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Abstract

Input-output formulation of quantum light spectroscopy and
its application to study photosynthetic complexes

by

Liwen J. Ko

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor K. Birgitta Whaley, Chair

Due to recent technological advances in the generation, manipulation, and detection of non-classical
light, quantum light spectroscopy has gained attention as a candidate for expanding the current ca-
pabilities of classical laser light spectroscopy. In this dissertation, I develop an input-output for-
mulation of quantum light spectroscopy by combining the input-output theory, traditionally used in
the quantum optics community, with the perturbative expansion method for nonliear spectroscopy,
traditionally used in the chemical physics community. Using this new spectroscopic formalism, we
show that the optical signal in a class of quantum light spectroscopy experiments can be emulated by
classical laser spectroscopy experiments. This class of quantum light spectroscopy experiments uses
n = 0, 1, 2, · · · classical light pulses and an entangled photon pair (a biphoton state) where one photon
acts as a reference without interacting with the matter sample.

To model the interaction between non-classical light and photosynthetic light harvesting systems,
we develop a method to simulate the excitonic dynamics coupled to non-Markovian phonon degrees of
freedom and to an N-photon Fock state pulse. This method combines the input-output and the hier-
archical equations of motion (HEOM) formalisms into a double hierarchy of density matrix equations.
We show analytically that, under weak field excitation relevant to natural photosynthesis conditions,
an N-photon Fock state input and a corresponding coherent state input give rise to equal density
matrices in the excited manifold. However, an N-photon Fock state input induces no off-diagonal
coherence between the ground and excited subspaces, in contrast with the coherences created by a
coherent state input. Detailed analysis of the absorption and emission behavior are discussed.
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Preface

The potential of quantum light spectroscopy

Due to recent technological advances in the generation, manipulation, and detection of non-classical
light, non-classical properties of light, such as photon antibunching [1–5], entanglement [6–10], squeez-
ing [11–15], or Hong-Ou-Mandel interference [16–20], have become commonly observed in the labo-
ratory. Researchers have exploited, or have proposed to exploit, these non-classical properties in
various applications, such as quantum computation [21–23], enhancing the detection of gravitational
waves [24, 25], imaging [2, 26, 27], x-ray diffraction [28], optical lithography [29], and molecular spec-
troscopy [30,31].

In particular, quantum light spectroscopy aims to enhance or surpass traditional spectroscopy
experiments that use classical-like coherent state laser light. This can be done either by probing the
matter systems with non-classical light or by detecting the non-classical properties of the emitted light.
For example, entangled photon pairs can be used to perform sub-shot-noise absorption spectroscopy
[32], to excite doubly excited states with high spectral specificity [33], or to act as an analog of two-
dimensional electronic spectroscopy [34]. They have also been claimed to increase the probability of
two-photon absorption [35,36]. Squeezed light can be used as a low-noise light source for spectroscopy
[37,38]. The second order coherence function g(2)(τ) of the fluorescent light has been claimed to reveal
information about the quantum coherence and the transient dynamics in the matter system [3,39–42].

The study of the energy transfer dynamics in natural photosynthetic complexes is a field that
can potentially benefit from quantum light spectroscopy. Classical laser spectroscopy experiments,
together with x-ray diffraction studies, have revealed much information about the structure and the
ultrafast (100 fs to ps timescale) energy transfer dynamics of these complexes [43, 44]. However, due
to the large number of pigments in each protein-pigment complex, the electronic interaction between
the pigments, and the complex protein environment, experimental analysis and theoretical simulation
tend to be very difficult. The experimental spectra can be highly congested, and there are often many
different interpretations of the same spectra. This is because the interpretation of spectra often relies
on theoretical simulations, which are based on various simplifying assumptions. Depending on the
specific assumptions and the level of theory, different energy transfer dynamics and different simulated
spectra can be obtained for the same system. Due to these difficulties, many important questions in
the field are still left without consensus. For example: “what is the microscopic mechanism for the
high transfer efficiency?”, “whether quantum coherence plays a role in the high efficiency?”, “is the
condition of ultrafast spectroscopy representative of the nature condition under sunlight?”, or “how do
the excitons move in space and time?”. New experimental tools and theoretical methods are needed
to understand the energy transfer dynamics in greater detail and hopefully answer some of these
questions. The recently developed two-dimensional electronic-vibrational spectroscopy (2DEV) has
greatly expanded the possibilities of classical spectroscopy by resolving the electronic state in both the
visible and the infrared dimensions [45]. Quantum light spectroscopy is another potential tool that
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can further our understanding of photosynthetic energy transfer dynamics. For example, an entangled
photon pair can have the time-frequency uncertainty ∆(t1 − t2)∆(ω1 + ω2) be as small as possible,
while for classical light pulses, this uncertainty has to be greater than an O(1) constant because of the
Fourier transform limit and the lack of correlation between the pulses. These entangled photons could
help understand the energy transfer dynamics with higher energy and time resolution. Detecting the
g(2) intensity correlation function of emitted light could provide a new dimension of information, as
demonstrated theoretically in [39–42].

My PhD scientific journey

I did my undergraduate study also at UC Berkeley. My first undergraduate research project was to
synthesize molecular catalysts for electrochemical reduction of carbon dioxide and for photochemical
reduction of water into hydrogen gas. There I was introduced to the concept of energy transfer
and electron transfer in molecules, and I learned about the various chemical factors affecting these
reaction rates. After more than a year, I decided to switch field to do research in theoretical chemistry
because of difficult and unsuccessful reactions as well as my realization that my interest lies perhaps
more in mathematics and physics than in experimental chemistry. I found a research opportunity
in Birgitta Whaley’s group, where I studied the nonlinear spectroscopy of one-dimensional array of
strongly coupled chromophores. This is when I was first exposed to the perturbative formalism for
nonlinear spectroscopy, developed by Mukamel [46].

After I finished my undergraduate degree in 2018, I continued my PhD study with Birgitta. I
was assigned the project of simulating the energy transfer dynamics under a single photon Fock
state excitation. This project was coupled to experiments performed in Graham Fleming’s group.
Understanding the interaction between photosynthetic complexes and a single photon was an initial
step to understand the interaction with other types of non-classical light. To treat the effect of both
phonons and Fock state photons simultaneously, Robert Cook, the postdoc wrote down the double
hierarchical equations by simply merging the Fock state master equations [47] with the hierarchical
equations of motion (HEOM) [48, 49]. These double hierarchical equations turned out to be correct,
but at the time, it was not clear to us whether these equations were indeed correct, although they
looked very reasonable. To derive the double hierarchical equations rigorously, I started to learn about
the derivation of the Fock state master equation and the HEOM. Working through these derivations
carefully helped me later on to develop variations of the commonly used overdamped HEOM [49] and
to develop the input-output formulation for quantum light spectroscopy.

The Fock state master equation [47] was first derived using the language of quantum stochastic
differential equations (QSDE), which originate in the input-output theory developed in the 1980s
[50,51]. I found the QSDE formalism quite mathematical. In my attempt to find a way to understand
it intuitively, I realized one can express many results in QSDE using ordinary calculus, and that
the results can also be derived using ordinary calculus. The ordinary calculus corresponds to the
Stratonovich form of QSDE, which is more physically intuitive. In QSDE, one often works in the
Ito form, which is mathematically more convenient, so one usually has to convert a Stratonovich
QSDE into an Ito QSDE using some formula. Working in ordinary calculus, I realized that, in
some rough sense, the Ito QSDE corresponds to normal-ordered equations in ordinary calculus, and
the Stratonovich QSDE corresponds to time-ordered equations in ordinary calculus. The conversion
between the Stratonovich form and the Ito form can be done alternatively in the language of ordinary
calculus by using the commutator identity [a(t), U(t)] = 1

2LU(t) (see Eq. (5.16)), where a(t) is the field
annihilation operator, L is proportional to the system dipole operator, and U(t) is the time evolution
operator. This insight helped me later on to recast the perturbative expansion of the reduced system
state, usually expressed in a time-ordered form, as a normal-ordered expansion (see Ch. 5).
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After showing the correctness of the double hierarchical equations describing the excitonic dy-
namics of light harvesting systems under the influences from both phonons and Fock state photons, I
started to study the equations numerically and to study the analytical properties of these equations.
One important result is that under weak light-matter coupling strength, Fock state excitation is quite
similar to the classical-like coherent state excitation, giving rise to the same dynamics within the mat-
ter excited states. This is due to the fact that given the same temporal profile, a Fock state pulse has
the same two-point correlation function as a coherent state pulse. The similarity between Fock states
and coherent states is a theme that would come up again, when I later showed the equivalence between
a class of quantum light spectroscopy and classical light spectroscopy. The similarity between Fock
states and coherent states in the weak-coupling regime is not particularly well-known in the atomic
physics and quantum optics community, but it is perhaps more well-known in the chemical physics
community [36]. I suspect that this is because in atomic physics and quantum optics, the experiments
are more commonly done in the intermediate- to strong-coupling regime, whereas in chemical physics,
the experiments are typically done in the weak-coupling perturbative regime.

In 2022, after the theory of single photon excitation [52, 53] and the complementary experiment
with heralded single photon [54] had been completed, we started to discuss with Graham Fleming’s
group about what type of experiment to do next. In the chemical physics literature, there were
many theoretical proposals of using quantum light to perform nonlinear spectroscopy on molecular
systems [16, 55–58], due to the recent interest in exploring the use of quantum light. The theoretical
analysis in these studies used the perturbative formalism for quantum light spectroscopy [30,31], which
is an extension of the perturbative formalism for classical nonlinear spectroscopy [46]. In reading these
paper, I would try to understand the analysis from the perspective of the input-output theory, which
I had become familiar with. I would later develop these connections between the input-output theory
and the perturbative formalism into the input-output formulation of quantum light spectroscopy,
which is the main part of my thesis.

At that time, it had become clear to the experimentalists in the Fleming group that experiments
involving two single photons interacting with the sample were beyond their experimental capabilities,
since the probability for two photons interacting with a single molecule is very small. The probability
is orders of magnitude smaller than the small probability for a single photon interacting with a
single molecule, which is already at most on the order of ∼ 10−6 [52,59]. So we turned to a theoretical
proposal [56] using a classical pump and a heralded single photon probe. The classical pump containing
a large number of photons is supposed to increase the absorption probability, thereby increasing the
signal strength. We read the paper to try to understand the advantage it could offer. Working
through its derivation, I realized that the optical signal can be equivalently obtained by replacing
the heralded single photon with a coherent state (i.e., laser light) probe pulse containing one photon
on average. Furthermore, using not just a coherent state containing one photon on average, but a
coherent state containing a large number of photons, the signal strength can be enhanced further. We
then generalized this equivalence to show that a large class of quantum light spectroscopy experiments
can be emulated by classical light spectroscopy experiments [60].

In my PhD career, I have also contributed to the study of vibrationally assisted energy transfer
(VAET) [61, 62], quantum trajectory of energy transport in photosynthesis [53], and quantum algo-
rithm for ab initio simulation of nonlinear spectroscopy [63]. A brief discussion of these works and
my contribution is given at the end of the thesis.

vi



Introduction

The materials in Ch. 1, 2, 3, and 5 are adapted from [64], to be published. The materials in Ch. 4
are adapted from [60]. The materials in Ch. 6 and 7 are adapted from [52].

Part I: A new input-output formalism to study quantum light
spectroscopy

A popular theoretical framework to study the interaction between quantum light and matter is the
input-output theory, which is commonly used in the quantum optics community to study atoms or
cavities interacting with a one-dimensional propagating photon field. The input-output formalism
provides an exact expression, known as the input-output relation, that relates the input field to the
output field. It also provides formally exact results for the master equation and the Heisenberg
equation of motion of the system operators, known as the Heisenberg-Langevin equation [50, 51].
However, the exact formal results often need to be further simplified in a case-by-case basis. For
example, the master equations of the matter system under the excitation of a coherent state [65], a
thermal state [50], a squeezed state [50], and an m-photon Fock state [47] take different forms.

Another theoretical framework to treat the fully quantum light-matter interaction is the perturba-
tive approach [30,31], which has found its use in the chemical physics community as a generalization of
the perturbative formalism used for describing classical nonlinear spectroscopy [46]. In classical non-
linear spectroscopy, one perturbs just the matter state under the influence of a classical photon field,
while in the generalization to quantum light spectroscopy, one perturbs the combined matter+field
state [57,66]. The perturbative framework is restricted to weak light-matter coupling, but it provides
a unified method to treat the effects from all types of input photon states. This is because the effects
from different orders of light-matter interaction appear as photon field correlation functions, which
can be evaluated for all types of photon field states.

In Part I of the thesis, we develop a new input-output formulation of quantum light spectroscopy
by combining the input-output theory, traditionally used in the quantum optics community, with the
perturbative expansion method for nonliear spectroscopy, traditionally used in the chemical physics
community. In the analysis of optical signals, we make use of the input-output relation and work
in the Heisenberg picture, in contrast to the conventional perturbative formalism for quantum light
spectroscopy that is derived in the interaction picture. The new input-output approach is more
natural and provides a unified framework for analyzing the optical signal in both the perturbative and
non-perturbative regimes.

Besides combining the input-output theory and the perturbative method, we also describe math-
ematical methods to perform normal-ordered perturbative expansions, both for the optical signal
and for the reduced matter system state. In these normal-ordered expansions, the field operators
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are always normal-ordered when their expectation values are evaluated. In comparison, in the con-
ventional perturbative approach, the field operators are time-ordered, and they are in general not
expressed in normal-ordered form. Photon coherence functions, as well as many standard results in
quantum optics, are expressed in normal-ordered form [67], so expressing the perturbative expansions
in normal-ordered form simplifies the calculation. We find that the normal-ordered expansion for the
reduced system state provides insights to the coherent state master equation and the Fock state mas-
ter equation. Given a coherent state input, the normal-ordered expansion allows us to see clearly that
the quantum correction to the semi-classical master equation is the spontaneous emission effect [65].
Given an m-photon Fock state input, the normal-ordered expansion for the reduced system state trun-
cates exactly at the 2m-th order. Therefore, the 2m-th order normal-ordered perturbative expansion
becomes exact, regardless of the light-matter coupling strength. This result is closely related to the
Fock state master equation [47]. These results are discussed in Ch. 5.

Now, we give an overview of Part I. Ch. 1 expands upon our previous work [52] to show how to
rigorously describe the interaction between a matter system and the 3-dimensional photon field as the
interaction between the matter system and a finite number of 1-dimensional photon field modes. We
then derive the single-molecule and N-molecule Hamiltonians that will be used throughout the paper.
Ch. 2 reviews the input-output relation examines several common spectroscopic setups. Through
these examples, we demonstrate how the input-output formalism provides an intuitive method to
analyze the optical signal. These results derived from the input-output relation hold in the general
non-perturbative regime. However, for numerical evaluation, these formal results need to be further
analyzed in a case-by-case basis depending on the input field state. To provide some correspondence
between the quantum and the classical theories, we derive the classical version of the input-output
relation using the macroscopic Maxwell’s equations in Appendix B. In Ch. 3, we work in the weak-
coupling regime and show how to perturbatively expand the input-output relation in the Heisenberg
picture. The perturbative expansion provides a unified approach to treat all types of photon input
states. We compare our input-output approach in the Heisenberg picture to the conventional pertur-
bative approach in the interaction picture by analyzing the second order signal as an example. Ch. 4
applies the perturbative expansion of the input-output relation to show an equivalence between a class
of quantum light spectroscopy experiments and a class of classical light spectroscopy experiments. In
Ch. 5, we switch our focus from analyzing the optical signal in Heisenberg picture operators to an-
alyzing the reduced system state in the interaction picture. There, we develop the normal-ordered
expansion for the reduced system state.

We now highlight the key equations and sections. The input-output relation for N molecules and
for a single molecule are summarized in Eqs. (2.5) and (2.6), respectively. Under the single molecule
Hamiltonian (Eq. 1.32) or the N-molecule Hamiltonian (Eq. (1.33)), the input-output relations are
exact results, regardless of the light-matter coupling strength. When the coupling is weak, the input-
output relations are expanded perturbatively in Eq. (3.7) for the case of N molecules and in Eq. (3.8)
for the case of a single molecule. Sec. 3.4 describes a procedure to enforce normal-ordering in the
perturbative expansion of the Heisenberg picture operators. The normal-ordered expansion for the
reduced system state is given in Eq. (5.32), which is then applied to a coherent state input and an
m-photon Fock state input.

Part II: Simulating photosynthetic complexes interacting with
quantum light

Exciton dynamics in natural photosynthetic systems have been studied extensively in recent years,
using a range of theoretical techniques [49, 68–71]. Most of such studies assume that an initial ex-
citation is present or created at some initial time. Behind this assumption is the implicit further
assumption that light absorption and exciton transfer happen sequentially, while in reality they hap-
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pen simultaneously. A related issue is that while it is well known that under weak light conditions
natural photosynthetic systems have very high efficiency in utilizing absorbed photons to initiate
charge transfer reactions in the reaction center [72], the probability to absorb incoming photons in
the first place is seldom discussed and is not well characterised at the microscopic level. A number
of publications have focused on the nature of exciton dynamics following incoherent thermal light
excitation under continuous illumination [73–79]. These previous studies focused upon solving for the
system’s steady-state properties. In Part II of the thesis, we are interested in the non-equilibrium
dynamics generated by the arrival of a definite photon. As a proxy for a randomly generated solar
photon, our group has previously studied the absorption and exciton dynamics under excitation by
pulses of weak coherent state light in the presence of a phonon bath [59]. The constraint of a finite
pulse envelope gives the photon a notion of a well defined arrival time, in addition to being readily
comparable to experiments.

In Part II of the thesis, we study the light excitation and subsequent exciton dynamics of a pho-
tosynthetic system under non-classical Fock state pulses including single photon pulses and contrast
the behavior under this excitation with that under correspondingly weak coherent state pulses and
under continuous illumination by incoherent light. We focus on the exciton system density matrix
under the influences of both the photon and phonon environments, including a realistic treatment
of the non-Markovian phonon bath. A related paper considers the dynamics of individual quantum
trajectories post-selected on measuring emitted fluorescent photons [53].

Probing a light harvesting system with N-photon Fock state pulses has the advantage that, upon
observing m outgoing photons, we can deduce (ignoring experimental imperfections) that the system
has exactly N − m excitons, due to the excitation conserving property of the total Hamiltonian.
The coherent state laser pulses commonly used in experimental studies are superpositions of different
photon number (Fock) states, so they do not allow for this type of precise knowledge about the state
of the photosynthetic system.

A critical difference between the master equations for quantum systems interacting with Fock states
and coherent states of light is that the influence of a Fock state on the system is non-Markovian [47],
while the influence of a coherent state of light is Markovian [65] and can be treated by considering
the system interacting with a classical electric field plus the quantum theory of spontaneous emission.
Employing the input-output formalism [50,51], Baragiola et. al. [47] used the closely related quantum
stochastic differential equation (QSDE) formalism to derive a set of Fock state master equations that
propagate a physical density matrix coupled with a hierarchy of auxiliary density matrices. For com-
pleteness we present here an alternative derivation using the language of ordinary calculus to derive
quantum Langevin equations in a more accessible formalism. A key fact that allows us to apply the
input-output formalism to light harvesting systems interacting with the three-dimensional (3-d) elec-
tromagnetic field is that under the dipole approximation, the interaction with the 3-d electromagnetic
field can be described as the interaction with a finite number of 1-d fields because the electric field
operator is linear in the field bosonic operators.

To model the non-Markovian effects of the phonon bath, we employ here the hierarchical equations
of motion (HEOM) [48]. When these are combined with the Fock state hierarchy, the final master
equations for the excitonic density matrix take the form of a double hierarchical structure of linearly
coupled differential equations. While numerically accurate, this comes at the cost of increased compu-
tational complexity. For a system with N chromophores interacting with a Np-photon Fock state using
the HEOM truncated at Nc cutoff levels, a set of (Np+1)2(N +Nc)!/(N !Nc!) coupled density matrix
equations need to be simultaneously solved. Because of this cost we limit our numerical studies here
to consider the 14 site LHCII monomer, a 2 site dimer and a 7-site subsystem of LHCII considered
previously [59]. We note that the original HEOM formalism [48] has since been generalized to treat
systems interacting with multiple bosonic and fermionic baths [73,80,81], resulting in an equation of
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motion consisting of multiple hierarchies. Our double hierarchy method differs from these approaches
in that the photon degrees of freedom are treated in our work by the input-output formalism, not
by the HEOM formalism. Indeed, due to the non-Gaussian correlations of N-photon Fock states, the
photon degrees of freedom cannot be treated within the HEOM formalism.

In the interest of gaining important insights applicable also to larger systems, we additionally
develop here analytical studies of the double hierarchy of equations in certain regimes. These studies
focus primarily on the case of a single Fock state photon, since the analytical solution for the reduced
exciton system state is most readily obtained where there is only one photon. A key result of our
analysis is the demonstration in Section 7.1.3 that in the weak chromophore-light coupling limit
(relevant to natural photosynthesis, since the intensity of natural sunlight is about 10−3 photons per
second on a single chlorophyll molecule [72]), the chromophore system dynamics under the excitation
of an N-photon Fock state bears a close relationship to the dynamics under the excitation of a single
photon Fock state.

The analysis underlying this key result hinges on the natural separation of time scales between
the exciton-exciton and exciton-phonon couplings, and the exciton-light dynamics. In natural pho-
tosynthetic systems, the exciton-light coupling is about 5-6 orders of magnitude weaker than the
exciton-exciton or exciton-phonon couplings. Thus the spontaneous emission occurs at a much longer
(ns) time scale than the exciton-exciton and exciton-phonon dynamics, both of which occur on sub-ps
time scales. Because of this separation of time scales we can ignore the effect of spontaneous emission
at short times. Under this approximation, we can solve the single photon Fock state master equation
exactly. The solution is most easily obtained not by solving the non-Markovian Fock state master
equations or the HEOM directly, but by considering the chromophore system, the vibrations coupled
to this, and the optical field together as a pure state evolving according to the Schrödinger equation.
Somewhat surprisingly, the solution to this equation is similar to the second order perturbative so-
lution for a coherent state input. The only difference is that a Fock state input cannot induce any
coherence between exciton system subspaces of different exciton number. The resulting solutions to
the single photon Fock state master equations enable us to write down analytical expressions for the
absorption probability and to understand its dependence on various parameters, most importantly,
on pulse duration (or equivalently, inverse bandwidth). Due to the similarity between Fock state and
coherent state input light, we can then further understand the coherent state absorption probability
using the new Fock state absorption probability expressions.

At long times, the electronic excitation decays via spontaneous emission. Note that we do not
include any additional non-radiative decay pathways from the excitonic manifold in the present model.
We find that due to the steady state in the excitonic manifold with respect to the phonon bath,
the exciton system dynamics follows a single exponential decay to the ground state, giving us a
single well-defined decay constant at long times. It is sometimes assumed that the chromophores
emit independently of one another (see e.g., [59]), but more rigorous treatment of the light-matter
interaction [82] shows that the chromophores should emit collectively [83–85]. The collective emission
rate can show enhancements ranging from 0 to N , the number of chromophores. We show that for
natural photosynthetic systems the collective emission rates are usually very similar to the independent
emission states, as a result of the non-uniform orientations of the dipole moments and the interaction
with phonons.

Chapter 6 introduces the basics of the input-output formalism and provides a detailed modeling of
the absorption and energy transport problem in the language of this formalism. Analytical solutions
of the system+field pure state and system+vibration+field pure state are presented in Eqs. (6.38),
(6.43b), (6.116), and (6.117). Our new double hierarchy method that combines the input-output
formalism and the HEOM is presented in Eq. (6.138). These equations are used to derive the
analytical results in Chapter 7. In Section 7.1 we discuss the similarities and differences between
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excitation under a Fock state and excitation under a coherent state input optical fields (see Eqs. (7.1)
- (7.4) and Fig. (7.3)), as well as the relationship of the dynamics under a single photon state and
an N-photon Fock state (see Eq. (7.7) and Fig. (7.4)). Connections to excitation under incoherent
thermal light are also discussed here. Section 7.2 analyzes the short time absorption probability and
its dependence on the pulse duration and the presence or absence of exciton-phonon coupling. For
short pulses, we show a universal behavior of the absorption probability (Eq. (7.29)) by defining
an effective energy spread parameter ∆ that characterizes the range of system energies. Fig. (7.6)
illustrates this universal behavior. For long pulses, we analyze the absorption probabilities under
several different parameter regimes (see Eqs. (7.35), (7.36), and (7.41)). Fig. (7.9) shows how the
absorption probabilities transition from the short pulse regime to the long pulse regime. Section 7.3
analyzes the long time emission behavior in the presence of phonons. Analytical descriptions of the
system dynamics at long times are given by Eqs. (7.46) and (7.47). Numerical examples in Sections
7.1-7.3 are given using dimeric and 7-mer chromophore systems from the LHCII monomer. In Section
7.4 we then describe a numerical simulation of the double hierarchy of equations describing the Fock
state master equation + HEOM on the full LHCII monomer (14-mer) system. Finally in Section 7.5
we provide a summary and assessment.
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Part I

Input-output formulation of
quantum light spectroscopy
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Chapter 1

Quantum description of
light-matter interaction

We take the dipole – electric field Hamiltonian as the fundamental Hamiltonian for light-matter
interaction. The electric field is a 3-dimensional field, i.e., its degrees of freedom are indexed by the
3-dimensional real space or wavevector space coordinates. However, the conventional perturbative
treatment of quantum light spectroscopy [30] and the input-output formalism [50,86] treat the photon
field as 1-dimensional fields. The 1-dimensional field is usually considered as a model for plane wave
photons or photons confined in an infinite cylinder with cross section area A. This picture is correct
for photons in waveguides, but it is not a satisfactory description of photons in 3-dimensional space,
as it does not properly account for all 3-dimensional degrees of freedom. To bridge this gap in the
different descriptions of the photon field, we will show in Sec. 1.2 how to rigorously decompose the
3-dimensional electric field operator into a finite number of 1-dimensional fields. The Hamiltonian, on
the other hand, is decomposed into an infinite number of 1-dimensional fields, but only a finite number
of them couple to the matter degrees of freedom. In the discussion of the input-output formulation
of quantum light spectroscopy, we use specifically the small solid angle decomposition. We study the
small solid angle decomposition in detail in Sec. 1.3. We show that the decomposition to a finite
number of 1-dimensional fields is valid only within an interaction region in real space. We also show
that under the narrow-band approximation, the small solid angle modes resemble Gaussian beams in
real space and time.

1.1 Total Hamiltonian with the dipole - electric field interac-
tion

We take the combined matter system plus photon field Hamiltonian to be

Hsys+field = Hsys +Hfield +Hcoup, (1.1)

where Hsys, Hfield, and Hcoup are the Hamiltonian for the matter system, the photon field, and the
coupling between the matter system and the photon field. For molecular systems, Hsys would typically
contain both the electronic and nuclear degrees of freedom. Hfield is

Hfield =

∫
d3k

∑
λ

ℏc|k|a†k,λak,λ, (1.2)

2



where k is the three-dimensional wavevector, and λ indexes the two possible polarization corresponding
to each k. ℏ and c are the reduced Planck constant and the speed of light, respectively. ak,λ and

a†k,λ are the bosonic annihilation and creation operators for the field mode (k, λ), and they satisfy the
bosonic commutation relations:

[ak,λ, ak′,λ′ ] = [a†k,λ, a
†
k′,λ′ ] = 0 (1.3a)

and
[ak,λ, a

†
k′,λ′ ] = δ(k− k′)δλ,λ′ . (1.3b)

For atomic or molecular systems, the size of the matter system is usually small compare to the
wavelength of light it interacts with, so that the dipole approximation holds, and the coupling Hamil-
tonian Hcoup takes the dipole – electric field form Hcoup = −d · E(x), where x is the position of the
matter system. The electric field operator E(x), expressed in terms of ak,λ, is

E(x) =

∫
d3k

(2π)3/2

∑
λ

√
ℏω
2ϵ0

(iak,λe
ik·x − ia†k,λe

−ik·x)êk,λ, (1.4)

where ϵ0 is the permittivity of free space and êk,λ is the unit vector in the direction of the polarization
in the field mode (k, λ).

