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Rapid Discrimination Among 
Putative Mechanistic Models of 
Biochemical Systems
Jason G. Lomnitz1 & Michael A. Savageau1,2

An overarching goal in molecular biology is to gain an understanding of the mechanistic basis 
underlying biochemical systems. Success is critical if we are to predict effectively the outcome of drug 
treatments and the development of abnormal phenotypes. However, data from most experimental 
studies is typically noisy and sparse. This allows multiple potential mechanisms to account for 
experimental observations, and often devising experiments to test each is not feasible. Here, we 
introduce a novel strategy that discriminates among putative models based on their repertoire of 
qualitatively distinct phenotypes, without relying on knowledge of specific values for rate constants and 
binding constants. As an illustration, we apply this strategy to two synthetic gene circuits exhibiting 
anomalous behaviors. Our results show that the conventional models, based on their well-characterized 
components, cannot account for the experimental observations. We examine a total of 40 alternative 
hypotheses and show that only 5 have the potential to reproduce the experimental data, and one can 
do so with biologically relevant parameter values.

An important subclass of biological systems is concerned with making logical decisions from a number of input 
signals. Such systems play important roles in diverse cellular processes that span multiple levels of biological 
organization. For example, the underlying strategy for much current research in stem cell biology is an attempt to 
identify the relevant input signals and the mechanisms by which they are processed to produce a reliable outcome, 
often one of two different cell fates at any given stage1. The process of lineage stratification, as in hematopoiesis, 
often follows a series of logical decision-making steps involving different morphogen signals2. At the transcrip-
tional level, genes are regulated by complex mechanisms that involve many different factors to ensure that tran-
scription only occurs under carefully controlled conditions. The classic example is catabolite repression of the lac 
operon, where the cis-regulatory control element achieves maximal promoter activity only when both allolactose 
and cAMP concentrations are high, effectively operating as an AND logic gate3.

The task of understanding the mechanistic basis underlying complex biological phenomena is challenging, and 
often involves different strategies that include designing specific experiments, analyzing large amounts of data and 
developing mathematical models. One promising strategy to gain insight into the operation of natural systems 
involves the use of small synthetic constructs that capture the essential interactions4,5. For example, synthetic 
biology has been used extensively to understand genetic regulatory circuits that implement a binary logic-gate6–9. 
However, as systems become complex, conceptual models and intuitive approaches to uncover their implications 
are no longer adequate, and it becomes necessary to formulate mathematical models and apply more rigorous 
methods. This is most apparent in the context of synthetic constructs that exhibit unexpected results and yet they 
consist of small numbers of components that are typically among the best studied in all of biology7,9. The problem 
is compounded if the available data are sparse, as is most often the case. As a result, there are potentially many 
models that might account for the observations, and our ability to discriminate among the models is limited.

Testing numerous putative hypotheses experimentally can be difficult and time consuming. Mathematical 
modeling provides an alternative approach for rapid elimination of hypotheses with serious but often subtle 
inconsistencies. Conventional modeling strategies involve fitting data in order to estimate parameter values and 
validating mechanistic models against a set of independent measurements [e.g. ref. 10]. However, the parameters 
of complex kinetic models are difficult to estimate, and this approach cannot determine if a behavior is possible 
in a manner that is independent of parameter values.
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Here, we present a novel strategy aimed at overcoming this challenge; it consists of three phases: (1) an inno-
vative model-independent phase that rigorously characterizes experimental data, (2) a model-dependent phase 
that automatically identifies the repertoire of model phenotypes, and (3) a model-discrimination phase that sys-
tematically compares the results of the previous phases. The methods are first presented in detail using a simple 
well-characterized system, the lac operon of Escherichia coli, to facilitate the introduction.

We then illustrate this strategy with an application to published examples of synthetic gene constructs that 
exhibit unexpected results7, and demonstrate that the conventional models are unable to exhibit specific exper-
imental observations, regardless of parameter values. We propose a series of hypotheses with the potential to 
resolve the discrepancies between model phenotypes, as defined rigorously within the System Design Space 
method11,12, and experimental data. Our analysis identifies 5 out of 40 hypotheses that can account for the qualita-
tive nature of the experimental observations. Thus, given experimental results consisting of discrete observations 
and a set of mechanistic models based on biochemical kinetics, our strategy determines whether the models are 
consistent or inconsistent with the experimental data.

Three-Phase Strategy for Model Discrimination
The process of model discrimination requires comparing model behavior against experimental data. Our strategy, 
outlined in Fig. 1, involves three phases: analyzing landscapes that realize discrete experimental data to identify 
their essential landmarks, analyzing quantitative models to identify their repertoire of qualitatively distinct phe-
notypes, and reconciling landmarks and phenotypes to discriminate among alternative models (hypotheses). 
The first is a model-independent phase that is concerned only with characterizing discrete experimental obser-
vations. The second is a model-dependent phase that is concerned only with model architecture and parameter 
values. We have previously defined the architecture of a model as the collection of attributes that remain fixed 
independent of specific values for the parameters that characterize a particular instance12. Important architectural 
features include (a) the network topology of interactions, (b) the signs of the interactions, and (c) the number of 
binding sites involved in the interactions. The third is a model-discrimination Phase in which a specific model 
architecture serves as the basis for our mathematical representation of a hypothesis concerning the experimental 
data. We test hypotheses at two levels: (1) the architectural level, defined purely by the model’s architecture, and 
(2) the biological level, defined by parameter values restricted to a range about their experimentally measured or 
estimated value.

Figure 1.  A flowchart illustrating the major steps in the strategy for model discrimination. The three 
phases of the method are highlighted by different colors. Discrimination at the level of model architecture is 
determined without parameter values. Discrimination at the biological level is determined in the same way as 
at the architectural level but with the imposition of bounds on the values for the parameters such that they are 
biologically relevant.
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In the following subsections we will describe each phase of this three-part strategy using a simple example 
involving AND binary logic to illustrate the more general abstract concepts.

Model-Independent Phase.  It is a fundamental challenge to determine whether or not a model can repro-
duce an experimental result13–16. The first step involves identifying the characteristics of the observed data and 
describing the data in a manner that is rigorous and without ambiguities. The aim of the model-independent 
phase is to provide such a description, regardless of the mechanism that may be responsible for producing it.

To achieve this, we identify continuous underlying functions that can generate the observed data and identify 
key landmarks within these functions that may be used for comparison with mathematical models. However, 
there is a significant challenge that must be overcome: the number of continuous functions capable of generating 
the observed data can be large to infinite. Our solution is to identify a reduced set of continuous functions, which 
are analogous to a basis set, that are capable of generating all other functions that can account for the observed 
data. To make this approach clearer, we introduce the following concepts that are defined below: (1) landscape, (2) 
feature, (3) local coupling, (4) landmark, and (5) basic landmark.

To facilitate introduction of the more abstract concepts, we use an AND binary logic gate as a concrete exam-
ple. The AND gate is a function of two input signals and one output signal; when both input signals are high  
(+​/+​) the output signal is ‘ON’, and for all remaining combinations of the input signals (+​/−​, −​/+​ and −​/−​) 
the output signal is ‘OFF’. An example of an AND logic function is shown in Fig. 2a. The AND gate can be clearly 
defined as having a higher value for the output signal when both input signals are high compared to the remaining 
combinations of the input signals.

Landscape.  A landscape is defined as the discretized global topography in a multi-dimensional space relating 
outputs to inputs in a steady- or quasi-steady-state experiment; this definition is independent of any assumed 
mechanism, and thus is independent of any hypothesis. The landscapes that realize an AND gate with one output 
and two inputs are defined by having specific output states at four discrete points within a two-dimensional space 
(Fig. 2).

Feature.  A feature is defined as a local surface or facet within a landscape, again without reference to any 
assumed mechanism. Features are characterized not only by their location within a landscape but also, equally 
important, by their gradients relating changes in outputs to changes in the inputs. Three features are evident in the 
landscape of Fig. 2b, whereas there are many present in the more complex landscape of Fig. 2c.

In addition, we impose a convexity requirement: a feature must be valid within a convex polytope in the 
logarithmic space of the input variables. This requirement is imposed to facilitate the comparison between the 
model-independent and the model-dependent phases, as will be shown in the Model-Discrimination Phase. We 
can also impose this restriction on non-convex subspaces by simply decomposing the subspace into a series of 
convex subspaces.

Local coupling.  A local coupling is defined as one dimension of the multi-dimensional gradient within a feature. 
This is simply a descriptive aspect of the feature and makes no assumptions about underlying mechanism. The 
changes observed at the landscape level typically occur through continuous transitions involving distinct local 
couplings within its features. In the case of an AND gate, we are interested in the change of output as a function of 
the two inputs. An input and output are directly coupled if an increase (decrease) in the input signal results in an 
increase (decrease) in the output. An input and output are uncoupled if an increase (decrease) in the input signal 
produces no change in the output. Finally, an input and output are inversely coupled if an increase (decrease) in 
the input signal results in a decrease (increase) in the output.

Landmark.  A landmark is defined as a contiguous assemblage of multiple features found within a landscape. 
Examples of different landmarks can be found in the AND landscapes of Fig. 2. Figure 2b exhibits a single land-
mark (a peak with alluvial fan) consisting of three features. Figure 2c is an example of a more complex land-
scape with several landmarks (a peak, a valley, and a ridge with alluvial fans), each with a number of features as 
described in the legend. If there were only a single landmark with a single feature that could realize the discrete 
data of an AND gate, then discriminating among hypotheses would be relatively easy. However, there are multiple 
landmarks that can realize the discrete data of an AND gate; in fact, the number is potentially infinite.

How can we positively discriminate among hypotheses if there are an infinite number of alternative landmarks 
that can produce a particular experimental result? A solution to this problem involves identifying a subset of 
simplified landmarks that can serve as a basis for constructing more complex landmarks. By analogy, a Fourier 
series involving combinations of sine and cosine functions with different phases and amplitudes can represent 
any periodic function; a linear combination of basis vectors with different magnitudes can represent any vector 
in a given coordinate system. To represent the infinite set of landmarks in terms of a finite set of basic landmarks, 
we apply similar principles.

