there  exists  a  field-dependent  magnetic  anisotropy
which  is  originated  from  the  periodic  wiggling  of  the
magnetization in space. This none or un-uniformity of the
magnetic texture was confirmed by magnetic imaging using
MTXM as a function of magnetic field. We also clarified
the puzzle of the unexpected uniaxial magnetic anisotropy
as an artifact due to the magnetization wiggling in space.
Micromagnetic simulation result agrees very well with the
experimental  observation.  We  further  proposed  an
oversimplified model to qualitatively explain the physical
origin  of  the  field-dependent  4-fold  anisotropy  and  the
artifact  of  the  uniaxial  anisotropy.  Our  investigation
provides direct observation and explanation of the magnetic
anisotropies in antidot square lattice.

Acknowledgement:

This work is supported by US Department of Energy,
Office  of  Science,  Office  of  Basic  Energy  Sciences,
Materials  Sciences  and  Engineering Division  under
Contract  No.  DE-AC02-05CH11231  (van  der  Waals
heterostructures  program,  KCWF16),  King  Abdullah
University of Science and Technology (KAUST), Office of
Sponsored Research (OSR) and under the Award No. OSR-
2016-CRG5-2977, Lawrence Berkeley National Laboratory
through  the  Laboratory  Directed  Research  and
Development  (LDRD)  Program,  Future  Materials
Discovery  Program  through  the  National  Research
Foundation of Korea (No. 2015M3D1A1070467), Science

9



Research  Center  Program through the  National  Research
Foundation  of  Korea  (No.  2015R1A5A1009962).  The
operations  of  the  Advanced  Light  Source  at  Lawrence
Berkeley  National  Laboratory  are  supported  by  the
Director,  Office  of  Science,  Office  of  Basic  Energy
Sciences,  and U.S. Department of Energy under Contract
No. DE-AC02–05CH11231. 

10



1 References:

.S. S. P. Parkin and S. D. Bader, Annual Review of Condensed Matter Physics 1, 71 (2010).

2 .G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989). 

3 .M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J.
Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

4 .T. Miyazaki & N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).

5 .J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).

6 .Sandra H. Skjærvø,  Christopher H. Marrows,  Robert  L. Stamps, and Laura J. Heyderman,  Nature Reviews Physics
2, 13 (2020).

7 .T. Shinjo1, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono,  Science 289, 930 (2000). 

8 .J. Li, A. Tan, K. W. Moon, A. Doran, M. A. Marcus, A. T. Young, E. Arenholz, S. Ma, R. F. Yang, C. Hwang and Z.
Q. Qiu, Nat. Commun. 5, 4704 (2014). 

9 .S. Saha, M. Zelent, S. Finizio, M. Mruczkiewicz, S. Tacchi, A. K. Suszka, S. Wintz, N. S. Bingham, J. Raabe, M.
Krawczyk, and L. J. Heyderman, Phys. Rev. B 100, 144435  (2019). 

10 .J. IMart n, J. Nogués, Kai. Liu, J. L. Vicent, and Ivan K Schuller, ı ́ J. Magn. Magn. Mater. 256, 449 (2003).

11 .A. Lisfi, C. M. Williams, L. T. Nguyen, J. C. Lodder, A. Coleman, H. Corcoran, A. Johnson, P. Chang, A. Kumar, and
W. Morgan, Phys. Rev. B 76, 054405 (2007).

12 .L. G. Vivas, M. Vazquez, J. Escrig, S. Allende, D. Altbir, D. C. Leitao, and J. P. Araujo,  Phys. Rev. B 85, 035439
(2012)

13 .Sam D. Slöetjes, Einar Digernes, Christoph Klewe, Padraic Shafer, Q. Li, M. Yang, Z. Q. Qiu, Alpha T. N’Diaye,
Elke Arenholz, Erik Folven, and Jostein K. Grepstad, Phys. Rev. B 99, 064418 (2019).

14 .U. Hartmann, Annual Review of Materials Science 29, 53 (1999).

15 .X M Cheng and D J Keavney, Rep. Prog. Phys. 75, 026501 (2012).

16 .S. Y. Chou, Proceedings of the IEEE 85, 652 (1997).

