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LARGE AMPLITUDE SHIP MOTIONS AND CAPSIZING
IN SEVERE SEA CONDITIONS

Jean Otto de Kat

ABSTRACT

A numerical model has been developed to determine the large amplitude
motions of a vessel subjected to severe wave conditions, including those
that may lead to capsizing. The aim was to numerically identify different
modes of capsizing, and to study relevant mechanisms and conditions.
The theory is based on a combination of potential and viscous flow
approaches in the time domain, where large displacements, the
instantaneous free surface and memory effects are considered.

Reasonable agreement was found between predicted motions and
experimental results for a variety of wave conditions. A number of
capsizes, observed experimentally, were simulated successfully using the
numerical model.

An investigation has been carried out to determine the sensitivity of the
roll response to changes in the force components. The Froude-Krylov
forces were found to be always of importance, irrespective of the wave
conditions. Generally, the relative importance of the various components
depends strongly on the ship and wave conditions.

Special attention has been paid to random following seas, which tend to
have an important effect on capsizing. Wave statistics have been obtained
for an observer in a random following seaway, represented by the
superposition of a finite number of wave components. It was found that
the mean square wave elevation observed at a fixed point, and from a
reference point moving at an angle with the waves, can be different,
suggesting that care must be taken when conducting simulations.
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In random following seas, any point on the ship may be subjected to a
quasi regular excitation, while the motion behavior iz affected
simultaneously by the spatial and tczuporal characteristics of the seaway.
Also, for a short term simulation of an extreme event, it is shown that the
random following sea may be replaced by an equivalent wave system,
consisting of only two components. Several modes of capsizing in
following to beam seas have been identified by simulation: low cycle
resonance, loss of transverse static stability, broaching and resonant
excitation. An analysis has been made of the behavior of the roll moment
components associated with these capsize modes.
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CHAPTER 1

Introduction

Seakeeping has provided seafarers, platform operators and researchers
with a multitude of challenging problems, to which, seemingly, an even
larger array of solutions has been proposed in the various fields. With the
advent of computers, theoretical models and numerical simulations have
been becoming increasingly important (and fashionable), so that
nowadays the designer of an ocean going "structure”, be it a ship or
platform, has to choose between quite a large number of numerical tools
for his calculations. Regardless of the type of structure that is being
designed, one of the designer's tasks is to ensure the safety and
seaworthiness of the structure, a prime consideration being the safety
against capsizing. Despite recent advances in ship hydrodynamics, the
possibility and actual process of capsizing are still difficult to predict with
a good measure of confidence, and in fact relatively little attention has
been paid to the mechanism of capsizing.

The main objective cf this work is to develop a model which represents
realistically the motions of a steered vessel in severe, random seas. The
motions are those of a rigid body having six degrees of freedom, and are
not necessarily small. An important part is the investigation of factors
leading to a capsize, as well as the simulation thereof. Most of the theory
is applicable also to platform motions, bearing in mind that mooring
effects are not accounted for. Use is made of previously obtained
experimental results to validate the present approach. Special attention is
paid to the ship motion behavior and wave statistics in quartering to
following sea conditions, since those conditions may affect ship motions
most severely.

The approach taken in this work is to solve the equations of motion in the
time domain, where linear and nonlinear force contributions are
considered. The advantage of time domain simulations is that, for a given
set of conditions, the response for large displacements, cr even up to the
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point of capsize, can readily be determined, the only limitation being the
validity of the theory employed. The obvious drawback of the method is
that the response is obtained for a unique set of conditions, which makes it
difficult to make any general conclusions as to the response behavior,
unless one performs a large number of simulations from which statistics
can be extracted with a reasonable degree of confidence. Other methods
dealing with the estimation of large angles of motion and capsizing are
based on deterministic linear theory, statistics coupled with linear
spectral analysis, or on some kind of nonlinear statistical approach. Of
these alternative methods it seems that the nonlinear statistical approach
is most appropriate, when one is interested in obtaining statistics
concerning large roll angles, for example. As opposed to the linear
approach, a nonlinear statistical method should make it possible to
account for certain nonlinearities, be it in an approximate manner, that
may significantly influence the overall behavior of a vessel in a severe
seaway. Nevertheless, the statistical approach is typically based on
nonlinear vibration theory, which permits the prediction of motion
instabilities, but is not necessarily relevant whenr considering the actual
occurrence of a capsize. That is, roll motion instabilities do not have to
result in the capsizing of a vessel. It is not the aim of the author to defend
or justify the use of the time domain method in light of the various
alternative procedures, nor to discuss their facets in any detail, so in the
following literature overview only experimental and theoretical work,
thought to be relevant with respect to time domain simulations of vessel
motions in a severe sea state, are treated.

Overview of Relevant Exgeri 1 Worl

Seaworthiness may be described as the ability of a structure to withstand
waves and wind in a safe manner, whilst exhibiting comfortable motion
characteristics. For a ship the maneuverability characteristics are also of
importance. Experimental and theoretical research in the field of
seakeeping and stability behavior started the last century, one of the most
notable early works being on ship rolling due to waves by Froude (1872),
who laid the theoretical foundations for predicting roll motions. Extensive
capsize experiments have been carried out on the San Francisco Bay to
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investigate the large motion behavior, specifically the occurrence of
capsizing, of ships in severe following and quartering seas. Tests were
performed with frec running models of typical cargo ships, and aleo in
the towing tank with restrained models (for following sea conditions only).
Results of the experiments on the Bay are given by Haddara et al. (1972),
Kastner (1973), Chou et al. (1974), and Oakley, Paulling and Wood (1974).
A numerical model was developed in the course of the above werk, and
reasonable results were obtained for the predicted motions in following
waves up to the point of capsize, when compared with some of the model
tank tests involving the same conditions. However, the correlation
between measured and predicted results was in general not very good.
Parts of that simulation model have been used in the present work. The
final report of the towing tank experiments and numerical simulator has
been presented by Fallon et al. (1980). The ship models tested in the
towing tank were allowed three degrees of freedom: heave, roll and pitch.
The numerical model had been developed specifically for the calculation of
large motions in following sea conditions, and for low encounter
frequencies of encounter. Pérez y Pérez (1974) investigated the time
domain simulation of a steered ship in random seas, taking into account
roll, sway and yaw, and his results showed quite good agreement with
some of the San Francisco Bay experiments.

Capsizing of the models tested on the San Francisco Bay was found to
occur during following or quartering sea conditions, and less often for
beam seas. The models were tested in ballast and full load condition, for a
variety of metacentric heights and Froude numbers. Three different
modes of capsizing were observed for following or quartering sea
conditions: 1) low cycle resonance, also referred to as autoparametric
excitation, which can be shown to be due to the time dependence of the roll
restoring moment in waves; 2) pure loss of static stability (mestly in
following seas), where the ship remains for a significant time stationary
at a large heel angle while the waves pass by; and 3) broaching due to
successive waves followed by a large amount of heeling. The models in
full load condition, and with a low metacentric height, were found to be
most susceptible to capsizing, where the low freeboard was also thought to
be contributing to the catastrophic behavior.
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Other capsize experiments have mostly concentrated on the behavior of
small vessels (e.g. fishing trawlers) in beam seas. The capsizing of
fishing vessels, caused by shifting cargo and shipping green water, has
been investigated experimentally by Kawashima et al. (1978) for severe
beam and quartering seas. Experimental observations of the capsizing of
fishing trawlers subjected to breaking beam seas have been reported by
Dahle and Kjerland (1979) and Morrall (1979). The capsizing of small
vessels in following and quartering seas bas been studied experimentally
by Takaishi (1982) and Yamakoshi et al. (1982). Capsizing in regular
beam seas was studied by Wright and Marshfield (1979), who compared
experimental results, for a vessel having different amounts of freeboard,
with those from a simple mathematical model describing the roll
behavior.

The capsizing of medium size cargo ships (100 to 200 m in length) has
been investigated extensively by Blume and Hattendorf (1984). Model
experiments were carried out in severe random seas, which were
unidirectional, with four different models at different drafts. According
to the authors, capsizing in beam seas was not of relevance for the vessels
considered, and head sea conditions resulted in capsizing only at, or close
to, zero ship speed. Following sea conditions (where the waves come in at
an angle of 0° to 30° from astern) were found to be the most conducive to
capsizing, and therefore were used in the majority of the experiments.
Based on the analysis of bHuilt ships, the authors introduce a form factor,
depending on the beam, draft, depth, KG and fulness, expressed by the
block and waterplane area coefficients. This form factor would be large
for ships being sufficiently safe against capsizing, and small for unsafe
ships. Stability criteria are proposed by formulating the criteria in terms
of the righting arm curve properties and the form factor. It is also
suggested that the risk of capsizing decreases for slower ship speeds (Fn <
0.15).

Large angle roll moticns, the origin of which was reportedly attributed to
parametric excitation, have been experienced occasionally by full size
container ships and offshore transportation vessels. Especially vessels
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exhibiting a large variation in waterplane area (and hence in righting
moment) with draft, may be prone to parametric resonance, which has
also been observed in model experiments with Ro-Ro ships, see Sjéholm
and Kjellberg (1984). It is not certain whether ships have been lost due to
this phenomenon, but it is suspected that it has contributed to a number of
vessel losses. Large roll angles, attributed to the loss of static stability in
following sea conditions, have been reported by containership operators,
among others. This behavior can be of concern when the ship speed is
close to the wave speed. The loss of transverse stability can also lead to
capsizing in beam seas. Broaching is dangerous especially for small
high-speed vessels, but it occurs much less frequently in the case of larger
ships. Two types of broaching may be observed: (1) the ship speed is
approximately equal to the wave speed, so that the ship becomes
directionally unstable as it is carried along by the wave (the amplitude of
which dees not have to be very large), or (2), the ship can lose rudder
control at relatively slow speed in steep seas, where the vessel is brought
off course due to successive large waves coming from astern.

The importance of surge, and hence of the relative position of the ship, in
waves does not apply only to broaching but also to other motion behavior
and stability. For example, the siatic righting arm of a heeled ship in
large following waves undergoes a significant and periodic variation as
the wave crest moves along the ship. This has been illustrated by, for
example, Grim (1952), Kerwin (1955) and Paulling (1961). This
phenomenon can lead to parametric excitation due to a Mathieu-type
instability. Paulling and Rosenberg (1959) showed, using the Mathieu
equation, that unstable motions may result from nonlinear coupling
between heave, pitch and roll. Thus, it seems desirable to be able to
predict the correct position of the ship with respect to the waves, if one
wants to carry out realistic simulations of the motion behavior in the time
domain.

Since it may be of importance as regards large roll motions or capsizing,
experimental (and related theoretical) investigations concerning
broaching are considered in the foliowing. Davidson {1248) studied the
directional stability and broaching behavior of ships in following seas. Du
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Cane and Goodrich (1962) investigated in detail the occurrence and
mechanism of broaching. With their experiments they indicated the
importance of surge with respect to broaching behavior in following seas.
Conolly (1972) discussed the various factors that might contribute to
broaching, and stated that at that time there was a clear lack of
theoretical tools for studying this problem in a reliable fashion;
unfortunately, this is still the case. Grim (1951) studied the stability and
roll motions of a ship in regular following sea conditions (theoretically
and experimentally), and formulated nonlinear equations for the surge
motions in irregular following seas (1963). Grim (1983) investigated the
influence of wave groups on the surge motions of a ship with forward
speed. As regards broaching, the importance of the position of the ship
with respect to the wave crest is also suggested in the work by Wahab and
Swaan (1964) and by Renilson (1982). Motora, Fujino and Fuwa (1982)
confirmed that, based on experimental observations and some numerical
computations, under certain wave conditions and ship speeds, broaching
occurs due to the large wave-induced yaw moment exceeding the course
keeping moment, which is exerted by the rudder. Although it appears
that through experiments a significant amount of knowledge has been
gathered as regards broaching, not much attention seems to have been
devoted to studying broaching in combination with capsizing.

Tl ical A hes for Simulating I amplitude Moti

Next a number of numerical models are reviewed that deal with the
prediction of nonlinear motions of floating structures, so as to place the
model presented by the author in ciironviogical context. These nonlinear
models have been developed over the past ten years or so, and only
highlights of the various theoretical aspects are discussed.

As was mentioned above, the time domain model described by Oakley,
Paulling and Wood (1974), and also by Fallon et al. (1980), was developed
specifically for a slender ship in following sea conditions. The low
encounter frequencies made it possible to estimate the diffraction forces
using the "relative motion principle”, which allows the diffraction torces
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acting on a section of a slender body, to be expressed in terms of the added
mass and damping coefficients, multiplied by a mean water particle
acceleration or velocity. As a result, the combined radiation and
diffraction forces would depend on the relative velocity and acceleration
between the hull and the fluid. For long waves this is a reasonable
assumption, and diffraction effects tend to be relatively small in any case
under these conditions. The Froude-Krylov forces were evaluated over the
complete wetted portion of the hull at each time instant, whereby it was
assumed that the wave profile along the the ship was that of the
undisturbed incoming wave. The added mass and damping coefficients
were considered time independent, except that at each time instant the
coefficients were scaled by the time-dependent cross-section area, which
is not justifiable theoretically. The Frank Close Fit method, see Frank
(1967), was used to obtain the sectional hydrodynamic coefficients. No
assumptions were made concerning small angles of rotation, so large roll
motions could be handled numerically, up to the point of capsize. Some
aspects of this time domain model have been employed in the present
work, as will be discussed in subsequent chapters.

Salvesen (1978) developed a second-order theory for calculating the heave
and pitch motions of a ship in the frequency domain. The assumption is
made that the ship is slender and/or that the frequency of motion is low,
and also that the wave amplitude is small. After evaluating the first
order motions, the second order exciting forces were determined for a
number of cross-sectional shapes. The results indicated that these forces
were of significance mostly for V-shaped bow sections. In a time domain
simulation procedure one could quite easily add these second order forces
to the first order ones.

At Det norske Veritas a numerical model was derived to compute the
motions and loads of a slender ship with forward speed in large, regular
head seas. The theory and results of this time domain model have been
described by Bgrresen and Hambro (1978), and by Bgrresen and Tellsgard
(1979). One of the features that is different from the models discussed
above, is that the sectional added mass and damping coefficients are
determined at each time step for the instantaneous sectional draft, with
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the cross section being considered in the upright position. Although this
may seem to be a practical way of dealing with the time dependence of the
hydrodynamic forces, theoretically it is not correct as the theory is based
on small periodic motions about the mean position. As a result, it is not
possible to say whether such an approach will result in better motion
predictions. The diffraction forces were estimated by applying the relative
motion principle, and forces due to bow flare and slamming were
included. Effects of water on deck were estimated in a very simplified
fashion as an added inertia force.

Chapman (1979) solved the transient motion of two-dimensional bodies in
waves by using source distributions over the static wetted surface. The
free surface boundary conditions are linearized, and the body boundary
conditions are satisfied exactly, thereby permitting "large” motions.
Green's theorem is applied to obtain the source distribution, from which
the pressures can be calculated. In conjunction with the above work,
Chapman (1980) extended the theory to the three-dimensional case for
bodies of arbitrary shape having forward speed. Here arbitrary motions
can be handled, but the assumption is made that the motions are
sufficiently small, so as to linearize the boundary conditions. The ship
hull is represented by a set of quadrilateral surface panels.

A single degree of freedom model has been developed by Wright and
Marshfield (1980) to study the roll behavior in beam seas. Perturbation
theory was used to derive the equation of motion, where damping and the
hydrostatic restoring moment were considered nonlinear. Stability theory
was applied to identify regions of unstable roll behavior.

Parametric roll excitation in the time domain has been investigated by
Blocki {i580), who studied the heave, roll and sway behavior of vessels in
regular and random waves; surge, sway and yaw motions were
considered to be unimportant with respect to Mathieu instabilities. Based
on the results for regular waves, an attempt was made to derive a
probability distribution of capsizing in random waves.
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The theory of the transient response of two-dimensional cylinders in calm
water was studied by Yeung (1982). By applying unsteady Green
functions, and using Volterra's method, he obtaired integral equations
for the velocity potential. The numerical evaluation of the memory effect
integrals is discussed in detail. He showed that the heave response of a
lightly damped cylinder, as predicted alternatively using constant
coefficients at the natural frequency, is practically the same as that
predicted by the formal time domain method. Predictions were found to
compare well with experimental results.

Motions in large, regular waves were studied experimentally by
Yamamoto et al. (1982), and a numerical model was developed to compare
the theoretical results with those from the experiments. Linear theory
was used to compute the forces, and the calculation of the diffraction
forces was based on the relative motion principle, which has been applied
to a slender ship with forward speed. The added mass and damping
coefficients were determined for the instantaneous position of the ship,
and bow-flare slamming forces were taken into account in a simplified
manner.

A time domain method for calculating the forces on two-dimensional
submerged and surface piercing bodies has been presented by Vinje,
Maogang and Brevig (1983). In their method the free surface conditions
are satisfied exactly in an inner domain, and matched to an outer domain
where a linear solution is assumed. The nonlinear potential theory
allows for the occurrence of breaking waves, by means of the
Euler/Lagrangian method. The problem is formulated as an initial value
problem, and the motion of the free surface is represented by discrete,
marked particles. Calculations were performed for a submerged cylinder
situated close to the free surface. Results were found to agree fairly well
with results from linear theory, but the method as such is not practical yet
for three-dimensional ship hulls. The Euler-Lagrangian method was
applicd in two dimensions by Greenhow et al. (1982), to study the
capsizing of a wave energy device in breaking waves. The basis of the
above approach can be found in Vinje and Brevig (1981).
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Lin, Mewman and Yue {1984) precent 2 nonlincor theory for the forces
acting on & three-dimensional, axisymmetric body. The computational
domain is considered nonlinear, and is matched to an outer domain
governed by linear theory. The method was applied to the case of a
nonlinear impulsive wave maker, and in a preliminary fashion to the
heave motion of a circular cylinder. Although promising, the method as
such cannot be applied (similarly to the previous method) to arbitrary

three-dimensional bodies, and it is computationally intensive.

A higher order theory for ship motions is described by Papanikolaou
(1984). The theory is based on a perturbation scheme where all terms up
to second order are retained consistently. The forces on the body are
determined in the frequency domain by integration of the pressure, which
is given by the velocity potentisl (also calculated up te second order). The
velocity potential is obtained by solving for the distribution of sources over
the wetted surface of the cylinder or hull, by means of integral equations.
Hydrostatic effects are treated linearly in this theory. It is suggested that
second order effects may be of importance when studying capsizing.
Second order perturbation theory has been applied by Papanikolaou and
Zaraphonitis (1987) in the development of a time domain simulation
model; the model is applicable for regular beam seas of small amplitude,
and considers only the roll mode of motion, with some correction for
changes in hydrostatic forces due to heave.

A consistent linear theory in the time domain is given by Liapis and Beck
(1985) for a vessel with forward speed in calm water. The theory is
applicable to bodies of arbitrary shape, undergoing forced motions that
can be arbitrary but of small amplitude. The hydrodynamic forces are
determined by integration of the pressure over the mean wetted surface.
The pressure is given in terms of the velocity potential for an impulsive
source, involving convolution integrals of the impulse response function
and the motion. A set of integral equations must be solved to obtain the
velocity potential due to an impulsive velocity. A similar time domain
method has been presented by Beck and Liapis (1987) for computing the
three-dimensional radiation problem for an arbitrarily shaped body.
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Brook (1986) has presented comparisons between simulation predictions
and experimental results for vessels in irregular seas. The simulation
model is based on modified linear seakeeping theory, where coupled yaw,
sway and roll are taken into account and nonlinearities in the roll
equation are included. Nonlinearities in roll comprise the exact
evaluation of the hydrostatic restoring moment and "quadratic” damping
due to viscous effects. Also the frequency dependence of the potential roll
added mass and damping were considered by means of convolution
integrals. Some sensitivity analyses were carried out to determine the
influence of certain forcz contributions on the roll response. It is
suggested that the magnitude of the nonlinear roll coefficients has a
significant influence on roll, while the frequency dependence of added
mass and damping is not always of importance, depending on the type of
vessel.

A second order theory for a ship with forward speed in regular waves is
presented by Ohkusu (1986). Following sea conditions, and thereby low
encounter frequencies, are assumed so that the Froude-Krylov forces
would tend to dominate. It was found that the higher order disturbance
effects of the incoming waves could be of significance locally, but were
small compared with the total exciting forces. It is suggested that the
phase relationship between the wave and the exciting force is improved by
including the higher order terms.

Fujino and Yoon (1986) apply an extended version of strip theory to the
problem of large motions in regular waves. All degrees of freedom, except
for surge, are considered, and the responses are solved in the time
domain. The added mass and damping forces are determined at each
time step, by evaluating the coefficients for the exact instantaneous
position using Frank's method. The diffraction forces are determined
using the relative motion principle. Certain quadratic terms involving
the incoming wave potential are considered in the expression for the
pressure. Itis suggested that for wave height to length ratius of up to 1/20,
the nonlinear theory does not give any better results for ship motions than
linear theory, for practical purposes that is. Nonlinearities in the shear
forces and bending moments seemed to be more pronounced for
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increasing wave heights. Of course, for wave height ratios larger than
1/20 nonlinearities in the rigid body motions may become much more
significant.

A time domain method based on strip theory has been presented by
Elsimillawy and Miller (1986). In the model surge is omitted from the
calculations, the added mass and damping coefficients are determined at
the instantaneous position for each section using Frank's method, and
the diffraction forces are calculated by integrating the radiation
potentials, as given by Salvesen, Tuck and Faltinsen (1970). The variation
of the righting moment during the passage of a wave is discussed.

Kriger (1986) describes a model for simulating the roll motions of a ship
in the time domain. All six degrees of freedom are considered, where the
yaw, sway and roll motions are decoupled from the heave, pitch and surge
motions; heave, sway, yaw and pitch are considered to be linear, while the
roll and surge motions are taken to be nonlinear. Nonlinearities in the
roll restoring moment are taken into account as well as viscous damping
effects. The frequency dependence of added mass and damping in the
time domain is not treated. Roll responses are given as a function of
various parameters, such as wave heading angle, metacentric height,
and encounter frequencies. The conditions for capsizing in irregular
waves are studied, where in the simulations use is made of an equivalent
wave to approximate the actual time dependence of the wetted surface.
Kriger's model has been used by Soding (1987) to investigate critical
ranges of wave conditions that may lead to capsizing. Simulations were
carried out for a certain cargo ship, subjected to severe following to
quartering seas; critical wave heights were estimated for the various
conditions.

The nonlinear roll behavior of barges in beam seas has been studied in the
time domain by Robinson and Stoddart (1987). A one degree of freedom
model is presented for the roll motion, where the hydrodynamic
coefficients are assumed to be constant; nonlinearities are represented by
quadratic damping due to viscous effects, and by the hydrostatic restoring
moment. The quadratic damping coefficient is based on the force
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prediction using a discrete vortex method. The hydrostatic restoring
moment is adjusted for the wave slope, by taking the relative angle
between the barge and sea surface into account. This is a reasonable
approach for waves having a length which is long compared with the
beam, and has been investigated by, for example, Blagoveshchensky (1962)
and Visineau (1979).

A time domain model to study the broaching behavior of patrol craft has
been presented by Rutgersson and Ottosson (1227). In this model surge,
sway, roll and yaw were considered in regular and random wave
conditions, and theoretical parameters were combined empirically with
measured force results of free-running models in regular waves to form
the total mathematical description of the process. Certain nonlinearities,
such as damping due to viscous effects and drift forces, were taken into
account.

Poincaré mapping and bifurcation theory have been applied by Virgin
(1987) to the single degree of freedom roll model for a ship in regular beam
waves, based on the model proposed by Wright and Marshfield (1980).
Analysis yielded frequency ard amplitude regions for which roll motion
instabilities could be expected to occur.

An overview of a method to simulate the motions of ships in severe seas
has been presented by Hooft (1988). Motions up to the point of capsizing in
beam and following waves were studied, where wind was also taken in to
consideration. The wave exciting forces were based on measured results
in waves for different model speeds, and simulation results were obtained
for a variety of ship speeds, wind and wave conditions.

The behavior of semisubmersible platforms has been investigated quite
extensively, and in recent times thorough studies, both experimental and
theoretical, have been performed concerning damaged semisubmersibles
in large waves. In connection with this, the comprehensive "MOPS"
project (Mobile Offshore Platform Stability) carried out in Norway
deserves attention; one of the final reports on the experimental results
and recommendations has been presented by Dahle (1984), and some of
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the numerical modelling concerning the motions of a semisubmersible,
having a list angle in regular waves, has been described by Huang, Hoff
and Ness (1982), and by Nass and Hoff (1984). Matsuura, Ikegami and
Seto (1987) developed a similar time domain procedure, where the motions
of a semisubmersible in extreme conditicns were considered in order to
study adverse effects suck as flooding, heavy list or mooring line rupture.
Both of the aforementioned time domain methods for semisubmersibles
are largely based on the work by Paulling (1977). Although the present
work is concerned with the motions of a freely floating body, several
aspects of the theory and numerical model should be applicable to moored
structures as well.

Problem Statement and Solution Procedure

As a synthesis of the above theoretical models, there still appears to be a
need for a theoretical model that is capable of conjunctively treating all six
degrees of freedom of a steered vessel sailing in a severe random sea,
where the wave-induced vessel motions can attain large values.
Furthermore, due to the lack of the appropriate tools, very little theoretical
work has been performed with the aim of studying the mechanisms of
capsizing in waves. Thus, an attempt is made to contribute some new
material to our sparse knowledge of capsizing in waves.

The theory and related computer program developed in the present work
are basically an extension of those from the approach described by Oakley,
Paulling and Wood (1974) and Fallon et al. (1980). Improvements and
additions to the theory have been made such that the theory is not
restricted to astern seas and low encounter frequencies. Also, more
viscous effects have been incorporated. There is a need to invastigate
certain issues pertaining to simulations in the time domain, which up to
now have not received much attention; this applies especially to the
behavior in wave groups for following, or quartering, sea conditions. In
the course of this work it was found that the statistics of the observed
random seaway, for following sea conditions, can be different from those
commonly accepted. Also, it was deemed useful to investigate the relative
importance of the various exciting force contributiorns. This is done using
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two approaches: (1) the sensitivity of the roll response to variations in the
force components is considered for several conditions, so as to obtain
information regarding their relative significance; (2) the time series of the
moment components are plotted along with the motion records.

An overview is given next of the contents of this dissertation, which is an
attempt to deal with the problem of large ship motions, up to the point of
capsizing, in a realistic and rational manner. An investigation is made
of factors that are relevant to the prediction of capsizing. Some of the basic
assumptions that are made in the present work comprise the following:
the waves can be random but are assumed unidirectional, the vessci is
freely floating and may have forward speed, cargo and stowed goods are
assumed to remain stationary under all conditions. The last assumption
especially, is one that is easily overlooked when considering severe
motions from the theoretical point of view, while in fact shifiing cargo or
ballast may be one of the leading causes for a ship to exhibit undesirable
motion behavior in severe conditions, or even to capsize, see e.g.
Saunders (1965) and Kawashima et al. (1978). It would be a difficult task
to incorporate nonstationary cargo effects in a motion program, but might
be worthy of future consideration. Although of possible importance,
breaking waves and water-on-deck effects have not been considered.

In Chapter 2 the theory of computing the motions in large waves is
described. This chapter deals mainly with the description of the various
exciting forces and sea surface. The approach has been to separate the
potential flow problem from the viscous flow problem, making it possible
to estimate separately potential and viscous flow effects, and subsequently
superimpose them. The potential forces are based on an extension of
linear theory, where some integrations are performed over the
instantaneous free surface, large angles instead of small angles are used,
and first-order memory effects are considered. Viscous forces are
modelled empirically as regards the roll damping moment, drag forces in
the surge, sway and yaw directions, and sway-roll coupling. Force
contributions are assumed to be due to waves, maneuvering, rudder and
possibly wind. It is assumed that the free surface conditions can be
linearized, so that linear wave theory can be used to compute relevant
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wave kinematics up to the free surface; linear theory has been shown to
yield reasonable results for deep water conditions, even for waves of finite
height. The motion behavior in unidirectional random waves only is
determined, since it was thought that wave directionality can be quite
easily implemented in the numerical model, if so desired, at a later stage.
Presumably most of the important motion characteristics can be deduced
from the results in unidirectional seas. Some new results for wave
statistics pertaining to the simulation of random following seas are also
presented in Chapter 2; these results are relevant with respect to the
simulation of ship motions in following or quartering sea conditions.

Aspects of the implementation of the theory in the computational
algorithm are given in Chapter 3. The numerical model has been verified
by means of comparisons with experimental results in waves of small and
large amplitude, as is discussed in Chapter 4. The sensitivity of the roll
response is investigated in Chapter 5, where the changes in roll related to
systematic changes in the various force components are considered for
beam and following sea conditions. These results provide some new
information on the relative importance of the various fluid force
components that affect large amplitude roll motions. Based on some of
the theoretical results obtained in Chapter 2, simulations of random
following seas have been performed, as well as some computations of
motions in following sea conditions, the results of which are presented in
Chapter 6. Also, an outline has beer given in Chapter 6 of a method for
representing a random seaway by an equivalent wave system, which
consists of only two components and which may be useful to simulate e.g.
capsizing. In Chapter 7 a number of different capsize modes are
identified numerically, followed by an attempt to determine cnitical
ranges of speed and heading conditions for which capsizing of a given
vessel may be expected to occur.
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CHAPTER 2
Theory of Ship Motions in Large Waves

The objective is to formulate a model capable of treating in a realistic
manner the motions of an ocean going vessel caused by severe waves.
Wind may be considered in a rather simplified fashion. Since it should be
possible, with the aid of this model, to investigate potentially dangerous
situations that may lead to capsizing, the model cannot be restricted to
handling only, for example, small amplitude wave conditions. That is,
the model should be able to handle storm generated wave conditions also.

At the onset of this work a number of basic assumptions have been made:
wave breaking does not occur, impact loads due to slamming are not
considered, and effects of water on deck are neglected. In order to deal
with these phenomena the reader is referred to the following references.
The theory and model for simulating the effects of water on deck in two
and three dimensions have been treated by Dillingham (1981, 1986).
Breaking waves and capsizing of small vessels have been studied
experimentally by, for example, Dahle and Kjerland (1979), Morrall
(1979), and Allievi et al. (1986). An empirical procedure has been
presented by Blume (1987) to estimate the roll moment impulse due to a
breaking wave. Another assumption made in this study, is that the ship
or platform motion problem is applied to deep water conditions only,
where the water depth is sufficiently large, so that the waves are not
affected by the bottom. The vessel is considered as freely floating, that is,
mooring forces are not taken into account, and it is assumed that the
center of gravity remains stationary within the vessel at all times. Effects
due to currents are not considered.

In order to predict the seakeeping behavior of a vessel, it is necessary to
determine the fluid pressure acting on the structure. Pressures can be
calculated fairly accurately for a ship in small waves, however, most
theories break down when the wave height becomes relatively large.
Forward speed effects of a ship present additional problems. It is
assumed that inviscid fluid effects may be treated independently of viscous
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effects, which is obviously an approach of convenience and theoretically
not correct since there may be strong interactions, see for example the
discussion by Odabasi (1981). It has been found that in many marine
applications this is usually not a disastrous assumption, as viscous effects
often are confined to relatively thin boundary layers.

Therefore, the treatment of fluid forces has been split into two main
sections: free surface effects due to vessel motion and wave excitation
forces are treated in Chapter 2.1, where the fluid is considered inviscid
and the flow field irrotational, so that potential flow theory is valid. The
theory should be applicable to both low and high frequency waves coming
from any direction with respect to the vessel. Chapter 2.2 deals with
viscous effects associated with, for example, friction and vortex shedding,
especially with respect to roll. Chapter 2.3 is concerned with other
external forces, such as rudder and wind-induced forces, which are
treated only briefly. Chapter 2.4 deals with the theory of wave kinematics
for both regular and irregular waves. In this work special attention is
paid to the motion behavior and statistical properties in wave groups in
random, following seas. The above theoretical model forms the basis of
simulating the vessel motions in severe sea conditions, which may be
critical with respect to capsizing. In order to proceed, we give an
overview of the coordinate system convention and of the general equations
of motion that are to be solved.

Coordinate System Convention

Several coordinate systems are necessary for expressing the forces and
moments acting on a vessel, and for solving the equations of motion. The
earth-fixed, or inertial, system is defined by Oxyz, where the y-axis points
vertically upwards. The local system O*x*y*z* is fixed in the body with
the origin O* being located at the center of gravity of the structure, and
where x* points forward (towards the bow), y* points upward at right
angles to O*x*z*, and z* points in the starboard direction at right angles
to O*x*y*. All coordinate systems are considered to be right-handed, so
that e.g. pitch is bow up, and yaw is the bow towards port. The vessel may
have forward speed, U, and the system Oexeyeze translates in the Oxz
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plane with the vessel at its mean speed, where x€ points in the mean
forward direction of the vessel, i.e., along the x-axis, and y¢ points
vertically upwards. A schematic overview of the various coordinate
systems is shown in Figure 2.1.

y
0
/ x
V4
Figure 2.1. Coordinate System Representation
Equati f Moti

The approach for solving the motions of a structure subjected to various
external forces is to consider the equations of motions in the time domain.
Both linear and nonlinear components are to be incorporated in their full
(or approximate) form. If there is no interaction among certain force
components, this method allows one to easily add or remove those
components in the equations of motion. In order to apply Newton's second
law the body is assumed rigid, and all six degrees of freedom are to be
taken into account conjunctively.

The system of equations of motion is described by Newton's second law,
stating the conservation of linear momentum:
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and the conservation of angular momentum:

i[a) =q,

where m is the mass of the vessel, k represents the external force vector,
which has a hydrodynamic component due to the motion of the structure
and due to the wave-induced forces acting on the hull, as well as other
external force components, such as rudder or wind forces, and v is the
velocity vector. Similarly, I is the inertia matrix, © is the angular velocity
vector, and q is the moment vector. In this work, the conservation of
linear momentum equations will be solved in the fixed reference system,
while the conservation of angular momentum will be expressed in the
local, body-fixed system. To obtain the forces in the earth-fixed reference
system, the various force components are' first calculated in the the
structure-fixed O*x*y*z* system. These components are added so as to
yield the total forces on the right hand side of the equations of motion, and
the total force vector can be resolved into the Oxyz system by a
straightforward coordinate transformation, using the transformation
matrix T, as is discussed further on in this chapter. An overview of
possible ways of evaluating the equations of motion in time domain
simulations has been given by Hooft (1986).

The position of the vessel can be expressed in terms of the location of the
center of gravity in the fixed system Oxyz, and by the angles of rotation
(given about the local axes of O*x*y*z*). In order to solve for these
quantities, first the position of the mass center in the fixed system is
defined by the vector x(t):
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and the velocity of the mass center is its time derivative:
d .
v(t) = ax(t) =X .

Here and further throughout this work, a dotted quantity denotes
differentiation with respect to time. The rctation of the ship coordinate
system is uniquely defined by the following order of rotations,
characterized by the Euler angles : first rotate by the yaw angle ¢, followed
by the pitch angle vy, and finally by the roll angle 6. The Euler angles are
represented by the vector x:

In order to express a vector in the system O*x*y*z* in terms of the Oxyz
system, use must be made of transformation matrices associated with

these angles; these are given in Appendix A. The angular velocities about
the vessel coordinate axes given by o can be related to the time derivatives

of the Euler angles, %, as follows :
By=o0,

where the matrix B is also a function of the Euler angles, and is defined
in Appendix A. It is noted that with large motion simulations the Euler
angles must be retained, so that the various transformation matrices are
time dependent.
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The moments and products of inertia in I are constants in the moving and
rotating O*x*y*z* system, and the rate of change of angular momentum
in that coordinate system is given by

d d
-at-lm = Iamﬂnxlw.

The inertia matrix contains the conventional moments and products of
inertia of the vessel:

I -1 -1
XX Xy b
1= 1y Yy
-1 -1 I
| Tz =

The heart of the problem of calculating the motions lies in the
computation of the hydrodynamic forces, which appear on the right hand
side of the equations of motion. This problem is compounded by the
required ability of the model to treat random waves that are "large”, i.e.,
for which the maximum amplitude is of the order of, say, the draft of the
structure. An overview is shown in Table 2.1 of the various potential and
viscous force components that may occur in the equations of motion,
together with some relevant background information. Since in this work
the emphasis is placed on wave-induced motions, wind forces have been
included oniy in a simplified fashion, i.e., constant velocity and profile; if
desired at a later stage, it would be relatively easy to model the velocity and
profile as time-dependent quantities. A brief discussion is given of the
assumptions involved with the determination of the various force
components. Next a summary is presented of the nonlinearities that
occur in the equations of motion. Details about the determination of the
force components and other related phenomena are treated in the
following sections of this chapter. Certain aspects of the numerical
procedures for solving the equations of motion are discussed in Chapter 3.
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Force Components Comments

- Froude-Krylov due to wave induced pressures
static (evaluated over instantaneous wetted
.dynamic surface)

- Radiation first order memory effects

- Diffraction linear transfer functions

- Viscous

.roll damping
.sway-roll coupling

linear and quadratic (relative motion)
quadratic drag (vessel motion)

.maneuvering nonlinear (calm water)

.sway, roll and yaw quadratic drag (waves)
- Resistance total calm water resistance (relative motion)
- Propulsion constant RPM, variable thrust
- Rudder lifting line (instantaneous velocity)

- Wind

time-independent profile and velocity

Table 2.1. Summary of Force Components in Equaticns of Motion

Assumptions in the Determination of the For mponen

Next an overview is given of the assumptions involved with the
determination of the various force components listed in Table 2.1. Linear
theory is used for determining the potential flow forces, where the velocity
potential is decomposed into several components, comprising a potential
associated with the incoming wave system, a radiation and diffraction
potential. It is assumed that the Froude-Krylov forces, associated with the
pressure of the incoming wave system, are critical, so that they must be
evaluated in an accurate fashion. The wave pressure is evaluated over
the exact wetted surface, and it is assumed that linear wave theory is
applicable above the mean water level for predicting the pressure. It has
been shown that, even for large amplitude waves, linear theory predicts
the kinematic and dynamic wave properties quite well. From the
sensitivity analysis in Chapter 5, it appears that the Froude-Krylov forces
are always of importance, that is, for all wave conditions considered in the
analyis.
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The determination of the radiation forces is based on potential theory
applied in the time domain. The theory is valid for arbitrary, small
motions, and approximations are made to take into account large angles
of rotation. The radiation forces are expressed in terms of memory effect
integrals, which depend on first order kernel functions. The kernel
functions are based on the Fourier transform of the frequency-dependent
added mass and damping coefficients. The vessel is assumed to be
slender, so that strip theory can be used to estimate the hydrodynamic
coefficients. Memory effects associated with surge motions can be
incorporated by means of externally obtained kernel functions for surge.
The radiation forces are evaluated with respect to a nonrotating
coordinate system that moves with the vessel at its mean speed, and it is
assumed that the kernel functions are independent of the direction of
motion of the vessel. That is, the kernel functions are assumed time
independent, and therefore need to be evaluated only once before
determining the ship response. From the simulations it was found that
the radiation forces yielded better motion results by assuming the vessel to
be in the upright position at each time instant.

It is assumed that linear strip iheory can be used to determine also the
diffraction forces, where the vessel is considered in its upright position,
and approximations are, made to deal with large angles of motion.
Furthermore, it is assumed that the wave motion has been going on for a
sufficiently long time for transient effects to disappear, so that the time-
dependent diffraction forces can be expressed in terms of a frequency-
dependent transfer function and the instantaneous wave elevation at the
center of gravity. The forces are determined with respect to the
translating, nonrotating reference system.

Viscous effects are assumed to be independent of potential flow effects, so
that the various viscous flow forces can be added directly to the potential
flow forces. All viscous effects are treated separately and in an empirical,
approximate manner. Rather than attempt to deal with the viscous forces
in an exact fashion, the intention was to incorporate all possibly relevant
contributions more or less rationally. The distinction is made between the
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following efiects: roll damping, coupling between sway and roll,
maneuvering, and wave-induced drag. The roll damping moment is
considered as the sum of a linear and quadratic term, where the damping
coefficients are assumed to be time independent. Although the damping
coefficients depend on the roll amplitude and frequency, in this work they
are based a priori on the natural roll frequency and an amplitude that can
be expected to occur for the conditions considered. It is assumed that the
method of component damping may be used, in which the total damping
moment is assumed to consist of independent contributions: hull lift,
friction, eddy shedding, and bilge keel. The empirical data are valid for
rolling in calm water with forward speed. However, if the waves in a
direction transverse to the vessel are sufficiently long, it is assumed that
the roll damping moment depends on the relative rotational velocity
between hull and fluid; only the undisturbed incoming wave system is
considered, i.e., diffraction and wave radiation effects are assumed
negligible.

It is assumed that coupling between sway and roll due to viscous effects
can be modelled by a quadratic drag term. This results in a rell moment
caused by the vessel's sway velocity, and a sway force caused by the roll
motion. The empirical coefficients are based on the motions in calm
water, and the coupling coefficients are assumed to be independent of the
wave conditions and time.