Basic landmark.  We define a basic landmark as a landmark that cannot be decomposed further without losing 
its ability to realize the discrete experimental data. To identify basic landmarks, we decompose the set of complex 
landmarks into their constitutive features; then, we ask the following question: can a feature be removed such that 
the remaining features can be reorganized to produce a set of simpler landmarks that still reproduce the experi-
mental observations? If the answer to this question is yes for any of the features that are removed, then the original 
landmark having such a feature is a non-basic landmark. Alternatively, if the answer is no for all the features of a 
given landmark, then it has only essential features and is irreducible; hence, it is a basic landmark.
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Figure 2.  Discrete experimental data representing an AND logic function and two examples with different 
landscapes that realize the same experimental data. The x- and y-axes represent the concentration of the 
first and second input variables in logarithmic coordinates, respectively. The z-axis represents the state of 
the output variable in logarithmic coordinates relative to an arbitrary threshold. Output values represented 
in brown or white colors correspond to values above the threshold, while all other colors are below the 
threshold. (a) Discrete experimental data representing an AND logic function at discrete input values, where 
‘−​’ represents a low input value and ‘+​’ represents a high input value; gray color corresponds to unknown 
output values. (b,c) two landscapes with different landmarks representing continuous mappings that realize 
the AND logic function, the ‘−​’ and the ‘+​’ input values correspond to those in panel (a). (b) Landscape 
exhibiting the following features: a peak value at the +​/+​ state having a monotonic decrease in output with each 
input separately and with the two inputs simultaneously until the three low states are achieved. (c) Landscape 
exhibiting the following features: a peak value at the +​/+​ state having a monotonic decrease in output with each 
input separately until a low valley is reached. On the other side of the valley, the output increases monotonically 
with each input separately and with the two inputs simultaneously until a ridge is reached at intermediate values 
of the output. Beyond the ridge, the output decreases monotonically toward each of the three low states.
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This reduction of landmarks to basic landmarks can be done iteratively by removing features until all remain-
ing features are essential for reproducing the experimental observations. The complete set of basic landmarks for 
the realization of the experimental data together have all the features required of any landscape that reproduces 
the experimental observations. An example of a landscape with several landmarks and their decomposition into 
two basic landmarks for the AND gate is shown in Fig. 3.

Identifying sets of necessary local couplings.  If all the basic landmarks necessary to reproduce the experimental 
observations have been identified, then the local couplings that are necessary also have been identified. Therefore, 
a model that cannot exhibit the local couplings for at least one of the basic landmarks cannot reproduce the exper-
imental observations. It can be proved mathematically that the AND gate, with landmarks having strictly stable 
features, has only five basic landmarks [demonstrated in Appendix], shown in Fig. 4.

The set of five basic landmarks for the AND gate consists of one with a single feature and four with two fea-
tures; in each case the features have a unique subset of local couplings. A particularly interesting basic landmark is 
shown in Fig. 4a, where the entire input variable space is a single feature. This implies that the feature in this basic 
landmark and its corresponding local coupling are able to represent the experimental data. The local coupling is a 
direct coupling between the two inputs and the output: if either input increases, the output also increases. Given 
this local coupling, a threshold value can be chosen such that the output will be above the threshold only when 
both inputs are high. Therefore, this local coupling is sufficient – at some scale – to represent the AND gate.

The remaining basic landmarks require at least two features with the following couplings: (1) the output is 
directly coupled to the first input and either inversely coupled or uncoupled to the second input, and (2) it is 
directly coupled to the second input and either inversely coupled or uncoupled to the first input. A graphical sum-
mary of the necessary local couplings for each of the basic landmarks is shown in the rightmost panels of Fig. 4.

These couplings are in general nonlinear, representing products and powers. Hence, they only appear to be 
linear because they are depicted in logarithmic coordinates. Thus, the output could be a steep nonlinear func-
tion of the inputs with a large Hill number. Moreover, the transition between the discrete data points observed 
experimentally need not involve graded incremental changes even if the underlying function is continuous. By 
continuing the analogy with geological landscapes, there may be a cliff that overhangs, and going over results in a 
precipitous drop to a new state. This is equivalent to a bifurcation where there is a transition involving an unstable 
state. We can extend the set of basic landmarks to include all those that traverse through regions of multi-stability 
involving a combination of stable and unstable features. We find that for each basic landmark involving stable 
features there is a corresponding basic landmark involving equivalent unstable features, as shown in Figure S1. 
In addition, for each basic landmark that involves 2 stable or 2 unstable features there is a basic landmark that 
involves one stable and one unstable feature. An example of two basic landmarks involving one stable and one 
unstable feature is shown in Figure S2. Taken together we find a total of 18 basic landmarks for an AND binary 
logic gate.

These results can be used to test multiple hypothesized mechanisms for their potential to realize an AND gate 
function, as we will show in the Model-Discrimination Phase. All other binary logic gate functions can be ana-
lyzed in the same way, and similar combinations of necessary local couplings can be identified.

Model-Dependent Phase.  The model-dependent phase is concerned with a quantitative description of 
a given model and the systematic deconstruction of its behavior into qualitatively-distinct phenotypes. This 
description is purely a function of the mechanisms proposed, and not a function of the discrete data observed 
experimentally. This description is obtained following a series of steps: (1) the model is described mathemati-
cally by a system of ordinary differential equations based on the underlying chemical and biochemical kinetics;  
(2) the model’s repertoire of qualitatively-distinct phenotypes is automatically identified using System Design 
Space methodology12; and (3) the local coupling is identified for each of its realizable phenotypes.

The computational workflow is as follows. (a) The mathematical model is recast exactly into the Generalized 
Mass Action (GMA) representation within the power-law formalism17. (b) The recast equations are used to con-
struct all possible combinations of dominant sub-systems (S-Systems). (c) The steady-state solution for each 
dominant S-System is determined in logarithmic space (linear systems analysis). (d) The dominance conditions 
and the steady-state solution are combined to construct the boundary equations for each dominant S-System.  
(e) The region in parameter space determined by the boundary equations is tested for feasibility by using lin-
ear programming methodologies18,19. (f ) If an S-System’s region is feasible, its local coupling is calculated 
using standard S-System analysis20, and it is added to the phenotypic repertoire in System Design Space. The 
model-dependent phase involves standard analysis using the System Design Space methodology that has been 
described in the literature11,12,21,22. Computations are carried out using open-source software tools23 based on an 
extension of the Design Space Toolbox in Matlab®​21.

Quantitative mathematical models.  In the context of biological systems composed of gene circuits, signal trans-
duction cascades and biochemical networks, one typically starts with a conceptual model of the processes that 
bring about some observable or desired behavior. To analyze conceptual models we rely primarily on intuition 
and from these systems we obtain a qualitative understanding of the underlying phenomena. However, biological 
systems have nonlinear processes that are responsible for the emergence of complex phenotypes for which an 
intuitive level of understanding is inadequate; therefore, it becomes necessary to formulate mathematical models 
and apply rigorous quantitative methods to further understand these systems.

Our three-part strategy focuses on discriminating among hypotheses based on their inability to generate 
specific phenotypes. This class of systems involves mechanisms that are ultimately governed by chemical kinet-
ics plus constraints. Therefore, the rates of synthesis and loss of biochemical species are typically described by 
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deterministic rate laws, and mathematical models of these mechanisms are then integrated into systems of non-
linear differential (or differential algebraic) equations in the power-law formalism17.

Figure 3.  Decomposition of a landscape into unique basic landmarks. Panels on the left represent landscapes 
with the output value on the z-axis; brown and white colors represent values that are above the threshold, while 
all other colors represent values that are below the threshold. Panels on the right represent the deconstruction 
of the landscapes into landmarks with features represented by different colors as indicated by the key at the 
bottom: purple color represents direct coupling with input 1; orange represents direct coupling with input 2; 
blue represents direct coupling with both inputs. (a,b) Example of the deconstruction for a particular landscape 
reproducing an AND binary function into landmarks with various features. (c,d) Example of a basic landmark 
obtained by eliminating the white, red, yellow, green, purple and orange features of the non-basic landmarks 
in panel (b). (e–f) Example of a basic landmark obtained by eliminating the white, red, yellow, green and blue 
features of the non-basic landmarks in panel (b).
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Figure 4.  Basic landmarks, features and local couplings for the AND logic function. Left panels: Basic 
landmarks with the output value on the z-axis. The ‘−​’ and ‘+​’ symbols on the axes correspond to the low and 
high values of the experimental inputs, respectively. Center panels: Features on the z-axis corresponding to the 
panels on the left. Right panels: Local couplings between input and output are inversely coupled ↘​, uncoupled 
→​, and directly coupled ↗. Colored squares indicate the local couplings in the basic landmark as shown by the 
key in Fig. 3; gray squares represent local couplings that are not present in the basic landmark.
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A quantitative model for the transcriptional control of the lacZYA operon of E. coli will provide an illustration. 
This system has been shown to realize an AND logic function; thus, it will serve in the model-dependent phase 
as the counterpart of the example used in the model-independent phase of our strategy. This example has been 
selected because it is well established, it is simple enough for our intuition to be adequate, and there are experi-
mental results that have already validated the model.

Setty et al.3 have shown that control of the lacZYA operon acts as an AND gate in which the two small mol-
ecule inducers cAMP and IPTG are the input signals and gene expression is the output signal. The currently 
accepted model for this control mechanism involves an upstream cis-regulatory region with binding sites for both 
cAMP Regulatory Protein (CRP) and lac repressor (LacI). CRP becomes active in the presence of cAMP and LacI 
becomes inactive in the presence of IPTG. The operon has a weak promoter that does not significantly initiate 
transcription unless CRP is present. However, if LacI is bound then transcription initiation is repressed even in 
the presence of CRP. Therefore, transcription initiation only occurs at a significant rate if both cAMP concentra-
tion is high, which results in CRP activation, and IPTG concentration is high, which results in LacI derepression, 
as shown schematically in Fig. 5a.

