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Dual models of gauge unification in various
dimensions
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Abstract

We construct a compactification of the heterotic string on an orbﬂ’(ﬁﬁ{ze leading to the stan-
dard model spectrum plus vector-like matter. The standard model gauge group is obtained as an
intersection of three SQO0) subgroups of g Three families of SQLO) 16-plets are localized at
three equivalent fixed points. Gauge coupling unification favours existence of an intermediate GUT
which can have any dimension between five and ten. Various GUT gauge groups occur. For example,
in six dimensions one can havg k SU(3), SU4) x SU(4) x U(1)2 or SQ8) x SO(8), depending
on which of the compact dimensions are large. The different higher-dimensional GUTs are ‘dual’ to
each other. They represent different points in moduli space, with the same massless spectrum and
ultraviolet completion.
0 2005 Elsevier B.V. All rights reserved.

PACS 12.10.-g; 11.25.-w; 11.25.Mj

1. Embedding the standard modé in Eg

The symmetries and the particle content of the standard model point towards grand
unified theories (GUTS) as the next step in the unification of all forces. Left- and right-
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handed guarks and leptons can be grouped in thr&&)Shlltiplets[1], 10 = (gL, uR, eR),

5= (di, L) and1 = vg. Here we have added right-handed neutrinos which are suggested
by the evidence for neutrino masses. All quarks and leptons of one generation can be
unified in a single multiplet of the GUT group $0) [2],

16=10+5+1. (1)

The group S@QL0) contains as subgroups the Pati—Salam grf8]p Gps = SU4) x
SU(2) x SU(2), the Georgi—Glashow group $8), Ggg = SU(5) x U(1), and the ‘flipped’
SU(5) group, Gy = SU(B)’ x U(L1) [4], where the right-handed up- and down-quarks are
interchanged, yielding another viable GUT group.

It is a remarkable property of the standard model that the matter fields form complete
SO(10) multiplets whereas the gauge and Higgs fields are ‘split multiplets’. They have to
be combined with other split multiplets, not contained in the standard model, in order to
obtain a complete unified theory. It is also well knof@ih that exceptional groups play an
exceptional role in grand unification, and the embedding

SO(10) C Eg C Eg (2)

appears, in particular, in compactifications of the heterotic sfihgn Calabi—Yau mani-
folds [7].

As we shall see, complete $1B) matter multiplets together with split gauge and Higgs
multiplets arise naturally in orbifold compactifications of higher-dimensional unified the-
ories. Orbifold compactifications have first been considered in string tH&®y and
subsequently in effective higher-dimensional field thedrd€s11] They provide a simple
and elegant way to break GUT symmetries, while avoiding the notorious doublet—triplet
splitting problem. More recently, it has been shown how orbifold GUTs can occur in orb-
ifold string compactificationfl2—14]

In the following we shall first search for a schemeZgp§ twists which allows to break
Eg, a common ingredient of string models, to the standard model groiy Awist is an
element of the gauge group, with

P =exp(—27iVy - H), PN =1. (3)

Here the generatod; form the (Abelian) Cartan subalgebra@fandVy is a real vector.
The twist P acts on the Cartan and step generaffgsas follows:

PH; P =H;,
PE,P t=exp(—2niVy - a)E,, (4)

wherea is a root associated witk,. Clearly, P breaksG to a subgroup containing all
step generators which commute withi.e.,[P, E,] =0.

The symmetry breaking is conveniently expressed in terms of the Dynkin diagrams.
This technique has been employed to classify possible symmetry breaking patterns in string
models[15—-17]and, more recently, in orbifold GUT48,19] Starting with the extended
Dynkin diagram which contains the most negative root in addition to the simple roots,
regular subgroups of a given group are obtained by crossing out some of the roots of the
Dynkin diagram. In particular, the action of ti#y orbifold twist essentially amounts to
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Fig. 1. SQ10) breaking patterns by &, twist. The action of the Pati—Salam twist is indicated by crosses, while
that of the Georgi—Glashow twist is indicated by a slash.

crossing out a root with the (Coxeter) laké| or more generally, roots whose labels sum
upto N.