The electric field E(x) can be written as the sum E(x) = E(+)(x) + E(−)(x). The positive
frequency component E(+)(x) is the part that contains annihilation operators ak,λ. The negative

frequency component E(−)(x) is the part that contains creation operators a†k,λ. E
(+)(x) and E(−)(x)

are hermitian conjugates of each other. We also separate the matter dipole operator d into a excitation
component d(+) that creates an excitation in the matter and a de-excitation component d(−) that
removes an excitation in the matter, so that d = d(+) + d(−) and d(+) = d(−)†. Under the rotating
wave approximation, the total number of excitations is conserved, and the interaction term becomes

Hcoup = −d(+) ·E(+)(x)− d(−) ·E(−)(x). (1.5)

In spectroscopy experiments, the material sample usually consists of a large number of matter
systems (e.g., atoms or molecules) that do not interact with one another. We will hereafter refer to
the matter systems as molecules. In this case, the interaction term is a sum over all molecules, i.e.,

Hcoup =

N∑
j=1

−d
(+)
j ·E(+)(xj)− d

(−)
j ·E(−)(xj), (1.6)

where j indexes the N non-interacting molecules. dj is the dipole operator for the j-th molecule, and
xj is the position of the j-th molecule.

1.2 Expressing the 3-dimensional photon field in terms of 1-
dimensional fields

To decompose the 3-dimensional field operators ak,λ into 1-dimensional field operators, we first re-
write the multi-index (k, λ) as (|k|,Ω, λ), where Ω is the orientation of k. One can further expand Ω
into a polar angle θ and an azimuthal angle ϕ, but we will use Ω for simplicity. The radial parameter
|k| will be proportional to the 1-dimensional index. We will perform a change of basis to represent Ω
and λ with a countably infinite set of basis functions gl(Ω, λ), indexed by l.
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We find a complete and orthonormal set of functions gl(Ω, λ) such that∫
dΩ
∑
λ

g∗l (Ω, λ)gl′(Ω, λ) = δl,l′ (1.7a)

and
∞∑
l=1

g∗l (Ω, λ)gl(Ω
′, λ′) = δ(Ω− Ω′)δλ,λ′ . (1.7b)

The integral over orientation
∫
dΩ can also be expressed as

∫ π

0
dθ
∫ 2π

0
dϕ sin θ. The delta function

δ(Ω− Ω′) can also be expressed as δ(θ − θ′)δ(ϕ− ϕ′)/ sin θ.

Let the frequency ω be equal to c|k|. The 1-dimensional field al(ω) is defined as

al(ω) =

√
ω2

c3

∫
dΩ
∑
λ

gl(Ω, λ)a|k|,Ω,λ. (1.8)

Using Eq. (1.7) and the delta-function identity δ(k− k′) = δ(|k| − |k′|)δ(Ω− Ω′)/|k|2, one can show
that the 1-dimensional field operators al(ω) satisfy the bosonic commutation relations:

[al(ω), al′(ω
′)] = [a†l (ω), a

†
l′(ω

′)] = 0 (1.9a)

and
[al(ω), a

†
l′(ω

′)] = δ(ω − ω′)δl,l′ . (1.9b)

Now, with the use of the completeness relation (i.e., Eq. (1.7)), we can re-write Hfield (Eq. (1.2)
of the main text) in terms of the 1-dimensional fields al(ω) as

Hfield =

∞∑
l=1

∫ ∞

0

dω ℏωa†l (ω)al(ω). (1.10)

To re-write the electric field operator in terms of al(ω), we first re-write the integral
∫
d3k in Eq. (1.4)

of the main text as 1
c

∫
dω
∫
dΩ. Then

E(x = 0) =

∫ ∞

0

dω

√
ℏω3

16π3c3ϵ0

√
ω2

c3

∫
dΩ
∑
λ

ia|k|,Ω,λê|k|,Ω,λ + h.c. (1.11)

The abbreviation h.c. denotes the Hermitian conjugate of the previous term. We suppose there is a
finite number lmax of real-valued mode functions gl(Ω, λ) such that

ê|k|,Ω,λ =

lmax∑
l=1

Clgl(Ω, λ)êl (1.12)

for some constants Cl and unit vectors êl. We will provide two examples of Eq. (1.12) shortly,
corresponding to the polarization mode decomposition and the small solid angle mode decomposition
[52]. Substituting Eq. (1.12) into Eq. (1.11) and using Eq. (1.8), we can now express E(x = 0) in
terms of a finite number of 1-dimensional fields al(ω), i.e.,

E(x = 0) =

lmax∑
l=1

Cl

∫ ∞

0

dω

√
ℏω3

16π3c3ϵ0
ial(ω)êl + h.c. (1.13)
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This is the general form for writing E(x = 0) in terms of 1-dimensional fields al(ω). Depending on
the choice of mode decomposition (i.e., Eqs. (1.7) and (1.12)), Cl and êl will be different. We now
present two examples of Eq. (1.12), where the finitely many gl(Ω, λ) are orthonormal to one another.
From these finite number of orthonormal mode functions, it is then possible, in principle, to construct
countably infinitely many more orthonormal gl(Ω, λ) to form a complete set that satisfies Eq. (1.7b).
We will not construct the complete set of gl(Ω, λ) explicitly, since we are only interested in expressing
the electric field using a finite number of modes.

In the polarization mode decomposition scheme, we decompose the electric field into three 1-
dimensional fields, indexed by l = x, y, and z. The three 1-dimensional fields correspond to the three
spatial components of the electric field. The mode functions are gl(Ω, λ) = ϵ̂l · ϵ̂Ω,λ. The mode unit

vectors are ϵ̂x = x̂, ϵ̂y = ŷ, and ϵ̂z = ẑ. The constants are Cl =
√

3
8π . One can then check directly that

Eq. (1.12) is satisfied and that gx, gy, and gz are indeed orthonormal to one another (i.e., satisfying
Eq. (1.7a)).

In the small solid angle decomposition scheme, we partition all possible orientations Ω into M
number of small solid angle sections, indexed by m. Each small solid angle section can have two
different polarizations, indexed by p (to be distinguished from λ in Eq. (1.12)). The index l in Eq.
(1.12) is now a multi-index (m, p), and lmax = 2M . The mode functions gm,p are

gm,p(Ω, λ) =

{
1√

∆Ωm
, if Ω is in the solid angle section m and λ = p

0 , otherwise.
(1.14)

∆Ωm is the area of the solid angle section m. The mode unit vector ê(m,p) is the unit vector of the
p-th polarization in the m-th small solid angle section. Note that we have assumed that the small
solid angle sections are small enough such that we can define two constant polarization unit vectors
within each small solid angle section. The constants are Cm,p =

√
∆Ωm. One can check that Eq.

(1.12) is satisfied and gm,p are orthonormal.

1.3 Small solid angle decomposition

Here, we focus specifically on the small solid angle decomposition and study the properties of the small
solid angle modes. The small solid angle decomposition provides a natural description for quantum
light spectroscopy experiments that excite, probe, or detect the matter sample in different directions.

As discussed in Sec. 1.2, the 4π solid angle for the orientation of k is partitioned into M small
solid angle sections. Each small solid angle section contains two modes, corresponding to the two
possible polarizations within each small solid angle section (see Fig. (1.1)). Therefore the electric field
operator is described in terms of 2M 1-dimensional fields. Combining Eq. (1.8) and Eq. (1.14), the 1-
dimensional field annihilation operator al(ω) is defined in terms of the 3-dimensional field annihilation
operators as

al(ω) =

√
ω2

c3∆Ωl

∫
Ωl

dΩ a|k|=ω/c,Ω,λ. (1.15)

l indexes the 2M small solid angle modes. We have re-written the 3-dimensional field operator ak,λ as
a|k|,Ω,λ, where |k| is the magnitude of k, and Ω is the orientation of k. In the integrand a|k|,Ω,λ, the
polarization λ is restricted to be the same as the polarization of the mode l, and |k| is restricted to be
equal to ω/c. The integral

∫
Ωl
dΩ means that the orientation integral is performed on the small solid

angle section Ωl subtended by the l-th mode. ∆Ωl is the area of the l-th small solid angle section,
expressed in unit of steradian, or rad2. al(ω) satisfies the standard bosonic commutation relations
(see Eq. (1.9)).
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ê1

<latexit sha1_base64="hXUja9xd4ZrUjkTlE7jSG8MajjA=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiRS0GXRjcsK9gFNCJPpTTt08mBmIoQQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHTziTyrK+jdrG5tb2Tn23sbd/cHhkHp8MZJwKCn0a81iMfCKBswj6iikOo0QACX0OQ39+W/rDRxCSxdGDyhJwQzKNWMAoUVryzKYzIyp3QqJmfpBDUXg29syW1bYWwOvErkgLVeh55pcziWkaQqQoJ1KObStRbk6EYpRD0XBSCQmhczKFsaYRCUG6+SJ8gc+1MsFBLPSLFF6ovzdyEkqZhb6eLFPKVa8U//PGqQqu3ZxFSaogostDQcqxinHZBJ4wAVTxTBNCBdNZMZ0RQajSfTV0Cfbql9fJ4LJtd9qd+06re1PVUUen6AxdIBtdoS66Qz3URxRl6Bm9ojfjyXgx3o2P5WjNqHaa6A+Mzx/KtJTc</latexit>

ê2
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k-space

Figure 1.1: Schematics of the small solid angle decomposition. The 4π solid angle in k-space is
partitioned into M small solid angle sections (colored yellow). Each small solid angle section is a cone
in k-space and contains two spatial modes, corresponding to the two polarizations.

Using the small solid angle decomposition, the electric field operator at position x = 0 is

E(0) =

2M∑
l=1

∫ ∞

0

dω

√
ℏω3∆Ωl

16π3ϵ0c3
(ial(ω)− ia†l (ω))êl, (1.16)

(see Eq. (1.13)), where êl is the unit vector of the polarization in mode l. If the solid angle sections are
small enough, then the small variation of the polarization vectors êk,λ within a solid angle section can
be ignored. Therefore we can define two constant polarization vectors êl for each solid angle section.
Likewise, if the solid angle sections are small enough, we can use one representative wavevector
direction k̂l (the unit vector of kl) in each solid angle section to approximate all wavevector directions

k̂ in that solid angle section. Near the origin x = 0, we approximate the electric field as

E(x) ≈
2M∑
l=1

∫ ∞

0

dω

√
ℏω3∆Ωl

16π3ϵ0c3
(ial(ω)e

iωk̂l·x/c − ia†l (ω)e
−iωk̂l·x/c)êl. (1.17)

Given a fixed frequency ω (or equivalently, a fixed |k|), we denote the difference between a general k

vector (i.e., ω
c k̂) in the l-th solid angle section and the representative k vector (i.e., ω

c k̂l) as ∆k. For
the approximation in Eq. (1.17) to be valid, we require the condition ∆k · x ≪ 1, so that the phase

factor eiωk̂l·x/c is accurate. Let us define the angular width of a solid angle section as ∆θ, such that
|∆k| ∼ ∆θ|k|. We will see that ∆θ corresponds to the beam divergence angle in real space. Now
the condition ∆k · x ≪ 1 for all solid angle sections becomes |x| ≪ 1/(∆θ|k|). This means that Eq.
(1.17) is valid for x is an interaction region on the length scale of 1/(∆θ|k|), centered at x = 0. For
example, if the beam divergence angles in an experiment are on the order of ∆θ ∼ 10−3 rad and if
the wavelengths of the modes are centered at 800 nm (equal to 2π/|k|), then the interaction region
for the sample has a characteristic length of 1/(∆θ|k|) ≈ 100µm.

Whereas the electric field is expressed as a sum of a finite number of 1-dimensional field modes,
the field Hamiltonian is expressed as a sum over an infinite number of 1-dimensional field modes

Hfield =

∞∑
l=1

∫ ∞

0

dω ℏωa†l (ω)al(ω). (1.18)
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(see Sec. 1.2). The first 2M modes are defined explicitly in Eq. (1.15). The remaining infinitely
many modes can be constructed in principle, but we will not define them explicitly. This is because
the remaining infinitely many field modes decouple from the matter system and evolve freely. If one
is only interested in the finite number of 1-dimensional fields that interact with the matter system,
then one can ignore the remaining infinite number of 1-dimensional fields. Practically speaking, for
spectroscopy experiments near the visible regime, the remaining infinitely many fields will be in the
vacuum state, and stay in the vacuum state under free evolution.

1.3.1 Examining the small solid angle modes in real space and time

The small solid angle modes, defined in the k-space, can also be interpreted intuitively in real space
by invoking the narrow-band approximation. This approximation makes use of the fact that, in
spectroscopy experiments near the visible regime, the matter system only interacts significantly with
a narrow band of frequency around some characteristic frequency ω0 of the matter system (i.e.,
ω ∈ (ω0 −∆ω, ω0 + ∆ω), where ∆ω ≪ ω0). To model the effects of a small solid angle mode under
the narrow-band approximation, consider a small region in k-space in the l-th small solid angle mode,
centered around kl = ω0/ck̂l (see Fig. (1.2)). We denote the transverse width of the small region to
be σ⊥, so that σ⊥ ∼ ∆θ|kl|. The angular width ∆θ is related to the small solid angle area ∆Ω by
∆Ω ≈ ∆θ2. The longitudinal width of the region is denoted as σ∥, and it is related to the frequency
bandwidth by σ∥ = ∆ω/c. Note that σ⊥ and σ∥ have dimensions of 1/[length], since they are defined
as magnitudes in the k-space.

To understand the behavior of the photon field due to this small region in k-space, let us construct
a function f(k), whose value is nonzero and slowly-varying when k is in the small region, and we let
f(k) drop to 0 quickly away from the small region. In real space and time, the evolution of f(k) is
given by

f̃(x, t) =

∫
d3k f(k)eik·xe−ic|k|t. (1.19)

We show in Appendix A that f̃(x, t) resembles a Gaussian paraxial mode in real space and time.
As illustrated in Fig. (1.2), at time t = 0, the field amplitude is centered at x = 0, and has a cross
sectional area on the order of 1/σ2

⊥. As t→ ∞, the field amplitude spreads out into a cone with a solid
angle area of ∆Ω, same as the solid angle area in the k-space. The paraxial pulse has a longitudinal
width of ∼ 1/σ∥.

In real space, different spatial modes overlap in a region with a characteristic length scale 1/σ⊥ near
the origin (see right side of Fig. (1.2)). This defines an interaction region where multiple spatial modes
can interact with the matter sample in a quantum light spectroscopy experiment. The characteristic
length scale 1/σ⊥ ∼ 1/(∆θ|kl|) is consistent with our previous discussion in the k-space.

1.4 The interaction picture Hamiltonian

Consider a molecule located at position x. Using the electric field expression in Eq. (1.17), the dipole
– electric field coupling Hamiltonian in Eq. (1.5) becomes

Hcoup =

2M∑
l=1

∫ ∞

−∞

dω√
2π

− ial(ω)L
†
l e

iωk̂l·x/c + ia†l (ω)Lle
−iωk̂l·x/c. (1.20)

We have combined the prefactor in the electric field with the dipole operator d into a scaled dipole
operator Ll, defined by

Ll =

√
ℏω3

0∆Ωl

8π2ϵ0c3
d− · êl. (1.21)
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k-space real space + time

𝑓(𝒌) 𝑓%(𝒙, 𝑡)

𝜎!

𝜎∥
ΔΩ ≈ Δ𝜃!

1/𝜎!

ΔΩ

𝒌!

1/𝜎∥

Figure 1.2: Three small solid angle modes, colored black, red, and blue, are represented in the k-space
and in the real space, under the narrow-band approximation. Under the narrow-band approximation,
the mode function f(k) of a small solid angle mode is concentrated in a small region, whose transversal
width is σ⊥ and longitudinal width is σ∥. The transversal width σ⊥ is related to the angular width

∆θ by σ⊥ ∼ |kl|∆θ. In real space, the small solid angle mode f̃(x, t) resembles a paraxial mode. At
t = 0, the waist has a transversal area on the order of 1/σ2

⊥. As t → ∞, the mode subtends a solid
angle area of ∆Ω asymptotically. The paraxial pulse has a longitudinal width of 1/σ∥. The green
cube is in the overlapping region of different spatial modes, and it represents an interaction region
where multiple spatial modes can interact with the matter sample in a quantum light spectroscopy
experiment. The interaction region has a characteristic length of 1/σ⊥ ∼ 1/(∆θ|kl|).
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Note that Ll has a physical dimension of [1/
√
time]. In Eq. (1.20), we have used the narrow-band

approximation (also known as the white noise approximation) to replace the variable ω in the prefactor
in Eq. (1.17) with a fixed characteristic frequency ω0. Under the narrow-band approximation, the
integration range (0,∞) in Eq. (1.17) is extended to (−∞,∞) in Eq. (1.20), since only the photons
in the narrow frequency window (ω0 − ∆ω, ω0 + ∆ω) affect the overall dynamics significantly. The
factor of 1/

√
2π in Eq. (1.20) is separated out for later convenience, as we will see below. Eq. (1.20)

is generalized to the case of many molecules by summing over all molecules, i.e.,

Hcoup =

2M∑
l=1

N∑
j=1

∫ ∞

−∞

dω√
2π

− ial(ω)L
†
l,je

iωk̂l·xj/c + ia†l (ω)Ll,je
−iωk̂l·xj/c, (1.22)

where Ll,j is the scaled dipole operator that couples the j-th molecule to the l-th spatial mode, and
xj is the position of the j-th molecule.

Now, we transform into an interaction picture by writing the total Hamiltonian as

Hsys+field = H0 +Hcoup, (1.23)

where
H0 = Hsys +Hfield. (1.24)

A general Schrodinger picture operator A transforms into A(t) = eiH0(t−t0)Ae−iH0(t−t0) in the inter-
action picture (setting ℏ = 1 from now on). In the expression for A(t), t0 is the initial time with
respect to which we define the interaction picture, and t0 will be set to 0 from now on. In particular,
the interaction picture Hamiltonian is

H(t) = eiH0tHcoupe
−iH0t. (1.25)

For notational simplicity, we have dropped the subscript “coup” and simply denote the interaction
picture Hamiltonian as H(t), since this is the main Hamiltonian we will work with. We define the
interaction picture time evolution operator U(t) as the solution of the interaction picture Schrodinger
equation (in operator form)

dU(t)/dt = −iH(t)U(t) (1.26)

with the initial condition U(0) = 1. The interaction picture time evolution operator U(t) is then
related to the Schrodinger picture time evolution operator e−iHsys+field by

e−iHsys+fieldt = e−iH0tU(t). (1.27)

One can check that Eq. (1.27) is indeed correct by taking the time derivative on both sides. Using Eq.
(1.27), one can show that a Heisenberg picture operator AH(t) = eiHsys+fieldtAe−iHsys+fieldt is related
to the interaction picture operator A(t) by

AH(t) = U†(t)A(t)U(t). (1.28)

To obtain an explicit expression for the interaction picture Hamiltonian H(t) (Eq. (1.25)), we note

that the Schrodinger picture operator al(ω)e
iωk̂l·x/c in Eq. (1.20) becomes

eiH0tal(ω)e
iωk̂l·x/ce−iH0t = al(ω)e

−iω(t−k̂l·x/c) (1.29)

in the interaction picture. If we define the retarded time in the paraxial mode l as

sl(t,x) = t− k̂l · x
c

, (1.30)
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then we can re-write the operator in Eq. (1.29) as al(ω)e
−iωsl . As time t advances, the plane

corresponding to a fixed retarded time s (e.g., s = 2 in Fig. (1.3)) moves at the speed of light in the

direction of k̂l.

We now define the retarded time – dependent field operators (or sometimes known as the time-
dependent field operators)

al(s) =

∫ ∞

−∞

dω√
2π

al(ω)e
−iωs (1.31)

as the Fourier transform of the frequency-dependent field operators. An important consequence
of the definition of al(s) is that they satisfy the bosonic commutation relations: [al(s), al′(s

′)] =

[a†l (s), a
†
l′(s

′)] = 0 and [al(s), a
†
l′(s

′)] = δ(s − s′)δl,l′ . Since al(ω) has a physical dimension of

[1/
√
frequency] (see Eq. (1.8)), by Eq. (1.31), al(s) has a physical dimension of [1/

√
time]. The

single-molecule Hcoup in the interaction picture now becomes

H(t) =

2M∑
l=1

−ial(sl)L†
l (t) + ia†l (sl)Ll(t). (1.32)

Ll(t) is the scaled dipole operator Ll (see Eq. (1.21)) in the interaction picture and it is equal
to eiHsystLle

−iHsyst. We have also suppressed the dependence on t and x in sl(t,x) for notation
simplicity, since the value of t is clear from the context and we are only considering one molecule
located at position x. For the case of N molecules, H(t) becomes

H(t) =

2M∑
l=1

N∑
j=1

−ial
(
sl(t,xj)

)
L†
l,j(t) + ia†l

(
sl(t,xj)

)
Ll,j(t). (1.33)

1.5 Photon field observables

In spectroscopy experiments, the signals are measured in the photon field, and the signal observables
can be written in terms of the field creation and annihilation operators, a†l (s) and al(s). For example,

the photon flux a†l (s)al(s) represents the rate of photons passing through a cross-sectional area in the
l-th spatial mode (see Fig. (1.3)). The rate is measured at a position and time that correspond to the
retarded time s. The photon flux has a physical dimension of [1/time]. The frequency-dispersed photon
count a†(ω)a(ω) represents the density of photons in frequency space, and has a physical dimension
of [1/frequency]. Another common observable is the rate of coincidence detection of two photons, one
in channel l1 at retarded time s1 and one in channel l2 at retarded time s2. This is described by the
operator a†l1(s1)a

†
l2
(s2)al2(s2)al1(s1), having a physical dimension of [1/time2]. These operators can

also be convolved with detector response functions to account for the finite time-frequency resolution
of photon detectors [30,87].
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Figure 1.3: Graphical illustration of the input-output relation. The three snapshots at different times
(t = 0, 2, 3) show the relationship between the retarded time of a traveling field and the retarded time
of molecules fixed in position. For simplicity, we set c = 1 in this figure. Under the narrow-band
approximation, we can define photon field creation and annihilation operators that are localized in
retarded time s = t − k̂l · x. For example, the field al(s = 2) is represented by the blue transversal

plane across a paraxial spatial mode. It travels at the speed of light in the direction of k̂l. Two
molecules are located at fixed positions k̂l · x = −1 and 0. As time progresses, the retarded time at
the positions of the molecules increases. When the retarded time of a field is larger than the retarded
time of the position of a molecule, the field is called the input field because it has not interacted with
the molecule. When the retarded time of a field is smaller than the retarded time of the position
of a molecule, the field is called the output field because the field has finished interacting with the
molecule.
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Chapter 2

The input-output relation

2.1 Deriving the input-output relation

The input-output formalism describes 1-dimensional fields interacting with quantum systems. Eq.
(1.20) represents a basic form of Hamiltonian used in the input-output formalism. Traditionally, the
input-output relation is derived by converting between the frequency domain and the time domain,
and it is usually described in the language of quantum stochastic differential equations [50,51,88,89].
Here we briefly review the input-output relation. We derive the input-output relation by working
only in the (retarded-)time domain and using the language of the more familiar ordinary differential
equations.

The input-output relation is in the Heisenberg picture, and it concerns the time-evolution of the
retarded time – dependent field operator al(s). By a similar logic to Eq. (1.28), we define the
time-evolved retarded time – dependent field operator al(s, t) as

al(s, t) = U†(t)al(s)U(t). (2.1)

Here the retarded time s contains both time and position variables implicitly. For this expression to
be physically meaningful, the implicit time variable in s needs to be equal to t, hence constraining
the position x of the photon field al(s, t) to be on the plane of

k̂l · x
c

= t− s (2.2)

(see Eq. (1.30)). Therefore al(s, t) can be thought of as the photon field on the cross section plane

k̂l · x/c = t− s at time t (see Fig. 1.3).

To obtain an explicit expression for al(s, t), we use the many-molecule Hamiltonian of Eq. (1.33)
and the Schrodinger equation (Eq. (1.26)) to take the partial derivative of al(s, t) with respect to t
(keeping s constant). The partial derivative is evaluated as

∂

∂t
al(s, t) = −iU†(t)

[
al(s), H(t)

]
U(t)

=

N∑
j=1

δ
(
s− sl(t,xj)

)
LHl,j(t),

(2.3)
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where LHl,j(t) = U†(t)Ll,j(t)U(t) is in the Heisenberg picture (see Eq. (1.28)). Due to the delta

function, al(s, t) changes value only at time t = s + k̂l · xj/c for some molecule j. Using Eq. (2.2)
to express the retarded time s in terms of time t and real space position x of the photon field, the
condition for nonzero delta function becomes k̂l · x = k̂l · xj , for some molecule j. This means that
the field al(s, t) changes value (with respect to time propagation) when a molecule is located at the
plane of the propagating photon field al(s, t).

We shall only consider the field al(s, t) with retarded time s > −k̂l · xj/c for all molecules, so

that at initial time t = 0, the plane of the photon field, k̂l · x/c = −s, is smaller than k̂l · xj/c
for all j (i.e., the photon field al(s, t = 0) is upstream of all molecules in the sample). Physically,
in spectroscopy experiments, the input light is produced at some distance upstream of the matter
sample. As t increases, the plane of the photon field propagates forward in the k̂l direction. For small
enough t such that the plane of the photon field has not interacted with any molecule (corresponding
to the condition s > sl(t,xj) for all j), the right hand side of Eq. (2.3) remains 0. Therefore in this
case, al(s, t) is equal to al(s), which is independent of t as long as s > sl(t,xj) for all j (see top panel
of Fig. (1.3)). We call this the input field

input field = al(s). (2.4)

For large enough t such that the plane of the photon field a(s) has propagated past all molecules
(corresponding to the condition s < sl(t,xj) for all j), the right hand side of Eq. (2.3) will remain 0 for
all time afterwards, and al(s, t) is again independent of t. We call al(s, t) in this case the output field,
denoted as al,out(s). This corresponds to the physical situation where the photon field is detected at
some distance downstream of the matter system. By integrating over the delta function in Eq. (2.3),
we see that al,out(s) is equal to

output field = al,out(s) = al(s) +

N∑
j=1

LHl,j(s+
k̂l · xj

c
). (2.5)

Eq. (2.5) is the input-output relation in the case of N molecules, for the spatial mode l. In the case
of a single molecule located at position x = 0, the input-output relation simplifies to

al,out(s) = al(s) + LHl(s). (2.6)

In classical nonlinear spectroscopy, the output signal’s electric field is treated as the sum of the
input electric field plus the electric field generated by the matter dipole moment [46]. The input-
output relation can be thought of as a quantum mechanical version of this statement. It states that
the output field is equal to the input field plus the scaled dipole operators LHl,j in the Heisenberg

picture. The scaled dipole operator LHl,j is evaluated at time t = s+ k̂l ·xj/c, which is the time when
the propagating plane of the photon field al(s) reaches the j-th molecule. Given the Hamiltonian
of Eq. (1.33), the input-output relation of Eq. (2.5) is an exact result and it holds for arbitrary
light-matter interaction strength (i.e., it is non-perturbative).

In Appendix B, we derive the input-output relation in the classical setting, using Maxwell’s equa-
tions. In the classical case, the input-output relation is an equation of complex numbers, not operators.
As a consequence, the classical input-output relation cannot properly treat non-classical field states
or the entanglement between field and matter.
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2.2 Examples of analyzing the optical signal using the input-
output relation (non-perturbative)

To see how the input-output relation is used in practice, let us consider some examples of output photon
field observables in typical quantum light spectroscopy setups. In this section, we shall consider only
the case of a single molecule located at x = 0 for simplicity, and the input-output relation is given by
Eq. (2.6). To consider the case of having many molecules, one simply sum over all molecules using
Eq. (2.5). We note again that the input-output relation is valid for arbitrary matter-field coupling
strength. In section 3, we shall restrict our attention to the regime of weak light-matter coupling,
as this is the case for most molecular spectroscopy experiments, and then expand the input-output
relation perturbatively.

2.2.1 Photon flux

One of the most common type of photon field observable is the photon flux [67]. In classical spec-
troscopy experiments, the detection of the signal usually takes the form of intensity measurements,
and intensity (energy per time in the detection area) is proportion to the photon flux (photon num-

ber per time in the detection area). The photon flux signal is defined as ⟨a†l,out(s)al,out(s)⟩, where
the expectation value ⟨· · · ⟩ is evaluated with respect to the initial state of the matter and the field.
We assume the initial state can be factorized into a product of the matter state and the field state.
However, the field state may not be factorizable as a product of states in different spatial modes if
the input photons are classically correlated or quantum mechanically entangled.