A mathematical model for promoter activity of the lacZYA operon can be readily formulated. Here, we use the 
existing model of Setty et al.3.
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where X1 represents the concentration of lacZYA mRNA, α1 the basal rate of transcription, and β1 the rate con-
stant for mRNA loss by inactivation/dilution. The output is identified with X1, and the inputs with XA, the con-
centration of cAMP, and XR, the concentration of IPTG. The following parameters associated with the activator, 
CRP, and the repressor, LacI, have subscripts A and R, respectively: Vi is the maximum rate of inducer-protein 
binding, ρi >​ 1 is the maximum capacity for regulation, and Ki the inducer concentration for half-maximal rate 
of inducer-regulator binding. It is important to stress that validation of this model has been achieved by deter-
mining specific values of the parameters that reproduce experimental results for the natural system. Here, we will 
provide a validation of this mathematical model as an AND gate in a manner that is exhaustive and independent 
of parameter values.

Deconstructing the model into sub-models with qualitatively distinct phenotypes.  Models of genetic circuits, signal 
transduction cascades, and biochemical networks that adhere to chemical and biochemical kinetics can be recast 
exactly into the GMA form and analyzed analytically as well as computationally using the System Design Space 
methodology. A detailed mathematical treatment of the Design Space methodology is provided in the litera-
ture11,21,22. This methodology has been instrumental in elucidating the design principles of several natural systems 
(e.g. refs 24–28) and synthetic constructs (e.g. refs 5,12), and it is a critical component of our three-part strategy. 
It provides a mathematically rigorous definition of phenotype11,12 based on dominant processes operating within 
the integrated system. Having this definition allows for the deconstruction of complex systems into tractable 
sub-systems with qualitatively distinct phenotypes that are parallel to local couplings and features described in the 
Model-Independent Phase.

Here, we focus on two critical properties of the System Design Space methodology that will be essential for 
linking the Model-Dependent Phase and Model-Independent phase of our overall strategy. First, the System 
Design Space method decomposes a complex nonlinear system into tractable nonlinear sub-systems in the 

Figure 5.  Control of lacZ transcription as an AND logic function. (a) Conceptual model representing control 
of lacZ by CRP activation and LacI repression. Barbed arrows represent a positive influence and blunt arrows 
represent a negative influence. (b) Local couplings of the mathematical model for control of lacZ transcription 
in Eq. (1). All the valid combinations of logarithmic gains in the phenotypic repertoire are represented as circles 
in this map. The color indicates the coupling that corresponds to those in the coupling key at the bottom of 
Fig. 3.
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S-system form. Although the original system has a potentially infinite number of phenotypes, the System Design 
Space identifies a finite number of qualitatively-distinct phenotypes. Second, the method partitions logarithmic 
space into a space-filling set of N-dimensional convex polytopes, where N is the number of parameters and inde-
pendent variables of the system. Each convex polytope defines the region within which a particular sub-system is 
a valid representation of the original system. Thus, each qualitatively-distinct phenotype has hyperplane bound-
aries in logarithmic space that are determined by solving a linear programming problem, which is a simple task 
amenable to well-known methods18,19. The collection of qualitatively-distinct phenotypes in System Design Space 
defines the phenotypic repertoire of the system; thus, this decomposition provides a tractable global characteriza-
tion of the system11.

The first step in deconstructing the model in Eq. (1) is to recast it into the GMA form by defining auxiliary 
variables11,12,22. There are several ways to accomplish this, but a particularly simple way when dealing with rational 
functions is to define each denominator as a new variable. Let the complicated denominator be X2 and the two 
simpler denominators be X3 and X4. The result is the following set of differential algebraic equations in the GMA 
form.

α α ρ α ρ β= + + −− − − − − −dX
dt
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This system may now be analyzed using the System Design Space methodology. Inspection of Eqs (2–5) 
reveals that there are 3 possible dominant terms of a given sign in Eq. (2), 3 in Eq. (3), 2 in Eq. (4), and 2 in Eq. (5). 
Together, it yields a total of 36 possible combinations of dominant terms. However, not all combinations are valid 
and thus we apply linear programming techniques to determine those that are feasible and correspond to quali-
tatively distinct phenotypes somewhere in parameter space. Analysis of the recast system in Eqs (2–5) yields the 
phenotypic repertoire of the system, which involves 19 qualitatively distinct phenotypes.

Local coupling in the phenotypic repertoire.  The phenotypic repertoire of the system is a collection of dominant 
subsystems represented by S-system equations. These S-system equations are nonlinear yet they are analytically 
tractable for determining properties such as steady-state concentrations and fluxes, logarithmic gain factors for 
signal propagation, parameter sensitivities for local robustness, amongst many others11,20,21,29. In the context of 
this paper, we deal with changes in the output signal as a function of the input signals and hence the local cou-
plings of interest are the logarithmic gains20. The logarithmic gain is defined as the percentage change in an output 
variable with respect to the percentage change in steady state of an input variable, with other input variables held 
constant,

=
∂
∂

L X X X
X

( , ) log
log (6)out in

out

in

S-system models have logarithmic gains that are solely a function of the kinetic orders and, since these are 
chemical parameters with fixed values in the rational functions of biochemical kinetics and hence are architec-
tural features of any model, logarithmic gains are constants that define linear gradients in logarithmic space 
throughout an entire phenotypic region. The qualitative values of the logarithmic gains represent the three possi-
bilities for coupling between an input and output: directly coupled L >​ 0, inversely coupled L <​ 0, and uncoupled 
L =​ 0. For the specific case of two inputs and a single output there are two logarithmic gains, and the relevant local 
coupling will have one of 3 ×​ 3 =​ 9 possible values.

As we described in the Model-Independent Phase, the stability of the fixed points is also important and must 
also be considered in the Model-Dependent Phase. As was the case with the logarithmic gains, S-System models 
have exponential instabilities that are solely a function of the kinetic orders (where the S-System has one eigen-
value with positive real part). Thus, if an S-System model has one eigenvalue with positive real part, its value is 
constant and the phenotype is exponentially unstable throughout the entire phenotypic region.

The logarithmic gains for a particular phenotype of the system can be represented as a dot in a two dimen-
sional plot, where the x-axis is the logarithmic gain of the output with respect to the first input signal, and the 
y-axis is the logarithmic gain of the output with respect to the second input signal. A scatter plot represents the set 
of local couplings of the entire phenotypic repertoire, where each phenotype of the system is represented with a 
dot in this two-dimensional space. The stability of a phenotype is represented by the shape of the dot (e.g., circles 
represent stable phenotypes; pentagons represent unstable phenotypes).

In the previous section we identified a total of 19 valid phenotypes for the model of lacZYA transcription, 
and we can represent each phenotype by a point in the scatter plot of log-gains as shown in Fig. 5b, where the 
output signal is lacZYA mRNA levels, and the input signals are concentrations of cAMP and IPTG. The relevant 
phenotypes of the repertoire can be further selected by adding bounds to restrict values of the parameters to bio-
logically relevant ranges. For the scatter plot in Fig. 5b, we have added the architectural constraint on the capacity 
for regulation, given by ρi >​ 1, of both activator and repressor such that the modes of regulation are conserved.
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Model-Discrimination Phase.  The model-discrimination phase involves a direct comparison of the results 
from the model-independent and model-dependent phases using a step-wise series of tests performed at two 
levels, the architectural level and the biological level.

General strategy for model discrimination.  Discrimination at the architectural level involves determining 
whether or not the discrete experimental data are reproduced by a model without imposing constraints on the 
values of its parameters, as long as the system architecture is conserved. In contrast, discrimination at the biolog-
ical level involves determining whether or not the discrete experimental data are reproduced with biologically 
feasible values for its parameters. In the context of our analysis, discrimination at the biological level typically 
involves restricting parameter values to a range about their experimentally measured or estimated values. The 
following step-wise series of tests makes heavy use of our automated System Design Space strategy12 by (a) iden-
tifying a set of parameter values for the realization and characterization of each qualitatively-distinct phenotype, 
(b) identifying an n-dimensional slice of System Design Space that allows simultaneous realization of several 
phenotypes, and (c) identifying an arrangement of phenotypes capable of modeling specific characteristics to 
achieve desired functions (e.g. binary logic functions).

The steps involve determining whether (1) a model has the necessary logarithmic gains consistent with at least 
one set of local couplings necessary to generate a basic landmark for a given set of experimental data; (2) there 
are phenotypes from Step (1) that can be simultaneously realized within a particular slice of Design Space, where 
the slice variables are the input parameters, by applying our automated System Design Space methods12; (3) there 
are simultaneously realized phenotypes from Step (2) that can be arranged to yield the appropriate logic function 
with the appropriate output profile by choosing an arbitrary threshold; and (4) if a hypothesis involves determin-
ing whether models for multiple systems satisfy different sets of observations under the same experimental con-
ditions, we can repeat Step (3) for all systems simultaneously to determine if there is a common set of values for 
the parameters that can explain all logic functions across multiple systems. This 4-step approach can be applied to 
determine whether models have the potential to account for binary logic functions at either the architectural level, 
or at the biological level by choosing to add constraints on the permissible values for the parameters12.

There are several possible outcomes: (1) If the hypothesized model is unable to reproduce the set of local cou-
plings for any of the basic landmarks, then it fails to satisfy the necessary conditions to reproduce the observed 
data; therefore the model is discarded. (2) If the model can reproduce the set of local couplings for at least one 
basic landmark, then it satisfies a necessary condition but sufficiency must still be determined. (3) If the model 
exhibits a local coupling corresponding to a single-feature basic landmark, then the local coupling is capable of 
reproducing the experimental data at some scale and thus is sufficient. (4) If the model exhibits a combination 
of local couplings corresponding to a multi-feature basic landmark (e.g. all but the basic landmarks in Fig. 4a), 
then we must determine whether or not the qualitatively distinct phenotypes with these local couplings can be 
simultaneously realized. Furthermore, we must determine if they are positioned appropriately such that the cor-
rect binary logic function is generated. This task is not trivial given that mechanistic models often involve a large 
number of parameters. However, our System Design Space methods can automatically determine whether a set 
of qualitatively distinct phenotypes can be simultaneously realized in specific arrangements, without sampling 
parameter values12. (5) If a hypothesis satisfies the conditions from the model-dependent phase at the archi-
tectural level, then we can perform all the previous tests at the biological level. (6) If a model has passed these 
tests at the biological level, then we can automatically identify sets of parameter values that generate the desired 
ensembles of phenotypes12.