As an example, consider the breaking of (30, displayed inFig. 1 For each simple
root the Coxeter label is listed, which determines the order of the twist required for the cor-
responding symmetry breaking. Crossing out one of the nodes with label 2 bregkg) SO
to the semi-simple subgrou@ps, while crossing out one of the roots with label 1 together
with the most negative roat breaks S@L0) to Ggg. The intersection of the two groups
gives the standard model with an additionaflJfactor[11],

Goe N Gps=SU®) x SU2) x U)? ~ Gsw, (5)

where ~’" means ‘modulo Y1) factors’. Under theéZ, twisting, the group generators di-
vide into those with positive and negative paritisvith respect to the twist. Combining
the two paritiesPgg and Pps, one can construct the thiip parity P - Pps= P; which
breaks S@L0) to the flipped S5),

SO10) M Gy = SUB) x U(L). (6)

The standard model grou@sy can also be obtained as an intersection of the tw¢spU
embeddingsG g andGi,

GaaN G = SUR) x SUR) x U(1)% ~ Gsw. (7)

As another example, consider now BEreaking to the standard model group. From the
extended Dynkin diagrafig. 2it is clear, in analogy with the SQO0) breaking, that three
Zo twists,

Es =% SO(10) x U(1),  Eg—% SU®B) x SU2),
Es =5 SU6)” x SU2)" . 8)
can break Eto the standard model up to(l) factors,
SO(10) x U(1) NSUB) x SUR) NSUB)” x SU2)”
=SU®R) x SU2) x U(1)2~ Ggwm. (9)

As in the S@10) example, one can check that the same breaking can be obtained as an
intersection of three different SO0) embeddings in Ewhich correspond to the twists

Es 5 SO10) x ULY,  Es "5 5010/ x UV, (10)
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Fig. 2. B breaking patterns undét, twisting. Three differenZ, twists are indicated by crosses, a slash and a
backslash, respectively.

Fig. 3. Eg breaking to g x SU(3).

such that

SO(10) x U(1) N SO(10) x U(1) N SO(10)” x U@)”

=SU®R) x SU2) x U(1)% ~ Gsw. (11)
Let us remark that it is not possible to distinguish the threg¢1®0Dembeddings in &
(as well asGgg and Gy embeddings in SCL0)) at the level of Dynkin diagrams. The
corresponding subalgebras are related by Weyl reflections within the embedding group. To
distinguish them, an explicit analysis of the shift vectfsis required.

Our final goal is to break &to the standard model gauge group. This can be achieved

by combining the above thre&, twists with aZ3 twist which breaks Eto Eg x SU(3)
(cf. Fig. 3). The Z, twists can then also break the &)Y factor to SU2) x U(1). In this
way one obtains threBg twists which break gto subgroups containing SC0),

Es =% SO(10) x SU®3) x U(1),  Eg e SO10) x SU2)’ x U(L)2,

Ps ” ” 2
Es — SO(10)” x SU(2)" x U(1)~, (12)
such that the intersection is the standard model group uglpfdctors,

SO(10) x SU3) x U(1) N SO(10)’ x SUR)" x U(1)?
NSO10)” x SU2)" x U(1)? ~ Gswm. (13)

In an orthonormal basis ofg&roots, threeZg shift vectors which realize the described
symmetry breaking read explicitly:

111
Ve=|3,5.5.0,0,0,0,0),
6 <3 3’3 )

- 7 7 11 1 3 3 3
67 \1221271224 4 4 4 4)

7 137 31 3 3 3
Vis|l—, =, —, =, =, —=, —=, —=|. 14
6 (12’ 121244 4 & 4) (14)
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Note that the differences between theshift vectors aré&Z, shift vectors,

1111

— v/ _ vy — - - - =
WZ_VG VG <07 27 2’ 25 29070’O>5
11 11 1 3 3 3
z’z"z’z"z"z"z"z)’ (13)
which will play the role of Wilson lines in the next section.