Maneuvering theory in calm water is assumed to be valid when used in
conjunction with the prediction of motions in waves. Maneuvering forces
are assumed to be associated with cross-flow effects, where the sway force
and yaw moment are considered to depend on the sway and yaw velocities
of the vessel. A nonlinear empirical model is used, and the empirical
coefficients are assumed to be time independent.

For waves that are sufficiently long in a direction transverse to the vessel,
it is assumed that a wave-induced drag force acts in the sway direction.
This drag force causes a sway force, a roll and yaw moment. It is
assumed that the drag force can be modelled by a quadratic drag term,
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which depends on the mean velocity of the wave transverse to the hull and
a drag coefficient. The drag coefficient is considered constant.

The ship resistance is based on the total resistance in calm water for
constant forward speed. It is assumed that the resistance coefficients are
independent of the wave conditions and time. It is assumed that the RPM
of the propeller is time independent, so that the propeller thrust can be
estimated for any forward speed.

The forces acting on the rudder are assumed to depend on the
instantaneous, relative flow velocity, evaluated at the center of the rudder.
Lift and drag forces are modelled by expressions that are based on data for
foils in steady flow conditions, and it is assumed that the lift and drag
coefficients are independent of time and fluid flow conditions.

Nonlinearities in the Equations of Moti

The equations of motion are treated as exactly as possible within the
limitations of the theory, the result being that the motions are nonlinear.
That is, the vessel motion is related ir a nonlinear fashion to the wave
amplitude, for example. Nonlinearities arise from a variety of sources,
and are summarized in different categories:

1. Rigid-body dynamics with large angles -- large angles are retained
in the equations of motion, resulting in the nonlinear
dependence on angular velocities due to the cross product o x Io

in the conservation of angular momentum;

2. Transformation matrices with large angles -- the transformation
matrices T and B contain products of sines and cosines of the
Euler angles, so that applying those matrices to the force and
rotational velocity vectors, respectively, causes a nonlinear
dependence of those forces and rotational velocities (expressed in
the earth-fixed system, for example) on the angles of rotation;
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3. Fluid flow effects -- the forces acting on the structure can be

nonlinear with respect to several parameters: the angles of
rotation, linear and angular displacements and velocities of the
vessel, wave amplitude, and wave particle velocities. The
various forces can be characterized as follows.

3.a. The Froude-Krylov forces are integrated over the exact
wetted surface due to the incoming wave system, which may
result in a nonlinear dependence on the wave amplitude and on
the linear and angular displacements of the vessel.

3.b. The viscous roll damping forces depend in a nonlinear
manner on the vessel's roll velocity, the rotational velocity of the
wave surface, and the vessel's sway velocity.

3.c. Viscous maneuvering forces and moments (w.r.t. sway and
yaw) depend in a nonlinear manner on the vessel's sway and
yaw velocities.

3.d. Viscous wave-induced drag forces and moments (w.r.t.
sway, roll and yaw) depend in a nonlinear manner on the wave
particle velocities transverse to the vessel.

3.e. The total ship resistance may denend in a nonlinear
fashion on the forward velocity of the vessel and wave particle
velocity in the surge direction.

3.f. Rudder forces (lift and drag) depend in a nonlinear fashion
on the incoming flow velocity, which itself depends on the
components of the ship velocity and wave particle velocity.
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2.1. Potential Flow Effects

The total hydrodynamic pressure force is evaluated using pcteniial
theory. Viscous effects are usually associated with relatively thin
boundary layers, and this is used as a justification to separate the viscous
force computations from the potential flow calculations. The computation
of the viscous forces is treated separately in Chapter 2.2. The general
potential flow problem is considered first, followed by a detailed treatment
of subproblems, such as the computation of the Froude-Krylov, radiation
and diffraction forces, as well as the description of the wave kinematics.
Linear theory is used, and certain approximations are made to account
for large amplitude random waves and large motions.

Regular W

The forces acting on the vessel are considered to be due to the waves and
the motion of the vessel itself. The usual assumptions are made: the fluid
is inviscid, and the flow field irrotational, so that a velocity potential @

exists. As a consequence of irrotationality there must be zero vorticity,
i.e.,

VxV=0,

where v is the fluid velocity vector, and V is the gradient operator:

d 9 0
V=(-§,—(-,—a—};',"a—z').

Also, the fluid is assumed to be incompressible, so that the conservation of
mass equation, or the continuity equation, is given by:

du dv Jw
-a—-x-+§-y—+—a—z— =Vv=0 ’

which can also be written as
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u +v +w =0.
x y z

Introducing the definition of the velocity potential, ®(x,y,z;t) must satisfy
the Laplace equation throughout the entire fluid domain:

® +O +O =V=0.
XX yy 2z

As a result of the irrotational flow assumption and neglecting surface
tension, the dynamic boundary condition on the free surface, y = n(x,z;t),

can be expressed by Euler's Integral:

2
£+-1-IV<DI +£+gy =0aty=n1q.
P 2 ot

The kinematic boundary condition applied to a solid boundary is given by

van = V.n ,

where V is the velocity vector of the body, and n is the normal vector (taken
to be pointing out of the fluid always). For a depth large enough to be
considered infinite, the kinematic condition on the ce2 floor is in the
absence of current:

im Vo =0.
y—-o0

The kinematic boundary condition on the free surface is given by

d’y(x,n,z;t) =N&xz)+dn +dn .
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Linearizing the kinematic and dynamic boundary conditions at the free
surface, results in the following combined free surface condition, which
must be applied to the reference state of the fluid, y = 0:

O, (x0z1) +g0 = 0 .

With the presence of a floating vessel in the fluid, the kinematic boundary
condition must be applied at the hull:

van = V.,

and the dynamic boundary condition on the hull is expressed by Newton's
equations of motion, consisting of the conservation of linear and angular
momentum combined:

2
M-‘L;- = ) ,
dt

where M is the generalized mass matrix of the vessel, x is the translation
and rotation vector, and f is the vector containing the force and moment
components acting on the vessel.

Using the linear theory approach, the total velocity potential can be
considered to be composed of the linear superposition of several potentials:

d(x,y,zit) = <DI +<I>S ,

where ®j is the velocity potential of the undisturbed incident waves, and
®g is the potential due to presence of the vessel and its disturbance in the
waves. Then ®g can be assumed to comprise the following potentials:
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¢S(x,y,z;t) = (DU + <DR + d>D .

where ®y = potential due to forward speed (in calm water)
®R = potential due to wave radiation (forward speed in calm

water)
®p = potential due to wave diffraction (zero forward speed) .

A detailed discussion about the force contributions due to the individual
potentials is given in subsequent chapters. According to Euler's Integral
the total pressure in the fluid can be written as

_ a 1 o .9
P=-pgy-px--3 Vo4,

which, in order to be consistent with the decomposition of the velocity
potential &g, becomes

od
P =-PeY-P35 -

The total hydrodynamic force and moment vectors can be obtained
theoretically by integrating the pressure in the fluid over the exact wetted
surface. Thus, if the normal is defined as pointing out of the fluid, the
total force (in generalized notation) is given by

f®) = [fpnads,
S

where S is the instantaneous wetted surface. The normal n is the general
normal vector in the local cocrdinats system O*x*y*z*, i.e., its first three
components nj 2 3 contain the conventional unit normal components, and
the last three components are cross-products: n4 56 = r* xnj 2 3. Here r*
represents the position vector to a point on the hull from the center of
gravity. Thus, the (6x1) force vector f contains both force and moment
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components, and is therefore referred to as a generalized force vector; for
example, f; denotes the surge force and fg denotes the pitch moment.

The general approach taken here is to consider nonlinear motions in
waves for which linear theory is assumed to be applicable, where the
water depth is sufficiently large to be considered infinite. Displacements
and angles can be large, and wave-induced pressures are integrated over
the instantaneous wetted surface. In subsequent analyses it was found
that the Froude-Krylov forces (associated with ine pressure of the
incoming wave system) were significant for all conditions, indicating the
importance of modelling those forces correctly.

The velocity potential of the incoming wave system,®j, satisfies the
linearized free surface conditions and its general form is given by

rbl(x,y,z;t) = cpl(x,y,z)-cwt .

where ¢ is the time-independent part of the potential, the expression for
which is given in Chapter 2.4, and o is the wave frequency. ®jis of order
o (or O(a)), where « is the wave steepness parameter given by the wave
amplitude to wave length ratio :

oc=Aw/l.

In the determination of ®g it is assumed that the structure is slender.
The slenderness parameter is given by the ratio of beam (or draft) to
length :

e=B/L,

so if L = O(1), the beam and draft are of order ¢, i.e., B = O(g) and d = O(g).
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In the following sections all of the relevant force components comprising
the total force are treated separately. For each case details are given about
the particular theory and inherent assumptions. The potential flow force
components consist of the following: static and dynamic Froude-Krylov
forces (due to the pressure in the wave system), radiation forces (due to
forced motion in calm water) and diffraction forces. The Froude-Krylov
forces are evaluated over the instantaneous wetted surface, and the forces
associated with ®r and ®p are computed for the equilibrium position of
the vessel, in accordance with linear theory. The effects due to the
forward motion potential, ®y, are approximated by considering the calm

water resistance separately.

2.1.1. Froude-Krylov Forces

The Froude-Krylov force is, according to classical linear theory, the force
associated with the pressure in the undisturbed incoming wave, where
the pressure is integrated over the mean wetted surface of the vessel. In
this work the wave pressure is evaluated up to the instantaneous water
level, so that the Froude-Krylov force is obtained by integrating the
pressures over the instantaneous wetted surface; therefore, this approach
can be considered to be accurate within the framework of the present
work.

The wave pressure is considered to be of the order of the wave slope, i.e.,
the quadratic term in the pressure,

1 2
3 lV(DII ,

is neglected. The force associated with this quadratic term is important
when one is concerned about slow drift motions of moored structures, or
added resistance in waves, however, for the wave induced motions of a
ship it is assumed to b2 negligible. The justification for neglecting this
force contribution is that its amplitude is typically very small compared
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with the total force (see e.g. Papanikolaou (1984)), and exhibits itself
dynamically in terms having frequencies that are the sum or difference of
the wave component frequencies. The sum frequencies are relatively high
and can be neglected for a typical vessel, while the low frequency
components are not likely to excite any of the modes of a freely floating
ship. Nevertheless, care should be taken when, for example, the natural
roll frequency is very low, under which condition roll resonance could
occur due to slowly varying forces of higher order. Thus, the wave
pressure is given by

a¢l
P=-PEY-P—5~ =Psg*Pp >

where ps and pp are the "static" and "dynamic" pressure, respectively,
where both parts are time dependent. The force associated with pgis the
static Froude-Krylov force, and can also be considered as the usual
vertical hydrostatic force. The vector comprising the static force and
moment components is given by

e = P8 yynds .

where S is the wetted surface (which varies with time), and n is the
generalized six-component outward normal as defined above. Changes in
hydrostatic forces occur because of body displacements or changes in
wave elevation, and detailed expressions of the forces and moments are
given in Appendix B for any position of the vessel.

At each time instant, the vessel's position must be evaluated exactly, as
well as the position of the wave surface along the hull. Having this
information, it is possible to determine the total hydrostatic force and
moment components by integration around each section. It should be
noted that in these evaluations the wave surface is based on the
undisturbed, incoming wave system. Thus, changes to the incoming
waves caused by waves generated by the hull at mean forward speed, the
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motions and body-wave interactions (diffraction), are neglected. At least
for relatively low ship speeds and low frequencies of encounter, this
should be a reasonable assumption. Thus, what are called the hydrostatic
or static Froude-Krylov forces in this work, are not the exact hydrostatic
forces since these would depend on the actual free surface. It has been
shown that large changes can occur in the righting moment when a wave
passes by a heeled ship, see e.g. Paulling (1961) or Elsimillawy and Miller
(1986). For this reason the static restoring force component should not be
treated by means of a time-independent coefficient. A study on the
changes in righting arm values due to diffraction effects has been
presented by Barrie (1986). It was found that for a trawler diffraction did
change the stability of the vessel, but to a relatively small extent, where
the overall transverse stability was somewhat larger with diffraction
effects accounted for (under the conditions considered, of course).

Gravitational effects can be accounted for as follows. The static Froude-
Krylov force component, acting in the y-direction of the earth-fixed
system, can be balanced with the gravitational force, so as to obtain the
change in the static force compared with the equilibrivm position. If the
mass of the vessel is given by m, then

m = p.V,
where Vis the displaced volume in calm water. The resulting static

balance in the static vertical force is given by subtraction of the weight
from the vertical component of the static Froude-Krylov force, f2pK ¢

* 2 2
frxs @ = fg O - mg = fpe (O -pgV .

It should be borne in mind that what hereafter is called the static Froude-
Krylov force for heave, is in fact the change in vertical static force with
respect to the still water equilibrium condition.

The dynamic Froude-Krylov force vector associated with the pressure pp
in the wave field is
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fFK’d(t) = -p H-?xn ds ,
S

detailed expressions of which are also given in Appendix B.

The conventional Froude-Krylov forces would be obtained by evaluating
the surface integral over the mean wetted surface Sp, in the mean

equilibrium position up to the mean water level. Then these forces would
be of order a. Salvesen (1978) derived second order expressions for the
wave forces acting on a slender body in a second order Stokes wave train
in the frequency domain. He applied asymptotic expansions to the velocity
potentials, and also to the motion £ of the structure :

g = ED @4 = (O eim+§(2) ety ...,

where o is the frequency, and { is the amplitude of order a. By integration
over the total wetted surface and considering all forces up to second order,
he obtained expressions for second order heave forces acting on two-
dimensional sections.

In the present work no assumption is made as regards the form of the
motion and the integration is to be carried out over the exact wetted
surface at each time instant, so what are called herein the dynamic
Froude-Krylov forces are in fact the "exact” forces associated with the
d®1/0t term of the incident waves, although one may question the validity
of evaluating the velocity potential @j above the mean water level (see
Chapter 2.4 for a more detailed discussion). This method was applied in
the numerical model described by Oakley, Paulling and Wood (1974), and
Fallon et al. (1980). When integrating over the wetted length of the vessel,
the only assumption made is that the wetted volume must be continuous.
That is, the stern and bow can be totally emerged, but the case of an
emerged midship section with immersed sections forward and aft is not
allowed.
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Eroude-Krvlov Surge Forces

It is of interest to note that in following or quartering seas the Froude-
Krylov force, acting in the surge direction, can be of significant
amplitude. As is shown in Appendix B, the surge force is given by
integration of the pressure gradient -dp/dx over the wetted volume. For
following sea conditions, this pressure gradient will have the same sign
along the length of the vessel when positioned between crest and trough,
provided that the wave length is equal to or larger than the ship length.
The maximum force will occur for a vessel positioned one quarter wave
length on either side of the wave trough; the sign of the force would be
positive for the leading edge position , and negative for the trailing edge
position, as a consequence of which the resulting ship speed may undergo
noticeable variations during the passage of a long wave. The larger the
wave length to ship length ratio, as well as wave amplitude, the larger the
exciting force will be. Grim (1963) has illustrated the importance of the
Froude-Krylov forces in his study on ship motions in following seas; he
showed that the speed of a vessel, travelling slower than the predominant
wave speed, can be increased significantly for a certain amount of time.
Such a speed increase could have an important bearing on the possibility
of broaching. The Froude-Krylov surge forces have also been examined by
Eda (1972b), who modelled the coupled surge, yaw and sway motions of a
ship in waves, so as to study the directional stability behavior in following
seas.

A consequence of integrating the fluid pressures over the instantaneous
wetted surface is that the resulting force can have a nonzero mean value,
so that a steady drift force may be present among the exciting forces. In
Appendix B it is shown that the drift force, due to a regular wave acting
on a heaving cylinder of small diameter, differs from zero when the heave
motion is out of phase with the wave motion. The drift force is zero for a
stationary cylinder, or when the cylinder heaves in phase with the wave.
The Froude-Krylov drift force increases with increasing wave amplitude.
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2.1.2. Radiation Forces

Linear theory is applied in the times domain to deal with the
hydrodynamic forces caused by the forced, possibly random motions of the
structure and by subsequent free surface disturbances. First, the zero
forward speed case with small motions about the equilibrium condition is
considered, followed by the forward speed case. Use is made of the two-
dimensional hydrodynamic coefficients obtained in the frequency domain,
from which the three-dimensional hydrodynamic coefficients are
estimated for a thin ship by methods of strip theory. The three-
dimensional coefficients can be transformed, so as to express the time-
dependent forces acting on the vessel by means of kernel functions and
memory effect integrals. Linear theory is applied to the forward motion
case, combined with small motions relative to the moving reference
frame. 1In the third section a treatment is given of the possible
combination of the linear theory with large motions, and of its inclusion
in the equations of motion.

2.1.2.A. Zero Forward Speed

In this section the problem considered is that of a structure undergoing
small motions about the equilibrium position at the free surface in calm
water. Pressure fluctuations are caused by the radiated waves, and the
fluid forces acting on the body can be calculated when the radiation
potential ®R is known. First, an overview is given of the boundary value
problem from which ®R can be determined for small harmonic motions.
The use of linear theory allows the total velocity potential to be decomposed
into several contributions, as has been discussed in Chapter 2.1:

o= ¢R+<DD+<DI+¢U ,

where ®R has to satisfy the Laplace equation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v2¢R=o,

and also the linearized free surface boundary condition at the mean water
level:

<I>Ru(x,0,z;t) + gtbRy(x,O,z;t) = 0.

For small harmonic motions, and forward speed, the Kirchhoff
decomposition can be applied, so as to obtain time-independent parts of the
radiation potential for the various modes of motion:

6
o G
D yzt) = 200 . L%y

i=1

where the compact notation is used for the time-dependent coefficients
u(0);, Embedded in these are the translational velocities (i = 1,2,3), and
terms involving the rotational velocities (i = 4,5,6). The kinematic
boundary conditions are applied to the mean wetted surface of the body,

So:

@) ,
R o_ .

aﬂ So
Also, for infinite water depth:

(i)
do
—R-:Oas y——oo .

dn

In the above n refers to the unit normal, which is directed out of the fluid.
The potential ®r must satisfy the radiation condition, which for a three-

dimensional body is given by
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lim JE['QRE‘ 'ik(P;;] = 0,

R0

where k = 62/g (= wave number).

Theoretical aspects of the motion of a ship with mean zero forward speed
have been investigated extensively by Wehausen (1967, 1971). Employing
linear potential theory and Cummins' decomposition (see Cummins
(1962)), he derived expressions for the hydrodynamic forces and equations
of motion in the time domain, as an initial value problem, and showed
how these could be related to the problem of harmonic excitation in the
frequency domain.

Let us first consider the forced motion of a floating body (it could be a
cylinder or a ship) as an initial value problem, starting at time t = 0. The
hydrodynamic force acting on the body at time t is determined by the
conditions at t = 0 and by certain hydrodynamic properties of the body,
expressed in terms of a kernel function L(t), which is similar to the
impulse response function: concept used by Cummins (1962). This kernel
function is integrated from t = 0 to the present time t, i.e., over the "past”,
so that the fluid's past history, or "memory effects”, contribute to the
forces acting on the body at the present time t. This can be visualized by
waves radiating away from the moving body but still influencing the
pressure on the body, see Newman (1966, 1977), for example. Thus it
seems that the frequency-dependent added mass and damping forces
exhibit themselves in the time domain by means of fluid memory effects.

These memory effects have been considered for some time in aerodynamic
theory, where the time-dependent lift on a wing in an unsteady flow field
is influenced by the past history of the velocity in the unsteady wake. In
the field of naval architecture it is only a fairly recent phenomenon that
one is starting to take memory effects into account in time simulations.
Haskind (1946) alluded to the use of convolution integrals in the equations
of motion, and Golovato (1959) suggested experimentally that memory
effects exist. Tick (1959) pointed out the equivalence between the equations
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of motion with constant coefficients in the frequency domain and the
equations in the time domain with convolution integrals. Cummins
(1962) presented the theory of arbitrary, small ship motions in the time
domain, by considering the response as a continuous series of small
impulsive displacements, so that use can be made of impulse response
functions to describe the time-dependent fluid forces. Ogilvie (1964)
derived expressions for the time-dependent velocity potentials for a ship
having forward speed, and he gives the relationship between the
frequency domain and time domain problem. The work by Wehausen
(1967, 1971) in this respect has been mentioned already. Cummins’ theory
was also used as a basis by Van Oortmerssen (1976), who derived
expressions for the time-dependent velocity potential and applied it to the
time domain analysis of a moored vessel. Guo (1978) developed a time
domain theory for ship maneuvering in calm water; he applied a
boundary integral method using Green's functions, and considered all
forces up to second order, thereby obtaining second order memory effect
integrals. Yeung (1982) considered the transient motions of two-
dimensional cylinders in calm water, and showed, using time-dependent
Green's functions, that the transient response of a circular cylinder,
predicted by employing constant coefficients in the equations of motion,
compared quite well with the more exact theoretical solution. This
suggests that it may not be necessary to evaluate memory effect integrals
(for transient motion conditions) for structures that do not create
appreciable free surface disturbances. It is noted, however, that in
irregular wave conditions it does not seem valid to use constant
coefficients. Liapis and Beck (1985) derived the equations for a ship with
forward speed and undergoing small motions (in calm water), using the
integral equation approach and time-dependent Green's functions to
determine the velocity potentials. Beck and Liapis (1987) presented a time
domain method for transient motions in calm water at zero forward
speed.

Since the treatment of the radiation problem in this work is based largely
on the linear, three-dimensional theory developed by Wehausen (1967,
1971), only some of the relevant results are discussed below and the reader
is referred to these references for more details on the derivations. Using
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the concept of impulse response functions and Cummins' decomposition
Wehausen (1967) showed that the forced motion potential (radiation
potential) ®R for the linearized problem could be expressed as a Volterra

integral equation:
t
@, (P) = (J)'xi(t) ¢.Pit-r)dt , i=1,..6,

where %; is the acceleration in the ith direction, and where ¢;(P;t) is the
velocity potential at point P, associated with the impulse velocity at time <.

The following expression is obtained for the generalized force component
f; acting on the body in the ith direction subjected to transient excitation x;

in the jth direction, assuming that we are dealing with a linear system :
t
£(1) = - {Aijxj(t) + J % () L (%) dt}, ij=1,..6 ,

and the associated integro-differential equations of motion are then the
following :

t
(Mij + Aij) X, + Cij X; +£Lij(t-t) xj(‘t) dt = foj(t) + fw,i(t) , 1j=1,.,6,

where Mjj is the structural mass, Ajj is an added mass coefficient, which
can be taken as the infinite frequency added mass, and Cjj represents the
hydrostatic restoring force coefficient (hereafter in this chapter the
hydrostatic force component will be considered as being part of the force
fw,i(t); for a treatment of the hydrostatic force see Chapter 2.1.1). foi(t) is
the force associated with the initial conditions at t = 0. If the transient
motion is caused by a transient wave (for which the Fourier transform
exists) fw,i(t) in the right hand side of the equations of motions is non-zero
and represents the wave exciting force, comprising the force due to the
incident waves and diffracted waves. The kernel function Ljj(t-t) in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

memory effect integral may be considered as the force acting on the body
in the i-direction at time t due to an impulse velocity in the j-direction at
time lag ©. Because of the linearization of the problem, only first order
memory effect integrals are taken into account, which can be considered
as keeping only the first term of an infinite series of such integrals. The
general application of Volterra series to the ship motion problem, and
subsequent linearization to conform with linear ship motion theory, has
been discussed by Bishop, Burcher and Price (1973).

In the above notation, and throughout this work, repeated indices imply
summation, generalized motion vectors consist of displacements (i = 1,2,3)
and rotations (i = 4,5,6), and, similarly, generalized forces consist of forces
and moments.

Forced H ic Moti

It is useful to determine the forces for sinusoidal excitation, especially
because then one can make a direct comparison with frequency domain
predictions. Suppose x; represents forced harmonic motion starting at

t=0:

xj(t) = X, COsGt+ X, sinctt ,

A B

Then it follows that

t t t
J X ML a-0dt = %0 JLij('t) cosotdt + 6% (1) 6[Lij(x) sinot dt,

and the hydrodynamic force becomes
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t t
£ = - {Aij +6[Lij(1:) cosotdt} ':ij(:) . o{JLij(t) sinotdr } ij(t) i

As t — o transient effects should disappear and the motion should become
purely harmonic. Then the hydrodynamic force comprises the usual
added mass and damping forces:

and the equations of motion are the conventional ones with constant,
frequency-dependent added mass and damping coefficients Ajj(c) and
Bjj(o) :

{Mij + Aij(o)} ij(t) + Bij(o) :'cj(t) + Cij(o) xj(t) =0.

From the above the following relationships can be derived, relating the
frequency dependent coefficients and the kernel functions (also referred to
as the Kramer-Kronig relations):

t
AD = A+ J L, (1) cosotdt ,

t
B,(© = ab[ L,(v) sinotdr .

Conversely, the kernel functions L;( 1) can also be determined as a
function of A;; or Bj;:

2 T 9 °°Bi.(c)
L.t) = —j {A..(0)- A..} cosotdo = —I—Lsinm do .
1 L 1) y T p c
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It may be of relevance to consider motions that have been going on for a
long time, and that are not influenced by the initial conditions. It can be
shown that if the excitation started at ¢ = -o0, the expressions for the
equations of motion are the same as above, but with the lower limit of
integration of the memory effect integral being --, and the force
components fo j(t) resulting from the initial conditions being zero. With
the same definitions for Aj;and L;; the following expressions are

obtained:

£0

t
(A 0+ i X (0 L(t0) dr)

. {Aij Sij(:) + 5‘ ij(m) L, dr} ,

and the associated equations of motion are the following :
(M +A) %0+ 6[Lij(t)xj(t-r) dt = £, .

The above equations of motion are applicable both to the problem of
excitation due to transient waves and excitation due to irregular waves,
see Wehausen (1971). The unsteady motion of a body in waves is also
treated by Adachi and Ohmatsu (1980), who solve for the time-dependent
velocity potential and suggest some numerical solution procedures using
asymptotic expansions for large time. Resuits from their unsteady
motion experiments compare favorably with the theory, some of which are
similar to results obtained by Yeung (1982).

For computational convenience it was decided that memory effect
integrals based on the velocity components %;(t), rather than integrals
based on accelerations %;(t), were preferable. Liapis and Beck (1985) and

Van Oortmerssen (1976), for example, apply velocity based memory effect
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integrals to the linear ship motion problem. Liapis and Beck (1985) obtain
the following forced motion potential ®R:

t
D, (Pit) = J X (o@D dT, i=1..6 .

Using velocity-based convolution integrals, the equations of motion can be
expressed as follows (where the hydrostatic force term again is included
in the exciting force fy i(t)):

. 4 . .
[Mij + Aij} xj(t) + gLij(t) xj(t-‘t) dt+ Bij X j(t) = fw,i(t) .

When we consider, as was done above, the case where x;j(t) represents
forced harmonic motion, the following relationships are found between
the frequency-dependent coefficients and the kernel functions:

1 -~}
A.(0) = A.-— J' L..(t) sinotdrt ,
y ) 5 3 ]

Bij(o) = Bij + ILij(t) cosotdt .
0

The coefficients Ajj and Bjj can be found from the above relationships for
anv frequency . It is sometimes convenient to evaluate these coefficients
by letting the frequency o go to infinity, so that use can be made of the
Riemann-Lebesgue theorem (which states that the integrals become zero
for ¢ — «):
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Aij = AU(°°) ’

Bij = Bij(°°) =0.

A convenient way to obtain the kernel functions Lij(t) is to take the cosine
transform of the damping coefficients:

L.(t) = 3- IB..(O‘) cosotdrt .
] T 4 1j

It is noted that the kernels Ljj(t) depend solely on the geometry of the ship
and time lag, i.e., they are independent of the excitation and do not depend
on actual time. Then the equations of motion can be written as

(M + A (=) ij(:) +JLij(r) :ij(m) dt = f,.0 .

It is emphasized that the above theory is, strictly speaking, valid only for
small arbitrary motions.

2.1.2.B. Non-Zero Forward Speed

The next problem to be addressed is that of a vessel undergoing small
motions about a mean position, which is steadily moving forward in calm
water. Liapis and Beck (1985) developed theoretical expressions for bodies
of arbitrary shape having forward speed. By means of Green's functions
they obtained integral equations that could be solved numerically using a
panel method. Ankudinov (1983) studied the steering of a ship in waves in
the time domain, and evaluated the equations of motion by a system of
higher order differential equations, derived from series expansions of the
added mass and damping coefficients obtained by strip theory. McCreight
(1986) also considered the maneuvering of a ship in waves, and used
polynomial filters to obtain series expansions for the added mass and
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damping coefficients, so as to avoid the disadvantages of the exact
evaluation of the memory effect integrals. The added mass and damping
coefficients were obtained using linear strip theory.

For this investigation the theory discussed in section 2.1.2.A is applied to a
ship for which the beam and draft are small compared with the length.
For a slender vessel the frequency dependent, three-dimensional added
mass and damping coefficients can be estimated using the strip theory
described by Salvesen, Tuck and Faltinsen (1970), where the two-
dimensional coefficients for each station are integrated along the length of
the ship while accounting for only the kinematic effects of forward speed
(see Yeung and Kim (1981) for a complete treatment of forward speed
effects). The hydrodynamic coefficients are then obtained for coupled
heave and pitch, and coupled sway, roll and yaw. Frank's method is used
to evaluate the two-dimensional coefficients for each station, see Frank
(1967), and Bedel and Lee (1971). The above strip theory is valid for a
relatively high frequency of encounter. For low encounter frequencies
reasonable results have been obtained also, but this is due to the
dominating effects of the hydrostatic and dynamic Froude-Krylov forces at
those frequencies.

If linear ship theory is used to obtain the three-dimensional
hydrodynamic coefficients in the frequency domain, and if the kernel
functions are based on these coefficients, then the radiation forces in the
time domain are subject to the same limitations of the theory. Thus, the
forces expressed in terms of memory effect integrals are equivalent to
those obtained by the Salvesen, Tuck and Faltinsen method in the
frequency domain, so that the equations of motion containing the above
kernel functions Lij(t) are subject to the same constraints, such as high

encounter frequency and thin ship aspects.

Applying the method by Salvesen, Tuck and Faltinsen, and this is the case
for other strip methods too, results in the decoupling of the coupled heave
and pitch motions from the coupled roll, sway and yaw motions for the
forced motion problem. Surge cannot be considered with that method as
surge forces are of higher order than O(a ). Added mass and damping
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coefficients could be obtained for a thin ship, by means of a full three-
dimensional source/sink method. These coefficients then could be used to
generate kernel functions for the forced surge motion. This aspect of the
force computations will be addressed in Chapter 3. Wu (1985) has
presented a hybrid method for calculating the hydrodynamic forces acting
on a ship, by appiying a strip method to the parallel midbody, and a full
three-dimensional analysis to the bow and stern regions.

The kernel functions obtained from the frequency dependent damping
coefficients as mentioned above, contain all memory effects and depend on
geometry, forward speed and time lag. Since the evaluation of the
hydrodynamic coefficients, and hence of the kernel functions, is carried
out with respect to a moving reference system (here: Oexeyeze), the
memory effect integrals depend on the relative velocity, v; rel in relation to
that system rather than the earth-fixed system Oxyz. The Oexeyeze system
translates with the vessel along the x-axis, so that the relationship
between relative absolute velocities is given by

Vrel,1 = X1-X0°®
Vrelj = ¥j .

Defining the local acceleration in the jth direction by arel j» the radiation
force and moment components are the following:
fagi® = -Aya .- JLij(t) Vg D AT ii=16

where

L.t) = -2- JB..(O‘) cosotdrt .
13 1T 0 1)
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Since the above expressions are applicable to random but small motions, it
was not necessary to consider any force or motion quantities in the local
O*x*y*z* coordinate system. The transformation between the local and
fixed coordinate systems can be taken into account for large angles of
motion in an approximate manner, and this is treated in the following
section.

2.1.2.C. Forweard Speed, and Large Angle Approximation

An attempt is made to incorporate the linear radiation forces realistically
in a large motion model, despite the inherent contradiction in terms. As
obtained from above, the components of the generalized radiation force are
given by

o0

£@) = -AijarelJ-JLij(t).vmlJ(t-t) dt , ij=1,..6,

where are) j is the local, relative acceleration of the center of gravity in the
j-direction, and vrel; is the relative velocity with respect to the steadily
translating coordinate system. Since the angles were assumed small, the
accelerations and forces in the local system O*x*y*z* would be the same
when expressed in the fixed system Oxyz. Now we would like to account
for the rotation and translation of the structure in a more precise fashion.
It is assumed that the added mass coefficients Ajj(-x) and kernel functions
L;j(t) are constants, i.e., time independent, in the direction of motion of
the vessel. Since the determination of the radiation forces is based on
linear theory, the kernels are of first order and have to be evaluated only
once, i.e., they can be determined numerically before the start of the time
simulations, or by experiment. As was stated previously, the
translational equations of motion are to be solved in the Oxyz system,
while the rotational motions are to be solved in the O*x*y*z* gystem. All
velocities and accelerations treated below apply to the center of gravity of
the vessel.
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Two methods are discussed for estimating the radiation forces and
moments when the vessel has undergone large angles of rotation. The
first method, (i), is a simple approach that follows closely the principles of
linear theory, where no distinction is made between the actual position of
the vessel and the equilibrium system. With the second method, (ii), the
various forces and moments are resolved from the local coordinate system
of the vessel to its equilibrium system, by means of time-dependent
transformation matrices. In both methods the translating system
Oexeyeze ig considered as the reference equilibrium system in which the
forces are calculated; this is in accordance with the strip theory approach
by Salvesen, Tuck and Faltinsen (1970). During the time simulations, the
actual forces must be expressed in the earth-fixed reference system, and
the moments in the structure-fixed system. At each time step, the
radiation forces are determined first in the equilibrium system Oexeyeze
(with either method), resolved into the local system O*x*y*z* and added to
the other force components, and finally the total forces (and moments) are
transformed back to the absolute system Oxyz, before solving the equations
of motion. It was found that for large angles of rotation the first method
gave better results (compared with experiments) than the second one,
while for small angles the differences were negligible. It is clear that
neither method is theoretically correct, nor can one be better defended
than the other.

The two approaches to deal with the computation of the resulting
hydrodynamic forces are expressed in more detail as follows:

(i) After the linear and angular accelerations in Oexeyeze have been
determined, assume the vessel to be positioned in the upright position
when calculating the radiation forces and moments in Oexeyeze. The
moments in the local system O*x*y*z* are assumed to be equal to the
moments in Oéxeyeze,

(ii) After the linear and angular accelerations in Oéxeyeze have been
determined, resolve the velocities and accelerations along the ship-fixed
coordinate system O*x*y*z*, where the large angles are retained in the
transformation. These velocity and acceleration components are used to
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calculate the radiation forces and moments acting in the Oexeyeze system.
Finally, the forces and moments are resolved back into the local system
O*x*y*z* by applying the time-dependent transformation matrix T.

Consider a two-dimensional section, heeled by the roll angle 6, being
subjected to a harmonic motion, x€(t), along the vertical Oeye axis, as
shown in Figure 2.2. Using method (i), the total added mass force, for
example, would always have the magnitude Feg = Aga-x€o(t) along the Oeye
axis, irrespective of the direction of acceleration, 8. A consequence of this
approach is that unsymmetrical sections are assumed to create the same
disturbance (and forces) as symmetrical sections.

One would expect the resultant hydrodynamic force not to be vertical due
to the unsymmetrical shape; a more realistic approach may be to use
method (ii), where the magnitude of the vertical component along Oeye
would be given by Fég = Ago-%€s(t)-cos0, and the horizontal component by
Fe; = A33-%e2(t)-sin6. Thus, in the second approach the acceleration (or
velocity) in the Oexeyeze system is first resolved along the O*x*y*z* axes,
the components of which are used to determine the forces in the Oexeyeze
system. In this example, the acceleration a is decomposed into a-cos@
along the O*y* axis and into a-sin6 along the O*z* axis; subsequently, the
resulting added mass forces are expressed along the Oeye and Qeze axes,
respectively. For a three-dimensional body, yaw and pitch angles would
have to be considered also, and cross-coupling effects would depend on the
various angles of rotation.
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Figure 2.2. Hydrodynamic Force Acting on a Section
Due to Acceleration a

The following definitions are introduced: let v denote a velocity vector, and
let a denote an acceleration vector; ve is the velocity vector of the center of
gravity (i.e., of O¥) of the vessel relative to the steadily translating Oexeyeze
system, and ae is the absolute acceleration vector of O* in that system.
Since the vessel, and hence the O*x*y*z* system, is rotating, it is
necessary to define the relative acceleration of O* (with respect to O¢) by
the vector a€re). The absolute velocity of the O¢xeyeze gystem in Oxyz is
given by voe, which, for a vessel moving steadily forward along the x-axis

at speed U, would be
U
v _=]0
(o]
0

It is assumed that this velocity vector varies slowly with time and can be
considered constant, so that its derivative is negligible, i.e.,
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To obtain the actual hydrodynamic forces or moments acting on the vessel
in its rotated position, the forces are transformed from the upright
position to the local position. For these transformations use is made of the
coordinate transformation matrix T, which depends on the angles of
rotation, or Euler angles, and on the order in which they are applied: ¢
(yaw), ¥ (pitch) and 0 (roll), and is therefore time dependent. It is given by

cospcosy  -cosdsinycosB+sindsin®  cosdsinysinO+sincosd

T = siny cosycosO -cos¢sin®

_-sinq)cosw singsinycosB+cosdsind -sin¢sinwsin6+cos¢cose_

The matrix T has the property that its inverse is equal to its transpose,
and the derivation of T is given in Appendix A. For consistency, the
hydrodynamic forces are resolved into the ship-fixed coordinate system;
this will be advantageous when considering the total forces acting on the
vessel along its own coordinate system. However, since the linear
equations of motion are solved in the earth-fixed system Oxyz, the total
force components (including the hydrodynamic forces) acting on the
vessel have to be transformed from O*x*y*z* to Oxyz, resulting in the
same components of the hydrodynamic force as were obtained in terms of
the Oexeyeze gystem, originally. The rotational velocities and
accelerations about the local O*x*y*z* axes are resolved into the O¢exeyeze
system. The transformation matrix B is used to transform the local
angular velocity vector w*, also referred to as :

o =B'o*=B"0.
It is noted that when using method (i): wé = ©.

The inverse of B is given by
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1 .cosBtany  sin6 tany
B! =|0 cosB/cosy -sinB/ cosy

0 sin® cos6

and details about the derivation of B can be found also in Appendix A.
The radiation forces and moments in the system Oeéxeyeze are based on the
"transformed equilibrium velocities" (and accelerations), which are
defined as

ve* and a¢*,
and which are different for methods (i) and (ii). If the above vectors
contain both linear and rotational velocities or accelerations, the radiation
force and moment components would then be given in generalized
notation:

€, .\ _ e* e e* s
£0) = -Agal - (j)'Lij(r).vj t-0)dt , ij=1...6.

The transformed velocities for calculating the forces in the Oexeyeze
system are defined as follows:

v = for method (i) ,

and
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et al'el .
a = for method (i) ,
®
and
T'la:ﬁl
e* ..
a = for method (ii) .
T @

The actual force components acting on the vessel in the instantaneous,
rotated position are obtained by applying the inverse transformation
matrix, T-1, to the forces in Oexeyeze, If approach (i) is used, the moments
in O*x*y*z* are considered to be the same as the ones in Oexeyeze; if
approach (ii) is used, the inverse transformation matrix is applied also to
the moment components in the generalized radiation force vector f €(t):
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£*@) = for method (i) ,
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and

ql

Wb

f*1) = .. for method (ii) .

q.
uh ah

ot

It is necessary to express the velocities and accelerations in terms of the
absolute quantities, since in the motion simulations the translational
modes of motion are considered in the earth-fixed system Oxyz. The
relationship between the absolute (linear) velocity of the vessel, v, and the
relative velocity ve is
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When the vessel is rotating as well as translating, the relative
translational accelerations in Oeéxeyeze, denoted by aér], depend on the
absolute acceleration of O* and also on the cross-product of the rotational
and translational velocities, which gives rise to Coriolis forces. Here the
hydrodynamic forces are considered with respect to Oexeyeze, so that the
relevant accelerations and velocities are taken with respect to Oe. The
vector with relative accelerations is given by

(

e ¢
=a°-0)xv .
rel

a

If the absolute acceleration vector of O* in the Oxyz system is given by a,
the acceleration vector ae is equal to a, as the Oexeyeze system is
translating steadily (age = 0) and not rotating. Hence

and

e

=a-0xVv
ml— X .

a

The cross-product terms must be taken into account when calculating the
hydrodynamic forces in a nonrotating reference frame. The acceleration
vector a¢* can then be described in terms of the kinematic quantities
obtained during the simulation process.

