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Deploying Web-based Visual Exploration Tools on the Grid

T.J. Jankun-Kelly∗ Oliver Kreylos∗ John Shalf† Kwan-Liu Ma∗

Bernd Hamann∗ Kenneth I. Joy∗ E. Wes Bethel†

Abstract

We discuss a web-based portal for the exploration, encapsulation,
and dissemination of visualization results over the Grid. This portal
integrates three components: an interface client for structured visu-
alization exploration, a visualization web application to manage the
generation and capture of the visualization results, and a centralized
portal application server to access and manage grid resources. We
demonstrate the usefulness of the developed system using an exam-
ple for Adaptive Mesh Refinement (AMR) data visualization.

Keywords: scientific visualization, grid-based computing, world-
wide web, visualization interfaces, adaptive mesh refinement

Introduction

The easy access to low-cost, high-performance, network-aware
computers has had a great impact on the way scientists conduct their
research. Their productivity has improved but they are burdened by
the increasing size of data being generated. Visualization is an ef-
fective and economical means to explore and communicate with the
data and insight obtained in scientific studies. However, due to the
size of the generated data, the scientists, their data, and the visual-
ization software are often located on different machines—machines
potentially located at geographically distributed locations. Grid-
based computing solves some of these problems by managing ac-
cess and utilization of these different resources. This management,
however, is not centralized. Thus, to effectively use grid resources,
a central access point is needed. This access point manages the re-
sources, provides a visual means to explore the data, and records
these exploration for further investigation and dissemination. This
article describes such a system being developed jointly by the Uni-
versity of California, Davis, and the Lawrence Berkeley National
Laboratory (LBNL).

The centralized system acts as a “portal” into grid-enabled visu-
alization systems (see the Grid-enabled Portals sidebar, page??).
The portal presents a unified interface to the distributed resources
via a central application server. The application server communi-
cates with services on the Grid in response to request made by users
utilizing the portal. Thus, the portal hides the complexity of grid se-
curity and job-launching mechanisms. Scientists utilizing the portal
focus on the important task of extracting insight from their data via
visualization instead of worrying about the ancillary tasks of data
and process management.

Scientists at LBNL and their collaborators require access to the
portal world-wide. The computing environments available to these
scientists run the gamut of hardware, operating systems, and in-
stalled software. To support uniform access to the portal, the por-
tal’s interface is entirely web-based. Authenticated users only need
a standards-compliant web browser to visually explore their data
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from anywhere in the world. The impetus for this design decision
and its consequences are discussed elsewhere in this article.

A central service the portal provides is a web-based interface for
the exploration and encapsulation of visualization data. A struc-
tured visualization interface provides an efficient means to inter-
act with scientific data. The encapsulation of the process allows a
user to reproduce the visualization results for validation or to ex-
tend those results by continuing data exploration. In this article,
we discuss the integration of the grid-enabled visualization por-
tal/application server, the visualization web application which per-
forms the visualization session management, and the web-based in-
terface, using a implementation for the visualization of Adaptive
Mesh Refinement data—the AMRWebSheet—as an example.

Grid-based Portals

A portal is a single point of presence (typically hosted on the web)
that provides centralized access to widely distributed collections of
information or services. The portal organizes this information in
such a way that its complexity and location are abstracted away
and hidden from the user. Another aspect of portal technology is
that it provides location-independent access to state-information. It
does not matter where you are, when you login to the URL of the
portal’s interface, you get access to the same view of your personal-
ized environment and data (e.g. your email). Yahoo! and HotMail
are typical consumer-oriented examples of this capability and are
in fact the originators of this new meaning for the term “portal”.

Grid portals extend the portal paradigm to organize and man-
age widely distributed computing resources, software components,
and services that support collaboration among the people that
form a Grid “virtual organization.” Many virtual collaboratory
and distributed application developers have turned to grid por-
tals as the primary way of hiding the complexity of distributed
applications under a single interface. Consequently, a number
of portal development toolkits have emerged including the SDSC
GridPort (http://gridport.npaci.edu/), the Grid Portal Development
Kit (http://www-itg.lbl.gov/grid/projects/GPDK/) and GridSphere
(http://www.ascportal.org/, see [7]).

Portal interfaces need not be web-based, but web portals have
been widely adopted by the Grid community. This is in part due to
the ability to leverage the wide variety of robust development tools,
components, and platforms that have already been developed for
e-commerce servers. Also, given the ubiquitous availability of the
web platform and the comparatively uniform cross-platform pro-
gramming model it offers for the client UI, it makes an attractive
platform for a widely-deployed client interface to Grid services.
Furthermore, it requires essentially no custom software installation
for the scientists who use the service (a task that many are loath to
perform and would otherwise limit acceptance of the tool).