To summarize, in this section we have presented a group-theoretical analysis of E
breaking to the standard model with intermediageaBd SQ10) GUTSs, suggested by the
structure of matter multiplets.

w:%—%:<

2. Orbifold compactification

Let us now construct an orbifold compactification of the heterotic string, which realizes
the symmetry breaking described above. As is clear from the above discussion, we will
need &g or a higher-order orbifold and choose the former for simplicity.

In the light cone gauge the heterotic str{Bjjcan be described by the following bosonic
world-sheet fields: 8 string coordinat&d, i =1, ..., 8, 16 internal left-moving coordi-
natesX’, I =1,...,16, and 4 right-moving fielde’, i =1, ..., 4, which correspond to
the bosonized Neveu—Schwarz—Ramond fermiong16£20,21). The 16 left-moving in-
ternal coordinates are compactified on a torus. The associated quantized momenta lie on
the Bs x Eg root lattice. In an orthonormal basis, vectors of the&ot lattice are given by

1 1
PEg = (n1,...,ng) oOr it .ngt s ) (16)

with integern; satisfyingZ?:l n; =0 mod 2. The massless spectrum of this 10D string is
10D supergravity coupled togEx Eg super-Yang—Mills theory.

To obtain a four-dimensional theory, 6 dimensions of the 10D heterotic string are com-
pactified on an orbifold. In our case, this iZg orbifold obtained by modding a 6D torus
together with the 16D gauge torus by.a twist,

O =T°® Tgyug,/Zs. (17)
On the three complex torus coordinatési = 1, 2, 3, theZg twist acts as
2 s 2TV i (18)

Here 6 has integer components. The compact string coordinates are described by the
complex variableg’ = X%-14iXx% i =1,...,3. TheZg action on the string coordinates
reads, up to lattice translations (f£6]),

Zi(o =27) =¥ "% 7i (6 =0), k=0,...,5, (19)

¢' (0 =2m) =¢' (0 = 0) — kv, Xl(o=2m)=X" (6 =0)+nkV{, (20)
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where 8/ is an E x Eg lattice vector.

The torusT ® is spanned by basis vectass k =1, ..., 6. In general, a torus allows for
the presence of Wilson lines, i.e., a translation by a lattice vegtejr can be accompanied
by a shift of the internal string coordinates,

X (oc=2n)=X"(6 =0)+ 27m,(e,i(, ne €7,
Xl =2n)=X"(6 =0) +nn W/ (21)

Here the discrete Wilson linég, are restricted by symmetry and by modular invariance.

The basis vectorg, are taken to be simple roots of a Lie algebra, whose choice is
dictated by the required symmetry of the lattice. In our case the lattice must Haye a
symmetry and allow for the existence of 3 independéghift vectorg14) (or two Wilson
lines of order 2). This leaves two possibilities for the Lie lat{it@]

Gy x SURB) x SO4) or SUR) x SUB) x SO4). (22)

We shall base our analysis on the first lattice, which has recently been studied in detail by
Kobayashi, Raby and Zhaifji2]. These authors have obtained models with the Pati—-Salam
gauge group in four dimensions, which then has to be broken to the standard model by the
Higgs mechanism. The model described in the following differs from those in the choice
of Ze twists and the pattern of symmetry breaking.

For the G x SU(3) x SO(4) lattice, the action of th&g twist is given by Eq(18) with

vg = % (1,2, —3). (23)

z1, z2 andzz are the coordinates of thexGSU(3) and S@4) T2-tori, respectively. Thé&g
twist vg has two subtwists,

1 1
Z3: v3=2vg= 5(1, 2,-3), Zo: vo=3vg= E(l’ 2, —-3). (24)

An interesting feature of this orbifold is the occurrence of invariant planes. Clearly, the
Z3 twist leaves the S@)-plane invariant whereas thHé, twist leaves the S{B)-plane
invariant. The corresponding fixed points and invariant planes are showig.il. Our
construction requires two Wilson lines in the @pplane,W» and Wy, such that there are
3 independent gauge shift vect@ig!) acting at different fixed points in this plane.