Using the input-output relation (Eq. (2.5)), the output photon flux signal in the l-th mode becomes

⟨a†l,out(s)al,out(s)⟩ = ⟨a†l (s)al(s)⟩+ ⟨a†l (s)LHl(s)⟩+ ⟨L†
Hl(s)al(s)⟩+ ⟨L†

Hl(s)LHl(s)⟩. (2.7)

The first term on the right hand side represents the photon flux of the input light. It is an expectation
value of a purely field operator. Since the initial state is a product state between the matter and
the field, the first term becomes an expectation value with respect to just the initial field state. The
second and the third terms contain the interference between the input light and the field generated by
the matter dipole moment, and they are complex conjugates of each other. These two terms together
represent absorption and stimulated emission. The time evolution of the scaled dipole operator LHl(s)
is due to not only the interaction with the input light in spatial mode l, but it can also be due to the
interaction with the input light in modes other than l. For example, in a pump-probe experiment,
the output field is measured in the probe field mode (mode l), but the matter interacts with both
the pump field mode (mode l′) and the probe field mode (mode l). Note that the Heisenberg-evolved
operator LHl(s) is not purely in the matter degrees of freedom, since the interaction with light mixes

the matter and field degrees of freedom. Therefore the expectation value ⟨a†l (s)LHl(s)⟩ cannot be

factorized as ⟨a†l (s)⟩⟨LHl(s)⟩. This is an important difference to classical light spectroscopy. In
classical spectroscopy, the field operator al(s) is treated as a complex number instead of an operator,
so, for example, the second term factorizes as a∗l (s)⟨LHl(s)⟩. Furthermore, in classical spectroscopy,
LHl(s) is purely in the matter degrees of freedom. The last term on the right hand side of Eq. (2.7)
represent the spontaneous emission, since it contains no direct contribution from the input field.

For arbitrary light-matter coupling strength, the method to calculate the terms in Eq. (2.7)
depends on the specific state of the input light, and in general needs to be considered in a case-by-case
basis. To gain insights into the evaluation of these terms, we consider below three different input field
states: vacuum state, Fock state, and coherent state.
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Figure 2.1: Three common quantum light spectroscopy experimental schemes. (a) Measuring the
property of the fluorescent light. The matter system interacts with spatial mode l′, and the signal is
detect in a different spatial mode l. The input of mode l′ can be any state of light. The input of the
detection mode l is the vacuum state. The analysis can be generalized to consider the matter system
interacting with more than one non-detection spatial modes. (b) Measuring the transmitted light.
Similar to (a), but the input field state of the detection spatial mode l is not a vacuum state. (c)
Hong-Ou-Mandel (HOM) scheme. The input field is typically a photon pair with one photon in mode
1 and another in mode 2. The photon in mode 1 interact with a matter system, while the photon in
mode 2 is delayed. The two photons interfere with each other in a beamsplitter (BS). The coincidence
count probability between modes 3 and 4 is measured as a function of the time delay, which provides
information about the matter system.
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Vacuum input

If the spatial mode l is initially in the vacuum state and the matter system is excited by photons in
other spatial modes (see Fig. (2.1a)), then the photon flux in the l-th spatial mode corresponds to
the fluorescence intensity as a function of time. Evaluating the expectation values with respect to the
vacuum state, the first three terms in Eq. (2.7) are equal to zero. Only the last term (i.e. spontaneous

emission) contributes to the output photon flux. To evaluate the expectation value ⟨L†
Hl(s)LHl(s)⟩,

one can transform from the Heisenberg picture back into the Schrodinger picture, i.e.,

⟨L†
Hl(s)LHl(s)⟩ = Tr(L†

lLlρtot(s))

= Trsys(L
†
lLlρsys(s)),

(2.8)

where ρsys = Trfield(ρtot) is the reduced density matrix for the system. On the right hand side of

the first equality, the Schrodinger picture operator L†
lLl only acts on the system degrees of freedom.

Therefore in the second equality, we can trace out the field degrees of freedom from ρsys+field. Note that
the photon flux expectation value is now re-expressed as an expectation value in the system degrees
of freedom. For an arbitrary initial field state, there is no general method to evaluate ρsys(t) in the
non-perturbative regime, but there are different master equations to treat the effects of different input
states [47,50,65]. In the case that the matter system reaches a steady state due to a stationary input
from a spatial mode other than l, then the photon flux expectation value is obtained by substituting
the system steady state ρsteady into Eq. (2.8). In Appendix C, we show that Eq. (2.8) is consistent
with the the spontaneous emission rate given by Fermi’s golden rule in a simple example.

m-photon Fock state input

Fig. (2.1b) illustrates the situation when the input field state in mode l is not a vacuum state. As an
example, we consider an m-photon Fock state as the input in the l-th mode. An m-photon Fock state
is defined as

|mξ⟩l =
1√
m!

(∫
ds ξ(s)a†l (s)

)m
|vac⟩, (2.9)

where ξ(s) is the temporal profile of the pulse, and |vac⟩ means the vacuum state. ξ is normalized
such that

∫
ds |ξ(s)|2 = 1. The last term in Eq. (2.7) is evaluated in a similar way as in Eq. (2.8).

The first term in Eq. (2.7) is evaluated with respect to the initial field state of Eq. (2.9), and it is
equal to m|ξ(s)|2. The second and the third term in Eq. (2.7) require a more careful treatment. To do
so, we first write the combined initial state as ρtot(0) = ρsys(0)⊗ρfield,̸=l⊗|mξ⟩l⟨mξ|, where ρfield,̸=l is
the field state of all modes other than l. Then the second term (similarly for the third term) becomes

⟨a†l (s)LHl(s)⟩ = Tr
(
LHl(s)

(
ρsys(0)⊗ ρfield,̸=l ⊗ |mξ⟩l⟨mξ|

)
a†l (s)

)
=

√
mξ∗(s)Tr

(
U†(s)LlU(s)

(
ρsys(0)⊗ ρfield,̸=l ⊗ |mξ⟩l⟨(m− 1)ξ|

))
=

√
mξ∗(s)Tr

(
LlG(s)

(
ρsys(0)⊗ ρfield,̸=l ⊗ |mξ⟩l⟨(m− 1)ξ|

))
=

√
mξ∗(s)Trsys

(
Llρm,m−1(s)

)
.

(2.10)

In the first equality, we have used the invariance of trace under cyclic permutation. In the second
equality, we have used the photon annihilation property al(s)|mξ⟩l =

√
mξ(s)|(m − 1)ξ⟩l and that

LHl(s) = U†(s)Ll(s)U(s). In the third equality, we define the time evolution superoperator G(s),
whose action on an operator X is given by G(s)X = U(s)XU†(s). In the final equality, we define
the auxiliary system density matrix ρm,n(s) as Trfield(G(s)(ρsys(0) ⊗ ρfield,̸=l ⊗ |mξ⟩l⟨nξ|)), i.e., the
reduced system density matrix for the time-evolved non-physical state ρsys(0) ⊗ ρfield,̸=l ⊗ |mξ⟩l⟨nξ|.
Note that by definition, the physical reduced system state ρsys(t) = Trfieldρtot(t) is ρm,m(t). For
arbitrary ρfield,̸=l, there is no general method to evaluate Eq. (2.10) in the non-perturbative regime.
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In the simplest case, we take ρfield,̸=l to be the vacuum state. Then the equations of motion of
the auxiliary density matrices ρm,n are described by the hierarchy of Fock state master equations
(see [47, 52] or Sec. 5.3). We note that this method of calculating the photon flux was first derived
in [47] using the mathematics of quantum stochastic differentials, and we have re-formulated the
derivation in terms of ordinary calculus in [52].

Coherent state input

A coherent state with a coherent amplitude α(s) in mode l is defined as

|α⟩l = exp
( ∫

dsα(s)a†l (s)− α∗(s)al(s)
)
|vac⟩, (2.11)

and it has the property al(s)|α⟩ = α(s)|α⟩. If this is used as the input in spatial mode l, then Eq.
(2.7) becomes

⟨a†l,out(s)al,out(s)⟩ = |α(s)|2 + α∗(s)⟨LHl(s)⟩+ α(s)⟨L†
Hl(s)⟩+ ⟨L†

Hl(s)LHl(s)⟩, (2.12)

where the al(s) and a†l (s) in Eq. (2.7) are replaced with α(s) and α∗(s). The expectation values

⟨LHl(s)⟩, ⟨L†
Hl(s)⟩, and ⟨L†

Hl(s)LHl(s)⟩ in Eq. (2.12) are evaluated in a similar way as in Eq. (2.8).

The system density matrix in the Schrodinger picture ρsys(t) is needed to evaluate the expectation
values, but again, there is no general method to evaluate ρsys(t) for an arbitrary initial field state
ρfield,̸=l in modes other than l. If ρfield,̸=l is the vacuum state, then ρsys can be obtained by solving
the coherent state master equation [52,65,86]

dρsys
dt

= [−iHsys − α(t)L†
l + α∗(t)Ll, ρsys] +

∑
l

(
LlρsysLl −

1

2
L†
lLlρsys −

1

2
ρsysL

†
lLl

)
. (2.13)

2.2.2 Intra-mode second order photon coherence function

The second order photon coherence function g(2) has been increasingly recognized as a useful ob-
servable that can reveal information about the matter system, especially when its value lies in the
non-classical regime [3, 16, 39, 40, 57, 58]. We consider the intra-mode correlation in this section, and
discuss an example of the inter-mode correlation in Sec. 2.2.3.

The intra-mode, un-normalized, second-order photon coherence function of mode l output is defined
as

G
(2)
l,l (s1, s2) = ⟨a†l,out(s1)a

†
l,out(s2)al,out(s2)al,out(s1)⟩, (2.14)

where we impose the time-ordering s2 > s1 [40]. Physically, G(2)(s1, s2)dt
2 is the joint probability

of observing a photon at (s1, s1 + dt) and observing another photon at (s2, s2 + dt), where dt is the

infinitesimal time increment. The normalized second order coherence function, g
(2)
l,l (s1, s2), is related

to G
(2)
l,l (s1, s2) by g

(2)
l,l (s1, s2) = G

(2)
l,l (s1, s2)/(⟨a

†
l (s1)al(s1)⟩⟨a

†
l (s2)al(s2)⟩), where we have dropped the

subscript “out” for generality. Using the input-output relation (Eq. (2.6)), Eq. (2.14) becomes

G
(2)
l,l (s1, s2) =

〈(
a†l (s1) + L†

Hl(s1)
)(
a†l (s2) + L†

Hl(s2)
)

(
al(s2) + LHl(s2)

)(
al(s1) + LHl(s1)

)〉
.

(2.15)

For arbitrary light-matter coupling strength, this expression needs to be evaluated in a case-by-case
basis, depending on the state of the input light.
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If the input state in mode l is the vacuum state (see Fig. (2.1a)), then this situation corresponds to

measuring the photon correlation G
(2)
l,l of the fluorescent light. It has been shown that the fluorescence

g(2) of a molecular aggregate can be used as an indicator for the quantum coherence between individual
chromophores [39, 40]. When the expectation value in Eq. (2.15) is evaluated with respect to the

vacuum state in mode l, terms involving al(s) or a†l (s) in Eq. (2.15) will be zero, so G
(2)
l,l (s1, s2)

reduces to

G
(2)
l,l (s1, s2) =

〈
L†
Hl(s1)L

†
Hl(s2)LHl(s2)LHl(s1)

〉
= Tr

(
L†
Hl(s2)LHl(s2)LHl(s1)ρtot(0)L

†
Hl(s1)

)
= Tr

(
L†
lLlG(s2 − s1)

(
Ll ρtot(s1)L

†
l

))
.

(2.16)

We note that the trace is performed in the matter and field degrees of freedom, which include photon
mode l that initializes in the vacuum state and all other photon modes that excite the matter system.
To obtain the third line from the second line, one expands the Heisenberg picture operators AH(s) as
eiHsys+fieldtAe−iHsys+fieldt and use the invariance of trace under cyclic permutation. The final line in Eq.
(2.16) has an intuitive physical interpretation. As a photon is observed at time s1, the combined state

ρtot(s1) undergoes a de-excitation jump to the (un-normalized) state Llρtot(s1)L
†
l . After evolving this

state from s1 to s2 (described by G(s2 − s1)), another photon is observed, corresponding to another
de-excitation jump. The joint probability of observing two photons is obtained by taking the trace at
the end.

The fluorescent G
(2)
l,l (s1, s2) in Eq. (2.16) can be further simplified if the matter system is driven

by a stationary photon source in mode l′ (i.e., a mode other than l), and if the combined system+field

state reaches a steady state. Now, G
(2)
l,l (s1, s2) only depends on the time difference s = s2 − s1, so we

write the second order coherence function as G
(2)
l,l (s). The total state ρtot(s1) is replaced with ρsteady,

the steady state in the combined system+field degrees of freedom. Eq. (2.16) now becomes

G
(2)
l,l (s) = Tr

(
L†
lLlG(s)

(
Ll ρsteadyL

†
l

))
. (2.17)

From this equation, we see that the time-dependence of G
(2)
l,l (s) contains information about the tran-

sient time evolution of the perturbed steady state LlρsteadyL
†
l .

2.2.3 Hong-Ou-Mandel (HOM) interference

As an example of the inter-mode second order coherence function, we consider the Hong-Ou-Mandel
(HOM) interferometry scheme in Fig. (2.1c). A photon pair with one photon in spatial mode 1 and
the other photon in spatial mode 2 is used as the input. The photon pair state

|Ψ⟩ =
∫
ds1ds2 f(s1, s2)a

†
1(s1)a

†
2(s2)|vac⟩ (2.18)

is specified by the biphoton wavefunction f(s1, s2). Normalization of |Ψ⟩ requires that f(s1, s2) be
normalized as

∫
ds1 ds2|f(s1, s2)|2 = 1. In the HOM scheme, one photon (photon in mode 1 in Fig.

(2.1c)) in the photon pair interacts with a matter system, while the other photon (photon in mode
2 in Fig. (2.1c)) propagates freely with a time delay τ . The relative time delay τ between the two
photons is varied in the HOM experiment. The output photons in modes 1 and 2 pass through a 50:50
beamsplitter and transform into photons in modes 3 and 4. The beamsplitter transformation is given
by (

a3(s)
a4(s)

)
=

1√
2

(
1 i
i 1

)(
a1,out(s)
a2,out(s)

)
. (2.19)
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Given a pair of input photon, the probability P34(τ) of observing a coincidence count in modes 3 and
4 are measured as a function of the time delay τ .

The coincidence probability is given by the expectation value

P34(τ) =

∫
ds ds′

〈
a†3(s)a

†
4(s

′)a4(s
′)a3(s)

〉
. (2.20)

Using the beamsplitter transformation (Eq. (2.19)) and using the fact that mode 1 and mode 2 each
contains at most one photon, P34(τ) becomes

P34(τ) =
1

4

∫
ds ds′

〈(
a†1,out(s)a

†
2,out(s

′)− a†1,out(s
′)a†2,out(s)

)
(
a2,out(s

′)a1,out(s)− a2,out(s)a1,out(s
′)
)〉

=
1

2

∫
ds ds′

〈
a†1,out(s)a

†
2,out(s

′)a2,out(s
′)a1,out(s)

〉
−
〈
a†1,out(s)a

†
2,out(s

′)a2,out(s)a1,out(s
′)
〉
.

(2.21)

Since the output a2,out(s) has a time delay τ relative to the input a2(s), it is related to the input field
by a2,out(s) = a2(s + τ). Combining this with the input-output relation for mode 1 (i.e., a1,out(s) =
a1(s) + LH1(s)), we have

P34(τ) =
1

2

∫
ds ds′

〈(
a†1(s) + L†

H1(s)
)
a†2(s

′ + τ)a2(s
′ + τ)

(
a1(s) + LH1(s)

)〉
−
〈(
a†1(s) + L†

H1(s)
)
a†2(s

′ + τ)a2(s+ τ)
(
a1(s

′) + LH1(s
′)
)〉
.

(2.22)

In the absence of light-matter coupling, LH1 is equal to 0. Then evaluating Eq. (2.22) using the
photon pair state of Eq. (2.18), we see that

P34(τ) =
1

2

∫
ds ds′f∗(s, s′ + τ)f(s, s′ + τ)− f∗(s, s′ + τ)f(s′, s+ τ)

=
1

2

(
1−

∫
ds ds′f∗(s, s′)f(s′ − τ, s+ τ)

)
.

(2.23)

If the biphoton wavefunction is symmetric (i.e., f(s1, s2) = f(s2, s1)), then P34(0) is zero and P34(τ)
is a symmetric function of τ . To see that the integral in the last line is symmetric in τ , one can
switch the time arguments in f(s1, s2) (i.e., f(s1, s2) → f(s2, s1)), and then switch the variable names
(s, s′) → (s′, s). If there is coupling between the photon in mode 1 and the matter system, P34(0) will
no longer be 0, and P34(τ) will no longer be symmetric. These deviations will then provide information
about the matter system [16].
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Chapter 3

Perturbative expansion of the
output optical signal

Typical molecular spectroscopy experiments operate in the weak coupling perturbative regime, mean-
ing that the energy scale of the light-matter interaction strength is small compared to other energy
scales relevant to the dynamics. The perturbative approach for quantum light spectroscopy provides
a unified method to treat arbitrary photon input states under the weak coupling regime. To analyze
the output optical signal perturbatively, we perform a perturbative expansion on the input-output
relation by expanding the Heisenberg picture operator LHl(s) in terms of purely system and purely
field operators.

The conventional perturbative approach for quantum light spectroscopy works in the interaction
picture, where the system+field state ρtot(t) is expanded perturbatively, and then the expectation
values are evaluated with respect to the time-evolved system+field state [30,31]. One can alternatively
view the conventional perturbing-the-state approach in the interaction picture as a perturbing-the-
observable approach in the Heisenberg picture, a view that is more closely related to our input-output
approach. In this section, we will review these two perspectives of the conventional perturbative
approach, and then present our input-output approach that perturbs the input-output relation in the
Heisenberg picture. The input-output formulation is more natural and intuitive for analyzing the
optical signal. It has led us to discover an equivalence between a class of quantum light spectroscopy
experiments using entangled biphotons and a class of classical spectroscopy experiments [60]. We will
see that the input-output approach also avoids an issue regarding a tricky integration bound in the
conventional approach, which has not been addressed in the literature.

3.1 Perturbative expansion of Heisenberg-evolved operators

As a preliminary to the following discussion, we show how to perturbatively expand a Heisenberg
picture operator in terms of interaction picture operators. We will present the perturbative expansion
in the context of light matter interaction Hamiltonian, but in fact the perturbative expansion of
Heisenberg picture operators in terms of interaction picture operators works for any Hamiltonian.

We showed in Eq. (1.28) that a general operator A(t) in the interaction picture is transformed
into the corresponding operator AH(t) in the Heisenberg picture by AH(t) = U†(t)A(t)U(t), where
U(t) is the interaction picture time evolution operator, defined in Eq. (1.26). To express AH(t) as
a perturbative series, we show in Appendix D that a time-ordered expansion of AH(t) from A(t)
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produces the result

AH(t) =A(t)− i

∫ t

0

dt1 [A(t), HH(t1)]

+ (−i)2
∫ t

0

dt2

∫ t2

0

dt1 [[A(t), HH(t1)], HH(t2)]

+ (−i)3
∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 [[[A(t), HH(t1)], HH(t2)], HH(t3)] + · · · .

(3.1)

The commutators with the Hamiltonian are applied in a time-ordered manner, where the Hamiltonians
with smaller time arguments are applied first. While this expansion is correct, the Hamiltonians in
the expansion are in the Heisenberg picture, not in the interaction picture. In the context of quantum
light spectroscopy, the Heisenberg-evolved HH(t) is a complicated object that mixes the matter and
the field degrees of freedom. Therefore this is not a useful expansion for analyzing the optical signal.
We note that a different time-ordered expansion of a Heisenberg-evolved operator AH(t) from AH(0)
has been derived in Appendix 5B of Ref. [46] using the Liouville space representation, in the context
of classical spectroscopy.

In Appendix D, we also show that one can perform the expansion in an anti-time-ordered manner
as

AH(t) = A(t)− i

∫ t

0

dt1 [A(t), H(t1)]

+ (−i)2
∫ t

0

dt2

∫ t2

0

dt1 [[A(t), H(t2)], H(t1)]

+ (−i)3
∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 [[[A(t), H(t3)], H(t2)], H(t1)] + · · · ,

(3.2)

Now, the Hamiltonians with larger time arguments are applied first, and the Hamiltonians are in the
interaction picture. In the context of quantum light spectroscopy, H(t) (see Eqs. (1.32) and (1.33))
is expressed neatly in terms of purely system and purely field operators, allowing one to decompose
the expectation value of AH(t) into expectation values in purely matter degrees of freedom and
expectation values in purely field degrees of freedom. This is the expansion that we will use below in
the input-output formulation of quantum light spectrosocpy.

3.2 Conventional perturbative approach

3.2.1 Perturbing the state in the interaction picture

In the conventional perturbative approach, one perturbs the combined system+field density matrix
ρtot(t) in the interaction picture. The perturbative series is written as

ρtot(t) =ρ(0)− i

∫ t

0

dt1 [H(t1), ρtot(0)]

+ (−i)2
∫ t

0

dt2

∫ t2

0

dt1 [H(t2), [H(t1), ρtot(0)]]

+ (−i)3
∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 [H(t3), [H(t2), [H(t1), ρtot(0)]]] + · · · .

(3.3)

As discussed in Sec. 1.5, the photon field observables can be expressed in the interaction picture, and
they are usually a function of retarded times s. The expectation value of a photon field observable
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A(s) is given by Tr(A(s)ρtot(t)). Substituting Eq. (3.3) into this expectation value, we obtain the
perturbative expansion of the optical signal

⟨A(s)⟩ =Tr
(
A(s)ρtot(0)

)
− i

∫ t

0

dt1 Tr
(
A(s)[H(t1), ρtot(0)]

)
+ (−i)2

∫ t

0

dt2

∫ t2

0

dt1 Tr
(
A(s)[H(t2), [H(t1), ρtot(0)]]

)
+ (−i)3

∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 Tr
(
A(s)[H(t3), [H(t2), [H(t1), ρtot(0)]]]

)
+ · · · .

(3.4)

Since the optical signal is measured after the photon field has interacted with the matter system,
we require that the interaction time t be large enough such that the plane of the photon field a(s) has

propagated past all molecules. Mathematically, this condition is expressed as sl(t,xj) = t−k̂l·xj/c > s
for all molecules j (see Fig. (1.3) for an illustration and Sec. 2.1 for more detailed discussion on
retarded times). If the field observable involves more than one retarded time variable or more than

one field mode (e.g., the second order coherence function a†l (s1)a
†
l′(s2)al′(s2)al(s1)), then one needs to

make sure that t is large enough such that sl(t,xj) is greater than all retarded time variables si, for all
spatial modes li. For convenience, t can simply be set to ∞. In the literature [30,31], the distinction
between the interaction time t and the retarded time s is often overlooked. This has resulted in
inconsistencies in the choice of the interaction time t in the literature. In the input-output approach,
the choice of the integration time is automatically taken care of by the input-output relation. We will
discuss this issue in more detail using an example in Sec. 3.6.

3.2.2 Perturbing the observable in the Heisenberg picture

Instead of perturbing the state ρtot(t) in the interaction picture, we can also expand the Heisenberg
picture observable U†(t)A(s)U(t) in terms of interaction picture operators. This method is simply a
different perspective of the conventional perturbative approach, and it results in identical expressions
as the perturbing-the-state approach. We present this alternative point of view because this approach
is more closely related to our input-output method, to be discussed in Sec. 3.3.

Since the expansion of Heisenberg picture operators is in fact an expansion of the time-evolution su-
peroperator U†(t)•U(t) (see Appendix D), we can generalize Eq. (3.2) slightly to expand U†(t)A(s)U(t)
as

U†(t)A(s)U(t) =A(s)− i

∫ t

0

dt1 [A(s), H(t1)]

+ (−i)2
∫ t

0

dt2

∫ t2

0

dt1 [[A(s), H(t2)], H(t1)]

+ (−i)3
∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 [[[A(s), H(t3)], H(t2)], H(t1)] + · · · .

(3.5)

The output optical signal ⟨A(s)⟩ is given by the expectation value Tr(U†(t)A(s)U(t)ρtot(0)). Substi-
tuting Eq. (3.5) into the trace expression, we have

⟨A(s)⟩ =Tr
(
A(s)ρtot(0)

)
− i

∫ t

0

dt1 Tr
(
[A(s), H(t1)]ρtot(0)

)
+ (−i)2

∫ t

0

dt2

∫ t2

0

dt1 Tr
(
[[A(s), H(t2)], H(t1)]ρtot(0)

)
+ (−i)3

∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 Tr
(
[[[A(s), H(t3)], H(t2)], H(t1)]ρtot(0)

)
+ · · · .

(3.6)
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By applying the identity Tr([A,B]C) = Tr(A[B,C]) repeatedly, we can see that Eq. (3.6) is equal to
Eq. (3.4). Therefore, the perturbing-the-state approach is equivalent to the perturbing-the-observable
approach.

3.3 Perturbative expansion of the input-output relation

In our input-output formalism, we first treat al(s) in the photon field observable A(s) as the output
field al,out(s), and then apply the input-output relation to each al,out(s). Examples of this procedure
are describe in Eqs. (2.7), (2.15), and (2.22). Then we perturbatively expand the Heisenberg picture
system operators LH in these expressions.

Applying the Heisenberg perturbative expansion (Eq. (3.2)) to LHl(s + k̂l · xj/c) in the many-
molecule input-output relation (Eq. (2.5)), we have

al,out(s) =al(s) +

N∑
j=1

Ll,j(s+
k̂l · xj

c
)− i

N∑
j=1

∫ s+k̂l·xj/c

0

dt1

[
Ll,j(s+

k̂l · xj

c
), H(t1)

]

+ (−i)2
N∑
j=1

∫ s+k̂l·xj/c

0

dt2

∫ t2

0

dt1

[[
Ll,j(s+

k̂l · xj

c
), H(t2)

]
, H(t1)

]

+ (−i)3
N∑
j=1

∫ s+k̂l·xj/c

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1

[[[
Ll,j(s+

k̂l · xj

c
), H(t3)

]
, H(t2)

]
, H(t1)

]
+ · · · .

(3.7)

In the case of a single molecule located at x = 0, the expansion of the input-output relation (Eq.
(2.6)) becomes

al,out(s) =al(s) + Ll(s)− i

∫ s

0

dt1

[
Ll(s), H(t1)

]
+ (−i)2

∫ s

0

dt2

∫ t2

0

dt1

[[
Ll(s), H(t2)

]
, H(t1)

]
+ (−i)3

∫ s

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1

[[[
Ll(s), H(t3)

]
, H(t2)

]
, H(t1)

]
+ · · · .

(3.8)

This expansion can be thought of as the perturbative expansion of the Heisenberg-evolved field
operator U†(t)al(s)U(t) (see Eq. (3.5)), where the interaction time t is large enough such that the
plane of the photon field al(s) has propagated past the matter system. To see this more explicitly, we
consider the single molecule case and take A(s) = al(s) in Eq. (3.5). Since the molecule is at x = 0,
the condition sl(t,x = 0) > s becomes t > s. Using the single-molecule Hamiltonian (Eq. (1.32)), the
first order expansion term in Eq. (3.5) then becomes

∑
l′

∫ t

0

dt1[al(s),−al′(t1)L†
l′(t1) + a†l′(t1)Ll′(t1)] = Ll(s). (3.9)

This is exactly the second term in Eq. (3.8). The higher order terms in Eq. (3.8) also match with the
higher order terms in the Heisenberg expansion of U†(t)al(s)U(t). Notice that in the input-output
approach, the condition sl(t,xj) > s is automatically taken care of when we apply the input-output
relation.
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3.4 Normal-ordered perturbative expansion of the optical sig-
nal

To evaluate the nested commutators in Eq. (3.7), we introduce a commutator identity. Given arbitrary
field operators A1 and A2, and system operators B1 and B2,

[A1B1, A2B2] = A1A2[B1, B2] + [A1, A2]B2B1 (3.10a)

= A2A1[B1, B2] + [A1, A2]B1B2. (3.10b)

If the light-matter interaction is treated semi-classically (i.e., the field is described by complex num-
bers), then the first terms in both Eqs. (3.10a) and (3.10b), are identical, and the second terms in both
Eqs. (3.10a) and (3.10b) are zero, since complex numbers always commute. For ease of reference, we
shall call the first terms the “matter commutator” terms and the second terms the “field commutator”
terms.