We regard the spreadsheet approach as an excellent match for
the interaction modality of the web. Spreadsheets are immediately
able to capitalize on the common HTML table display paradigm as
well as the use of hyperlinks to drill down into information content.
Such an interface will be particularly amenable to integration with
other ongoing collaboratory/portal development efforts throughout
the Grid community.



Related Web-based Visualization Work

Web-based control of visualizations using the Grid combines
research in two active areas of research: Web-based visu-
alization systems and distributed visualization in grid-like en-
vironments. Though there has been limited interaction be-
tween these fields before, most previous research has fo-
cused on only one them.

Ang [1] described one of the first web-based visualization
systems. In Ang’s system, visualization results are displayed
within a web page using an embedded application (an ap-
plet); the results are controlled using a launched application
on the client side. This launched application communicates
with the visualization server to request rendering; the visual-
ization server then communicates with the applet to display
the result.

Wood [7] generalized Ang’s approach to discuss four dif-
ferent compositions of Web-based visualization. In their first
scenario, only images are sent to the client with no user in-
teraction with the visualization. Their second scenario allows
a user to manipulate the result (for example, interaction with
a VRML model), but a user cannot change the visualization
parameters. The next scenario supports full control of the
visualization—including the type of visualization performed—
but requires significant resources on the client side. Their
last scenario, and the one implemented by Wood and Ang,
supports web-based interaction for controlling the parame-
ters and the visualization type performed without requiring
a significant client installation. The majority of subsequent
web-based visualizations follow this last approach, using an
applet to allow interaction with the visualization [6, 4]. A sim-
ilar decomposition of server and client responsibilities, this
time including distributed processing for the “server,” was dis-
cussed by Bender [3]. Out web interface combines aspects
of the first and last scenario: only images are ever sent to
the client, but client interaction with the web page causes up-
dates to the visualization process.

Lefer [5] and Bajaj et al. [2] have implemented a web-based
interface to distributed or grid-based visualization systems.
Lefer’s visualization system dynamically and transparently
shares the processing load on a local-area network (LAN).

Another interesting property of Lefer’s approach is that inter-
action with the visualization system is done entirely through
HTML-based forms—no external applet is needed. We use
an all HTML approach as well, but augment it with enhanced
interaction via JavaScript. This approach eliminates the need
for HTML forms by allowing the JavaScript events to invoke
actions on the visualization server. The work described in [2],
unlike the previous approaches mentioned, also coordinates
the users, distributed resources, and the utilization of those
resources. This coordination is in addition to the coordination
of the visualization. Our web interface does not manage the
grid resources; this task is handled by the underlying visual-
ization portal as a whole.
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Portal for Web-based Visualization
Exploration and Encapsulation

The system we are developing for web-based visual data explo-
ration over the grid consists of three major components: a web-
based user interface to grid-enabled visualization services, a visu-
alization web application which tracks the exploration of visual-
ization results, and the portal application server that manages and
coordinates the authentication for and use of grid resources (includ-
ing the interface, web application, and volume renderer). The ap-
plication server (the VisPortal) uses established grid technologies to
handle user and resource management. Once authenticated, a new
visualization exploration session is initialized by the web applica-
tion; the web application (also called aservlet) is a program on the
web server that communicates with the client via HTTP (the Hyper-
text Transfer Protocol—the protocol for the World-Wide Web). In
our case, the servlet maintains the visualization session state. After
the visualization session is initialized, the web-based visualization
interface is loaded in the client’s web browser. As the visualization
session progresses, the visualization results and the relationships
between those results are stored by the web application for later ex-

amination. Finally, when the user is finished visualizing their data,
the session is closed. The user can then initialize another session
or re-examine previous explorations. We explain the interplay be-
tween the interface and the web application next.

