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Abstract

We construct a compactification of the heterotic string on an orbifoldT 6/Z6 leading to the stan
dard model spectrum plus vector-like matter. The standard model gauge group is obtaine
intersection of three SO(10) subgroups of E8. Three families of SO(10) 16-plets are localized a
three equivalent fixed points. Gauge coupling unification favours existence of an intermediat
which can have any dimension between five and ten. Various GUT gauge groups occur. For e
in six dimensions one can have E6 × SU(3), SU(4) × SU(4) × U(1)2 or SO(8) × SO(8), depending
on which of the compact dimensions are large. The different higher-dimensional GUTs are ‘d
each other. They represent different points in moduli space, with the same massless spect
ultraviolet completion.
 2005 Elsevier B.V. All rights reserved.

PACS: 12.10.-g; 11.25.-w; 11.25.Mj

1. Embedding the standard model in E8

The symmetries and the particle content of the standard model point towards
unified theories (GUTs) as the next step in the unification of all forces. Left- and r
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handed quarks and leptons can be grouped in three SU(5) multiplets[1], 10 = (qL, uc
R, ec

R),
5 = (dc

R, �L) and1 = νc
R. Here we have added right-handed neutrinos which are sugg

by the evidence for neutrino masses. All quarks and leptons of one generation
unified in a single multiplet of the GUT group SO(10) [2],

(1)16 = 10 + 5 + 1.

The group SO(10) contains as subgroups the Pati–Salam group[3], GPS = SU(4) ×
SU(2)×SU(2), the Georgi–Glashow group SU(5), GGG = SU(5)×U(1), and the ‘flipped’
SU(5) group,Gfl = SU(5)′ × U(1)′ [4], where the right-handed up- and down-quarks
interchanged, yielding another viable GUT group.

It is a remarkable property of the standard model that the matter fields form com
SO(10) multiplets whereas the gauge and Higgs fields are ‘split multiplets’. They ha
be combined with other split multiplets, not contained in the standard model, in ord
obtain a complete unified theory. It is also well known[5] that exceptional groups play a
exceptional role in grand unification, and the embedding

(2)SO(10) ⊂ E6 ⊂ E8

appears, in particular, in compactifications of the heterotic string[6] on Calabi–Yau mani
folds [7].

As we shall see, complete SO(10) matter multiplets together with split gauge and Hig
multiplets arise naturally in orbifold compactifications of higher-dimensional unified
ories. Orbifold compactifications have first been considered in string theory[8,9] and
subsequently in effective higher-dimensional field theories[10,11]. They provide a simple
and elegant way to break GUT symmetries, while avoiding the notorious doublet–
splitting problem. More recently, it has been shown how orbifold GUTs can occur in
ifold string compactifications[12–14].

In the following we shall first search for a scheme ofZN twists which allows to break
E8, a common ingredient of string models, to the standard model group. AZN twist is an
element of the gauge groupG, with

(3)P = exp(−2π iVN · H ), P N = 1.

Here the generatorsH i form the (Abelian) Cartan subalgebra ofG, andVN is a real vector
The twistP acts on the Cartan and step generatorsEα as follows:

PH iP
−1 = H i ,

(4)PEαP −1 = exp(−2π iVN · α)Eα,

whereα is a root associated withEα . Clearly,P breaksG to a subgroup containing a
step generators which commute withP , i.e.,[P,Eα] = 0.

The symmetry breaking is conveniently expressed in terms of the Dynkin diag
This technique has been employed to classify possible symmetry breaking patterns i
models[15–17]and, more recently, in orbifold GUTs[18,19]. Starting with the extende
Dynkin diagram which contains the most negative root in addition to the simple r
regular subgroups of a given group are obtained by crossing out some of the roots

Dynkin diagram. In particular, the action of theZN orbifold twist essentially amounts to
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Fig. 1. SO(10) breaking patterns by aZ2 twist. The action of the Pati–Salam twist is indicated by crosses, w
that of the Georgi–Glashow twist is indicated by a slash.

crossing out a root with the (Coxeter) labelN , or more generally, roots whose labels s
up to� N .