Having two different representations of the commutator in Eq. (3.10) allows us to write the
perturbative expansion only in terms of normal-ordered field operators. In the perturbative expansion
of Heisenberg-evolved operators (Eq. (3.2)), A2B2 comes from the Hamiltonian H(t) (see Eqs. (1.32)
and (1.33)), and the field operator A2 is either of the type a(t) or of the type a†(t). If A1 is a
normal-ordered field operator, then we can ensure that the commutator [A1B1, A2B2] contains only
normal-ordered field operators by using the identity Eq. (3.10a) if A2 is of the type a(t), and using
the identity Eq. (3.10b) if A2 is of the type a†(t). We will see how this works in an example in Sec.
3.6.

We note that, in the literature, a different form of commutator identity is used to perform per-
turbative expansions in quantum light spectroscopy [31, 90]. This identity is usually expressed in
superoperator form as

(A1B1)− = A1+B1− +A1−B1+, (3.11)

where A−X = [A,X] is the commutator superoperator, and A+X = {A,X}/2 is the anti-commutator
superoperator. Again, the first term on the right hand side is the matter commutator term, and the
second term is the field commutator term, which vanishes in the semi-classical treatment of light-
matter interaction. This identity is in fact closely related to the identities of Eq. (3.10). If we take
the arithmatic average of Eqs. (3.10a) and (3.10b), we have

(A1B1)−(A2B2) = A1+B1−(A2B2) +A1−B1+(A2B2), (3.12)

which is just the superoperators in Eq. (3.11) applied to the operator A2B2. The identity of Eq.
(3.11) takes a more symmetric form, but it does not provide a direct way to perform normal-ordered
perturbative expansion.

3.5 Order of magnitude estimates

For the perturbative expansion to be a good description for the dynamics, we require that the mag-
nitude of the Hamiltonian H(t) (i.e., the light-matter interaction strength) times the interaction time
be much less than 1. To provide a rough estimate of the magnitude of H(t), we note that there
are two types of operators in H(t): the a(t)-type field operator (including a†(t)) and the L(t)-type
matter operator (including L†(t)). From Sec. 1.4, we see that both a(t) and L(t) have the same
physical dimension of 1/[Time], and therefore we can compare their relative magnitudes directly.
Given a light pulse having a temporal width of ∼ ∆ and containing m photons on average, we have∫
dt⟨a†(t)a(t)⟩ = m. Therefore to account for the effects of the pulse, we assign an order of magnitude

of
√
ml/∆l to each al(t) and a

†
l (t), where ml and ∆l are the number of photons and pulse width in the
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l-th spatial mode. In the case that the l-th spatial mode is in vacuum, we have
∫ T

0
dt⟨al(t)a†l (t′)⟩ = 1.

Therefore we assign an order of magnitude of 1/
√
T to al(t) and a

†
l (t), where T is the total amount

of time considered. The order of magnitude of L(t) is

L(t) ∼
√
ω3
0 |d|2∆Ω

8π2ϵ0c3
, (3.13)

as can be seen from Eq. (1.21). We note that the case of ∆Ω = 8π/3 corresponds to maximal coupling
between the molecule and the spatial mode, since Eq. (3.13) then becomes the square root of the total
spontaneous emission rate into all spatial directions (Γ = ω3

0 |d|2/3πϵ0ℏc3) [67]. To obtain a different
estimate for L, we connect the solid angle area ∆Ω to the the cross section area of the beam A, since
the cross section area may be accessed more directly in experiments. Using the order of magnitude
estimates k20∆Ω ∼ σ2

⊥ and A ∼ 1/σ2
⊥ (see Fig. (1.2)), we have ∆Ω ∼ λ20/4π

2A, where the wavelength
λ0 is given by k0 = 2π/λ0. Re-writting Eq. (3.13) in terms of A, we have

L(t) ∼
√

Γ
3λ20

32π3A
. (3.14)

We now see that as the cross section area of the beam A increases, the electric field felt by the molecule
decreases, and the coupling between molecule and the photon field in the spatial mode decreases.

Table (3.1) lists these order of magnitude estimates of the various quantities discussed above.
Numerical values of these quantities are evaluated using typical values encountered in nonlinear spec-
troscopy with visible light pulses [91–94]. We use the following values (unless otherwise noted): pulse
width ∆ = 30 fs, λ0 = 650 nm, number of photon m = 3×1010 (corresponding to a 10 nJ pulse), total
experimental time T = 10 ps, beam cross section area A = (100µm)2, and dipole moment |d| = 4
Debye.

operator order of magnitude typical numerical value (ps−1/2)

a(t) vacuum effect ∼ 1/
√
T 0.3

a(t) pulse effect, ∼ 1/
√
∆ 6

single photon

a(t) pulse effect, ∼
√
m/∆ 1× 106

3× 1010 photons√
Γ ∼

√
ω3
0 |d|2/3πϵ0ℏc3 4× 10−3

L(t) ∼
√
Γ
√
3λ20/32π

3A 2× 10−6

Table 3.1: Order of magnitude estimates of various operators and parameters in the perturbative
expansion.

To confirm that the perturbative expansion is a good description under these numerical values,
we consider for example a molecule interacting with a light pulse containing 3× 1010 photons. In this
case, ||H|| ∼ a(t)L(t) ∼ 2 ps−1. Multiplying by the interaction time (i.e., the pulse width ∆), we have
||H||t ∼ 0.06 ≪ 1. Hence the perturbative expansion provides a good description for the dynamics.
The magnitudes of a(t) for single photon pulse effects and for the vacuum effect are even smaller,
ensuring that these effects are well within the perturbative regime.
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3.6 Comparing the input-output formalism to the conven-
tional perturbative approach — photon flux

We now compare the input-output formalism to the conventional perturbative approach. We consider
the photon flux as the field observable and restrict ourselves to the case of one spatial mode interacting
with one molecule located at the origin. We will collect the expansion terms in orders of L(t), since
this is typically the smallest parameter in the expansion (see Table (3.1)). The lowest order non-trivial
terms are the second order (∼ L(t)2) terms. These terms correspond to spontaneous emission and
linear response effects such as absorption and stimulated emission.

The only zeroth order (∼ L(t)0) term is the input photon flux a†l (t)al(t). The terms that are first
order in L(t) are proportional to the expectation values ⟨L(t)⟩ and ⟨L†(t)⟩ in the matter degrees of
freedom. These expectation values are nonzero only when the initial state contains nonzero coherence
between different excitation subspaces(e.g., ⟨e|ρsys(0)|g⟩ ≠ 0) because L(t) is proportional to the part
of dipole operator that removes a matter excitation (e.g. |g⟩⟨e|, also see Eq. (1.21)). We assume the
typical situation where the initial state of the matter system is the thermal state, which contains zero
coherence between different excitation subspaces. Therefore the first order (∼ L(t)1) terms are zero.

3.6.1 Input-output approach

In the input-output formalism, the output photon flux is given by ⟨a†l,out(s)al,out(s)⟩, where the bracket
⟨· · · ⟩ denotes the expectation value with respect to the initial state ρtot(0), which is assumed to be a

product state between the matter system state and the field state. Expanding al,out(s) and a
†
l,out(s)

using Eq. (3.8), we have

⟨a†l,out(s)al,out(s)⟩ =
〈(
a†l (s) + L†

l (s)− i

∫ s

0

dt1[L
†
l (s), H(t1)] + · · ·

)
(
al(s) + Ll(s)− i

∫ s

0

dt1[Ll(s), H(t1)] + · · ·
)〉 (3.15)

Now we collect the expansion terms in orders of L(t). The zeroth order term is ⟨a†l (s)al(s)⟩, which is the

input photon flux. The first order terms are ⟨a†l (s)Ll(s)⟩ and its complex conjugate, ⟨L†
l (s)al(s)⟩. Due

to the factorizable initial state, the first order term ⟨a†l (s)Ll(s)⟩ can be factorized into ⟨a†l (s)⟩⟨Ll(s)⟩,
which is equal to zero, as noted above.

There are two types of second order terms. The first type of second order terms are products
between a zeroth order term and a second order term, i.e.,∫ s

0

dt1

〈
a†l (s)

[
Ll(s),−al(t1)L†

l (t1) + a†l (t1)Ll(t1)
]〉

+ c.c., (3.16)

where c.c. means the complex conjugate. After expanding the commutator, we drop the term involving
⟨LL⟩ and ⟨L†L†⟩ because this is zero by the assumption that there is no initial coherence between
different excitation subspaces. Keeping only the terms involving ⟨LL†⟩ and ⟨L†L⟩, we now have∫ s

0

dt1

〈
a†l (s)al(t1)

〉〈
L†
l (t1)Ll(s)− Ll(s)L

†
l (t1)

〉
+ c.c. (3.17)

The terms involving the matter correlation function ⟨Ll(s)L
†
l (t1)⟩ correspond to the linear absorption

process. The negative sign in front of Ll(s)L
†
l (t1) is consistent with the fact that the absorption process

reduces the output photon flux. The terms involving the matter correlation function ⟨L†
l (t1)Ll(s)⟩

correspond to the stimulated emission process. The positive sign in front of this term is consistent
with the fact that stimulated emission increases the output photon flux.
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The second type of second order terms is ⟨L†
l (s)Ll(s)⟩, a product between a first order term and

another first order term. This is the spontaneous emission rate into the spatial mode that we are
considering. In the perturbative expansion to second order in L(t), the spontaneous emission rate
is evaluated with respect to the initial matter state ρsys(0). This is to be compared with the non-
perturbative treatment of spontaneous emission in Eq. (2.8), where the exact spontaneous emission
rate is evaluated with respect to the matter state ρsys(s) at time s.

3.6.2 Conventional perturbing-the-state approach

Now we derive the same expressions for the photon flux due to the absorption, stimulated emission,
and spontaneous emission processes using the conventional approach. The conventional approach
perturbatively expands the system+field state ρtot(t) in the interaction picture, and then evaluate
expectation values with respect to the state. However, we have shown in Sec. 3.2.2 that this ap-
proach is in fact equivalent to perturbing the Heisenberg-evolved observable directly. Therefore the
real difference between the conventional and the input-output approach is that, in the conventional
approach, one applies the perturbative expansion to the photon field observables directly without first
using the input-output relation.

We let the molecule to be located at x = 0, so the output photon flux takes the form

a†l,out(s)al,out(s) = U†(t)a†l (s)al(s)U(t), (3.18)

where t > s so that the plane of the photon field al(s) has propagated past the molecule at x = 0.
Applying the perturbative expansion of Eq. (3.6) to this Heisenberg-evolved operator to the second
order, we have 〈

a†l,out(s)al,out(s)
〉
=
〈
a†l (s)al(s)

〉
− i

∫ t

0

dt1

〈
[a†l (s)al(s), H(t1)]

〉
−
∫ t

0

dt2

∫ t2

0

dt1

〈
[[a†l (s)al(s), H(t2)], H(t1)]

〉
.

(3.19)

Note that the upper bound of the first integral is t, not s, since the output field is measured after
interacting with the molecule.

The zeroth order term is the input photon flux. The first order term evaluates to∫ t

0

dt1 δ(s− t1)
〈
al(s)L

†
l (t1) + a†l (s)Ll(t1)

〉
=
〈
al(s)L

†
l (s)

〉
+
〈
a†l (s)Ll(s)

〉
,

(3.20)

which is the same as the first order term obtained in the input-output approach, and it is equal to 0.
It is important to note that the delta function is integrated fully, since t′ > t. The second order term
is ∫ t

0

dt2

∫ t2

0

dt1 δ(s− t2)
〈[
al(s)L

†
l (t2) + a†l (s)Ll(t2),−al(t1)L†

l (t1) + a†l (t1)Ll(t1)
]〉
. (3.21)

To evaluate this commutator, we use the commutator identities of Eq. (3.10) to ensure normal-
ordering of the field operators. We will also drop the terms involving the matter correlations ⟨LL⟩
or ⟨L†L†⟩ because we assume that in the initial state there is no matter coherence between difference
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excitation subspaces. Now Eq. (3.21) becomes∫ t

0

dt2

∫ t2

0

dt1 δ(s− t2)

(〈
a†l (t1)al(s)

〉〈
[L†

l (t2), Ll(t1)]
〉

−
〈
a†l (s)al(t1)

〉〈
[Ll(t2), L

†
l (t1)]

〉
+ δ(s− t1)

(〈
L†
l (t2)Ll(t1)

〉
+
〈
L†
l (t1)Ll(t2)

〉)) (3.22)

In the big parenthesis, the first two terms are the matter commutator terms, and the last two terms are
the field commutator terms. The sum of the first two terms is equal to Eq. (3.17) after one integrates
over the delta function. The last two terms require a careful treatment of the delta functions. First,
we simplify the sum of the last two terms as

2
〈
L†
l (s)Ll(s)

〉 ∫ t

0

dt2

∫ t2

0

dt1 δ(s− t2)δ(s− t1). (3.23)

We treat the delta function δ(τ) as the ϵ → 0 limit of the square function centered at τ = 0 with a
width of ϵ and a height of 1/ϵ, so that the integral

∫
dτ δ(τ) = 1 (see Fig. (3.1a)). We choose the

square function for simplicity. In fact, any symmetric function with integral equal to 1 and becomes
infinitely narrow in the ϵ→ 0 limit works as well. As shown in Fig. (3.1b), the product of the two delta
functions in Eq. (3.23) is nonzero only on a square region centered at (t1, t2) = (s, s), having a width
of ϵ (taking ϵ→ 0 at the end). The integral of this square region is 1. The double integral integrates
over a triangular region in the (t1, t2) plane, which cuts the square region in half. Therefore the double
integral in Eq. (3.23) is equal to 1/2, and the entire term of Eq. (3.23) becomes ⟨L†(s)L(s)⟩, equal
to the second order spontaneous emission term derived using the input-output approach.
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Figure 3.1: Evaluating the double integral in Eq. (3.23). (a) The delta function is treated as the
ϵ → 0 limit of the square function with width ϵ and height 1/ϵ. (b) The product of the two delta
functions in Eq. (3.23) is nonzero only in the blue square area. The nested integral over t2 and t1 is
represented by the green area, and covers half of the delta function. Therefore, the double integral
evaluates to 1/2.

3.6.3 Comparing the two approaches

We see that in the conventional approach, extra care needs to be taken to ensure the upper bound t of
the first integral is larger than the retarded time argument s in the field operator (e.g., a†(s)a(s)). If the

position x of the molecule is not the origin 0, then we need to make sure that s < sl(t,x) = t− k̂l ·x/c.
In the literature, sometimes, this upper bound t is taken to ∞ [56], while sometimes, this upper
bound is taken to be the retarded time variable s [30,31,95], and other times, the upper bound is not
specified [57,58], leading to potential confusion as to whether the delta function should be integrated in
full or in half. On the other hand, in the input-output approach, one expands the Heisenberg-evolved
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system operator LH(s), and the upper bound of the first integral is s, the same as the time argument
in the Heisenberg operator. In a sense, the subtle integration bound in the conventional approach
has been taken care of by the input-output relation. We also see that the derivation of terms like the
spontaneous emission photon flux is also much simpler using the input-output formalism.

When the conventional approach is used with the normal-ordered perturbative expansion using
the method of Sec. 3.4, one can obtain a perturbative expansion where all the field operators are
normal-ordered. This is because if the photon field observable is normal-ordered, then by choosing
whether to apply Eq. (3.10a) or Eq. (3.10b) to each commutator term in the expansion, the normal-
ordering of the field operator can be preserved throughout the expansion. On the other hand, in the
input-output approach, one expands the Heisenberg-evolved operators LH(s) in the signal expression
(see Eqs. (2.7), (2.14), and (2.22)). The expansion of each LH(s) can be normal-ordered by applying
Eq. (3.10) judiciously. However, since the final signal expressions usually involve a product of multiple
LH(s), the field operator in the expansion of the final signal is a product of normal-ordered operators,
which is typically not normal-ordered.

3.7 Conclusion

We have shown how to calculate the optical signal by using the input-output relation and working in
the Heisenberg picture. A key element that makes our approach more intuitive than the conventional
method for quantum light spectroscopy is that the input-output relation closely resembles the classical
intuition of how the signal electric field is generated. The input-output relation (written in simplified
form)

aout(s) = ain(s) + LH(s)

states that the output field is equal to the input field plus the field generated by the matter dipole
moment. Both the photon field a(s) and the matter dipole moment L(s) are treated as quantum
mechanical operators in the fully quantum treatment of light-matter interaction. However, in the
semi-classical treatment of light-matter interaction, used in classical nonlinear spectroscopy, the input-
output relation is treated as an equation of c-numbers. The expectation value of the matter dipole
moment is evaluated before applying the input-output relation, i.e.,

aout(s) = ain(s) + ⟨LH(s)⟩.

In this sense, our input-output formulation of quantum light spectroscopy is a very direct gener-
alization of the semi-classical formalism used in classical nonlinear spectroscopy, and it treats the
light-matter interaction fully quantum mechanically. The input-output approach for quantum light
spectroscopy also avoids the ambiguous integration bound that arises in the conventional approach
for quantum light spectroscopy, since the input-output relation accounts for this integration already.
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Chapter 4

Emulating a class of quantum light
spectroscopy using classical light
pulses

Spectroscopy using quantum light, in particular, using non-classical pulses containing individual or
entangled pairs of photons, has attracted much interest in recent years, both theoretically and exper-
imentally, due to its potential to exploit the non-classical properties of light to outperform classical
spectroscopy [16, 30, 31, 33, 36, 56, 96–105]. Quantum light spectroscopy (QLS) has been proposed to
enable simplification of congested spectra [56], to target specific doubly excited states [33], to improve
the signal-to-noise ratio of linear spectroscopy [102], and to measure dephasing rates with high tem-
poral resolution [16]. Understanding the extent to which such QLS experiments provide a quantum
advantage requires careful comparison with experiments using classical states of light. For example,
the relationship between a quantum pump - quantum probe experiment and classical two-dimensional
(2D) spectroscopy experiments is examined in [55].

In this chapter, we show that for a certain class of QLS experiments, the use of entangled photon
pairs can be replaced with coherent states of light, which behave classically when normal-ordered field
correlations are evaluated (see Fig. (4.1)). This is done in two steps. First, we show that for QLS
experiments using entangled photon pairs with one photon being measured without interacting with
the matter system [56, 98–102, 104, 105], the entangled photon pair can be replaced with a specially
designed single photon Fock state, since measuring one photon effectively collapses the other photon
into a single photon state. Thus two-photon entanglement offers no true quantum advantage in
these QLS experiments. This has been pointed out previously by [106] using quantum information
theory arguments, and an analysis of the quantum information that one can extract from a two-level
system using an entangled photon pair versus that extracted using a single photon Fock state has
been provided in [107]. In the context of single molecule biphoton spectroscopy that measures photon
in the longer time scale of fluorescence, [108] has recently shown that if all scattered photons can
be measured, then the entanglement in the photon pair offers no advantage over a single photon.
Nevertheless, there may still be practical advantages when using such entangled photon pairs with
one photon acting as a reference without interacting with matter. For example, pure single photon
Fock states are more difficult to produce experimentally than entangled photon pairs [109], and a
visible idler photon may be easier to detect than an infrared signal photon [103].

Second, and this is the main theoretical result of the chapter, we show that for a class of experiments

30



matter system

𝒌!

𝒌"

biphoton 
source

𝒌#$

classical signal

reference

matter system

𝒌!

𝒌"

single 
photon 
source

𝒌#$

classical signal

matter system

𝒌!

𝒌"

𝒌#$

classical

signal

a)

b)

c)

Figure 4.1: Spectroscopic schemes with n = 0, 1, 2, · · · classical pulses and (a) a biphoton probe pulse
with one of the photons acting as a reference without interacting with matter, (b) a single photon
Fock state probe pulse, (c) a classical probe pulse containing one photon on average. The signal is
measured in all cases in the direction of the probe field. The equivalence between schemes (a) and (b)
is referred to as Equivalence 1 in the paper. The equivalence between schemes (b) and (c) is referred
to as Equivalence 2 in the paper. Equivalence 2 holds under the conditions that (1) there is no phase
matching of the n classical pulses into the direction of the probe field and (2) the signal takes the
form of a two-point correlation function (e.g., photon flux, frequency-resolved photon count, or g(1)

coherence function).
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using n classical pulses (n = 0, 1, 2, · · · ) and a single photon Fock state probe pulse, identical signals
can also be obtained using a coherent state pulse having the same temporal profile and containing
one photon on average. Furthermore, if one uses a coherent state probe with the same temporal
profile but containing many photons on average, the signal can be amplified by a factor equal to
the average number of photons. Taken together with the equivalence of biphoton and single Fock
state probes, this means that the spectral features obtained from experiments with biphoton probe
pulses can be exactly reproduced and also amplified by carefully designed coherent state probe pulses.
Such quantum-inspired coherent state probes are much simpler to implement and are thus far more
preferable than biphoton states for experimental implementation.

We focus our analysis here on spectroscopy experiments for which the signal is measured in the
direction of the probe. For the case of a single classical pump, n = 1, this allows direct comparison
with conventional classical pump-probe spectroscopy and the entangled biphoton probe version of this
that was proposed in [56]. Other spectroscopy experiments where the signal is measured in directions
other than the probe are not considered here, but can be analyzed similarly using the method we
present here. For the equivalence between a single photon Fock state and a single photon coherent
state to hold, we require that the classical pulses are incident from different directions than the probe
pulse, and that there is no phase matching of the classical pulses into the direction of the probe pulse.
In fact, the latter requirement includes the former as a special case. Neither of these are onerous
requirements for experiments.

We restrict the signal detection to normal-ordered two-point correlation measurements that contain
one creation operator and one annihilation operator in the transmitted probe field, for example, photon
flux ⟨a†(t)a(t)⟩, frequency-resolved photon count ⟨a†(ω)a(ω)⟩, or the unnormalized g(1) correlation
function ⟨a†(t2)a(t1)⟩. We note that g(1) is complex-valued and therefore not a quantum mechanical
observable in the strict sense, but the real and imaginary parts of g(1) can be measured separately
using, for example, a Mach-Zehnder interferometer [67]. The detection of higher-order coherence
functions such as g(2) (a four-point correlation function) is not considered here. The key reason for the
equivalence between the Fock state probe and the coherent state probe in this class of experiments lies
in the fact that they have the same two-point correlation function ⟨a†(t2)a(t1)⟩. While the one-point
correlation functions ⟨a(t)⟩, ⟨a†(t)⟩, and other two-point correlation functions such as ⟨a(t2)a(t1)⟩ and
⟨a†(t2)a†(t1)⟩ are different for the two probes, their corresponding signals appear only in other phase
matching conditions and do not appear in the direction of the probe field. So measuring the signal
in this direction, as indicated in Fig. (4.1), isolates signals that are dependent only on ⟨a†(t2)a(t1)⟩
and thereby ensures the desired equivalence. We note that this result is a generalization of our other
result [52] that the output photon flux is the same under single photon Fock state and single photon
coherent state excitation of a matter system in the ground state.

The matter system in this work consists of many molecules distributed over a volume of space, thus
giving rise to the phase matching conditions. A single photon Fock state can generate entanglement
between different uncoupled molecules, while a coherent state cannot generate such entanglement.
Regardless of the difference in the collective matter state, we show here that the two-point correlation
signals of the output light are the same. In a different context of a single molecule system, it has been
shown [36,52] that a single photon Fock state and a coherent state containing one photon on average
give rise to the same excited state dynamics in the molecule. However, it is important to recognize
that despite this similarity, there is also a difference in the overall dynamics of the reduced matter
system, since the ground-excited state coherence is identically zero under a single photon Fock state
excitation and nonzero under a coherent state excitation [52].

Combining the equivalence between signals from biphotons and single photon Fock states and the
equivalence between signals from single photon Fock states and single photon coherent states, we can
then establish a class of QLS experiments that can be equivalently performed using only classical
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light. We now begin the formal analysis.

4.1 Equivalence 1: Equivalence between signals from bipho-
ton and single photon Fock state probes

Consider an experiment where one probes a matter system using an entangled photon pair, whose
density matrix is denoted as ρAB . Photon A (e.g., the green pulse in Fig. (4.1a)) interacts with
the system and the resulting output optical field is measured subsequently. Photon B (e.g., the blue
pulse in Fig. (4.1a)) is measured directly, without interacting with anything. Note that in this section
focused on the equivalence between signals from biphoton and single photon Fock state probes, we
shall impose no restriction on the observables to be measured in each of the two photon fields. For
each realization of the experiment, a joint measurement of both photon fields is recorded as (α, β),
where α represents the signal in photon field A in that experimental realization, (e.g., whether or not
a photon is present, or the measured frequency of the photon), and β represents the measurement
outcome of photon field B in the same experimental realization. Averaging over the signal α for
fixed β with repeated measurements, one obtains the final reference-averaged signal as (S, β), where
S is the averaged signal of photon field A. Each β corresponds to a value of the averaged signal S,
so we shall henceforth abbreviate (S, β) as Sβ , representing the averaged signal of photon field A
that is conditioned on the measurement outcome β of photon field B. It is sometimes suggested that
the correlation between the pair of photons A and B enhances the signal Sβ [56, 105]. However, we
show below that the conditional signal Sβ can in fact be constructed alternatively using just single
photon states that are parameterized by β. In other words, in the experimental scheme of Fig. (4.1a),
quantum entanglement between the two probe photons offers no fundamental advantage in learning
about the matter system, since exactly the same results can be obtained using just single photon
states. This has also been pointed out by Stefanov in [106].

To derive the single photon state that produces the same signal Sβ , we first note that measuring
photon B projects the photon pair state to ΠβρABΠβ , where Πβ is the projector onto the eigenspace
of the measurement outcome β. Since no further measurement is performed on photon B, photon A is
then completely characterized by the reduced density matrix obtained by tracing the projected state
over photon B:

ρA|β = NTrB
(
ΠβρABΠβ

)
. (4.1)

Here N = 1/Tr(ΠβρABΠβ) is a normalization factor to ensure unit trace. Eq. (4.1) tells us that
measuring the reference photon field B with outcome β effectively collapses the input field of photon
A into the single photon state ρA|β . Therefore the conditional signal Sβ can also be obtained exactly
by probing the system with the single photon state ρA|β .

As an example, consider the frequency-entangled photon pair

|Ψ⟩ =
∫
dωA

∫
dωBΦ(ωA, ωB)a

†
A(ωA)a

†
B(ωB)|vac⟩, (4.2)

where Φ(ωA, ωB) is the biphoton wavefunction [67], aA(ωA) (aB(ωB)) is the bosonic annihilation
operator of frequency mode ωA (ωB) in photon field A (B), and |vac⟩ is the vacuum state of both fields.

The operators aj(ω) satisfy the bosonic commutation relations: [aj(ω), aj′(ω
′)] = [a†j(ω), a

†
j′(ω

′)] = 0

and [aj(ω), a
†
j′(ω

′)] = δj,j′δ(ω − ω′). If we condition the experiment on measuring photon B at some
reference frequency ωB = ωr, then the corresponding projection operator Πωr

is proportional to the

outer product of the unnormalized state a†B(ωr)|vac⟩ and its adjoint, i.e.,

Πωr
∝ a†B(ωr)|vac⟩B⟨vac|aB(ωr), (4.3)
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where |vac⟩A or |vac⟩B denotes the vacuum state for the photon field A or B. The projected photon
pair state becomes

Πωr
|Ψ⟩ ∝

∫
dωAΦ(ωA, ωr)a

†
A(ωA)a

†
B(ωr)|vac⟩, (4.4)

which turns out to be a product state between the two photon fields A and B in this case. Therefore
the reduced state of photon field A, TrB(Πωr

|Ψ⟩⟨Ψ|Πωr
), is a pure state, i.e.,

ρA|ωr
= |ψ⟩ωr ⟨ψ|, (4.5)

with

|ψ⟩ωr
= Nωr

∫
dωAΦ(ωA, ωr)a

†
A(ωA)|vac⟩A, (4.6)

where Nωr
=
√
1/
∫
dω|Φ(ω, ωr)|2 is the normalization factor. Now the conditional signal can be

alternatively obtained using the single photon state of Eq. (4.6). Note that the frequency profile
of this single photon state is explicitly given by evaluating the biphoton wavefunction Φ(ωA, ωB) at
ωB = ωr.