Web-based Sheet-like Interface for Visualization

Our web interface implements an entirely web-based version of the
visualization exploration sheet-like interface discussed in [4]. The
original spreadsheet-like interface (the VisSheet, for short) was de-
signed to assist visualization exploration by providing context for
where a user is in their exploration, where they have been, and sug-
gesting where they may go next. The VisSheet handles these tasks
by providing a movable, scalable window into the visualization pa-
rameter space. By manipulating the visualization parameters, the
user changes the position and size of this window. Only two vi-
sualization parameters are displayed at a time: one along the rows
and another along the columns. For the non-displayed parameters,
a set of default values is maintained that may be updated at run-
time. Parameter values are rendered as glyphs. Cells—representing
a combination of the row, column, and default parameter values—
display the visualization results. By changing the default values for



Figure 1: The AMRWebSheet interface, an example of our web in-
terface to grid-based visualizations. The interface consists of three
major areas: The default parameter bar that displays and allows
the modification of the default parameter values; the displayed row
and column parameter drop-down lists; and the tabular result dis-
play. The first two components are used to change the location of
the tabular window in visualization parameter space while the last
component is used to request the rendering of new results.

non-displayed parameters or which parameters are displayed along
the rows or columns, the window can be moved in the visualization
space. Thus, the data exploration process becomes the process of
manipulating the spreadsheet window through visualization space.

Our sheet-like web interface shares many characteristics with the
VisSheet. The interface refines the initial VisSheet design to allow
a user to easily modify default and displayed parameters via the de-
fault parameter bar and drop-down row and column parameter lists
(Figure 1). The default bar assists in the identification of parameter
values and their corresponding results: the parameters are always
the parameters belonging to a cell’s row and column, combined
with the default values for the other parameters in the default bar.
Interaction with the tabular display remains essentially unchanged:
users can add, edit, or remove parameter values; render or view a
cell’s image; and apply parameter and value operators to generate
new rows, columns, or cells. The implementations of these two
systems, however, differ significantly.

Design considerations for our web interface required several
modifications to the original VisSheet. Due to the wide range of
platforms scientists can use to access the web interface, a platform-
independent solution was desired. However, the software environ-
ment of each user is unlikely to be the same, and the difficulty
in installing or the unavailability of plug-ins for certain environ-
ments meant that Macromedia’s Flash or Sun’s Java could not be
used. The only assumption we made was that a user possesses
a standards-compliant web browser with ECMAScript/JavaScript

and cookie support. No permanent state can be stored on the client
machine. This limitation is again due to the wide variety of po-
tential platforms for portal users: some may be unable to store such
state. By keeping state in a centralized, web-accessible location, vi-
sualization sessions can be re-examined by the same user in differ-
ent locations without loss of information. Due to these constraints,
the interface is a web-based and not a single-user, network-unaware
Java application like the VisSheet.

There are several consequences resulting from our web interface
design. First, interactivity partially suffers in comparison to the
VisSheet. The VisSheet uses the Java Foundation Classes (JFC) for
its user interface (UI). The JFC supports a rich set of user interface
elements and customizability. In contrast, the interface elements
offered by HTML are limited: only checkboxes, radio button, push-
buttons, lists, menus, and text fields/areas are supported with little
customizability. The use of JavaScript overcomes many of these
limitations by allowing different portions of the HTML page to re-
act to mouse events. For example, JavaScript can detect a user drag-
ging the mouse in the opacity map editor of the AMRWebSheet;
the resulting event causes the client to update the corresponding
parameter display. Interactivity is still impacted—HTML cannot
be used to render glyph icons representing the parameter values in
a drop-down list for the default parameter bar, for example. The
complexity of implementing interface interaction is also increased
in comparison to the VisSheet implementation—the JFC provides
more functionality built-in compared to raw JavaScript. Finally,
our web interface cannot query any significant information about a
client’s machine. Methods exist to extract the client’s browser in-
formation or to download a single file off of the client machine at a
time, but such transfers are not optimized for the large data set sizes
common in visualization applications.

Web-based Encapsulation of Visualizations

The web-based visualization interface structures the visualization
exploration process. The visualization web application server cap-
tures this process. By capturing the process, we ensure that the
visualization results generated, and the relationships between those
results, are not lost when the visualization session ends. To record
the visualization process, a formal model of the visualization ex-
ploration process is used (see the Visualization Exploration Model
Sidebar, page 4). As each requested image is rendered, the corre-
sponding visualization session result is stored by the web applica-
tion server. Thus, at the end of a session, all the rendered images,
the parameter value sets (p-sets) used for creating that image, when
that image was generated, and that images relation to previous im-
ages are available for later use.

The visualization web application is the entry point to our web
interface. When loaded from the portal, the servlet provides a user
with two options: the user may start a new visualization session or
view previous sessions. When the user chooses to start a new ses-
sion, another servlet, the UI servlet, is loaded to handle interactions
with the visualization UI. As the user requests images or adds, ed-
its, or removes parameter values, the underlying JavaScript sends
HTTP requests to this servlet. The servlet then processes the re-
quests, contacting the rendering server if needed, and updates the
visualization session and the client. The UI servlet represents the
state of the UI; our web interface web page presents the view of this
state.