Model discrimination in the lacZYA case.  The model discrimination phase in this case can be performed through 
direct visual comparison. By revisiting Fig. 5b, we see that all the phenotypes in this model are stable, thus we only 
need to compare the right-most panels of Figs 4 and 5b. The necessary condition states that the local couplings 
of the phenotypic repertoire, shown in Fig. 5b, must be consistent with the local couplings for at least one basic 
landmark associated with the experimental observations, shown in Fig. 4. Inspection of Fig. 5b reveals that the 
phenotypic repertoire has the local couplings required for three basic landmarks identified in Fig. 4a–c. Hence, 
the model satisfies the necessary conditions for the experimental observations.

Although this model exhibits the necessary local coupling for multiple basic landmarks, we will focus on the 
plane discriminator in Fig. 4a, where the output signal is directly coupled to both input signals. Thus, with this 
focus on the plane discriminator, the model satisfies not only necessary but also sufficient conditions at the archi-
tectural level and thus can reproduce the observed experimental data somewhere in parameter space, at some 
scale. Previous analysis of this model had shown that it could reproduce experimental observations exhibiting 
AND logic by providing a direct example with specific parameter values3. Our analysis also has shown that the 
model can reproduce the appropriate experimental observations; however, our analysis has done so in a manner 
that is independent of parameter values. Furthermore, our method can automatically determine sets of parameter 
values that yield the AND logic function, and the parameter values can be constrained to biological ranges12.

Application to Synthetic Constructs Exhibiting Unexpected Behaviors
We illustrate our strategy by focusing on two experimentally synthesized genetic constructs, the D038 and D052 
constructs, reported in the literature7. These constructs involve some of the best-characterized transcriptional 
repressors, LacI, TetR and λ​ CI, coupled to control the expression of a reporter gene, gfp. The promoter elements 
in the D038 and D052 constructs are the same with the exception of the target of LacI.

Conventional Models.  The LacI repressor undergoes a conformational shift when bound to the small 
molecule inducer isopropyl β​-D-1 thiogalactopyranoside (IPTG). Similarly, the TetR repressor undergoes a 
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conformational shift when bound to anhydrotetracycline (aTc). This change in structure reduces the binding 
affinity for specific DNA sequences within the promoter regions of their target genes, thus relieving repression 
and causing an induction of target gene expression30,31. The repressor λ​ CI does not respond to either of these 
gratuitous inducers that constitute the environmental signals used in the reported experiments7. These transcrip-
tional circuits are represented by the diagrams in Fig. 6.

Circuit architecture and expected results.  The transcriptional circuits, represented by the diagrams in Fig. 6, share 
a general topology (an architectural feature) in which the transcriptional repressors are coupled to form a hierar-
chical regulatory cascade involving an inducible primary repressor, an inducible secondary repressor, a tertiary 
repressor, and a reporter protein. The primary repressor protein binds to the promoter region of its own gene and 
that of the gene for the secondary repressor, thus repressing gene expression of both the primary and secondary 
repressors. The secondary repressor binds to the promoter region of the gene for the tertiary repressor to cause 
its repression. The tertiary repressor binds to the promoter region of the gene encoding a fluorescent reporter 
protein, thus repressing gene expression and consequently cell fluorescence.

Circuit architecture.  Although the general topology is the same for both circuits, the primary and secondary 
repressors are switched such that the primary repressor in one circuit is the secondary repressor in the other and 
vice versa. We refer to the individual circuits by their primary repressor; hence, the gene circuit in Fig. 6a is the 
TetR-primary circuit and that in Fig. 6b is the LacI-primary circuit.

Note that the D038 and D052 constructs depicted in Fig. 2 of Guet et al.7 share the same promoters, with 
exception of the lac promoter for which two are shown. However, they also report experimental data showing that 
the qualitative aspects of the D052 construct are the same, regardless of the specific lac promoter used7 Here, we 
assume that the lac promoters are identical, since this represents a more stringent comparison.

Experimental observations.  The binary logic functions reported by Guet et al.7 are ‘fuzzy’ as they depend on 
an arbitrary fluorescence threshold to discriminate between the binary output states. Here, we reevaluate the 
observed fluorescence profiles and focus on the qualitative nature of the results to identify the appropriate binary 
logic functions that will be the focus of our analysis.

The qualitative nature of the published results is as follows. The TetR-primary circuit, shown in Fig. 6a, exhib-
its high fluorescence intensity at a low IPTG and high aTc (−​/+​); background level fluorescence at high IPTG and 
high aTc (+​/+​); and low fluorescence at the remaining conditions (+​/−​ and −​/−​). In contrast, the LacI-primary 
circuit, shown in Fig. 6b, exhibits high fluorescence intensity at low IPTG and low aTc (−​/−​); and background 
level fluorescence intensity at all other experimental conditions (+​/−​, −​/+​, +​/+​) [data reported from Fig. 6A in 
Guet et al.7]. The reported result for the TetR-primary circuit is a conditional “aTc AND NOT IPTG”, also known 
as a NIF1, binary logic function. A fluorescence intensity threshold can be chosen such that the conditional logic 
function is produced; however, an alternative threshold can be chosen such that the construct exhibits a NOT 

Figure 6.  Conceptual models for experimental constructs consisting of a three-gene hierarchical 
regulatory circuit. Transcription and translation are collapsed into a single kinetic-step, without loss of 
generality in steady state. The ordering of genes represents the order in which they are encoded on the plasmids 
constructed by Guet et al.7. (a) The TetR-primary circuit and (b) the LacI-primary circuit.
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AND, also known as a NAND, binary logic function. Therefore, the TetR-primary circuit must be capable of 
generating both NIF1 and NAND logic depending on the chosen fluorescence threshold. In the context of our 
analysis, the global results we assume are the following: the TetR-primary circuit generates a NAND logic gate at 
a low threshold and a NIF1 logic gate at a higher threshold; and the LacI-primary circuit generates a NOT OR, 
also known as a NOR, logic gate.

Close inspection of the data presented by Guet et al, specifically their Fig. 2, shows that the NAND gate 
behavior is not restricted to the lac+​ strain, but is in fact observable in the lac- strain as well. This effect, albeit 
marginal, can be seen from the distribution of cells by fluorescence intensity, where the cells in the +​/+​ state are 
on average biased towards a lower fluorescence intensity when compared to the cells in the −​/−​ and +​/−​ states. 
This is most noticeable by comparing the peak fluorescence intensities. Furthermore, visual inspection of the 
plates, also shown in their Fig. 2, reinforces the conclusion that there is a slight difference in fluorescence between 
the aforementioned states. Thus, we will focus on the results for the lac- strain because this represents a more 
stringent test for our methods.

Intuitive analysis of the conventional models.  If we were to consider the results for these circuits intuitively, based 
solely on the network architecture, we would expect distinct logic functions based on what we have described 
above. In the case of the TetR-primary circuit, a high concentration of IPTG would lead to derepression of λ​ CI 
expression, which would result in an ‘OFF’ state regardless of the concentration of aTc. Hence, a NIF1 logic gate 
would be expected. The opposite should be true for the LacI-primary circuit, a high concentration of aTc would 
lead to derepression of λ​ CI expression, which would in turn repress GFP expression and hence translate into an 
‘OFF’ state regardless of the concentration of IPTG. Therefore, an “IPTG AND NOT aTc”, also known as a NIF2, 
logic gate would be expected. This analysis suggests that the physical constructs are functioning in a manner that 
is counterintuitive and anomalous. However, as with any complex system, our intuition is likely to fail us and a 
more rigorous analysis of these systems is called for.

Model-Independent Phase: NAND, NOR and NIF1 logic gates.  The model-independent phase, reiterated briefly 
here, consists of the following series of steps: we (a) propose sets of continuous functions that generate land-
scapes consisting of landmarks that can account for the observed data, (b) identify a set of landmarks, called basic 
landmarks, that are the kernels of all possible landscapes, (c) identify features of the basic landmarks that have a 
qualitatively distinct input-output coupling and (d) identify the necessary sets of input-output couplings, or local 
couplings, within the features.

In order to determine whether the conventional models of the TetR-primary and LacI-primary circuits are 
consistent with the experimental observations, we identified all the basic landmarks for the NAND, NOR and 
NIF1 binary logic functions. We found five basic landmarks for each assuming all features are stable. For each 
of these basic landmarks, we identified the necessary sets of local coupling, represented visually in Fig. 7a,b. 
Alternatively, there are a total of 18 basic landmarks if we allow for unstable features in the transition between the 
experimental observations (data not shown).

Model-Dependent Phase.  In the following sub-sections we describe the details of the model-dependent phase, 
applied to the conventional circuits for the experimentally reported constructs. This phase consists of (a) pro-
posing a mathematical model that represents the hypothesis being tested, (b) applying the System Design Space 
method to determine the model’s repertoire of qualitatively distinct phenotypes11,12,21 and (c) identifying the 
log-gain functions, a quantitative measure of the input-output coupling.

Model formulation.  The constructs reported in the literature have been synthesized in a linear sequence on a 
plasmid using a combinatorial approach, where the promoter regions of the lacI, λ​ cI and tetR genes were allowed 
to have any of five different promoters7. Here, we formulate mathematical models for two of the circuits that were 
experimentally characterized in detail.