The equivalence between signals from biphoton and single photon Fock state probes can be under-
stood in a slightly different way by considering the photon correlation functions. For example, if one
is interested in some property of the photon field A, represented by the quantum operator OA, given
that a photon with a frequency of ωr is observed in the photon field B, one would typically need to
evaluate the correlation function [56,105]

⟨Ψ|a†B(ωr)OAaB(ωr)|Ψ⟩. (4.7)

Since aB(ωr)|Ψ⟩ =
∫
dωA Φ(ωA, ωr)a

†
A(ωA)|vac⟩ = N−1

ωr
|ψ⟩ωr

|vac⟩B , Eq. (4.7) is equal to the expec-
tation value

N−2
ωr ωr

⟨ψ|OA|ψ⟩ωr
(4.8)

with respect to the reduced single photon state |ψ⟩ωr
, up to a normalization constant Nωr

that can
be determined from the biphoton wavefunction Φ(ωA, ωB).

4.2 Equivalence 2: Equivalence between signals from single
photon Fock state and single photon coherent state probes

We now consider the class of experiments where n classical pump pulses (with wavevectors k1, · · · ,kn)
and a single photon Fock state or a single photon coherent state probe pulse (with wavevector kpr),
treated quantum mechanically, interact with a matter system. These are illustrated in Fig. (4.1b)
and Fig. (4.1c), for a single photon Fock state probe and a single photon coherent state probe,
respectively. The classical pulses are incident at different directions from the quantum probe pulse,
with the directions selected so that there is no phase matching of the classical pulses into the direction
of the single photon probe. These conditions can be summarized as

kpr not proportional to b1k1 ± · · · ± bnkn (4.9)

where bi = 0, 1, 2, · · · can be any non-negative integer, up to a reasonable number of orders of in-
teraction. The case of n = 0 corresponds to the linear absorption of the single photon probe pulse;
the case of n = 1 corresponds to a classical pump - single photon probe experiment. We place no
restriction on the relative time-ordering of the pulses. The signal is restricted to be normal-ordered
two-point correlations that contain one creation operator and one annihilation operator in the probe
field, e.g., photon flux ⟨a†pr,out(t)apr,out(t)⟩, frequency-resolved photon count ⟨a†pr,out(ω)apr,out(ω)⟩, or
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the g(1) coherence function ⟨a†pr,out(t2)apr,out(t1)⟩. We claim that the final signal coming from the
single photon Fock state probe

|F1⟩ =
∫
dt ξ(t)a†pr(t)|vac⟩ (4.10)

is equal to the signal from a coherent state probe

|C1⟩ = exp
( ∫

dt ξ(t)a†pr(t)− ξ∗(t)apr(t)
)
|vac⟩ (4.11)

having the same temporal profile ξ(t) and containing on average a single photon. The temporal profile
ξ(t) is normalized according to

∫
dt|ξ(t)|2 = 1. If the coherent state has m photons on average, i.e.,

the state

|Cm⟩ = exp
(√
m

∫
dt ξ(t)a†pr(t)− ξ∗(t)apr(t)

)
|vac⟩, (4.12)

then the probe field absorption and stimulated emission signal will be amplified by a factor of m.

The key to this equivalence between experiments carried out with Fock state probes and coher-
ent state probes is that pulses from these two probes have the same two-point correlation function
⟨a†pr(t2)apr(t1)⟩. As already noted in the introduction, even though they have different two-point

correlation functions ⟨a†pr(t2)a†pr(t1)⟩ and ⟨apr(t2)apr(t1)⟩ and different one-point correlation functions

⟨a†pr(t)⟩ and ⟨apr(t)⟩, these other correlation functions do not contribute to the observed signal due
to phase matching. Together with the explicit parameterization of the coherent state pulse in terms
of the single photon frequency profile ξ(ω) = Φ(ω, ωr) obtained from the biphoton state in Eq. (4.6),
this will allow replacement of a spectroscopic experiment using an entangled probe by experiments
using a coherent state probe.

We now prove the equivalence explicitly by analyzing the signals using an input-output formula-
tion of quantum nonlinear spectroscopy. This approach is based on a perturbative expansion of the
signal observables in the Heisenberg picture, distinct from the more common approach of perturbing
the combined system plus field density matrix in the interaction picture [30, 31]. The input-output
formulation simplifies the theoretical analysis by focusing on the signal observables and using standard
results from the input-output formalism of quantum optics [50–52].

Our analysis will focus on the frequency-resolved photon count signal ⟨a†pr(ω)apr(ω)⟩. The analysis
for other two-point correlation signals, such as photon flux and g(1) coherence function, follows almost
identically. In the Heisenberg picture, the photon count of the transmitted probe at frequency ω is
proportional to ∫ ∞

−∞
dt2

∫ ∞

−∞
dt1e

iω(t1−t2)Tr
(
ρ(−∞)a†pr, out(t2)apr, out(t1)

)
. (4.13)

Here ρ(−∞) is the initial combined system plus probe field state, assumed to be a product state
between the matter system ρM and the field ρF , and the trace operator is evaluated over both the
matter and the field degrees of freedom. apr,out(t) is the output field operator of the probe field. This
output field operator is the result of time-evolving the input field operator in the Heisenberg picture
with the combined matter and field Hamiltonian, and thus it mixes the field and matter degrees of
freedom [52]. The time domain field operator a(t) is related to the frequency domain field operator
a(ω) by the Fourier relation

a(t) =
1√
2π

∫
dωe−iωta(ω). (4.14)

Therefore a(t) also satisfies the bosonic commutation relations [67].
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Although not necessary for the remaining derivation in this paper, we note that Eq. (4.13) is
expressed in [56] in a different form in the interaction picture as∫

dt2dt1e
iω(t1−t2)Tr

(
ρ(∞)a†pr(t2)apr(t1)

)
, (4.15)

where apr(t) is now the input field operator of the probe field. ρ(∞) is the combined system plus field
state in the interaction picture, evolved to a time longer than t1 and t2. The term ρ(∞) is somewhat
non-intuitive. To show the equality between Eqs. (4.13) and (4.15), one considers how the input and
output operators are related by unitary time-evolution operators. This is explained in Sec. 3.2.1 and
described more explicitly in Appendix E.

Under the dipole-electric field interaction and taking the zeroth order Hamiltonian as the pure
system plus pure field Hamiltonian, we can write the interaction picture Hamiltonian as

H(t) =− iapr(t)L
†
pr(t) + ia†pr(t)Lpr(t)

+
n∑

i=1

−iαi(t)L
†
i (t) + iα∗

i (t)Li(t).
(4.16)

Eq. (4.16) consists of the system interaction with the quantum probe field, represented by the field
operator apr(t), and with n other classical pulses, represented by their complex-valued coherent ampli-
tudes αi(t). The operators Lpr and Li are the matter de-excitation components of the dipole operator
corresponding to the probe field and the field of the i-th classical pulse, respectively. In the interaction
picture, L(t) = eiHsystLe−iHsyst is a purely system operator (setting ℏ = 1).

Under the Hamiltonian of Eq. (4.16), the input-output relation for the probe field is [50–52]

apr,out(t) = apr(t) + Lpr,H(t), (4.17)

with apr,out(t) the output probe field operator and apr(t) the input probe field operator. Here Lpr,H(t)
is the Heisenberg evolved operator, defined as U†(t)Lpr(t)U(t), where U(t) is the time-evolution
operator that solves the Schrodinger equation in the interaction picture, i.e., dU(t)/dt = −iH(t)U(t).
The physical interpretation of Eq. (4.17) is that the output electric field is equal to the input electric
field plus the electric field generated by the matter dipole moment. Lpr(t), without the subscript
“H”, will denote the operator in the interaction picture, which as noted above, is a purely system
operator. In contrast, Lpr,H(t) now mixes the system and field degrees of freedom. Performing a
perturbative expansion on the backward Heisenberg equation of motion for Lpr,H(t) [64], we have

Lpr,H(t) =Lpr(t)− i

∫ t

−∞
dt1[Lpr(t), H(t1)]

+ (−i)2
∫ t

−∞
dt2

∫ t2

−∞
dt1[[Lpr(t), H(t2)], H(t1)]

+ (−i)3
∫ t

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1[[[Lpr(t), H(t3)], H(t2)], H(t1)]

+ · · · .

(4.18)

The first term on right-hand side of Eq. (4.18) can be interpreted as the matter dipole moment
without interacting with the light, the second term as the matter dipole moment due to interacting
with the field once, the third term as the matter dipole moment due to two interactions with the
field, and so on. After expanding the commutators, each term becomes a product of a pure system
operator and a pure field operator. Therefore the expectation values of Lpr,H(t) with respect to an
initial product state can be readily evaluated.
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Substituting Eqs. (4.17) and (4.18) into the Tr operator in Eq. (4.13), we obtain the following
expansion for the two-point correlation function of the output signal:

Tr
(
ρ(−∞)a†pr,out(t2)apr,out(t1)

)
=
〈
a†pr,out(t2)apr,out(t1)

〉
=

〈(
a†pr(t2) + L†

pr(t2)− i

∫ t2

−∞
dτ [L†

pr(t2), H(τ)] + · · ·
)

(
apr(t1) + Lpr(t1)− i

∫ t1

−∞
dτ [Lpr(t1), H(τ)] + · · ·

)〉
.

(4.19)

Here we have adopted the conventional notation of using an angled bracket ⟨Ô⟩ = Tr(ρ(−∞)Ô) to
denote the expectation value of an operator Ô with respect to the initial system plus field state ρ(−∞).

We now expand the right-hand side of Eq. (4.19) in orders of Lpr. To show that Lpr is indeed
proportional to a small parameter, first notice that Lpr, apr, and the Li and αi from the semi-classical

terms of the Hamiltonian (Eq. (4.16)) all have the same dimension of 1/
√
time (setting ℏ = 1). Since

⟨L†
pr(t)Lpr(t)⟩ (⟨L†

i (t)Li(t)⟩) is at most equal to the spontaneous emission rate into the probe field

(ith classical field), where the maximum rate is obtained when the matter state is in the bright state
of the corresponding field mode, we assign an order of magnitude value

L ∼
√
η/τemission (4.20)

to each L, where τemission is the time scale of spontaneous emission into the polarization of that field
mode, and η is the geometric factor of the field mode [52,53]. η is less than 1 because a paraxial mode
in an experiment usually covers only a small fraction of all light with the polarization of that paraxial
mode. For a light pulse containing an average of m photons, we have

∫
dt⟨a†(t)a(t)⟩ = m (for classical

pulses, we replace the operator a(t) with the coherent amplitude α(t)). Therefore we assign an order
of magnitude value

a(t), α(t) ∼
√
m/τpulse (4.21)

to each a(t) or α(t), where τpulse characterizes the pulse duration. In typical visible spectroscopy
experiments with atomic and molecular samples, τemission ≫ τpulse, so that the matter system dynamics
is observable before spontaneous emission removes the excitation. Furthermore, since m ≫ 1 for
typical classical pulses and m = 1 for the single photon probe pulse, we conclude that the magnitude
of L is much smaller than the magnitude of apr and αi, justifying an expansion in powers of the L
operators. We then choose to expand Eq. (4.19) only in orders of Lpr, since the orders of Li do
not affect the main result, i.e., the equivalence of signals originating from a single photon Fock state
probe and a single photon coherent state probe. Furthermore, since Li always appears together with
the classical pulse amplitude αi, the effect of Li is amplified by a factor of

√
m, so Lpr becomes

indeed the smallest parameter in the expansion of Eq. (4.19). We now analyze the three lowest order
contributions to the expansion.

Zeroth order term (∼ Lpr
0). The only zeroth order term in Eq. (4.19) is ⟨a†pr(t2)apr(t1)⟩, the

transmitted probe without any interaction with matter. This expectation value is the same for both
the single photon Fock state (Eq. (4.10)) and the single photon coherent state (Eq. (4.11)), namely

⟨a†pr(t2)apr(t1)⟩ = ξ∗(t2)ξ(t1), (4.22)

where ξ(t) is the pulse shape. For the m-photon coherent state (Eq. (4.12)), Eq. (4.22) is amplified
by a factor of m.

First order terms (∼ Lpr
1). Any first-order term in Eq. (4.19) must be the expectation value of

a product between a
(†)
pr and another term containing a single factor of Lpr, or its complex conjugate.
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In other words, only the semi-classical part of the Hamiltonian can contribute in the commutators of
Eq. (4.19); otherwise, there will be more than one factor of Lpr. Specifically, the first-order terms
take the form ∫

dτl · · · dτ1
〈
a†pr(t2)[[
· · · [ Lpr(t1) , α

(±)
il

(τl)L
(∓)
il

(τl)], · · ·
]
, α

(±)
i1

(τ1)L
(∓)
i1

(τ1)
]〉
,

(4.23)

and its complex conjugates. Here l = 0, 1, 2, · · · , and each i index can denote any one of the n
classical field interactions. The probe field operators (i.e., apr or a†pr) are highlighted in blue, while

the matter operator associated with the probe field (i.e., Lpr or L
†
pr) are highlighted in yellow. When

l = 0, Eq. (4.23) reduces to ⟨a†pr(t2)Lpr(t1)⟩. The notation α
(±)
i (τ)L

(∓)
i (τ) means either α∗

i (τ)Li(τ)

or αi(τ)L
†
i (τ).

We note that the optical signal expression of Eq. (4.23) applies not just to the case of a single
molecule, but also to the case of many molecules. This is because the matter operators L of different
molecules commute with each other, so that Eq. (4.23) is nonzero only if all the L operators in the
commutator originate from the same molecule. This argument applies to all signal expressions in the
remainder of the paper. The fact that there are many molecules in our matter system gives rise to
phase matching conditions, which we describe in the following paragraph.

Physically, Eq. (4.23) represents the heterodyne measurement between the probe field (i.e., the a†pr
in the first line) and the field generated by the matter polarization that is induced by the interactions
with the classical fields (the second line). In all of the first order terms, the probe field expectation
value factorizes out as ⟨a†pr(t)⟩ or ⟨apr(t)⟩. These one-point correlation functions are zero for Fock
state inputs and nonzero for coherent state inputs; therefore Eq. (4.23) is different for Fock state and
coherent state inputs. However, the optical signal generated by the matter polarization has the phase
matching condition [46,64,110]

ksig = ki1 ± · · · ± kil , (4.24)

where the ki on the right-hand side are the wavevectors of the classical pulses. This means that ksig

must be in a different direction than the probe field direction kpr, due to our assumption of the beam
geometry in Eq. (4.9), i.e., the probe pulse is not phase matched with any of the classical pulses.
Therefore the probe field signal of Eq. (4.23) will vanish because it is not phase-matched to the
matter polarization. At the molecular level, this means that in our beam geometry, the polarization
from different molecules will generate destructively interfering signals and result in zero overall signal.
Hence the first order (∼ Lpr

1) signal does not contribute to the probe field output.

Second order terms (∼ Lpr
2). There are two types of second order terms. The first type is related

to spontaneous emission and takes the form

Type 1:

∫
dτl · · · dτ1dσp · · · dσ1

〈[[
· · · [ L†

pr(t2) , α
(±)
il

(τl)L
(∓)
il

(τl)], · · ·
]
, α

(±)
i1

(τ1)L
(∓)
i1

(τ1)
]

[[
· · · [ Lpr(t1) , α

(±)
jp

(σl)L
(∓)
jp

(σl)], · · ·
]
, α

(±)
j1

(σ1)L
(∓)
j1

(σ1)
]〉
.

(4.25)

The integrand is a product of two nested commutators. Here l and p can take values of 0, 1, 2, · · · .
Each of the i and j indices can be any one of the n semi-classical interactions of the Hamiltonian. We
take only the semi-classical part of the Hamiltonian in the commutators, since there is already one
Lpr in each of the two nested commutators. Otherwise Eq. (4.25) will contain more than two Lpr,
becoming a higher-order term. In the case of l = p = 0, Eq. (4.25) becomes ⟨L†

pr(t2)Lpr(t1)⟩: this
represents spontaneous emission into the probe field without any interaction with the classical pulses.
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Since Eq. (4.25) contains no probe field operator (i.e., no apr or a
†
pr terms), the expectation value is

the same for all input field states, regardless of the phase matching conditions. For completeness, we
note that the phase matching condition for these terms is [64]

0 = ki1 ± · · · ± kil ± kj1 ± · · · ± kjp . (4.26)

The second type of second-order terms is related to absorption and stimulated emission, and has
the form of

Type 2:

∫
dτl · · · dτ1

〈
a†pr(t2)[[

· · · [[· · · [ Lpr(t1) , α
(±)
il

(τl)L
(∓)
il

(τl)], · · · ], a(±)
pr (τj) L

(∓)
pr (τj) ], · · ·

]
, α

(±)
i1

(τ1)L
(∓)
i1

(τ1)
]〉

(4.27)

and its complex conjugate. In the nested commutator expression here, there is exactly one interaction
with the quantum probe field. Physically, Eq. (4.27) represents the heterodyne measurement between
the probe field (i.e., the a†pr in the first line) and the field generated by the matter polarization that
is induced by one interaction with the quantum probe field and a number of interactions with the

classical fields (the second line). The notation of the probe interaction term a
(±)
pr (τj)L

(∓)
pr (τj) stands

for either the product a†pr(τj)Lpr(τj) or apr(τj)L
†
pr(τj).

When the probe field interaction is a†pr(τj)Lpr(τj), the probe field correlation in Eq. (4.27) factor-

izes out as ⟨a†pr(t2)a†pr(τj)⟩, which is zero for Fock state inputs and nonzero for coherent state inputs.
Now the optical signal generated by the matter polarization has the phase matching condition of

ksig = ki1 ± · · · − kpr · · · ± kil , (4.28)

where the right hand side contains only one probe field wavevector kpr, and all other ki are the classical
pulse wavevectors. But as discussed above, ksig cannot be in the same direction as kpr due to our
assumption of the beam geometry in Eq. (4.9). Therefore the final signal is not phase matched in the
probe field direction kpr and will vanish. So neither a Fock state input nor a coherent state input will
produce any signal from the a†pr(τj)Lpr(τj) interaction in this direction.

On the other hand, when the probe field interaction in Eq. (4.27) is apr(τj)L
†
pr(τj), the field

correlation now factorizes as ⟨a†pr(t2)apr(τj)⟩, which is the same for both the single-photon Fock state
and single-photon coherent state inputs, regardless of the phase-matching condition. These terms
represent the transient absorption/stimulated emission of the probe field due to the interaction with
the classical pulses. In this case the phase matching condition of the optical signal generated by the
matter polarization is now

ksig = ki1 ± · · ·+ kpr · · · ± kil , (4.29)

where the right hand side consists of only one probe field wavevector kpr, and all other ki are the
classical pulse wavevectors. We see that now if the classical pulse wavevectors cancel each other out
pairwise, then we will have the correct phase matching condition of ksig = kpr that results in a non-zero
final signal in the probe field.

Due to the weak nature of the interaction between a single photon and a molecule (for example
the probability for a chlorophyll molecule to absorb a single photon is at most on the order of ∼ 10−6

due to phonon dephasing [52, 59]), it is reasonable to truncate Eq. (4.19) up to second order in Lpr.
This second-order truncation corresponds to one interaction with the probe field in the language of
classical nonlinear spectroscopy [46].
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We may then combine the analysis for all of the terms up to second order in Lpr (i.e., Eqs. (4.22),
(4.23), and (4.25), and the two cases in Eq. (4.27)). Doing this, we see first that while the first-
order contribution Eq. (4.23) and the first case of the second type of second-order contribution Eq.
(4.27) yield different values for Fock state and coherent state inputs, neither of these terms appears
in the final signal due to the phase matching constraint, so they cannot contribute to a difference
between Fock and coherent state inputs. In contrast, the zeroth-order contribution Eqs. (4.22), the
first type of the second-order contribution (4.25), and the second case of the second type of second
order contribution Eq. (4.27) yield the same value for both Fock state and coherent state inputs, and
these terms do have the correct phase matching condition to contribute to the final signal. Therefore,
provided that the coherent state has the same temporal profile as the Fock state, a single photon
Fock state probe and a single photon coherent state probe will produce exactly the same signal in the
experimental setups of Fig. (4.1b) and (4.1c). Furthermore, a many photon coherent state probe with
the same temporal profile will amplify the signals of Eq. (4.22) and the second case of Eq. (4.27) by
a factor of m, where m is the average number of photons.

4.3 Example: Pump quantum-inspired probe (PQIP) spec-
troscopy

To demonstrate this equivalence between an entangled photon probe and a coherent state probe,
we consider here the specific example of the classical pump - quantum probe experiment described
theoretically in [56], which corresponds to the case of a single classical pump pulse, i.e., n = 1 in
Fig. (4.1). We then compare this experiment to the corresponding classical pump - quantum-inspired
classical probe experiment, which we shall refer to as “pump quantum-inspired probe” (PQIP). In this
experiment, a delta-function classical pump first excites a four-level matter system from the ground
state |g⟩ to the singly excited state |e⟩, which transfers the excitation to another lower-energy singly
excited state |e′⟩ irreversibly with a rate k (see Fig. (4.2a)). These energy transfer dynamics are
monitored by the transient absorption of a probe pulse (delayed by time t0 from the pump pulse) that
excites |e⟩ or |e′⟩ into the doubly excited state |f⟩. In [56], the probe pulse was taken to be either
a classical pulse or an entangled photon pair. Fig. (4.2c) shows the calculated transient absorption
spectrum using a conventional classical probe pulse consisting of a single gaussian with frequency
width σ = 600 cm−1, covering both transition frequencies from |e⟩ and |e′⟩ to |f⟩. The structure of
the two peaks centered at different delay times reveal the energy transfer dynamics from |e⟩ to |e′⟩.

In the case of a biphoton probe, the photon pair state |Ψ⟩ is given by Eq. (4.2), with the biphoton
wavefunction Φ(ωpr, ωr). One photon (the reference photon) of the probe photon pair does not interact
with the matter system and its frequency ωr is measured. The other photon (the probe signal photon)
interacts with the matter system and is frequency-resolved. For each ωr, there is a transient absorption
spectrum as a function of the signal frequency ω and delay time t0. As discussed in [56], due to the
frequency correlation in the entangled photon pair, by selecting different values of ωr, one can target
specific frequency windows of the transient absorption spectrum, thereby simplifying the spectrum.

The theoretical analysis of these spectra obtained from biphoton pulses proceeds as follows. The
pump-probe signal for a fixed reference photon frequency ωr is the difference between the output and
the input signals

⟨a†r(ωr)ar(ωr)a
†
pr,out(ω)apr,out(ω)⟩ − ⟨a†r(ωr)ar(ωr)a

†
pr(ω)apr(ω)⟩. (4.30)

If no reference photon is used, the pump-probe signal becomes

⟨a†pr,out(ω)apr,out(ω)⟩ − ⟨a†pr(ω)apr(ω)⟩. (4.31)

Applying Eqs. (4.17) and (4.18), the lowest order term of Eq. (4.30), represented by the double-sided
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Figure 4.2: (a) Energy level scheme with four levels from [56], which we use for our numerical example.
The pump pulse is resonant to only the |g⟩ → |e⟩ transition. The probe pulse is resonant to only the
|e⟩ → |f⟩ and |e′⟩ → |f⟩ transitions. (b) Double-sided Feynman diagram representing the excited state
absorption of the pump-probe signal. The order of the first two pump interactions can be switched.
(c) Transient absorption spectrum due to a conventional classical probe. The spectrum plots the
change in the probe field frequency-resolved photon count ⟨a†pr(ω)apr(ω)⟩ at frequency ω, i.e., the
signal photon number spectral density. This conventional classical probe has a Gaussian frequency
profile E(ω) ∝ e−(ω−ω0)

2/2σ2

(ω0 = 11000 cm−1, σ = 600 cm−1) and contains on average 106 photons.
The frequency distribution |E(ω)|2 of the input probe pulse is plotted on the left of the spectrum.

Feynman diagram of Fig. (4.2b), is

−
∫ ∞

−∞

dt2√
2π

∫ ∞

−∞

dt1√
2π
eiω(t1−t2)

∫ t1

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ3

−∞
dτ1〈

a†r(ωr)ar(ωr)a
†
pr(t2)apr(τ3)

〉〈
Lpu(τ1)Lpr(t1)L

†
pr(τ3)L

†
pu(τ2)

〉
α∗
pu(τ1)αpu(τ2) + c.c.

(4.32)

Note that Eq. (4.32) originates from the second-order (∼ L2
pr) expansion term of the form of Eq.

(4.27). Substituting in the delta-function classical pump αpu(t) ∝ δ(t), Eq. (4.32) is now proportional
to

−
∫ ∞

−∞
dω′
〈
a†r(ωr)ar(ωr)a

†
pr(ω)apr(ω

′)
〉

∫ ∞

0

dt1

∫ t1

0

dτ3 e
iωt1e−iω′τ3

〈
Lpu(0)Lpr(t1)L

†
pr(τ3)L

†
pu(0)

〉
+ c.c.

(4.33)

Since the field correlation function in Eq. (4.33) with a time delay of t0 evaluates to〈
a†r(ωr)ar(ωr)a

†
pr(ω)apr(ω

′)
〉
= Φ∗(ω, ωr)Φ(ω

′, ωr)e
i(ω′−ω)t0 , (4.34)

The signal Eq. (4.33) can be expressed compactly as [56]

−Re

∫
dω′Φ∗(ω, ωr)Φ(ω

′, ωr)F̃ (ω
′, ω; t0), (4.35)

where

F̃ (ω′, ω; t0) =

∫ ∞

0

dt1

∫ t1

0

dτ3 e
iω(t1−t0)e−iω′(τ3−t0)

〈
Lpu(0)Lpr(t1)L

†
pr(τ3)L

†
pu(0)

〉
(4.36)
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is the frequency-domain matter correlation function defined in [56].

The detailed model of the matter system, the corresponding analytical form of F̃ (ω′, ω; t0), and
the analytical form of Φ(ωpr, ωr) are discussed in [56] and summarized in Appendix F. Similarly, if
a single photon Fock state or a coherent state is used as the probe, then the pump-probe signal Eq.
(4.31) becomes

−Re

∫
dω′ξ∗(ω)ξ(ω′)F̃ (ω′, ω; t0), (4.37)

where ξ(ω) is the frequency profile of the probe pulse (see Eqs. (4.10)-(4.12)).

Comparing Eq. (4.35) and Eq. (4.37), we observe that if we choose a quantum-inspired coherent
state probe with coherent amplitude ξpr(ω) = Φ(ω, ωr), the final signal is exactly proportional to
Eq. (4.35) at a fixed reference photon frequency ωr. Therefore the classical pump - quantum probe
experiment can be exactly reproduced using a standard classical pump - classical probe setup, with
the only additional feature of requiring a pulse shaper for the quantum-inspired classical probe pulse.
The shape of the quantum-inspired classical probe is parameterized by ωr, together with the other
parameters of the biphoton pulse (see Appendix F).

The classical pump - quantum probe spectra with biphoton pulses, characterized by two choices
of ωr, are shown in the left-hand panels (a) and (b) of Fig. (4.3). The signal is detected in the
probe beam direction, in accordance with the phase matching requirement discussed in Equivalence
2. The simplification of the spectra relative to the conventional pump-probe spectrum in Fig. (4.2) is
immediately evident, with the two peaks now clearly resolved, permitting a more detailed analysis of
the coupled dynamics underlying the two spectra.

The corresponding PQIP spectra are shown in the right-hand panels (c) and (d) of Fig. (4.3).
In the numerical simulation, we use a classical probe containing an average of m = 106 photons to
amplify the final signal by a factor of 106. As noted above, this has the additional benefit of making
the signal detection much easier experimentally than when using an entangled biphoton probe. When
the amplified signals are normalized to the same reference value as that for panels (a) and (b), the left-
and right-hand panels of Fig. (4.3) are identical to within numerical precision, validating the PQIP
analysis. The specific quantum-inspired pulses that produce the same spectra as the biphoton probe
with ωr values in panels (a) and (b) of Fig. (4.2) are given explicitly in Section B of the Supporting
Information.