As an example, consider the breaking of SO(10), displayed inFig. 1. For each simple
root the Coxeter label is listed, which determines the order of the twist required for th
responding symmetry breaking. Crossing out one of the nodes with label 2 breaks S(10)
to the semi-simple subgroupGPS, while crossing out one of the roots with label 1 toget
with the most negative rootθ breaks SO(10) to GGG. The intersection of the two group
gives the standard model with an additional U(1) factor[11],

(5)GGG ∩ GPS= SU(3) × SU(2) × U(1)2 ∼ GSM,

where ‘∼’ means ‘modulo U(1) factors’. Under theZ2 twisting, the group generators d
vide into those with positive and negative paritiesP with respect to the twist. Combinin
the two paritiesPGG andPPS, one can construct the thirdZ2 parityPGG · PPS= Pfl which
breaks SO(10) to the flipped SU(5),

(6)SO(10)
Pfl−→ Gfl = SU(5)′ × U(1)′.

The standard model groupGSM can also be obtained as an intersection of the two SU(5)

embeddings,GGG andGfl ,

(7)GGG ∩ Gfl = SU(3) × SU(2) × U(1)2 ∼ GSM.

As another example, consider now E6 breaking to the standard model group. From
extended Dynkin diagramFig. 2it is clear, in analogy with the SO(10) breaking, that three
Z2 twists,

E6
PA−→ SO(10) × U(1), E6

PB−→ SU(6)′ × SU(2)′,

(8)E6
PC−→ SU(6)′′ × SU(2)′′,

can break E6 to the standard model up to U(1) factors,

SO(10) × U(1) ∩ SU(6)′ × SU(2)′ ∩ SU(6)′′ × SU(2)′′

(9)= SU(3) × SU(2) × U(1)2 ∼ GSM.

As in the SO(10) example, one can check that the same breaking can be obtained
intersection of three different SO(10) embeddings in E6 which correspond to the twists

PA·PC PA·PB ·PC
 (10)E6 −→ SO(10)′ × U(1)′, E6 −→ SO(10)′′ × U(1)′′,
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Fig. 2. E6 breaking patterns underZ2 twisting. Three differentZ2 twists are indicated by crosses, a slash an
backslash, respectively.

Fig. 3. E8 breaking to E6 × SU(3).

such that

SO(10) × U(1) ∩ SO(10)′ × U(1)′ ∩ SO(10)′′ × U(1)′′

(11)= SU(3) × SU(2) × U(1)2 ∼ GSM.

Let us remark that it is not possible to distinguish the three SO(10) embeddings in E6
(as well asGGG andGfl embeddings in SO(10)) at the level of Dynkin diagrams. Th
corresponding subalgebras are related by Weyl reflections within the embedding gro
distinguish them, an explicit analysis of the shift vectorsVN is required.

Our final goal is to break E8 to the standard model gauge group. This can be achi
by combining the above threeZ2 twists with aZ3 twist which breaks E8 to E6 × SU(3)

(cf. Fig. 3). TheZ2 twists can then also break the SU(3) factor to SU(2) × U(1). In this
way one obtains threeZ6 twists which break E8 to subgroups containing SO(10),

E8
P6−→ SO(10) × SU(3) × U(1), E8

P ′
6−→ SO(10)′ × SU(2)′ × U(1)2,

(12)E8
P ′′

6−→ SO(10)′′ × SU(2)′′ × U(1)2,

such that the intersection is the standard model group up to U(1) factors,

SO(10) × SU(3) × U(1) ∩ SO(10)′ × SU(2)′ × U(1)2

(13)∩ SO(10)′′ × SU(2)′′ × U(1)2 ∼ GSM.

In an orthonormal basis of E8 roots, threeZ6 shift vectors which realize the describ
symmetry breaking read explicitly:

V6 =
(

1

3
,

1

3
,

1

3
,0,0,0,0,0

)
,

V ′
6 =

(
7

12
,

7

12
,

1

12
,

1

4
,−1

4
,−3

4
,−3

4
,−3

4

)
,

(14)V ′′ =
(

7
,

13
,

7
,

3
,

1
,−3

,−3
,−3

)
.
6 12 12 12 4 4 4 4 4
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Note that the differences between theZ6 shift vectors areZ2 shift vectors,

W2 = V ′′
6 − V ′

6 =
(

0,
1

2
,

1

2
,

1

2
,

1

2
,0,0,0

)
,

(15)W ′
2 = V ′

6 − V6 =
(

1

4
,

1

4
,−1

4
,

1

4
,−1

4
,−3

4
,−3

4
,−3

4

)
,

which will play the role of Wilson lines in the next section.
To summarize, in this section we have presented a group-theoretical analysis8

breaking to the standard model with intermediate E6 and SO(10) GUTs, suggested by th
structure of matter multiplets.