An effort was made to determine the effects of using approach (i) and
compared them with response results from approach (ii). Simulations,
performed for beam and following sea conditions, indicated that for small
wave amplitudes the two approaches yielded very small differences in
response, as would be expected since the angles of rotation are always
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small under those conditions; for a variety of wave frequencies the roll
amplitudes were consistently somewhat larger using approach (ii). In
waves with large amplitudes, however, the response behavior depended
rather significantly on the method used. These differences exhibited
themselves in two ways: the roll response was often more severely
overpredicted with (ii) than was the case with (i), when compared with
experimental results. Also it was found that, when using approach (ii),
the roll response sensitivity to changes in the radiation forces was always
significantly higher than for approach (i). Based on these observations it
was decided to use approach (i), which is alsc more consistent with linear
theory, in subsequent simulations.

2.1.8. Diffiraction Forces

The diffraction force can be estimated by considering the vessel fixed in its
mean position and the waves impinging upon it, whereby the associated
boundary value problem must be solved in terms of the diffraction
potential. The general boundary value problem applicable to small wave
amplitudes, in accordance with linear theory, is briefly stated in the next
section. Then some approximations are made to apply the linear theory
to a vessel undergoing large motions, which can be done in a manner
similar to the one used in the preceding chapter.

2.1.3.A. Small Angles of Motion
The diffraction problem is solved using linear theory as was discussed in
Chapter 2.1. As a consequence of linearization, the total velocity potential

associated with the diffraction problem can be split up into three velocity
potential components for a vessel with forward speed:

P = d>l+<bD+<DU ,

where from the diffraction point of view the vessel is considered
stationary. The diffraction potential has to satisfy the Laplace equation
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throughout the fluid. The free surface boundary condition applies:

(DD (x,0,z;t) + gd>D = 0.
u y

For harmonic excitation due to small amplitude waves the diffraction
potential can be expressed in terms of a time-independent part, ¢p:

-iot
@ (xyzt) = Re{gy ™} ,
where
Pp = Pp; +iPpy,

The kinematic boundary condition on the body, i.e., on the mean wetted
surface Sy, is given by

o, 90

o on

where n is, as usual, the normal directed out of the fluid. The other
kinematic condition is for infinite depth:

Vd)D:Oas ) I

The radiation condition determines the behavior far away from the
structure, and if pp is the diffraction potential for a three-dimensional

body, then it must satisfy
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limJR.—r-ik(p]=O,
R—yo [ R D
R = x2+22

A consequence of the radiation condition is that the diffracted waves are
outgoing, and

?p = O(Jf{_) as R—o .

The following approach is used to deal with the diffraction problem in the
time domain. We first restrict the development to small wave steepness
and small angles of motion. Then, the linear diffraction forces acting on
a thin ship are determined as a function of the wave frequency by means
of the procedure outlined as in Salvesen, Tuck and Faltinsen (1970). Here,
use is made of the Haskind relations in order to express the diffraction
forces in terms of the incoming wave and radiation potentials for heave,
sway and roll of a two-dimensional section. One needs to integrate the
radiation potentials (obtained using Frank's method) distributed around
each section to determine the sectional diffraction force. The three-
dimensional diffraction forces are then estimated using the thin ship
approach with forward speed. This is a very cursory description of the
procedure involved, but all necessary details can be found in the reference
by Salvesen, Tuck and Faltinsen.

The diffraction forces may be considered as the forces induced on the ship

by waves of unit amplitude. This allows one to obtain a frequency domain
transfer function HDj(o) for the diffraction forces and moments:
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where FDj(0) is the generalized (complex) diffraction force for frequency
o, and Aw(o) is the corresponding wave amplitude.

In order to find the diffraction force in the time domain, having the
correct phase, we take the Fourier transform of FPj(¢c) and apply the

convolution theorem :

20 = 7 (o) = L [Fod o
2 -

©o
(-]

=L Hli)(c) A () edo .
21 ¢

= 0= FH)e).A0)

t t
= [Wenn@wd = [Woneyde,
0 0

where
w0 = 7 (H)©) ,

Fly) = — Iy.eimdc ,
2r .

and 71(t) is the instantaneous wave elevation.

Employing the above approach implies that memory effects due to
diffraction exist in the time domain, and the approach would be valid for
impulsive waves impinging upon the body, for example. In this work it is
assumed that the wave motion has been going on for a long enough time
for transients to die out, and the wave process is assumed to be stationary.
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Considering the foregoing, the time-dependent linear diffraction force can
be expressed in terms of the transfer function for regular wave conditions:

t .
0 = [Wennwd = A ©H©,

where the phase information is contained in the complex transfer
function HDj(c), and where 1n(t) represents the instantaneous wave

elevation (taken at the center of gravity of the ship). The above
relationship can be proved as follows.

t 0o
f?(t) = j'wi(t-x) N dr = jwi(r) n(t-7) de
-00 0

= J'L _[H‘?(d) ¢®td0". A_(0) eV ar
axd d
0 - 00
= A (0. L | |0 P do
w m g !
= A (0) et L H'(0) 0O 4r do
2 -;b

= f?(t) = A (©) eiij]i)(o') 8(c0) do’ = A_(0) H?(o) et .

In the above, use is made of the Dirac delta function, 8(x).

For long-crested random seas the linear diffraction force can be
determined by summing the contributions from the various wave
components. For a given sea spectrum, Syy, the irregular sea surface can
be modeled as the summation of a discrete number, N, of random
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components (see Chapter 2.4 for a description of the sea surface and wave
kinematics):

N
nxz) = 20, &5 ,
n=1

where Mn(x,z;t) = Ap eilkxnx +kznz-0Opt + €y n)
An = amplitude of nth wave component
kxn = kp cosd
kzn = -kn 8ind
kn = op2/g = wave number
on = circular frequency of nth wave component
& = direction of wave travel
ew,n = phase of nth wave component

Then the linear diffraction force associated with the above random wave
climate is given by

N
£10 = Re 2, H(6) . n,x.z0) -
n=1

The diffraction transfer function can be obtained for a number of
headings. If the relative heading angle P is defined as the difference
between the wave direction and yaw angle, as shown in Figure A.2 of
Appendix A, the corresponding transfer function is HDPj(c,B). To compute
the time-dependent diffraction force for varying heading angles, it will be
necessary to assume that the change in heading occurs at a slower time
scale than the oscillatory motions; for a typical seagoing ship this is
nearly always the case. Then, the linear diffraction force and moment
components due to unidirectional random waves are

N
f?(t) = Rczlﬂ?(on,ﬂ(t)).nn(x,z;t) L =16 .
n=
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These components are given in the moving reference frame Oexeyeze. The
wave elevation of the wave components are taken at a reference point on
the vessel about which the moments are computed, which is the center of
gravity of the vessel.

2.1.3.B. Large Angle Approximation

The determination of the diffraction forces in the case of large vessel
motions, due to large amplitude waves, may also be based on a
modification of linear theory. Taking a similar approach as in Chapter
2.1.2 for the radiation forces, the force components given in the Oexeyvcze
system may be considered as dependent on the instantaneous angles of
rotation, while it is assumed that the vessel's center of gravity is located at
Oe, thereby neglecting the linear displacements due to surge, heave and
sway. This time dependence is effected through the transformation
matrix T, which has been derived in Appendix A.

Defining the computed diffraction force components, fPi(t), as in the
previous section, the force vector in the Oexeyeze gystem is then given by

c
D
f1250 = AR

fy

and the diffraction moment vector is

[
D
fy 560 = f?
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If the approach (i) is used as in Chapter 2.1.2, the diffraction forces are
transformed into the local O*x*y*z* system, while the moments in
O*x*y*z* are assumed to be the same as the moments computed above, so
that the generalized force vector in the local system would be given by

(]

-1
. T '11).2.3(‘)
@) = )

fD

45,60

If the approach (ii) is used, the inverse of the transformation matrix T is
applied to both the forces and moments in Oexeyeze, in which case the
resulting vector in generalized notation is given by:

1.D° ]
A L PP C
Po=

1

T fse®

For reasons stated at the end of Chapter 2.1.2, it was decided to use
approach (i) to estimate the radiation force and moment components. In
order to be consistent with the computation of the wave radiation forces,
the diffraction moments were also estimated using approach (i) in
subsequent analyses.
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2.2 Viscous Fluid Effects

Viscous effects exhibit themselves in the formation of boundary layers and
flow separation. Although boundary layers may have a significant
influence on resistance or propeller performance, their influence on the
wave-induced motions of a vessel is usually sufficiently small to be
neglected, except possibly for roll. Flow separation and related eddy
shedding, on the other hand, may contribute significantly to the total drag
forces for different modes of motion. Viscous effects provide an important
source for damping as regards the roll behavior of a vessel, where vortex
shedding, for example around bilge keels, tends to be dominant. Roll
damping due to wave radiation, i.e., the so-called potential damping, may
also be of significance, however, this part is incorporated in the potential
flow calculations discussed in Chapter 2.1.2. Considerable drag forces
will occur when a vessel undergoes steady sway motion, possibly
combined with yawing, due to flow separation. These drag forces are
hereafter referred to as the "maneuvering forces".

If the general hydrodynamic problem, where viscosity is included, must
be solved, it would be necessary to deal with the complete Navier-Stokes
equations. To do this consistently is a formidable task, and only recently
have methods emerged for treating these equations correctly in two
dimensions. However, for a freely floating body in arbitrary waves this
has not yet been accomplished, and to attempt to do so lies beyond the
scope of this work. So far, the methods developed are useful for treating
the two-dimensional rolling problem in beam waves. Promising
applications of discrete vortex methods to ship motions have been
performed by a number of researchers, such as Graham (1980), Faltinsen
and Sortland (1987), and Downie, Bearman and Graham (1988), for
example. The discrete vortex method has the advantage that one can
superpose analytically the potential, irrotational flow effects upon the flow
effects due to introduced vorticity. The method is, however, very
computationally intensive. It would be more efficient to use a theoretically
correct approach to compute viscosity related forces, but at present the
theory is not suitable for application to a three-dimensional body of
arbitrary shape at the free surface. Forward speed effects complicate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

theoretical solution. As a consequence of all of the above, the present work
will rely upon empirical methods to treat viscous effects.

A common approach to predict roll damping is to make use of empirical

" data, mostly obtained from experiments with either models or full size
vessels rolling in calm water. An overview of roll damping data for an
extensive number of vessels, as well as roll damping devices, is given by
Barr and Ankudinov (1977). In Japan a large amount of effort has been
devoted to analyzing the roll damping behavior of ships, see Himeno
(1981), for example. At present, one can make use of purely empirical
methods to predict roll damping, where regression analysis is applied to
experimental roll data, or one can apply a semiempirical approach based
on a combination of theory and measurements. Unfortunately, there are
very few reliable methods available to predict roll damping in calm water,
and even those suffer from quite large discrepancies at times. There are
no such methods that deal with rolling in waves, the result being that
calm water damping data are applied to wave conditions, using the wave-
induced roll frequency and roll amplitude.

In order to deal with the roll damping forces in the present work, use is
made of the concept of component damping, where the total roll damping
moment is split up into components due to boundary layer drag, hull lift,
eddy shedding, and bilge keel contributions. Semiempirical methods are
applied to determine each component separately, and subsequently all
components are added together. Obviously, there is no real physical
justification for separating these damping contributions, since the choice
of e.g. linear and quadratic components is rather arbitrary, and all of the
effects are closely intertwined. In light of the present lack of rational
methods to predict viscous roll damping forces, the model considered
below must be used with caution. Also, there is unfortunately no realistic
model available at present, which deals with maneuvering forces in a
seaway. Therefore, it is assumed that conventional maneuverability
theory, applicable in principle only for calm water conditions, can be used
for a steered vessel in waves. All of these (semi)empirical models dealing
with viscous effects make it difficult to defend this work from a purely
theoretical point of view. Nevertheless, even if the viscous forces are not
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modelled quite correctly, it will be possible at least to gain some
understanding concerning the relative importance of the various force
contributions. '

22.1 Roll Damping

The nature of viscous forces is such that to incorporate them into the ship
motion problem, one must overcome several major stumbling blocks. As
a first approach to determine the viscous roll damping moment, it is
assumed that the total moment (per section) can be split into a number of
separate components, each of which can be estimated independently of the
others. A procedure to determine some of these components has been
given by Schmitke (1978). A significant amount of work on component
damping has been developed in Japan, and has been reviewed by Himeno
(1981). Viscous roll damping can be attributed to the following
mechanisms:

- frictional damping associated with flat plate drag;

- lift damping (for a vessel with forward speed) due to circulation
around the hull and resulting lifting effect;

- eddy damping due to pressure variations associated with vortex
shedding;

- bilge keel damping due to additional pressures in the presence of
bilge keels.

Himeno (1981) gives a practical method for calculating the various
damping components, largely based on theoretical considerations
combined with curve fitting to empirical data from model experiments in
calm water, where forward speed is taken into account. Whereas Himeno
linearized all damping forces so as to obtain "equivalent” damping
coefficients, in the present work the linear and nonlinear (quadratic)
terms are retained, but otherwise the same method is adhered to. The
form of the roll damping moment is then
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frd.4(t) = B44.L'e + BM.Q.IBI.B ,
or, if the viscous roll moment is considered as being added to the right

hand side of the equations of motion, this would be:

frd.4(t) = -B44'L.9 - BM'Q.IOI.O R

where 0 is the angular roll velocity of the vessel. B44,1, is the linear
damping coefficient, assumed to be composed of the frictional damping
coefficient BF lam in case of laminar flow, and also due to the lift damping
coefficient By, . The lift damping moment is in fact linearly dependent on
the rotational velocity and forward speed of the vessel. Ba4,q is the
quadratic damping coefficient associated with the eddy and bilge keel
damping, Bg and Bk, respectively, as well as frictional damping due to
turbulent boundary layers, BF turb.- An outline of the calculation of B44,L
and B44,Q is given below, and the reader is referred to Himeno (1981) for

further details.

The damping coefficients are determined as follows. The linear damping
is given by

B =B

44L = Brlam *BL

where Bp oy, and By, can be easily estimated for the vessel in its entirety.
The quadratic damping coefficient is given by

B44,Q = BF.mrb+BE+BK .

where Bg is the coefficient associated with flow separation around the
bow, stern and bilge radius, i.e., due to eddy shedding, and Bk is an
additional damping coefficient in the presence of bilge keels, and is
assumed to be decomposed into a normal drag force component and a hull
pressure component. Since it is assumed that the viscous effects are two-
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dimensional, the damping coefficients BE and Bk can be estimated for
each discrete section of the vessel, from which the total damping
coefficients can be determined by straightforward integration along the
length of the hull.

For most practical purposes, damping due to skin friction is relatively
insignificant, so By44,1, tends to become more significant at higher ship
speeds, since lift damping is linearly proportional to speed. The other
damping components depend also on speed, and corrections to account for
speed effects are given by Himeno (1981); linear damping has been found
to be more sensitive to speed than quadratic damping. Also, it has been
observed that apart from skin friction, scale effects usually do not play an
important role in determining roll damping coefficients, so that the
formulas based on model experiments should yield results that are not
significantly different from the full scale values.

Despite the simplicity of this model, there are a number of difficulties
associated with predicting the roll damping moment, aside from the
inherent physical assumptions concerning the mechanisms involved.
The coefficients representing eddy shedding effects depend not only on
ship geometry and forward speed, but also on the roll frequency and
amplitude, which obviously are unknown before any motion simulations
have been performed. One can circumvent this difficulty by using an
iterative procedure, and adjust the coefficients until convergence is
reached. For long simulations this would be a very tedious and time
consuming procedure. Another method commonly used is to determine
the damping coefficients for the "natural” roll frequency, and use those
for other frequencies of motion as well, so that the damping is estimated
at least reasonably well for the resonance condition, assuming the roll
amplitude is known. The problem is even more complex for random
motions, where use must be made of some kind of average amplitude.
Another drawback of the model is that wave interaction with vessel
motion is neglected; this is discussed below in more detail.
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The calculation of the roll damping moment resulting from viscous fluid
effects is based on a fairly simple model, which neglects the effects of the
water particle kinematics. For example, vortex shedding is governed by
the local water particle motion at the hull, i.e., by the motion between the
hull and the surrounding fluid, so that the above model might result in an
incorrect estimate of the roll moment for a vessel in, say, beam or
quartering seas. The quadratic damping component has been found to be
of importance in a number of studies. For example, Haddara (1970) found
the motion response and directional stability of a ship to be most sensitive
to changes in the nonlinear roll damping coefficient. Brook (1986)
reported that the accuracy of the calculated roll response of a ship was
affected most significantly by uncertainties in the roll damping.
Although the cffect of the relative fluid motion on the roll response of a
forward moving vessel is not well established, it would be more
appropriate to incorporate wave effects in the damping moment
expressions.

Due to its theoretical premises, the lift damping moment should not be
based on the relative roll velocity. The roll response tends to be sensitive to
changes in the eddy and bilge keel damping terms, since eddy shedding
effects are generally more significant than hull friction. The eddy
shedding forces may be modelled more realistically by taking into account
the relative motion between the hull and the fluid particles. In the
following an attempt is made to formulate expressions for the relative roll
moticn and the resulting damping moment, using the same empirical
approach as above. Here the relative velocity is based on the roll velocity of
the vessel and an average roll velocity of the wave particles for relatively
long waves.

The empirical damping coefficient B44,Q, according to the method by
Himeno (1981), has two main components: one due to eddy shedding
around the hull, Bg, and an additional one due to the presence of a bilge
keel, Bk, if applicable. The frictional contribution, BF turb, resulting from
turbulent boundary layers is typically very small compared with the other
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components. The above method allows one to determine the damping
coefficients for each station separately. Without making any distinctions
between Bg and Bk, the total quadratic damping coefficient can be
estimated by the integration of the local eddy and bilge keel damping
coefficients along the wetted portion of the hull (to which the friction
component for turbulent flow should be added):

L

B, 4Q = 0b2(x)dx ,

where the integration is carried out for the equilibrium position of the
vessel, and ba(x) is the local quadratic damping coefficient. For a vessel

consisting of a finite number of strips the integral sign can be replaced by
a summation sign:

M
B44,Q = néle(xm)'Axm ’

where Ax;y, is the section length for station m and M is the total number of

stations.

If the vessel is rolling in a monochromatic wave, the length of which is
long compared with the beam of the vessel, the relative motion argument
can be used to base the damping moment on the rotational velocity
difference between hull and fluid. As a first approach, the average
rotational wave particle velocity for each station is averaged over the
length of the vessel, so that the nonlinear damping moment is estimated

by
(1) = -BM’Q-Ié-ExI-(é-d) ,

where a is the wave slope averaged over the length of the ship, and & its
time derivative, i.e., the average rotational wave particle velocity. It
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might be more appropriate to base the calculations on the integration of
the local damping coefficient and local wave particle velocity along the
length of the ship. The method reported by Himeno (1981) has been
developed for the rolling of vessels in calm water. If the incoming wave is
long compared with the beam, the relative velocity concept can be
considered valid, as the wave wili appear as a flat rotating surface to the
vessel. Also, the wave's rotational velocity is typically of the same order of
magnitude as the roll velocity of the vessel.

Here, it is assumed that the contribution of the radiated and diffracted
waves is negligible, so that the expressions for the water particle
kinematics are based on those for the undisturbed incoming wave system.
For a long wave, the rotational velocity at a point can be determined by
taking the time derivative of the wave slope, or the isobar (line of equal
pressure) at that point. Using this approach, the rotational wave velocity
for a long-crested wave travelling in the x-direction is given by

da(x,y;t) _ 9 dy

T ot ot dx (p=const)

For a harmonic wave the description of the isobar at a mean depth yp is
according to linear theory

. kyp
Yp(x,t) = yp + Aw e ° cos(kx-ot),

and for a wave travelling in the Oxz-plane with frequency ¢ (see Appendix
A) the equation for the isobar is given by

ky
) = P -
Yp(x,z,t) = yp + Aw e cos(kxx+kzz Ot+€) .

It is seen that the isobars follow the wave surface contour, 1, and that for
a long wave (k << 1) the slope of an isobar is equal to the wave slope. The
above expression is given in the earth-fixed coordinate system, and can be
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rewritten in terms of the local, structure-fixed system, by means of the
methods discussed in Appendix A. This transformation of coordinates is
necessary, since the forces and moments in the time simulation process
are evaluated first in the local coordinate system. Then the rotational
wave particle velocity can be expressed as

.3 9y,
o= x # = @ (x*y*z*t) .

The total average wave particle velocity is obtained by averaging the local
velocities (averaged over the cross section) over the length of the vessel:

X
F
. 1 ¢.
o= T: Iam(X*!y*’Z*;t) dx* ’
*A

where &, is the average wave particle velocity at station m, L is the total
length of the vessel, and x5 and xf are the x*-coordinates of the most aft
and forward points on the hull, respectively. The average sectional
velocity &y is estimated by evaluating the rotational water particle velocity
at the center line of the ship, z* = 0, and at the mean water level y = 0.
Since the waves are considered long with respect to the beam, the
rotational wave velocity will be almost uniform across the submerged
section of the vessel. For the wave to have any effect, the wave length
transverse to the vessel must be of a certain minimum length compared
with the beam, where one to two times the beam is an acceptable
minimum. If, for example, the shortest effective wave length is set to
twice the beam, then

2r

a=0 if (kxsin¢+kzcos¢) > 35

where B is the beam, ¢ is the yaw angle, and kx and k, are the wave
numbers as defined in Chapter 2.4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

Random Waves

Long-crested random waves are considered as the superposition of many
component waves with given amplitude and random phase, as is
discussed in Chapter 2.4. To deteimine the damping moment, the same
procedure is used as above. In accordance with the superposition
assumption, the total rotational wave velocity, &m, at a certain ship

section is assumed to be given by the summation of the various wave
component contributions:

N
& (hy*zh) = D& AO5YRZSD
n=1

where Gm,n is the rotational wave particle velocity of the nth wave
component (averaged over the cross section) at station m, and N is the
number of wave components comprising the irregular sea surface. Then

X
F
o= [& Gy des
*A
and the roll damping moment is estimatea by

£,(0 = -BM'Q-IO-dI‘(G-d) .

When the length of a wave component, in a direction transverse to the
ship, is less one or two times the beam, its contribution, &m,n, can be

assumed negligible.
222, Coupling Between Roll and Sway Motions

Rolling of a twec-dimensional section will result not only in a damping
moment acting on the section, but also in a viscous sway force, and
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conversely, drag forces resulting from oscillatory sway motion will induce
a roll moment. An obvious example is the case of the rolling of a vessel
with bilge keels, where there would be a moment due to the normal forces
acting on both bilge keels. Taking the components of those forces in the
local y* direction would yield a net sway force. The effect of roll on sway in
this sense is presumably quite small, but the coupling of sway into roll
may be significant. Large sway motions would result in large drag
forces, which in turn might affect the viscous roll damping moment
noticeably. Whether this coupling would increase or decrease the
damping moment would depend on the phasing between the roll and sway
motion.

Extending the method of component roll damping discussed in the
previous chapter, a formulation is given by Ikeda, Ishikawa and Tanaka
(1980) for estimating viscous sway-roll coupling in calm water. Coupling
is assumed to be due to the quadratic forces associated with eddy shedding
and bilge keels. The sway force due to roll is given by

f3(t) = - B34'Q .1e.0 ,

where the quadratic coupling coefficient is composed of two contributions:

Byq = Bysp+Byk -

Similar to the approach described by Himeno (1981), B34 E and B34 K are
the roll-into-sway coupling coefficients due to eddy shedding and bilge
keels, respectively, the expressions of which are directly related to those of
Bg, and Bk as given by Himeno. The roll moment due to sway is given by

f4(t)=‘B I.x

43 X3l - X3 >

where
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B =B 43 K °*

43.Q 43 .E *

and X3 is the sway velocity. Details of the expressions for the coupling
coefficients can be found in the reference by Ikeda et al.(1980), and will not
be repeated here. Based on simulations in small and large amplitude
waves, the above sway-into-roll coupling is computed using the sway
velocity only, since it was found that the difference between hull sway and
water particle velocities was typically quite significant, especially for large
wave amplitudes. That is, the usage of relative fluid velocities could lead
to misleading results.

In summary, the total viscous roll damping moment associated with the
oscillatory roll and sway velocities is given by

fnd.4(t) = - B44.L'9 - B“’Q.Ie-dl.(e-('!) - B43'Q.Ix3|.x3 s

and the roll-induced sway force is based on the relative roll velocity:

f 1,(1'3(0 = -B3 4‘Q.IB-('J.I.(()-('I) .

22.3. Maneuvering Forces in Calm Water

One of the objectives of this work is to consider the behavior of a steered
vessel in waves. This implies that the classical maneuvering behavior
must be taken into account. Traditionally, the investigation of the wave-
induced motions and ship maneuvering has been conducted along
separate paths, with the result that there is presently no consistent theory
which accounts for the combined effects of maneuvering in a seaway. The
steering and broaching behavior of a vessel in a severe following seaway
were studied experimentally by Davidson (1948), who also developed a
simple mathematical model describing the various forces acting on the
vessel. One of the first treatments of ship maneuvering in waves was
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presented by Rydill (1959), who combined linear maneuverability theory
with linear motion theory in small amplitude waves. Wahab and Swaan
(1964) studied the directional stability of a vessel in following waves for
zero-encounter frequency and different positions with respect to the wave
crest, and the stability and motions of a steered vessel in following waves
were studied by Eda (1972a, 1972b) for various ship speeds. Renilson and
Driscoll (1982), and Renilson (1982), have presented a method where the
classical maneuverability derivativea are considered frequency
dependent, rather than being constant. The frequency-dependent
derivatives were based on measurements in waves and on linear motion
theory. Although this is a possibly realistic approach, it is fundarientally
not correct to use the same theory for waves and for calm water
conditions, and it would be rather cumbersome to obtain data for a variety
of ship types, wave and operating conditions. Considering the lack of
appropriate maneuverability theory, the approach taken in the present
work has been to simply combine nonlinear theory, for determining the
viscous forces due to steady sway and yaw motion of a steered vessel in
calm water, with potential theory for wave-induced effects.

The use of calm water maneuvering theory with constant coefficients (in
the time domain) results in the neglect of memory effects associated with
viscous flow phenomena. More exact formulations in the time domain
have been presented by e.g. Frank et al. (1976) and Wehausen (1978), by
whom linear theory was applied, and Guo (1978), who has presented a
time domain approach that accounts for both linear and quadratic effects
due to maneuvering in calm water. Nonlinearities associated with
maneuvering calculations in the time domain were taken into account in
an approximate manner by Ankudinov (1983).

Viscous drag can be significant during the swaying and yawing of a ship,
necessitating an attempt to account for these viscous effects in a ship
motion model. The classical maneuvering equations include both
potential and viscous flow effects. The potential part of the theory has
already been treated in Chapter 2.1, so that only viscous effects need to be
dealt with in this section. Most of the development of maneuvering theory
has been applied to the lateral motions of a ship in calm water. The
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conventional way of treating these motions consists of Taylor series
expansions of the various hydrodynamic forces, with the assumption that
the motions are small. Often only the linear terms in the expansion are
retained, resulting in a simple model, but one that has been found useful
even for relatively large motions.

As a first approximation to the modelling of viscous effects, linear theory
can be used. The "maneuvering" sway force and yaw moment due to
small sway and yaw velocities in calm water (on the right hand side of the
equations of motion) would be then the following:

fa3® = ~Z,%;0 - Z90) ,

£,5® = -N;X;(0) -N¢-q;(t) X

The sway and yaw velocities are given by %3 and ¢, respectively, and Z,,
Zy, Ny and Ny are the conventional maneuverability derivatives. An
overview of linear and nonlinear maneuvering theory in calm water is
found in Comstock (1967), in which also values of the derivatives for a
Mariner type hull are given. The nonlinear theory used in the present
work is based on a semi-empirical method presented by Inoue et al.
(1981a, 1981b). Based on model data, this method allows one to estimate
the linear and nonlinear derivatives as a function of basic ship
characteristics such as overall dimensions and block coefficient. The
expressions for the maneuvering forces associated with viscous effects are
given below, where the reader is referred to the original references for the
necessary details.

Using the symbol convention given by Inoue et al., the yaw velocity is
expressed as r = ¢, and the sway velocity by v = k3, or in nondimensional

form:
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r'=%11.andﬁ=-sin

v
T

Here L is the length of the vessel, and U is the forward speed. Taking into
account the sign convention used in the present work, the sway force
associated with viscous maneuvering effects is given by

1 2 L} L] i 1 \] L} \J PR}
f.3 = 5PLAU -{ZBB-Z,r’+ZBB|B|B+ZBrB|r|-anrlr},

m,
and the maneuvering yaw moment is

f

m,5 =

pL2du2. {-N'ﬂB NE NIl (N B N'nBr').Br'}

NI

It is assumed that the instantaneous sway and yaw velocities can be used
in the above expressions. Closely linked to maneuvering is the effect of the
rudder, as well as the autopilot which controls the rudder. These topics
are discussed in Chapter 2.3.2.

2.2.4. Wave-Induced Drag Forces

Irn the foregoing chapters viscous effects have becn treated empirically in
relation to rolling, based on relative rotational velocities and the sway
velocity of the vessel, and maneuvering in calm water. It is clear that
drag forces transverse to a vessel will be caused by oblique or beam seas.
These forces may be significant in severe sea conditions, and as yet their
importance has not been investigated sufficiently. Lacking an adequate
mathematical model to represent these forces, a simple method is used to
estimate the drag forces in the sway direction (resulting also in a roll arnd
yaw moment) associated with the wave particle velocities. The main
objective is to obtain information on the sensitivity of the roll response to
changes in these viscous forces, i.e., to establish the relative importance of
these forces.
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It is assumed that the viscous drag force acting on a section of a vessel is
given as follows:

1 . .
f, sx(x*;t) =3P ChA la 3|.u 3

where Cp is a drag coefficient, 013 is the wave particle velocity transverse
to the section, and A is the projected area of the section:

A= ys.dxs ,

where y; is the maximum distance (along the y*-axis) between the bottom
of the section and the waterline, and dx; is the width of the section.

The velocity 03 is the mean water particle velocity (due to the incoming
wave, where radiation and diffraction effects are assumed negligible)
transverse to the ship along the z*-axis at a given station, evaluated at an
average depth and on the center line of the vessel:

where ¥ is the average depth. Similar to the computation of the average
rotational water particle velocity, the mean sway velocity is determined
only for waves exceeding a certain minimum length, e.g. twice the beam,
transversely to the ship.

The selection of the drag coefficient is obviously difficult, as it would
depend on the Reynolds number, Keulegan-Carpenter number and
section shape, among others. It suffices for the purposes of this
investigation to assume Cp to be constant along the ship length, and to be

chosen rather arbitrarily. Analysis of sway experiments of cylindrical
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ship-shape sections, see e.g. Graham (1979) and Tanaka (1980), has
indicated that the range of drag coefficients is approximately

1<CD<3.

The total sway force and yaw moment may be estimated by integration of
the sectional drag forces over the wetted length of the vessel:

£,30 = I:[fw %0 dx

fw j(t) = -wa Bx(x*;t)-x* dx* .

The roll moment caused by the sway diag force acting on a section can be
estimated by multiplying the drag force by an appropriate moment arm,
yr (which has a positive value):

fw'4x(x*;t) = -fW Sx(x*;t).yr .

The total induced roll moment can then be determined by integration over
the wetted length.

It is noted that the above forces are based solely on the water particle
velocities, while in fact they would depend on the relative sway motion.
However, the total sway force and yaw moment due to the motion of the
vessel itself have been accounted for by the maneuvering forces, as
discussed in the Chapter 2.2.3, so that it would not be appropriate to
consider the vessel motion twice when evaluating these viscous forces.
The coupling between sway and roll, due to sway motion of the vessel, has
already been accounted for using the empirical approach outlined in
Chapter 2.2.2.
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2.3. Other Force Contributions

To complete the treatment of the forces acting on the steered vessel, the
following contributions are considered:

1. Total resistance and propeller thrust;
2. Autopilot model and rudder forces;
3. Wind forces.

These items are discussed in some detail in the sections below.
2.3.1. Propulsion and Resistance Characteristics

The resistance referred to in this chapter is the calm water resistance to
which the vessel is subjected when moving at a steady speed. This
resistance may be considered to be due to viscous and wave making
effects. The wave making part can be regarded as the force associated
with the velocity potential ®y, which is one of the components of the total
potential &g as was discussed in Chapter 2.1. The calm water resistance
curve can be fairly easily constructed for the full-scale ship. By
estimating the resistance for a discrete number of forward speeds, a
polynomial such as a quadratic, say, can be used to approximate the
actual resistance curve.

Consider the case where the resistance would be given by a quadratic
polynomial:

fm(t) = Al.U+A2.lUI.U ,

where U is the forward speed. Although it should be assumed that U is
steady, in reality it will be time dependent. Typically the speed variations
about the mean velocity are quite small and slowly varying, so that it is
more realistic to consider the ship speed as a function of time, U(t). This
leads to a time-dependent calm water resistance, freg(t). It iz noted that
added mass effects are accounted for by the evaluation of the wave
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radiaiton forces, as has been discussed in Chapter 2.1.2. In waves that
are long compared with the length of the ship along its longitudinal axis,
one can incorporate the wave particle velocity by considering the relative
velocity between ship and wave in the surge direction. Especially in long
following seas the wave-induced velocities may affect the resistance. In
analogy with the computation of the wave velocity in the transverse
direction (see Chapter 2.2.1), the average wave velocity in the surge
direction of the vessel is taken into account, if the wave length along the
x*-axis is of the order of the ship length. The average velocity is then

estimated by
X
e =L IF?EI_ dx*
1 Lx ox* ?

A

which is evaluated at the center line of the vessel (z* = 0), and at an
average depth of y* = -d/2. The resistance force, acting on the vessel in the
longitudinal direction and added to the right hand side of the equations of
motion, is estimated as follows for the quadratic polynomial model:

f. 0 =-AqU- u P-AylU- u J(U- u D -

The propeller characteristics can also be approximated quite easily. The
basic assumption made is that the rotational speed of the propeller, n,
does not vary with time. Knowing the number of blades, diameter, etc.,
use can be made of the so-called Kt curves to estimate the thrust produced
by the propeller for different speeds of advance, expressed by the advance
ratio, J. For example, use can be made of the Troost B-Series, which
present nondimensional thrust as curves of Kt versus J. A schematic
representation of Kt curves for constant values of P/D (pitch-to-diameter

ratio) is shown in Figure 2.3.

K and J are given by the following nondimensional expressions:
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T V.n
= and J—T,

p n2 D4

where T is the propeller thrust, p is the density of water, D is the propeller
diameter, n is the number of propeller revolutions per second, and V is
the velocity of advance. This simple method will at least model the effect
of thrust increase with decreasing ship speed, and conversely, thrust
decrease with increasing speed. Again, it i8 assumed that the forward
speed changes slowly.

Krp

P/D = const

Figure 2.3. Typical Kpp Curves

2.32. Rudder and Autopilot

For a steered vessel it is important to model the rudder and autopilot
characteristics correctly. The lift exerted by the rudder will cause a yaw
moment, a sway force, and also a roll moment, all of which should be
taken into account. Rudder lift depends on the rudder geometry (cross-
sectional shape, area, aspect ratio), incoming flow velocity and angle of
attack. There are a variety of methods available to estimate lift forces, and
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most models are based on the following formula, where the lift force is
given by

2
fmd,l. = Constantxp A V" f(a) .

A is the area of the rudder, V is the water particle velocity past the
rudder, and « is the angle of attack between rudder and incoming flow.
The velocity V is the total flow velocity experienced by the rudder, and
depends on the forward speed of the vessel and propeller race. For a
rudder behind a propeller the velocity is significantly increased, and is
typically

V = 1.3 x ship speed.

The velocity increase depends on the vessel type, and for highly loaded
propellers, as is the case for tanker vessels, the velocity may be increased
by a factor 2 or more. In this work V is considered as the vectorial sum of
the forward speed, wake, propeller-induced velocity increase, the average
wave particle velocity, as well as the ship motion induced velocity due to
e.g. yaw and roll. These velocity components are determined at a point
situated in the middle (between top and bottom, or, if the rudder is
partially emerged, between the free surface and bottom) of the rudder,
which should be close to the center of pressure.

Rawson and Tupper (1984) recommend the following formulae for
estimating the lift and drag coefficient for a typical rudder:

= FL = i._ae__——-—xa + -Cg— (___(_l_~ 2
1 2 a ‘573
SPAYV 2 5134, e

cosS2. 3 +4 +
cos Q n

aspect ratio = (span)?/A,
section lift curve slopeat =0

where

g8 &
non
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= 0.9 (2n/57.3) per degree for NACA 0015 section,
Cpc = cross-flow drag coefficient,

= 0.80 for square tips and taper ratio 0.45,
Q = sweep angle.

The drag force fryd,p can be estimated from the drag coefficient:

foap G

———— = C +
2 do ’
%p AV 0.9na,

Cy =

where Cdo = minimum section drag coefficient
= 0.0065 for NACA 0015.

Some comments can be made as regards the usage of the above formulae.
The drag force of the rudder is usually quite small compared with the
resistance of the ship, for example, and therefore is relatively
insignificant. The formulae are based on steady flow and angles of attack
that are less than the stall angle. Rudder stall angles lie in the range
from 30 to 45 degrees, beyond which the lift and drag forces may be
estimated using flat plate theory. Since the lift coefficient, Cg, is
theoretically based on steady flow conditions, inclusion of the wave
particle velocities in the incoming flow field will result in a time-
dependent lift coefficient, which will lead to a more qualitative than
quantitative estimate of the lift force. However, for relatively low
frequencies of encounter and wave lengths that are long compared with
the rudder chord length, the usage of the steady flow approach is justified.
Also the span of the rudder will be time dependent when, for example, the
rudder is partially emerged due to pitching in severe seas. Obviously, the
rudder force should be zero when the rudder is totally emerged. Using
the above empirical method gives an estimate of the lift and drag forces
acting on the rudder. These forces can be resolved along the vessel's axes
to yield the forces in the local surge, sway, roll, yaw and pitch directions.
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The rudder angle is controlled in the numerical simulations by an
autopilot, the parameters of which are based on the autopilot used for the
San Francisco Bay experiments; a comprehensive description of the
autopilot has been given by Haddara et al. (1972) and Chou et al. (1974).
The same autopilot system was used in the computations by Pérez y Pérez
(1974). The desired rudder angle is taken to be linearly proportivnal to the
yaw angle and yaw rate:

8r=81+82=al¢+a2$ I§l 2 ¢,
5 =0 10 < ¢, »
where o = rudder angle
81 = yaw proportional rudder response

32 = yaw rate proportional rudder response
¢ = yaw angle

é = yaw velocity

¢o = dead band

aj, ag are constant coefficients.

The aw angle is positive when the bow of the vessel turns to port, and the
rudder angle is positive when the rudder turns te port, since it would
result in a positive yaw moment. The purpose of the dead band is to avoid
excessive rudder motions, particularly in severe seas; generally ¢g = O for
calm seas, and ¢g > 0 for rough seas. In the report by Haddara et al. (1972)
typical autopilot values are given for a cargo vessel:

do 0.75° to 4°

aj 1to4 (deg/deg)

ag 4 to 20 (deg.sec/deg)
as/aj 4to5 (sec)

o 2.3 (deg/sec).
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8, is the helm response rate which is needed in calculating the actual
change in rudder angle. In the simulations, the required rudder angle is
calculated and compared with the previous value at each time instant;
rudder correction is taken if necessary The rudder force components and
induced roll, yaw and pitch moments are determined for the new values
of rudder angle and incoming flow velocities.

2.3.3. Wind Effects

A beam wind can exert a significant roll moment on a vessel, and may
have detrimental effects when combined, for example, with severe seas.
It is not one of the principal objectives of this work to fully investigate wind
effects. Nevertheless, a simple wind force model is included, so that wind
effetcs can be investigated in a very approximate way. One of the main
assumptions is that the wind is steady and has a constant profile. The
wind excitation force, transverse to the ship, can then be estimated by
using an empirical drag coefficient, Cpw, in the following relationship:

H 2
fw - EpaAvaDw ’

where p, is the density of air, A is the projected cross-sectional area of the
structure, and Vy, is the mean wind velocity.

The above formulation will give only a very approximate estimate of the
wind-induced forces, especially since time-dependent effects are not
accounted for. For example, in practice the wind speed is very time
dependent and may represented by a spectrum, the profile varies with
height above mean water level as well as wind speed, and wind-induced
pressures are characterized by a certain spatial correlation function.
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24. Description of the Sea Surface

The wave theory used throughout this work assumes infinite water depth
(i.e., the depth is large enough for the waves not to be influenced by the
bottom), the fluid is assumed inviscid and incompressible, and the flow
irrotational. Surface tension is neglected, as it is of significance only for
waves of very short wave length. In this chapter the wave kinematics are
treated as follows: first, harmonic waves of small amplitude are
considered, where classical linear theory is applied, and this is
subsequently extended to large amplitude conditions in Chapter 2.4.2. In
Chapter 2.4.3 random waves and wave grouping are discussed, and
special attention is given to the appearance of wave groups in reference
frames moving with the waves, as would be applicable to ships with
forward speed. Expressions are obtained for the observed mean square
value of the wave elevation process for fixed and moving reference frames.
Based on the findings in Chapter 2.4.3, an investigation has been made in
Chapter 2.4.4 of the statistical aspects of the encountered mean square
value in following seas, and of the apparent wave energy in Chapter 2.4.5.