If a user chooses to examine previous sessions, the session
servlet is loaded. Initially, a list of all the previous explorations,
sorted by date, is presented to the user. The list supports three ac-
tions. A user can re-load a previous session in our web interface by
clicking on its corresponding link. New results can be added to this
session; when the session terminates, these results will be stored
along with the old session information. This capability is crucial to



Visualization Exploration Process Model

The visualization process for both information and scientific
visualization is an iterative sequence of user-applied transfor-
mations from data to view [1, 3]. The fundamental operation
that occurs during the visualization process is the formation
of parameter value sets to derive visualization results. These
parameter value sets, or p-sets, posses a parameter value
for each parameter in a visualization transform—the function
that performs the mapping of data to visual primitives. When
applied to a visualization transform, a p-set corresponds to a
rendered result. In [2], a model of the visualization process
based upon a parameter derivation calculus is described.
The calculus defines how p-sets—and thus the results ren-
dered from them—are derived from previous p-sets. New
p-sets are created by user interaction with the visualization
system in one of three ways:

• Parameter Application. Parameter values from a p-set
are applied to another p-set to generate a new p-set.
Example: A new color map replaces an old color map in
a previously generated p-set/result in order to render a
new result from the new p-set.

• Parameter Range Sweep. A single parameter value is
interactively manipulated over a range between an initial
and final p-set. Example: A range of view positions is
generated by dragging a mouse pointer in the render
window.

• Function Parameter Generation. A function/operator
generates a set of parameter values to be used in a p-
set. Example: A new opacity map is created by apply-
ing a set union operator to two previously used opacity
maps.

In the AMRWebSheet, only two types of parameter deriva-
tions are used: parameter application and function parame-

ter generation. When a cell is rendered, the parameters for
that cell are collected in a p-set; this process corresponds
to a parameter application of the new parameter values to
the p-set from the last generated result. Function parameter
generation occurs when an operator is applied in the AMR-
WebSheet to generate new parameter values.

The parameter derivation calculus is the basis for record-
ing a visualization exploration session. Formally, a visualiza-
tion session consists of a set of visualization session results.
A visualization session result contains a p-set, the visualiza-
tion result derived from the p-set, a timestamp to place the
result in temporal context, and a parameter derivation cal-
culus instance detailing how the result was derived. Each
session result represents the generation of a single visual-
ization result. However, as more than one result can be gen-
erated in a single user action—e.g. when applying a param-
eter operator—multiple session results can share the same
timestamp. For each visualization result (an image), the AM-
RWebSheet stores its corresponding visualization session re-
sult (information about that image). This information is then
stored as an XML document on the portal for later access and
re-exploration.
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the VisPortal—scientist must be able to distribute their work over
time as well as over space.

The second service the session servlet supports is the viewing
of previous sessions. By selecting the “View as HTML” option,
the user initiates the generation of an HTML page that summarizes
the corresponding visualization session. Each result, the parameters
corresponding to that result, and the parent and child results for that
result are all part of the HTML page. The HTML page serves as an
overview of a previous visualization session and as documentation
of that session. First, the web page fully documents the visualiza-
tion process as it completely describes the information captured by
the visualization process model. Second, users are allowed to add
or edit annotations of results. These annotations are stored on the
web application server for others to access. Scientists can use these
annotations to flag certain results as “interesting” to collaborators.

The session servlet also allows a user to view an overview graph
of a visualization. While the HTML session document describes
the visualization in detail, it is difficult to obtain a sense of the vi-
sualization “at-a-glance.” By selecting the “View Overview Graph”
option from the session list, the servlet generates a graph depicting
the results and various relationships between the results. The user
chooses a “visualization metric” that determines how the graph is
displayed. All the graphs use a new radial focus+context visualiza-
tion technique [5]. In this technique, the radial distance from the
center node to another node represents the distance of that node’s
result p-sets from the center result’s p-set according to the chosen
metric; as the distance increases, the size of the node and its radial

separation decreases in order to allow the system to display all re-
sults simultaneously. Example metrics include those that measure
how a result was derived from another result (a directed edge only
exists if the first result derives the second) and those that measure
the temporal distance of the result (a directed edge only exists if
the first result was rendered immediately before the second result).
Different metrics and the HTML session view provide means of
understanding what occurred during a visualization session.