The models, composed of ordinary differential equations (ODEs), assume that the turnover of mRNA is fast 
relative to that of protein and that the concentration of protein directly tracks that of the mRNA, the conventional 
assumption for many models in synthetic biology. Thus, we model the modulation of transcription as having a 
direct effect on the rate of protein synthesis. The generic equations that describe the gene circuits are then

β= −
dX
dt

P X (7)i
1

1 1

β= −
dX
dt

P X (8)j
2

2 2

β= −
dX
dt

P X (9)k
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3 3

β= −λ
dX
dt

P X (10)
4

4 4

where X1 represents the total concentration of LacI (tetramers), X2 represents the total concentration of λ​ CI 
(dimers), X3 represents the total concentration of TetR (dimers), and X4 represents the total concentration of GFP. 
The numbering of the variables reflects the order in which the genes appear encoded in the plasmid DNA.
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The rates of synthesis reflecting transcription from promoters repressed by LacI, TetR and λ​ CI are repre-
sented by the following rational functions.
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where subscripts L, T and λ correspond to parameters associated with the lac, tet, and λ promoters; the αj, max 
parameters represent the maximal rate of protein synthesis, where j =​ {L, T, λ} represents the regulator con-
trolling promoter activity; the parameters ρj >​ 1 represent the capacity for transcriptional regulation – defined as 
the ratio of maximal to basal rate of transcription; the parameters Kj represent the concentration of regulator for 
half-maximal influence on the rate of transcription; and the repressors are assumed to bind as dimers (dimer of 
dimers for LacI).

Figure 7.  Graphical summary of the three-phase analysis of the conventional models for the LacI-primary 
and TetR-primary gene circuits. (a,b) Graphical representation of the necessary local couplings for the basic 
landmarks obtained from the model-independent phase of the analysis. The arrows on the x- and y-axes 
represent the coupling between input and output: Inversely coupled ↘​, uncoupled →​, and directly coupled 
↗. Each grid of 3 ×​ 3 squares shows a set of local couplings for the features of a particular basic landmark 
(indicated by the colored squares). Necessary coupling for basic landmarks of (a) NAND and NOR logic gates 
and (b) the NIF1 logic gate. (c,d) Graphical representation of the repertoire of qualitatively distinct phenotypes 
from the model-dependent phase of analysis for the (c) TetR-primary and (d) LacI-primary circuits. Each 
circle represents one or more qualitatively distinct phenotypes with a unique combination of logarithmic gains 
(relative derivatives of the output, X4, with respect to the inputs, X7 and X8). The colors represent the type of 
coupling as shown in panels (a) and (b) and Fig. 4.
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The variables X1,Free and X3,Free represent the concentrations of free LacI and free TetR, which are obtained by 
assuming a quasi-steady state for repressor-inducer binding,
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The symbols X7 and X8 represent the concentration of IPTG and aTc, kI and ka represent the inducer con-
centration for half-maximal rate of binding between LacI with IPTG and TetR with aTc; it is assumed that LacI 
(dimer) and TetR (monomer) are inactivated by the binding of one and two molecules of inducer32.

We focus on the TetR-primary and LacI-primary circuits, which correspond to the D038 and D052 constructs 
of Guet et al7. These circuits are defined by Pi =​ PT, Pj =​ PL, Pk =​ PT for the TetR-primary circuit and Pi =​ PL, 
Pj =​ PT, Pk =​ PL for the LacI-primary circuit. Thus, the mathematical model for the TetR-primary circuit is defined 
by the system of Eqs (7) to (10) following the substitution of PT from Eq. (12) for Pi and Pk in Eqs (7) and (9) 
and the substitution of PL from Eq. (11) for Pj in Eq. (8). The LacI-primary circuit is defined by the system of 
Eqs (7) to (10) following the substitution of PL from Eq. (11) for Pi and Pk in Eqs (7) and (9) and the substitution 
of PT from Eq. (12) for Pj in Eq. (8).

Analysis.  The mathematical equations for the TetR-primary and the LacI-primary circuits were analyzed using 
the same approach used for the lacZYA operon. For each circuit, the total number of combinations of dominant 
positive and dominant negative terms is 256, which defines the maximal number of sub-systems and hence the 
potential number of qualitatively distinct phenotypes for each circuit11,12. Of the 256 potential phenotypes, only 
108 are valid somewhere in parameter space, all of which involve stable fixed points, and these constitute the 
phenotypic repertoire for each circuit. The valid sub-systems were analyzed for their logarithmic gains, L([GFP], 
[IPTG] and L([GFP], [aTc], to identify the local couplings shown graphically in Fig. 7c,d.

Model-Discrimination Phase.  The model-discrimination phase of our strategy involves a series of tests using the 
results of the previous two phases. We applied our 4-step approach described for the general case to the conven-
tional models of the TetR-primary and LacI-primary circuits. The details of each step are outlined below,

Step 1: Determine whether the models have the necessary local couplings in the phenotypic repertoire.  In this step, 
we group phenotypes of interest into 2 sets for the LacI-primary circuit and 3 sets for the TetR-primary circuit.

For the LacI-primary circuit, with the observed NOR binary logic function, we group phenotypes into the 
following sets according to their coupling and stability features:

Set 1: {↘​, →​[Stable]; ↘​, ↗[Stable], ↘​, ↘​[Stable]; ↗, →​[Unstable]; ↗, ↘​ [Unstable]; ↗, ↗ [Unstable]}
Set 2: {→​, ↘​ [Stable]; ↗, ↘​ [Stable]; ↘​, ↘​ [Stable]; →​, ↗ [Unstable]; ↘​, ↗ [Unstable]; ↗, ↗ [Unstable]}

where the first arrow represents the coupling of GFP with respect to IPTG, the second arrow represents the 
coupling of GFP with respect to aTc, and the stability of the fixed points for the phenotypes is shown in square 
brackets.

For the TetR-primary circuit, with the observed NAND and NIF1 binary logic functions, we group pheno-
types into the following sets according to their coupling and stability features:

Set 1: {→​, ↘​ [Stable]; ↗, ↘​ [Stable]; ↘​, ↘​ [Stable]; →​, ↗ [Unstable]; ↘​, ↗ [Unstable]; ↗, ↗ [Unstable]}
Set 2: {↘​, →​[Stable]; ↘​, ↗[Stable], ↘​, ↘​[Stable]; ↗, →​[Unstable]; ↗, ↘​ [Unstable]; ↗, ↗ [Unstable]}
Set 3: {→​, ↗ [Stable]; ↗, ↗ [Stable]; ↘​, ↗ [Stable]; →​, ↘​ [Unstable]; ↘​, ↘​ [Unstable]; ↗, ↘​ [Unstable]}
The basic landmarks for their respective logic functions require that each model have at least one phenotype 

in each of their corresponding sets. Note that the basic landmarks for NAND and NOR binary functions involve 
the same features; however, their relative arrangements are inverted to generate the opposite binary logic func-
tions. Therefore, Set 1 and Set 2 for the LacI-primary and TetR-primary circuits are switched at this point, which 
simplifies later stages of the analysis.

Step 2: Determine whether phenotypes can be simultaneously realized.  This step involves determining whether 
there is at least one combination involving one phenotype from each of the sets defined in Step 1 that can be 
simultaneously realized. We apply our previously developed methods for simultaneously realizing qualitatively 
distinct phenotypes (formally called phenotype co-localization)12. Specifically, this method automatically identi-
fies a set of parameter values, if it exists, such that qualitatively distinct phenotypes are ‘found’ within an n dimen-
sional slice of Design Space (in this example, we are looking at a 2-D slice where the slice variables on the axes are 
the concentrations of IPTG and aTc). It is important to note that the parameter values are not manually picked, 
sampled or estimated from the data; instead, our software automatically predicts the parameter sets by applying 
techniques from linear programming and optimization. As such, the parameter sets predicted by our method are 
not unique, but they are representative of points within a high-dimensional polytope in logarithmic coordinates. 
Details are provided elsewhere12.

Step 3: Determine whether co-localized phenotypes can be arranged to give the correct logic function with the 
appropriate output profile by choosing an arbitrary threshold.  This step involves determining whether combina-
tions of phenotypes that can be simultaneously realized, as determined in Step 2, are realized in the appropriate 
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arrangement. The arrangement is determined by repeating the co-localization described briefly for Step 2 with 
additional constraints on auxiliary variables representing the slice variables for each phenotype.

For the LacI-primary circuit, with the observed NOR binary logic function, the phenotype in Set 1 must be 
localized to the bottom and right of the phenotype in Set 2. Therefore, we add the following constraints,

>X X (16)7,1 7,2

<X X (17)8,1 8,2

where X7,i corresponds to an auxiliary variable representing X7 for the phenotype in the i-th Set, and X8,i corre-
sponds to an auxiliary variable representing X8 for the phenotype in the i-th Set. In addition, for each phenotype 
we impose the constraint

>X X (18)4 4,High

where X4,High is a variable representing the threshold concentration for an ‘On’ state.
For the TetR-primary circuit, with the observed NAND and NIF1 binary logic functions, the phenotypes in 

Set 1 must be localized to the bottom and right of the phenotypes in Set 2 (these were swapped compared to the 
sets for the LacI-primary circuit). In addition, the phenotype in Set 3 must be localized to the top and left of the 
phenotype in Set 1 and to the top and right of the phenotype in Set 2. Therefore, we add the following constraints,

>X X (19)7,1 7,2

<X X (20)8,1 8,2

<X X (21)7,3 7,1

>X X (22)8,3 8,1

>X X (23)7,3 7,2

>X X (24)8,3 8,2

where X7,i corresponds to an auxiliary variable representing X7 for the phenotype in the i-th Set, and X8,i cor-
responds to an auxiliary variable representing X8 for the phenotype in the i-th Set. In addition, we impose the 
following constraints on the concentration of each phenotype,

>X X (25)4,1 4,Low

>X X (26)4,2 4,Low

>X X (27)4,3 4,High

where X4,High is a variable representing the threshold concentration for the ‘On’ state and X4,Low is a variable repre-
senting the threshold concentration for the ‘Intermediate’ state, such that

>X X (28)4,High 4,Low

Step 4: Determine whether Step 3 can be repeated simultaneously for both the TetR-primary and LacI-primary 
circuits with a shared set of values for their parameters.  This step involves determining if combinations of phe-
notypes that could be arranged correctly, as determined in Step 3, can be done so simultaneously for the mod-
els of both the TetR-primary and the LacI-primary circuits. This involves identifying a single set of values for 
their parameters such that the phenotypes in Set 1 and 2 of the LacI-primary circuit and in Sets 1, 2 and 3 of 
the TetR-primary circuit are co-localized in a single 2-D slice of Design Space. If both models have phenotypes 
that can be arranged simultaneously, we state that a hypothesis satisfies the necessary conditions to realize the 
observed binary logic functions for both circuits.