4.4 Reflection on quantum advantage of QLS

We have shown that for a class of QLS experiments consisting of n = 0, 1, 2 · · · classical pulses and
an entangled photon pair probe in the scheme of Fig. (4.1a), the use of the entangled photon pair
can be replaced with a specially designed coherent state pulse, which behaves as classical light when
normal-ordered field correlations are evaluated. The two main requirements for this equivalence to
hold are the following: (1) there is no phase matching of the classical pulses into the direction of the
probe field, and (2) signal measurement takes the form of (time-integrated) photon flux, frequency-
resolved photon count, or g(1)(t) correlation function. In this work we also demonstrated the validity
of the analysis by explicit calculations of the signal for a classical pump – entangled photon probe
experiment, showing numerical equivalence with the signal obtained from a classical pump with a
coherent state pulse that is constructed according to the two equivalences.

There is in fact a larger class of QLS experiments that can be emulated using classical light
pulses. More generally, whenever a biphoton input is used and one of the photons is measured
at frequency ωr, without interacting with anything, so that the signal consists of field correlation
functions of the form ⟨a†r(ωr)ar(ωr)a

†(t2)a(t1)⟩, the signal can be reproduced using coherent state
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Figure 4.3: Transient absorption spectra obtained using (a-b) an entangled biphoton probe or (c-d)
quantum-inspired classical probes. The signal is the change of the probe field frequency-resolved
photon count ⟨a†(ω)a(ω)⟩ at frequency ω, i.e., the signal photon number spectral density. In panels
(a) and (b), the signal is conditioned on the reference photon frequencies of (a) ωr = 11400 cm−1

(b) ωr = 10400 cm−1. On the left of each spectrum is the frequency distribution |Φ(ω, ωr)|2 of
the probe single photon for fixed ωr. In panels (c) and (d), classical probes with frequency profiles
ξ(ω) = Φ(ω, ωr) are used, where ωr = 11400 cm−1 in (c) and ωr = 10400 cm−1 in (d), corresponding
to panels (a) and (b), respectively. The classical probe pulses contain 106 photons on average, resulting
in 106 times signal amplification. Note that the scales of the color bars in (c) and (d) are 106 larger
than those in (a) and (b).
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pulses that are specifically designed for the biphoton state and reference frequency. For example,
we can go beyond the dipole – electric field interaction used in this paper and allow for Raman
scattering interactions. The intensity correlated Raman signal in [105] and the (1,0) component of the
interferometric stimulated Raman signal in [101] depend on the biphoton input through the correlation
function ⟨a†r(ωr)ar(ωr)a

†
pr(t2)apr(t1)⟩. These experiments also use a biphoton state as an input, with

one of the photons acting as the reference. The reference photon does not interact with anything and
its frequency ωr is measured. Therefore these QLS experiments can also be reproduced by classical
pulses parameterized by the biphoton wavefunction and the reference photon frequency.

Going beyond the scope of analysis in this paper, one may also consider the effect of the envi-
ronmental background photon noise (i.e., dark counts) on spectroscopy with entangled photons [102].
Here the signal-to-dark-count improvement offered by entangled photon pairs described in [102], can
be achieved by using pulsed classical light in only the signal arm and detecting the output photon
only in the time window ∆t that is set to be equal to the pulse duration. This is because the number
of dark count photons during the detection time window is linearly proportional to ∆t, so by using a
classical pulse with a short duration (i.e., small ∆t), one can reduce the number of dark count photons
and increase the signal-to-dark-count ratio.

We can also consider the effect of noise due to the uncertainty of the photon number or the
noise due to detector inefficiency. For simplicity, we shall refer here to both of these uncertainties
as measurement shot noise. Using a 100% efficient photon detector, the detection of a single photon
has zero shot noise. Therefore the signal-to-noise of a single photon from one half of an entangled
photon pair cannot be achieved using classical pulses. However if the photon detector is not perfectly
efficient, the detection of a single photon will contain a nonzero shot noise. Then the signal-to-noise
ratio for the detection of a single photon can be achieved or surpassed by using a coherent state pulse
with large enough amplitude. This is because the signal-to-noise ratio of a coherent state under both
perfectly efficient or inefficient photon detectors is equal to

√
average number of photons detected [22].

Therefore by increasing the coherent state amplitude, one can systematically improve the signal-to-
noise ratio.

Finally, we note that while some QLS experiments can be reproduced using carefully designed
classical light sources as shown here, at the same time the technologies for generation and detection
of quantum light are maturing, raising the possibility of a new generation of QLS experiments. The
equivalence between entangled biphoton probes and classical-like coherent state probes shown in this
work leads to a new category of quantum-inspired classical spectroscopy experiments, such as the pump
quantum-inspired probe experiment. An understanding of the range of applicability of the equivalence
demonstrated here will provide insights for future design of more powerful QLS experiments that
cannot be replicated by suitably designed quantum-inspired classical pulses and that could provide a
true quantum advantage for the study of electronic dynamics in complex systems.
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Chapter 5

Normal-ordered perturbative
expansion of the reduced system
state

So far, we have focused on the perturbative expansion of the output photon field in the Heisenberg
picture. We have shown in Sec. 3.4 that this expansion can be written in a form that contains
only normal-ordered field operators, simplifying the calculation of the field expectation value. In
this chapter, we will work in a modified interaction picture to show how to obtain a normal-ordered
perturbative expansion of the reduced system state ρsys(t) = Trfield(ρtot(t)). In this normal-ordered
expansion of the reduced system state, the field expectation values only consist of normal-ordered
field operators. We note that this normal-ordered expansion relies on the assumption that the initial
total state ρtot(0) = ρsys(0)⊗ ρfield(0) is a product state between the initial system state ρsys(0) and
the initial field state ρfield(0). Conventional perturbative expansion of the reduced system state does
not enforce normal-ordering, and one usually needs to evaluate expectation values of non-normal-
ordered field operators. Since evaluating the expectation values of normal-ordered field operators is
usually simpler than evaluating the expectation values of non-normal-ordered operators, this normal-
ordered expansion can be more convenient to use. We shall first consider the case of a single molecule
interacting with one spatial mode. Then we will generalize the normal-ordered expansion to many
spatial modes.

5.1 Derivation

5.1.1 A different interaction picture

The normal-ordered perturbative expansion works in a modified interaction picture. We rotate out
Hfield from the total Hamiltonian

Hsys+field = Hsys +Hfield +Hcoup (5.1)

(see Eq. (1.1)). Note that this is a different interaction picture Hamiltonian from the Hamiltonian
used from Ch. 1 to Ch. 3. Previously, the interaction picture rotates out Hsys+Hfield from Hsys+field.
Here, we only rotate out Hfield. The Hamiltonian in this modified interaction frame is

H ′(t) = eiHfieldt(Hsys +Hcoup)e
−iHfieldt. (5.2)
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Similar to Eq. (1.26), we define a time evolution operator U ′(t) as the solution to

dU ′(t)/dt = −iH ′(t)U ′(t) (5.3)

with the initial condition U ′(0) = 1. Therefore the total time evolution operator e−iHsys+fieldt can be
decomposed as

e−iHsys+fieldt = e−iHfieldtU ′(t). (5.4)

The total density matrix ρS,tot(t) in the Schrodinger picture is transformed into the corresponding
density matrix ρ′tot(t) in this interaction picture by the transformation

ρ′tot(t) = eiHfieldtρS,tot(t)e
−iHfieldt. (5.5)

Taking the partial trace over field and using the fact that Trfield is invariant under the cyclic permu-
tation of field operators, we have

ρsys(t) = Trfield
(
ρ′tot(t)

)
= Trfield

(
ρS,tot(t)

)
. (5.6)

Therefore, the reduced system state obtained by the partial trace of ρ′tot(t) in the modified interaction
picture is equal to the reduced system state obtained by the partial trace of ρS,tot(t) in the Schrodinger
picture.

ρ′tot(t) can also be expressed in terms of U ′(t) as

ρ′tot(t) = U ′(t)ρtot(0)U
′†(t). (5.7)

Since at time t = 0, ρtot(0) in the interaction picture is the same as that in the Schrodinger picture,
we will drop the “ ′ ” on ρ′tot(0). Taking the time derivative, we obtain the Liouville-von Neumann
equation in the interaction picture

d

dt
ρ′tot(t) = −i[H ′(t), ρ′tot(t)]. (5.8)

Using the fact thatHsys commutes withHfield and following the derivation in Sec. 1.4, the Hamiltonian
H ′(t) in Eq. (5.2) becomes

H ′(t) = Hsys − ia(t)L† + ia†(t)L (5.9)

for the case of a single-molecule and a single spatial mode. See Eq. (1.32) to compare this Hamiltonian
with the Hamiltonian in the interaction picture used from Ch. 1 to Ch. 3.

5.1.2 Conventional perturbative expansion for the reduced system state

The usual perturbative expansion of the reduced system state makes use of the weak light-matter
coupling strength, so that

|Hsys| ≫ | − ia(t)L† + ia†(t)L|. (5.10)

One way to derive the conventional perturbative expansion for the reduced system state is to first
express the Liouville-Von Neumann equation (Eq. (5.8)) in superoperator form as

d

dt
ρ′tot(t) = K′ρ′tot(t) + L(t)ρ′tot(t), (5.11)

where K′ and L are superoperators defined as

K′ = −i[Hsys, •] (5.12)
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and
L(t) = [−a(t)L† + a†(t)L, •]. (5.13)

The superoperator notation using • means that the action of the superoperator on an operator is
performed by substituting the operator into the •. For example, (−i[Hsys, •])ρ = −i[Hsys, ρ]. Solving
the Liouville-Von Neumann equation (Eq. (5.11)) formally, we have

ρ′tot(t) = eK
′tρ′tot(0) +

∫ t

0

dt1e
K′(t−t1)L(t1)ρ′tot(t1). (5.14)

We note that K′(t− t′) denotes the superoperator K′ times the real-valued number t− t′, while L(t)
means the superoperator L is a function of time t. The first term on the right hand side represents the
free evolution due to Hsys, while the second term represents the perturbation due to the interaction
between the matter and the photon field. Substituting this expression into itself iteratively to obtain
a perturbative series of ρ′tot(t), and then take the partial trace over the field, we have

ρsys(t) = Trfield

(
eK

′tρtot(0)

+

∫ t

0

dt1 e
K′(t−t1)L(t1)eK

′(t1)ρtot(0)

+

∫ t

0

dt2

∫ t2

0

dt1 e
K′(t−t2)L(t2)eK

′(t2−t1)L(t1)eK
′(t1)ρtot(0)

+ · · ·
)
.

(5.15)

This is the conventional perturbative expansion for the reduced system state. In this expansion, K′ acts
only on the system degrees of freedom. The field operators only appear in L. The action of multiple
L on ρfield(0) will result in expectation values of non-normal-ordered field operators. For example,
the second order term of the expansion contains 8 different field expectation values: ⟨a†(t2)a†(t1)⟩,
⟨a†(t1)a†(t2)⟩, ⟨a†(t2)a(t1)⟩, ⟨a†(t1)a(t2)⟩, ⟨a(t2)a†(t1)⟩, ⟨a(t1)a†(t2)⟩, ⟨a(t2)a(t1)⟩, and ⟨a(t1)a(t2)⟩.
Two of these expectation values are not normal-ordered.

In the semi-classical treatment of light-matter interaction, one replaces the field operators a(t) and
a†(t) with the classical complex-valued amplitudes α(t) and α∗(t). This corresponds to evaluating the
expectation values of normal-ordered field operators with respect to a coherent state of light, since a
coherent state |α⟩ is an eigenstate of the annihilation operator a(s) (see Eq. (2.11)) [67]. However, this
replacement is correct only for normal-ordered field operators. and the non-normal-ordered operators
will give rise to quantum corrections to the semi-classical treatment. From the conventional expansion
of Eq. (5.15), it is not easy to extract the quantum correction to the semi-classical treatment. The
normal ordered expansion described in Sec. 3.4 cannot be used here because ρfield usually can not be
expressed simply as a normal ordered operator.

5.1.3 Normal-ordered perturbative expansion for the reduced system state

To derive the normal-ordered perturbative expansion of the system state, we first need to derive the
identity

[a(t), U ′(t)] =
1

2
LU ′(t). (5.16)

The derivation is very similar to the derivation of the input-output relation in Sec. 2.1. First, we
define a(s, t) as U ′†(t)a(s)U ′(t). Using Eqs. (5.3) and (5.9), we obtain

∂a(s, t)

∂t
= δ(s− t)U ′†(t)LU ′(t), (5.17)
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similar to Eq. (2.3). We assume s > 0, meaning that at time t = 0, the plane of the photon field
a(s) has not interacted with the molecule at the origin. Solving Eq. (5.17) using the initial condition
a(s, 0) = a(s), we have the input-output relation as

a(s, t) =


a(s) , t < s

a(s) + 1
2U

′†(t)LU ′(t) , t = s

a(s) + U ′†(t)LU ′(t) , t > s.

(5.18)

When t < s, the Heisenberg-evolved field operator a(s, t) is identified as the input field. When t > s,
a(s, t) is identified as the output field. When t = s, the factor of 1/2 originates from cutting the delta
function in half. In the case of t = s, we have U ′†(t)a(t)U ′(t) = a(t)+ 1

2U
′†(t)LU ′(t). Left multiplying

both sides of this equation by U ′(t), then we arrive at the commutation relation of Eq. (5.16).

Using the commutation relation of Eq. (5.16), we can write the Schrodinger equation (Eq. (5.3))
in a normal-ordered form as

dU ′(t)

dt
= −iH ′(t)U ′(t)

= −iHsysU
′(t)− L†a(t)U ′(t) + a†(t)LU ′(t)

= −iHsysU
′(t)− L†(1

2
LU ′(t) + U ′(t)a(t)

)
+ a†(t)LU ′(t)

=
(
− iHsys −

1

2
L†L

)
U ′(t)− L†U ′(t)a(t) + a†(t)LU ′(t).

(5.19)

This allows us to express the time derivative of the reduced time evolution superoperator as

d

dt
Trfield

(
U ′(t) • U ′†(t)

)
= Trfield

(
− i
[
Hsys, U

′(t) • U ′†(t)
]
− 1

2

{
L†L,U ′(t) • U ′†(t)

}
− L†U ′(t)a(t) • U ′†(t)− U ′(t) • a†(t)U ′†(t)L

+ U ′(t) • U ′†(t)L†a(t) + a†(t)LU ′(t) • U ′†(t)

)
.

(5.20)

The notation {A,B} = AB+BA denotes the anticommutator. To obtain the normal-ordered pertur-
bative expansion, we want to turn this expression into to a form such that all a(t) appear on the left
of • as U ′(t)a(t) • U ′†(t) and all a†(t) appear on the right of • as U ′(t) • a†(t)U ′†(t). The reason for
this arrangement will be clearer when we later substitute the • with ρ′tot(0) = ρsys(0)⊗ρfield(0), so the
field expectation value takes the form Trfield(a(t

′
1) · · · a(t′m)ρfield(0)a

†(t′′n) · · · a†(t′′1)). By the invariance
of cyclic permutation under trace, this becomes the expectation value ⟨a†(t′′n) · · · a†(t′′1)a(t′1) · · · a(t′m)⟩
of a normal-ordered operator with respect to the initial field state ρfield(0).

The final two terms on the right hand side of Eq. (5.20) do not take the desired form and need
further manipulation. Under partial trace over the field degrees of freedom, the field operators a(t)
and a†(t) can be permuted cyclically. Therefore, the second to last term on the right hand side of Eq.
(5.20) becomes

Trfield
(
U ′(t) • U ′†(t)L†a(t)

)
= Trfield

(
a(t)U ′(t) • U ′†(t)L†)

= Trfield
(
U ′(t)a(t) • U ′†(t)L† +

1

2
LU ′(t) • U ′†(t)L†), (5.21)

where we have applied the commutation relation of Eq. (5.16) to obtain the last equality. The last
term on the right hand side of Eq. (5.20) is simply the Hermitian conjugate of Eq. (5.21).
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Now, Eq. (5.20) can be put in the desired form as

d

dt
Trfield

(
U ′(t) • U ′†(t)

)
= Trfield

(
− i
[
Hsys, U

′(t) • U ′†(t)
]
− 1

2

{
L†L,U ′(t) • U ′†(t)

}
+ LU ′(t) • U ′†(t)L†

−
[
L†, U ′(t)a(t) • U ′†(t)

]
+
[
L,U ′(t) • a†(t)U ′†(t)

])
.

(5.22)

This should be compared with the conventional result

d

dt
Trfield

(
U ′(t) • U ′†(t)

)
= Trfield

(
− i
[
Hsys, U

′(t) • U ′†(t)
]

−
[
a(t)L†, U ′(t) • U ′†(t)

]
+
[
a†(t)L,U ′(t) • U ′†(t)

])
,

(5.23)

where no normal-ordering is applied. Comparing Eqs. (5.22) and (5.23), we see that by ordering a(t)
and a†(t) into the forms U ′(t)a(t) • U ′†(t) and U ′(t) • a†(t)U ′†(t), a Lindblad dissipator term (i.e.,
− 1

2{L†L,U ′(t) • U ′†(t)}+ LU ′(t) • U ′†(t)L†) has to be added.

Since system operators can be taken out of the partial trace over field, Eq. (5.22) can be re-written
as

d

dt
Trfield

(
U ′(t) • U ′†(t)

)
= K

(
Trfield

(
U ′(t) • U ′†(t)

))
−
[
L†,Trfield

(
U ′(t)a(t) • U ′†(t)

)]
+
[
L,Trfield

(
U ′(t) • a†(t)U ′†(t)

)]
,

(5.24)

where K = is defined as the superoperator

K = −i[Hsys, •]−
1

2
{L†L•}+ L • L†. (5.25)

Solving Eq. (5.24) formally, we have

Trfield

(
U ′(t) • U ′†(t)

)
=eKtTrfield(•) +

∫ t

0

dt1 e
K(t−t1)([

− L†,Trfield
(
U ′(t1)a(t1) • U ′†(t1)

)]
+
[
L,Trfield

(
U ′(t1) • a†(t1)U ′†(t1)

)])
.

(5.26)

Applying Eq. (5.26) to the combined initial state ρtot(0), we have

ρsys(t) = Trfield

(
U ′(t)ρtot(0)U

′†(t)
)

= eKtTrfield
(
ρtot(0)

)
+

∫ t

0

dt1 e
K(t−t1)([

− L†,Trfield
(
U ′(t1)a(t1)ρtot(0)U

′†(t1)
)]

+
[
L,Trfield

(
U ′(t1)ρtot(0)a

†(t1)U
′†(t1)

)])
.

(5.27)
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We can further expand Trfield
(
U ′(t1)a(t1)ρtot(0)U

′†(t1)
)
and its Hermitian conjugate in the integrand

by applying Eq. (5.26) to a(t1)ρtot(0) and its Hermitian conjugate. Then ρsys(t) becomes

ρsys(t) = eKtTrfield
(
ρtot(0)

)
+

∫ t

0

dt1 e
K(t−t1)

([
− L†, eKt1Trfield

(
a(t1)ρtot(0)

)]
+
[
L, eKt1Trfield

(
ρtot(0)a

†(t1)
)])

+

∫ t

0

dt2

∫ t2

0

dt1 e
K(t−t2)

([
− L†, eK(t2−t1)

[
− L†,Trfield

(
U ′(t1)a(t1)a(t2)ρtot(0)U

′†(t1)
)]]

+
[
− L†, eK(t2−t1)

[
L,Trfield

(
U ′(t1)a(t2)ρtot(0)a

†(t1))U
′†(t1)

)]]
+
[
L, eK(t2−t1)

[
− L†,Trfield

(
U ′(t1)a(t1)ρtot(0)a

†(t2)U
′†(t1)

)]]
+
[
L, eK(t2−t1)

[
L,Trfield

(
U ′(t1)ρtot(0)a

†(t2)a
†(t1)U

′†(t1)
)]])

.

(5.28)

In this expansion, we have new terms like Trfield
(
U ′(t1)a(t1)a(t2)ρtot(0)U

′†(t1)
)
, where there are now

two field operators in the partial trace. We can apply Eq. (5.26) again to these new terms. Repeating
this iterative procedure, we have

ρsys(t) = eKtTrfield
(
ρtot(0)

)
+

∫ t

0

dt1 e
K(t−t1)

([
− L†, eKt1Trfield

(
a(t1)ρtot(0)

)]
+
[
L, eKt1Trfield

(
ρtot(0)a

†(t1)
)])

+

∫ t

0

dt2

∫ t2

0

dt1 e
K(t−t2)

([
− L†, eK(t2−t1)

[
− L†, eKt1Trfield

(
a(t1)a(t2)ρtot(0)

)]]
+
[
− L†, eK(t2−t1)

[
L, eKt1Trfield

(
a(t2)ρtot(0)a

†(t1))
)]]

+
[
L, eK(t2−t1)

[
− L†, eKt1Trfield

(
a(t1)ρtot(0)a

†(t2)
)]]

+
[
L, eK(t2−t1)

[
L, eKt1Trfield

(
ρtot(0)a

†(t2)a
†(t1)

)]])
+ · · · .

(5.29)

Notice that Eq. (5.26) ensures that the field operators inside the partial traces over field in Eq. (5.29)
always take the general form

a(t′1) · · · a(t′m)ρtot(0)a
†(t′′n) · · · a†(t′′1), (5.30)

where a(t) are on the left of ρtot(0), and a
†(t) are on the right of ρtot(0). We call the ordering of the

field operators in Eq. (5.30) normal ordering because when ρtot(0) = ρsys(0)⊗ ρfield(0) (i.e., ρtot(0) is
separable), the partial trace

Trfield
(
a(t′1) · · · a(t′m)ρtot(0)a

†(t′′n) · · · a†(t′′1)
)

=
〈
a†(t′′n) · · · a†(t′′1)a(t′1) · · · a(t′m)

〉
ρsys(0).

(5.31)

becomes ρsys(0) times the expectation value of a normal-ordered string of field operators. The relative
ordering among the annihilation operators a(t) or among the creation operators a†(t) is not important,
since the annihilation operators (or creation operators) commute among themselves.
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Eq. (5.29) is the normal-ordered perturbative expansion of the reduced system state, i.e., the state
on which the partial trace over the field degrees of freedom has been taken. We can re-write it in a
simpler-looking form. Notice that apart from the partial traces, the superoperator K and the operator
L act only on the system degrees of freedom. So we can pull out the Trfield to the front and apply this
partial trace to all the terms on the right hand side. Also notice that, because normal-ordering of the
field operators is preserved throughout the expansion due to the ordering in Eq. (5.26), we do not
need to keep track of the exact ordering of the field operators during the expansion. In other words,
even if the ordering of the field operators are scrambled, if we re-order the field operators using normal
ordering at the end, then the correct operator ordering is recovered. Therefore we now re-express Eq.
(5.29) as

ρsys(t) = TrfieldN̂
(
eKtρtot(0)

+

∫ t

0

dt1 e
K(t−t1)L(t1)eKt1ρtot(0)

+

∫ t

0

dt2

∫ t2

0

dt1 e
K(t−t2)L(t2)eK(t2−t1)L(t1)eK(t1)ρtot(0)

+ · · ·
)
.

(5.32)

The notation TrfieldN̂ means to normal-order the field operators according to Eq. (5.30), and then
evaluate the partial trace over the field degrees of freedom. We note again that L(t) is the superop-
erator [−a(t)L† + a†(t)L, •] (see Eq. (5.13)).

The derivation of Eq. (5.32) can be generalized straightforwardly to the case of a single molecule
interacting with multiple spatial modes of light (indexed by l). The final result takes the same form
as Eq. (5.32), but with the superoperators K and L modified to sum over the photon modes, i.e.,

K = −i[Hsys, •] +
∑
l

(
− 1

2
{L†

lLl•}+ Ll • L†
l

)
(5.33)

and
L(t) =

∑
l

[−a(t)L†
l + a†(t)Ll, •]. (5.34)

Comparing this result to the conventional non-normal-ordered expansion of Eq. (5.15), we see
that by changing the free evolution generator from K′ (Eq. (5.12)) to K (Eq. (5.25)), we only need
to evaluate normal-ordered field operators now. K′ = −i[Hsys, •] describes the Hamiltonian evolution
the free evolution, while K = K′ − 1

2{L†L, •}+ L • L† describes both the Hamiltonian evolution and
the dissipation due to spontaneous emission. Hence, the lack of normal ordereding in the conventional
expansion is captured by the Lindblad dissipator.

We will see in Sec. 5.4 that given a fixed order of perturbation, the normal-ordered expansion for
the reduced system state can provide a more accurate description for the reduced system dynamics
than the conventional expansion does. The normal-ordered expansion also provides new perspectives
on the time evolution of the reduced system state. Specifically, for a coherent state input (see Sec.
5.2) or a m-photon Fock state input (see Sec. 5.3), the normal-ordered expansion in the integral form
(i.e., Eq. (5.32)) can be re-expressed in the differential form as master equations (see Eqs. (5.38)
and (5.47)). We also find that, surprisingly, the normal-ordered expansion for an m-photon input
truncates exactly at the 2m-th order, and the truncated perturbative series becomes an exact result.
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5.2 Coherent state input

A coherent state with amplitude α(t) is given by

|ψ⟩ = exp
(∫

dt α(t)a†(t)− α∗(t)a(t)
)
|vac⟩. (5.35)

It is an eigenstate of a(t), and the expectation value of a normal-ordered string of a(t) and a†(t) (e.g.,
⟨ψ|a†(t4)a†(t3)a(t2)a(t1)|ψ⟩) is obtained by replacing a(t) and a†(t) with α(t) and α∗(t), respectively.
The example above would evaluate to α∗(t4)α

∗(t3)α(t2)α(t1).

Therefore in the normal-ordered perturbative expansion (Eq. (5.32)), we can simply replace all
a(t) and a†(t) by the classical amplitudes α(t) and α∗(t). Let the initial state ρtot(0) be a product state
ρsys(0)⊗ |ψ⟩⟨ψ|, where |ψ⟩⟨ψ| is the initial coherent state of the field. The expansion now becomes

ρsys(t) =e
Ktρsys(0) +

∫ t

0

dt1 e
K(t−t1)L′(t1)e

Kt1ρsys(0)

+

∫ t

0

dt2

∫ t2

0

dt1 e
K(t−t2)L′(t2)e

K(t2−t1)L′(t1)e
K(t1)ρsys(0)

+ · · · ,

(5.36)

where L′(t) = [−α(t)L† + α∗(t)L, •]. Taking the time derivative of Eq. (5.36), we see that

d

dt
ρsys(t) = Kρsys(t) + L′(t)ρsys(t), (5.37)

or

d

dt
ρsys(t) =[−iHsys − α(t)L† + α∗(t)L, ρsys(t)]

− 1

2
L†Lρsys(t)−

1

2
ρsys(t)L

†L+ Lρsys(t)L
†.

(5.38)

This is the coherent state master equation [52, 65]. Here, we can see that, in the case of a coherent
state input, the quantum correction to the semi-classical master equation is the Lindblad dissipator
that describes spontaneous emission.

5.3 m-photon Fock state input

Consider an m-photon Fock state, defined as

|ξm⟩ = 1√
m!

(∫
dt ξ(t)a†(t)

)m
|vac⟩, (5.39)

where the temporal profile ξ(t) is normalized as
∫
dt |ξ(t)|2 = 1, so that ⟨ξm|ξm⟩ = 1. The expectation

value of the normal-ordered field operator ⟨ξm|a(†) · · · a(†)|ξm⟩ is nonzero only when the number of
creation operators a†(t) is the same as the number of annihilation operators a(t) and the number of
annihilation operators is not greater than m. Specifically,

⟨ξm|a†(t1) · · · a†(tk)a(t′k) · · · a(t′1)|ξm⟩ = m!

(m− k)!
ξ∗(t1) · · · ξ∗(tk)ξ(t′k) · · · ξ(t′1) (5.40)

for k = 1, 2, · · · ,m. Since normal-ordered strings of n field operators only appear in the n-th order
normal-ordered expansion, only the 0th, 2nd, 4th, · · · , and 2m-th order terms in the normal-ordered
expansion are nonzero. Because normal-ordered strings of field operators whose lengths are longer
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than 2m result in zero expectation values, expansion terms of order higher than 2m vanish identically,
and the normal-ordered perturbative expansion truncates exactly at order 2m. Therefore, the trun-
cated perturbative series becomes the exact description for the reduced system state interacting with
an m-photon Fock state input. We note that while the validity of perturbative expansion usually re-
quires weak light-matter coupling strength, this exact result holds for arbitrary light-matter coupling
strength.