24.1. Harmonic Waves of Small Amplitude

The following free surface profile is assumed:

nxzt) = A cos(kxx + kzz -Ot+¢€) ,

where A = wave amplitude

6 = circular wave frequency

¢ = phase of wave (0° denotes wave crest at C.G. of vessel)
kx = k cosd

k; = -k sind

k = o2%/g = wave number.

The wave direction, 8, is defined as in Figure A.2 in Appendix A, from
which it is seen that a zero degree direction implies following sea
conditions.
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The velocity potential of the incoming wave must satisfy the Laplace
equation,

V2<D1(x,y,z;t) =0,

throughout the fluid domain. Assuming small amplitude wave
conditions apply, i.e., kA << 1, the boundary conditions can be linearized,
so that ®1 must satisfy the following combined kinematic and dynamic

free surface boundary condition at the mean water level, y = 0:

d)n(x,O,z;t) + gd)y =0,

which for a harmonic wave can be written in terms of the time-
independent part, @i, of the potential &y:

g
(] (X,O,Z) - — = 0 .
I 2 I

where
D, (x.y,z:t) = Q(x.y,2) e .

The kinematic boundary condition at the bottom (or "infinite" depth) can
be stated as follows:

lim Vd>l(x,y,z;t) =0.

y——ee

The velocity potential satisfying the above conditions is given by
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<Dl(x,y,z;t) = _A_g_ . eky. sin(kxx+kzz-0't+e) , -0<ys0,

c
which can also be expressed in complex notation as

i(k_x+k_z-ot+€)
QI(x,y,z;t) = Re -ié—g-ekye o
(o]

2.42. Harmonic Waves of Large Amplitude

Despite the apparent theoretical limitations, linear wave theory applied to
large amplitude waves in deep water has been found to yield quite
adequate results as regards wave profile, water particle kinematics and
pressure. Oceanographical research, see e.g. Wiegel (1964), has
suggested that linear theory can be extended above the mean water level;
Sobey et al. (1987) have shown that wave profiles and crest velocities
predicted by extended linear theory compare favorably with predictions
from several higher order theories, at least for deep water conditions.
Linear theory does give incorrect results for shallow water waves,
particularly when the wave height is large. It has been suggested that
linear theory severely overpredicts the crest velocities of large deep water
waves, as was done by, for example, Gudmestad and Connor (1986).

In this work it is assumed that linear wave theory can be extended up to
the actual free gurface level, so that the velocity potential can be written as

d)l(x,y,z;t) = é_g . eky. sin(kxx+kzz-0t+e) , —o<ysT,
c

where 1 is the free surface elevation defined as above. Chalkrabarti (1971)
has suggested that applying linear wave theory to particle kinematics in
the crest results in a pressure discontinuity at the mean water level.
However, in his view of extending linear theory, the pressure above the
mean water level is purely hydrostatic, as the dynamic term is not
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considered valid in the crest (y 2 0). In order to justify using the extended
linear theory for severe wave conditions, it is shown below that the
pressure at the free surface is constant to lowest order. Another
consequence of this approach is that there is no pressure discontinuity at
the mean water level.

Neglecting higher order terms, according to extended linear theory the
wave pressure can be expressed by

oD,
P(y.zit) = -pgy-p—= , —e<ysm,
which results in
ky

P(x.y:zt) = -pgy + pAge” cos(k x+k z-Ot+) .

In accordance with linear theory, the wave amplitude is small compared
with the wave length, i.e., kA << 1, so that in the neighborhood of the
mean water level, y = 0, the exponential term can be expanded about ky =

0:
2 3
eky = 1+ky+%+%+

m
p—
.

Even in severe wave conditions where wave breaking does not occur, the
wave amplitude is relatively small compared with the wave length, since
a typical amplitude to length ratio would be 1:10. Thus, up to lowest order,
the pressure close to the mean water level is given by

p(x,y,z;t) = -pgy + pgn(x,z;t) .
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Hence, at the free surface y = 7| the pressure is zero to lowest order for all
wave conditions, suggesting that under the appropriate conditions linear
theory is not inconsistent for waves of finite amplitude. By inspection it is
seen that the pressure derivative dp/dy does not have a discontinuity at y =
0.

2.4.3. Random Waves and Wave Groups

The objective of this chapter is to investigate the modelling and behavior of
random waves, observed from a stationary and moving reference point.
Statistical analyses of waves in deep water have shown that the
distribution of the wave elevation typically is Gaussian or close to it, and
that the peaks and troughs have approximately the Rayleigh distribution.
In order to represent the surface of a unidirectional random sea, it is
assumed that the wave surface can be considered as being composed of an
infinite number of component waves having different frequencies and
infinitesimal amplitudes. Also, the phase lags e, are assumed to be
uniformly distributed over the interval (-mx,x). If the phases of the
individual components are uniformly distributed, the distribution of the
wave elevation would be Gaussian as a result of the linear superposition
model. According to the superposition model, the time-dependent wave
elevation observed at a stationary reference point, is given by

nx,z;t) = EIA" cos(kxmx+kmz-ont+e n) ,

where the subscript n refers to the properties of the nth wave component.
This representation has been found to be adequate for modelling deep
water wave conditions observed at a fixed point, and has been used by
Longuet-Higgins (1984), among others, to study the statistical properties of
surface waves.

When creating random wave records for time simulation purposes, a

number of simplifications have to be made. If one starts from a standard
formula for the spectral representation of the sea surface, Syy(0), a high-
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frequency cut-off point must be chosen, for example. The one-sided
spectral density can be defined as follows:

l 00
S (©) =~ |R(®)cosotdr ,
m 2n (‘!

R(T) = ({sm(o) cosoT do .

The function R(t) is the autocorrelation function, and < is the time lag; by
definition of the one-sided spectrum, negative wave frequencies are not
considered in the above relationships. Estimated spectra of wave
elevations, say, are usually based on smoothed periodograms related to
the Fourier transformation of the wave record; for more details on the
estimation of spectra and related statistical aspects, see e.g. Brillinger
(1981).

If one is interested in the overall behavior of the wave group envelope, it
may suffice to consider only the wave components in the range from
approximately 0.50p to 1.56p, where op is the peak frequency of the
spectrum, as has been proposed by Longuet-Higgins (1984). The final
choice is obviously also a function of the dynamic properties of the vessel of
interest; if, for example, one is interested in the seakeeping behzvior of a
small boat, it will be necessary to chonse the cut-off frequency such that it
lies in the same range as the natural pitch frequency, say.” Conversely,
the cut-off frequency need not be high for a relatively large vessel.

Another necessary simplification in the time simulation of waves is that

the total number of wave components will be finite. The representation of
the sea surface having a finite number of N components is given by

N
nx,z;t) = n2=:1 A]n cos(kpr+kz,nz-ont+en) .
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In order to generate wave records that have the same spectral properties
as the original spectrum, the amplitudes of the wave components can be
determined as follows:

Aln = /2811“(6“) Aon ,

where Spn(on) is the spectral density associated with the nth wave
component, and Aoy, is the corresponding frequency interval. It is argued
by Tucker, Challenor and Carter (1984) that the above representation may
affect the statistical properties of the sea surface, and particularly the
wave group properties; a statistically more correct way of representation
would supposedly be obtained by randomly choosing the finite set of
component amplitudes out of a Rayleigh distribution, and the phases out
of a uniform distribution. In this case the nth amplitude should be chosen
out of a Rayleigh distribution having a standard deviation equal to

S, = / ZSnn(O'n) AO'n .

This may be valid for the case where one wants to generate a large
number of random wave records which are ergodic, but it seems that e.g.
wave group properties still would depend on the number of frequencies
employed. One way to minimize the problem of wave group properties is
to use randomly varying phases, or frequency intervals of varying width
(by using equal amplitudes for all the components, for example). In this
work the amplitudes are determined deterministically, and constant
frequency intervals are used. However, in the simulation of random
waves the frequency spacing is considered random by assuming that the
frequency of each component is uniformly distributed over the
corresponding frequency interval Acp.

If the number of wave components are sufficiently high, the statistics of
the modelled wave process are the same for the deterministic and random
amplitude methods. This can be proved by applying the Central Limit
Theorem. It was found by Elgar, Guza and Seymour (1985) that N = 2100
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was large enough for the random phase method (with deterministic
amplitudes) to model a Gaussian process realistically.

It is assumed that the wave-induced pressure, as well as other flow
properties such as velocity and acceleration, in a random wave system
can be determined according to the linear superposition principle,
whereby the total velocity potential of the wave system consists of the
summation of the individual velocity potentials:

O.(x,y,zit) = 2,d> = Q =g sink, x+k z-G t+€ ) ,
1 n=1 In n=1 O'n xn z nom

so that the pressure at any point in the fluid can be estimated by

N od
p(x,y,z;t) = -pgy-pz a:'“ ,» -o<ysT .
n=1

When calculating the forces acting on a vessel in random waves, the
above pressure would be the one used to determine the Froude-Krylov
forces by integration over the instantaneous wetted surface.

Next the phenomenon of wave grouping is considered due to the presence
of two or more wave components in a seaway. Wave groups were found to
be of importance in the study of model capsizing in the San Francisco Bay,
as has been reported by Oakley, Paulling and Wood (1974), and Chou et al.
(1974). It was observed that wave groups enhanced the parametric
excitation of a ship in a following sea, for example, by providing a nearly
harmonically varying excitation over a prolonged period of time. In the
case of a short wave group there often was not sufficient time for resonant
motions to build up to a serious level. While in reality wave groups in
following seas may not necessarily be the most important contributor to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

capsizing, it is a fact that often under following or quartering sea
conditions undesirable roll motions are observed on board ships of various
types. It is also well known that under storm conditions it is not advisable
to maintain a course in following seas. Wave groups were observed to
increase the likelihood of broaching during the San Francisco Bay
experiments, where the ship would be put off course by one big wave, and
yawed even further by a consecutive large wave, before the vessel had time
respond to the rudder. Grim (1963, 1983) showed that a ship could be
accelerated in a following wave group to a certain critical speed, at which
point broaching would be more likely to occur.

Moored offshore platforms can be very sensitive to wave grouping,
especially when the group frequency lies close to the natural surge or
sway frequency of the structure, as a result of which significant slow drift
excursions may occur. This aspect will not be further discussed, as the
slow drift behavior is not considered of importance in an investigation of
large motions or capsizing of freely floating vessels. The main concern
for ships seems to lie in the possibility of some kind of dynamic excitation
due to wave groups, where the group length, wave frequency and the
envelope amplitude are the critical parameters. The occurrence of groups
with waves of extreme height, including waves which may be breaking,
has been studied by Su (1986), where "extreme wave groups” were
considered to be possibly due to wave instabilities and current. In the
present work these groups are not considered, since their occurrence is
relatively rare and wave breaking cannot yet be incorporated properly into
the prediction of ship motions. Chou (1977) has presented a method to
determine the likelihood of occurrence of groups having certain
characteristics such as length, number of waves and group amplitude.
Longuet-Higgins (1984) has derived expressions for estimating the
statistical properties of group length and amplitude. In the following
some characteristics of wave groups are studied for the case of a
stationary and moving reference frame. The latter gives an indication of
the waves and their groupiness as encountered by a vessel with forward
speed. Specifically, following and quartering sea conditions are studied,
where the reference frame moves with respect to the waves at an angle
less than 90°.
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Two-Component Wave System

Let us first consider a wave system consisting of two components. This is
the most elementary way of studying wave grouping, and results in the
well-known beating phenomenon. For convenience, the waves are
assumed to be moving along the positive x-axis, i.e., k; = 0. Then the wave
elevation is given by

nx;t) = Al cos(klx-olt+el) +A2 cos(kzx-ozt-l»ez) ,

where ky = 612
ko = 022/g.

The wave elevation can be written in terms of a slowly-varying modulation
with a carrier wave having frequency ¢, as given by Newrman (1977):

-i(k,x-0, t+€,) .
nxy = A e LI {1+_A_2‘cl(8k.x-80.t+se)} ’
Al

where real parts are implied and

0k = ko-ky
0c = 02-01
0 = e2-€1.

The group (or wave envelop2) frequency, as would be observed at a
stationary point, is given by ¢g,0 = 60, and the group length is equal to
2n/6k. It is assumed that 6c 1s positive. The above equation shows that
these group properties are not affected by the phases of the wave
components. The group speed of the two component wave system, in the
fixed reference frame, is given by
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c =359,
& 5k
and in the limit this becomes
do
Cg =3

If the two components have almost the same frequency, i.e., 62 — 61, then
the group velocity is equal to half the phase speed of the waves, Cp, (here
based on the frequency ¢ = 63):

1

g
c =-t -_.
26 2

g Cp )

1
The mean square value of the process, obtained at a fixed point (x = 0, say),
is a useful measure of the global statistical behavior of the seaway, and is
directly proportional to the mean energy present in the waves as observed

at the fixed point. The definition of the mean square value is the
following:

T
.12
My = lim -f(J)'n ®de ,

T—o0

which for the two-component wave system is equal to

It is of considerable interest to study the waves as they would appear to a
moving vessel, especially in following sea conditions. This aspect
seemingly has not received much attention, although the importance of
the collapse of the encounter spectrum in following seas and increase in
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observed number of waves in groups, was stressed by Chou et al. (1974),
among others. A discussion on the encounter spectrum for different ship
headings and speeds has been presented by Webster and Trudell (1981).
An important consequence of forward speed in the wave direction, is that
under certain conditions the wave excitation experienced by the vessel
seems to become more regular, i.e., for a given time period the envelope of
the wave process appears to have a more constant amplitude than would
be observed over the same amount of time by a stationary observer. This is
shown below both analytically and by simulation for the two-component
wave system. :

If the moving reference frame, O¢xeyeze, has a speed U, the position of a
point in that frame becomes time dependent, and is given by

X = xe+U.t .

and if the wave elevation is considered at the origin of Oexeyeze, the
relationship is

x = Ut.

This expression for x can be substituted into the wave elevation expression
so as to obtain a description of the wave surface as it would appear to an
observer positioned at O¢:

nx;t) = A1 cos(klU.t-olt+r»:l)+A2 cos(k2U.t-02t+82) .

Let the forward speed be expressed as being proportional to the phase
speed of the first component, Cpi:

g
U=>bC. =b—=,
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where b is a constant. Then the observed wave elevation can be written as

N = A cos (b-l)clt + 82] + Azcos{(bcg/csl -G )t+ 82] ,

so that

; ".ﬁei[br:%la1 -crz-(b-l)ol]t-i&»:} .

A

(1o t-¢ }
nw=4ae ' U

In analogy with the wave group behavior observed from a stationary
vantage point, the wave groups, as they would appear to an observer
located at the moving origin O¢, are varying with a frequency og,u given by

U = bctglcs'1 -0'2-(b—l)0'1 .

This frequency can be expressed in terms of the group frequency og,0 = do:

o .. =b{dc%6 +286+06 }-806-6 -bo +0
gU 1 1 11 1

= b{&:sz/c:1 +286) - 80 .

Next a short investigation is made to determine for what speeds, from the
moving reference point of view, the observed groups are more slowly
varying compared with the groups observed at a fixed point. The criterion

that can be used for this purpose is the wave group frequency, as the lower
the frequency og,u is, the longer it takes for the group to pass the moving

reference point. Thus, it is desirable to know for what conditions the
following holds:

<
|og'U| <dc.
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Case (1) ogu=0.

The apparent wave group frequency o,y is zero if the constant b is equal
to

b=t .
80/01+2

Hence, if the speed of the moving reference point is equal to

U=s—1__ 8
80/01+2 o

the observer at that point would always see the same waves pass by, i.e.,
there would be no apparent change in amplitude or frequency. In the
limit where 86 approaches zero, the speed constant would be given by

8650 66/al+2

N =

which results in the speed of the moving reference point being equal to the
half the phase speed:

Thus, when an observer travels at the group speed, there will be no
change in apparent wave amplitude and frequency of encounter, and the
waves will overtake the observer in a regular fashion. This is not a new
result, however, it has some interesting implications which are discussed
further on in this section.
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Casge (ii); oy < bo.

For the apparent group frequency to be smaller than the one observed at a
fixed point, the following result applies:

b [&52/0l +260) < 25¢

2
= b < —————
8(5/0'l +2
Case (jji\ og,u > -80.

This requirement leads to

b{802/cl+280'} >0
= b>0

In summary, the wave group (or envelope) frequency observed from a
reference frame moving with the waves can be smaller than would be
observed otherwise, so that under those conditions the excitation remains
harmonic over a longer period of time. The apparent wave group
frequency is smaller than 8o for a wave system having two components,

when the speed of the moving frame lies in the range

0<U<2.Cg,

and the apparent group frequency is zero when the forward speed is equal
to the group speed:

U=cC =5
B 8k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

Although the above observations are valid only for a simple composite
wave system, it does indicate that prolonged harmonic excitation may
occur when a ship travels with the waves at their group speed. This could
result in undesirable roll motions, for example, through parametric
excitation. Obviously, the excitation experienced by the vessel would
depend largely on the position with respect to the wave envelope. If the
ship travels at group speed, but is located at the point of minimum
amplitude of the envelope, it will never be exposed to waves of any
significant amplitude. Conversely, if the ship travels with the crest of the
wave envelope, it will be subjected to harmonic wave excitation where the
amplitude of the waves may be large. The mean square value of the waves
as observed by the moving vessel can be easily calculated, and is discussed
next in some more detail.

If the encounter frequencies with the individual wave components are
defined as follows:

c c
o, = klU-c1 . c, = k2U-cr2 ,

and if zero phase angles are assumed for the moment being (random
phase angles will be considered later), the wave elevation observed from
the moving reference point is given by

_ e e
n = Alcos(ol.t) +A2.cos(02.t) .
so that
2 2 2, ¢ 2 2. ¢ e e
ne = Al.cos (ol.t) +A2.cos (oz.t)+2A1A2.cos(cl.t).cos(02.t) .

The mean square value of the observed process, evaluated over an
infinitely long period, is given by
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1 T 2
Ny = li -fjn ®dt
Or

. 1 2 _2e 2 2¢ ¢ e
= lim T(‘!{AICOS ot + Acos 02t+2AlA2cosolt.cosozt} dt .

Evaluation of the first two terms gives the mean square value of the
process as would be obtained from a fixed reference point:

2
Al+

N

N -
o] =

The contribution from the third term depends on the value of the
encounter frequencies: the third term is given by

_ e € €
.—AlAzlfcxl—cr2

[ (]
or 0'1 = -0'2

0 otherwise.

Hence, if the two encounter frequencies have the same magnitude, the
mean square value of the observed process is that of a regular wave
system with an amplitude equal to that of the wave envelope, i.e.,

fot=oS, U=l 2=c . and = La+ay?
ifo;=0,, U= =& =C;, and Ny ¢ = 7(A+A))

The velocity, U, for which the encounter frequency with both wave
components is the same, is the group velocity pertaining to those
components. It is noted that if the encounter frequencies are of the same
magnitude but of opposite sign, the following relationship is obtained for
the velocity and mean square value:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C +0

_1_2 R and 'q = 2 .
kl+k2 M.S.

e € e _ 1
if G, =-C,, U= -2-(A1+A2)

The discussion above suggests that when an observer travels with the
group speed along the crest of the wave envelope, he will be subjected to a
higher amount of wave energy than if it were stationary, as

1 2_ 1,2 1,2
'i'(Al +A2) > '§'A1 +5A2 always.

On the other hand, when an observer travels with the trough of the wave
group, he will be subjected to a smaller than average amount of wave
energy. One may question whether the same applies for a vessel
travelling in random following seas.

Let us now consider a two-component wave system having random phase
angles, where an observer travels at an angle B relative to the waves.

Then the observed wave elevation is
[
ne = Al.cos(c:.t +£,) +A,.co5(0,t +€,) ,

where the encounter frequencies with the individual components are
defined as

e a—

o = kl.U.cosB-o1
e

o, = kz.U.cosB- o, .

At least for the moment being the above definition for encounter frequency
is used, whereas the conventional expression would have opposite signs.
This is done simply for convenience so as to avoid minus signs in the
relevant expressions. The velocity U is considered to be positive always,
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and the relative heading is taken such that quartering or following wave
conditions exist, i.e.,

-90°<B<90° .

It is noted that for head or bow sea conditions there is a one-to-one
mapping between the wave component frequencies and encounter
frequencies, so that under those conditions the mean square value of the
observed process, for example, would always be equal to that of the wave
process observed at a fixed point. It seems that for following sea
conditions this may not necessarily be the case, which warrants further
investigation.

The square of the observed wave process defined above is
2 2 2 2 2
n°() = Aj.cos (o‘l’t +¢€,) + Aj.cos (o;t +e,)+ 2AlAz.cos(o‘l’t+el).cos(c;t+£2) ,

where the last term can be written as

c

[ . e . e . o
2A1A2.{coso 1.c0SG,t.COSE, .COSE,, + SInG_.sinC.,t.Sin€, .SIng

1 2 1 2 1 2 1 2

PR c . e . ¢
- smclt.coso t.S1ng, .COSE,, - COST,1.SINC,,t.COSE

ol-SINE,.COSE, 1 2 psing,} .

The mean square value of this process has the following contribution from
the first two terms:

1.2 1,2
RN

while the contribution from the last term clearly depends on the phase
angles. The following four integrals result from the expression for the
mean square value of the last term, where the limit T — - is taken:
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T

1 1 . e ¢
-'i'-o coso° t.coscrzt.costzl cose dt = -icosel.coszz2 if loll = l02I
=0 otherwise .
T
1 1 o°
el smolt smozt smt—:l sme dt = —smel smt-:2 if o G,
To o
---ismt-:l smt-:2 if °1 2
=0 otherwise

N (4 c .
(J)'smolt.cosozt.smel.cosezdt =0.

00
e . N
jcosolt.smcct.cose .smezdt =0.

2 1
0

Thus, the mean square value of the observed process is given by

1 2 1.2 . e ¢

Mys. = 5A1+-5-A2+A A .cos(e -€ ) if °1" o,

1,2 1,2 &

= 3A1+—2-A2+A1AZCOSU; +c ) if 0' -G,
_1,2.1,2

= 5A1+5A2 otherwise.

From these expressions it is seen that, for example, for the case where the
two encounter frequencies are the same in sign and magnitude,

1 2 1
nM.S.>-i- 1 2A2 if cos(e e)>0
ie., if Iel-52|<1c/2 ,
and
La2, 12 5 0
nM,s.<§ 1+§-A2 i cos(el-82)< .
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In the following circumstances the observed mean square value would be
significantly smaller than what would be observed at a fixed point
(provided the component amplitudes are of the same order of magnitude):

1

A

2 . e c
s, = 1 -Ay))" if 6,=0, and Iel-e:2| =x.

Thus, for any given simulation, the mean square value encountered when
travelling at the group speed can be significantly different from the mean
square value at a fixed point. By inspection of the expression for the
encountered mean square value it is seen that, if many simulations are
performed with random phase angles, the average encountered mean
square value of the ensemble will be equal to the value observed at a fixed
point.

Random Unidirectional Wave Syst

Certain aspects pertaining to the two-component wave system can be used
to study properties of a random sea. Unidirectionality is assumed, and
also the commonly used assumption is made that the phase angles are
randomly distributed, but otherwise independent of time. The wave
elevation for the random sea having 2 certain number of components, N
(where in the limit N — ), is given by

N
() = X, Acos(kx - Gt+e) ,

i=1

so that the wave elevation observed from a point moving at an angle with
the waves, at speed U, is

N
nt = Z Ai.cos(c?.t+ei) .

i=1
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where the encounter frequency with an individual wave component is
again defined as previously:

= ki.U.cosB-csi .

Then

n (t) = ZA .COs (0’t+8)+22 {ZAAkcos(ot+e)cos(ot+ek)}
j=1 k>J

In analogy with the two-component wave system, the mean square value
of the above process associated with the first series is given by

and the mean square value of one of the cross-product terms in the second
series (where k > j and the limit T — « is applied) is

—IZAAkcos(ct+e)cos(o t+ek)dt-AAkcos(e ak) if c
—AAkcos(s +ek) if c

= 0 otherwise.

N'OR‘O

It is noted that for a given encounter frequency (positive or negative) in a
random following seaway, there are always three individual component
waves that lead to the same absolute value of the encounter frequency, see
e.g. Webster and Trudell (1981). Also in a random sea, for a given
forward speed, there will be an infinite number of combinations of
encounter frequencies, for which there would be a nonzero value of A;jAk.
However, the combinations of wave components that will possibly
contribute to a nonzero mean square value do not occupy the whole
frequency domain (ranging from zero to infinite frequency), i.e., there is
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only a finite frequency range where the requirements for possible
contributions to the mean square value can be satisfied. This is discussed
next in somewhat more detail.

Let us consider the case of following seas where an observer travels with
the waves, at an angle B, and at constant speed U. In Figure 2.4 a
schematic representation of the sea spectrum is given, as well as the
curve with the corresponding encounter frequencies 6. Three areas are

denoted:

-- range where the longer waves overtake the observer;
-- range where the shorter waves overtake the observer;
-- range where the short waves are overtaken by the observer.

a k>

Certain combinations of wave components belonging to these different
regions would yield equal encounter frequencies with the different
components, resulting in a (possibly) nonzero contribution to the overall
mean square value of the observed wave process.

i

Figure 2.4. Schematic Description of the Sea Spectrum (Observed
from a Fixed Point) and Encounter Frequency Curve for a Given
Vessel Speed U. The frequency domain comprising A, B and C is the
range for which there are equal encounter frequencies with different
wave components.
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In this case the curve denoting the enccunter frequencies is given by the
conventional definition:

2
o = o-kUcosp = c--gg—.U.cosB ,

which yields the same magnitude of encounter frequency with a given
wave component as the definition used previously, but of opposite sign.
The wave with frequency o = 61, separating the region A from B , is the
one whose group speed, which is equal to half its phase speed (= 8/2g ),
corresponds to the velocity U-cosp of the observer. This wave component
also results in the maximum encounter frequency, 6®max, that can be
obtained with any component in the range from ¢ = 0 to ¢ = 63. The
frequency o = 09, separating the region B from C , is the one for which the
encounter frequency is zero. The frequency ¢ = 63 marks the upper limit
of the region C, beyond which equal encounter frequencies (in absolute
value) with components from A and B cannot be obtained. The following
summary of wave frequencies and corresponding encounter frequencies
is easily shown:

c o®

co=0 0

o1 = g/(2U-t:c»sB) Cmax = g/(4U-(:os[3)
02 = 8/(U.cosp) 0

03 = (1+V2)-g/(2U.cosp) -B/(4U.cosB) -

The subscripts j, k and m of the encounter frequencies are defined such
that the corresponding wave components belong to the regions A, B and C,
respectively. The following relationships must be satisfied for the
encounter frequencies:
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o) = o
o =-¢

J m

[ C
o, =-o. .

For clarity, be it noted that the encounter frequencies cj¢ and ox® are due
to both a long and a shorter wave component overtaking the observer,
respectively. These two components can be said to form a "component
wave group” travelling in the same direction as the observer (or at an
angle with him), and typically will carry most of the energy. The
encounter frequency with the opposite sign, onp®, is due to the observer
overtaking a short (slow) wave, which usually has associated with it a
smaller amount of energy than the two previous components.

Now let us assume that there are M wave components in both regions A
and B, located symmetrically about ¢ = 01, so that there are M pairs of
components for which the encounter frequencies are equal in sign and
magnitude. If all the wave frequencies are equidistant, there cannot be M
wave components in the region C for which the encounter frequencies are
equal in magnitude and opposite in sign. This is due to the € curve
exhibiting different behavior in C than in A or B. If one wants to create M
wave components in C also that satisfy the above encounter frequency
requirements, it is necessary to first choose a finite number of values for
the encounter frequency, ¢¢, from which subsequently the corresponding
values of the wave frequencies pertaining to the regions A, B and C can be
determined quite easily. This will result in unequal and smaller
frequency intervals in C. If the wave frequencies are obtained in this way,
there will be 3M pairs of frequencies for which the encounter frequencies
are equal. In the case for which the discrete wave frequencies of A and B
are not distributed symmetrically around o1, there will be no contribution
from those components to the mean square value of the observed process.

If the wave frequencies are chosen based on the given encounter
frequencies, ~vhich would result in equal encounter frequencies for the
regions A, B and C , and assuming that there are N wave components in
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total in the seaway, the expression for the mean square value of the
encountered seaway would given by

e 1Q 2 M
Nys. = -2-§A. +2 X AAcosE-g)

=1 'l =2Mjel !

M
+ Z z A.Amcos(e. +em)
F1 m=2M+j J J

M

+ Z Z AA cos(g +€ m) .

k=M+1 m=M+k

For the hypothetical and unrealistic case with all 3M phase angles being
zero, the mean square value of the observed wave process would be
significantly higher than the value obtained at a fixed point, as all the
combination products AjAx would contribute to the overall mean square
value in a positive manner. For a purely random sea, where the phase
angles are randomly distributed, it is obvious that there will be additive
and subtractive contributions (with equal probability of occurrence),
which depend on the magnitude and sign of the individual phase angles.
This means that, for many simulations, the expected value ¢ the
encountered mean square wave elevation is exactly the same as the one
obtained at a fixed point. However, for any given simulation, the mean
square values observed at a fixed and moving reference point can be
different. ‘

Jefferys (1987) observed a somewhat similar consequence of the model for
directional sea spectra, where a finite number of frequencies and
directions are used to represent the random sea surface observed at a
fixed point. He showed that, if there are several (finite) directions in a
wave surface realization having exactly the same frequency and random
phase, standing waves will be created, so that the mean square value at
one point can be very different from the value observed at a different
location; the difference will depend on the phasing of the individual
components and has been shown to be experimentally reproducible. He
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argues that in a truly random sea this cannot occur, because there would
be an infinite number of frequencies and directions.

It is of relevance to ask oneself whether there is a certain speed, at a given
relative heading, for which the observed mean square value is likely to be
higher than the fixed point value, and if so, how much the increase in the
observed value would be. Since travelling at the group speed in a two-
compornent seaway may result in the largest possible hariaonic excitation,
it is of interest to consider the case where an observer travels at the "mean
group speed” of a random, following seaway (assume B = 0° for
convenience). Supposing that the random sea is narrow banded, where
the peak frequency is op and the spectral density is given by the
Bretschneider spectrum, for example, the mean group velocity, Cg p, is
defined as half the phase velocity of the wave component with the peak
frequency, i.e.,

C = .._§_-. .
LX)
P

In a random seaway that is narrow banded, it will not be possible to
remain in one group for an indefinite period. However, if a ship travels at
the mean group speed with the waves, it may be subjected to a more
regular excitation and larger amplitude over a significant time interval
than would be experienced otherwise. As is shown in the next section, it
is equally likely that the vessel will be subjected to a smaller amplitude
wave process for a given time period. For illustrational purposes, let us
consider an idealized narrow banded, random seaway, where the spectral
density is symmetrically distributed around the component with the peak
frequency, op, so that the peak frequency is the same as the median or
mean frequency. The spectral density becomes zero at op + Ac, where
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The phases are assumed to be rancomly distributed over the interval
(0,2r). Also let us suppose that there are N = 2M wave components in the
system, where M is large. Then there are M wave components in the
interval Ac, locsted symmetrically on either side of the peak frequency. If
an observer were to travel at the mean group speed, Cg p, there would be
M pairs of encounter frequencies for which

(4 (
OJ—O'k,

because the group speeds are the same (and equal to Cg,p) for the
individual pairs of wave components located symmetrically around the
peak frequency:

(op—mﬁc) - (cp+m86) _ (cp-nﬁo) - (op+n86)

k-m&r ) k+m80' k- ) k+n80'

1<mn <M,

m#n .

Here 0 is the frequency spacing of the individual components, and the
various wave numbers are defined as follows:

(c_- m.8cr)2 (c +m.8cr)2
k = —; ’ k = _;
-m3c g +mdc g

Thus for the combination of the above M cases the mean square value of
the observed wave process would be equal to

M
(3 0
n =1 + E A.A cos(e. - ,
Ms. = Mms. g{sz_jH ;A COS(E; - §)

where 10M.s. is the mean square value of the process observed from a
fixed point, i.e.,
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Now consider a different speed of the observer moving with the waves:

U=bC_ _, b=l
284

which corresponds to half the phase speed of the component with
frequency op, say. From the above it can be seen that there are fewer
pairs of wave components with frequencies located symmetrically around
ob than around op, i.e., the number of components, J, for which (for U »

Cg,p)

is smaller than M. Also the J pairs of wave components with equal
encounter frequencies will yield sums of products involving smaller wave
amplitudes in the expression for the encountered mean square value,
when compared with the case for which U = Cpg. Therefore, the variance
of the encountered mean square value will be largest when the speed of
the observer is equal to the group speed of the waves with the peak
frequency in the spectrum, i.e.,

Var “ia.s.' > Var "Tw.s.'

Uch.g U;th'g

The above conclusion has been verified by simulations where a large
number of wave components were used, results of which are discussed in
Chapter 6. Also, this may be of practical importance to ship operators,
since it may be undesirable to move with a given seaway at its mean group
speed. It would be quite easy to estimate the mean group speed of the
.eaway, so that certain precautions, such as a change in speed or
heading, could be taken if necessary.
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A few more general remarks are made concerning the general statistical
properties. Since the phase angles are uniformly distributed over (-x,n)
and operated on by a cosine function, the distribution must be symmetric
with mean zero, and the following should hold also:

J 0 _ ¢ 0
PMys. < Mys) = POlys > Mys) -
The probalility
e 0
Py s >Mys)

will depend on the joint distribution of the wave amplitudes and phase
angles. If the amplitudes of all wave components were the same, this
probability would be significantly smaller than for the case with a strongly
peaked spectrum. In the next section probability theory is applied to study
the statistical behavior of the mean square value pertaining to the
encountered wave process for a two-component wave system.

Some of the above observations have been observed experimentally by
Takaishi (1982). Random wave elevations in a model basin were
measured at a fixed point as well as from a reference point moving with
the waves, where the velocity was equal to the mean group speed, Cpg.
The observed waves at the moving point were found to be of larger than
average height and of regular appearance over a prolonged period of time.
It should be mentioned, however, that there is an equal likelihood of
encountering a smaller than average wave height in random following
seas.

2.4.4. Statistical Aspects of the Encountered Mean Square Value in
Following Seas

In the previous section it has been shown that the mean square value of
the wave process, encountered by an observer moving at an angle with the
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waves, can be different from the value that would be obtained at any
stationary point. It is of interest to study the probability characteristics
associated with the encountered mean square value, népm.s.. The additive
or subtractive comr2=ents contributing to the total mean square value
consist typically of the product of wave component amplitudes multiplied
with the cosine of their phase differences (or sums), viz.

AjAkcos(ej-ek) or AjAkcos(ej+ek) .

Basic probability theory can be used to determine the cumulative
distribution function and probability density function of these components.
As was discussed in the previous section, the distribution of the
amplitudes of the wave components can be considered either
deterministically, or it can be assumed that they have the Rayleigh
distribution. An investigation is made in the following as to the statistical
properties of the cosine terms.

Distribution P ties of cos(e;-ex0) and cos(e;ter)
In the random wave model the phases of the wave components are

assumed to be independently uniformly distributed over the interval [-x,x].

The domain of both the phase differences and sums encompasses the
interval [-2r,2n], so that if the random variable Y is defined as

Y = ej-ak or Y = ej+ek,

its domain will be [-2r,2x]. The distribution properties of the phase
differences and sums are the same, since their domains and marginal
distribution functions are the same. Let Fy(Y) denote the cumulative
distribution function (c.d.f.) of Y:

Fy) = P(Y<y)

and let fy(y) denote the probability density function (p.d.f.) of Y, where
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It is easy to show that the p.d.f. of Y has the following properties:

2 -y

fY(y) = if 0sy<2n
4r
= 2’”;” if 2<y<0
4n
=0 elsewhere.

The behavior of fy(y) is shown graphically in Figure 2.5. The c.d.f. of Y is
obtained by integration:

y
Fy) = [f,0dy .
2%

which results in the following:

Fy(y) = 2 2elyil i oreyso
81:2 2r 2
-1
=--—-y2+—l-y+}- if 0Sy<2n .
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Figure 2.5. Probability Density Function of
Random Variable Y

The random variable Z is defined as

Z = cos(Y) ,

and the relationship between Y and Z is represented graphically in Figure
2.6. In order to find the distribution properties of Z, use can be made of
Figure 2.5. It is clear that the properties are the same for positive and
negative values of Y, i.e.,

Fz(z) =P(Z<2) for -2n<Y<2n
=2P(Z<z) for 0sY<2rm,

so that only one side, Y 2 0 say, needs to be considered. From Figure 2.6
one can also see that -1 £ Z < 1, and that for Y 2 0 the behavior of Z is
symmetrical about Y = n. Consequently, the probability P(-1 <Z < z) can be
conveniently expressed in terms of Y as follows. Let us define the quantity
dy as being associated with the value z, and restrict dy to the range

O0<dy<m.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Z =cosY §
! 5
N\ NS
-2;1: -1:' 0 \ 1:5 / 21:7 Yie
—-—..h_ - -82
1 \_/ :

Figure 2.6. Characteristics of the Random Variables Y and Z

Then Z = cosY = z has associated with it two values of Y: (1) Y = n-dy, and
(2) Y = nt+dy, i.e.,

n-dy = cos'z and m+ dy = cos'z .
The probability P(-1 £ Z < z) is equivalent to
P(-1£Z<2z) = 2P(n-dysY<n+dy), 0sY<2r.

To avoid the duality problem, the function erccos can be used, which is
defined only over the interval [0,r]:

arccos z: [-1,1] — [0,%] .
Then dy can be expressed as

dy = m-arccos z ,
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P(-1<£Z<2z) = 2P(n-(n-arccos z) <Y ST + T - arccos z}
= 2.P(arccos z<Y S 2x - arccos 2)

=PZ<z) = Fz(z) .

The above can be evaluated by making use of the distribution of Y:

P(arccos z<SY S 2xn - arccos z) = P(Y <21 - arccos z) - P(Y < arccos z) ,

and

P(Y <arccos z) = -;-+-l—axccos z--—laarccoszz ,
2r 81[

and similarly,

P(Y < 2r - arccos z) % + -L (2n-arccos z) - —-1-5- (2n-arccos z)2

2 8

2

= ]-e—arccos’z .
2
8n
Hence
1

P(arccosz< Y<2m-arccosz) = —-—arccos z ,

2 2

and the cumulative distribution function of Z is then given by

Fz(z) =P(Z<z) = l-larccosz .
T
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The probability density function of Z can now also be derived:

The expectation can be calculated as follows:

1

1
E@) = [zf,(2)dz = ;‘.[,/1-22] =0.
1 T

-1

The variance is given by

1
VarZ = EZ)- (E@) = E@) = [Pt &
-1

] =

2

1
dz = l 'E 1'22 +lsin-lz =
2 2
n
1-z -1

1
1
= ;‘!’

Thus, the expected value of Z is zero, and its variance is 1/2. This implies
that, for the two-component wave system with random phase angles, the
expected value of the encountered mean square wave elevation is given by

1,2
A+5A2’

by
3
S
)
e’
I
3
2
n
]
] =

and the variance of the encountered mean square value is equal to
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The above expressions for the expected value and variance are valid for
the case where the encounter frequencies with both wave components
have the same absolute value, and where their phase angles are
uniformly distributed.

It is not obvious that in the case of J pairs of wave components, for which
the encounter frequencies are equal, the variance decreases linearly with
increasing J, because the products AjA;jcos(ej-€j) are not independently
and identically distributed, as would be required when applying the
Central Limit Theorem. The terms are not identically distributed,
because the wave energy in a random sea tends to be concentrated around
a peak frequency. If the wave process were pure white noise, where the
spectral density is constant, i.e.,

Sl]'q(ol) = S’l]‘l](o:i) » i*j ’

then the Central Limit Theorem would apply, and the variance of the
mean square value would decrease proportionally with increasing J.
Also, the variance would then vanish for J — oo,

In the case of a typical wave spectrum, where the energy is distributed
unequally among the components, no proof is given here as to whether the
Central Limit Theorem does or does not apply. In Chapter 6 it is shown by
simulation that the variance of the mean square wave elevation, observed
in random following seas, does in fact decrease as the number of wave
components increase.

Implicati

The foregoing treatise on observed wave statistics has several implications
with respeci to statistical analysis in the time and frequency domain.
When studying wave excitation processes in (random) following or
quartering sea conditions, by means of time domain simulations or model
basin experiments, the mean square value of the observed wave elevations
may be different from the value observed at a stationary point. The
difference will depend to a large extent on the phasing and amplitudes of
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the wave components, no matter how long simulations are carried out for.
In particular, if the observer travels at the mean group speed, the
differences in observed RMS wave elevation can be quite large when
compared with the value obtained at a fixed location. The observer may
then see a series of large amplitude waves for a prolonged period of time,
but it is equally likely that he or ke will see smaller than average waves
during the same time period.