The rules of orbifold compactifications of the heterotic string have recently been re-
viewed in[13,14] We are interested in the states whose masses are small compared to the
string scaleMs. These states are described by fields

¥, (x; 21, 22, 23). (25)
Herer labels the gauge quantum numbers and is given by

. { p for the untwisted sector (26)

p+kVg for thekth twisted sectar

wherep lies on the kg x Eg root lattice(16) and we have absorbed the Wilson lines in the
definition of thelocal twist kVg. Similarly, s carries information about the spin,

o {q for the untwisted sector 27)

q + kvg for thekth twisted sectar
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G torus SU(3) torus SO(4) torus
w3
: \ ®
Zg ; Tl,s - ®
Wi
\ v
:@ @
Z3 ; T2,4 s
Wa
Wi
Zy; Ty D/_@ e % ® ®
) PN

Fig. 4. Fixed points and invariant planes (hatched) undeZghtwist andZs, Z, subtwists, describing localiza-
tion of different twisted sectors.

whereg is an element of the S@) weight lattice andvg1 = 0. In our convention, the
last component ofy gives the 4D helicity. For example, 4D vectors correspong te
(0,0,0,+1), 4D scalars tg = (£1, 0, 0, 0) with all permutations of the first 3 entries, and
fermions correspond 9 = (£3, £3, £3, £3) with an even number oft’ signs?

The physical states are invariant under the action of the orbifold symmetry group which
consists of twists and translations. In our case only translations in tlé) $fane have
a non-trivial action on the gauge degrees of freedom, due to the presence of Wilson lines.
Then the invariance conditions réad = 1, ..., 5):

. .. . l . z _ . e
Wy s (x; 21, 22, 23) = €7 VTS Y (x; 6762, €7 325, 02T 223),

2nir~W2w

W, s(x;21,22,23) =e€ s (X321, 22,23+ 1),

i, ! .
W, o (x; 21, 22, 23) = € W2, (x5 21, 22, 23 + 1), (28)

where we have included the Wilson lines in the local shift veckdts We note that here

two sources of symmetry breaking are present: local, due to twisting, and non-local, due
to the Wilson lines. In the first case, symmetry breaking is restricted to the fixed points
in the compact space. Indeed, since orbifold fixed points are invariant under twisting (up

1 Theseg's may have to be shifted by an $8) root vector to satisfy masslessness conditions in twisted
sectors.
2 Here we omit string oscillator states.
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to a lattice vector), the first condition can be satisfied only for cegtaiwhich indicates
symmetry breaking at the fixed points. These seig'®fre generally different at different
fixed points and only their intersection survives in 4D, since in this case the wave function
can be constant in the compactified dimensions leading to a massless state. In the case of
Wilson line symmetry breaking, the second and third conditions apply to all points in the
G2 and SU3) planes and the symmetry breaking is non-local.

To define our string model, it is necessary to specify the action of the twist on the second,
‘hidden’, Eg. We find that the desired symmetry breaking pattern and the appearance of
threel6-plets at fixed points with unbroken $10) lead to

111 1
=(z,z,= 2
Ve (3,3,3,0,0,000)(6 6oooooo) (29)
1111 1 1 1 1
11 11 1 3 3 3 1111
/ - - _ - - _-__=_=F - - - =
W2 = <4’ 4 44 4 4 & 4) <0’ 2°2°2 2’0’ 0 0) (31)

in the orthonormal E x Eg basis. In string theory, these quantities must satisfy certain
consistency conditions (s¢&3] for a recent discussion). First of allVg and 2V, 2W,

must be elements of thegk Eg root lattice which is required by embedding of the orb-
ifold symmetry group (‘space’ group) in the gauge degrees of freedom. Second, modular
invariance requires

[(mVe+nW2+nW2)2—m v6] Omod2 m,n,n=0,1. (32)

Our choice of the hidden sector componentd/gf W», W, is strongly affected by these
conditions.
We note thatV = 1 supersymmetry in 4D requires

3
Y v=0mod 1 (33)
i=1
whereasV = 2 would require, in addition:,:{5 =0 mod 1 for some. In the former case,
there is one gravitino satisfying- ve = 0 mod 1 whereas in the latter case there are two of
them.
Finally, massless states in 4D must satisfy the following conditions:

?=1  p?=2-2N (34)
for the untwisted sector, and
(q + kve)® = cx, (p+kV6+nW2+n/W§)2=Ck,\7 (3%)

for thekth twisted sector. Her# is an oscillator number ang, ¢y are certain constants
(see, e.g.[13]). In our model, all states which transform non-trivially under (S} x
SU(2). haveN =0.