Comparison of phenotypic repertoires and necessary basic landmarks.  When the 4-step approach is applied to the 
conventional models of the TetR-primary and LacI-primary circuits, we find that both models fail at the first step: 
the phenotypic repertoire of neither model included phenotypes with the local coupling needed to reproduce 
even a single basic landmark, as shown in Fig. 7.

The first test is to ascertain if the model has the necessary phenotypes to reproduce a basic landmark for the 
appropriate logic gate. The TetR-primary circuit, which only has stable phenotypes, has the necessary phenotypes 
for two basic landmarks of a NIF1 logic function, as can be seen by comparing Fig. 7c with the first two panels in 
Fig. 7b. Furthermore, the point in the top-left quadrant of Fig. 7c is consistent with the necessary local coupling 
for the first basic landmark in Fig. 7b. This basic landmark involves a single feature that spans the entire space, 
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thus the local coupling produces a plane discriminator capable of exhibiting the NIF1 logic function. Therefore, 
this circuit is capable of exhibiting the NIF1 logic somewhere in parameter space.

However, neither the TetR-primary nor the LacI-primary circuit has a phenotype that falls within the 
lower-left quadrant, as shown in Fig. 3c,d; thus, neither circuit can produce the first basic landmark in Fig. 7a. 
The remaining basic landmarks in Fig. 7a require a point that lies within the top-left quadrant and a point within 
the bottom-right quadrant in Fig. 3c,d. In both cases, the circuits are capable of exhibiting phenotypes that satisfy 
one of these two conditions, but not both; hence, neither circuit can produce a basic landmark associated with 
either a NAND or a NOR binary logic function. These results, taken together, demonstrate that neither circuit 
can exhibit the observed experimental data. In other words, the conventional models of the synthetic constructs 
cannot –regardless of values for the parameters – exhibit the experimentally observed results.

Single Mechanistic Extensions of the Conventional Models.  Our analysis in the previous section 
has shown that the conventional models for the TetR-primary and the LacI-primary circuits cannot reproduce 
the experimentally observed results. This suggests that additional mechanisms are significantly influencing the 
physical constructs. Here, we focus on known mechanisms, many of which have been studied for many decades: 
Transcriptional read-through, specific binding of the LacI-IPTG complex to operator DNA, non-specific binding 
of LacI to backbone DNA (independent of IPTG), and regulator specific cross-talk, where one regulator binds to 
degenerate binding sites in one of the promoters that is regulated by a different regulator – thus repressing tran-
scription of non-target genes.

It has been shown that transcriptional read-through and LacI-inducer complexes can play important roles 
in affecting gene regulation33–35. As discussed previously, the binding of LacI with IPTG causes a conforma-
tional change that affects the specific DNA binding domain of the protein. However, the change in structure 
does not abolish specific binding to the operator DNA, but reduces it by about 1000-fold34. Additionally, the LacI 
protein has a non-specific binding component that is thought to be involved in ‘sliding’ along the DNA chain, 
thus improving the efficiency of locating operator DNA. This non-specific binding occurs between LacI and the 
DNA backbone and has a 105- to 1010-fold lower affinity relative to that of the specific binding35. However, this 
non-specific binding appears to be unaffected by binding of LacI with IPTG33 and hence, at high concentrations 
of LacI, there could be a significant influence from non-specific repression.

Furthermore, transcription factors bind a set of degenerate sequences with varying affinities36. Such bind-
ing sites for the LacI, TetR or λ​ CI regulators may be present upstream of any gene in the plasmid, thus adding 
‘cross-talk’ where one regulator represses expression of non-target genes. Here, we consider the effect of cross-talk 
by each of the regulators over each of the promoters as a unique hypothesis.

Many of these mechanisms have been studied in the context of the natural lac operon, and are routinely 
assumed to be negligible within that context. However, the genetic components in the synthetic constructs are no 
longer operating in their native context and, in particular, LacI in the synthetic constructs may be induced to con-
centrations much greater than the low level constitutive expression in the native context. This begs the question, 
are the native assumptions still valid?

We extended the conventional mathematical models for the LacI-primary and TetR-primary circuits to 
include a total of 9 alternative mechanisms. The extended models serve as hypotheses that can aid in under-
standing the possible causes for the discrepancies between the observed results and the conventional models. 
It is important to note that although the LacI-primary and TetR-primary circuits have the same topology in the 
conventional models, this is no longer true in the mechanism-extended models. For example, consider the exten-
sion where TetR represses expression of PL. The TetR-primary circuit has one additional interaction – TetR also 
represses lambda transcription. The LacI-primary circuit has two additional interactions – TetR represses lacI 
transcription and autorepresses its own transcription.

Mathematical models of the mechanism-extended circuits.  The following sub-sections provide mathematical 
descriptions for distinct mechanisms by which the conventional circuitry can be extended: (a) transcriptional 
read-through, (b) LacI-IPTG specific repression, (c) LacI non-specific repression, (d) LacI repression of the TetR 
target promoter, (e) LacI repression of the λ​ target promoter, (f) TetR repression of the LacI target promoter, (g) 
TetR repression of the λ​ target promoter, (h) λ​ CI repression of the LacI target promoter, and (i) λ​ CI repression 
of the TetR target promoter.

Transcriptional read-through.  Transcriptional read-through involves a small probability of upstream transcrip-
tion continuing past a transcriptional terminator and hence transcribing downstream genes. The percentage of 
transcription that reads-through is a function of the efficiency of the transcriptional terminator, and is repre-
sented in the following equations.

β= −
dX
dt

P X (29)i
1

1 1

σ β= + −
dX
dt

P P X (30)i j
2

1 2 2

σ σ σ β= + + −
dX
dt

P P P X (31)i j k
3

1 2 2 3 3
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σ σ σ σ σ σ β= + + + −λ
dX
dt

P P P P X (32)i j k
4

1 2 3 2 3 3 4 4

where the σi parameters represent the probability of reading-through the ith promoter. This model assumes that 
the ribosome binding sites are the same for all genes and is thus consistent with the physical constructs reported 
in the literature.

LacI-IPTG specific repression.  LacI-IPTG specific repression involves specific operator binding by the 
LacI-IPTG complex. This mechanism is represented mathematically by adding a new term in the numerator and 
denominator of Eq. (11), which yields
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where KLI >​ 1 represents the ratio of binding constants for the bound and free forms of the LacI regulator; ρLI >​1 
is the capacity for regulation by the LacI-IPTG complex. The amount of complex, X1,Bound, is defined by
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such that X1 =​ X1,Free +​ X1,Bound.

LacI non-specific repression.  LacI non-specific repression involves non-specific binding of LacI to backbone 
DNA. This mechanism is represented mathematically by adding a term to the numerator and denominator of the 
expressions representing transcription from the lac, tet, and λ promoters. The mathematical expressions repre-
senting the rate of transcription from these promoters become
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where Kns >​ 1 ×​ 105 is the ratio of non-specific to specific binding constants for the LacI regulator; ρns >​ 1 is the 
capacity for regulation by LacI non-specific binding, which is assumed to bind non-cooperatively as a dimer.

Regulator specific cross-talk.  Cross-talk is defined as the repression of non-target promoters by a transcriptional 
regulator binding to unidentified sequences. Here, we consider that cross-talk is possible by any of the three regu-
lators: LacI, TetR and λ CI. We model each cross-talk hypothesis individually to identify critical cross-talk inter-
actions contributing to the observed experimental data. These hypotheses involve the following core assumptions: 
(1) non-target promoter binding sites are found within the promoter regions; (2) regulator binding to non-target 
promoters occurs with lower affinity than that of binding sites in the target promoter; (3) repression of a promoter 
by targeted and non-targeted regulators occurs independently; and (4) non-target binding involves a single bind-
ing site and thus is non-cooperative. These mechanisms are represented mathematically by adding a term to the 
numerator and denominator of the expression representing transcription from the target promoter.

LacI repression of the tet promoter is represented mathematically as
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where >K 1L2
 is the ratio of the binding constant for the non-target tet promoter binding site to the binding 

constant for the specific binding site for the LacI regulator; ρ > 1L2
 represents the capacity for regulation of the tet 

promoter by LacI repressor.
LacI repression of the λ​ promoter is represented mathematically as
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where >K 1L3
 is the ratio of the binding constant for the non-target λ promoter binding site to the binding con-

stant for the specific binding site for the LacI regulator; ρ > 1L3
 represents the capacity for regulation of the λ 

promoter by LacI repressor.
TetR repression of the lac promoter is represented mathematically as
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where >K 1T2
 is the ratio of the binding constant for the non-target lac promoter binding site to the binding 

constant for the specific binding site for the TetR regulator; ρ > 1T2
 represents the capacity for regulation of the 

lac promoter by TetR repressor.
TetR repression of the λ​ promoter is represented mathematically as
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where >K 1T3
 is the ratio of the binding constant for the non-target λ promoter binding site to the binding con-

stant for the specific binding site for the TetR regulator; ρ > 1T3
 represents the capacity for regulation of the λ 

promoter by TetR repressor.
λ​ CI repression of the lac promoter is represented mathematically as
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where >λK 1
2

 is the ratio of the binding constant for the non-target lac promoter binding site to the binding 
constant for the specific binding site for the λ​ CI regulator; ρ >λ 1

2
 represents the capacity for regulation of the 

lac promoter by λ​ CI repressor.
λ​ CI repression of the tet promoter is represented mathematically as
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where >λK 1
3

is the ratio of the binding constant for the non-target tet promoter binding site to the binding con-
stant for the specific binding site for the λ​ CI regulator; ρ >λ 1

3
 represents the capacity for regulation of the tet 

promoter by λ​ CI repressor.

Model-Discrimination Phase.  Our strategy was to analyze the single mechanistically extended circuits to iden-
tify minimal hypotheses that could account for the experimental data. The TetR-primary and LacI-primary cir-
cuitry, extended with each of the single mechanistic extensions, were analyzed using the 4-step approach outlined 
for the conventional model of the TetR-primary and LacI-primary circuitry. The results of the model discrimi-
nation phase for each of the hypotheses, which take into consideration all basic landmarks involving stable and 
unstable features, are shown in Table 1.