For frequency domain analysis the consequence is somewhat
embarrassing: the encountered spectrum for following or quartering sea
conditions becomes dependent on the phasing of the individual
components for a given realization. What is implied here is that the usual
transformation from fixed to moving coordinates in the spectral sense is
not valid for following sea conditions, i.e.,

S (0)do = S° (6Hdo® if B < =®/2 .
m m

This is probably more of academic interest, since it is unlikely that any
serious errors result in practice from the usual, be it erroneous,
transformation procedure.

2.4.5. Apparent Wave Energy in a Following Seaway

One major conclusion resulting from the foregoing is that the mean
square value of the wave process, observed from a point moving at an
angle with the waves, at any finite speed, will most likely be different
from the value obtained at any stationary point in the same seaway. As a
result of the conventional model of superposed wave components with
random phase, the difference will depend on the phasing of the individual
wave components with respect to the travelling observer, on the number of
components used in a realization, and on the shape of the energy
spectrum. Traditionally, the mean square value of a wave process is
linked directly to the mean energy in the wave system. In the following
section an attempt is made to determine the mean wave energy, as would
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be encountered by an observer moving with the waves; according to the
common notion of mean square wave elevation, there should also here be
a proportional constant separating the mean square value from the mean
wave energy. For convenience, it is assumed that the wave system moves
along the x-axis, and that for the case of a moving observer the relative
heading angle is zero. The results can be easily extended to the case for
quartering seas, and the same conclusions would apply as for the § = 0°
case.

The energy in a wave system is characterized by the sum of the potential
and kinetic energy, see e.g. Newman (1977) or Wiegel (1964). In a given
volume ¥ the total energy is given by the sum of the kinetic and potential

energy:

E* = B, +E,, = quj/j{-;.v%gy} v .

By considering the potential energy about the mean still water level, the
total energy density in a column extending vertically throughout {he fluid
domain, is

E = pJ'J%V2dy+J‘]gydy ,
-0 0

where M is the instantaneous wave elevation with amplitude A, and V is
the vectorial sum of the horizontal and vertical wave particle velocities:

2 2

oD oD,

2 _ I 1
v ’[T] +['&F] )
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For a single component wave system the time-dependent energy density,
observed at a stationary point, can be shown to be

1 1
E®®) = ry PgAz’ezk“ t3 Pgﬂz ,

which for waves having a small slope, where kA << 1, can be expressed
approximately as

1 1
E®) = 7 pgA”+pgn’ .

The total mean energy density is obtained by averaging over one wave
cycle:

- lT 1 2
E =-,f.-6fE(t)dt = 5PgA ",

so that the contribution from the potential and kinetic energies is the
same, and the mean energy density is linearly proportional to the mean
square value:

- 0
E =pglys. -

It is noted that the same result for the mean energy density is obtained by
taking the limit T — oo:

- 1T 1 2
E =1lim = |[E()dt = =pgA”.
Teyoo TJ 2
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For a two-component wave system the velocity potential is assumed to be
given by the superposition of the individual potentials;

2 Ag ky
¢I(x,y;t) = z —.e' ~sin(kix- oit+ei) .
i=1 ©.
1

Using the above definitions of energy density, it is easy to show that the
mean energy density in the composite wave system is given by

- 1 2 2
E = 598{A1+A2} ,
so that also in this case

- 0
E = pgnys -

E E tered by a Moving Ref Pgi

An attempt is made to determine the energy density of a two-component
wave system, as would be observed from a reference point that moves
steadily along the x-axis at speed U. Oxy is the earth-fixed coordinate
system, and the system Oexeye translates steadily along the x-axis. The
aim is to determine the energy present in the wave system, at any time
instant and for any location through which the observer passes, and
subsequently to take the time average to obtain the mean encountered
energy. Therefore, the expressions for the kinetic energy in the waves do
not depend on the relative velocity between the observer and the fluid,
whereas the frequency at which the encountered energy varies is linked to
the encounter frequencies associated with the individual wave
components. That is, the magnitude of the water particle velocities is
expressed in terms of the earth-fixed system Oxy for any given location in
the fluid, while the frequency of the velocities depends on the encounter
frequencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The velocity potential of the waves, as encountered by the observer, is
expressed in the moving reference system through the following

relationships:
x = Ut+x°
[
Y=y
so that

2 Ag ky
Oy = Y, —-e " sin(kUt+x)-ct+e) .
i=1 O,
1

In the above expression the contribution of the steady forward speed to the
potential, -U-.xe, has been omitted, since it does not contribute to the
energy in the wave system, as has been discussed above. Defining the
encounter frequencies with the individual wave components as

[
c =kU-o0o.,
1 1 1

the horizontal and vertical water particle velocities, expressed in the
earth-fixed system Oxy and encountered by the moving observer (located
at xe = 0), are given by

2 ky e
u= E, Ao.e .cos(o.t+¢€)
i=1 11 1 1
2 ky
v= Agc. e sinGt+e) .
i=1 11 1 1

The encountered potential energy density is given by
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Eot = J¥dy = 5pgn =

(= )

1 2 2 2 2
= PE: {Alcos (G:t+el) +Acos (0;t+€2) + 2A1A2cos(o‘;t+el)cos(c;t+ez)} ,

so that the mean potential energy can be determined in a manner
analogous to the one used for computing the mean square value of the
observed wave process:

1 2 . e

508 (5 AL +5A)) if |o7] # o]
=l oetaZilaZia )} if 6° =6
= 3Pl A3 A+ A A0S, -8 15 %
1 1,21
27127172

2 .
A, +A A cos(E, +£2)} if c: = -o; .
The encountered kinetic energy density is given by

1
Ein = __2_ijv2dy ’

where
V2=u2+v

Defining
a, = GH+e = OUt+€
1 T OtTE s O S GUHE, .,

the following expression is obtained for the V2 term:
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k.y
V2 ZA o e ' .{coszai+sin2ai}

i=1
(k,+k))y

+2A.A,6.0,.¢ {cosc

122919, cosQ,, + sIinQ, sinc.,

1 2 1 2}'

The last term in brackets yields the following results as a function of the
encounter frequencies:

cosc, cosa,, + sinee, sinot, = cos(al - °‘z)
. (] [
= °°s(‘31“€2) if o, = O,
[ e €& C
= °°S(2°1"'81 -82) if o, =0, .

The mean kinetic energy density is expressed by the integral
T
E, =lim lekin dt
kin T—eo To

which involves cos2 and sin2 terms. Time averaging of the kinetic energy
density will obviously result in a zero additional contribution for the case
where the encounter frequencies are equal in magnitude and opposite in

sign.
As was done previously, it is assumed that the wave slope is small:

klA<<land k2A<<1,

so that (to the order of the amplitude squared) only the first term of the
expansion of the exponentials needs to be considered, which is equal to
unity. Then by defining the quantity
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s 1 1.2 ,2
Eo —Epg‘{iAl"'Az} ’

the encountered mean kinetic energy density is found to be the following:

g . c [+
E 1fol¢02

E‘.:in 0

G..G
2‘2 -€,) ifc°=02
(6,) +(c,)

-cos(e )

=Ey +peAA, 1

Hence, the total encountered mean energy density in the wave system is
given by

- 1.2 1.2 .
E = pg5 AT +54)) if loj| # loy)
= .{1A2+l 2+-1--A A cos(E, +¢&,)} if o] =-a,
= PElz A +5 A, +5 A ACO(E, +E, 1”72
1 1.2 1 99 e € e
= pg -i- 5A2 A '(-i-'i'-—i—-—-i-)‘COS(Gl-EZ)} if 01 = 0'2 .
o, +0,

In comparison, the encountered mean square wave elevation in the two-
component wave system was found to be equal to

(- _ 1,2 ,1,2
MMs. '5A1+3A2 lfl61' * lo I
=1a2,142, +A A,Cos(€, +E)) if o =-0°
2°1 2772 EZ 1 2
_ 1,2 1,2 i ol
_EAI 3 2+AAcos(t-:1 82) if G, =0,
Summary

The observations from this chapter and the previous one suggest the
following, when an observer moves at an angle with a two-componant
wave system and the magnitude of the encounter frequencies is the same:
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(1) the mean square value of the encountered wave elevation process can
be different from the value observed at a stationary point; (2) the
encountered mean energy density can be different from the mean energy
density observed at a stationary point; (3) the mean square value of the
encountered waves may not be directly proportional to the encountered
wave energy. Alco, when an observer moves at an angle into the wave
system, the mean square wave elevation and mean energy density are the
same as would be observed at a stationary point.

It is emphasized that the observations concerning encountered wave
energy are treated as an aside to this work, since they are not considered
to have an influence on the theory and numerical modell:ng of ship
motions presented here. Nevertheless, the findings in this chapter seem
to indicate that, in random following seas with a finite number of wave
components, the observed wave system has certain energy characteristics
that have not been addressed previously. These findings should be
regarded merely as a first step in gaining some understanding of the
observed wave properties associated with random following sea
conditions, and might be worthy of further investigation.
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CHAPTER 3
Aspects of the Time Domain Simulation Algorithm

In this chapter an overview is given of the implementation of the theory in
the numerical model. Aspects pertaining to the algorithm comprise the
equations of motion and the computation of the memory effect integrals.
The computer program that reflects the present theory has been called
KAPSIZE, the general functioning of which is shown by flowcharts in
Appendix D.

3.1 Integration of the Equations of Motion

The motion behavior of the vessel is governed by the equations of motion,
as described in Chapter 2. The position of the vessel's center of gravity is
determined by the comservation of momentum equation and by
kinematics. The conservation of linear momentum can be used to
determine the linear accelerations, and the angular accelerations are
obtained by the conservation of angular momentum, both of which are
described below.

3.1.A. Conservation of linear momentum

The aim is to find the translational position vector, x, of the center of
gravity of the vessel at each time step. The position of the center of gravity
is to be obtained in the earth-fixed reference system Oxyz, which can be
achieved by integrating the velocity vector v. The linear accelerations, i.e.,
the time derivatives of the velocities, are given in vector notation by the
conservation of linear momentum:

d 1
a—d—tv—Ek,

where v is related to x by
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The vectors v, x and k are expressed in the system Oxyz, but for ease of |
computation the force vector k is based on the forces expressed in the ship-
fixed coordinate system O*x*y*z*. The local force components are
transformed into the inertial system Oxyz as follows:

* i L J
k =wam=T[Hfi ).

where T is the transformation matrix discussed in Appendix A, f *tota] is
the vector containing the total forces acting on the vessel for surge, heave
and sway (in the O*x*y*z* system), £ *; is the ith force component, such as
the diffraction force (but itself a vector), and J is the total number of force
components. Each force component is a vector consisting of three forces
acting in the x*, y* and z* direction, all of which are associated with the
same physical pnenomenon. Denoting the acceleration vector cf the
center of gravity by %, the conservation of linear momentum equation can
be written as

.. ]
mx = k = Tftotal .

It is convenient to separate those added mass terms that depend on linear
acceleration, from the total forces on the right hand side of the above
equation, so as to add the added mass to the structural mass terms. The
added mass forces consist of inertia terms and cross-coupling terms, so
that the total force vector can be written in terms of an added mass inertia
component (given in the ship-fixed coordinate system, and with the
correct sign convention) and a remainder term, f**¢ot:

£ =f -1 A"
total ~ ‘tot a ’
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where the 6x1 vector a¢® contains the linear and rotational accelerations,
and cross-product terms, as has been discussed in Chapter 2.1.2 Thus in
the above notation £**¢,4 is the total force vector given by the summation of
all force components, except for the added mass terms. When
considering the added mass forces, cross coupling has to be taken into
account, such as e.g. pitch-induced heave or roll-induced sway forces, so
that the upper half of the 6x6 added mass matrix A, say Al (which would
be a 3x6 matrix, and contains both added mass and hydrodynamic
coupling coefficients), is of relevance here. Then the vector with the total
force components is given by

* o 1 .1 e*
ftotal = ftot'T Aa’ .

This force vector is expressed in terms of the equilibrium system by
applying the transformation matrix T:

L] L4 »
=76 =Tf -Aa”.
All acceleration terms, including the rotational components, must be
addressed due to cross coupling. Let hereafter the vector % refer to the
generalized (6x1) acceleration vector, of which the first three are the
absolute linear accelerations, and the last three components are the
rotational accelerations in the system O*x*y*z*; let %/ 2 3) represent the
vector with the linear accelerations given in Oxyz (referred to as a in
Chapter 2.1.2). The added mass force vector consists of components
depending on linear and rotational accelerations, and on cross-product
(Coriolis) terms. Using the relationships established in Chapter 2.1.2, the
acceleration vector ae* can be split up into a vector a¢**, which contains
only the linear and rotational accelerations, and into a vector with the
cross-product terms. Then the conservation of linear momentum can be
written as
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- 1 _e** g ) Q"
mi,,y+Aa =T +A T (@ xv9) ,

where

11 12 - 16

o
'
S o

and

It is noted that the added mass coefficients associated with Al, involve the
infinite-frequency added mass coefficients (see Chapter 2.1.2). The two
inertia terms on the left hand side of the equations of motion can be
combined by adding zeroes to the structural mass terms, so that only one
acceleration vector can be used. Defining the following mass matrix as

m 0 0 0 0 O
m ={0 m 0 0 0 of,
0 0m 0 0 O

the structural mass terms can be combined with the added mass terms in
the equations of conservation of linear momentum:

m+A)x =T f;;+A‘ T @ xv9) ,

where
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and where the 3x6 matrix Al* represents Al, of which the left 3x3 half has
been operated on by T-1, and the right half by T.

The linear accelerations can be obtained at each time step by solving the
above set of simultaneous equations, from which the velocity vector for the
next time step can be estimated using Euler's method. Euler's
integration method has been described in Appendix C. The
corresponding linear displacements are obtained from the estimated
velocity at the next time step as follows. If a time stepping interval of At is

used, and if
x; = displacement at time step i,
vj = velocity at time step i,
vi+1 = velocity at next time step (i+1),
then the displacement at time step i+1 is estimated by

Xi+i = Xi+ At-(vi+vi+1) /2 .

The above procedure is used to estimate the displacements in the x, y and
z directions.
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3.1.B. Conservation of Angular Momentum

The conservation of angular momentum equations are expressed in the
moving coordinate system O*x*y*z* enabling one to deal with moments
and products of inertia that are time independent:

I%m =q-0oxlo,

where q is the vector containing the total moments acting on the vessel
(expressed in the local coordinate system O*x*y*z*), given by the sum of
the J moment components as in 3.1.A:

J

q=zqi'

i=1

I is the moment of inertia matrix, and ® is the vector containing the
rotational velocities about the x*, y* and z* axes. The angles of rotation, or
the Euler angles, which are represented by the vector %, can be
determined by integration from the vector w by means of the
transformation matrix B (see Appendix A):

i =Bla.

As in section 3.1.A, the added mass moments of inertia can be combined
with the structural moments of inertia, where in this case the lower half
of the 6x6 added mass matrix is used, represented by A2. The matrix with

the moments of inertia is given in an analogous fashion: ’
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Then the matrices m2 and A2 can be combined appropriately so as to have
one inertia term on the left hand side of the equations of motion.

3.1.C. Generalized Equations of Motion

The equations expressing the conservation of linear and angular
momentum can be combined to form a set of six coupled integro-
differential equations. Summarizing, in vector notation the generalized
equations of motion can be written as

A A
Mx="f,

where the mass matrix contains structural and added mass terms, as
well as moments of inertia, operated on by the transformation matrix T,
so that the mass matrix is time dependent. The generalized force vector
contains the total forces (including cross-product terms from the added
mass forces) and moments, and the acceleration vector consists of the
linear and angular accelerations; the linear accelerations are given in the
earth-fixed system Oxyz, and the angular accelerations are given in the
structure-fixed system O*x*y*z*. The linear displacements are described

and the angular displacements by
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d -1
-a-t-x—B .

The set of equations of motion can be solved by a standard equation solver
for simultaneous linear equations. The integration of the accelerations
must be performed by a numerical time stepping procedure. As was
mentioned above, for this purpose Euier's integration method is applied,
which is a simple but reliable procedure (see Appendix C), provided a
small enough step size is used. Also, this procedure should not be
unstable, because the excitation can be considered harmonic. At each
time step the right hand side of the equations of motion, i.e., the total force
vector, is evaluated once for given position and velocity of the vessel, so
that the accelerations can be determined for that time step. Then the
linear velocities in the fixed coordinate system Oxyz can be estimated for
the next time step, as well as the rotational velocities about the local axes.
With this information the corresponding position of the center of gravity,
and the angles of rotation of the structure, are determined for the next
time step. A typical time interval employed in the numerical simulations
was At = 0.1 s for beam sea conditions, and At = 0.2 s for following seas.
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3.2 Evaluation of the Memory Effect Integrals

The linear wave radiation forces are expressed in terms of memory effect
integrals, as has been discussed in Chapter 2.1.2. The kernel functions
L;j(t) depend on the time lag 7 and, in this case, on the three-dimensional

damping coefficients B;;(0):
L, = 2 IBij(o) cosOTdS, ij=1..6 .
T
0

In the following a brief discussion is given as regards the ccmputation of
the three-dimensional damping coefficients, the kernel functions, and the
numerical evaluation of the memory effect integrals.

3.2.A. Three-dimensional Coefficients

Since the theory presentéd here is applied to a vessel of thin shape, the
three-dimensional damping and added mass coefficients can be
estimated using the strip method by Salvesen, Tuck and Faltinsen (1970).
With this method the two-dimensional coefficients are integrated along
the length of the vessel, and some speed dependent terms are included in
the expressions. The two-dimensional coefficients for each section are
easily computed by means of the Frank Close Fit method, the details of
which are given by Frank (1967) and by Bedel and Lee (1971).

Frank's method is used to compute the hydrodynamic coefficients for the
vessel at its position of equilibrium in calm water. The coefficients are
evaluated for a range of discrete frequencies: from ¢ = U to ¢ = oF, and also
the coefficients at the infinite frequency are determined. A sufficiently
small frequency interval, Ao, must be chosen, so as to model the
characteristics of the damping due to wave radiation accurately. The
limiting frequency ofF is the frequency beyond which it becomes
numerically impractical to calculate the hydrodynamic coefficients.
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The asymptotic behavior of the hydrodynamic coefficients presents a
problem in the determination of the kernel functions. Damping
approaches zero as the frequency goes towarde infinity, but the exact
decay behavior is not known. Although theoretically not appealing, it is
necessary to assume some kind of decay curve, which is a linear or
higher order polynomial. If the decay is considered linear, it is necessary
to choose a suitable truncation frequency, oy, at which damping becomes
zero. A reasonable method was applied by Van Oortmerssen (1976), who
used polynomial decay curves for the various modes of motion, based on
the asymptotic behavior of wave energy transfer for forced motion in calm
water. These curves can be estimated for heave or roll, for example, but
the behavior for coupled modes, such as sway-induced roll, cannot be
determined in the same fashion, requiring some arbitrary decay curve
approaching zero at a finite frequency oy. It should be noted that the error
associated with cross-coupling terms should be small, since their
influence on the total force is usually small. More details about the
asymptotic behavior of hydrodynamic coefficients can also be found in the
treatment by Greenhow (1986).

In this work both linear and nonlinear decay curves of the damping
coefficients have been considered, and a comparison was made for a
typical vessel. For the nonlinear decay behavior, the approach by Van
Oortmerssen (1976) was used, and for the linear decay the limiting
frequency of, was determined by extrapolating the damping curve linearly
from the frequency or. Simulations were performed to compare the roll
damping decay in calm water for different vessels, using the two different
formulations for the damping curves. It was found that for simulation
purposes the accuracy of the results was Lardly affected by the shape of
the tail end of the damping curves. More details about the sensitivity of
the response to changes in the memory effect integrals are discussed in
Chapter 5. The various characteristics of a typical damping curve are
shown in Figure 3.1; here three-dimensional coefficients have been
plotted, but the graph could equally well apply to two-dimensional
damping behavior.
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linear decay

N\ nonlinear decay

Ac

0 of or, ¢

Figure 3.1. Typical Damping Curve Characteristics

The frequency of is determined by a nondimensional cut-off limit

applicable to typical ship shape sections. If the nondimensional
frequency, o*, is defined as

o* = ch/(zg) .

and b is the section width at the waterline, then the two-dimensional
damping coefficients become relatively small for 6* 2 2.5 (see Vugts (1968),
for example). In order to determine the frequency or for three-
dimensional bodies, the nondimensional frequency is based on the beam,
B, of the ship, i.e., the width of the largest section:

o* = o /B/ ) .

Choosing the nondimensional cut-off frequency as:
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.

o = 25,

yields the following value of oF:

o, =25/2/B .

First the case with linear decay is considered. The upper limit, oy, at
which damping vanishes, is determined by extrapolating linearly from
the damping values at op. This is done by performing a linear regression
to the last four damping values up to the frequency of, so that the slope of
the curve at of is known. With this information the value 61, can be
calculated easily. For the case with nonlinear high-frequency behavior,
the approach by Van Oortmerssen (1976) can be followed, where the tail
end of the damping curve is assumed to be given by

B(o) = — ,
m
(o)

where C is a constant which depends on oF, and m is an integer power,
depending on the mode of motion, e.g. m = 3 for roll and m = 7 for heave
(for which the limiting frequency is o, = o).

3.2.B. Kernel Functions and Memory Effect Integrals

The kernel functions as discussed in Chapter 2.1.2 can be estimated
numerically as follows :

o
L) = JBij(c) cosot do ,

where oy, is the limiting frequency as defined above. The kernel integrals
are calculated by a summation of discrete integrals, assuming that the
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coefficients B;j(0) behave linearly between the discrete frequencies. The
frequency interval Ac must be sufficiently small to properly account for
the response characteristics. The integration method employed is that
due to Filon, and detailed expressions of the method are given in
Appendix C. For purposes of illustration, the kernel functions L22(t) and
L44(7), for respectively the heave and roll modes, are shown in Figure 3.2
for a full scale American Challenger vessel (one of the types that was used
for the San Francisco Bay experiments, and approximately the same as a
Mariner vessel). Both kernels have been nondimensionalized by their
maximum values for zero time lag, and it is seen that the roll kernel
reaches a zero value after approximately 15 seconds, while this is close to
20 seconds for the heave kernel.

The time-dependent memory effect integrals associated with the linear
radiation forces are of the form

M) = f_‘, Lo e-vd, i=1,..6 .

These integrals do not have to be integrated up to infinity since the kernel
functions attain a practically constant value (zero, for e.g. heave or roll as
can be seen from Figure 3.2) after a finite time lag tr. Typically 1F is the

value for which the ratio with the maximum kernel value is small:

IL ()
L
ILij(O)I

where r << 1, e.g. r = 0.01.

The value tpis taken to be the same for all kernels Ljj(t), and is based on
the heave kernel; since heave is one of the most heavily damped modes of
motion, the heave kernel has associated with it a relatively large value of
tr. Thus, the above integrals can be estimated by truncated integrals,

which are solved using trapezoidal integration:
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M) = El JLij('c) X (t-7dt .

The values of the kernel functions are obtained using a time lag interval
At, while the velocities (and displacements) are obtained successively with
a time step At. If At = At, the memory effect integrals can be evaluated by
assuming that both the kernels and velocities vary linearly during each
time step. Then the total integral would be given by the discrete sum of N
integrals (for N; time lag intervals), each of which may be evaluated
exactly on the premise that both components of the integrand behave
linearly. If, say, At = 2At, an interpolation procedure can be used to obtain
estimates of the velocities having a At time lag interval, so that the same
procedure can be used to evaluate the integrals M;.

The main reason for integrating the equations of motion with the Euler
method, is that with that method the memory effect integrals have to be
evaluated only once at each time step, using the velocities x from time t-tp
to the present time t. The discrete time lag iuterval employed was
typically At = 0.1 s for beam sea conditions, and 0.2 s for following seas. It
is not necessary to use the same interval for the whole integration
process, as the kernel functions exhibit quite smooth behavior for
relatively large time lags. For example, for t = 0 to T = 8 s the time
integration interval should be small (=At), but for the remaining part of
the integration, T > 8 s, one could use an interval of 2At, or even larger.

Surge Motion

The kernel functions Lijj(t) can be obtained numerically through Fourier
transformation of the three-dimensional damping coefficients, as
described above. Using strip theory, however, it is not possible to obtain
the damping coefficients and kernels associated with surge. When
considering the motions in severe folowing seas, for example, the surge
motion may be significant and the added mass should be taken into
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account, despite its value being small. There are other means to
determine the three-dimensional damping coefficients for surge: by
experiment or 3-D computer programs. For this work the three-
dimensional added mass and damping coefficients are obtained for a
particular vessel using a fully three-dimensional, linear approach. The
damping values for the surge motion were used to obtain the kernel
function Lj1j(t), and it is assumed that hydrodynamic coupling between
surge and the other modes of motion is negligible. From the kernel
functions obtained by Van QOortmerssen (1976) it is seen that coupling
between surge and heave was relatively significant for the vessel that was
analyzed. The sensitivity of the the overall vessel motions to changes in
the forces in the surge direction is discussed in Chapter 5.

Small surge motions about the mean position of the vessel are assumed,
so that the surge velocity, X1 (given in the earth-fixed coordinate system
Oxyz), does not deviate to a great extent from the forward speed U of the
moving reference system. Neglecting hydrodynamic coupling effects
involving surge, the memory effect integral for the surge mode is
estimated by

M, = JLH('c). (x,(t-9-U)dr .
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Figure 3.2. Normalized Kernel Functions for American Challenger
Vessel
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CHAPTER 4

Verification of Theory

A numerical model needs to be verified qualitatively and quantitatively
before one can assess its usefulness. Since the model used in this work
attempts to cover a wide variety of possible vessel conditions, such as
steered with autopilot or unsteered, in head, beam or following seas,
regular or random waves, etc., it is not practical to check each mode of
motion for the various combinations of conditions. It is even more
difficult, perhaps impossible, to determine the correct magnitude of the
force components for all six degrees of freedom of motion. In order to
verify a ship motion program, use can be made of experiments or similar
numerical models that have been developed independently; the former
approach is used to validate the present theory and algorithm.

Here, the simulated motions of a vessel are checked against experiments
for which the wave conditions and vessel characteristics are known
precisely. Use is made of experiments performed in small amplitude
regular waves, as well as in relatively large regular and random waves.
Also comparisons are made with roll decay experiments in calm water,
so as to assess the correctness of the computed roll damping coefficients.
The various comparisons are discussed below in detail. First, the rolling
of a ship in calm water is investigated to compare the predicted roll
damping with experimental values. In Chapter 4.2 comparisons are
made for the motions in small, regular waves, and in Chapter 4.3 for
motions in large amplitude waves (both regular and random).

4.1. Comparison with Koll Decay Experiments

Since rolling is a significant mode of motion, it is important to verify the
prediction of the roll damping coefficients, the estimation of which is
treated in Chapter 2.2.1. One practical way to investigate the correctness
of the damping coefficients is to compare the predicted coefficients with
the results obtained from roll decay experiments in calm water. If a
vessel is heeled over at a given angle, and then released to oscillate freeiy,
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the only forces contributing to the subsequent motion behavior are the
hydrostatic, wave radiation and viscous forces. The hydrostatic force
components can be checked easily by comparing the computed righting
arm values for an inclined vessel with another method, such as e.g. the
wall-sided formula. The wave radiation forces cannot be measured, but
can be determined quite accurately using potential theory. If the period of
roll oscillation is large, wave radiation damping becomes small compared
with the total viscous damping. Then an estimate can be made as regards
the viscous roll damping contribution by inspection of the roll decay rate.

Roll decay experiments were conducted with the models used for the ship
motion experiments which were conducted on the San Francisco Bay and
reported by, for example, Chou et al. (1974). For the verification of the
algorithm presented here, use is made of roll decay results obtained for
the American Challenger model, having a length of about 17 ft, and
approximately 1/30 of full scale, in calm water and at zero forward speed
(dated August 24, 1972). No bilge keels were present during the runs.
Records were examined for four runs with identical conditions, except for
different values of the vertical position of the center of gravity, KG. The
initial heel angles were on the order of 20 degrees, and the roll period
during the first cycles was noticeably shorter than the final decay period,
which corresponded closely to the calculated natural roll period. The
natural roll period of the model varied between 4 and 8 seconds
(depending on KG), and the length of all runs was 300 seconds.

The experimental damping coefficients can be estimated by means of the
measured log decrement, where it is noted that theoretically this
approach is valid only for a constant roll period, i.e., small roll angles.
The damping ratio is dependent on the roli decay rate as follows:

g=£.=.§ﬂ.,
g, 2mm

where { is the linear damping and {gis the critical damping coefficient.
In this case { represenis an "equivalent linear damping coefficient”, since
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the viscous roll damping is not purely linear. 8 is the log decrement
corresponding to m cycles, and is given by

xn
§ =1In{ }.

m X
n+m

where x, is the roll amplitude after n cycles, and xp4+m is the roll
amplitude after n+m cycles. The critical damping is according to linear
vibration theory equal to

2pgV.GM
L =

%4

where V is the displaced volume, GM is the transverse metacentric
height, and op 4 is the natural roll frequency. Here the natural frequency

is estimated as follows:

g.GM
2
1.1 (O

4 = rad/s ,

and pxx is the roil gyradius, which is multiplied by the factor 1.1 to
account for added mass effects.

The damping ratio & was calculated for each of the four runs with
different numbers of cycles, where m was varied between 10 and 20 full
cycles per run. The results showed that & was not very dependent on m,
nor on the KG value. The experimental damping ratio was found to be
within the following range:

£ = 0011+ 0.001 .

Next an overview is given of the determination of the damping ratio
obtained from the numerical model.
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Predicted RolL D Coefficient

As has been discussed in Chapter 2.2.1, the viscous roll damping moment
in calm water is estimated by

f,() = B44'L‘9 + BM'Q-IGI'O

In order to compare the predicted damping values with the measured
ones, it is necessary to express the linear and quadratic coefficients in
terms of an equivaient linear damping coefficient:

f4.°q(t) = B44.eq'e .

The method of equivalent linear damping implies that the work done
during one cycle must be the same for both the nonlinear damping
moment and the equivalent linear damping moment. Assuming the ship
model to oscillate with pure sinusoidal motion, at frequency o, and with
amplitude Omax, the equivalent damping coefficient can be estimated as

_ 8
B44'eq = BML"";—T;Cemax.BM‘Q .

In the prediction of the viscous damping coefficients it was assumed that
the roll frequency was equal to the natural frequency, and that the roll
amplitude could be taken as the mean of the decay amplitudes between 2
and 12 cycles after the start of the roll decay experiments, i.e.,

o _ 62+912
max 2 :

The contribution from the wave radiation damping, which is considered
linear, must be added to the equivalent damping coefficient, so as to take
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all damping contributions into account. Examination of the various roll
moment contributions in the simulated roll decay process, indicated that
the damping due to the rudder was negligible compared with the other
damping contributions. The total damping coefficient is then given by

8
B44,eq = B44,L + ;; 09max : B44.Q + Bwave .

The damping coefficient is made nondimensional by dividing by the
critical damping $p:

* B * * *

= Yeq _
BMm- Co —BM.L+B44’Q+BMVC.

Two roll decay runs with the American Challenger model were
investigated, where the following GM values (model scale) were
applicable:

(1) GM = 0.222 ft (ballast weight position #3);
(2) GM =0.702 ft (ballast weight position #7).

The experiments were conducted with the model being in the heavy load
condition, i.e., Ay = 1600 Ibs, resulting in a natural roll period of 6.70 s for
case (1), and 4.05 s for case (2). The measured decay amplitudes at 2 and
12 cycles after the start of case (1) were 13.7 and 6.7 degrees, respectively,
and 13.3 and 6.5 degrees for case (2). The results of the roll damping
predictions for the two cases are shown in Table 4.1.
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Case B44,L‘ BM,Q- Ryave' Bu,eq‘
(1) 0.0003 0.010 0.00005 0.0104
(2) 0.0002 0.008 0.0002 0.0084
Experimental (both cases) 0.011

Table 4.1. Predicted and Experimental Equivalent Linear
Damping Coefficients

The damping ratios obtained from the experiments were equal to 0.011
both for case (1) and for case (2), based on the log decrement for n = 2 and
m = 10. This suggests that the predicted equivalent damping for case (1) is
within approximately 5% of the measured damping, while the damping
for case (2) is underpredicted by about 25%. Considering the assumptions
involved with the method of component damping, these resu:its are quite
good and suggest that roll damping can be predicted to at least the correct
order of magnitude.

4.2, Comparison with Model Experiments in Small Regular Waves

Experiments conducted in small amplitude waves are useful to
investigate the simulated motions, particularly because the results should
lie close to predictions made by means of conventionzal linear theory. A
large number of model experiments in regular waves have been
performed at several research institutions. Time domain simulations
can be carried out for the same conditions as the motion experiments,
provided that there are sufficient data available concerning the relevant
ship characteristics, such as radii of gyration, metacentric height, etc.

Some of the experimental data considered here were obtained by
Gerritsma (1960) for different Series 60 models in head sea conditions.
For the purposes of this investigation, simulations were performed with
program KAPSIZE for a Series 60 vessel with 0.70 block coefficient, having
a Froude number of Fn = 0.2, and subjected to waves of different lengths
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and small amplitude. The parameters of interest are the heave and pitch
amplitudes, as well as their phasing. In Figure 4.1 the computed and
experimental heave and pitch amplitudes are plotted as a function of wave
length in nondimensional form. The nondimensional heave and pitch
amplitudes are defined, respectively, as

1

X
Eandl
A o

x2,0 being the heave amplitude, A the wave amplitude, y the pitch
amplitude, and o the maximum wave slope (=2xA/A). The wave lengths
are nondimensionalized by the ship length:

(gl >

It can be seen that the agreement between measured and predicted
results is quite good, especially for the lower and higher frequencies. The
largest discrepancies in heave and pitch occur at A/L = 1.25. Although not
plotted, it was found that both the phasing of heave with respect to the
wave, and pitch with respect to heave, were in close correspondence with
the measured values. Thus for these conditions the program KAPSIZE,
with all theoretical features included, yields results similar to those that
would be obtained from conventional linear theory.
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Wave Direction 180 deg, Fn = 0.2

2.0
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-& heave - exper.
§ -& pitch - KAPS,
B
g
[} 1.0 1
@
o
0.0

0.6 0.8 1.0 12 14 1.6 18

Figure 4.1. Heave and Pitch Amplitudes in Regular Head
Seas for Series 60 Vessel. Comparison of simulation results
with experimental results by Gerritsma (1960).

Vossers, Swaan and Rijken (1960) performed an extensive series of model
tests with Series 60 hull forms, which were tested for a variety of
headings and wave lengths. Some of their results were used in this work
to compare the heave, pitch and roll motions of a Series 60 hull with 0.70
block coefficient and Fn = 0.1. The predicted and mzasured motion
amplitudes are shown for 10, 50, 90 and 170 degrees wave heading (from
following sea to head sea conditions) as a function of wave length in
Figures 4.2a through 4.2d, respectively. The same nondimensionalization
is used as above, i.e., the heave amplitudes are made nondimensional by
the wave amplitude, and both roll and pitch are nondimensionalized by
the maximum wave slope a. From these figures it can be seen that, in
general, the predicted heave and pitch amplitudes are close to the
measured results for all wave lengths and headings. The roll angles for
the 10° and 170° heading cases are very small; the roll amplitudes for the
170° heading are in good agreement with the experimental results, while
the agreement is fairly good for the 10° case. In the experiments it had
been observed that the roll motion was larger for the 50° heading angle
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than for the 90° case, for all wave lengths considered. The same behavior
showed up from the simulation results, especially for the longer wave
lengths. In the simulations the roll amplitude was underpredicted quite
significantly for the longest wave length at 50° heading angle, and
overpredicted for the 90° case with the exception of A/L = 1.5, where the
agreement between measured and predicted results is good.

In summary, heave and pitch predictions correspond well with measured
results, for all headings and wave lengths considered; the same applies to
the roll amplitudes for the 10° and 170° heading angles. The largest
discrepancies occur for roll in beam seas for most wave lengths, which
may be due to underprediction of the viscous damping coefficients used in
the simulation, or (less likely) scale effects in the experiments.
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Wave Direction 10 deg, Fn = 0.1

2,01

l.Sj

heave, roll, pitch

-8 heave - KAPS. .
-2 heave - exper.

-o  roll - KAPS.

-+ roll - exper.

-& pitch - KAPS,

-4 pitch - exper.

Wave Direction 50 deg, Fn = 0.1

heave, roll, pitch

Figures 4.2a and 4.2b. Heave, Roll and Pitch Amplitudes of Series 60
Vessel in Regular Waves. Comparison of simulation results with
experimental results by Vossers et al. (1960).
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Wave Direction 90 deg, Fn = 0.1

heave - KAPS.
heave - exper.
roll - KAPS,
roll - exper.
pitch - KAPS.
pitch - exper.

heave, roll, pitch

Wave Direction 170 deg, Fn = 0.1
2.0

1.54

0.6 0.8 1.0 1.2 14 16 1.8

Figures 4.2c and 4.2d. Heave, Roll and Pitch Amplitudes of Series 60
Vessel in Regular Waves. Comparison of simulation results with
experimental results by Vossers et al. (1960).
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4.3. Comparison with Experiments in Severe Wave Conditions

The data obtained from the San Francisco Bay capsize experiments, and
from the related towing tank experiments, lend themselves quite well for
numerical duplication of the encountered wave climate. The laboratory
experiments, especially, are useful for this purpose as most of the
important parameters were recorded, such as wave elevation alongside
the model, phase, roll angle and velocity, etc. The model experiments
were conducted so as to approximately simulate conditions encountered
during the Bay experiments by means of regular waves. The San
Francisco Bay data have been presented in spectral form, so that any time
domain simulation will be only one realization of an infinite number of
possible realizations, due to e.g. unknown initial conditions of the vessel
and unknown phase behavior of the waves.

4.3.1. Experiments in Regular Waves

Model experiments in the towing tank have been carried out to investigate
the capsize behavior of various ship types in following seas, as has been
reported by Fallon et al. (1980). These experiments were conducted in the
wake of the San Francisco Bay experiments, which will be considered in
more detail in the next section. Due to laboratory constraints only three
modes of motion of the models were allowed: heave, roll and pitch. In this
section results are compared for a Mariner model (which is very similar
in overall characteristics to the American Challenger), and for a
container ship model, a Sea Land 7, also referred to as SL-7. Numerical
simulations were performed accordingly by imposing constant forward
speed and allowing only three degrees of freedom. Full scale conditions
were simulated, and the initial conditions used were those supplied with
the experimental data. The viscous roll damping coefficients were
estimated using the method discussed in Chapter 2.2.1. As can be seen
from the following, most predictions using the present numerical model
compare favorably well with the experimentally observed roll behavior up
to the point of capsizing, while earlier predictions shown in Fallon et al.
(1980) generally did not exhibit good correlation.
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Results for the Mariner

Simulations were carried out for the case corresponding to Figure III-5 in
Fallon et al. (1980), i.e., autoparametric resonance conditions (where the
encounter frequency was equal to approximately twice the natural roll
frequency) with the Mariner ship travelling at 7.3 knots in regular
following seas of 17.5 feet amplitude and 10 seconds period.
Experimentally this resulted in a capsize after about 80 seconds. Both the
experimental and numerical results are shown in Figure 4.3, from which
it is seen that the predicted behavior follows the experimental one quite
closely. The predicted roll period is very close to the experimental value,
and the predicted roll amplitudes before capsizing have the same order of
magnitude as the experimental amplitudes.

Symbol C ion in Simulation Pl

In these and subsequent plots, Eta refers to the instantaneous wave
elevation given at the center of gravity of the vessel (w.r.t. the mean water
level), yaw and rudder angles are shown conjunctively, and Vx and Vz
are the forward and sway velocity, respectively, along the axes of the ship
coordinate system. For simulating the model tank conditions exactly, the
following quantities were set equal to zero in the simulations: surge and
sway displacements, and yaw and rudder angles. Eta is always denoted
by a dashed line, and Vz is represented by a chain-dotted line. The
experimental values for the roll angles are denoted by + symbols, which
were obtained by digitizing the experimental roll records given in the
report by Fallon et al. (1980).

It is noted that the old CAPSIZE simulator, used for the numerical
simulations by Fallon et al. (1980), did not predict a capsize for the above
case with the three degrees of freedom suppressed, while its prediction
was quite close to the experimental values when all six degrees of freedom
were taken into account and a high value of quadratic roll damping was
ungad  Anaother run which resulted in a capsize is shown in Figure 4.4;
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thig czse eorresponds to the conditions as in Figure III-7 in Fallon et al.
(1980), namely U = 7.8 knots, 10 s wave period and 12.8 feet amplitude.
Also here the correspondence between experiment and prediction is quite
good, and it is seen that in both an almost unstable condition is reached at
around 40 seconds.