In this section we have described the necessary ingredients of our orbifold model. In the
next section we compute the massless spectrum of the model and discuss localization of
various states.
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W3
SO(10) x SU(2) x U(1)? S0(10) x SU(2) x U(1)?
® ®
® ® W
SO(10) x SU(3) x U(1) SU(6) x SU(2) x SU(2) x U(1)

Fig. 5. Local gauge symmetries in the @@ plane.

3. Massless spectrum of the model

First let us identify the gauge group in 4D. Fdr= 1 vector multipletsg - vg = 0.
Hence, the surviving gauge group in 4D is given by the root vectors satisfying
p-Vep-Wo,p-WyeZ, p>=2 (36)
It is straightforward to verify that these roots together with the Cartan generators form the
Lie algebra of
SU3) x SUR) x U(1)°,

while the hidden sector s broken to SW) x SU4) x U(1)2. This result can be un-
derstood by examining the enhanced gauge groups at the four orbifold fixed points in the
SQO(4)-plane. These gauge groups are determined by

p- (Ve—i-an—i—n/Wé) ez, (37)
wheren, n’ = {0, 1} specify the fixed point in the S@) plane. Then, omitting the hidden
sector the local gauge groups aFéy; 5

(n=0,n"=0): SO10) x SU3) x U(1),

(n=1,n"=0): SU6) x SU?2) x SU?2) x U(1),

n=0,n"=1): SO10) x SU2) x U(1)?,

(n=1,n"=1): SO10) x SU2) x U(1)>. (38)
These are precisely the groups discussed in the first section. Their intersection yields the
surviving group SW3) x SU(2) x U(1)°.

Let us now consider matter fields. These can be either in the untwisted gecioin
one of the twisted sectof ... Ts. Below we analyze each of them separately. Before we

proceed, let us fix the chirality of the matter fields todositive®, i.e.,q4 = +1/2 for their
fermionic components.

3 This is necessary to distinguish matter fields from their CP conjugates.
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3.1. U sector

For N = 1 chiral multiplets in the untwisted sector we hgves = +1/6,+1/3,£1/2,
and therefore

p-Ve=1{1/6.1/3,1/2) mod 1 p-Wa, p WheZ. (39)

The states represent bulk matter of the orbifold. By choosing an appropriate right-mover,
these massless states can be made invariant undéfgtleebifold action and thus are
present in the 4D spectrum. Apart from @). x SU(2). singlets? the untwisted sector

of our model contains

U=2x3B,1)® @3 1)®5x% (12 (40)

in terms of the SWB). x SU(2). quantum numbers. From the field-theory perspective,
these fields correspond to the compact space components of tieuge fields and their
superpartners.

3.2. Ty + Ts sector

These matter fields are located at the 12 orbifold fixed pokits @) and satisfy

(p+ Vo +nWa+n'Wh? = i—g (41)
Since Wilson lines are present only in the @Dplane, only S@4)-plane projections of the
fixed points matter. The £5and SU3) projections do not affect the local twist. They only
lead to a multiplicity factor 3 due to the three identical SUfixed points. Any massless
state in theTy sector survives the orbifold projection, i.e., is invariant underZgaction,
and is therefore present in the 4D spectrum.

The twisted matter fields located at a given fixed point appear in a representation of the

local gauge group at this point. In our case, twisted matter wittBglk SU(2). quantum
numbers is

(n=0,n"=0): 3x (16,1),

m=1,n"=0): 6x(1,21),

n=0,n"=1): —,

n=Ln=1: -. (42)

It is convenient to keep the notati@f6) of SO(10) even though the unbroken group in
4D is only Gsy, since it represents one complete generation of SM fermions including
right-handed neutrinos. In terms of &), x SU(2). quantum numbers we have

T1+T5=3x (16) ® 6 x (1, 2), (43)

where again we have omitted singlets.