2. Orbifold compactification

Let us now construct an orbifold compactification of the heterotic string, which rea
the symmetry breaking described above. As is clear from the above discussion, w
need aZ6 or a higher-order orbifold and choose the former for simplicity.

In the light cone gauge the heterotic string[6] can be described by the following boson
world-sheet fields: 8 string coordinatesXi , i = 1, . . . ,8, 16 internal left-moving coordi
natesXI , I = 1, . . . ,16, and 4 right-moving fieldsφi , i = 1, . . . ,4, which correspond to
the bosonized Neveu–Schwarz–Ramond fermions (cf.[16,20,21]). The 16 left-moving in-
ternal coordinates are compactified on a torus. The associated quantized moment
the E8 × E8 root lattice. In an orthonormal basis, vectors of the E8 root lattice are given by

(16)pE8 = (n1, . . . , n8) or

(
n1 + 1

2
, . . . , n8 + 1

2

)
,

with integerni satisfying
∑8

i=1 ni = 0 mod 2. The massless spectrum of this 10D strin
10D supergravity coupled to E8 × E8 super-Yang–Mills theory.

To obtain a four-dimensional theory, 6 dimensions of the 10D heterotic string are
pactified on an orbifold. In our case, this is aZ6 orbifold obtained by modding a 6D toru
together with the 16D gauge torus by aZ6 twist,

(17)O = T 6 ⊗ TE8×E′
8
/Z6.

On the three complex torus coordinateszi , i = 1,2,3, theZ6 twist acts as

(18)zi → e2π ivi
6zi .

Here 6v6 has integer components. The compact string coordinates are described
complex variablesZi = X2i−1+ iX2i , i = 1, . . . ,3. TheZ6 action on the string coordinate
reads, up to lattice translations (cf.[16]),

(19)Zi(σ = 2π) = e2π ikvi
6Zi(σ = 0), k = 0, . . . ,5,

i i i I I I
 (20)φ (σ = 2π) = φ (σ = 0) − πkv6, X (σ = 2π) = X (σ = 0) + πkV6 ,
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where 6V I is an E8 × E8 lattice vector.
The torusT 6 is spanned by basis vectorseκ , κ = 1, . . . ,6. In general, a torus allows fo

the presence of Wilson lines, i.e., a translation by a lattice vectornκei
κ can be accompanie

by a shift of the internal string coordinates,

Xi(σ = 2π) = Xi(σ = 0) + 2πnκei
κ , nκ ∈ Z,

(21)XI (σ = 2π) = XI (σ = 0) + πnκWI
κ .

Here the discrete Wilson linesWκ are restricted by symmetry and by modular invarian
The basis vectorseκ are taken to be simple roots of a Lie algebra, whose choic

dictated by the required symmetry of the lattice. In our case the lattice must haveZ6
symmetry and allow for the existence of 3 independentV6 shift vectors(14)(or two Wilson
lines of order 2). This leaves two possibilities for the Lie lattice[16]

(22)G2 × SU(3) × SO(4) or SU(3)[2] × SU(3) × SO(4).

We shall base our analysis on the first lattice, which has recently been studied in de
Kobayashi, Raby and Zhang[12]. These authors have obtained models with the Pati–S
gauge group in four dimensions, which then has to be broken to the standard mode
Higgs mechanism. The model described in the following differs from those in the c
of Z6 twists and the pattern of symmetry breaking.

For the G2 × SU(3) × SO(4) lattice, the action of theZ6 twist is given by Eq.(18)with

(23)v6 = 1

6
(1,2,−3).

z1, z2 andz3 are the coordinates of the G2, SU(3) and SO(4) T 2-tori, respectively. TheZ6
twist v6 has two subtwists,

(24)Z3: v3 = 2v6 = 1

3
(1,2,−3), Z2: v2 = 3v6 = 1

2
(1,2,−3).

An interesting feature of this orbifold is the occurrence of invariant planes. Clearly
Z3 twist leaves the SO(4)-plane invariant whereas theZ2 twist leaves the SU(3)-plane
invariant. The corresponding fixed points and invariant planes are shown inFig. 4. Our
construction requires two Wilson lines in the SO(4) plane,W2 andW ′

2, such that there ar
3 independent gauge shift vectors(14)acting at different fixed points in this plane.

The rules of orbifold compactifications of the heterotic string have recently bee
viewed in[13,14]. We are interested in the states whose masses are small compared
string scaleMS . These states are described by fields

(25)Ψr,s(x; z1, z2, z3).