The simulated behavior in the two previous cases, and especially the latter
one, was found to be quite sensitive to the initial conditions, such as initial
heave position and velocity (for which no data were reported), and in the
latter case the linear and quadratic damping roll coefficients had to be
increased fivefold to avoid a premature capsize. It shculd be noted that
when a simulation is started at time t = 0, there are initially no memory
effects due to wave radiation effects, while this is not true for the
experiments where memory effects would have been present at the time
measurements started to be taken. Such discrepancies do have a bearing
on the predicted behavior, although their effect is probably small because
of the relatively short memory (which is around 15 to 20 seconds for heave
and about 10 seconds for roll, for example).

In Figure 4.5 results are shown for a run of the SL-7 model where no
capsizing occurred, which corresponds to the case in Figure III-23 in
Fallon et al. (1980). The predicted roll response has the same frequency as
the measured one, and the amplitudes are of the same order, although
the later cycles in the sequence show amplitudes that are somewhat
underpredicted. Simulations were carried out for the case corresponding
to Figure III-25 in Fallon et al. (1980), i.e., autoparametric resonance
conditions with the SL-7 ship travelling at 9.8 knots in regular following
seas of 15.9 feet amplitude and 13 seconds period. Experimentally this
resulted in a capsize after about 125 seconds, and both the experimental
and numerical results are shown in Figure 4.6, from which it is seen that
the predicted behavior compares quite well with the experimental one,
and capsizing is predicted to occur at the same time instant as in the
experiments. However, the numerical roll amplitudes before capsizing
are seen to vary with time, whereas they stayed approximately constant,
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at +35°, during the experiments. The predicted roll behavior was found to
be very dependent on the initial heave displacement and velocity, whereas
the roll characteristics were not very sensitive to changes in the viscous
roll damping coefficients. It is also noted that the old CAPSIZE
simulator, used for the numerical simulations by Fallon et al. (1980), did
not predict a capsize for the above SL-7 case with the three degrees of
freedom suppressed. A slow-speed capsize sequence is shown in Figure
4.7, which corresponds to Figure III-27 in Fallon et al. (1980); the ship
speed is equal to 1.3 knots, and the wave has a period of 16 seconds and
15.4 feet amplitude. The nredicted capsize occurs after 140 seconds with
increasingly large roll angles, and the same behavior was observed
experimentally.

Summarizing, the simulated roll mosticn behavior of the American
Challenger and SL-7 vessels seems to correspond closely to the
experimentally observed behavior; only heave, roll and pitch motions were
allowed in following seas with large amplitude. It was found that for
those conditions the motion behavior was generally quite sensitive to the
initial heave position and velocity, and that capsizing would occur after a
shorter period when roll damping was reduced.
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Figure 4.3. Capsize Simulation in Following Seas for Mariner Vessel.
The + symbols refer to the digitized values of experimentally obtained roll
angles, and the dashed lines refer to the wave elevation at the C.G.
Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 4.4. Capsize Simulation in Following Seas for Mariner Vessel.
The + symbols refer to the digitized values of experimentally obtained roll
angles, and the dashed lines refer to the wave elevation at the C.G.
Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 4.5. Motion Simulation in Following Seas for SL-7 Vessel. The +
symbols refer to the digitized values of experimentally obtained roll
angles, and the dashed lines refer to the wave elevation at the C.G.
Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 4.6. Capsize Simulation in Following Seas for SL-7 Vessel. The +
symbols refer to the digitized values of experimentally obtained roll
angles, and the dashed lines refer to the wave elevation at the C.G.
Displacements are in feet, angles in degrees, and velocities in ft/s.
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4.3.2. San Francisco Bay Experiments

Use is made of results from the San Francisco Bay experiments, reported
by Haddara et al. (1972) and Chou et al. (1974), to compare some of the
experimental results with numerical calculations for random seas. Most
of the experiments were conducted in conditions that would correspond to
different degrees of severe sea conditions for the models. The wave
elevations were recorded in the vicinity of the model test location (at four
stationary points), prior to and after the test runs with the models.
Directional wave spectra have been presented by Chou et al. (1974), and as
can be seen from an example shown in Figure 4.8, the spreading of the
wave energy on that particular day was confined to quite a narrow region
(which is typical of San Francisco Bay conditions). Interpolation was
used to derive the wave spectrum associated with a given model test.
During the seakeeping tests the following quantities pertaining to a model
were measured: roll, yaw, pitch and rudder angle. For illustrational
purposes, typical motion time series of a model run that ended with a
capsize are shown in Figure 4.9. Extensive statistical analyses have been
reported in the above references, and also by Kastner (1973), who has
presented results in spectral form. The estimated motion spectra are
given together with the wave spectra, which can be used as a basis for
verification of simulations. It is noted that simulations in random seas do
not provide a sound basis for verification, since a simulation gives only
one particular realization of the wave and ship motion process, and unc
information is available with respect to the time histories of the incoming
waves and resulting motions. Therefore, the simulations only indicate to
a certain extent the possibility of predicting the motions in random seas
correctly.

Similar to the preceding chapter, comparisons have been made between
simulated and measured results for the American Challenger and SL-7
models for different wave heading angles, ship speeds and metacentric
heights. Simulations were carried out for full scale conditions,
necessitating scaling of the experimental results. The following scale
factor was applicable for the American Challenger model (full scale
length is 530 feet):
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2 = 30.189 ,

L
jo
m

and for the SL-7 (full scale length 900 feet):

s -~
= 35.01 .

L

m
The American Challenger had not been fitted with bilge keels, while the
SL-7 had bilge keels during most of the model runs.

The usage of unidirectional seas in the simulations may be justified by the
narrow spreading of the wave energy which was observed in most of the
experiments. Simulations have been carried out for both capsize and non-
capsize conditions. The loading condition of the American Challenger,
considered in all verification simulations, was heavy (fully loaded); for the
SL-7 both light and heavy conditions were considered. The waves were
assumed to be unidirectional, the phases of the components were chosen
randomly out of a uniform distribution, the wave energy was assumed to
be distributed over equal intervals, and the frequencies were chosen
randomly within each interval. The maximum number of wave
components used in the simulations was N = 10, and the range of
frequencies considered was taken as follows:

0.70p < 6 < 2.16p ,

where op is the peak frequency of the wave elevation spectrum.

(i) American Challenger in Beam Seas,

This case corresponds to Run 8.04 on 10 September 1971, which has been
reported by Haddara et al. (1972) and Kastner (1973). The full scale initial
metacentric height was GM = 1.77 ft (resulting in a natural roll frequency
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of o9 = 0.28 rad/s), ‘and the still water Froude number Fn = 0.17. No
capsizing occurred during this experimental run, and the objective of this
investigation was to compare the computed roll and pitch responses with
the measured values, so as to obtain information on the predicted
response in random waves.

Simulations were performed with N = 10 wave components for a duration
of 300 seconds, using the full scale values for the observed wave heights
and frequencies. The wave direction was assumed to be 8 = 90° for all

wave components. A summary of the simulation and experimental
results is given below, where nrps denotes the root mean square value of

the observed wave elevation.

Op NRMS Roll (°) Yaw (°)
Mean RMS Mean RMS
(rad/s) (ft) Exp. N=10 Exp. N=10 | Exp. N=10 Exp. N=10

043 106 |31 20 73 92 69 52 28 41

Pitch (°)
Mean RMS
Exp. N=10 Exp. N=10
07 05 14 17

It is seen that the agreement between experimental and simulation
results is reasonable for the mean and RMS values of the motions. The
RMS roll amplitudes were overpredicted by approximately 25 %, which is
possibly due to underprediction of the viscous roll damping coefficients.
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(ii) American Challenger in Quartering Seas,

Simulations were carried out for the conditions corresponding to Run 8.03
on 10 September 1971, which has been reported by Haddara et al. (1971)
and Kastner (1973). No capsizing occurred during this experimental run,
and the objective of the simulation was to compare the predicted roll, yaw
and pitch motions with experimental values. In the simulation 10
representative wave components were used, the wave direction was taken
be 3 = 35°, the Froude number Fn = 0.17, and GM = 0.56 ft. The simulation
was carried out for 300 seconds. The general results are summarized
below for both the mean and RMS values.

Op TIRMS Roll (°) Yaw (°)
Mean RMS Mean RMS
(rad/s) (ft) Exp. N=10 Exp. N=10| Exp. N=10 Exp. N=10

043 105 |-14 -09 96 10.7 44 31 29 171

Pitch (°)
Mean RMS
Exp. N=10 Exp. N=10
05 08 20 23

From the above summary it appears that the predicted roll, yaw and pitch
responses are reasonably close to the measured values, except for the
RMS yaw response. The vessel was predicted to yaw more severely than
actually was the case in the experiments, which might be due to incorrect
modelling of the maneuvering or rudder forces, for example. Roll
amplitudes were slightly overpredicted, possibly because of
underestimating the roll damping coefficients.
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(iii) American Challenger in Following Seas,

Simulations were carried out for the conditions corresponding to Run
12.03 on 16 September 1971, which has been reported by Haddara et al.
(1971) and Kastner (1973). This experimental run resulted in a capsize
due to low cycle resonance, and is the one for which the motion records
are shown in Figure 4.9. The initial metacentric height was GM = 0.56 ft,
and the natural roll frequency was 6g = 0.17 rad/s. In the simulation
three representative wave components were used to determine whether
any kind of parametric excitation would occur, the wave direction was
taken as 8 = 0°, the Froude number Fn = 0.22, and the vessel was given a
small initial roll angle. A capsize was predicted to occur due to low cycle
resonance after 275 seconds. The general results are summarized below,
and the simulated motion recorde are presented in Figure 4.10. The roll
moment components acting on the vessel up to the point of capsize are
shown in Figure 4.11.

% NrMS RMS Roll (°) RMS Pitch (°)
(rad/s) (ft) Exper. N=3 Exper. N=3
0.47 84 13.21 15.04 2.36 242

From the above summary it appears that the RMS values of the roll and
pitch responses are reasonably close to the measured values, and that the
predicted motion behavior (see Figure 4.10) is similar to the
experimentally observed behavior shown in Figure 4.9. Certain
similarities between Figures 4.9 and 4.10 are quite clear, such as the roll
amplitudes of the low cycle resonance being dependent on the passage of a
wave group. From Figure 4.11 it is seen that the hydrostatic restoring
moment is the dominant component, and that it varies with a frequency
that is not equal to the encounter frequency. However, this behavior can
be explained by the time dependence of the righting arm, or GZ, curve: the
GM value for this vessel is low, so that in the crest of a wave, having a
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length of the order of the ship length, the righting arm can become
negative at small angles of heel. This can lead to parumetric excitation at
the resonance frequency. When the roll restoring moment record is
compared with the roll motion record in Figure 4.10, it appears that as the
vessel leans to starboard (positive roll angle), the righting moment is
negative until the wave crest passes the midship area, at which point the
righting arm is significantly reduced and becomes almost zero. The
behavior is similar when the vessel leans to port and a wave crest moves
by. From Figure 4.11 it appears that the hydrostatic moment can be
represented by the summation of a slowly varying component, having a
frequency equal to the natural roll frequency, and a fast varying
component that has a frequency of approximately three times the roll
frequency, which may result from parametric excitation and
subharmonic resonance. More attention is paid to this behavior in
Chapter 7. To illustrate the variation of the righting arm during the
passage of a wave, the righting moment curves are shown in Figure 4.12
for the American Challenger and Mariner vessels used in the San
Francisco Bay experiments. The curves are based on computations
performed for following sea conditions, where the wave length is equal to
the ship length, and have been taken from Fallon et al. (1980).

(iv) SL-7 in Quartering Seas.

Simulations were carried out for the conditions corresponding to Run 4.02
on 10 August 1973, which has been reported by Chou et al. (1974). No
capsizing occurred during this experimental run, and the objective of the
simulation was to compare the predicted roll, yaw and pitch motions with
experimental values. In the simulation 10 representative wave
components were used, the wave direction was taken be & = 40°, the
Froude number Fn = 0.26, and GM = 2.54 ft for the lightly loaded
condition. The simulation was carried out for 300 seconds. The general
results are summarized below for both the mean and RMS values.
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Op NRrRMS Roll (°) Yaw (°)
Mean RMS Mean RMS
(rad/s) (ft) Exp. N=10 Exp. N=10 | Exp. N=10 Exp. N=10

034 150 |53 05 118 16.0 14.7 35 79 b9

Pitch (°)
Mean RMS
Exp. N=10 Exp. N=10
07 00 15 23

From the above summary it is seen that the predicted mean roll and yaw
angles are significantly smaller than the experimental values, and that
the RMS roll angle is overpredicted by 25 %, while the RMS yaw angle is
underpredicted by 25 %. The predicied pitch angles show the same
tendency as the predicted roll angles, i.e., underpredicted mean and
overpredicted RMS values.

(v) SLc7in Head Seas.

Simulations were carried out for the conditions corresponding to Run
30.05 on 10 May 1974, which has been reported by Chou et al. (1974). No
capsizing occurred during this experimental run, and the objective of the
simulation was to compare the predicted roll, yaw and pitch motions, as
well as forward speed, with experimental values. In the simulation 10
representative wave components were used, the wave direction was taken
be 6 = 175°, the Froude number Fn = 0.27, and GM = 2.08 ft for the heavy
condition. The simulation was carried out for 300 seconds. The general
results are summarized below for both the mean and RMS values.
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o NRMS Roll (°) Yaw (°)
Mean RMS Mean RMS
(rad/s) (f) Exp. N=10 Exp. N=10 | Exp. N=10 Exp. N=10

040 132 |38 00 20 36 02 -16 30 09

Speed (ft/s) Pitch (°)
Mean RMS Mean RMS
Exp. N=10 Exp. N=10 | Exp. N=10 Exp. N=10

375 266 30 69 14 03 22 25

From the above summary it is seen that the predicted mean roll and pitch
angles are smaller than the experimental values, and that the RMS roll
angle is overpredicted significantly (although still of the same order of
magnitude as the experimental value), while the RMS yaw angle is
underpredicted. It is noted that the measured mean value for roll (3.8°)
seems too large for pure head sea conditions; it could have been caused by
wind or waves from a significantly different direction (due to lack of data,
such discrepancies cannot be solved by simulation). This was one of the
few experiments where speed measurements were made, and the
simulation shows that the predicted mean decrease in forward speed is
significantly larger than was observed in the experiment. This suggests
that, at least for severe head sea conditions, either the wave-induced
resistance is overpredicted or the thrust increase (due to a speed decrease)
underpredicted. As discussed in. Chapter 2, integration of the Froude-
Krylov forces over the instantaneous wetted surface may result in a time-
independent drift force. The scattering of the incoming waves by the
vessel, should also contribute to the mean resistance in a positive or
negative sense, whereas the diffraction forces are based on pure linear
theory in the present model. It can be argued that particularly in head
sea conditions, with high frequencies of encounter, higher order
diffraction effects should be accounted for, so that the present model may
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not yield reliable results with respect to the forward speed behavior in
severe head seas.

SEAWAY-17AUGC?Y 3 NO.C1)
[ .8 M2

.8 M2 'f, "z

H2

Figure 4.8. Typical Directional Wave Spectrum Obtained during San
Francisco Bay Experiments, from Chou et al. (1972).
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Figure 4.10. Capsize Simulation of American Challenger Vessel in
Irregular, Following Seas for Comparison with Experimental Results
(see Figure 4.9). The dashed lines refer to the wave elevation at the C.G.
Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 4.12. Typical Righting Moment Curves in a Longitudinal Wave for
American Challenger and Mariner from Fallon 2t al. (1980).
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CHAPTER 5
Response Sensitivity to Changes in Force Components

The theory described in Chapter 2 is an attempt to model the excitation
and response of a floating structure in waves in a realistic manner.
Obviously, quite a large number of simplifying assumptions were made to
avoid certain theoretical complexities and to keep the CPU time of the
mainframe computer within reasonable limits. Not knowing how closely
the model represents the physical world, something that is hard to assess
quantitatively even with the aid of experimental data, it is useful to
determine the relative importance of the various theoretical components
influencing the simulated motion behavior.

The question arises as to which theoretical components and which
response modes should be investigated. In view of the overall objective of
this work all six degrees of motion freedom must be modelled, and the
most important aspect is the study of large amplitude motions. In normal
operating conditions roll is often the most important response mode, and
in survival conditions in which capsizing may occur, roll is of course the
critical mode of motion. Thus, the aim is to determine the sensitivity of
the roll response to changes in various components under identical
conditions. The components that must be varied are those bearing a
significant influence in the equations of motion, i.e., the components
contributing to the total forces and moments. Each force component can
be varied separately, and the influence of each individual change can be
assessed. Obviously, the systematic variation of the force components can
be done only within the framework of the present theory, and for a limited
number of both wave and ship related conditions.

The sensitivity of the roll response is investigated quantitatively as follows.
For a vessel of given configuration, i.e., fixed geometry and center of
gravity, each of the force components is increased by a certain percentage
throughout the time simulation process, while the other components
remain unchanged. All force and moment components are multiplied
with a coefficient that can be varied, so that the components of the total,
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generalized force vector (on the right hand side of the equations of motion,
as given in Chapter 3.1) are given by

. M
0 =m2=lcm.f‘m(t), i=1,..6 ,

where M is the total number of force components, and if, for example, the
force components are varied by 10%, the coefficients ¢, are defined as

¢m = 1 for all m, except for m = mg
= 1.10 for m = mg,

where mg refers to the component of which the sensitivity is being
investigated. Let 69 be the roll amplitude that would be obtained for the
normal case, where ¢y = 1 for all m, and let 6 be the roll amplitude due to
a change in the force components. Then the response sensitivity, Sg, is
defined as the ratio of the proportional change in the roll angle to the
change in the force component:

_ - 90)/9
0 c, -1 ’
13

Using this definition, the larger the absolute value of Sg is for a given
variation of a force component, the more sensitive the roll motion is to that
force component. In the following the sensitivity is investigated of the roll
response to changes in the force components for the American
Challenger, SL-7 and Series 60 vessels. Although roll is the only degree
of freedom considered in the sensitivity analysis, the change in the force
components, ¢m, applies to all six degrees of freedom simultaneously.
The roll sensitivity has been determined for the case of three degrees of
freedom to investigate the sensitivity in following seas, corresponding to
some of the experiments carried out with the SL-7 model. One should
keep in mind that the results are applicable only to the specific conditions
considered, as it is very likely that the roll sensitivity, or the local slope of
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the roll response with respect to the parameter varied, will not be the
same for different wave heights, frequencies, loading conditions, etc.

In the subsequent sensitivity analyses wind loading has not been
considered; the effects of wind on the capsizing behavior are investigated
in Chapter 7. The sensitivity of roll is studied for moderate to severe sea
conditions, where the wave height is of the order of 20 to 30 feet and roll
amplitudes vary between 15 and 30 degrees. In general it was found that
none of the parameters varied were consistently negligible, and that in
resonant conditions ,especially, the sensitivity can be quite large to force
changes. The hydrostatic (or static Froude-Krylov) forces were always
predominant as regards roll sensitivity.

The following force components and coefficients were varied:

- frKh : static Froude-Krylov force;

- frkd : dynamic Froude-Krylov force;

- fradiation: Wave radiation forces consisting of memory effect
integrals and added mass inertia terms;

- B4q,1: linear roll damping coefficient;

B44,Q: quadratic roll damping coefficient;

B43,Q: quadratic sway-into-roll coupling coefficient;

fman: viscous maneuvering forces;

frudder: rudder lift and drag forces;

- fdrag,w: viscous wave-induced drag forces.

Roll Sensitivity in Beam S

The sensitivity of the roll response is first considered for severe, regular
beam seas. Simulations were carried out for approximately 20 cycles after
steady state conditions had been reached. The following general
particulars were adhered to for the American Challenger vessel:

-Lpp = 530, B=75ft,d=29.75 f
-Cp=0.58
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- no bilge keel
-GM = 0.0236xB
-Fn = 0.17;

and for the Series 60 vessel the particulars were as follows:

-Lpp =400+, B=57.14f,d=2286ft
-Cp = 0.70

- with bilge keel (width = 0.004xL)
-GM = 0.05xB

-Fn = 0.10 .

The results are presented in nondimensional form in terms of the
coefficient Sg in Table 5.1, followed by a discussion.

Force Compon. American Challenger Series 60
G =0p ¢ = 1.509 oc=0g O = 1509

fr h -5.526 4.785 1.726 1.532
frr,d -0.828 -2.045 -1.343 -1.459
fradiation 0.532 0.017 0314 -0.744
fdiffraction 2.545 0.226 0.198 0.390
By, -0.176 -0.023 -0.020 0.047
B Q -3.420 -0.009 -0.403 -0.147
Ba3q 0.224 -0.135 0.189 -0.230
fman -1.049 0.069 -0.145 0.785
frudder 0.909 0.181 -0.018 0.004
fdrag,w -0.524 0.578 0.136 0.154

Table 5.1. Roll Sensitivity, Sg in Beam Sea Conditions (6 d.o.f.)
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From the table above several similarities pertaining to the roll sensitivity
of the two ship types can be observed. For the beam sea conditions
considered, both ships are sensitive to changes in the static and dynamic
Froude-Krylov forces. The American Challenger was found to be most
sensitive to the hydrostatic forces in resonant and nonresonant
conditions, while for the Series 60 vessel the sensitivity to the static and
dynamic Froude-Krylov forces was about the same. The dependence on
these forces can be attributed to both the hydrostatic and dynamic Froude-
Krylov roll moments being relatively large and of the same order of
magnitude (in beam seas). For both vessels the sensitivity to the
diffraction forces is quite significant, especially so for the American
Challenger in resonant conditions. The radiation forces also can be
significant; for the Series 60 the sensitivity to those forces is higher than to
the diffraction forces. Obviously, the location of the center of gravity (KGQ)
has an important bearing on the sensitivity behavior, however, this
variable has not been included in the analysis.

The sensitivity to changes in the viscous damping coefficients indicates
that changes in the quadratic damping coefficient affect the roll behavior
more than is the case for the linear damping coefficients. This is most
likely due to the severity of the sea state used in the computations, which
resulted in relatively large roll amplitudes and velocities, and the eddy
damping is assumed to be increasing as the square of the velocity. It is
noted that for small wave amplitudes, and therefore small roll angles, the
reverse seems to be the case: the sensitivity to linear damping
predominates when the roll velocities are small. The American
Challenger is more sensitive to quadratic roll damping than the Series 60
vessel, which may be related to the presence of the bilge keel for the Series
60, causing it to be more heavily damped, and hence not as sensitive. The
Series 60 vessel was found to be more sensitive to the viscous maneuvering
forces for nonresonant conditions than the American Challenger, while
the opposite was observed for resonant conditions. Changes to the rudder
forces had an important bearing on the roll behavior of the American
Challenger, and had hardly any influence on the Series 60. The
sensitivity to the wave-induced drag forces was significant for both
vessels, particularly or the American Challenger.
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Roll Sensitivity in Following S

The roll motion of a vessel travelling in following seas can be of
importance when autoparametric resonance conditions occur. A
sensitivity analysis has been carried out to highlight some of the
differences in roll sensitivity with respect to beam sea conditions. The
sensitivity of the roll response of the SL-7 vessel is shown in Table 5.2 for
the three degree of freedom case, and in Table 5.3 for the six degree of
freedom case for both the SL-7 and American Challenger vessels. A
number of simulations were carried out for severe sea conditions for
which autoparametric resonance would occur, i.e., where the
encountered wave frequency is equal to approximately twice the natural
roll frequency. The total duration of the simulations was 300 seconds and
the sensitivity coefficients were based on the computed RMS values of the
roll response. The following conditions were used for the SL-7:

-Lpp = 900, B=1055ft,d=389ft

-Cp = 0.56
-GM = 0.0167xB
-Fn = 0.072,

and for the American Challenger:

-Lpp = 530, B=75f,d=29.75 ft
-Cp=0.58

- with bilge keel

-GM = 0.0236xB

-Fn = 0.08 .

The results shown in Table 5.2 are based on the same conditions
pertaining to the comparison in Chapter 4.3 with experimental results for
the SL-7 model, as shown in Figure 4.5. In the simulations only heave,
roll and pitch motions were allowed, and the ship speed was kept
constant. Since in this case the roll motion is highly nonlinear, it was
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deemed of interest to perform the sensitivity analysis for small and severe
wave amplitude conditions, where the small amplitude was equal to 15%

of the large amplitude.
Force Components  SL-7 SL-7
o€ = 20g (small ampl.) o¢ = 20¢ (large ampl.)

frKh -0.349 -1.848
frK,d -0.003 0.075
fradi ation 0.081 0.075
fdiffraction 0.004 -0.003
By -0.158 -0.051
Buq -0.358 -0.160
By3Q - -
fman - =
frudder -0.030 -0.004
fd:-ag,w - -

Table 5.2. Roll Sensitivity, Sg in Following Sea Conditions (3 d.o.f.)

From Table 5.2 it is seen that the roll sensitivity of the SL-7 exhibits quite
different behavior compared with the beam sea cases. For both the small
and large amplitude case the roll motion is most sensitive to changes in
the hydrostatic forces, where in the large amplitude case this sensitivity is
very pronounced. If the roll respunse were linear, the sensitivity results
would be the same for both the small and large wave amplitude case;
here, the motion is clearly nonlinear. Since autoparametric resonance
typically occurs in following sea conditions, the motion instability results
from the time-varying hydrostatic restoring moment in crests and
troughs, so that the roll motion can be expected to be sensitive to changes
in the hydrostatic forces. For the small amplitude case the sensitivity to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

the hydrostatic forces and quadratic damping moment is the same. It is
interesting that the roll sensitivity to the viscous damping moments is
larger (by a factor 2) for the small amplitude conditions. For both cases
the sensitivity to the diffraction forces is very small, as would be expected
for following sea conditions. The roll motion is sensitive to the wave
radiation forces, but to a much smaller extent than is the case for the
hydrostatic forces, which is possibly due to the low roll frequency at which
there is little wave disturbance. This sensitivity is approximately the
same for the small and large amplitude case. It is noted that the
sensitivity to the radiation forces depends on how the memory effect
moments are resolved: as has been mentioned in Chapter 2.1.2, the
moments acting along the vessel's axes can be taken as the ones
computed for the equilibrium system, or the equilibrium moments can be
resolved along the ship axes taking into account the angles of rotation.
Maybe neither of these options is the correct one, however, it was found
that for most conditions the former approach yielded more reasonable
results than the latter; the latter approach resulted in a much higher
sensitivity to the radiation forces, and would also tend to cause ship
steering problems because of high induced yaw moments.

Of interest also is that the roll motion is not sensitive to the dynamic
Froude-Krylov forces. This is contrary to what one would expect it should
be, as in following seas with low encounter frequencies the Froude-Krylov
forces should predominate. It should be mentioned here that the heave
and pitch motions were found to be quite sensitive to these forces (both Sxo
and Sy were equal to approximately -0.2 due to changes in frg 4). If we
examine the expressions for the dynamic Froude-Krylov forces, it is clear
that in pure following seas the vertical force and roll moment are
dependent only on the integration of the vertical dynamic pressure
gradient, dpp/dy, over the wetted volume. In beam seas the roll moment
would depend on dpp/dx and dpp/dy. From Appendix A it is seen that

ky

Pp = pAg.e “.cos(kx - Ot +¢€) ,

so that
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The above shows that the dpp/dy term is in phase with the wave elevation,
i.e., in phase with the static restoring forces. Computations show that the
magnitude of the dynamic Froude-Krylov moment is considerably smaller
than the hydrostatic moment. In view of the foregoing it is not surprising
that the roll motion is not very sensitive to the dynamic Froude-Krylov
forces. Although the heave and pitch motions are sensitive to those
forces, they do not apparently affect the roll behavior significantly. The
hydrostatic heave force to which the sensitivity factors were applied, is in
fact the change in hydrostatic force compared with the equilibrium
condition (see Chapter 2.1.1.), so that its magnitude tends to be of the same
order as the dynamic Froude-Krylov part. For this reason the sensitivity
of the heave motion to changes in the static and dynamic Froude-Krylov
forces is approximately the same.

In Table 5.3 the roll sensitivity is shown for the 6 degrees of freedom case,
where the SL-7 vessel is steered by the autopilot. Two conditions were
considered: autoparametric resonance and nonresonance conditions.
Also sensitivity results are shown for the American Challenger vessel,
which was subjected to a regular wave somewhat shorter than its length
(but still resulting in parametric resonance). An additional force
component was considered here: fsyrge, which represents the total surge
force, in order to determine the importance of modelling the forward
motion.
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Force Components SL-7 American Ch.
ot = 1.709 ot =209 ot = 1909

frK h 0.154 -1.258 3.762
frr,d 0.047 0.038 -0.313
fradiation -0.018 0.002 -0.022
fdiﬂ'raction 0.002 0.006 0.0

By L -0.087 -0.026 -1.828
B4 q -0.107 -0.136 -1.109
B43q -0.019 0.0 -0.021
fmaneuver 0.010 0.004 0.106
frudder -0.037 0.032 -0.034
farag,w 0.0 0.0 0.018
fsurge -0.026 0.004 0.340

Table 5.3 Roll Sensitivity, Sg in Following Sea Conditions (6 d.o.f.)

From Tables 5.2 and 5.3 it is seen that there are many similarities
between the 3 and 6 degrees of freedom cases that were considered for the
SL-7. The main difference lies in the sensitivity to the radiation forces: for
the 6 d.o.f. case this sensitivity is considerably less than for the 3 d.o.f.
case. For the nonresonant case (where autoparametric excitation does
not occur) the sensitivity to the hydrostatic forces is significant, but to a
much smaller extent than for the resonant case; also the roll motion is
more sensitive to the surge force in the nonresonant case.

For the American Challenger most trends are similar to those of the S1-7
in parametric resonance conditions: sensitivity to the hydrostatic
restoring forces is highest, followed by the viscous damping forces, while
radiation and diffraction forces do not play an important role. It is seen
that in this case almost all sensitivity levels are significantly higher than
for the SL-7. The following differences with the SL-7 sensitivity behavior
are observed: sensitivity to linear roll damping changes is larger than to
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quadratic roll damping changes, and the sensitivity to the maneuvering
forces is higher. Also it appears that the American Challenger is more
sensitive to changes in the surge force, i.e., more sensitive to its position
with respect to the wave than is the case for the SL-7. This may be due to
the differences in length between the vessels, and wave conditions
considered.

In conclusion, these sensitivity analyses suggest that the assumptions
made in the theoretical model, presented in Chapter 2, are not very
critical with respect to the roll behavior of the vessels considered. This
applies to roll angles of moderate amplitude (£25°) in severe wave
conditions. The critical features of the theory are those that are based
solely on linear ship motion theory, which are the wave radiation and
diffraction forces. In following seas these were found to be unimportant,
while in beam seas they were significant, although not quite as
significant as the Froude-Krylov forces. The sensitivity results suggest
that the most critical features are modelled appropriately; here, we refer
to one of the premises in this work, stating that the Froude-Krylov forces
are important and should be evaluated in an exact fashion. Since those
forces were found to be consistently significant, this assumption seems
justified. Of course, this does not provide a conclusive argument that the
present theory is adequate for analyzing large amplitude ship motions,
but the results from Chapter 4 and 5 do suggest that the present theory
models the wave-induced ship motions realistically.

If theoretical improvements were to be made, the sensitivity analysis
results point to a number of areas. The results indicate that hydrostatic
effects are always of importance (and this is corroborated by results from
Chapter 7), so that better results may be obtained by modelling the exact
free surface around the hull, whereby diffraction and wave radiation
effects should be considered. Also various viscous force components can
be of importance, depending on the conditions, which may warrant
further effort into determining those forces more rationally.
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CHAPTER 6
Numerical Simulations for Random Following Seas

The apparent behavior of a random seaway for following or quartering
conditions has not received much attention, and is therefore considered
next in some detail. Moreover, these conditions can be very critical with
respect to large amplitude roll motions and capsizing. Wave
characteristics observed in a stationary and moving reference frame, at a
point and along the length of the vessel, are prescnted 1.: Chapter 6.1. In
Chapter 2.4.4 it was found that when an observer moves at an angle with
random waves, the mean square value of the wave process as observed
from the moving point can be different from the one at a stationary point.
Simulations have been carried out to investigate the statistical behavior of
the observed wave process for following sea conditions, results of which
are shown also in Chapter 6.1. In Chapter 6.2 ship responses are
investigated for irregular, following sea conditions. A procedure to
simplify the random seaway by using a two-component wave system, has
been outlined in Chapter 6.3

6.1. Wave Characteristics Encountered at Fixed and Moving Points

In the next two sections, attention is paid to the physical and statistical
properties of waves observed from a moving reference point, and
comparisons are made with observed behavior at a point fixed in space.

6.1.1. Wave Elevation Records

When an observer moves in the same direction as the waves in a random
sea, there are a number of interesting features that do not appear in head
sea conditions, for example. One aspect is that at certain speeds the
observed waves seem to be purely sinusoidal for a prolonged period of
time. This has been observed experimentally, and can also be shown by
simulation. In the simulations the observed wave elevations were
computed for different speeds of the observer: zero speed, i.e., fixed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



198

location, and three speeds that are fractions of the mean group speed,
Cgp- The mean group speed is defined as in Chapter 2.4.3:

c =-t_,
8P 2.6
p

where op is the peak frequency associated with the sea spectrum
(assuming, as usual, that the wave energy is concentrated around one
frequency enly). The observed wave elevation was determined using the
superposition model discussed in Chapter 2.4:

N
() = X A, cos{(kU-o)t+£]},

i=1

where the individual wave amplitudes were obtained deterministically as
a function of the spectral density and frequency interval (constant), and
the phases €; were chosen randomly out of a uniform distribution. Also

the frequencies were chosen randomly within each interval.

The spectral shape was assumed to be given by the Bretschneider
formulation, and the following characteristics were used:

- Hy = significant wave height = 24 ft
- 6p = (1) 0.50 rad/s and (2) 0.62 rad/s .

The peak frequency of 0.62 rad/s corresponds to a wave length equal to that
of the American Challenger vessel (530 ft). For these sea states the mean

group speeds are

Il

(1) Cgp
@) Cgp

32.17 fi/s for op = 0.50 rad/s, and
25.94 fi/s for op = 0.62 rad/s.

The number of frequencies used in the simulations was N = 1200, and the
frequency range was determined by a lower and upper bound, cenjin =
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0.5x0p, and 6emax = 2.5x0p, respectively. Simulations were carried out for
a total (full scale time) period of 1000 s and a sampling interval of At = 2 s.
In Figure 6.1 the observed wave elevations are shown for sea state (1). For
the zero speed case the wave elevation looks random, and some wave
groups can be discerned. The observed wave periods, as well as the length
of wave groups, appear to become larger with increasing speed, i.e., the
observed frequency range becomes narrower. Let us consider the case
where the speed of the observer equals the mean group speed, and
investigate the behavior of the observed sea surface. For example, the
observer would be subjected to very small amplitude waves between t = 300
and t = 350 s, and to a wave group consisting of large amplitude, regular
waves from t = 925 s to t = 975 s. It is tempting to argue that, under such
conditions, the irregular sea can be replaced by a single sine wave
yielding the same characteristics as those observed in Figure 6.1, for
purposes of ship motion simulation. That is, one could chose a certain
frequency, amplitude and duration, which would result in the same
apparent behavior as observed from a point moving in a random,
following sea. This procedure would simplify ship motion analyses
considerably.

The observed wave behavior may appear to be regular to a moving point as
a function of time only. However, at each time instant, the irregular sea
surface would be always irregular in physical space, regardless of speed.
Thus, for any forward speed and at any time, the wave elevation profile
along the length of a ship would be irregular, although the basic
characteristics would change slowly with time when the vessel moves
with the random waves. This is of significance, because ship motions
tend to be dominated to a large extent by hydrostatic effects (see e.g.
Chapters 5 and 7), which are very dependent on the actual shape of the
free surface. In order to illustrate these remarks, the imaginary wave
profiles, as would be observed along the center line of a ship of 530 ft
length when travelling at the mean group speed, have been plotted in
Figure 6.2 and 6.2 for a number of consecutive time steps. The images
shown in these figures, correspond to the case where the sea conditions
are the same as in Figure 6.1, for which the observed wave elevation
records would be those observed at the midship section of the vessel. The
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profiles in Figure 6.2, from top to bottom, are associated with the time
period from t = 935 8 to t = 975 s (large, regular elevation changes
amidships), with an interval of 4 8. The profiles in Figure 6.3 are
associated with the time period from t = 310 s to t = 350 s (small elevation
changes amidships), also with an interval of 4 s.

The following convention has been applied for the station numbers in the
wave profile plots:

0 -- aft perpendicular

5 -- midships

10 -- forward perpendicular.

In Figure 6.2 the propagation of the dominant waves along the ship can be
seen clearly. Obviously, a single sine wave would not be representative of
the waves actually encountered by the vessel, although it might be possible
to obtain a similar result by using only a few components. From Figure
6.3 it is seen that, for the time period considered, the observed behavior
amidships (small wave elevations) is indeed representative of the the sea
surface behavior all along the vessel.

Wave profile plots similar to *he ones discussed above were obtained for
case (2), where the length of the dominant waves is approximately equal to
the ship length. The wave elevation records, observed from amidships at
different speeds, are shown in Figure 6.4. It is seen that a series of
apparently regular, large amplitude waves are encountered between t =
660 and t = 700 s. The corresponding wave profiles are shown in Figure
6.5, with intervals of 4 s. Small amplitude waves are encountered between
t = 450 and t = 490 s, and the profiles are presented in Figure 6.6 at 4 s
intervals. Comparison of Figure 6.4 with Figure 6.1, suggests that the
encountered wave elevation appears to be more regular for case (2) than
for case (1), when the observer travels at mean group speed. However,
Figure 6.5 indicates that the actual wave profile along the vessel would
look more irregular than was observed for case (1), shown in Figure 6.2.
While for case (1) the small wave elevations were representative for the
behavior along the vessel (Figure 6.3), it is clear from Figure 6.6 that the
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behavior observed amidships is not indicative of what happens at other
sections of the vessel.

We saw that in following sea conditions the wave elevation, observed
amidshins, appears to be regular over certain periods of time in spite of
the randomness of the sea. In fact, any point of the vessel would be
subjected to a regular excitation for some time, while the vessel as a whole
does not necessarily respond as if it were excited by a single sine wave. It
can be conjectured that the motion frequency of the ship is most likely
dominated by the mean encounter frequency (which may stay
approximately constant for an extended period of time in a wave group),
and that the response amplitude depends on the actual composition of the
sea surface. For certain time intervals, it may be possible to characterize
the random wave process by the superposition of only two regular wave
components, which would yield an equivalent wave system. A minimum
of two components would be needed to represent wave group properties,
such as group length, number of waves in the group, and average wave
height. This would be advantageous for time domain simulation
purposes, especially when many simulations must be performed to
investigate capsizing. If one wants to predict the occurrence of a capsize
correctly for following or quartering sea conditions, the conclusions
should be evaluated carefully when they are based on results obtained
using only a few harmonic wave components. A procedure for obtaining
an equivalent wave system has been discussed in Chapter 6.3.

Summarizing, when a ship travels with the waves in a unidirectional,
random sea, the wave elevation observed at any given point of the vessel
will appear to be regular over certain periods of time. During those time
periods the actual wave profile along the ship will be irregular, but may be
represented by an equivalent wave system, consisting of only two wave
components, for purposes of wave-induced motion simulation.

6.1.2. Wave Elevation Statistics and Cross-Coupling Effects

It has been shown in Chapter 2.4.4 that the mean square value of the wave
elevation, observed at a point moving with random waves, can be different
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from the value that would be obtained at any stationary point. The
difference depends on the actual phasing between the wave components
comprising the sea surface, and on the amplitudes of the components.
This cross-coupling effect arises from the fact that the encounter
frequencies with different wave components can be the same. A number
of simulations have been carried out to determine the variation in RMS
values for a small and large number of wave components, N, where the
phases of the individual wave components were varied randomly during
each simulation.

A spectral shape with peak frequency op = 0.5 rad/s was chosen, the wave
direction used was & = 0°, and the sampling interval was At = 2 8. All
different simulations were performed for a period of 2 hours (full scale)
and two numbers of wave components: N1 = 50 and N2 = 1000. During
each simulation the RMS values were computed for three speeds: Ug = 0,
Ui = Cg,p, and Uz = 0.9Cg,p. As above, the mean group speed is equal to
Cgp = 32.17 ft/s. The frequencies were chosen such that equal encounter
frequencies were obtained for the mean group speed U = Uj, where the
encountered frequencies in the three regions A, B and C shown in Figure
2.4 are implied. The total number of simulations was 8, i.e., for N = N;
and N = N2 the phase components were varied randomly 8 times and
different sequences were generated. The RMS values of the wave
elevation for the zero speed cases were found to be largely indcpendent of
the phases and number of wave components, and equal to

n%rMs = i1.2ft .