4 We defer the analysis of (@) charges until a subsequent publication.
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Eg x SU(3)
&
@®
E5 X SU(3)
EG X SU(S)

Fig. 6. Local gauge symmetries in the &Y-plane after theZz subtwist.

3.3. T» + T4 sector

These states are localized at the fixed points in theu@ SU3) planes, while being
bulk states in the S@) plane Fig. 4). If the T1 sector corresponds to the string with the
boundary condition twisted b = diag(e2™1", ¢271¥, ¢271%8), the T» sector corresponds
to the strings twisted by?. Since®? has a fixed planel> states are bulk states in this
plane and localized states in the other two planes.

The orbifold action on this sector %3, and is given by

v3 = 2vs, Va3 =2Vs. (44)

Since there are no Wilson lines in the &1d SU3) planes, all fixed points are equivalent.
The massles® = 1 multiplets obey

(p+ V9= (45)

Both the G and the SI@3) lattice have 3 fixed points undé&rs, so the multiplicity factor
is 9. The local gauge groups at the fixed points are determined by

p-Va=0. (46)

At eachZg fixed point, the unbroken gauge group and the twisted sector matter fields are
(cf. Fig. 6)

Es x SUB): (27, 1), (47)

plus SU3). x SU(2). singlets.

These states are subjecftother projection and not all of them survive. Indeed, by con-
struction they are only invariant under tig action, but not under the fulls. Furthermore,
the Z3 fixed points in the G-plane are only fixed undéts and theZg action transforms
them into one another. Physical states are formed out of their linear combinations which
are eigenstates of th&; twist.

TheZs invariance of a physical state requires

(g +v3)-v3=(p+ Va)- Vamod ], (48)

whereg + v3 is the shifted S@) momentum ang + V3 is the shifted g x Eg momentum.
This is satisfied automatically as long as the gauge embedding of the twist and the Wilson
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W
Er x SU(2) Er x SU(2)
® ®
® ® W
SO(16) SO(16)

Fig. 7. Local gauge symmetries in the @®plane after theZ, subtwist.

lines obey modular invariance (yet it may require shifts by a lattice vector). A non-trivial
Z» invariance condition is

(q+v3)-v2=(p+Va)-Va+ymodl p- W p WyeZ, (49)
where
v2 = 3vg, Vo =3Vs. (50)

The extra termy = (0,0, 1/2) appears due to the ‘mixing’ of the fixed poirtk2,22]
There are three combinations of thegfixed points which are eigenstateszf with eigen-
valuese?™' .

An important note is in order. The $8) lattice momentuny is found via the mass-
lessness condition for the right-movers,

(g +v3)?= g (51)

Sincevs has a fixed plane, there are always two sets of solutions, with opposite chiralities.
Both of them survive the projectiog@d8), which leads taV = 2 hypermultiplets. The con-
ditions (49) break the symmetry between the two chiralities and one obiiasl chiral
multiplets.

As a result, 9 (27)N = 2 hypermultiplets produce the followiny = 1 multiplets
with SU(3). x SU(2)L quantum humbers:

To+T4a=3x 3,1 ®6x (3,1 dIx (L 2). (52)
3.4. T3 sector

These states are localized at #hefixed points in the G and S@4) planes and are bulk
states in the S(B) plane Fig. 4). They correspond to strings twisted B?. The massless
T3 states satisfy

3
(p+ Va+nWa+n'Wp)? =



W. Buchmiller et al. / Nuclear Physics B 712 (2005) 139-156 151

and the local gauge groups at the fixed points are determined by
p-(Va+nWz+n'Wy) =0. (54)
The result for gauge groups and matter multiplets read$-{gf.7)

(n=0,n"=0): SO16), 8 x (16),

(n=1,n"=0): SO16), 8 x (16),

n=0,n"=1): E7xSUQ), -,

n=1Ln"=1): E;xSUQ), —. (55)
As usual we have omitted §B). x SU(2). singlets and included a multiplicity factor 4
from the G-plane fixed points. These states are located aZthfxed points which are
mixed by the action of the fullg twist. Again, one has to form linear combinations of the
states transforming covariantly undgs.