Herer labels the gauge quantum numbers and is given by

(26)r =
{

p for the untwisted sector,

p + kV6 for thekth twisted sector,

wherep lies on the E8 × E8 root lattice(16)and we have absorbed the Wilson lines in
definition of thelocal twist kV6. Similarly, s carries information about the spin,{

q for the untwisted sector,

(27)s =

q + kv6 for thekth twisted sector,
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Fig. 4. Fixed points and invariant planes (hatched) under theZ6 twist andZ3,Z2 subtwists, describing localiza
tion of different twisted sectors.

whereq is an element of the SO(8) weight lattice andv4
6 = 0. In our convention, the

last component ofq gives the 4D helicity. For example, 4D vectors correspond toq =
(0,0,0,±1), 4D scalars toq = (±1,0,0,0) with all permutations of the first 3 entries, a
fermions correspond toq = (±1

2,±1
2,±1

2,±1
2) with an even number of ‘+’ signs.1

The physical states are invariant under the action of the orbifold symmetry group
consists of twists and translations. In our case only translations in the SO(4) plane have
a non-trivial action on the gauge degrees of freedom, due to the presence of Wilson
Then the invariance conditions read2 (� = 1, . . . ,5):

Ψr,s(x; z1, z2, z3) = e2π i�(r·V6−s·v6)Ψr,s

(
x; e2π i �

6 z1, e
2π i �

3 z2, e
−2π i �

2 z3
)
,

Ψr,s(x; z1, z2, z3) = e2π ir·W2Ψr,s(x; z1, z2, z3 + 1),

(28)Ψr,s(x; z1, z2, z3) = e2π ir·W ′
2Ψr,s(x; z1, z2, z3 + i),

where we have included the Wilson lines in the local shift vectorskV6. We note that here
two sources of symmetry breaking are present: local, due to twisting, and non-loca
to the Wilson lines. In the first case, symmetry breaking is restricted to the fixed p
in the compact space. Indeed, since orbifold fixed points are invariant under twistin

1 Theseq ’s may have to be shifted by an SO(8) root vector to satisfy masslessness conditions in twis
sectors.
2 Here we omit string oscillator states.
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to a lattice vector), the first condition can be satisfied only for certainp, which indicates
symmetry breaking at the fixed points. These sets ofp’s are generally different at differen
fixed points and only their intersection survives in 4D, since in this case the wave fun
can be constant in the compactified dimensions leading to a massless state. In the
Wilson line symmetry breaking, the second and third conditions apply to all points i
G2 and SU(3) planes and the symmetry breaking is non-local.

To define our string model, it is necessary to specify the action of the twist on the se
‘hidden’, E8. We find that the desired symmetry breaking pattern and the appeara
three16-plets at fixed points with unbroken SO(10) lead to

(29)V6 =
(

1

3
,

1

3
,

1

3
,0,0,0,0,0

)(
1

6
,

1

6
,0,0,0,0,0,0

)
,

(30)W2 =
(

0,
1

2
,

1

2
,

1

2
,

1

2
,0,0,0

)(
1

2
,

1

2
,

1

2
,0,0,0,0,

1

2

)
,

(31)W2
′ =

(
1

4
,

1

4
,−1

4
,

1

4
,−1

4
,−3

4
,−3

4
,−3

4

)(
0,

1

2
,

1

2
,

1

2
,

1

2
,0,0,0

)

in the orthonormal E8 × E8 basis. In string theory, these quantities must satisfy ce
consistency conditions (see[13] for a recent discussion). First of all, 6V6 and 2W2,2W ′

2
must be elements of the E8 × E8 root lattice which is required by embedding of the o
ifold symmetry group (‘space’ group) in the gauge degrees of freedom. Second, m
invariance requires

(32)6
[
(mV6 + nW2 + n′W ′

2)
2 − m2v2

6

] = 0 mod 2, m,n,n′ = 0,1.

Our choice of the hidden sector components ofV6,W2,W
′
2 is strongly affected by thes

conditions.
We note thatN = 1 supersymmetry in 4D requires

(33)
3∑

i=1

vi
6 = 0 mod 1,

whereasN = 2 would require, in addition,vi
6 = 0 mod 1 for somei. In the former case

there is one gravitino satisfyingq · v6 = 0 mod 1 whereas in the latter case there are tw
them.