Application Domain: Web-based AMR
Data Visualization

The web interface and visualization web application we have de-
scribed can be applied to a variety of scientific visualization prob-
lems. Of particular interest to scientists at LBNL is the visualization
of Adaptive Mesh Refinement (AMR) data. This section discusses a
specific implementation of our grid-enabled, web-based visualiza-
tion system for the exploration of AMR data—the AMRWebSheet.

Many of the most challenging problems in numerical modeling
involve meshes with huge ratios of scale. For instance, when mod-
eling a fuel injection system of an automobile, one must model the
fluid dynamics of the 30µm orifice of the injector as well as the dy-
namics of fuel-air mixing in a cylinder chamber that is 10 cm long
or more. Cosmologists investigating the structure of the universe
require simulations that model the formation of large-scale struc-
tures (superclusters) consisting of “clusters of clusters of galax-



VisPortal

AMRWebSheet

Portal Application
Server

Visualization
Web Application

The Grid
Logon, Transfer Data, 
Start Visualization

Request result

Launch, Update

Launch 
Visualization 
Session

Authenticate, Transfer Data

Transfer 
Data

Request result

Return Result
AMR Renderer

Web Browser
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ies.” These simulations resolve relevant features down to individual
stars. A typical finite-difference or finite-element simulation cov-
ers the entire domain with a uniform mesh of cells, the smallest
of which must be less than half the size of the smallest structure
being modeled1. Given the huge ratio of scale in these structures,
it would be impossible to span this range of spatial scales without
using impractically large meshes.

AMR techniques for finite-difference codes, such as the Berger-
Collela method [2], use “refinement criteria” that create higher-
resolution meshes only in areas they are needed. For instance,
large-scale structures of the superclusters in the cosmology exam-
ple are relatively compact; it would be a waste to model the unin-
teresting events in the voids using the same mesh resolution as that
used for the events that occur in the dense regions. With current
methods, the refined meshes must be an even multiple of the size
of the parent meshes on which they are placed. Furthermore, re-
fined regions themselves may be refined in a recursive process that
can descend through many levels of resolution. The cosmology
simulations of Mike Norman, Greg Bryan, and Tom Abel [1] that
modeled the formation of the first stars in the universe requires 27
levels of refinement, covering a eight-billion-to-one ratio of scale
using a fraction of the memory required for a uniform mesh. Start-
ing with a1283 base mesh for the AMR simulation, an equivalent
simulation on a uniform mesh would require at least a1036 element
uniform mesh. AMR makes these extreme problems tractable for
today’s supercomputers, but they also pose significant challenges
for visualization researchers.

AMR data structures do not fit into any of the traditional data
structures that are used in modern visualization techniques and sys-
tems [6]. Sampling AMR data onto uniform meshes results in the
same data handling problems that motivated the development of
AMR in the first place. Näıve conversion of AMR data to finite-
element data structures composed of hexahedral cells requires us
to use memory-inefficient data structures with comparatively in-
efficient visualization algorithms. Furthermore, “dangling nodes”
at the interfaces at the coarse-fine mesh boundaries can occur and
cause “cracks.” Finally, direct application of finite-difference tech-
niques to an AMR hierarchy leads to visual artifacts at the coarse-
fine boundaries as well as significant data management issues—a
typical desktop system cannot process these deep hierarchies inter-
actively. Consequently, there are few visualization algorithms that
can be directly applied to hierarchical meshes, and essentially no

1For second- or higher-order methods, the cell size must be even smaller.

off-the-shelf commercial software is available for visualizing AMR
data. It is critically important to develop the tools and techniques
necessary to navigate data sets with huge ratios of scale in a simple
and widely accessible manner.

Given the growing interest in AMR simulation and the need for
scalable systems supporting the remote visualization of the data,
we have developed a parallel multiprocessor hardware accelerated
volume renderer for AMR data (for more information on the ac-
tual AMR volume rendering, see the sidebar on page 6). Since the
majority of LBNL visualization users are off-site and have compar-
atively smaller resources at their disposal, we created a client-server
architecture so that the entire system is accessible over the Grid us-
ing a traditional client interface. The goal of the AMRWebSheet
project is to extend access to this parallel rendering back-end us-
ing an entirely web-based Grid portal interface that is suitable for
embedding in many emerging web-based co-laboratories.