The variation of the RMS values for the different speeds and runs is
shown in Table 6.1.
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Run # N=50 N=1000
U=0Ug U=, U=Uq U=U,

1 122 123 104 9.6
2 115 122 11.9 114
3 10.2 9.6 11.3 11.3
4 125 12.7 12.0 12.0
5 111 12.9 11.3 12.2
6 111 14.1 10.7 110
7 12.7 7.1 119 110
8 99 119 122 10.7

Table 6.1. Computed RMS Values (in Feet) of Wave Elevatiors Observed
for Different Reference Speeds.

It is useful to determine the standard deviation (S.D., in feet) of the RMS
values from the different runs, the results of which are summarized

below:
N=50 N =1000
U=U; U=Ug U= U=Us
S.D. 2.21 (19.7%) 1.03 (9.2%) 0.81 (7.2%) 0.65 (5.8%)

The value in brackets refers to the nondimensional standard deviation,
expressed as a percentage in terms of the zero speed RMS value:
S.D./11.2x100%.

Several observations can be made from Table 6.1, even though the number
of samples is small. As one would expect, the variation in RMS values,
i.e., their standard deviation, is larger for the case with fewer wave
components, and has a mean of about 11.2 ft. The standard deviation will
decrease as the number of wave components is increased, however, the
actual decrease is difficult to predict statistically because the samples are
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not identically and independently distributed. Also, it appears that the
variation in RMS values is larger for the case where the observer's speed
equals the mean group velocity (U = Uj), and for which the frequencies
were chosen to yield equal encounter frequencies. This is obviously due to
there being more cross-coupling terms that contribute to the total mean
square value (in a positive or negative sense).

The folding of the frequencies into a more narrow band with forward
speed, can be clearly illustrated by computing the encounter spectrum for
certain speeds. Simulations were performed and time series generated,
from which the wave spectra could be computed; an investigation was
made to determine the effects of forward speed and choice of wave
component frequencies on the spectra. The number of wave components
used was N = 1200, ¢cp = 0.5 rad/s, the frequency range varied from 0.50p to
2.50p. Time histories were generated with 2048 samples at 2 s intervals,
and for four speed cases: Up = 0, Uy = 0.5xCg,p, U2 = Cg,p, and U3 =
1.5xCg,p. The spectra of the observed wave records were computed using
the FFT technique and smoothing over a bandwidth of 0.0022 Hz was
applied. Two sets of spectra were generated: (1) the frequency bandwidth
was constant, but the actual frequencies were chosen randomly within
each interval from a uniform distribution; (2) the frequencies were chosen
go as to yield equal encounter frequencies at the mean group speed, Us =
Cgp- The same random phases were used for the two sets of time series.
The encounter spectra corresponding to set (1) are shown in Figure 6.7,
and the spectra from set (2) in Figure 6.8.

The general appearance of the spectra in Figures 6.7 and 6.8 is similar.
As the speed of the observer increases until the mean group speed has
been reached, the encountered spectrum will become progressively
narrower and steeper, and the peak frequency will decrease. It is seen
that for the case U = Cg p, the spectrum is very narrow, and drops off
abruptly for frequencies larger than the peak encounter frequency, which
is approximately 0.25 rad/s. From Figure 6.8 it is seen that, choosing the
wave frequencies so as to yield equal encounter frequencies at the mean
group speed U = Cg p, resulted in a distinctly larger spectral peak than
was obtained using randomly chosen frequencies (Figure 6.7). The peak
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frequency corresponds to the maximum encounter frequency that can be
attained (see Chapter 2.4.4):

e __ & __
Cprax = Xi] 0.25 rad/s .

The reason for the sharp drop-off, at the above frequency and observer
speed, is seen by inspection of the shape and behavior of the 2ncounter
frequency curve, shown schematically in Figure 2.4. For encounter
frequencies larger than the maximum encounter frequency, only one
wave component will contribute to the spectral density (one-to-one
mapping). For smaller frequencies there are three wave components that
yield the same encounter frequency, and will contribute to the spectral
density associated with a particular encounter frequency. Also, for each
encounter frequency lying in the latter frequency range, there are pairs of
wave components that contribute to the spectral density through the cross-
coupling effects mentioned earlier. When the speed of the observer is
equal or close to the mean group speed, most of the wave energy is
concentrated around the maximum encounter frequency, so that a
distinct peak will appear in the spectrum for that speed range.
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Figure 6.1. Simulation of Wave Elevations Observed at Stationary and
Moving Reference Points in Random, Following Seas (dp = 0.5 rad/s, Cg,p =

32.17 ft/s).
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Figure 6.2. Simulation of Wave Profiles along the Length of a Vessel in
Random, Foliowing Seas for t = 935 to 975 s (see Figure 6.1). The time
interval between profiles is 4 s, and U = Cgp.
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Figure 6.3. Simulation of Wave Profiles along the Length of a Vessel in

Random, Following Seas for t = 310 to 350 s (see Figure 6.1). The time
interval between profiles is 4 s, and U = Cg,p.
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Figure 6.4. Simulation of Wave Elevations Observed at Stationary and
Moving Reference Points in Random, Following Seas (op = 0.62 rad/s, Cgp

=2594f]5).
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STATION

Figure 6.5. Simulation of Wave Profiles along the Length of a Vessel in
Random, Following Seas for t = 660 to 700 s (see Figure 6.4). The time
interval between profiles is 4 s, and U = Cgp.
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STATION

Figure 6.6. Simulation of Wave Profiles along the Length of a Vessel in
Random, Following Seas for t = 80 to 120 s (see Figure 6.4). The time
interval between profiles is 4 s, and U = Cg,p.
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Figure 6.7. Estimated Wave Spectra for Different Speeds of Reference Frame in

Random, Following Seas. The spacing between wave frequencies is random, and Cgp =
32,17 ft]s.
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Figure 6.8. Estimated Wave Spectra for Different Speeds of Reference Frame in
Random, Following Seas. The spacing between wave frequencies is such that equal
encounter frequencies result for U = Cg,p = 32.17 ft/s.
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6.2. Ship Motion Simulations

It appears from the theory in Chapter 2.4.4, and has been confirmed by
simulations in the preceding section, that the mean square value of the
observed wave process, for a point moving in following random seas, can
be higher or less than the value observed at any stationary point. The
difference depends on the phase angles of the individual wave
components, on the spectral density, and on the frequency spacing and
number of components. The implications of this phenomenon as regards
predicted ship motions, are that over a large period of time, and for
different choices of the wave component parameters, the mean square
values of the observed wave process can differ between simulations. For
relatively small numbers of wave components, especially, these
differences could be quite large. This would result in different mean
square values of ship response parameters, such as heave or roll. Also,
different ways of selecting the wave frequencies and phasing of the
components, will lead to different wave group properties, which may
affect ship responses. For illustrational purposes, it is shown next by
simulation that one formulation of wave conditions may lead to a capsize,
while another formulation would not predict a capsize.

Random, following seas were considered, where

op = 0.62rad/s
Hs = 24&.

Simulations were carried out for the American Challenger vessel with
the following characteristics:

GM = 0.56 ft

L =530f

U = Cgp = 2594 ft/s
09 =3°

with bilge keel.
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The sez surface was modelled using N = 12 components, lying in the
range 0.5x0p < 0 < 1.5x6p, and having randomly chosen phases. Two

methods were used to determine the frequencies of the components:

(1) constant frequency intervals, and each frequency randomly
chosen (out of a uniform distribution) within the intervals;

(2) frequencies chosen in such a way as to yield equal
encounter frequencies with the ship travelling at mean group speed.

In the simulations the random phases of the components were equal for
the two sets of different frequencies. The motion records obtained with
method (1) are shown in Figure 6.9, and the times series associated with
method (2) in Figure 6.10. The dashed lines refer to Eta (1), the wave

elevation at the center of gravity of the vessel.

Figure 6.9 indicates that low cycle resonance conditions are reached
during the simulation of 400 s without a capsize occurring, and that for
the roll cycle between t = 80 s and t = 120 s the roll amplitude is largest. In
contrast, from Figure 6.10 it is seen that with method (2) a capsize occurs
at t = 100 s, after the cycle with large roll amplitudes starts at t = 80 8. The
mean frequencies of encounter are approximately the same, and the wave
amplitudes at the C.G. are equal, for both simulations until t = 80 s. The
random wave frequencies (using method (1)) are such that the vessel has
sufficient restoring energy to remain upright at t = 100 s, while this is not
the case for method (2). The occurrence of the capsize using formulation
(2) is not simply due to the difference in mean square values of the
observed wave elevation process at the C.G., for the differerces in
amplitudes after t = 80 s are very small in the two simulations. It is more
likely that the cause lies in differences between the predicted wave
surfaces along the vessel, to which the hydrostatic roll moment is
sensitive.

The sensitivity of the ship response to the wave conditions with equal
encounter frequencies was high, as it would also capsize for even smaller
initial roll angles (99 = 2°), while it would not capsize for 8p = 4° using the
random frequency approach. These results indicate merely that care
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must be taken when one wants to make predictions of capsizing in
random, following seas using a finite number of wave components.
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Figure 6.9. Simulation of American Challenger Travelling at U = Cgp in
Random, Following Seas. The wave frequencies were chosen randomly.
Displacements are in feet, angles in degrees, and velocities in fi/s.
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6.3. Determination of Equivalent Wave System

When performing motion simulations for random, following sea
conditions, it would be useful if one could replace the random wave
system with a simple two-component system having equivalent
characteristics with respect to the actual sea surface. In this chapter an
attempt is made to provide a basic procedure by which to determine the
amplitude and frequency parameters of the equivalent wave components.
It was decided to consider a minimum of two components, because it is
the minimum number needed to define group properties such as length,
number of waves in the group, and average wave height.

Let us assume that we want to represent a random sea, having peak
frequency op, and spectral density Syqn(c), by an equivalent wave system
with two components. The amplitudes and frequencies, Aj eq and oj eq, of
the components i =1,2 can be obtained from the following requirements.

(1) The group speed of the equivalent wave system must be
equal to the mean group speed of the random sea, i.e.,

_ 2eq
Coeq = Cop = e ke 20

(2) One of the frequencies should have a length that is of the
same order as the ship length (O(L)), since the roll response is dominated
by hydrostatic effects, which in turn depend significantly on waves having
a length equal to the ship length. Obviously, this requirement would lead
to unrealistic results if the ship length is significantly smaller than the
characteristic wave length, Ap, where

2.7
A = =T
P 2
(o]
P

Therefore, the equivalent wave length is determined as follows:
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xl'eq = L if cmin.xp sL< cma‘.kp
= CminAp if L < cmindp
= Cmax.xp if L> Cmax.xp »

where c¢min = 0.7 and cmax = 1.3, for example. Then the corresponding

frequency is given by
_ 2.n.8

Oleq = Y
leq

The second frequency is given by requirement (1), stating that the group
velocity should be equal to the mean group velocity, so that

O2eq = Op-(Oleq-Op) = 20p-Ol,eq -

(3) The mean square value of the equivalent wave system
should be equal to the mean square value of the random sea. Assuming
that the wave spectrum is characterized by a minimum and maximum
cut-off frequency, o. and o, respectively, this requirement leads to

(o)
1,2 .2 Y 1Y 2
5 A Ay = | S (@) do = EZAi ,
(¢

i=1

where Aj is the amplitude of the ith individual wave component of the
random sea surface.

(4) The ratio of the equivalent amplitudes is given by the ratio
of their respective spectral densities, i.e.,
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Substitution of requirement (4) into (3) gives the following expressions for
the two amplitudes of the equivalent wave system:

N
2 A
=1

A2'°q= l+a

and

Al’eq = a.Az'cq .

To illustrate the above approach, comparisons have been made between
the observed wave profiles along a vessel of length L = 530 ft, travelling at a
speed U = 26 ft/s in the same direction as the waves. Two sea states have
been considered:

1. op = 0.5rads (Ap=8101)
Cgo= 32.17ft/s
Hy = 241,

and

2. op = 0.62rad/s (Ap =530 ft)
Cg,p = 25.94 ﬁ/S
Hs = 24 ﬁ.

The Bretschneider spectrum was used to estimate the spectral density
distribution. The total number of components for modelling the random
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sea was N = 1200, and also the range of frequencies considered was the
same as in Chapter 6.1:

0.5x0p < 0 < 2.5x0p .

The following values for the equivalent wave system were found for sea
states 1 and 2:

1. cl,eq = 0.402 rad/s, Al,eq = 6.68 ft
02,eq = 0.598 rad/s, Az’eq = 8.12ft

0.596 rad/s, A1 eq = 7.41ft
0.644 rad/s, A2,eq = 7.42& .

2. Ol,eq
02,eq

Comparisons of the profiles were made for the conditions during which
the variation of the wave elevation at the midship section of the vessel was
significant over a period of 40 s. At the first time step under
consideration, the phases of the two equivalent wave components were
adjusted until the equivalent wave profile was approximately similar to
that of the actual sea state. These phase angles were used in subsequent
time steps that have been plotted. The wave profiles for sea state 1 are
shown in Figure 6.11, and those for sea state 2 in Figure 6.12. The actual
wave profiles are represented by solid lines, and the equivalent profiles by
dashed lines. The time interval between profiles is 4 s. From Figures 6.11
and 6.12 it appears that for both sea sea states the equivalent wave profiles
have the same general characteristics as the actual wave profiles; the
speed of the equivalent wave group is close to the speed of the main wave
group, for the large crests and troughs of the equivalent system follow
those of the randoiu sea quite closely, disregarding the shorter waves that
are present in the real wave system.

The objective is to determine whether such simple equivalent wave
systems can be used in the prediction of capsizing in random seas. As an
example, the capsizing of the American Challenger model is considered
for random following seas, where the same conditions as on the San
Francisco Bay are modelled (full scale). The loading condition of the
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American Challenger and wave conditions are those corresponding to
Run 15.04, which resulted in a capsize, reported in Haddara et al. (1972)
and Kastner (1973). The full scale parameters of the American
Challenger were the following for that experimental run:

GM = 086 ft
Co 0.21 rad/s

U = 33.68 ft/s (Fn=0.26),

and the measured sea state parameters were

op = 0.53 rad/s
Hsz 28&
6 = 15°.

It is noted that the mean group speed for the above sea state is

Cg,p = 30.35 ft/s.

For computational reasons it was decided to model the real sea surface by
N = 20 components, having a frequency range of

0.7x0p <0< 2.0x0p.

The interval associated with the frequencies was assumed fixed, and the
frequencies were chosen randomly (out of a uniform distribution) within
each interval. Also the phases were chosen randomly. Using the method
described previously, the following values were found for the equivalent
wave system:

Cl’eq = 0.427 rad/s, Al’eq = 6.68 ft
02,eq = 0.633rad/s, Ageq = 8.121 .

The phases of the two components were chosen so as to result in
approximately the same starting conditions for the wave elevation at the
C.G. (at t = 0) as for the random wave case. The capsize simulation of the
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American Challenger in the (quasi) random sea is shown in Figure 6.13,
and the motion records for the equivalent wave system have been plotted
in Figure 6.14. As the motion records show, the simulation with the
random waves results in a capsize after 190 s, and the vessel capsizes in
the equivalent wave system after 250 s. The roll behavior in the two
seaways is similar in that up to the point of capsizing the roll amplitude is
approximately 10°, and in both cases the ship capsizes rather suddenly to
starboard during the passage of the second wave group. Clearly, the
vessel capsizes after a shorter duration in the second wave group of the
random seaway than is the case for the equivalent wave system. Also the
forward speed behavior is similar for both simulations. The RMS values
for the roll motions and sway velocities compare quite well, while there
are some differences for the other degrees of freedom, as can be seen from
the following summary.

RMS N=20 N=2
heave 3.38 4.30
roll 14.10 13.82
yaw 1.89 140
pitch 1.56 229
surge veloc. 453 542
sway veloc. 0.89 094

The last 40 seconds of the wave elevation profiles, as would be observed
along the vessel before capsizing, have been plotted for the random and
equivalent wave systems in Figures 6.15 and 6.16, respectively. The time
interval between profiles is 4 s. Although in both cases the vessel capsizes
after being poised on the crest of a wave for some time, it is clear that the
actual profiles differ significantly for the two formulations. This is the
reason that capsizing occurs at different points in time.

If it is possible at all, equivalent wave systems can be expected to be really
equivalent for a relatively short time period only, such as during the
passage of one wave group. Dispersion and phase effects will after a large
time period cause appreciable differences between the two-component
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wave system and the actual random wave surface. However, if a vessel
capsizes in a particular wave group, it may be possible to fit an equivalent
wave system to a certain period before capsizing occurs, and then
determine whether capsizing also occurs in that wave system, provided
all the initial conditions are the same as in the random case.

This approach has been applied to the capsize simulation results for the
random wave (N = 20) case. The wave profiles of the random seaway were
considered for the last 40 seconds before capsizing (from t = 152 to t = 190
s). The phases of the two equivalent wave components, observed from the
vessel travelling at exactly the same speeds as in the simulation depicted
in Figure 6.13, were adjusted until they closely represented the profiles of
the random seaway. The profiles of the random and equivalent wave
systems have been plotted in Figure 6.17, where the dashed lines refer to
the equivalent wave profiles and the solid lines to the random wave
profiles. The time interval between profiles is 4 s, and the first (top) profile
corresponds to t = 152 s. It is seen that for that time period the equivalent
wave profiles match those of the random seaway quite closely.

Next, a time simulation was performed with the equivalent wave system,
starting at t = 152 ¢, and where the phases of the two wave components
were those from which Figure 6.17 was obtained. Also, the vessel was
given the initial same displacements, rotations and velocities as had been
computed during the capsize simulation in the random seaway (see
Figure 6.13) at t = 152 8. Using the equivalent wave approach, the vessel
capsizes at t = 187 s in the same manner as for the random wave case,
where capsizing occurred at t = 190 s, and the last 40 seconds of the motion
simulation have been plotted in Figure 6.18. Figure 6.18 shows that the
forward speed of the vessel, just before it capsizes, is higher for the
equivalent wave system than was the case for the random seaway, while
the roll behavior is the same for both representations. The results suggest
that for these particular conditions the equivalent wave system is
adequate for representing the general behavior in the random seaway.

Summarizing, it is obvious that the equivalent wave system results in
certain discrepancies when comparing the motions with those computed
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in random waves. However, it appears that the general characteristics of
the random seaway can be approximated in a simple but fairly reasonable
way. For certain periods of time the equivalent wave system may be
useful for modelling the random sea in capsize simulations, as its
feasibility has been shown for following sea conditions (provided that the
correct initiai conditions are chosen).
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Figure 6.11. Simulation of Wave Profiles along the Length of a Vessel in
Random, Following Seas. The dashed lines refer to the equivalent wave
system. The time interval between profiles is 4 s, op = 0.5,and U = 26 ft/s.
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Figure 6.12. Simulation of Wave Profiles along the Length of a Vessel in
Random, Following Seas. The dashed lines refer to the equivalent wave
system. The time interval between profiles is 4 s, 0p = 0.62,and U = 26 ft/s.
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Figure 6.13. Simulation of American Challenger Travelling in Random,
Following Seas. The dashed lines refer to the wave elevation at the C.G.,
Op=0.53rad/s, H;=28fi.
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Figure 6.14. Capsize Simulation of American Challenger in a Two-
Component, Following Sea. The parameters were chosen so as to yield a
wave system equivalent (at t = 0) to the random sea from Figure 6.13.
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Figure 6.15. Wave Profiles along the Ship Length in Random, Following
Seas (see Figure 6.13). The last 40 seconds before capsizing are shown.
The time interval between profiles is 4 s.
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Figure 6.16. Wave Profiles along the Ship Length in Equivalent,
Following Wave System (see Figure 6.14). The last 40 seconds before
capsizing are shown. The time interval between profiles is 4 s.
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Figure 6.17. Wave Profiles along the Ship Length in Random, Following
Seas (see Figure 6.13). The profiles start at t = 152 s. The dashed lines
refer to the equivalent wave system. Time interval between profiles is 4 s.
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Figure 6.18. Capsize Simulation of American Challenger in Equivaient
Wave System (Fitted to Model the Random Seaway from Figures 6.13 and
6.17). The last 40 seconds before capsizing are shown.
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CHAPTER 7
Prediction of Motion Instabilities and Capsizing by Simulation

One of the major objectives of this work is the ability to identify by
simulation the various modes of capsizing in waves that have been
observed experimentally. If this is possible, the next step in the process
would be to establish ranges of wave conditions for which it is likely that a
capsize will occur (for given vessel geometry, loading condition, KG and
speed). That is, it is of interest to predict for the different capsize modes
critical wave frequencies, together with associated wave heights and
direction, depending on the vessel characteristics. Wave-induced
capsizing may be separated into the following dynamic modes, which
have associated with them different physical phenomena:

(1) Low cycle resonance (following to quartering seas)
(2) Pure loss of transverse stability (following seas)

(3) Broaching (following to quartering seas)

(4) Resonant excitation in beam to quartering seas

(5) Loss of transverse stability in beam to quartering seas
(6) Impact excitation due to a steep beam wave.

The first three modes of capsizing were observed in the San Francisco Bay
experiments, as was mentioned in Chapter 1. The above capsize mcdes
can be characterized briefly as follows. Low cycle resonance (1) can be
recognized by the frequency of the roll motion, which will lie close to the
natural roll frequency, being different from the wave excitation frequency
(typically, the encounter frequency equals twice the natural frequency).
The wave amplitude need not be high to result in large roll angles under
the appropriate conditions. Pure loss of transverse stability (2) is what the
name implies: the righting arm is decreased so much that there is not
sufficient restoring energy present in the vessel to upright itself.
Tynically, the vessel heels to one side for a prolonged period of time, and
may then rc!l to the other side, before capsizing. This may happen in
large amplitude, following seas, especially when the vessel travels at a
relatively high speed. Broaching (3) implies the loss of directional control,
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i.e., the vessel veers off course, broadside to the waves, regardless of
rudder action. Due to the forward momentum of the vessel and change in
heading angle, the exciting roll moment can become large. A vessel may
broach in two ways: (i) when its speed is close to the phase speed of the
wave, it will be forced to move along with the wave, so that it can become
directionally very unstable and a broach may occur in a relatively short
time span; (ii) when the vessel is hit from astern by sufficiently steep
waves in a successive manner, it can be yawed to such an extent that
rudder action cannot rectify the situation before the next wave yaws the
vessel even further. The latter type of broach will occupy a longer time
span than the former. Resonant excitation (4) refers to the condition
where the vessel is excited at its natural roll frequency, which may result
in very large roll angles if the wave amplitude is sufficiently large.
Capsize mode (5) refers to the same phenomanon as mode (2), however,
mode (5) is introduced to separate loss of static stability in beam or
quartering seas from following sea conditions. For mode (2) there is a
significant speed dependence, while mode (5) may occur at any speed.
Impact excitation (6) due to a steep, possibly breaking, wave from abeam
can be such that the vessel is heeled over to a large angle, in which
position it is vulnerable to the action of consecutive waves (if it has not
already capsized).

It is certainly possible for two different modes to occur in a combined
fashion: for example, broaching may be followed by pure loss of transverse
stability, or resonant excitation may be followed by loss of transverse
stability. Also, in many cases water-on-deck effects can play an important
role in the capsizing behavior (extra weight, free surface effect, sloshing),
especially so for small vessels. These effects, together with capsizing due
to steep, breaking waves (mode (6)), are not considered in the present work
because of theoretical limitations.

The first two capsize modes have been treated in some detail by Haddara
et al. (1972), Chou et al. (1974), and Oakley, Paulling and Wood (1974).
Capsizing due to broaching has been observed during the San Francisco
Bay experiments and has been reported in the previous three references;
the loss of directional control in waves has been treated by Davidson (1948),
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Du Cane and Goodrich (1962), Conolly (1972), Nicholson (1974), Renilson
(1982), Motora, Fujino and Fuwa (1982), and Grim (1983), among others.
It is noted that a broach implies the loss of rudder control and large
deviations from the intended course, but not necessarily a capsize. There
has been very little research concerning broaching and capsizing. The
capsizing of small vessels in beam and quartering seas bas been
investigated experimentally by Kawashima et al. (1978), who also
considered the effect of shifting cargo and shipping of greer water, and by
Takaishi (1982) and Yamakoshi et al. (1982). Capsizing due to steep
breaking waves from abeam has been investigated experimentally by
Dahle and Kj=rland (1979), and Morrall (1979). Blume and Hattendorf
(1984) have reported an extensive series of experiments, aimed at
determining the safety against capsizing of medium size cargo ships in
following to quartering seas.

The various capsize modes have been obtained by numerical simulation
for the American Challenger vessel, the results of which are given in the
first section. Also, attention is paid to the behavior of the force
components acting on the hull. Critical conditions are established for the
different modes of capsizing in the second section. Because of time
limitations, it was deemed impractical to attempt the determination of a
complete set of critical wave conditions for different vessels at different
loading conditions. Instead, an investigation was made concerning speed
and heading changes, which would be necessary to avoid a given capsize
situation.

7.1. Numerical Identification of Capsize Modes

The first five capsize modes listed above have been simulated numerically
and are presented in graphical form below, each followed by a short
discussion pertaining to the capsize behavior and individual force
components. All capsize simulations were performed for the American
Challenger vessel subjected to regular waves, except for mode 4 f~r which
two components were used. Three values of the metacentric height were
considered (with corresponding natural roll frequencies):
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GM Go Tq
(ft) (rad/s) (s)
0.56 0.17 37
0.86 0.21 30
1.77 0.28 2

The various motion and force records corresponding to the simulated
modes (1) through (5) are shown in Figures 7.1 to 7.11. The corresponding
time series of the roll moment components are shown for each mode.
Since mode (3), which represents capsizing induced by broaching, is
largely yaw dominated, Figure 7.7 represents the record with the
associated yaw moment components. An overview of the simulation
conditions is given in Table 7.1.

Mode GM U c A o
# (ft) (ft/s) (rad/s) @) ©)
1 0.56 22.7 061 9.8 0
2 1.77 258 0.80 138 0
3 0.56 12.7 0.68 16.0 40
4 0.86 33.7 0.43/0.63  6.7/8.1 -3
5 1.77 218 0.65 20.1 0

Table 7.1. Conditions for Simulations of Capsize Modes for American
Challenger.

In the above table o refers to the wave frequency, A to the wave amplitude,
and J to the wave direction with respect to the x-axis. In the figures with
the moment components, the legends need some clarification. The
moments are taken about the axes fixed in the vessel, and the following
moment components have been plotted:
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- static Froude-Krylov moment, frx s ;

- dynamic Froude-Krylov moment, frk d ;

- memory effect moment, which is the summation of all of the
memory effect integrals, and for roll would be given by

6
gi J.L4j(1:).:': j(t-‘l.‘) dr;
0

- diffraction moment, fp ;

- quadratic damping, which here represents the sum of the
actual viscous quadratic damping moment (based on the relative roll
motion) and the roll moment due to viscous sway-into-roll coupling;

- wave drag moment, firag,w ;

- rudder moment, fri,q .

The time records of the motiong and corresponding moment components

have several interesting features, which are discussed next for the
various modes of capsizing.

Figure 7.1 shows a typical case of low cycle resonance before capsizing
occurs, which represents mode (1). The roll period is approximately equal
to the natural roll period, and the encounter period is half the period of
roll. The wave length is approximately equal to the ship length:

= 0975 .

>

Examination of the roll moments in Figure 7.2 reveals that the static
Froude-Krylov moment, i.e., the hydrostatic restoring moment, is the
dominant component. The dynamic Froude-Krylov moment is small and
its frequency equals the encounter frequency. From inspection of the time
record, it is seen that the hydrostatic moment consists of two superposed
frequencies: a slowly varying component having a frequency equal to the
roll frequency, and a fast varying frequency component whose frequency
is equal to three times the roll frequency (or 11/2 times the encounter
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frequency). The existence of the slowly varying component is obvious: it
represents the actual restoring moment, and its sign is opposite to the roll
motion, i.e., positive roll angle results in negative restoring moment.
When the roll motion is such that its frequency is half the encounter
frequency, and the maximum roll angle is in phase with the maximum
(or minimum) wave elevation, the slow restoring moment is altered
during the passage of a wave as follows. As the vessel heels to starboard
(positive roll angle), the restoring moment is negative. This coinciding
with the wave crest passing the center of gravity (i.e., amidships), results
in the restoring moment being significantly reduced, in this particular
case to approximately zero. After the crest has passed amidships, and the
vessel still being heeled to starboard, the restoring moment becomes
negative again until the vessel starts to roll to port (it reaches its
equilibrium position of zero roll angle as the wave trough passes
amidships). While being heeled to port and a wave wave crest passing by,
the positive restoring moment is reduced to zero, after which it becomes
positive again, etc. In this manner the restoring moment is reduced
three times during two periods of encounter, and thereby has a frequency
of three times the roll frequency. From Figure 7.2 it is seen that each time
after the restoring moment has been reduced in the wave crest, the
magnitude of the restoring moment and the roll amplitude are increased
to a larger extent than during the previous cycle, up to the point where
capsizing occurs.

Thus, in this case there seems to be excitation both at the natural roll
frequency and at three times that frequency. This may be explained by the
Mathieu equation, whick is a classical model in vibration theory for
parametric excitation. In the Mathieu model, the parametric excitation
results from the time-dependent restoring coefficient, and in the case of a
ship in a seaway the restoring coefficient will vary at the encounter
frequency. If the encounter frequency is equal to twice the natural
frequency, the restoring coefficient will vary at a frequency of twice the
natural frequency. Then, if the vessel rolls at its natural frequency, og,
the total restoring force in the Mathieu equation consists of the following
time-dependent product (multiplied with a constant):
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cos(20p.t) . cos(op.t) .

Now it is easy to prove the following:
2 . cos(20p.t) . cos(op.t) = cos(op.t) + cos(3op.t) .

The above suggests that the observed summation of the two different
frequencies comprising the static Froude-Krylov roll moment, at the
natural roll frequency and at three times that frequency, can indeed be
modelled by the Mathieu equation. Therefore, low cycle resonance can be
considered to be caused by parametric excitation.

A somewhat similar behavior of roll response and force components was
observed in one of the simulations presented in Chapter 4, shown in
Figures 4.10 and 4.11. That simulation was also carried out for the
American Challenger vessel having a low GM value, and low cycle
resonance was produced in a composite wave system by the hydrostatic
restoring moment, which consisted of a slowly varying component equal
to the frequency of roll, and a fast varying component having a frequency
approximately three times the roll period.

The motion recerds for mode (2), loss of transverse stability in following
seas, are shown in Figure 7.3, and the corresponding roll moment
components in Figure 7.4. This capsize mode is characterized by the
vessel being heeled over to one side for a prolonged period of time due to
lack of sufficient restoring energy in the system, and where the period of
roll is not equal to the natural roll period. Typical conditions of mode (2)
are steep, large amplitude waves, and a large enough ship speed so that
the vessel stays in the wave crest for a relatively long period, during
which static stability is reduced. In this case the wave height was 28 ft,
and the ship to wave length ratio:

L = 1.678 .
A
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For this mode of capsizing there is a certain critical amplitude, say Aer.
If A < Agy, it was found that the roll motion (for a given initial roll angle)
will decay to zero with increasing time, while for the case where A > A,
the vessel will lean over to either side for a significant amount of time
before capsizing. The latter behavior has been observed during the San
Francisco Bay experimenis. Figure 7.4 shows that the roll motion
consists of a slowly varying component, having a period equal to twice the
encounter period (= 45 s), and a fast varying component of which the
period is approximately equal to one-third of the slow roll period, namely
15 s. Examination of the moment components reveals that the hydrostatic
moment is most dominant, followed by the Froude-Krylov moment. The
latter moment has a frequency equal to the slow roll period, and the
hydrostatic moment has a frequency of three times the slowly varying roll
frequency, i.e., the period of this roll moment component is 15 s. The
behavior of the hydrostatic roll moment is similar to the one observed in
the first capsize mode, except that now during the passage of a wave crest
the restoring arm is reduced considerably beyond the zero value. The
slowly varying component of the restoring moment has almost completely
disappeared because of these large reductions in the wave crests, s2 that
the fast varying part dominates its behavior. The fluctuations in the
hydrostatic component become increasingly large with increasing time,
until the roll angle becomes becomes so large as to cause total loss of
restoring moment.

Figure 7.5 represents mode (3) of capsizing, which is capsizing preceded
by broaching; it is predicted to occur in steep, quartering seas of 30 ft
height and a length of about 80 per cent of the ship length. The motion
records show that up to about t = 75 s, a steady yaw angle of ¢ =-12° is
reached. Subsequently, during the passage of four wave crests, the yaw
angle monotonically increases to -35° (despite the rudder being hard over),
thereby putting the vessel in a position broadside to the waves, at an angle
of 15° off the wave crest parallels. This part constitutes the broach.
During the initial stage of the broach, the roll angle was quite large (40°),
and once the vessel reached the broadside position to the waves, the angle
of roll increased rapidly, and the vessel capsizes on the crest of a wave.
The roll moment components are shown in Figure 7.6, and the sudden
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rise in the hydrostatic restoring moment during the capsize, having the
same sign as the roll angle, may be due to the loss of righting arm in the
crest of the wave. Before capsizing, the amplitudes of the static and
dynamic Froude-Krylov forces are of the same magnitude. The yaw
moment components have been plotted in Figure 7.7, which shows that up
to t = 80 s the dynamic Froude-Krylov moment is dominant and has a
negative mean (resulting in a mean negative yaw angle). The yaw
moment exerted by the rudder has a positive mean, and periodically
reaches almost zero when a wave trough is amidships, i.e., when a wave
crest is approximately at the stern.

Capsizing due to resonant excitation, mode (4), is shown in Figure 7.8 for
quartering sea conditions. It is seen that the vessel rolls at the encounter
period (= 30 8), which is approximately equal to the natural roll period.
The roll motion is 180° out of phase with the wave motion ana has a
negative mean; the roll angles are negative in the crests and positive in
the troughs. There is no tendency for capsizing during the passage of the
first wave group, while in the second wave group the roll amplitude is
seen to increase after t = 200 s until the vessel capsizes on the crest of a
wave at t = 265 s. The roll moments are shown in Figure 7.9, from which
it is seen that the static and dynamic Froude-Krylov moments have
approximately the same amplitudes, and the dynamic Froude-Krylov
moment appears to be more regular than the hydrostatic moment
component. The moments associated with quadratic roll damping and
wave drag are also of significance.

The loss of transverse stability, mode (5), is shown in Figure 7.10 for steep
beam sea conditions. Although the vessel rolls 180° out of phase with the
waves, it is seen that after t = 20 s, the mean of the roll angle becomes
progressively negative until capsizing occurs. From the roll moments
plotted in Figure 7.11, it appears that the static and dynamic Froude-
Krylov components are dominant. The hydrostatic restoring moment has
a positive mean until the point of capsizing. Once the vessel has reached
a roll angle of approximately -55°, there is not sufficient restoring energy
left after the last wave crest has passed, and the ship rolls further towards
port.
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Wind effects may be of significant influence when the wind direction is at
right angles with the beam. Under some conditions, a different angle of
attack (e.g. 30° with respect to the ship's longitudinal axis) will lead to the
largest wind-induced moment due to hull lift effects. Let us consider
exactly the same conditions as for capsize mode (5), and assume that the
wind comes from the sane direction as the waves. Without wind, we saw
that capsizing occurred after t = 68 s, as is shown in Figure 7.10. It was
found that the time span before capsizing was quite sensitive to additional
wind forces: for a wind speed of V = 40 ft/s capsizing (toward port) was
predicted to occur after t = 63 s, and for V = 50 ft/s capsizing occurred after
t = 45 s. The motion records corresponding to the case V = 50 ft/s are
shown in Figure 7.12. These results may not be accurate, since the wind
velocity and drag coefficient are assumed to be time independent.
However, they do suggest that wind should not be omitted from the
analysis, when reliable capsize predictions are to be made by simulation
for beam seas, and possibly quartering sea conditions.
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Figure 7.1. Simulation of Capsize Mode (1): Low Cycle Resonance in
Following Seas. The dashed lines refer to the wave elevation at the C.G.
Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 7.3. Simulation of Capsize Mode (2): Loss of Transverse Stability

in Following Seas.

The dashed lines refer to the wave elevation at the

C.G. Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 7.4. Roll Moment Components Associated with Simulation of
Capsize Mode (2): Loss of Transverse Stability in Following Seas.
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Figure 7.5. Simulation of Capsize Mode (3): Broaching in Successive
Quartering Waves. The dashed lines refer to the wave elevation at the
C.G. Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 7.8. Simulation of Capsize Mode (4): Resonant Excitation in
Quartering Seas. The dashed lines refer to the wave elevation at the C.G.
Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 7.10. Simulation of Capsize Mode (5): Loss of Transverse Stability
in Beam Seas. The dashed lines refer to the wave elevation at the C.G.
Displacements are in feet, angles in degrees, and velocities in ft/s.
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Figure 7.12. Simulation of Capsize Mode (5): Loss of Transverse Stability
in Beam Seas with Wind. The wind speed is 40 ft/s, and the same wave
conditions are used as in Figure 7.10.
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7.2. Critical Conditions for Capsizing

With the aid of the present theory and numerical model, in principle one
would be able to develop design charts for a given vessel, indicating
ranges of wave, speed, heading and loading conditions that would most
probably lead to capsizing. One could do this for a variety of vessel types
and sizes, and produce some kind of nondimensional region where
capsizing can be expected to occur. Quite a large number of simulations
would be needed to produce any data useful for design purposes. It is not
the aim of the present author to do so, but instead to consider a certain
vessel under conditions for which it is known to capsize in. Next an
investigation is made concerning the changes in capsize behavior due to
changes in forward speed and heading angle, while the wave conditions
are kept the same.

The vessel under consideration is the American Challenger moving along
the x-axis in a two-component wave system, representing random sea
conditions. The same conditions are used as in the simulation shown in
Figure 6.14. The full scale parameters of the American Challenger are
the following: :

GM =086ft
cp = 0.21rad/s

U = 33.68 ft/s (Fn =0.26),

and the sea state parameters are

op = 0.53 rad/s
H3= 28&
é = 15°,

where use is made of the equivalent wave system described in Chapter 6.3.
An overview of the behavior of the American Challenger is chewn in
Table 7.1. Capsize occurrences are denoted by crosses (X), with a
subscript denoting the mode of capsizing, where
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L.R. = low cycle resonance

S.S. = loss of static stability
R.E. = resonant excitation .
Ut/s) 5 10 15 20 32 3368 35 40

3(°)
5 v/
10 4
15 v XLR. XLR. ¢ ¢ xss. v/ /
20 v/
25 XR.E.
30 XR.E.
40 4

Table 7.1. Capsize Occurrences of American Challenger

From Table 7.1 it is seen that the vessel will avoid capsizing by a speed
increase, while too much of a speed decrease will lead to low cycle
resonance followed by capsizing. It is also interesting that increasing the
heading angle to between 25 and 30 degrees with respect to the waves will
also lead to capsizing. A few more remarks are made below about low
cycle resonance.

Autoparametric excitation leads to low cycle (or subharmonic) resonance,
which typically ends in a capsize, if the oscillations continue to grow and
not enough damping is available in the system to limit the amplitudes to
an acceptable level. For small amplitudes of roll, subharmonic resonance
will occur when the encounter frequency is twice the natural roll
frequency, provided the wave length is sufficiently long, i.e., on the order
of the ship length. This behavior can be explained by means of the
Mathieu equation, in which one of the coefficients describing the restoring
force is time dependent. This kind of excitation is referred to as
parametric excitation, which was originally investigated in relation to
ships by Grim (1952). The Mathieu equation is a special case of the Hill
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equation, which is the following general differential equation (see e.g.
Stoker (1950)) for a single degree of freedom system having a time-
dependent restoring force term:

2
276 + k()0 =0,
dt

where k(t) is periodic in t. Ifk{t) is sinusoidal, the Mathieu equation with
respect to the roll motion 6 can be written as

2
5_1__9_ + (B+€.c0s0)0 =0 .
dt2

For a vessel rolling in waves the hydrostatic restoring moment can be
considered as having a time-dependent coefficient, because the righting
arm depends on both the position of the wave with respect to the vessel and
on the angle of heel of the vessel itself. For small values of € (i.e., small
roll motions), instabilities are predicted to occur when the solutions are
unbounded; for € = 0, it has been shown (see e.g. Grim (1952), Paulling
and Rosenberg (1959), or Nayfeh (1981)) that instabilities occur at the
points where the stable and unstable regions meet, that is, at the following
discrete values of &:

n2
=-Zn-=8' n=0,1,2,.»

02
—8_
@’
where o€ is the encounter frequency and og is the natural roll frequency.
In ship roll problems the case n = 1 is usually of most concern. As is
apparent from the regions where Mathieu instabilities occur,
autoparametric resonance will occur for a larger range of encounter
frequencies when the roll amplitudes are larger. Thus, the regions

exhibiting stable motion behavior become smaller as the roll amplitude
increases. Paulling and Rosenberg (1959) also showed that parametric
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excitation can result from coupling between roll and pitch motions, for
example. Lindemann and Skomedal (1983) describe low cycle resonance
with the Mathieu equation, and it is argued that the relative heave motion
may result in a significant transfer of energy into the roll mode of mction.