The matter states are, as before, subject to projection conditionZTéendition for

the relevant states is

(g4+v2)-vo=(p+Vo+nWs)-(Vo+nWz) mod 1 (56)

With a proper redefinition o, by a lattice vector shift, this condition is satisfied by all
states with both chiralities, i.e., both solutionsf the equation for massless right-movers,

(g +v2)°= % (57)

Therefore, these states fotsh= 2 hypermultiplets. The furthéf3 projection reads

(g4+v2)-v3=(p+Vo+nWs)-Vz+y mod ] (58)

where nowy = (0,0, 1/3, —1/3). The fourZ, fixed points in the @-plane lead to four
eigenstates undéts with eigenvalueg®™'” . The above condition projects out some of the
states. The survivingy = 1 multiplets with SU3). x SU(2). quantum numbers are

T3=7x(3,1)®5x(3,1)®10x (1,2). (59)
3.5. Summary of the massless spectrum

Combining all matter multiplets from the untwisted and the five twisted sectors we
finally obtain

M=U+T+T+T3+Ts+T5 (60)
=3x(16)®12x (3,1) @ 12x (3,1) ®30x (1, 2),

plus SU3). x SU(2). singlets. Note that in addition to three SM generations contained

in the threel6-plets we have onlyector-like matter. This result is partly dictated by the
requirement of anomaly cancellations. Vector-like fields can attain large masses and decou-
ple from the low energy theory. A detailed analysis of this issue, includifly factors,

will be presented in a subsequent publication.
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SO(10)" x SU(2) x U(1) SO(10)” ><SU(2) x U(1)

SO(10) x SU(3) x U(1)  SU(6) x SU(2) x SU(2) x U(1)

Fig. 8. 6D E5 x SU(3) orbifold GUT for a large compactification radius of the @@plane.

4. Intermediate GUTs

So far we have made no assumption on the size of the compact dimensions. These are
usually assumed to be given by the string sc&e;~ 1/Ms. However, this is not nec-
essarily the case and, furthermore, unification of the gauge couplings favours anisotropic
compactifications where some of the radii are significantly larger than the ¢gt8e2s!]

In this case one encounters a higher-dimensional GUT at an intermediate energy scale. In-
deed, the Kaluza—Klein modes associated with a large dimension of radiasome light

and are excited at energy scales aboy® & Mg. At these energy scales we obtain an
effective higher-dimensional field theory with enhanced symmetry in the bulk.

In our model there are four independent radii: two are associated withthadsSU3)
planes, respectively, and the other two are associated with the two independent directions
in the SQ4)-plane. Any of these radii can in principle be large leading to a distinct GUT
model.

The bulk gauge group and the amount of supersymmetry are found via a subset of the
invariance condition$28). Consider a subspac® of the 6D compact space with large
compactification radii. This subspace is left invariant under the action of some elements of
the orbifold space group, i.e. a subset of twists and translagiombe bulk gauge multiplet
in S is a subset of th&v =4 Eg x Eg gauge multiplet which is invariant under the action
of G, i.e. a subset of conditior{28) restricted tag5.

Consider first the case with two large compact dimensions, for instance those associ-
ated with the S@})-plane. The S@})-plane is invariant under th&z subtwist as well
as translations by a lattice vector in the &1d SU3) planes. The latter do not lead to
non-trivial projection conditions since there are no Wilson lines in these planes, while the
former leads to gauge symmetry and supersymmetry breaking. The light gauge states are
described by fields which are constant with respectitandz». Invariance undets re-
quires (see Eq28) with ¢ = 2)

Vpq(x;23) = 2P Va=q-v3) Wy 4(x; 23). (61)

Gauge multiplets satisfy - v3 = 0 which has two sets of solutions fgrcorresponding to
N = 2 supersymmetry. Then the conditipn V3 = 0 breaks g to Es x SU(3). At the four
fixed points of the S@)-plane symmetry is broken further to the four subgroups discussed
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SU(3) x 82) x U(1)?

@ &
SU(3) x SU(2) x U(1)? SU(3) x SU(2) x U(1)?