Finally, massless states in 4D must satisfy the following conditions:

(34)q2 = 1, p2 = 2− 2Ñ

for the untwisted sector, and

(35)(q + kv6)
2 = ck, (p + kV6 + nW2 + n′W ′

2)
2 = c

k,Ñ

for thekth twisted sector. HerẽN is an oscillator number andck, ck,Ñ
are certain constant

(see, e.g.,[13]). In our model, all states which transform non-trivially under SU(3)c ×
SU(2)L haveÑ = 0.

In this section we have described the necessary ingredients of our orbifold model.
next section we compute the massless spectrum of the model and discuss localiz

various states.
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3. Massless spectrum of the model

First let us identify the gauge group in 4D. ForN = 1 vector multipletsq · v6 = 0.
Hence, the surviving gauge group in 4D is given by the root vectors satisfying

(36)p · V6,p · W2,p · W ′
2 ∈ Z, p2 = 2.

It is straightforward to verify that these roots together with the Cartan generators for
Lie algebra of

SU(3) × SU(2) × U(1)5,

while the hidden sector E8 is broken to SU(4) × SU(4) × U(1)2. This result can be un
derstood by examining the enhanced gauge groups at the four orbifold fixed points
SO(4)-plane. These gauge groups are determined by

(37)p · (V6 + nW2 + n′W ′
2) ∈ Z,

wheren,n′ = {0,1} specify the fixed point in the SO(4) plane. Then, omitting the hidde
sector the local gauge groups are (Fig. 5)

(n = 0, n′ = 0): SO(10) × SU(3) × U(1),

(n = 1, n′ = 0): SU(6) × SU(2) × SU(2) × U(1),

(n = 0, n′ = 1): SO(10) × SU(2) × U(1)2,

(38)(n = 1, n′ = 1): SO(10) × SU(2) × U(1)2.

These are precisely the groups discussed in the first section. Their intersection yie
surviving group SU(3) × SU(2) × U(1)5.

Let us now consider matter fields. These can be either in the untwisted sectorU or in
one of the twisted sectorsT1 . . . T5. Below we analyze each of them separately. Before
proceed, let us fix the chirality of the matter fields to bepositive3, i.e.,q4 = +1/2 for their
fermionic components.
3 This is necessary to distinguish matter fields from their CP conjugates.
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ForN = 1 chiral multiplets in the untwisted sector we haveq ·v6 = ±1/6,±1/3,±1/2,
and therefore

(39)p · V6 = {1/6,1/3,1/2} mod 1, p · W2,p · W ′
2 ∈ Z.

The states represent bulk matter of the orbifold. By choosing an appropriate right-m
these massless states can be made invariant under theZ6 orbifold action and thus ar
present in the 4D spectrum. Apart from SU(3)c × SU(2)L singlets,4 the untwisted secto
of our model contains

(40)U = 2× (3,1) ⊕ (3̄,1) ⊕ 5× (1,2)

in terms of the SU(3)c × SU(2)L quantum numbers. From the field-theory perspect
these fields correspond to the compact space components of the E8 gauge fields and the
superpartners.

3.2. T1 + T5 sector

These matter fields are located at the 12 orbifold fixed points (Fig. 4) and satisfy

(41)(p + V6 + nW2 + n′W ′
2)

2 = 25

18
.

Since Wilson lines are present only in the SO(4) plane, only SO(4)-plane projections of the
fixed points matter. The G2 and SU(3) projections do not affect the local twist. They on
lead to a multiplicity factor 3 due to the three identical SU(3) fixed points. Any massles
state in theT1 sector survives the orbifold projection, i.e., is invariant under theZ6 action,
and is therefore present in the 4D spectrum.

The twisted matter fields located at a given fixed point appear in a representation
local gauge group at this point. In our case, twisted matter with SU(3)c ×SU(2)L quantum
numbers is

(n = 0, n′ = 0): 3× (16,1),

(n = 1, n′ = 0): 6× (1,2,1),

(n = 0, n′ = 1): −,

(42)(n = 1, n′ = 1): −.

It is convenient to keep the notation(16) of SO(10) even though the unbroken group
4D is only GSM, since it represents one complete generation of SM fermions inclu
right-handed neutrinos. In terms of SU(3)c × SU(2)L quantum numbers we have

(43)T1 + T5 = 3× (16) ⊕ 6× (1,2),

where again we have omitted singlets.
4 We defer the analysis of U(1) charges until a subsequent publication.
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3.3. T2 + T4 sector

These states are localized at the fixed points in the G2 and SU(3) planes, while being
bulk states in the SO(4) plane (Fig. 4). If the T1 sector corresponds to the string with t

boundary condition twisted byΘ = diag(e2π iv1
6, e2π iv2

6, e2π iv3
6), theT2 sector correspond

to the strings twisted byΘ2. SinceΘ2 has a fixed plane,T2 states are bulk states in th
plane and localized states in the other two planes.