Architecture

Figure 2 summarizes the VisPortal/AMRWebSheet architecture.
The AMRWebSheet interface and web application are implemented
in a flexible visualization exploration and encapsulation framework.
The framework, implemented in Python (http://www.python.org/),
consists of a series of objects that manage visualization sessions
and a visualization UI’s interactions with the sessions. Visualiza-
tion session, transform, parameter, result, and derivation objects ex-
ist within the framework to capture the information described in
the visualization exploration process model. A view object exists
to represent the interactions between visualization UIs and the vi-
sualization session in a platform independent manner. Other UI
and UI toolkit-independent objects representing general visualiza-
tion exploration spreadsheet views and state also exist within the
framework. These later classes are used as the basis for different
implementations of the VisSheet. One implementation recreates
the original VisSheet as a Java application using Jython (the Java
version of Python) to communicate between the framework and the
Java classes. The servlet application uses the framework to imple-
ment the AMRWebSheet. A Java applet that combines the proper-
ties of both approaches has also been created. A summary of the
core components of the framework is provided in Table 1.

The web application servlets that manage visualization sessions
are implemented in Python using the Webware web application en-
vironment (http://webware.sourceforge.net/). We use the Apache
web server, running under Linux. A group of servlets create, pro-



AMR Volume Rendering

The current rendering back-end for AMR data is a hardware-
assisted 3D texture-based parallel volume renderer [1]. Since
AMR methods impose only few constraints on placement of
grids, the resulting AMR hierarchies are typically highly ir-
regular and cannot be rendered directly using graphics hard-
ware’s texture mapping capabilities (Figure 1). Instead, a
given AMR hierarchy has to be homogenized, i.e., it has to be
transformed into a set of non-overlapping rectangular grids
with acyclic visibility order for any viewing direction. This
process generally involves removing parts of lower-resolution
grids that are overlayed by higher-resolution grids, and split-
ting of the resulting non-convex grid regions into rectangular
grid patches. Our method uses a tree-based approach, in a
k-d tree covering the entire domain of an AMR data set is re-
fined as AMR grids are inserted one at a time, starting with
lowest-resolution grids. A 2D AMR hierarchy and its homog-
enizing k-d tree are shown in Figure 2.

Once an AMR hierarchy is homogenized, it can be ren-
dered from arbitrary viewpoints by sorting all grid patches
on-the-fly in back-to-front visibility order. All grid patches are
rendered independently into the same color buffer using α-
blending, performing implicit compositing of partial rendering
results. For parallel rendering on n nodes, the sorted list of
grid patches is “chopped” into n sequences of approximately
equal rendering cost (rendering cost is estimated during k-d
tree traversal). The sequences are then assigned to render-
ing nodes. This step is performed on all nodes in parallel
and does not require communication between nodes. Each
node renders its sequence of patches into its own color buffer.
When rendering is done, nodes exchange color buffers to
composite a complete rendering. Since the rendering bot-
tleneck is grid patch rendering, and compositing itself is per-
formed in hardware, a simple binary tree compositing strat-
egy is sufficient; it could be replaced with a binary-swap com-
positing strategy should the need arise—the rendering algo-
rithm is independent from the choice of compositing strategy.

The portal-version of the parallel renderer currently runs
on an SGI Onyx2 using two CPUs and two Infinite Real-
ity 2 graphics pipes. This system will be replaced with an
SGI Onyx3400 with two IR4 graphics pipes. A software-only,

Figure 1: Volume rendering of the argon bubble with superimposed
AMR grid hierarchy.

(a) (b)

Figure 2: Homogenizing a 2D AMR hierarchy. The hierarchy has
a uniform refinement ratio of two. Grid boundaries are denoted
by bold lines. All hierarchy levels consist of two grids. Note that
finer grids can cross boundaries between coarser grids. (a) Original
AMR hierarchy with overlapping grids. (b) Homogenized hierar-
chy with non-overlapping rectangular grid patches.

parallel renderer can also be used on cluster or distributed-
memory architectures. At UC Davis, the renderer runs on
two Linux clusters (with four and 16 nodes, respectively)
using NVidia GeForce3 graphics cards for rendering and
100 BaseT ethernet for inter-node communication. More in-
formation is provided in [1].
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cess, and store sessions. When a client connects, a new session—
identified by a temporary cookie—is created in addition to servlet-
persistent objects such as the VisualizationSession instance. When-
ever a user interacts with the generated HTML interface—the
AMRWebSheet—HTTP requests are communicated to the interface
servlet indicating that the behavior fired. This request in turn mod-
ifies the visualization session state. When the client needs to be
updated—e.g., after result generation—a server-initiated refresh is
performed to display the new information. Finally, when a session
terminates or expires due to inactivity, the session results are en-
coded as an XML document on the web application server for later
retrieval as described previously.