Identifying individual sets of parameter values with results that mimic the experimental data for each circuit.  
Columns 2 and 3 of Table 1 show that 4 of 9 hypotheses for the TetR-primary circuit and 6 of 9 hypotheses for the 
LacI-primary circuit are capable of realizing the appropriate logic at the architectural level. The hypotheses that 
can generate the respective logic functions for the TetR-primary and the LacI-primary circuits are transcriptional 



www.nature.com/scientificreports/

1 9Scientific Reports | 6:32375 | DOI: 10.1038/srep32375

read-through, non-specific repression, LacI repression of the λ​ promoter and TetR repression of the λ​ promoter. 
However, if we assume the experimental conditions were well controlled, it is reasonable to expect that there 
should be a single hypothesis that can explain all experimental observations with a single set of values for the 
parameters.

Identifying a unified set of parameter values with results that mimic the experimental data.  We have previously 
shown how the System Design Space method can be used to automatically identify a common set of parameter 
values such that the qualitatively distinct phenotypes necessary to represent the global function of a model are 
simultaneously realized, a technique called ‘co-localization’ in the more general context12. Here, we extend this 
capability of the System Design Space method to deal not only with phenotypes of a single model, but with pheno-
types across multiple models by determining whether a common set of parameter values exists such that the qual-
itatively distinct phenotypes for both the TetR-primary and LacI-primary circuits are all realized simultaneously. 
We apply this method to determine if a single set of parameter values exist such that both the TetR-primary and 
LacI-primary circuits, extended according to each of the 9 hypotheses in Table 1, can exhibit the NAND +​ NIF1 
and NOR logic functions, respectively.

The results of this test, summarized in the last column of Table 1, show that there is no single hypothesis that 
is able to explain both sets of experimental data simultaneously. Therefore, independent of specific values for the 
parameters, we have shown that none of these hypotheses can account for the experimental data. Taken together, 
our 4-step approach has eliminated all 9 of these hypotheses, which are thus poor candidates for further experi-
mental testing.

Dual Mechanistic Extensions of the Conventional Models.  Our analysis thus far has analyzed a total 
of 9 hypotheses involving individual mechanistic extensions for the TetR-primary and LacI-primary circuits and 
found that none of the hypotheses were able to reproduce the experimentally observed results. However, any of 
these individual mechanisms might still be contributing to the observed results by acting in concert with other 
mechanisms and producing emergent new phenotypes. Here, we consider hypotheses where the conventional 
model of the TetR-primary and LacI-primary circuits is extended by all combinations of 2 mechanisms from the 
9 we analyzed previously. The result is a total of 30 additional hypotheses involving dual mechanistic extensions. 
As in the case of the single mechanistic extensions, we proceed with the 4-step analysis of the dual mechanistic 
extensions in the model-dependent phase.

Model-Discrimination Phase.  In the model-discrimination phase of dual mechanistically extended circuits we 
examine the models at both the architectural and biological levels. A summary of the results is shown in Table 2.

Architectural level comparisons.  The dual extended circuits were analyzed first at the architectural level to iden-
tify those that had the capacity to reproduce both sets of experimental data. Columns 2–4 in Table 2 show the 
results of Step 3 and Step 4 of the 4-step approach applied to all dual mechanistically extended circuits at the 
architectural level.

Columns 2 and 3 of Table 2 show that 21 of 30 dual hypotheses for the TetR-primary circuit, 29 of 30 dual 
hypotheses for the LacI-primary circuit, and 20 of 30 dual hypotheses for both circuits considered together are 
capable of producing the appropriate logic at the architectural level.

We apply the next step of our strategy to determine whether there is a unifying set of values for the parameters 
such that both circuits are able to realize the appropriate binary logic functions at the architectural level. Column 
4 of Table 2 shows that there are only 5 of 30 dual hypotheses that can simultaneously realize both sets of experi-
mental data at the architectural level.

Biological level comparisons.  The analysis up to this point has screened through multiple hypotheses to identify 
those that have the potential to reproduce the observed experimental data at the architectural level. This level of 
discrimination is very powerful because it does not make any assumption about parameter values, as long as the 
architectural features are maintained. However, even if a hypothesis can reproduce the appropriate logic functions 

Extended Mechanism

Individually Realizable Simultaneously 
RealizableTetR-primary LacI-primary

Read-through Y Y N

LacI-IPTG specific repression Y Y N

LacI Non-specific repression N Y —

LacI repression of TetR target N N —

LacI repression of λ​ target Y Y N

TetR repression of LacI target N N —

TetR repression of λ​ target Y Y N

λ​ repression of LacI target N Y —

λ​ repression of TetR target N N —

Table 1.   Model discrimination of mechanistically extended models at the architectural level. Individual 
realization is either yes (Y) or no (N), and simultaneous realization is yes (Y), no (N), or not determined (—) 
when one or both of the individual circuits cannot be realized.
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at the architectural level, there is no guarantee that it can do so with values for the parameters that are physically 
or biologically realizable or relevant.

Here, we start with the 5 hypotheses from the previous subsection that can realize the appropriate logic at the 
architectural level. The analysis was repeated to identify the hypotheses that could succeed at all 4 steps of the 
approach at the biological level by imposing the constraints in Table 3. The results of our model-discrimination 
phase for the dual hypotheses are as follows: the TetR-primary and the LacI-primary circuits, extended with all 5 
of the architecturally realizable dual mechanisms, are individually capable of producing the appropriate logic at 
the biological level. However, when we applied our method to determine whether they can realize the appropriate 
logic simultaneously, we found this to be true for only 1 of the 5 dual hypotheses, as shown in the last column of 
Table 2. The hypothesis that we found capable of generating both sets of experimentally observed logic functions 
involves LacI and TetR repression of the λ​ promoter.

Identifying a unified set of parameter values that mimic the experimental data.  The results of Step 4 of our 
approach included 364 unique combinations of phenotypes for the TetR-primary and LacI-primary circuits taken 
together and extended with both LacI and TetR repression of the λ​ promoter. Once we determined that a subset 
of phenotypes had the correct levels for both extended TetR-primary and LacI-primary circuits, we identified 
the phenotypes that were valid at the +​/+​, +​/−​, −​/+​ and −​/−​ conditions. We then applied the method of 
phenotype co-localization for the 8 phenotypes at these conditions, 4 for the TetR-primary circuit and 4 for the 
LacI-primary circuit, and imposed constraints on the values of GFP for each of the phenotypes so they would be 
consistent with the quantitative data observed experimentally. In addition, we imposed constraints on values for 
the concentrations of IPTG and aTc to ensure that they would be localized at the correct values to be consistent 
with the experimental observations.

Extended Mechanism

Architectural

BiologicalIndividually Realizable

Simultaneously 
RealizableTetR-primary LacI-primary

Simultaneously 
Realizable

Read-through +​ LacI-IPTG specific repression Y Y N —

Read-through +​ LacI non-specific repression Y Y N —

Read-through +​ LacI repression of TetR target Y Y N —

Read-through +​ LacI repression of λ​ target Y Y Y N

Read-through +​ TetR repression of LacI target Y Y N —

Read-through +​ TetR repression of λ​ target Y Y N —

Read-through +​ λ​ repression of LacI target Y Y N —

Read-through +​ λ​ repression of TetR target Y Y N —

LacI-IPTG specific repression +​ LacI non-specific repression Y Y N —

LacI-IPTG specific repression +​ LacI repression of TetR target N Y — —

LacI-IPTG specific repression +​ LacI repression of λ​ target Y Y N —

LacI-IPTG specific repression +​ TetR repression of LacI target N Y — —

LacI-IPTG specific repression +​ TetR repression of λ​ target Y Y Y N

LacI-IPTG specific repression +​ λ​ repression of LacI target N Y — —

LacI-IPTG specific repression +​ λ​ repression of TetR target N Y — —

LacI repression of TetR and λ​ targets Y Y N —

LacI (TetR) repression of TetR (LacI) target N Y — —

LacI (TetR) repression of TetR (λ​) target Y Y Y N

LacI (λ​) repression of TetR (LacI) target N Y — —

LacI (λ​) repression of TetR (TetR) target N Y — —

LacI (TetR) repression of λ​ (LacI) target Y Y N —

LacI (TetR) repression of λ​ (λ​) target Y Y Y Y

LacI (λ​) repression of λ​ (LacI) target Y Y N —

LacI (λ​) repression of λ​ (TetR) target Y Y N —

TetR repression of LacI and λ​ target Y Y N —

TetR (λ​) repression of LacI (LacI) target N Y — —

TetR (λ​) repression of LacI (TetR) target Y N — —

TetR (λ​) repression of λ​ (LacI) target Y Y N —

TetR (λ​) repression of λ​ (TetR) target Y Y Y N

λ​ repression of LacI and TetR target N Y — —

Table 2.   Model discrimination and simultaneous realization of circuits extended by two mechanisms at 
both the architectural and biological level. Individual realization is either yes (Y) or no (N), and simultaneous 
realization at either the architectural or biological level is yes (Y), no (N), or not determined (—) when one or 
both of the individual circuits cannot be realized.
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One example showing the simultaneous realization of both binary logic functions, determined through our 
automated System Design Space methods12, is shown in Fig. 8. The GFP expression profile for the TetR-primary 
circuit can exhibit a NAND binary logic if the appropriate threshold for GFP concentration is chosen; how-
ever, the pattern is more similar to that of a NIF1 binary logic function and is thus consistent with what has 
been observed experimentally7. The GFP expression profile for the LacI-primary circuit also replicates the NOR 
logic gate observed experimentally. Although these profiles are not exact replicates of the observed GFP profiles, 
we have nonetheless shown a definitive example replicating the qualitative aspects of the synthetic constructs 
through an automated method that does not rely on parameter sampling or direct manipulation of any of the 
parameters.