We can deduce the Fock state master equation [47,52] from the normal-ordered expansion. In the
Fock state master equation, we define auxiliary density matrices ρµ,ν as

ρµ,ν(t) = Trfield

(
U ′(t)

(
ρsys(0)⊗ |ξµ⟩⟨ξν |

)
U ′†(t)

)
. (5.41)

ρm,m(t) is the reduced system state given an m-photon Fock state input. Note that, by definition,
the initial state is ρµ,ν(0) = δµ,νρsys(0). Following the derivation from Eq. (5.27) to Eq. (5.32), but
applying the expansion to ρsys(0)⊗ |ξµ⟩⟨ξν | instead of ρtot(0), we have

ρµ,ν(t) = TrfieldN̂
(
Rµ,ν

)
, (5.42)

where

Rµ,ν(t) = eKtρsys(0)⊗ |ξµ⟩⟨ξν |

+

∫ t

0

dt1 e
K(t−t1)L(t1)eKt1ρsys(0)⊗ |ξµ⟩⟨ξν |

+

∫ t

0

dt2

∫ t2

0

dt1 e
K(t−t2)L(t2)eK(t2−t1)L(t1)eK(t1)ρsys(0)⊗ |ξµ⟩⟨ξν |

+ · · ·

(5.43)

Taking the time derivative of Eq. (5.42), we see that

d

dt
ρµ,ν(t) = TrfieldN̂

(
KRµ,ν + L(t)Rµ,ν

)
= Kρµ,ν(t) + TrfieldN̂

(
−
[
L†a(t), Rµ,ν(t)

]
+
[
La†(t), Rµ,ν(t)

])
= Kρµ,ν(t)−

[
L†,TrfieldN̂

(
a(t)Rµ,ν(t)

)]
+
[
L,TrfieldN̂

(
a†(t)Rµ,ν(t)

)]
.

(5.44)

In the second line, we take the system operators L† and L outside of the partial trace over field. We
also combine the field operators a(t) and a†(t) with Rµ,ν , since under normal-ordering, the placement
of the field operators is unimportant. Using the property

a(t)|ξµ⟩ =
√
µξ(t)|ξµ−1⟩, (5.45)

we can simplify TrfieldN̂
(
a(t)Rµ,ν(t)

)
as

TrfieldN̂
(
a(t)Rµ,ν(t)

)
= TrfieldN̂

(
eKtρsys(0)⊗ a(t)|ξµ⟩⟨ξν |

+

∫ t

0

dt1 e
K(t−t1)L(t1)eKt1ρsys(0)⊗ a(t)|ξµ⟩⟨ξν |

+

∫ t

0

dt2

∫ t2

0

dt1 e
K(t−t2)L(t2)eK(t2−t1)L(t1)eK(t1)ρsys(0)⊗ a(t)|ξµ⟩⟨ξν |

+ · · ·
)

=
√
µξ(t)ρµ−1,ν .

(5.46)
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We have used the fact that due to the normal-ordering, a(t) always acts on the left of |ξµ⟩⟨ξν |.
Similarly, TrfieldN̂

(
a†(t)Rµ,ν(t)

)
=

√
νξ∗(t)ρµ,ν−1. Therefore we can re-write Eq. (5.44) to obtain the

Fock state master equation as

d

dt
ρµ,ν(t) = Kρµ,ν(t)−

√
µξ(t)[L†, ρµ−1,ν ] +

√
νξ∗(t)[L, ρµ,ν−1]. (5.47)

This is a set of differential equations that couples a hierarchy of auxiliary density matrices ρµ,ν ,
with ρm,m being the physical reduced system state, given an m-photon Fock state input. Using the
initial condition ρµ,ν(0) = δµ,νρsys(0), this set of equations describe the non-Markovian effects of an
m-photon Fock state input [47,52].

5.4 Numerical evaluation of the perturbative expansions

We now study the numerical accuracy of the conventional expansion (Eq. (5.15)) vs. the normal-
ordered expansion (Eq. (5.32)) under various parameter regimes by comparing to the exact system
state evolution. We study the excitation by a coherent state and an m-photon Fock state. We
consider a matter system consisting of two electronic levels (labeled as ground state |g⟩ and excited
state |e⟩) interacting with a bath (e.g., nuclear degrees of freedom) that gives rise to Lindbladian pure
dephasing in the electronic subsystem [111]. Tracing out the bath degrees of freedom and focus on
the two electronic states, we model the reduced electronic system dynamics as

d

dt
ρel = −i

[
H ′

el, ρel
]
+ γd

(
− 1

2

{
P †P, ρel

}
+ PρelP

†
)
, (5.48)

where γd is the dephasing rate, and P = |e⟩⟨e|. We take H = ω|e⟩⟨e|. The dipole de-excitation
operator L is taken to be

√
γ|g⟩⟨e|, where γ is the coupling strength between the system and the

field. γ is also the spontaneous emission rate into the field. We assume the excitation pulse has a
normalized Gaussian temporal profile

ξ′(t) =
1

(πσ2)1/4
e−

(t−t0)2

2σ2 e−iωt (5.49)

centered at time t0, with a pulse duration of σ. The carrier frequency ω is resonant with the energy
splitting of the two electronic levels. ξ′ is normalized such that

∫
dt |ξ′(t)|2 = 1. We set t0 = 5 ps,

σ = 1 ps, and γd = 1(ps)−1.

In the numerical calculation, we work in a rotating frame where the carrier frequency ω is rotated
out. In this frame, the temporal profile becomes

ξ(t) =
1

(πσ2)1/4
e−

(t−t0)2

2σ2 , (5.50)

and the Hamiltonian becomes Hel = H ′
el − ω|e⟩⟨e| = 0.

The initial state is set to be in the ground state |g⟩⟨g|. We will compute the excited state population
as a function of time. The change from the initial ground state |g⟩⟨g| to the excited state population
|e⟩⟨e| requires at least two interactions (i.e., L†|g⟩⟨g|L = |e⟩⟨e|). Therefore, we need to perform the
expansion to the second order to see nonzero excited state population. In the conventional expansion
(Eq. (5.15)), the superoperator that generates free evolution is K′ = −i[Hsys, •] (see Eq. (5.12)). The
matter system consists of both the electronic and the bath degrees of freedom. After tracing out the
bath degrees of freedom, the superoperator that generates free evolution in the electronic degrees of
freedom becomes

K′ = −i
[
Hel, •

]
+ γd

(
− 1

2
{P †P, •}+ P • P †

)
. (5.51)
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Similarly, in the normal-ordered expansion (Eq. (5.32)), the superoperator that generates free evolu-
tion in the electronic degrees of freedom is

K = −i
[
Hel, •

]
+ γd

(
− 1

2
{P †P, •}+ P • P †

)
− 1

2
{L†L, •}+ L • L†.

(5.52)

The perturbative expansion is dominated by the first few terms when the perturbation L is weak
(see Eqs. (5.15) and (5.32)). This corresponds to the situation where the order of magnitude of∫
dt a(t)L† (or its Hermitian conjugate) is much less than 1. Since the integrand a(t)L† contributes

significantly only during the pulse duration σ, we assign an order of magnitude of σ to the integral.
We also assign an order of magnitude of

√
m/σ to a(t) and an order of magnitude of

√
γ to L (see

Table (3.1)). Multiplying the factors together, we have∫
dt a(t)L† ∼ √

mσγ. (5.53)

Therefore the criterion for being in the weak-coupling perturbative regime is
√
mσγ ≪ 1.

5.4.1 Coherent state input

The coherent state amplitude α(t) for a coherent state input with an average photon number of m is
given by

α(t) =
√
mξ(t), (5.54)

where ξ(t) is the normalized temporal profile (see Eqs. (5.35) and (5.50)). For different values of
photon number m and coupling strength γ, we preform direct numerical integrations to compute
the conventional perturbative expansion (Eq. (5.15)) and the normal-ordered perturbative expansion
(Eq. (5.32)) up to the second order. We then compare the second order expansion results to the exact
result obtained by solving the coherent state master equation (Eq. (5.38)). In Fig. (5.1), we plot
the excited state population as a function of time to see the accuracy of the perturbative expansions
under different parameter regimes.

When there is one photon on average (m = 1) in the coherent state input, we examine the cases
when γ = 0.001, 0.05, and 1 ps−1, corresponding to

√
mσγ ≈ 0.03, 0.22, and 1. When the coupling

is very weak (γ = 0.001 ps−1), both the second order conventional expansion and the second order
normal-ordered expansion approximate the exact dynamics well (see Fig. (5.1a)). In Fig. (5.1b
and c), as γ increases beyond the weak coupling perturbative regime, both expansions become less
accurate. However, the normal-ordered expansion produces significantly more accurate results because
it accounts for the spontaneous emission effect. When γ = 1 ps−1 (see Fig. (5.1c)), the second order
conventional expansion produces unphysical results where the excited state population is greater than
1 after around 5 ps, while in the second order normal-ordered expansion, the excited state population
remains ≤ 1.

In the conventional expansion, a general n-th order expansion term involves the expectation value
of a non-normal-ordered string of n field operators a(t) and a†(t). These non-normal-ordered operators
can be expressed in terms of normal-ordered strings with shorter or equal lengths. For example, the
non-normal-ordered operator a(t3)a

†(t2)a(t1) can be expressed in terms of normal-ordered operators
as a†(t2)a(t3)a(t1) + δ(t3 − t2)a(t1). Therefore in the conventional expansion, a general n-th order
expansion term reduces to not only terms that are n-th order in the coherent amplitude α(t), but
also terms that are lower order in α(t) (i.e., lower than n-th order). In the normal-ordered expansion,
a general n-th order expansion term is exactly n-th order in α(t) because the field operators are
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a) b)𝑚 = 1, 𝛾 = 0.001 (ps)-1 𝑚 = 1, 𝛾 = 0.05 (ps)-1

c) 𝑚 = 1, 𝛾 = 1 (ps)-1 d) 𝑚 = 100, 𝛾 = 0.001 (ps)-1

Figure 5.1: Comparing the second order conventional perturbative expansion, the second order normal-
ordered perturbative expansion, and the exact time evolution for the reduced system state, under a
coherent state input. The matter system is taken to be a simple two-level system with Lindbladian
dephasing. See sec. 5.4 for details. Grey area represents the input pulse profile ξ(t) (see Eq. (5.50)),
scaled differently in each plot for easier visualization. (a)-(c) Excitation by a coherent state input
with m = 1 photon on average. Light-matter coupling strengths of γ = 0.001, 0.05, and 1 ps−1 are
considered. (d) Excitation by a coherent state input withm = 100 photons on average, γ = 0.001 ps−1.

normal-ordered, and the expectation values of normal-ordered operators with respect to a coherent
state is obtained by replacing a(t) or a†(t) with α(t) or α∗(t). Therefore if we examine expansion
terms in orders of α(t), an n-th order normal-ordered expansion contains all terms up to order αn. In
contrast, an n-th order conventional expansion does not contain all terms up to order αn because a
higher-than-n-th order conventional expansion still contains terms that are of order αn or lower due
to the non-normal-ordered-ness of the field operators. This is why normal-ordered expansion tends to
be more accurate than the conventional expansion.

In Fig. (5.1d) we consider a coherent state input with a larger average photon numberm = 100 and
set γ = 0.001 ps−1. Due to the large number of photons, this is no longer in the very weak coupling
perturbative regime, since

√
mσγ ≈ 0.32. The difference between the second order expansions and

the exact result increases as m increases, but the difference between the second order conventional
expansion and the second order normal-ordered expansion (i.e., the spontaneous emission Lindblad
dissipator) does not depend on m. Hence, when the photon number is large, we see that the difference
between the two second order expansions is small compared to the difference to the exact result.
Therefore when the photon number is large and the perturbation parameter

√
mσγ is no longer much

smaller than 1, neither expansion provides a good description of the reduced system dynamics.
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a) b)
𝑚 = 1, 𝛾 = 1 (ps)-1

c)
𝑚 = 2, 𝛾 = 1 (ps)-1𝑚 = 1, 𝛾 = 0.001 (ps)-1

Figure 5.2: Comparing various types of expansion to the exact time evolution for the reduced system
state, under an m-photon Fock state input. The normal-ordered expansion to the 2m-th order repro-
duces the exact dynamics, regardless of the coupling strength. (a)-(b) Excitation by a single-photon
Fock state input. Light matter coupling strengths of γ = 0.001 and 1 ps−1 are considered. (c) Exci-
tation by a two-photon Fock state input in the strong coupling regime.

5.4.2 m-photon Fock state input

In the case of m-photon Fock state inputs, we first compute the conventional or normal-ordered
perturbative expansions through numerical integration, and then the results are compared to exact
solutions obtained by solving the Fock state master equation (Eq. (5.47)).

Given a single photon Fock state input (i.e., m = 1), the second order (2m = 2) normal-ordered
expansion provides the exact reduced system dynamics. Fig. (5.2a) shows that when the coupling
γ is weak (γ = 0.001 ps−1) such that

√
mσγ ≈ 0.03 is much smaller than 1, both the second order

conventional expansion and the second order normal-ordered expansion approximate the exact solution
well. In the strong-coupling regime (γ = 1ps−1, see Fig. (5.2b)),

√
mσγ = 1, and the second

order conventional expansion becomes unreliable. However, we see that the second order normal-
ordered expansion is still exact in the strong-coupling regime. When the photon number m = 2,
we see that the fourth order (2m = 4) normal-ordered expansion agrees with the exact solution,
regardless of the coupling strength (see Fig. (5.2c)). When the photon number m is large and the
perturbation parameter

√
mσγ is no longer much smaller than 1, one would need to expand the

normal-ordered expansion to very high order (i.e., 2m-th order) to obtain a good description of the
dynamics. Therefore, in this case, a low order normal-ordered expansion will not provide a good
description of the reduced system dynamics.

5.5 Conclusion

Working in a interaction picture, a different interaction picture than that used in Ch. 1 to Ch. 3,
we have developed a normal-ordered expansion for the reduced system state. This has resulted in
new ways to derive the coherent state master equation and the Fock state master equation. Under
coherent state and m-photon Fock state excitation, and when the photon number is small, we find
that the normal-ordered expansion provides significantly more accurate description of the dynamics
in the intermediate to strong coupling regime than the conventional expansion does.
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Part II

Dynamics of photosynthetic
complexes interacting with

quantum light
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Chapter 6

Theoretical modeling of
photosynthetic complexes and their
interaction with photons and
phonons

6.1 Chromophoric System Hamiltonian

We model the lowest two accessible electronic states of each chromophore as a two level system,
corresponding to the Qy transition [72]. The dipole-dipole coupling between chromophores, under the
rotating wave approximation, does not change the number of electronic excitations. Therefore the
chromophoric Hamiltonian will commute with the operator that counts the number of excitons in the
system, and the Hamiltonian is block diagonal, with the jth block corresponding to the j-excitation
subspace, Hj . The excitation energy of a typical chromophore is ∼ 15, 000 cm−1, about 75 times
larger than kBT ≈ 200 cm−1 at room temperature. Therefore, to a very good approximation, we may
regard the initial thermal state of the isolated chromophoric system as the absolute ground state ofH0,
denoted as |g⟩, which is defined to have zero energy. Due to the weak system-field coupling in a natural
photosynthetic system, the probability to have multiple excitations in the system is much smaller than
the probability to have a single excitation, so we will only consider the (1 +N)-dimensional subspace
H0

⊕H1. We denote the singly excited state where site j is excited and all other sites are in their
ground states as |j⟩. The chromophoric system Hamiltonian is written as

Hsys =

N∑
j=1

ϵj |j⟩⟨j|+
∑
j ̸=k

Jjk|j⟩⟨k|, (6.1)

where ϵj is the excited state energy of site j, and Jjk are the electronic coupling matrix elements
between chromophores j and k. The effects of the phonon environment on the site energies are
discussed in Section 6.3.1. The numerical values for the ϵj and Jjk parameters in an LHCII monomer
system are taken from [112]. For simplicity, we shall refer to the chromophore system as the system,
unless otherwise noted. The numerical values for the Hamiltonian that we use are given in Appendix
H.
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6.2 Interaction with photons

6.2.1 System-light interaction as system interacting with finite number of
one-dimensional electromagnetic fields

The quantized electromagnetic field in 3-dimensional space is described by harmonic oscillators indexed
with a 3-dimensional wavevector and a polarization index [67,113]. However, it is useful to decompose
the electric field into 1-dimensional fields, so that the input-output formalism can be applied [50,114].
We will first consider the incoming N-photon Fock state in a fixed paraxial beam mode. The electric
field at the center of the beam is written as

Epara(t) =

∫ ∞

0

dω

√
ℏω

4πϵ0c
ũ(0)(ia(ω)e−iωt + h.c.), (6.2)

(see derivation in Appendix G and Ref. [115]), where ũ(x) is the normalized spatial mode function such
that the integral over all transverse area is unity, i.e.,

∫
dAT |ũ|2 = 1. Here a(ω) is the annihilation

operator for the frequency ω component of the paraxial mode. Note that the field is now indexed by
the 1-dimensional parameter ω.

To capture the spontaneous emission into other modes, we must also consider field modes other
than the incoming mode. One way to do this is to partition the 4π solid angle of the 3-dimensional
wavevector into finite numbers of small solid angle sections, indexed by m, and write the electric field
at position x = 0 as

E(t) =
∑
m,λ

Em,λ(t), (6.3a)

where

Em,λ(t) =

∫ ∞

0

dω

√
ℏω3∆Ωm

16π3ϵ0c3
(iam,λ(ω)e

−iωtϵ̂m,λ + h.c.) (6.3b)

(see Sec. 1.2 and Sec. 1.3). Here λ indexes the two polarizations in a small solid angle section,
∆Ωm is the amount of solid angle (in steradian units) of section m, and ϵ̂m,λ is the polarization vector
corresponding to m and λ. One can show that in the case of the simplest transverse electromagnetic
mode TEM00, if we think of the boundary of the beam as the location where the beam intensity is
1/e4 ≈ 2% of the intensity at the center, then Eq. (6.2) matches Eq. (6.3) for a particular (m,λ).
Therefore we can treat the incoming TEM00 paraxial mode as one of the (m,λ) modes in the small
angle decomposition (Eq. (6.3)), as illustrated in Figs. (1.2) and (6.1).

In Eq. (6.3), the electric field is decomposed into a finite number of 1-D fields, which is not enough
to describe all degrees of freedom in the 3-D electromagnetic field. However, Sec. 1.2 shows that
one can describe the 3-D electromagnetic field by a set of countably infinite 1-D fields. Then using
the small solid angle decomposition (see Eq. (6.3)), we can decompose the 3-D electromagnetic field
into a finite number of small solid angle 1-D fields plus a countably infinite number of 1-D fields that
are needed to describe all degrees of freedom in the 3-D field. The countably infinite number of 1-D
fields are chosen to be orthogonal to each other and to the small solid angle 1-D fields in the sense
described in Sec. 1.2. Under this decomposition scheme, the total system+field Hamiltonian under
the dipole-electric field coupling (−d ·E) can be written as

Hsys+field = Hsys − d ·
∑
m,λ

Em,λ +
∑
m,λ

∫ ∞

0

dω ℏωa†m,λ(ω)am,λ(ω) +

∞∑
s

∫ ∞

0

dω ℏωa†s(ω)as(ω), (6.4)

where
∑

m,λ sums over the finite number of small solid angle modes, and the
∑∞

s sums over the
remaining countably infinite number of 1-D field modes. Since the last term in Eq. (6.4) involving the
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𝑚!

𝑚" = paraxial

ΔΩ

Figure 6.1: Small angle modal decomposition of the electric field in three dimensions defined in
reference to a paraxial beam traveling from left to right. The chromophore system will be located at
the focus of this beam. Blue solid curves show the contour of the paraxial beam mode. Red dashed
lines denote the boundaries of small solid angle modes. Since the paraxial beam mode is concentrated
in a small solid angle as shown, we can treat it as the small solid angle mode m1. m2 is another small
solid angle mode propagating in the upper right direction and covering the solid angle ∆Ω.

infinite sum is decoupled from the rest of the Hamiltonian, we can describe the system-light interaction
as system interacting with just a finite number of 1-D fields.

An alternative way to decompose the electric field into a finite sum of 1-D fields is to write it as a
sum of the x, y, and z polarization components, i.e. E(t) = Ex(t)x̂+ Ey(t)ŷ + Ez(t)ẑ. Ex then takes
the form

Ex(t) =

∫ ∞

0

dω

√
ℏω3

6π2ϵ0c3
(iax(ω)e

−iωt + h.c.), (6.5)

with Ey and Ez defined similarly (see Sec. 1.2).

6.2.2 System-light interaction in the language of input-output formalism

To put the system-light interaction in the language of input-output formalism, we follow the proce-
dure in [51], with addition of some details specific to our modeling of light harvesting systems. We
summarize the results here.

We will work in the interaction frame by rotating out the zeroth order Hamiltonian defined by
having a constant energy (equal to the carrier frequency of the light pulse) in the singly excited states
plus the free field Hamiltonian, i.e.,

H0 =

N∑
j=1

ℏω0|j⟩⟨j|+
∑
l

∫ ∞

0

dω ℏωa†l (ω)al(ω). (6.6)

For notational simplicity, we denote the mode indices (m,λ) by l. We define the quantum white noise
operator

al(t) ≡
√

1

2π

∫ ∞

−∞
dω al(ω)e

i(ω−ω0)t, (6.7)

which is a central object in the input-output formalism. With this definition, the field operators
al(t) satisfy the bosonic commutation relations: [al(t), a

†
l′(t

′)] = δl,l′δ(t − t′) and [al(t), al′(t
′)] =
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[a†l (t), a
†
l′(t

′)] = 0. The total Hamiltonian in the interaction frame is now expressed as

Hsys+field(t) = H +
∑
l

(
−iℏal(t)L†

l + iℏa†l (t)Ll

)
, (6.8)

where

H =

N∑
j=1

(ϵj − ℏω0)|j⟩⟨j|+
∑
j ̸=k

Jjk|j⟩⟨k| (6.9)

and
Ll =

√
Γ0ηl

∑
j

dj · ϵ̂l|g⟩⟨j| (6.10)

is a system lowering operator. Γ0 =
d2
0ω

3
0

3πϵ0ℏc3 characterizes the system-light coupling strength and is
equal to the spontaneous emission rate of a unit dipole d0 with transition frequency ω0 in vacuum. η
is a geometric factor that will depend on the type of the spatial mode, e.g., paraxial incoming modes
(Eq. (6.2)), small solid angle modes (Eq. (6.3)), or x-, y-, z-polarization modes (Eq. (6.5)). dj is the
vector transition dipole moment of the j-th site (divided by the unit dipole moment d0 so that dj is
dimensionless), and ϵ̂l is the unit polarization vector of spatial mode l.

Ll can be written in a useful alternative form as

Ll =
√
Γl|g⟩⟨Bl|, (6.11)

with Γl the effective coupling constant

Γl = Γ0ηl
∑
j

|dj · ϵ̂|2 (6.12)

and |Bl⟩ the normalized bright state

|Bl⟩ = (
∑
j

|dj · ϵ̂|2)−1/2
∑
j

dj · ϵ̂|j⟩. (6.13)

As a physical motivation for this notation, we note that the excited state |Bl⟩ spontaneously emits
into mode l at the rate Γl. A more detailed discussion of the emission rate, or more generally, of the
photon flux, is given in Section 6.2.7.

An N-photon Fock state pulse in mode l with temporal profile ξ(t) is defined as

|Nξ⟩l =
1√
N !

(∫
dτ ξ(τ)a†l (τ)

)N

|ϕ⟩, (6.14)

where ξ(t) is normalized according to
∫
dτ |ξ(τ)|2 = 1 and |ϕ⟩ is the vacuum state of the field. More

general N-photon Fock states are possible, as discussed in Ref. [47], but we shall restrict ourselves to
this single mode product form here.

Another important object in the input-output formalism is the unitary U(t) defined by

dU(t)

dt
= − i

ℏ
Hint(t)U(t) (6.15)

with initial condition U(0) = 1. The system+field unitary in the Schrodinger picture, e−
i
ℏHsys+fieldt,

is related to the interaction picture unitary U(t) by

e−
i
ℏHsys+fieldt = e−

i
ℏH0tU(t) (6.16)

(see Eq. (6.6)). We will set ℏ = 1 from now on.
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6.2.3 Some results in the input-output formalism

This section summarizes some results in the input-output formalism that will be used later. The
operators a(t) and U(t) satisfy the so-called input-output relation [50]:

U†(t)al(tr)U(t) =


al(tr) t < tr

al(tr) +
1
2LHl(tr) t = tr

al(tr) + LHl(tr) t > tr,

(6.17)

with LHl(t) ≡ U†(t)LlU(t) (see Sec. 2.1). At time t < tr, al(tr) has not interacted with the system,
so time evolution has no effect on it (i.e., U†(t)al(tr)U(t) = al(tr)). For this reason, al(tr) is called the
input field. At time t > tr, a(tr) has interacted with the system and will not interact with the system
anymore. For this reason, the time-evolved operator U†(t)al(tr)U(t) = al(tr) +LHl(tr) ≡ al,out(tr) is
called the output field. Using the Markov property that a(tr) only interacts with the system at time
t = tr, we have thereby expressed the time-evolved field operator, which usually mixes the system
and field degrees of freedom in some complicated way, as a simple sum of a pure field operator and a
time-evolved system operator.

Left-multiplying Eq. (6.17) by U(t), we then obtain the following commutation relation at t = tr,

[al(t), U(t)] =
1

2
LlU(t). (6.18)

Using this commutation relation, we can rewrite Eq. (6.15) (also see Eq. (6.8)) in normal-ordered
form as

d

dt
U(t) =

(
− iH − 1

2

∑
l

L†
lLl

)
U(t)−

∑
l

L†
lU(t)al(t) +

∑
l

a†l (t)LlU(t). (6.19)

In the following sections, we will see that the commutation relation and the normal-ordered form of
the time evolution derivative ensure that we only need to consider the action of normal-ordered field
operators acting on field states, greatly simplifying the calculations.

Input-output theory is traditionally presented in terms of quantum stochastic differential equations
(QSDE) where the input field operators are taken to be differentials, e.g. dAl,t = al(t + dt) −
al(t), analogous to the Wiener process increment dWt in classical stochastic calculus. As in classical
stochastic calculus, integrals over the quantum stochastic differential

∫
XtdAt can be interpreted either

as Stratonivich integrals or as Ito integrals, resulting in different values [86, 116]. The Stratonovich
integral takes a “mid-point” time approximation for the integrand, while the Ito integral takes the
initial time approximation for the integrand. To make connections to the QSDE approach, we note
that Eq. (6.19) can be written as

dUt = −iHUtdt−
∑
l

L†
lUt ◦ dAl,t +

∑
l

LlUt ◦ dA†
l,t, (6.20)

where the symbol ◦ indicates that the differential expression is to be integrated in the Stratonovich
sense, or it can also be written as

dUt =
(
− iH − 1

2

∑
l

L†
lLl

)
Utdt−

∑
l

L†
lUt · dAl,t +

∑
l

LlUt · dA†
l,t, (6.21)

where the symbol · indicates that the differential expression is to be integrated in the Ito sense.

It was shown in [117] that a usual time-ordered product of iterated time integrals that include

products of the field operators al(t) and a†l (t) should be interpreted as a quantum Stratonovich
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integral. Conversely, if the iterated time integrals were instead written in normal-order then that
corresponds to a quantum Ito integral. Thus by writing Eq. (6.19) in normal order, the solution will
have the same mathematical properties as a quantum Ito integral (Eq. (6.21)), without delving into
the mathematics of quantum Ito integration and its modified rules of calculus.