The web application server handles all communication between
the AMR volume renderer and the AMRWebSheet. When the
AMRWebSheet requests a result, a VisualizationTransformation in-
stance on the web application requests the corresponding result
from the volume rendering server. This communication is enabled
by a pure Python implementation of the AMR volume renderer’s
client-server protocol. When the corresponding result is returned
by the volume renderer, a copy is stored by the web application in
order to store the visualization session result. This result is then

displayed by forcing a refresh on the client’s web browser.
Access to the visualization interface is handled by the en-

compassing VisPortal. The VisPortal provides a single point
of access to launch and control all of the components of this
distributed tool. The architecture of the VisPortal is based
on the Grid Portal Development Kit (GPDK, http://www-
itg.lbl.gov/grid/projects/GPDK/) that uses the Java Com-
modity Grid (CoG) toolkit (http://www.globus.org/cog/java/)
in conjunction with an Open Source Java Server Pages ap-
plication server (Tomcat: http://jakarta.apache.org/tomcat/).
Users authenticate to the portal using the MyProxyServer
(http://www.ncsa.uiuc.edu/Divisions/ACES/MyProxy/) to supply
their X.509 delegated credentials in a secure fashion.

The Grid Security Infrastructure (GSI) X.509 credentials make
it possible for the portal application server to transfer files, launch
jobs, and otherwise access any Globus grid services on remote hosts
on the user’s behalf using only a single login. From the stand-
point of the user, the portal hides a complex application launch-
ing mechanism for a multi-component distributed application. In
the case of a thin-client application, the portal launches a paral-
lel computing component using the Globus GRAM, brokers a di-



Class Purpose
VisualizationSession Stores visualization session results. Updates all views when a new result is generated.

VisualizationSessionResult Represents a single visualization result.

VisualizationTransform Describes how the visualization is performed. Possesses a signature identifying the parameter and
results type used in the transformation. Also responsible for rendering results.

VisualizationParameterType Parameter type for a visualization transform, e.g. a colormap.

VisualizationParameterValue Particular value for a parameter, e.g. a rainbow colormap.

VisualizationResultType Class representing the actual type of a result, e.g. a raster image or geometry.

VisualizationResultValue Particular value for a result, e.g. an empty image.

Derivation Represents information describing how a parameter was derived using the parameter calculus.

VisualizationView A UI and UI toolkit-independent class representing behaviors common to all visualization UIs.

VisualizationSheetView The UI and UI toolkit-independent class describing the behavior of the VisSheet.

VisualizationSheetState Encapsulates VisSheet specific state not shared by the visualization session, e.g. currently displayed
rows and columns.

Table 1: A summary of the classes in the visualization exploration and encapsulation framework.

rect socket connection between this computing component and a
high-performance back-end data source like a running simulation
code. It then launches the thin-client through the web-browser
using appropriate MIME-type definitions. The thin-client in turn
connects back to the remotely located parallel visualization compo-
nent, thereby completing the distributed visualization application.
This entire elaborate launching procedure is hidden entirely from
the user by the portal client interface. The user simply selects re-
motely located data and presses a button to start the visualization
application.

The AMRWebSheet supports an even simpler launching mech-
anism whereby the back-end is simply started using the GRAM
on the resource that contains the data set. The back-end connects
directly to the Python visualization web application. The server
makes requests of the back-end and then formats the output images
appropriately for the HTML interface presented in the user’s web-
browser. If the data set is located on a Silicon Graphics machine
, the back-end can employ hardware-assisted off-screen rendering
using Infinite Reality Engine pipes. If the host is a cluster or dis-
tributed memory computing architecture, it can employ the parallel
software rendering back-end. Again, the complexity of grid archi-
tecture and distributed applications is hidden from the user by the
portal client interface.

Usage Scenario

To demonstrate the VisPortal/AMRWebSheet concepts, we present
a typical scenario. In our example, a scientist at LBNL named Al-
ice decides to visualize results from a shock refraction and mix-
ing computational fluid dynamics (CFD) simulation. The data set
shows the time evolution of an argon bubble after being disturbed
by a shock wave. The bubble moves steadily from one side of the
volume used for the simulation to the other while deforming. The
user is interested in a particular time-step in the later stages of the
simulation; the data set is located on the LBNL intranet and is ac-
cessible over the Grid.

Alice first enters the VisPortal URL into her web browser. Af-
ter logging onto the system, the scientist uses the portal’s access
to the Grid to transfer the argon bubble data set from its original
location to the AMR volume renderer server. Since Alice’s virtual

organization allows her to access the AMR renderer via the Grid,
this transfer is authenticated. Alice then requests a new visualiza-
tion session from the portal. Again, Alice’s credentials are verified,
this time confirming that she can access the visualization service;
all of the authentication occurs behind-the-scenes. Once the ver-
ification is complete, the portal transfers the authentication to the
visualization web application.