Fig. 9. 6D SU4) x SU4) x U(l)2 orbifold GUT for a large compactification radius of the @Jplane.

in Section3. Altogether, we obtain a 6D d=x SU(3) orbifold GUT with the distribution
of gauge symmetries in the fundamental region of the orbifold shoviaigng. Similarly,
untwisted matter satisfig€61) with ¢ - vz = £1/3. We note that all three SM generations
live at the origin inFig. 8.

A similar analysis can be carried out for the @Jplane, which is invariant under the
Z» subtwist and lattice translations in the @nd S@4) planes. In this case, there are also
non-trivial projection conditions due to the Wilson lines,

Wy (x5 22) = PV, (x; 29),
Wp,q(x; ZZ) = eZﬂlp-ngpp’q(x; Z2)7
Wy q(x;22) = e P V2w, (x:22). (62)

This breaksV = 4 Egto N = 2 SU(4) x SU(4) x U(1)2 in the bulk Fig. 9. At the fixed
points, the symmetry is broken further by tfg twist leaving only the standard model
gauge group (up to (1)’s). Each of the three fixed points carries one generation of the
standard model matter.

A different picture arises when thextlane compactification radius is large. The-G
plane is not invariant under any of the twists, thus there is no projection condition due to
twisting. The only non-trivial projection conditions are due to the Wilson lines,

Wy q(x;z1) = 2PV, L (x;20),
Wy (x:22) = 2P V2w, 4 (x: 29). (63)

Thus we haveV = 4 supersymmetry and the gauge group IS8 SO(8). Three gen-
erations of the standard model are localized at the origin wher&ghwist breaks the
symmetry to the standard model gauge grdtig.(10.

In principle, there is nothing special about six dimensions, and the same analysis can
be carried out for five, seven, eight, nine and ten dimensions. The results are summarized
in Table 1 A variety of orbifold GUTs appears, with gauge groups ranging fraggrice
SU(4) x SU(4) x U(1)%. These GUTs represent different points in moduli space. Values
of the corresponding T-moduli determine the compactification radii.
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SU(3) x SU(3) x U(1)*

SO(8) x SO(8)

SU(3) x SU(2) x U(1) SU(4) x SU(4) x U(1)2

Fig. 10. 6D S@8) x SO(8) orbifold GUT for a large G-plane compactification radius.

It is remarkable that all these GUT models in various dimensions are consistent with
gauge coupling unification.This is true even though in some cases(3l and SU2),
are contained in different simple factors, i.e. 8Dx SO(8) or SU4) x SU(4). The beta
functions for both S@)’s or SU(4)’s are the same. In the former case this is enforced by
N = 4 supersymmetry, while in the latter case the twa®t3$ have identical bulk matter
content, 2x (6,1) + 16 x (4,1) N = 2 multiplets. In all other cases $8). x SU(2),
is contained in a simple factor such that unification of the gauge couplings in the bulk is
automatic.

On the other hand, different GUTs differ in the value of the gauge coupling at the uni-
fication scale, since the power law running depends on the number of extra dimensions
and the bulk gauge group. Realization of some of the GUTs may require non-perturbative
string coupling[23,24] Different models also lead to different Yukawa couplings which
depend on the compactification radii. These phenomenological aspects are similar to those
of orbifold GUTs[25] and will be discussed elsewhere.

5. Summary

We have presentedZ; heterotic orbifold model leading to the standard model spectrum
and additional vector-like matter in four dimensions. Standard model generations appear
as 16-plets of S@10). They are localized at different fixed points in the compact space
with local SQ10) x SU(3) x U(1) symmetry.

If some of the compactification radii are significantly larger than the others, we recover
various higher-dimensional GUTs as an intermediate step at energies hgloWwhese
GUTs have the same 4D massless spectrum and the same ultraviolet completion, but rep-
resent different points in moduli space. All of them are consistent with gauge coupling
unification, yet differ in other phenomenological aspects.

5 Here we only consider running of the gauge couplings in the bulk. An analysis of localized contributions
will be presented elsewhere.
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Table 1

Survey of the various orbifold GUTSs in different dimensions. The bullet indicates small compact dimensions.

U(1) factors are omitted
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