The orbifold action on this sector isZ3, and is given by

(44)v3 = 2v6, V3 = 2V6.

Since there are no Wilson lines in the G2 and SU(3) planes, all fixed points are equivalen
The masslessN = 1 multiplets obey

(45)(p + V3)
2 = 14

9
.

Both the G2 and the SU(3) lattice have 3 fixed points underZ3, so the multiplicity factor
is 9. The local gauge groups at the fixed points are determined by

(46)p · V3 = 0.

At eachZ3 fixed point, the unbroken gauge group and the twisted sector matter field
(cf. Fig. 6)

(47)E6 × SU(3): (27,1),

plus SU(3)c × SU(2)L singlets.
These states are subject tofurther projection and not all of them survive. Indeed, by co

struction they are only invariant under theZ3 action, but not under the fullZ6. Furthermore,
theZ3 fixed points in the G2-plane are only fixed underZ3 and theZ6 action transforms
them into one another. Physical states are formed out of their linear combinations
are eigenstates of theZ6 twist.

TheZ3 invariance of a physical state requires

(48)(q + v3) · v3 = (p + V3) · V3 mod 1,

whereq +v3 is the shifted SO(8) momentum andp+V3 is the shifted E8×E8 momentum.

This is satisfied automatically as long as the gauge embedding of the twist and the Wilson
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Fig. 7. Local gauge symmetries in the SO(4)-plane after theZ2 subtwist.

lines obey modular invariance (yet it may require shifts by a lattice vector). A non-t
Z2 invariance condition is

(49)(q + v3) · v2 = (p + V3) · V2 + γ mod 1, p · W2,p · W ′
2 ∈ Z,

where

(50)v2 = 3v6, V2 = 3V6.

The extra termγ = (0,0,1/2) appears due to the ‘mixing’ of the fixed points[12,22].
There are three combinations of theZ3 fixed points which are eigenstates ofZ6 with eigen-
valuese2π iγ .

An important note is in order. The SO(8) lattice momentumq is found via the mass
lessness condition for the right-movers,

(51)(q + v3)
2 = 5

9
.

Sincev3 has a fixed plane, there are always two sets of solutions, with opposite chira
Both of them survive the projection(48), which leads toN = 2 hypermultiplets. The con
ditions(49) break the symmetry between the two chiralities and one obtainsN = 1 chiral
multiplets.

As a result, 9× (27)N = 2 hypermultiplets produce the followingN = 1 multiplets
with SU(3)c × SU(2)L quantum numbers:

(52)T2 + T4 = 3× (3,1) ⊕ 6× (3̄,1) ⊕ 9× (1,2).

3.4. T3 sector

These states are localized at theZ2 fixed points in the G2 and SO(4) planes and are bul
states in the SU(3) plane (Fig. 4). They correspond to strings twisted byΘ3. The massles
T3 states satisfy

(53)(p + V + nW + n′W ′)2 = 3
,
2 2 2 2
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and the local gauge groups at the fixed points are determined by

(54)p · (V2 + nW2 + n′W ′
2) = 0.

The result for gauge groups and matter multiplets reads (cf.Fig. 7)

(n = 0, n′ = 0): SO(16), 8× (16),

(n = 1, n′ = 0): SO(16), 8× (16),

(n = 0, n′ = 1): E7 × SU(2), −,

(55)(n = 1, n′ = 1): E7 × SU(2), −.

As usual we have omitted SU(3)c × SU(2)L singlets and included a multiplicity factor
from the G2-plane fixed points. These states are located at theZ2 fixed points which are
mixed by the action of the fullZ6 twist. Again, one has to form linear combinations of t
states transforming covariantly underZ6.

The matter states are, as before, subject to projection conditions. TheZ2 condition for
the relevant states is

(56)(q + v2) · v2 = (p + V2 + nW2) · (V2 + nW2) mod 1.

With a proper redefinition ofW2 by a lattice vector shift, this condition is satisfied by
states with both chiralities, i.e., both solutionsq of the equation for massless right-move

(57)(q + v2)
2 = 1

2
.