Upon initialization, the web application determines whether Al-
ice desires to start a new visualization or view/expand an older ses-
sion. In this scenario, she starts a new visualization session. After
specifying an initial data set, the AMRWebSheet page is loaded in
Alice’s browser, a few results already generated from the default pa-
rameter values the AMRWebSheet uses. She then explores the data
via the web-page interface until she is satisfied with the results. At
this point, Alice terminates the visualization session and exits the
portal. When Alice exits, the visualization session is automatically
recorded by the system.

At some later date, a colleague of Alice named Bob wishes to
verify the results generated during the visualization; Bob is also
part of Alice’s virtual organization. Like Alice, Bob logs on to the
VisPortal. Unlike Alice, Bob requests to view a previous visualiza-
tion session instead of starting a new one. The visualization web
application presents Bob with a list of sessions from which he can
choose. Bob first chooses to examine an overview graph of the vi-
sualization session (Figure 3). After familiarizing himself with the
visualization results, Bob loads the HTML session document (Fig-
ure 4). Bob then annotates a few results of interest and exits the
system. As with the original session, the visualization web appli-
cation stores Bob’s annotations automatically when he exits. Later,
Alice can reload the session, view Bob’s comments, and perhaps
add some comments of her own. The portal allows these scientists
to focus on using their data, not managing it.

Conclusions and Future Work

Our VisPortal project provides uniform, centralized access to grid-
enabled resources world-wide. We have described an entirely web-
based UI for exploring data created using the portal. The interface
is coupled with a web application for recording and managing vi-
sualization results. Combined, these tools provide a platform for



Figure 3: Parameter different session graph for the session in Figure
1. Edges indicate that only one parameter value differs between
the two resulting images. Session graphs provide an overview of
different information about the visualization session.

universally accessible visual exploration of scientific data over the
Grid.

Scientists benefit in several ways by using the portal and the
AMRWebSheet. The portal and the AMRWebSheet are based on
standard HTML; scientists using web browsers from any location
can generate and explore their data. The visualization environment
structures the visual investigation of the data, preventing costly re-
exploration. Remote collaborators can access these explorations on
the portal to validate their colleagues’ results. Since entire visu-
alization sessions are captured, previous sessions are a launching
point for further data exploration. The AMRWebSheet is a Grid
application that makes visualization easy to access and utilize by
scientists.

The work described here represents one aspect of the VisPortal
project. Three areas are under active development: the underly-
ing portal application server, the visual exploration tools available,
and the management of visualization sessions. For the application
server, current work focuses on improving its low-level implemen-
tation and the connection between GPDK and the various CoGs.
This work includes adding support for a Python CoG for easier in-
tegration of the visualization exploration and encapsulation frame-
work with the Grid. Finally, integration of a database management
system (DBMS) with the application server is underway. Once
complete, authentication, session management, and resource allo-
cation will utilize the DBMS to record portal-wide usage behavior.

The AMRWebSheet is only one of several visualization UIs
planned for the VisPortal. Visapult, a visualization system that
uses both client and server resources to perform interactive visu-
alization [3], has already been integrated with an earlier version
of the portal. Alternate web-based VisSheet implementations are
also being investigated. For example, a VisSheet-like interface for

Figure 4: HTML session page for the session in Figure 1. The page
provides a summary of the visualization session and supports the
annotation of results.

visualizations using the Visualization Toolkit (VTK) would vastly
increase the potential number of visualization applications used by
scientists interacting with the portal. Additionally, we are inter-
ested in utilizing more grid resources for the visualization. The
interface should allow access to visualization resources, numeric
and statistical analysis codes, and other related services; the Grid
would then transparently manage the resource discovery, process
allocation, and data transport between these services.

The web application server currently encapsulates the visualiza-
tion session from the AMRWebSheet. Though previous sessions
are stored, more information stored within these sessions can be
exploited. For example, when the same result is rendered in two
different visualization sessions, this result and its corresponding p-
set are stored multiple times on the server. By integrating the ses-
sion information management with the planned application server
DBMS, this redundant storage is eliminated. In addition, storing
visualization session information in a DBMS allows the session to
be used by different portal applications. Potentially, this session in-
formation, combined with other portal usage information stored by
the DBMS, can be analyzed and visualized by the portal designers
to better understand how scientists are utilizing the system. This
understanding can then lead to future improvements of the portal
and its applications for grid-based visual data exploration.
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