17 .M Salaheldeen, L Martínez-Goyeneche, P Álvarez-Alonso, and A. Fernández, Nanotechnology 31 485708 (2020).

18 .Shanshan Guo, Feng Xu, Baomin Wang, Ning Wang, Huali Yang, Pravarthana Dhanapal, Fei Xue, Junling Wang,
Run Wei Li, ‐ Adv. Mater. Interfaces 5, 1800997, (2018).

19 .Jiyun Kim, Su Eun Chung, Sung-Eun Choi, Howon Lee, Junhoi Kim, and Sunghoon Kwon,  Nat. Mater. 10, 747
(2011).

20 .A. O. Adeyeye and N Singh, J. Phys. D: Appl. Phys. 41 153001 (2008).



21 .S.  Finizio,  M. Foerster,  M. Buzzi,  B.  Krüger,  M. Jourdan,  C. A. F.  Vaz,  J.  Hockel,  T.  Miyawaki,  A.  Tkach,  S.
Valencia, F. Kronast, G. P. Carman, F. Nolting, and M. Kläui, Phys. Rev. Applied 1, 021001 (2014).

22 .Na Zhu, Houchen Chang, Andrew Franson, Tao Liu, Xufeng Zhang, E. Johnston-Halperin, Mingzhong Wu, and Hong
X. Tang, Appl. Phys. Lett. 110, 252401 (2017).

23 .C. T. Yu, H. Jiang, L. Shen, P. J. Flanders, and G. J. Mankey, J. Appl. Phys. 87, 6322–6324 (2000). 

24 .P. Vavassori, J. of Appl. Phys. 91, 7992 (2002).

25 .G. N. Kakazei, X. M. Liu, J. Ding, V. O. Golub, O. Y. Salyuk, R. V. Verba, S. A. Bunyaev, and A. O. Adeyeye, Appl.
Phys. Lett. 107, 232402 (2015).

26 .Andreas  Kaidatzis, Rafael  P del  Real, Raquel  Alvaro, Juan Luis Palma, José Anguita, Dimitrios  Niarchos, Manuel
Vázquez, Juan Escrig, and José Miguel García-Martín, Appl. Phys. Lett. 107, 232402 (2015).

27 .G. N. Kakazei, X. M. Liu, J. Ding, V. O. Golub, O. Y. Salyuk, R. V. Verba, S. A. Bunyaev, and A. O. Adeyeye,  J.
Phys. D: Appl. Phys. 49, 175004 (2016).

28 .C. C. Wang, A. O. Adeyeye, and N. Singh, Nanotechnology 49, 1629 (2006).

29 .O.  N.  Martyanov,  V. F.  Yudanov,  R. N. Lee,  S.  A.  Nepijko,  H. J.  Elmers,  R. Hertel,  C.  M. Schneider,  and G.
Schönhense, Phys. Rev. B 75, 174429 (2007).

30 .Agne Ciuciulkaite, Erik Östman, Rimantas Brucas, Ankit Kumar, Marc A. Verschuuren, Peter Svedlindh, Björgvin
Hjörvarsson, and Vassilios Kapaklis, Phys. Rev. B 75, 174429 (2007).

31 .O.  N.  Martyanov,  V. F.  Yudanov,  R. N. Lee,  S.  A.  Nepijko,  H. J.  Elmers,  R. Hertel,  C.  M. Schneider,  and G.
Schönhense, Phys. Rev. B 99, 184415 (2019).

32 .Xiaolong Fan, Hengan Zhou, Jinwei Rao, Xiaobing Zhao, Jing Zhao, Fengzhen Zhang and Desheng Xue, Scientific
Reports 5, 16349 (2015).

33 .J. Li, E. Jin, H. Son, A. Tan, W. N. Cao, Chanyong Hwang, and Z. Q. Qiu,  Review of Scientific Instruments 83,
033906 (2012).

34 .Peter  Fischer,  Dong-Hyun Kim,  Weilun  Chao,  J.  Alexander  Liddle,  Erik  H.  Anderson,  and  David  T.  Attwood,
Materials Today 9, 26 (2006).

35 .J.  H. Wolfe,  R. K. Kawakami,  W. L. Ling, and Z. Q. Qiu, Rodrigo Arias,  and D.  L. Mills,  J. of  Magn. Magn.
Mat. 232, 36 (2001).