Therefore, these states formN = 2 hypermultiplets. The furtherZ3 projection reads

(58)(q + v2) · v3 = (p + V2 + nW2) · V3 + γ mod 1,

where nowγ = (0,0,1/3,−1/3). The fourZ2 fixed points in the G2-plane lead to four
eigenstates underZ3 with eigenvaluese2π iγ . The above condition projects out some of
states. The survivingN = 1 multiplets with SU(3)c × SU(2)L quantum numbers are

(59)T3 = 7× (3,1) ⊕ 5× (3̄,1) ⊕ 10× (1,2).

3.5. Summary of the massless spectrum

Combining all matter multiplets from the untwisted and the five twisted sector
finally obtain

(60)M = U + T1 + T2 + T3 + T4 + T5

= 3× (16) ⊕ 12× (3,1) ⊕ 12× (3̄,1) ⊕ 30× (1,2),

plus SU(3)c × SU(2)L singlets. Note that in addition to three SM generations conta
in the three16-plets we have onlyvector-like matter. This result is partly dictated by th
requirement of anomaly cancellations. Vector-like fields can attain large masses and
ple from the low energy theory. A detailed analysis of this issue, including U(1) factors,

will be presented in a subsequent publication.
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Fig. 8. 6D E6 × SU(3) orbifold GUT for a large compactification radius of the SO(4)-plane.

4. Intermediate GUTs

So far we have made no assumption on the size of the compact dimensions. Th
usually assumed to be given by the string scale,Ri ∼ 1/MS . However, this is not nec
essarily the case and, furthermore, unification of the gauge couplings favours anis
compactifications where some of the radii are significantly larger than the others[23,24].
In this case one encounters a higher-dimensional GUT at an intermediate energy sc
deed, the Kaluza–Klein modes associated with a large dimension of radiusR become light
and are excited at energy scales above 1/R 	 MS . At these energy scales we obtain
effective higher-dimensional field theory with enhanced symmetry in the bulk.

In our model there are four independent radii: two are associated with the G2 and SU(3)

planes, respectively, and the other two are associated with the two independent dir
in the SO(4)-plane. Any of these radii can in principle be large leading to a distinct G
model.

The bulk gauge group and the amount of supersymmetry are found via a subse
invariance conditions(28). Consider a subspaceS of the 6D compact space with larg
compactification radii. This subspace is left invariant under the action of some eleme
the orbifold space group, i.e. a subset of twists and translationsG. The bulk gauge multiple
in S is a subset of theN = 4 E8 × E8 gauge multiplet which is invariant under the acti
of G, i.e. a subset of conditions(28) restricted toG.

Consider first the case with two large compact dimensions, for instance those a
ated with the SO(4)-plane. The SO(4)-plane is invariant under theZ3 subtwist as well
as translations by a lattice vector in the G2 and SU(3) planes. The latter do not lead
non-trivial projection conditions since there are no Wilson lines in these planes, whi
former leads to gauge symmetry and supersymmetry breaking. The light gauge sta
described by fields which are constant with respect toz1 andz2. Invariance underZ3 re-
quires (see Eq.(28)with � = 2)

(61)Ψp,q(x; z3) = e2π i(p·V3−q·v3)Ψp,q(x; z3).

Gauge multiplets satisfyq · v3 = 0 which has two sets of solutions forq corresponding to
N = 2 supersymmetry. Then the conditionp ·V3 = 0 breaks E8 to E6 × SU(3). At the four

fixed points of the SO(4)-plane symmetry is broken further to the four subgroups discussed
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Fig. 9. 6D SU(4) × SU(4) × U(1)2 orbifold GUT for a large compactification radius of the SU(3)-plane.

in Section3. Altogether, we obtain a 6D E6 × SU(3) orbifold GUT with the distribution
of gauge symmetries in the fundamental region of the orbifold shown inFig. 8. Similarly,
untwisted matter satisfies(61) with q · v3 = ±1/3. We note that all three SM generatio
live at the origin inFig. 8.

A similar analysis can be carried out for the SU(3)-plane, which is invariant under th
Z2 subtwist and lattice translations in the G2 and SO(4) planes. In this case, there are a
non-trivial projection conditions due to the Wilson lines,

Ψp,q(x; z2) = e2π i(p·V2−q·v2)Ψp,q(x; z2),

Ψp,q(x; z2) = e2π ip·W2Ψp,q(x; z2),

(62)Ψp,q(x; z2) = e2π ip·W ′
2Ψp,q(x; z2).