Discussion
Determining whether specific biochemical mechanisms are able to reproduce a set of qualitative experimental 
results typically involves understanding a complex non-linear model that is analytically intractable. One could 
proceed empirically by using a numerical sampling approach. However, if such an approach does not produce a 
concrete example of the observed results, then there would be no proof of the model’s capacity – or lack thereof – 
to realize the experimental observations. If we are to show that a model cannot exhibit a particular result, then we 
must do so in a manner that is independent of specific parameter values. Here, we have presented a strategy that 
can be used to discriminate against models that do not have the potential to realize the experimentally observed 
results.

This new strategy can discriminate among mechanistic models based on their capacity to reproduce exper-
imental observations. A large volume of available data consists of discrete observations, where a small number 
of entities increase or decrease in relation to some reference. This usually implies that a large number of models 
can account for the experimental observations. Using traditional approaches to discriminate among the models 
involves finding a model that is the ‘best’ fit – hence discrimination becomes parameter dependent.

Model parameterization is no easy task and it involves searching the literature for parameter values and fitting 
experimental data. There are significant problems with each of these. A literature search for parameter values is 
often looking for a ‘needle in a haystack’, with the added complexity that the results are highly dependent on the 
experimental context and specific conditions. Parameter fitting is a challenge when the parameter space is large 
and the data are sparse and noisy, where a ‘best’ fit is ambiguous due to the many degrees of freedom.

The three-phase strategy we have presented has a distinguishing property: we are able to exclude possibilities 
in a manner that is independent of parameter values, even when data are sparse and parameter values unknown. 
In the model-independent phase, the task is to obtain a description of discrete experimental observations that 
is based on necessary basic landmarks, and is independent of any model. We have demonstrated that there are 
a finite number of these necessary basic landmarks for binary logic functions. In the model-dependent phase, 
the task is to identify the qualitatively distinct phenotypes of a model, independent of specific parameter values 
and independent of the experimental data. The collection of qualitatively distinct phenotypes characterizes the 
model’s phenotypic repertoire. We have previously demonstrated that there are a finite number of these pheno-
types as well. In the model-discrimination phase, results from the two previous phases are combined to identify 
hypotheses that can be further tested.

The key assumptions of this approach are that the discrete experimental data are in regimes where there is only 
one stable state of the system and that the underlying landscapes are continuous functions of the input variables 
with at least one non-zero stable state throughout. The latter of these assumptions should be valid for most gene 
regulatory circuits and the former can be determined experimentally by looking at populations of individual cells, 
as was done in the experimental study by using FACS measurements7.

As an application of this strategy we analyzed a total of 80 mathematical models involving two synthetic gene 
circuits and determined the models’ ability to reproduce experimentally observed data. We first demonstrated 
that the conventional models – consisting of mechanisms as they operate in their native context – were not able 
to generate the experimentally observed results, regardless of parameter values. Thus, other mechanisms that are 
negligible in the native context must be contributing significantly in the synthetic context. We first considered 
9 such mechanistic extensions of the conventional model that are well established, and 30 dual combinations 
thereof: transcriptional read-through, specific binding of LacI-IPTG to operator DNA, non-specific binding of 
LacI to backbone DNA, and regulator specific cross-talk involving non-target repression by LacI, TetR and λ​ CI 
for each of the possible promoters.

The experimental data used here consist only of values at the four extreme values of the inputs, and the logic 
functions exhibited are qualitative. The test of the models is to determine whether or not they are capable of 
generating the appropriate logic functions. Our analysis has shown that among the 40 different hypotheses for 
each circuit, only 5 have the potential to reproduce the observed logic functions for both circuits with some 
combination of values for the parameters. Furthermore, our methods provide semi-quantitative results that can 
be compared with the experimental data (Fig. 8). By imposing bounds considered to be biologically relevant on 
the values for the parameters, we find that only 1 hypothesis among the 40 is consistent with the observed quan-
titative experimental data. The only hypothesis among those tested that can reproduce the qualitative nature of 
the experiments within what we have deemed to be biologically relevant values involves a combination of LacI 
repression of the λ​ promoter and TetR repression of the λ​ promoter. There are additional strategies to further 
discriminate among the surviving models and to quantitatively characterize those that are most successful.

First, our methods involve all the parameters and variables of the full models being tested, so these methods 
can be used in combination with any other method to explore the common parameter space. For any model that 
successfully passes the qualitative tests, our methods predict representative quantitative values for the underlying 
parameters of the model. If desired, these parameter values can be further refined by any number of parameter 
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estimation routines when applied to the full model and using the predicted values as starting points. However, 
since there are only four data points, there are likely to be several estimates capable of “fitting” the data.

Second, and more productive, would be to generate additional experimental data consisting of titrations of 
increasing and decreasing values of the inputs, as in Williams et al.37. This would provide additional landmarks 
and local couplings that could be used to further discriminate qualitatively among the models. For example, one 
might expose graded or discontinuous behaviors with particular thresholds (see Figures S1 and S2) at interme-
diate values of the inputs that could only be generated by particular models. Moreover, the additional qualitative 
tests would provide more rigorous predictions of representative quantitative values for the underlying parameters 
of the models. Again these starting values can be further refined by a variety of additional methods, and the addi-
tional experimental data also would provide more power for any attempt to statistically estimate a best-fit set of 
parameter values.

By analyzing the conventional models for the synthetic gene circuits and by considering additional hypothe-
ses, we have gained insight into key mechanisms that are likely to be influencing the behavior of these constructs. 
In so doing we have provided an example of a rigorous mathematical analysis that has provided an understanding 
of the relationship between a conceptual design for a synthetic construct and its physical realization. Our analysis 
has shown that even small effects can have large implications. For example, although the maximal rate of protein 
synthesis for the PL promoter in Table 3 is much lower than that for the PT promoter, it cannot be discounted as 

Parameter Experimental Computed Biological Range Units

αL,max 1 (see39) 2.27 ×​ 10−3 0.001–10000 μ​M min−1

αT,max 0.6 (see40) 0.58 0.0001–1000 μ​M min−1

αλ,max 1 (see39) 1.00 0.0001–1000 μ​M min−1

ρL 620 (see32) 108.18 >​1 *

ρL2 — N/A >​1 *

ρL3 — 11.18 >​1 *

ρT 5300 (see32) 5773.5 5000–7000 *

ρT2 — N/A >​1 *

ρT3 — 30 >​1 *

ρλ 70 57.73 >​50 *

ρλ2 — N/A >​1 *

ρλ3 — N/A >​1 *

Ρns — N/A >​1 *

ΡLI — N/A >​1 *

KL 3.5 ×​ 10−7 (see34) 8.66 ×​ 10−5 1 ×​ 10−10–1 ×​ 10−4 μ​M

KL2 — N/A >​1 μ​M

KL3 — 1.15 >​1 μ​M

KT 1.79 ×​ 10−4 (see41) 2.59 ×​ 10−4 1 ×​ 10−6–1 ×​ 10−1 μ​M

KT2 — N/A >​1 *

KT3 — 2.04 >​1 *

Kλ 8 ×​ 10−4 (see39) 8.66 ×​ 10−3 1 ×​ 10−6–1 ×​ 10−2 μ​M

Kλ2 — N/A >​1 μ​M

Kλ3 — N/A >​1 μ​M

Kns 1 ×​ 105–1 ×​ 1010 (see35) N/A 1 ×​ 105–1 ×​ 1010 μ​M

KLI 1000 (see34) N/A >​1 ×​ 103 μ​M

kI 1.2–1.3 (see3,34) 1.15 0.01–100 μ​M

ka 1 ×​ 10−5 (see42) 0.0086 1 ×​ 10−6–1 ×​ 10−1 μ​M

β1 0.02310 (see7) 0.0217 0.002–0.025 min−1

β2 0.02310 (see7) 0.0217 0.002–0.025 min−1

β3 0.02310 (see7) 0.0023 0.002–0.025 min−1

β4 0.02310 (see7) 0.0217 0.002–0.025 min−1

σ1 0.01 N/A <​0.01 *

σ2 0.01 N/A <​0.01 *

σ3 0.01 N/A <​0.01 *

Table 3.   Comparison between estimated reference values for the parameters and automatically 
determined values for simultaneous realization of phenotypes. Parameter values taken from the literature 
were either estimated, experimentally measured or absent (—). Parameter values computed in this study 
were determined automatically for the single hypothesis that satisfied both experimental observations 
simultaneously. Parameters not participating in the model are marked as Not Applicable (N/A). Biological 
Range indicates ranges for the parameters considered to be biologically relevant. The units for the parameters 
are shown using the appropriate symbols, or marked as dimensionless (*).
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irrelevant. In fact, our analysis indicates that the interaction is absolutely necessary for the circuits to be able to 
reproduce the qualitative aspects of the observed behaviors. Furthermore, perhaps a more valuable result is the 
fact we have identified 35 of 40 hypotheses that are unlikely to reproduce the experimental data regardless of the 
values for the parameters.

The focus of our illustration has been to identify the simplest hypotheses that had the potential to reproduce 
the binary logic functions observed experimentally. Nonetheless, we have applied this approach to more com-
plex hypotheses involving combinations of 3 and even 4 of the mechanisms that we have discussed here. Among 
these hypotheses we found other examples that could generate the appropriate binary logic function and one in 
particular, which involves the combination of transcriptional read-through plus TetR repression of the lac and λ 
promoters, very closely matches the quantitative aspects of the experimental data.

We also applied this approach to a hypothesis proposed by Kim and Tidor38, where the high concentrations of 
the ssra-tagged proteins in these circuits may overburden the cellular protease machinery. This adds an additional 
layer of regulation where proteins mutually inhibit their degradation through saturation of these enzymes. Our 
approach found that this hypothesis satisfied the necessary conditions simultaneously for both circuits at the 
architectural level, but could not do so at the biological level.

With this application we have demonstrated a novel approach that can be used to rapidly screen through 
multiple hypotheses without the need for previous knowledge of the specific values for the parameters; thereby 
focusing experimental effort on hypotheses that are feasible and away from those that our approach has shown 
are unlikely. The results of our analysis suggest critical experiments to test the feasible hypotheses. Ultimately, this 
approach can be applied to extract functional implications of hypothesized mechanisms in natural gene circuitry, 
as well as synthetic systems, that carry out binary logic functions other than those considered here.
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