In order to determine the range of conditions for which parametric
resonance may occr.s, it is useful to examine the behavior of the
encounter frequercy curve, which is shown for following sea conditions in
Figure 7.12. rrom Figure 7.12 it is seen that reducing speed or increasing
the heading slightly will in theory always result in the possibility of
parametric excitation. The speed can be increased to a certain speed
beyond which no such excitation should occur; this speed is such that the
following should be satisfied: 6®max < 6*, where (see Chapter 2.4.4)

o* = 20’9, and

e 4
O . = —— .
4U.cosP

Thus, to avoid parametric excitation for the case n = 1, the speed should be

as follows:
U > —8 .
8.0‘6.cosB

The range of frequencies possibly leading to low cycle resonance and
capsizing is shown schematically in Figure 7.13.

Some of the characteristics of autoparametric resonance are the
following. This type of resonance occurs typically for ships of fine shape
and relatively small block coefficient, i.e., ships that exhibit large changes
in waterplane area with small changes in draft, such as container and
Ro-Ro ships. The wave conditions during which it ¢an be expected to
occur are following to quartering seas, where the length of the wave must
be of the order of the ship length. In regular waves, the wave amplitude
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does not have to be very large for low cycle resonance to start, although
this depends on the hull shape. The response behavior is dominated by
hydrostatic forces and viscous damping. In theory, a ship may
experience low cycle resonance also in other conditions, such as head
seas (which has been observed experimentally for small boats); it is
questionable whether it is of relevance with respect to capsizing because of
the high frequency of encounter relative to the roll frequency. It should be
noted also that there have been no documented cases of capsizing that
were clearly attributable ts low cycle resonance.

In order to determine which conditions will actually lead to low cycle
resonance and capsizing, the following procedure could be used. For a
given vessel configuration, speed and heading, one can calculate the
frequency (or range of frequencies) for which parametric excitation is
likely to occur. By means of simulation it would then be possible to
determine the corresponding wave amplitude range, where unacceptable
motions could be expected. It would be of interest also to investigate
random sea conditions that may cause low cycle resonance.
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Figure 7.12. Schematic Behavior of Encounter Frequency Curve as a
Function of Varying Speed, Wave Heading, and Natural Roll
Frequency. E.g. the positive root of the parabola increases as the
ship speed decreases.

Figure 7.13. Schematic Representation of Range of Wave
Frequencies for Which Parametric Excitation May Occur.
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CHAPTER 8
Conclusions

In this work a numerical model has been developed to determine the large
amplitude motions of a steered vessel subjected to severe wave conditions,
including those that may lead to capsizing. With this model it was
possible to study several mechanisms of capsizing, together with the
conditions that would cause such catastrophic behavior. Different modes
of capsizing observed experimentally were obtained by simulation.

The theory is based on a combination of potential and viscous flow
approaches in the time domain. The potential theory for determining the
wave-induced motions is essentially linear, but extended so as to take into
account ihe time-dependent free surface as well as memory effects.
Nonlinear viscous effects are modelled in an empirical fashion, where
attention is paid to roll damping in waves, drag forces due to waves,
maneuvering forces, and coupling between sway and roll. The following
physical factors have been neglected in this work: cargo shifting, water on
deck, wave breaking and slamming. The present model could be greatly
enhanced by including these additional features.

Reasonable agreement was found between predicted motion results and
experimental results, both for small and large wave amplitudes.
Comparisons were made with respect to the heave, roll and pitch motions
of typical cargo vessels, such as containerships. A number of capsizes
observed in the towing tank, for following sea conditions, were simulated
quite successfully using the present theory. Also, it was possible to
predict capsizing in severe random seas, as observed by experiment.

Since little was previously known about the relative importance of the
various force contributions as regards the ship motion problem in waves,
an investigation has been carried out to determine the sensitivity of the
roll response to changes in the force components. It was found that the
Froude-Krylov forces are always of impcriance, irrespective of the wave
conditions. This suggests that one of the main assumptions in this work
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is correct, namely, that the Froude-Krylov forces are the most critical and
need to be evaluated accurately when predicting motions in severe seas.
For following sea conditions, the hydrostatic forces and roll damping
forces are dominant, while in beam seas the relative importance of the
various components depends very much on the ship and wave conditions.
None of the force components considered in the theoretical model were
consistently insignificant. Only a little attention has been paid to wind
effects, although simulations and experience suggest that wind may play
an important role when considering motions in beam sea conditions.

In the course of this work some new light was shed on wave statistics
observed in simulated random following seas, where the number of
superposed wave components is finite. Contrary to common procedures,
it was found that the mean square value of the wave elevation observed at
a fixed point, and from a reference point moving at an angle with the
waves, can be different, even as time approaches infinity. The differences
will depend on the phases of tke individual wave components and on the
distribution of the wave energy (spectral shape). For a large number of
wave components, the variance of the observed mean square values is less
than for a small number of components. When an observer travels with
the waves at mean group speed, the variance of the encountered mean
square wave elevation will be highest.

The observed wave elevation at any point on the hull may appear to be
regular when the vessel moves with a random wave system, as has been
shown by simulations. Under those conditions, the spectrum of the
observed waves may become very narrow and peaked. However,
simulations in this work have shown that one cannot arbitrarily replace
the random wave system with a regular wave, because such an approach
neglects the spatial randomness of the sea surface. Simulations indicated
that the wave profile along the ship is not reflected by the behavior
observed at only one fixed point on the vessel. The roll motion behavior is
quite sensitive to the spatial characteristics of the sea surface, and care
should be taken in the choice of the seaway representation when
conducting simulations in random waves.
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For capsize simulations in following sea conditions, it has been shown
that the random sea may be replaced by an equivalent wave system,
consisting of only two components. Such an equivalent wave system
would greatly reduce the required computaticn time when studying
capsizing in random following seas, provided that the correct initial
conditions are used in the simulations. More work is needed to fully
assess the usefulness of this approach.

Several modes of capsizing in following to beam seas have been idertified
by simulation: parametric excitation, loss of transverse stability,
broaching and resonant excitation. These modes have been previously
identified by experiment. An analysis has been made of the behavior of
the roll moment components associated with the various capsize modes.
For a given mode of capsizing, the necessary changes in speed and
heading to avoid a capsize situation were determined by simulation.
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CHAPTER 9
Nomenclature
a acceleration vector
A; amplitude of ith wave component in seaway
Ay(o) wave amplitude associated with frequency ¢
Ag cross-sectional area at a station
A generalized added mass matrix (6x6)
Ajj(o) three-dimensional added mass coefficient (i,j = 1,...,6),
component of A
B angular velocity transformation matrix (3 x3)
B beam of the vessel
Bay, linear roll damping coeflicient
By qQ quadratic roll damping coefficient
By g quadratic roll-sway damping coefficient
B43qQ quadratic sway-roll damping coefficient
Bij(o) three-dimensional damping coefficient (ij = 1,...,6)
Cp drag coefficient
C.G. center of gravity of the vessel
Cg wave group velocity
Cep mean wave group velocity associated with peak frequency oy,
CL lift coefficient
Cp wave phase velocity
d draft of the vessel
ft) generalized force vector (6 x1)
fp(t) time-dependent diffraction force vector
Fp(o) frequency-dependent diffraction force amplitude vector
frr(t) time-dependent Froude-Krylov force vector

frr s(t) static Froude-Krylov force vector
frr.dat) dynamic Froude-Krylov force vector

fi(t) force vector component (i = 1,...,6)

fdrag,w(t)  wave-induced viscous drag force (i = 3,4,5)
fm,i(t) maneuvering force vector component (i = 3,5)
fres(t) ship resistance force

frud(t) rudder force
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gravitational acceleration coefficient

transverse metacentric height

frequency domain transfer function

significant wave height (average of 1/3 of the highest waves)
moments of inertia matrix (3 x3)

propeller advance ratio

wave number

wave number components in x and 2z directions

thrust coefficient

vertical position of center of gravity of vessel

length of the vessel

first order kernel function (ij = 1,...,6)

structural mass of vessel

generalized structural mass matrix (6 x6)

component of M (ij = 1,...,6)

unit normal vector (outward is positive)

total number of wave components in random seaway
earth-fixed reference system

reference system translating with the vessel at its mean speed
in the Oxz plane

local coordinate system, fixed in the structure (O* located at
C.G.)

pressure

probability of occurrence of a certain event

instantaneous (time-dependent) wetted surface

wetted surface in calm water equilibrium condition
one-sided spectral density of the waves

response sensitivity coefficient

time

direction cosine transformation matrix (3 x3)

forward specd of vessel in calm water

wave particle displacement component G = 1,2,3)

wave particle velocity component (i = 1,2,3)

translational velocity vector of structural center of gravity
total displaced volume of vessel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



268

x displacement vector in Oxyz system of structural center of
gravity

x(t) velocity vector of C.G. in Oxyz system

x(t) acceleration vector of C.G. in Oxyz system

xi(t) displacement component of C.G. in Oxyz system (i = 1,2,3)

XA x*-coordinate of most aft point on wetted hull

XF x*-coordinate of most forward point on wetted hull

o wave slope parameter

B relative heading angle between ship heading and wave
direction (0 degrees is following seas)

5 wave direction w.r.t. x-axis (0 degrees is along the positive x-
axis)

3(.) Dirac delta function

£ wave phase angle (0 degrees is wave crest at C.G.)

Lo (linear) critical damping coefficient

nt) time-dependent wave elevation

TIMS. mean square value of wave elevation process

2 wave length
sea water density

Pxx roll radius of gyration

Pyy yaw radius of gyration

Pzz pitch radius of gyration

c circular frequency (rad/s)

ce encounter frequency

op peak frequency in random sea spectrum

T time lag

© angular velocity vector (components about O*x*y*z* axes)

@ angular acceleration vector

o, v, 6 Euler angles (yaw, pitch and roll, respectively)

O(t) time-dependent velocity potential

Q time-independent velocity potential

®p time-dependent diffraction potential

1 time-dependent potential of undisturbed incoming wave
system

dRr time-dependent potential due to radiated waves

oy time-independent potential due to steady forward speed
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p 4 vector containing Euler angles (3 x 1)
v gradient operator
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APPENDICES

Appendix A
A.l. Coordinate Systems and Transformations

The nature of the computations necessitates the use of a number of
coordinate sy=tems. Both earth fixed and structure fixed systems are
needed and it must be possible to alternate between the various systems.
The following right-handed coordinate systems are considered. The first
is the reference system Oxyz fixed on earth, with the y-axis extending
vertically upwards. The second is the local coordinate system O*x*y*z*,
which is fixed in the structure. The third is the system Oexeyeze
translating with the structure at its mean forward speed, U, along the x-
direction in the horizontal plane Oxz. The coordinate systems are shown
in Figure A.1 below.

Figure A.1. Coordinate System Representation
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Since the local O*x*y*z* system may undergo rotations as well as
translations, a special convention is needed to express vectors in the
O*x*y*z* system in terms of the Oxyz system. Throughout this work a
sequential order of rotation using Euler angles is adhered to: yaw, pitch,
roll (in that order), or in terms of the angles, ¢, v, and 6, respectively.
Each Euler angle has associated with it a transformation matrix to
express a vector in the local coordinate system, x*, in terms of the global
system Oxyz:

x =Tx* .

For yaw the transformation matrix is given by:

cos¢ O sing
T =| O 1 0],
¢
-sing 0 cosd
for pitch:

cosy -siny O

T =]lsiny cosy O,
0 0 1

and for roll :

1 0 0
T =|0 cos® -sin@

0 sin® cnsO
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It is assumed that the position of the origin of O*x*y*z* is located at the
center of gravity of the vessel, and that if the vessel has forward speed, its
location is given in terms of the translating system Oexeyeze as follows:

The transformation ma:rix T for a yawed, pitched and rolled ship
coordinate system, can be represented by the vectorial relationship

where T is given by the product of the individual transformation matrices
in the sequence of the Euler angles:

T=T-T -T
¢ v o

cospcosy  -cosdsinycosB+singsin®  cosdsinysinB+sindcosd

= siny cosycosO -cossin®

| -singcosy sin¢sinycosB+cosdsind -sin¢sin\|lsin9+cos¢cose_

This matrix allows one to express a vector in the O*x*y*z* system in
terms of the (possibly translating) reference system Qéexeyeze. The inverse
of the rotation matrix T is given by its transpose, since T is orthogonal:
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If only yaw and pitch of the local reference system are considered, the
coordinate transformation matrix R is given by the product T¢ - Ty,

which is the following:

cospcosy  -cospsiny  sind 1 M2 ™13
R = siny cosy 01!= T T T3
-singcosy  singsiny  cosd 3y T3 T33

The inverse coordinate transformation matrix S = R-1 is also given by the
transpose:

If the structure is moving in the x-direction, the position of the center of
Oexeyeze ig given by the vector

o
oe

x.=lo],
0

where the y and z coordinates of O¢ are zero, and for a system moving
steadily at speed U, xo® would be equal to

xo¢=U.t

The following relationship applies between the fixed and moving
reference systems :
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X + X
X 0°
Y| = C
y
z
¢
z

Then, for a yawed and pitched O*x*y*z* coordinate system, a vector in the
local coordinate system can be expressed in terms of the earth-fixed
reference system as follows :

* * * * * *
. Xy 4T X Y HT a2 X ¥, X*4S5, y¥+s, 2
Y| = y°+r x*4r, y* = y°+s X*+s, y*
= 1721 22 = 1712 22
z e e
* L HX * %* * *
| g X T,y ¥, 2 1 | 115,3X¥45,3Y% 45,2 ]

Here the individual subscript 1 denotes the position of the center of gravity,
which in the earth-fixed system Oxyz is given by:

[+
xl-x +x1
1=0
z __C
1= 7% -

For convenience from the computational point of view, the approach
followed in the numerical model is to consider the vessel undergoing roil,
yaw and pitch rotations. However, at each time step, the forces are first
expressed in terms of a local coordinate system O*x*y*z* that has
undergone only yaw and pitch by the same amount as that of the actual
rotations. After all force components have been determined and summed,
the final exciting forces are expressed in the structure fixed coordinate
system by taking the roll angle into account.
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Rotational Velociti

If the Euler angles ¢, y and 0 are represented by the vector

the time derivatives are given by

0
da _ . _
a  XT|é

|yl

These rotational velocities are defined in the earth-fixed coordinate system
Oxyz . The angular velocities about the ship coordinate axes x*, y*, and z*
are represented by the vector

This vector can be related to the Eulerias: velccity vector % as follows:

o=By .

The above transformation matrix B can be obtained by a series of
transformations, reflecting the order of rotation of the Euler angles,
which is yaw, pitch and roll :
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ml 10} 0 g
ol=T1lrl | |+T|% +]o
2 0 v | 0 ’
0 vl Lo
|95, v

so that B can be expressed as

1 sin\v 0

B =0 cosBcosy sin6

0 -sin@cosy cosy

It is noted that the inverse of B is not equal to its transpose, but is given by

1 .cos@tany  sin@ tany

B! =|0 cos8/ cosy -sinB/cosy

il

0 sin@ cosO
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A2. Definition of Relative Heading Angle in Waves

The absolute ship keading at any time instant is determined with respect
to the x-axis of the system Oxyz by the yaw angle ¢, which is the same as
the angle of the vessel with respect to the xe-axis of the reference system

moving with the ship. The direction of wave travel is defined in similar
terms by the angle §. i.e.. 8 is nosgitive according to the right-handed rule.

Thus the relative heading is given by

B = 5-0.

The various angles are shown schematically in Figure A.2.

"
_--"" direction of
wave travel

direction of
ship heading

- x©

Figure A.2. Definition of Relative Heading Angle B of Ship

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



292
AppendixB
Froude-Krylov Forces

In the first section expressions for the Froude-Krylov forces are obtained,
and these forces are separated into a "static” and "dynamic" part (it is
noted that both components are time dependent). Next a brief discussion
is given concerning steady drift forces arising from integrating the wave
pressure over the instantaneous wetted surface of the vessel.

B.1. Static and Dynamic Components

In this section expressions for the Froude-Krylov forces are obtained in
terms of a yawed and pitched coordinate system located in the structure,
where the structure itself may have undergone roll rotation as well. All
derivations are based on conventional, linear potential theory which is
extended to above the mean water level. The forces are evaluated for
large angles, and the computations are performed over the instantaneous
wetted surface of the structure. The total Froude-Krylov force is split up
into a static and dynamic component.

Assuming the origin of the structure-fixed coordinate system to be located
at the center of gravity of the structure, the generalized 6x1 Froude-Krylov
force vector, comprising forces and moments, is given by integration of
the pressure in the undisturbed wave system:

f(t) = Hpnds z= Jrj'(ps+pD)nds R
S S

where S is the instantaneous wetted surface (and therefore time
dependent), and n is the generalized normal vector. The first three
components of n (nj 2 3)are the conventional components of the unit
normal directed out of the fluid, and the last three components (n4 5,) are
cross products: ng56 = r* xnj 2.3 Here r* represenis the vector of a point
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on the hull to the center of gravity. The pressures pg and pp are the static
and dynamic wave pressures, respectively, given by

Pg = -PBY ,» ©e<y<n
ad)l
Pp= P -

it is assumed that the velocity potential @) can be evaluated up to the
instantaneous free surface, given by y = 1n(x,2;t); this was discussed in
Chapter 2.4. The velocity potential of the incoming wave train is the
following (for a one-component wave system):

<bl(x,y,z;t) = -A'—geky.sin(kxx+kzz-ot+e) .

c
and

nx,zt) = A.cos(kxx+kzz-ot+e) .

As discussed in Chapter 2.4, the total pressure in a random seaway would
be obtained in terms of the overall velocity potential of the incoming wave
system, consisting of the superposition of the potentials of the individual
wave components.

The components of the generalized Froude-Krylov force can be expressed
conveniently in terms of volume integrals using Gauss' Theorem. The
volume integrals can be evaluated per section, and then integrated over
the length of the vessel to yield the total force or moment. Expressions
must be derived in terms of the yawed and pitched coordinate system
located in the structure; the local coordinates in this system are taken to
be x*, y* and z*. For the actual forces (i = 1,2,3) Gauss' Theorem gives
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£ = jj ——dV

- apdsdx, i=123,
e

and for the moments about the center of gravity:

£® =-[[[r*xVpav, i=456.
A\’

The force components expressed in a yawed and pitched coordinate
system O*x*y*z* would be given by

mg,z;‘“’
ST as}ax . i=123,
L S i

£0

S is the instantaneous cross-sectional area (bounded by the imaginary free
surface of the waves, as if the hull were not there), V is the displaced
volume, and L is the length of the vessel. The individual moment
components are then given by

f-‘1(0 = I:'- { _l‘ (Z*-py, - y"‘.pz,..)dy * dz"‘} dx* ,
£, = J { g(x*.pz, -z%p dy* dz* Jdx* |

£ = [ {[[o*p,.- x*.p,,)dy* dz* }dx* .
LS
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Static Froude-Krylov Forces
The static pressure is given by
ps = -pgy »
and y can be expressed in terms of a yawed and pitched coordinate system

with its origin located at the center of gravity, as has been illustrated in
Appendix A:

- © * *
Y = ¥ F 85X 5,y .

In the above expression y* is the local y-coordinate of a section point of the
vessel, which may have undergone rotation as well, so that in terms of the
yawed and pitched coordinate system the section may have a
nonsymmetrical shape when the roll angle is not equal to zero. The
pressure derivatives are the following:

Eriliae

I = =55, P8

= —0.

The sectional hydrostatic forces, i.e., the first three compcnents of the
generalized force vector, are given by

1
fé-’r)(.s %0 = -pgs,, sIdy *dz* = -pgs,, I M, - %" 'z‘ dz* ,

ff?é,s 50 = -pesy, sjdy*dz* = -Pesy, Jn, -yl a2t
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fg,z's x*) =0,

where 1 is the wave elevation above a section point, and yp* is the y*-
coordinate of the section point, so that their difference constitutes the
hydrostatic head above the section point. The static Froude-Krylov
moments for a section at x* are given by

) e _
fi:x's(x*,t) = ijz*psy‘dy*dz* - -pgszz J.(-nl -yb*)lz"' Z* dZ* .
fglg.s(x*;t) = -[Jz*ps Jyrdzt = pes,, J, S PE Y

S X

10 x40 = 'SU(PSX-Y* “xopg )dytdat

= b (v [ dyedae + 5,08 [[ dyvian)
S S

The above sectional forces and moments are assumed constant over each
ship section, so that the total ferces and moments can be obtained through
simple addition of the sectional components.

Dynamic Froude-Krylov Forces

In order to obtain the dynamic forces in terms of a yawed and pitched
coordinate system, it is necessary to express the dynamic pressure in
terms of the local coordinates. The dynamic pressure is based on
expressions for the velocity potential defined previously, and the
expressions are derived for a single harmonic wave train.

The dynamic pressure is given by
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pp = Pl = page”

cos(kxx + kzz -Ot+¢€) ,

where all the parameters are defined as in Chapter 2.4. The dynamic
pressure can be expressed in terms of the yawed and pitched courdinate
system by making use of the previously obtained coordinate relationships:

k(y:+s12x"+322y‘)
Pp(x*y*,z¥%t) = pAge .cos(kx(x1+sllx*+321y*+s3lz*)

¢ * * *) .
+kz(zl+sl3x +5,,y* 45,7 )-ot+€)} ,

where
3
X, = xoe+xl
By defining
= * * *
€ = X Hs X¥Hs, y* s, 2,
= 2 * * *
€ Z + S X* +5,y% +5..2%

the derivatives of the dynamic pressure can be written as

dp kv K(s),%* +5,,¥*)
—2 = pAge "ks, e 2 ‘2 cos(k_E+k L-ot+€)
ox* B ,x* +5,,y%) >
-e (k,s, 1+kzs13).sin(kxt‘g-bkz?;-<st+&:)} ,
dp ky. K(s,,X* +5,,y*)
D .. pAge ks,.e 2 2 " cosk E+k_L-ot+€)
dy* Eéux* +5,,¥*) -z
-e .(kxszl+kzs23).sin(kx§+kz§-ct+e)} ,
dp Ky K(s;px* +5,,y*)
D 1 <8y .
e -pAge e .(kxs3l+kzs33).sm(kx§+kzl;-ct+e) .
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In order to integrate over the displaced volume, it is convenient to

separate the x* terms from the y* and z* terms, and evaluate the sectional
integrals first, as was done above for the static force components. Let us

define
kx = kxsll +kzsl3 ’
ky = kxszl +kzsz3 »
kz = k11&331 +kzs33 ?
and also
1 = k'x*+k x, +kz° -Ot+¢ ,
X X1 z 1
= I "vk "k
2 kyy +kzz .
Then
* * * e * * *)
cos{kx(xl+sux 5, V¥ 45, 12%) + K (2,45 X 45,,y*+5,.2%) ot +¢}

= cos{B1 +B2}

cosBlcosB2 - smBlsmB2 ,

and likewise,

in(kx§+kzl;-ot+e) = sin(B1 +B2)

= smBlcosB2 + cc)sBlsmB2 .

Using the above notation, the pressure derivatives can be written as
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ap ky ks. .x* y*
-5’_“_3. = pAge l{kslzc 12 .cb22 .(cosB, cosB,-sinB sinB,)

*

12, oo .
-e k ‘e .(s1nBlcosB2+cosBlsmBz)} ,

op kyy ksppx* ksy
-5&-13- = pAge .{kszzc £ .(cosB, cosB,-sinB sinB,)
ks, x* ks y*
12 , SY .
-e .ky . .(smBlcosB2+cosBlsmB2)} ,
op ky; ks a y*
-5-5?- = -pAge l.e 12 ksn (smB cosB +cosB sinB )

The follov-ing sectional integrals are defined:

*

Z2C0(x*) = ‘s”cksny .cosB2 dy*dz* ,

ZS0(x*) = ﬂeksny‘.sinBz dy*dz* ,

ZCY(x*) = Hy*.eksny‘.cosBz dy*dz* ,
S

Z5Y(x*) = Hy*.cksny..sinBz dy*dz* ,
S

ZCZ(x*) = Hz*.eksny‘.cesBz dy*dz* |
S

ZSZ(x*) = j jz* smB dy*dz* .

These sectional integrals can be solved analytically with respect to y*, and

g P

then integrated with respect to z* using Filon's mcthod (see Appendix C).
Defining -
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k(y; +5,,%*)
E=Ae ' 7,

the following expressions for the dynamic Froude-Krylov forces and
moments are obtained:

) .
D = pel I!13.(1:x Z50 - ks, ZC0).cosB, dx*

+ JE.k "ZCO + ks, Z80).5inB, dx*} ,
L

)y _ :
{20 = pgl I_!'B.(ky 250 - ks, ZC0).cosB, dx*
+L[E.(ky'.ZCO + ks, ,.ZS0).sinB, dx*} ,
£ = pg. {I{E.kz'.ZSO.cosBl dx* +IJ:E.kz’.ZCO.sinBI dx*} ,

4 . :
£20 = pe. {I‘!E.(-ky 25Z+k \ZSY+ks,, ZCZ).cosB, dx*

+i!'E.(-ky'.ZCZ+kz'.ZCY-k522.ZSZ).sinBl dx*} ,

5 ' '
)0 = pe. {JE.(—x*kz ZS0+k 'ZSZ-ks, , ZCZ).cosB, dx*
+ JE.(—x*kz'.ZC0+kx'.ZCZ+ksl2.ZSZ).sinBl dx*} ,
20 = pg. {i[}a.(x*ky'.zso-kx'.zsY-x"=ks22.zco+kslz.zcsr).cosBl dx*

+ JE.(x*ky'.ZCO-kx'.ZCY+x*k322.ZSO-kslz.ZSY).sinB1 dx*} .

The integration with respect to x*, i.e., along the length of the ship, is
performed from the aftmost submerged section to the most forward
submerged section.
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Determination of Instant Free Suf

In the integration over the wetted surface at each time step it is necessary
to find the wave elevation, n*, above each offset point (in the rotated
coordinate system). Examination of the coordinate expressions of the
wave elevation shows that n* occurs recursively, so that it is not possible to
find an explicit expression for the unknown n* in terms of the other
known parameters. To avoid this problem the same procedure is used as
reported by Fallon et al. (1980). The assumption is made that the product
involving the wave slope, kA, and pitch angle, v, is small. Defining the
quantity y = kA.siny, the following applies:

M<<1 =siny=y and cosy = 1.

For the type of vessel under consideration it is reasonable to assume that
the pitch angle is small. Also, the wave slope is usually quite small, and
this is consistent with the wave theory used here. Therefore, the product
of the two quantities is always small, and the above procedure is expected
o yicld aoccurats results for typical large ships, in realistic situations.

B.2. Froude-Krylov Drift Forces

In this section an investigation is made as regards the occurrence of
steady drift forces, resulting from integrating the Froude-Krylov forces
over the wetted surface of a thin cylinder in regular waves. The
integration is performed over the exact wetted surface, that is, up to the
instantaneous water level due to the undisturbed, incoming wave.
Regular wave conditions are considered. Two cases have been
investigated:

(1) Fixed, vertical cylinder in monochromatic wave;
(2) Vertical cylinder oscillating (heaving) at the wave frequency.
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It was found that for the fixed cylinder the steady (Froude-Krylov) drift
force 13 zero. For the heaving cylinder, however, the steady drift force was
found to depend on the phase angle between the heave motion and the
wave oscillation. The drift force due to the incoming wave pressure field
is only one of the components comprising the total drift force. This has
been shown by Pinkster (1980), who derived expressions for the various
forces up to second order acting on a moored structure; the pressures
were integrated over the wetted surface, and evaluated up to the mean
water level rather than the actual free surface, in accordance with the
perturbation theory approach.

1. Fixed Vertical Cylinder in Monod i W

We wish to calculate the horizontal (surge) force on a fixed cylinder in a
regular wave. The cylinder is assumed thin, i.e., its length is small
compared with the wave length, has a rectangular cross-section, extends
to a depth v = -d below the mean water level, and extends to an indefinite
height above the MWL.

The elevation of the incoming wave, assumed to be travelling along the x-
axis with zero phase angle, is given by

n® = A costkx-ot)
and ihe corresponding velocity potential is

o = AL N Gndx-on) .
(¢}

The Froude-Krylov component of the surge force is obtained by integrating
the pressure over the wetted surface:

vov ox

F® = [fpnds = - [[[5=av = -j{jj'é—azdydz Jdx .
S \'/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The cylinder is considered to have a unit width in the z-direction, and the
length is taken to be dxg, where dxg << Ayw. Then the time-dependent

Froude-Krylov force is

dp
F®) = 'jé; dy dx, .

In subsequent expressions for the pressure, the static pressure
component has been omitted, since it does not contribute to forces in the
surge direction. The dynamic pressure is given by the linearized Euler's

Integral:
% ky
p(x;t) = -pﬁl =pgAc "’ cos(kx-ot) .
Then

%’,} = -pgAke sin(kx-or) ,

and the surge force is given by (assuming dxg = 1):

() = - ij g Ak e sin(xc-ot) dy
d

- p g A sin(kx-ot) . {ck"(t) - e'kd} .

To compute the steady drift force, Fpc, it suffices to find the average of
F'1(t) over one wave period (T = 2r/0):
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T

T

1 : i

Fpe = 5 jFl(t) dt = pgA |sinee-on. {e®-e"O) ar .
0 0

The drift force can be evaluated for any position, x, of the cylinder. If the
cylinder is located at x = 0, the forces can be evaluated for x = 0 also, as the
cylinder is assumed to be thin. The integrals are determined as iollows:

T
) je"“‘ sin(kx-ot) dt = 0.
0

T
® [e4 % gingoc-on at = 1M _ @y _
0 kAo

From the above it is seen that the steady drift force due to the Froude-
Krylov force is zero. Also the instantaneous force F1(t) becomes zero when

the wave crest or trough passes by.

5. Heaving Cylinder in. Monod e W

The heave motion of the cylinder is assumed to have the same frequency
as the wave, while having a certain phase angle, €, with respect to the

wave. The heave motion about the mean water level y = 0 is given by

Y, = H cos(ot+g) .

The instantanecus Froude-Krylov surge force is then obtained by
integrating the pressure gradient over the wetted surface in the fixed
coordinate system:
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Fl(t) = -j]?B dy
dax
-d+y‘=
Acos(kx-ot)

= JpgA e sinGox-on) dy
~d+Hcos(ot+€)

.

= Fl(t) = p g Asin(kx-ot) . [ek-’wOS(bl-ct) . e-kd+kﬂcos(m+e) }

In this case the steady drift force in the surge direction is given by

1
FDC=

=3

T T
[Fod = pgA. { [ singx-on at
0 0

T
) Ie-mkncos(cue) sinfxon dt }
0

where T = 2n/c.

Again two differer:t integrals have to be solved (where the cylinder can be
consicered to be located at x = 0):

T

ckAcos(lv:x-m)

(@) sin(kx-ot)dt = 0 ,

0

and
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T
®) Ie-kd+kH cos(ot+ e) sin(kx-ot) dt
0

dekH (cos(otloase -sin(ovsine) o oo o

!—‘_}

e

e~kd+kHcos(<n)eom ) e—kHsin(ot)sine . sin(kx-o0t) dt

i
O'——,._l (=]

T
kd ¢ kH -kHsinot sine .
=e dje °°s°t°°se.e ot . sin(kx-ot) dt .
0

The above integral can be evaluated qualitatively by means of inspection of
the integrand. The following three functions are considered:

Curve (1): z, = ekHcos(ot)cose

Curve (2): z, = ¢ KHisin(on)sine

Curve (3): zy = sin(kx-ot) .

It is seen that the combined function zj-z2-z3 is even when the heave
motion is out of phase with the wave, so that integration of that function
over one wave period would then result in a non-zero steady force. The
integral has a maximum for a phase angle of 90 degrees. The drift force
is zero when the heave motion of the cylinder is in phase, or 160 degrees
out of phase, with the wave :

FDC =0 for e=0,%tx +2m,...

Hence, a vessel advancing in for example head or following seas, will
experience a mean drift force, i.e., resistance, due to the Froude-Krylov
force contribution. The drift force will increase with increasing wave
amplitude, and the sign of the mean force will depend on the relative
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heading between the vessel and waves. This drift force is only part of the
total added resistance in waves, since radiation and diffraction effects
contribute also to the mean resistance. These efects are not considered in
this this work.
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Aoppendix C
Numerical Integration Procedures
C.1. Filon's Method

An integral which occurs frequently in the computation of the wave forces
on objects is one in which the integrand consists of a function, say M(x),
multiplied by a sine or cosine function of x. If one must consider high
frequencies in the sine or zosine function, a very fine mesh is required
when evaluating the integral by the usual numerical approximation such
as Simpson's Rule. Filon has suggested a procedure for avoiding this
inconvenience in cases where the function M(x) varies smoothly with x.
By Filon's procedure, it is assumed that the function M(x) is linear
between integration points, which ic a reasonable assumption for small
enough intervals dx. To illustrate this method, we consider the following
integral:

XN N X

i N .
109 = [M(x)coskxdx = 3, [ (a,+bx)coskxdx = X I .
X, i=2 X1 i=2
The coefficients are given by

a = M(x, )x; - M(x)x, |
i X. - X, i
i “i-l

b = M(xi) - M(x“)
i X. - X. !
i -l

and the incremental vaiue of the integral is found analytically to be the
following:
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k2

a, +b,

k

X, sin ko, - x,  sinkx, ]
+b

|-

Now consider the following integral :

=T, +h+hy,

1

= I
Xi1" %2

Mx, ) - Mx; ,)

Xi1

+

" X2

MOx;.%; - MO,

k

v Mlxpx, - MOk )% [sin kx,, - sinkxi.z]

cos kxi.l - COS kxi_2 X, ,sin ka - X, sin kxi_2

+

k2 k

-+
% %5

1

cos kx. - cos kx.
i i-1

k

[sinkx.-sinkx. ]
i i-1

x.sin kx. - x. _sin kx.
+ i i i-1 i-1

. M(x) - M(x. ) .

X, - X.
i xx-l

k2 k

X,

k

N MGxx, o - Mlx, x; [ sin kx,, , - sin k"i]

- X.
i+l i
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M(x,,,) - M(x) cos kx, , - cos kx, . X, pSinkx, - xsin kx,
- X ) K k

X.
i+l

Combining terms for M(xj.2), M(x;.1), etc. results in similar expressions
for each of these quantities, facilitating the numerical integration. For
example, the terms associated with M(x;) are the following :

1 sin lcxi - sin kxi-l
Mex) . {——. (x;,, - -
1 1-1
cos kx. - cos kx. x.sin kx. - x. .sin kx.
+ 1 1-1 + 1 i i-1 i-1 )
2 k
k
. 1 (x smkxm-smkxi

X, . -X,  © i+l’ k

i+l i

cos kxi+1 - COS lcxi ) X, ,;Sin kxi+l - X.sin kxi) }
1{2 k

Similarly, terms associated with M(xj-1), for example, are the same as
above but with xj.1 substituted for xi, and x;j-2 substituted for xj.1 in the
above expression. Also, integrals involving moments and a harmonic
function can be solved in a manner analogous to the above, as would be
applicable to the following integral, ior <xample:

(k) = jM(x).x.coskxdx X
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C.2. Euler’s Integration Method
The Euler method is a simple method for numerically integrating first
order differential equations in the form of an initial value problem.

Consider the following set of first order equations:

k1 = fi(t;x1,x2,...,Xn)
kX2 = fa(t;x1,x2,...,Xn)

Xn = fn(t;xlvx27"-rxn) ’
where
dxp
fn =g s

and the corresponding initial values are

Xl(to) = xl(o)
xa(tg) = x2©@

xn(to) = Xn(o) .

The variable t is taken as the independent variable, and xj (i=1,2,...,n) are
the dependent variables. In vector notation the above set of equations can
be written as :

X= ﬁt;X), and X(t()) = x(O) .
The following quantities are introduced:

tk = to+kh;

h = time step interval;

xj = X(ti) is the exact solution to the set of differential equations;
uj is the numerical approximation to xj .
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Then the numerical solution to the problem can be estimated by a first
order time stepping procedure, where the solution for the present time, t;,
is used to estimate the solution vector u;;j for the next time <tep, viz.:

ui+1=1uj + h fit;uj); uwg=xp .

The local truncation error associated with Euler's method is of the order
h2, i.e.,

Entis) = Oh?) .
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Flowcharts of Program KAPSIZE
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KAPSIZE
COEFFS MOTION
1. Computation of hydrodynamic 2. Time domain simulation
coefficients, and generation of of ship motions
interface files
KAPS1.INP
6) input file
COEFFS
radiation kernel
functions
geometry, wave data ‘
KAPS1.CFS KAPS1.0UT KAPS1.RAK
(0}) ()] (11
date ontput

KAPS1.TRF
(12)

KAPS2 REX diffraction transfer
(13) functions
external kernel functions
KAPS2.MOT
)
KAPS2.FCE KAPS2.0UT
(10) 6) time-dependent motions

time-dependent forces general output

Figure D.1. Block diagram showiig principal segments
and file handling of program KAPSIZE
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»l COEFFS

i CONTRL
#| OFFSTS
——»1 INPUTC
DRAFT
—®{ WINDF
{—=>»{ HSTRIP
—>{ ROLLD
—»{ KERNRA
RKERN
| TRANSF
L—&»| OUTPTC

reads control flags describing e.g. form of table
of offsets, which intermediate results are to be
output, some general data such as drafts

reads table of offsets in either standard format
or SHCP format

reads general ship data such as C.G. coordinates,
gyradii, spced, wind and wave information

applies input drafls to table of offsets to produce
offsets used in hydrodynamic computations; also
evaluates certain hydrostatic properties

computes sail area and emersed profile parameters
for wind force determination

computation of 2-dim. added mass and damping
coefficients using Frank's method; can also retrieve
radiation potentials when needed for determination of
3-dim. coefficients

computation of linear and quadratie roll damging coefficients
(frequency independent, component approach)

computes and outputs the kernel functions to be used
in the memory effect integrals of the forced motion
problem

kernel evaluation procedure

computes the transfer function of the linear diffraction
force (and, when needed, of the Froude-Krylaov force);
the Salvesen, Tuck and Faltinsen procedure is anplied

creates interface file for MOTION with all basic data,
and outputs optional results of hydrodynamic computations

Figure D.2. Block diagram showing subroutines accessed
by sub-program COEFFS
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!

${ HSTRIP

revision of station offsets to optimize segment length
——9{ STATN and suppress singular frequencies ("rigid 1id")

:

INSERT insertion of revised offset points

computation of frequency-independent terms for hydrodynamic
t——=pi FRAGEN calculations (Frank’s Close Fit procedure) :

vt FRALIM 2-dimensional sectional hydrodynamic coefficients for zero
‘ and infinite frequency

FSOLVL simultaneous equation solver

——»1 FRANFQ 2-dim. hydrcdynamic coefficients and pctentials for finite
frequencies

——p1 FRANQI1 integration of pressures around periphery of station

FRANQ2 interaction of station segments

:

—p FRAPVI evaluation of (exponential) principal value integral

L—9p1 FSOLVQ simultaneous equation solver

| — HYD3D computation of 3-dimensional added mass and damping
coefficients using Salvesen, Tuck and Faltinsen method

Figure D.3. Block diagram of subroutines accessed
by subroutine HSTRIP
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.I MOTION

——91 INPUTM reads the interface files created by COEFFS, and echoes
data

sots up initial values of certain arrays and converts
—1 PREP computational quantities to dimensionless or other internal

t format

THRUST computation of steady thrust

INTERP calls interpolation routine to set up transfer function arrays
associated with wave component frequencies

—» RUN controls time stepping procedure, increments timestep and
calls relevant subroutines

ot  SAMPLE prints out ship position and velocities at designated
time interval
S— EULER first order Euler integration procedure
RHS evaluation of the right hend side of the equations of

I motion

(see following page)

—p TEST tests for too large roll angle (i.e. capsize) at each step

 — ZSTATS statistics postprocessor for response analysis and
final execution parameters

Figure D.4. Block diagram of principal segments
of subprogram MOTION
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» RHS

—

FCERHS

obtains the overall furces and moments for each time step

ROTATE rotation matrices for coordinate systems; resolves

velocities into ship fixed coordinate system

FORCET evaluation of total forces and moments acting on the ship

(see following page)

LNEQF

solves simultaneous equations for derjvatives of velocities

Figure D.5. Block diagram showing subroutines accessed

by subroutine RHS
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FORCET evaluation of total forces and moments acting on the ship
J

——=_9{ WAVE2D integration of wave pressure derivatives for
7 I each station

ETAF coordinates of wave surface

ETABAR wave elevation above a point on the ship

—ypp{ WAVELO average wave particle velocities for sway,
roll and surge
——»! LINFOR linear diffraction forces
1 MANEUV viscous maneuvering forces
» MEMORY evaluation of memory effect integrals for radiation forces
»{ THRUST calculation of resistance and thrust for instantaneous speed
D! STEER rudder force, including autopilot simulation

Figure D.6 Block diagram showing subroutines accessed
by subroutine FORCET
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