This breaksN = 4 E8 to N = 2 SU(4) × SU(4) × U(1)2 in the bulk (Fig. 9). At the fixed
points, the symmetry is broken further by theZ3 twist leaving only the standard mod
gauge group (up to U(1)’s). Each of the three fixed points carries one generation o
standard model matter.

A different picture arises when the G2-plane compactification radius is large. The G2-
plane is not invariant under any of the twists, thus there is no projection condition d
twisting. The only non-trivial projection conditions are due to the Wilson lines,

Ψp,q(x; z1) = e2π ip·W2Ψp,q(x; z1),

(63)Ψp,q(x; z1) = e2π ip·W ′
2Ψp,q(x; z1).

Thus we haveN = 4 supersymmetry and the gauge group is SO(8) × SO(8). Three gen-
erations of the standard model are localized at the origin where theZ6 twist breaks the
symmetry to the standard model gauge group (Fig. 10).

In principle, there is nothing special about six dimensions, and the same analys
be carried out for five, seven, eight, nine and ten dimensions. The results are summ
in Table 1. A variety of orbifold GUTs appears, with gauge groups ranging from E8 to
SU(4) × SU(4) × U(1)2. These GUTs represent different points in moduli space. Va

of the corresponding T-moduli determine the compactification radii.
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Fig. 10. 6D SO(8) × SO(8) orbifold GUT for a large G2-plane compactification radius.

It is remarkable that all these GUT models in various dimensions are consisten
gauge coupling unification.5 This is true even though in some cases SU(3)c and SU(2)L

are contained in different simple factors, i.e. SO(8) × SO(8) or SU(4) × SU(4). The beta
functions for both SO(8)’s or SU(4)’s are the same. In the former case this is enforced
N = 4 supersymmetry, while in the latter case the two SU(4)’s have identical bulk matte
content, 2× (6,1) + 16× (4,1) N = 2 multiplets. In all other cases SU(3)c × SU(2)L

is contained in a simple factor such that unification of the gauge couplings in the b
automatic.

On the other hand, different GUTs differ in the value of the gauge coupling at the
fication scale, since the power law running depends on the number of extra dime
and the bulk gauge group. Realization of some of the GUTs may require non-pertur
string coupling[23,24]. Different models also lead to different Yukawa couplings wh
depend on the compactification radii. These phenomenological aspects are similar t
of orbifold GUTs[25] and will be discussed elsewhere.

5. Summary

We have presented aZ6 heterotic orbifold model leading to the standard model spect
and additional vector-like matter in four dimensions. Standard model generations a
as16-plets of SO(10). They are localized at different fixed points in the compact sp
with local SO(10) × SU(3) × U(1) symmetry.

If some of the compactification radii are significantly larger than the others, we re
various higher-dimensional GUTs as an intermediate step at energies belowMS . These
GUTs have the same 4D massless spectrum and the same ultraviolet completion,
resent different points in moduli space. All of them are consistent with gauge cou
unification, yet differ in other phenomenological aspects.

5 Here we only consider running of the gauge couplings in the bulk. An analysis of localized contrib

will be presented elsewhere.
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letti,
Table 1
Survey of the various orbifold GUTs in different dimensions. The bullet indicates small compact dimen
U(1) factors are omitted

Dim. Plane Conditions SUSY, bulk groups

G2 SU(3) SO(3)

10 – N = 4, E8

9 p · W2 ∈ Z N = 4, SO(16)

9 p · W ′
2 ∈ Z N = 4, SO(16)

8 – N = 4, E8

8 – N = 4, E8

8 p · W2,p · W ′
2 ∈ Z N = 4, SO(8) × SO(8)

7 p · W2 ∈ Z N = 4, SO(16)

7 p · W ′
2 ∈ Z N = 4, SO(16)

7 p · W2 ∈ Z N = 4, SO(16)

7 p · W ′
2 ∈ Z N = 4, SO(16)

6 p · 2V6 ∈ Z N = 2, E6 × SU(3)

6 p · 3V6,p · W2,p · W ′
2 ∈ Z N = 2, SU(4) × SU(4)

6 p · W2,p · W ′
2 ∈ Z N = 4, SO(8) × SO(8)

5 p · 2V6,p · W2 ∈ Z N = 2, SU(6) × SU(2)2

5 p · 2V6,p · W ′
2 ∈ Z N = 2, SU(6) × SU(2)2

4 p · V6,p · W2,p · W ′
2 ∈ Z

N = 1, SU(3) × SU(2)

∼ GSM
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