6.2.4 Coherent state master equation

A coherent state with coherent amplitude α and temporal profile ξ(tr) is given by

|αξ⟩ = exp
(∫

dtr α(tr)a
†
inc(tr)− α∗(tr)ainc(tr)

)
|vac⟩, (6.22)

where α(tr) = αξ(tr). This is an eigenstate of the annihilation operator a(t) for all t, i.e.,

a(t)|αξ⟩ = α(t)|αξ⟩. (6.23)

The system state ρ(t) in the interaction frame is given by

ρ(t) = Trfield

(
U(t)ρ(0)⊗ |α⟩⟨α|U†(t)

)
. (6.24)

Using Eq. (6.19), we have

d

dt
ρ(t) =− i[H, ρ(t)] +

1

2

∑
l

(
− L†

lLlρ(t)− ρ(t)L†
lLl

)
− α(t)L†

incρ(t)− α∗(t)ρ(t)Linc

+
∑
l

LlTrfield

(
U(t)ρ(0)⊗ |α(tr)⟩⟨α(tr)|U†(t)a†l (t)

)
+Trfield

(
al(t)U(t)ρ(0)⊗ |α(tr)⟩⟨α(tr)|U†(t)

)
L†
l .

(6.25)

Using the commutation relation (Eq. (6.18)) to simplify the partial traces yields the coherent state
master equation

d

dt
ρ = −i[H − iα(t)L†

inc + iα∗(t)Linc, ρ] +
∑
l

LlρL
†
l −

1

2
L†
lLlρ−

1

2
ρL†

lLl. (6.26)

We identify a time dependent classical electric field E(t) as the expectation value of the coherent
state, i.e.,

E(t) = ⟨αξ|Ê(t)|αξ⟩, (6.27)

where Ê(t) is the electric field operator. Then we see that the system evolution follows exactly the
semiclassical equation plus spontaneous emission, i.e.,

d

dt
ρ = −i[H − d ·E(t), ρ] +

∑
l

LlρL
†
l −

1

2
L†
lLlρ−

1

2
ρL†

lLl. (6.28)

We note the coherent state master equation (Eq. (6.26)) can be alternatively derived from the
Fock state master equation. This is because the system density matrix under coherent state excitation
can be written as a sum of Fock state auxiliary density matrices, i.e.,

ρ =
∑
m,n

αmα∗n
√
m!n!

e−|α|2ρm,n. (6.29)

Then substituting the Fock state master equation into the right hand side of this equation, allows one
to obtain Eq. (6.26) in a few lines of algebra.
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6.2.5 Fock State Master Equations

Let |Nξ⟩ be the field state where a single photon pulse with temporal profile ξ(t) is in the incoming
mode (l = inc), and all other field modes are in the vacuum state. The system density matrix in
the interaction picture, ρ̃sys(t), is obtained by evolving the initial state then partially tracing over the
field, i.e.,

ρ̃sys(t) = Trfield

(
U(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)
. (6.30)

We assume at t = 0, the system+field state is a factorizable state, ρ0 ⊗ |Nξ⟩⟨Nξ|.

A normalized N-photon Fock state in spatial mode l = inc is specified by

|Nξ⟩ =
1√
N !

[ ∫
dτ ξ(τ)a†inc(τ)

]N
|ϕ⟩, (6.31)

where ξ(t) is the normalized temporal profile of the N-photon Fock state satisfying
∫
dτ |ξ(τ)|2 = 1.

Using Eq. (6.19) to take the time derivative of ρ̃sys, we find

dρ̃sys
dt

=
(
− iH − 1

2

∑
l

L†
lLl

)
Trfield

(
U(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)
−
∑
l

L†
lTrfield

(
U(t)al(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)
+
∑
l

Trfield

(
a†l (t)LlU(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)
+Trfield

(
U(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)(
iH − 1

2

∑
l

L†
lLl

)
−
∑
l

Trfield

(
U(t)ρ0 ⊗ |Nξ⟩⟨Nξ|a†l (t)U†(t)

)
Ll

+
∑
l

Trfield

(
U(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)L†

l al(t)
)

(6.32)

The second (and similarly the fifth) term on the right hand side can be simplified using the identity

al(t)|Nξ⟩ =
{√

Nξ(t)|(N − 1)ξ⟩ , l = inc

0 otherwise.
(6.33)

Hence when l = inc, the partial trace in the second term becomes

Trfield

(
U(t)ainc(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)
=

√
Nξ(t)Trfield

(
U(t)ρ0 ⊗ |(N − 1)ξ⟩⟨Nξ|U†(t)

)
. (6.34)

The sixth (and similarly the third) term can be simplified by applying the cyclic property of trace
and the commutation relation Eq. (6.18). For example, when l = inc,

Trfield

(
U(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)L†

incainc(t)
)

= Trfield

(
ainc(t)U(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)
L†
inc

= Trfield

(
U(t)ainc(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)
L†
inc +

1

2
LincTrfield

(
U(t)ρ0 ⊗ |Nξ⟩⟨Nξ|U†(t)

)
L†
inc.

(6.35)

If we now define
ρm,n(t) ≡ Trfield

(
U(t)ρ0 ⊗ |mξ⟩⟨nξ|U†(t)

)
, (6.36)
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then following a similar procedure as above, we obtain the full Fock state master equation

dρm,n

dt
=− i[H, ρm,n] +

∑
l

D[Ll](ρm,n)

+
√
mξ(t)[ρm−1,n, L

†
inc] +

√
nξ∗(t)[Linc, ρm,n−1],

(6.37)

with ρN,N (t) = ρ̃sys(t) and D[L] is the Lindblad superoperator defined as D[L](ρ) ≡ − 1
2L

†Lρ −
1
2ρL

†L+ LρL†. Here ρN,N (t) is the physical density matrix that describes the system state given an
N-photon Fock state input. ρN,N couples to other auxiliary density matrices corresponding to smaller
number of photons, with lower indices down to ρ0,0. Therefore, we need to solve for a hierarchy of
(N+1)2 coupled density matrix equations. In the absence of phonon coupling, we can use the property
ρm,n = ρ†n,m to reduce the number of density matrices to solve for to (N + 1)(N + 2)/2. The initial
value ρm,n = δm,n ρ0 is obtained from Eq. (6.36).

The Fock state master equation (Eq. (6.37)) was originally derived by Baragiola et. al. [47] using
the more mathematical quantum stochastic differential equations (QSDE). Here, we have given a more
accessible alternative derivation based on ordinary differential equations (ODE).

6.2.6 System plus field pure state

In the special case of a single photon Fock state input, the Fock state master equations (Eq. (6.37))
can be solved analytically. However, rather than solving Eq. (6.37) directly, a more physically intuitive
approach is to write the system+field pure state |ψ(t)⟩ as

|ψ(t)⟩ = |β(t)⟩|vac⟩+ |g⟩
∑
l

∫ ∞

−∞
dtr ϕl(t, tr)a

†
l (tr)|vac⟩, (6.38)

where |β(t)⟩ is an unnormalized system state in the excited subspace, and ϕl(t, tr) is the photon field
amplitude of the single photon field state in mode l given unitary evolution up to time t, evaluated
at tr. Eq. (6.38) is in fact the most general form of the system+field pure state when there is exactly
one excitation in the system and the field.

Taking the time derivative of Eq. (6.38), we have

d

dt
|ψ(t)⟩ = d

dt
|β(t)⟩|vac⟩+ |g⟩

∑
l

∫ ∞

−∞
dtr

∂

∂t
ϕl(t, tr)a

†
l (tr)|vac⟩. (6.39)

On the other hand, we can write the time derivative as

d

dt
|ψ(t)⟩ = d

dt
U(t)

[
|g⟩
∫ ∞

−∞
dtr ξ(tr)a

†
inc(tr)|vac⟩

]
, (6.40)

where we rewrite |ψ(t)⟩ as U(t) acting on the initial state |ψ(0)⟩. Using Eqs. (6.19) and (6.38), this
becomes

d

dt
|ψ(t)⟩ = (−iH − 1

2

∑
l

L†
lLl)|ψ(t)⟩ − L†

incU(t)ξ(t)|g⟩|vac⟩+
∑
l

a†l (t)Ll|ψ(t)⟩

=

[
(−iH − 1

2

∑
l

L†
lLl)|β(t)⟩ − ξ(t)L†

inc|g⟩
]
|vac⟩+ |g⟩

∑
l

⟨g|Ll|β(t)⟩a†l (t)|vac⟩.
(6.41)

Comparing Eq. (6.39) to (6.41), we have

d

dt
|β(t)⟩ = (−iH − 1

2

∑
l

L†
lLl)|β(t)⟩ − ξ(t)L†

inc|g⟩ (6.42a)

∂

∂t
ϕl(t, tr) = ⟨g|Ll|β(t)⟩δ(t− tr). (6.42b)
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The solution to Eq. (6.42) is

|β(t)⟩ = −
∫ t

0

dτ ξ(τ)e(−iH− 1
2

∑
l L

†
lLl)(t−τ)L†

inc|g⟩ (6.43a)

ϕl(t, tr) =

 δl,inc ξ(tr) t < tr (upstream)
δl,inc ξ(tr) +

1
2 ⟨g|Ll|β(tr)⟩ t = tr

δl,inc ξ(tr) + ⟨g|Ll|β(tr)⟩ t > tr (downstream).
(6.43b)

Since ⟨ψ(t)|ψ(t)⟩ = 1, we have the property

⟨β(t)|β(t)⟩+
∑
l

∫
dtr |ϕl(t, tr)|2 = 1. (6.44)

Using Eq. (6.36), we find that the solution to the single photon Fock state master equation (Eq.
(6.37)) is

ρ1,1(t) = |β(t)⟩⟨β(t)|+ |g⟩⟨g|
∑
l

∫ ∞

−∞
dtr |ϕl(t, tr)|2

ρ1,0(t) = |β(t)⟩⟨g|
ρ0,0(t) = |g⟩⟨g|.

(6.45)

The total probability of being in the excited state is ⟨β(t)|β(t)⟩. However, since the system energy

scale ||H|| is much larger than the spontaneous emission rate ||∑l L
†
lLl||, if we are interested in

the system behavior at short times we will have ||∑l L
†
lLl|| t ≪ 1. It is then useful to drop the

spontaneous emission terms in Eq. (6.43a) and approximate |β(t)⟩ as

|β′
ξ(t)⟩ ≡ −

∫ t

0

dτ ξ(τ)e−iH(t−τ)L†
inc|g⟩, (6.46)

where for later convenience, we added the subscript ξ to emphasize the dependence of the excited
state |β′(t)⟩ on the temporal profile ξ(t).

6.2.7 Photon Flux

The photon flux of a field mode is defined as the rate at which photons pass through the mode and
has the dimension of 1/[time]. At time t, the photon flux immediately downstream of the system is

given by a†out(t)aout(t) [47,67].

Coherent state input

The expectation value of the photon flux Fl in spatial mode l is the trace over the initial state:

Fl = Tr
(
a†l,out(t)al,out(t)ρ0 ⊗ |αξ⟩⟨αξ|

)
. (6.47)

Substituting in al,out(t) = al(t) + LHl(t) (see Eq. (6.17)) and following a similar procedure as in Sec.
6.2.4, we obtain the following explicit expression for the photon flux into mode l

Fl =

{
|α(t)|2 +

(
α∗(t)⟨Ll⟩+ c.c.

)
+ ⟨L†

lLl⟩ , l = inc

⟨L†
lLl⟩ , otherwise,

(6.48)

where ⟨X⟩ ≡ Tr(Xρ(t)).
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N-photon Fock state input

The expectation value of the photon flux Fl in spatial mode l is the trace over the initial state:

Fl = Tr
(
a†l,out(t)al,out(t)ρ0 ⊗ |Nξ⟩⟨Nξ|

)
. (6.49)

Substituting in al,out(t) = al(t) + LHl(t) (see Eq. (6.17)) and following a similar procedure as in Sec.
6.2.5, we obtain the following explicit expression for the photon flux into mode l

Fl =

{
N |ξ(t)|2 +

(√
Nξ∗(t)⟨Ll⟩N,N−1 + c.c.

)
+ ⟨L†

lLl⟩N,N , l = inc

⟨L†
lLl⟩N,N , otherwise,

(6.50)

where ⟨X⟩n,m ≡ Tr(Xρn,m). In the expression on the first line for the incoming mode, the first term
represents the transmission of the incoming photon and the second term arises from the coherent
dynamics between the system and the field. A negative value of the latter term represents the absorp-
tion of photons. A positive value for this term corresponds to stimulated emission. It is interesting
to note that the second term can be positive also in the case of a single photon input, meaning that a
single photon can stimulate its own emission. The final term on the first line for the incoming mode
has the same form as the flux expression for the non-incoming modes and represents the spontaneous
emission into the particular mode l.

6.3 Interaction with phonons

6.3.1 Vibronic Hamiltonian and vibrational correlation functions

To model the interaction with phonons, we first employ the Born-Oppenheimer approximation to
separate electronic and nuclear degrees of freedom. Each chromophore is coupled to a set of nuclear
coordinates, and the nuclear coordinates of different chromophores are independent of each other.
Next, we use the harmonic approximation to describe the nuclear Hamiltonian near the potential
energy minumum as a set of harmonic oscillators. Let the nuclear Hamiltonian for the electronic
ground state be

Hvib,g =
∑
ξ

p2ξ
2

+
ω2
ξq

2
ξ

2
, (6.51)

where ξ indexes the normal mode (phonon) coordinates, ωξ is the normal mode frequency, qξ and pξ
are the mass-normalized normal mode coordinate and its conjugate momentum. We set the minimum
of the ground state potential energy surface to have zero potential energy. We assume the nuclear
Hamiltonian for the excited state is described by the same set of normal mode coordinates and that
it takes the usual form of shifted harmonic oscillators [49,118]

Hvib,e = E0 +
∑
ξ

p2ξ
2

+
ω2
ξ (qξ + dξ)

2

2
, (6.52)

where E0 is the minimum energy of the excited state potential energy surface, and dξ is the coordinate
shift of normal mode ξ. Hvib,e can be re-expressed as

Hvib,e = ϵ+Hvib,g + u, (6.53)

where
ϵ = E0,j +

∑
ξ

ω2
ξd

2
ξ/2 (6.54)
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is the energy of the vertical transition from the ground state minimum, and

u =
∑
ξ

ω2
ξdξqξ (6.55)

is a linear combination of phonon coordinates. In the continuum limit, the coupling to phonon
coordinates can be described by the spectral density J(ω), defined as

J(ω) =
∑
ξ

π

2ωξ
(ω2

ξdξ)
2δ(ω − ωξ) (6.56)

The second term on the right-hand side of Eq. (6.54) is the reorganization energy λ, which is related
to the spectral density by

λ =
1

π

∫ ∞

0

dω
J(ω)

ω
. (6.57)

The overall system+vibration Hamiltonian in the 0- and 1-electronic excitation subspace is

Hsys+vib = |g⟩⟨g|
∑
k

H
(k)
vib,g +

∑
j

|j⟩⟨j|
(
H

(j)
vib,e +

∑
k ̸=j

H
(k)
vib,g

)
+
∑
j ̸=k

Jjk|j⟩⟨k|, (6.58)

where the last term on the right hand side describes the dipole-dipole interaction between the singly-
excited states. We ignore the small effect of phonons on the dipole-dipole interaction [119]. Note

that the nuclear Hamiltonian H
(j)
vib for different chromophore sites can have different normal modes,

displacements dξ, and energy shifts E0. Using Eq. (6.53), we can simplify Eq. (6.58) as

Hsys+vib =
∑
j

ϵj |j⟩⟨j|+
∑
j ̸=k

Jjk|j⟩⟨k|︸ ︷︷ ︸
Hsys

+
∑
k

H
(k)
vib,g︸ ︷︷ ︸

Hvib

+
∑
j

|j⟩⟨j|uj︸ ︷︷ ︸
Hsys-vib

. (6.59)

We have separated the system+vibration Hamiltonian here into a system part Hsys, a vibration part
Hvib, and a system-vibration interaction part Hsys-vib. Note that Hsys takes exactly the same form
as Eq. (6.1). Since the system-vibration coupling term does not involve the system ground state,
to a very good approximation, the initial thermal state ∝ e−βHsys+vib is a product state between the
system ground state |g⟩⟨g| and the vibrational thermal state ∝ e−βHvib .

To study the effect of nuclear vibrations on the electronic states, we need to understand some
properties of the vibrational correlation functions. First, we rotate outHvib from the system+vibration
Hamiltonian, and we write the interaction Hamiltonian as

HI(t) = Hsys +
∑
j

|j⟩⟨j|uj(t), (6.60)

where uj(t) ≡ exp(iHvibt)uj exp(−iHvibt). An important property of uj(t) is Wick’s theorem [120]〈
Ouj2n(t2n)uj2n−1(t2n−1) · · ·uj2(t2)uj1(t1)

〉
=
∑
a.p.p.

∏
k,l

〈
Oujk(tk)ujl(tl)

〉
, (6.61)

where O is an ordering operator that imposes some ordering on {t1, · · · t2n} and re-orders the operators
according to their time arguments tk. The angled bracket ⟨X⟩ ≡ Tr(ρthermalX) denotes averaging
with a thermal state. The sum on the right hand side is over all possible pairings (k, l) of the 2n
operators. Averaging over an odd number of operators, we have ⟨Ouj2n−1

(t2n−1) · · ·uj2(t2)uj1(t1)⟩ =
0. Therefore, under thermal averaging, uj(t) behaves like a mean-zero Gaussian random process.
Note that ⟨Oujk(tk)ujl(tl)⟩ is non-zero only when jk = jl, meaning that these correlation functions
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are non-zero only when they correspond to the phonon operator on the same site, because of the
assumption that phonons on different sites are independent. Substituting qξ =

√
ℏ/2ωξ(aξ + a†ξ) into

Eq. (6.55), we find that the two-point correlation function of phonon operators on the same site is

⟨uj(t2)uj(t1)⟩ =
ℏ
π

∫ ∞

0

dω Jj(ω)
[
coth(

βℏω
2

) cos(ωτ)− i sin(ωτ)
]
, (6.62)

where τ ≡ t2 − t1 and β = 1/kBT is the inverse temperature.

We will analyze the effect of vibration using two different methods. The first method considers
an initial vibrational pure state, and solves for the pure state analogous to Section 6.2.6. Then by
averaging the dynamics starting from a thermal distribution of vibrational pure states, we can analyze
the behavior given an initial vibrational thermal state. This method can be applied numerically only
for a small number of discrete vibration modes, but it gives us useful analytical expressions in the
continuum limit. The second method uses the HEOM formalism to trace out the vibration degrees
of freedom and represent the effect of a continuum of vibration modes by a set of auxiliary density
matrices containing only the system degrees of freedom.

6.3.2 Generalized cumulant expansion

The hierarchical equations of motion (HEOM) is a non-perturbative method to treat the non-Markovian
effects of phonons on the system dynamics. They are a set of differential equations that couples the
physical density matrix to a hierarchy of auxiliary density matrices. We first discuss the generalized
cumulant expansion [121] for the reduced system state, and then use it to derive the HEOM for an
overdamped vibrational bath and an underdamped vibrational bath.

The time evolution of the system+vibration density matrix can be expressed as a superoperator
acting on the initial system+vibration density matrix

ρsys+vib(t) = T exp

(∫ t

0

dτ − i

ℏ
H×

I (τ)

)
ρsys+vib(0).r (6.63)

The exponential is time-ordered, and H×
I (τ)ρ ≡ [HI(τ), ρ] is the commutator. Assuming an initial

factorized state ρsys+vib(0) = ρsys(0)⊗ ρvib, thermal, with the vibrational state in thermal equilibrium,
the reduced system state is then obtained as the partial trace of the time-evolved system+vibration
state

ρsys(t) = Trvib

((
T exp

∫ t

0

dτ − i

ℏ
H×

I (τ)
)
ρsys+vib(0)

)
=
〈
T exp

∫ t

0

dτ − i

ℏ
H×

I (τ)
〉
ρsys(0).

(6.64)

In the second line, the angled bracket ⟨· · · ⟩ means averaging with the vibration thermal state: this
maps a superoperator acting on the system+vibration Liouville space to a superoperator acting on
the system Liouville space. We will show below that Eq. (6.64) can be expressed as a generalized
cumulant expansion as

ρsys(t) = T exp
(
− i

ℏ

∫ t

0

dt1 ⟨H×
I (t1)⟩−

1

ℏ2

∫ t

0

dt2

∫ t2

0

dt1 ⟨H×
I (t2)H

×
I (t1)⟩−⟨H×

I (t2)⟩⟨H×
I (t1)⟩

)
ρsys(0).

(6.65)
All higher cumulant terms vanish identically because of Wick’s property (Eq. (6.61)).

To fill in some steps leading to Eq. (6.65), we write a commutator superoperator A× = Al + Ar

as a sum of a left multiplication superoperator Al, defined as AlB = AB, and a right multiplication
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superoperator Ar, defined with an additional minus sign as ArB = −BA. We also write Eq. (6.58)
as a sum of N + 1 product terms

HI(t) =

N∑
k=0

Sk(t)Bk(t), (6.66)

where Sk(t) are system operators and Bk(t) are phonon bath operators. In particular,

Sk(t) =

{
Hsys , k = 0

Pj = |j⟩⟨j| , k ̸= 0
, (6.67)

and

Bk(t) =

{
1 , k = 0

uk(t) , k ̸= 0
. (6.68)

A general time-ordered product in the expansion of Eq. (6.64) takes the form〈
T
(
Skn

(tn)Bkn
(tn)

)× · · ·
(
Sk1

(t1)Bk1
(t1)

)×〉
=

∑
αn=l,r

· · ·
∑

α1=l,r

T Sαn

kn
(tn) · · ·Sα1

k1
(t1)

〈
O{α,t}Bkn(tn) · · ·Bk1(t1)

〉
,

(6.69)

where in the second line the bracket ⟨· · · ⟩ means averaging with the phonon thermal state. The
ordering of the phonon operators depends on the α and depends on the ordering of the time points
t1 to tn. We now partition the n different time points, t1 to tn, into N + 1 groups, where in the k-th
group the time points correspond to operators Sk and Bk. The time points in the k-th group are
re-labeled as {tk,1, tk,2, · · · }. To illustrate this notation, Eq. (6.69) may, for example, be rewritten as〈

T
(
S4(t4,1)B4(t4,1)

)×(
S3(t3,1)B3(t3,1)

)×(
S3(t3,2)B3(t3,2)

)×〉
. (6.70)

Since the phonon correlation function factorizes into N+1 groups of different Bk operators, Eq. (6.69)
can be factorized as

Eq. (6.69) = T
N∏

k=0

∑
αk,1

∑
αk,2

· · ·Sαk,1

k (tk,1)S
αk,2

k (tk,2) · · ·
〈
O{α,t}Bk(tk,1)Bk(tk,2) · · ·

〉

= T
N∏

k=0

〈
T
(
Sk(tk,1)Bk(tk,1)

)×(
Sk(tk,2)Bk(tk,2)

)× · · ·
〉
.

(6.71)

Using the factorization property (Eq. (6.71)) and the fact that superoperators commute under time-
ordering, we can factorize Eq. (6.64) as

ρsys(t) = T
N∏

k=0

〈
T exp

∫ t

0

dτ − i

ℏ
(
Sk(τ)Bk(τ)

)×〉
ρsys(0). (6.72)

For k = 0, 〈
T exp

∫ t

0

dτ − i

ℏ
(
Sk(τ)Bk(τ)

)×〉
= T exp

∫ t

0

dτ − i

ℏ
Hsys(τ)

×. (6.73)
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For k ̸= 0, the n-th expansion term of
〈
T exp

∫ t

0
dτ − i

ℏ
(
Sk(τ)Bk(τ)

)×〉
is

1

n!

(−i
ℏ
)n ∫ t

0

dtn · · ·
∫ t

0

dt1∑
αn

· · ·
∑
α1

T Pαn

k (tn) · · ·Pα1

k (t1)
〈
O{α,t}uk(tn) · · ·uk(t1)

〉
.

(6.74)

Using Wick’s property (Eq. (6.61)), the integrand in the equation above is nonzero when n is even.
In this case, the integrand becomes∑

a.p.p.

(∑
αn

· · ·
∑
α1

T Pαn

k (tn) · · ·Pα1

k (t1)
〈
O{α,t}uk(tp)uk(tq)

〉〈
O{α,t}uk(tr)uk(ts)

〉
· · ·
)

=
∑
a.p.p.

T
(∑

αp

∑
αq

T Pαp

k (tp)P
αq

k (tq)
〈
O{α,t}uk(tp)uk(tq)

〉)
(∑

αr

∑
αs

T Pαr

k (tr)P
αs

k (ts)
〈
O{α,t}uk(tr)uk(ts)

〉)
· · · .

(6.75)

On the right hand side, we factorize the integrand into products of double interaction terms. Eq.
(6.74) becomes

1

n!

∑
a.p.p.

(−i
ℏ
)nT (∫ t

0

dt2

∫ t

0

dt1
∑
α2

∑
α1

T Pα2

k (t2)P
α1

k (t1)
〈
O{α,t}uk(t2)uk(t1)

〉)n/2

=
1

2n/2(n/2)!

(−1

ℏ2
)n/2T (2 ∫ t

0

dt2

∫ t2

0

dt1(Pk(t2)Pk(t1) • −Pk(t1) • Pk(t2))⟨uk(t2)uk(t1)⟩

(•Pk(t1)Pk(t2)− Pk(t2) • Pk(t1))⟨uk(t1)uk(t2)⟩
)n/2

=
1

(n/2)!

(−1

ℏ2
)n/2T (∫ t

0

dt2

∫ t2

0

dt1P
×
k (t2)P

×
k (t1)ℜ⟨uk(t2)uk(t1)⟩

+ P×
k (t2)P

o
k (t1)ℑ⟨uk(t2)uk(t1)⟩

)n/2

.

(6.76)

Note that in the first line, the summand is independent of the pairing of the n factors. Therefore, the
sum

∑
a.p.p becomes a factor of n!/(2n(n/2)!), which is the number of ways to pair up n terms into

n/2 pairs (remember n is even). In the second equality, we use the superoperator notation where for
example (A •B)ρ = AρB. Therefore for k ̸= 1,〈

T exp

∫ t

0

dτ − i

ℏ
(
Sk(τ)Bk(τ)

)×〉
=

T exp
( ∫ t

0

dt2

∫ t2

0

dt1P
×
k (t2)P

×
k (t1)ℜ⟨uk(t2)uk(t1)⟩+ P×

k (t2)P
o
k (t1)ℑ⟨uk(t2)uk(t1)⟩

)
.

(6.77)

Combining Eqs. (6.72), (6.73), and (6.77), we obtain the generalized cumulant expansion of Eq.
(6.65).
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6.3.3 Hierarchical equations of motion for overdamped vibration

We assume the spectral density takes the Drude-Lorentz form

Jj(ω) =
2λjγjω

ω2 + γ2j
, (6.78)

corresponding to the overdamped Brownian oscillator model [46,49], where γ is the exponential decay
rate of the imaginary part of the correlation function. It is interesting to note that if we require
the imaginary part of the correlation function (proportional to the linear response of phonons) be
an exponential decay with decay rate γ, and that Eq. (6.57) be satisfied, then the spectral density
has to take the Drude-Lorentz form in Eq. (6.78). In modeling photosynthetic systems, typically
βℏγ < 1, and we approximate coth(βℏω/2) in Eq. (6.62) as 2kBT/ℏω. Under this high-temperature
approximation and using Eq. (6.78), Eq. (6.62) becomes

⟨uj(t2)uj(t1)⟩ = λje
−γj |τ |(2kBT − iℏγj). (6.79)

The first and second generalized cumulants are

⟨H×
I (t1)⟩ = H×

sys(t1) (6.80a)

⟨H×
I (t2)H

×
I (t1)⟩ − ⟨H×

I (t2)⟩⟨H×
I (t1)⟩ =

∑
j

λje
−γj |τ |P×

j (t2)(2kBTP
×
j (t1)− iℏγjP o

j (t1)), (6.80b)

where Pj ≡ |j⟩⟨j| and AoB ≡ {A,B} is the anticommutator superoperator. The superoperators H×
sys,

P×
j , and P o

j do not depend on time. However, they are still indexed by time so that they can be
properly time-ordered inside the time-ordering operator.

We write the generalized cumulant expansion (Eq. (6.65)) as

ρsys(t) = T Zρsys(0), (6.81)

where

Z = exp
(
− i

ℏ

∫ t

0

dt1Hsys(t1)−
1

ℏ2
∑
j

∫ t

0

dt2

∫ t2

0

dt1 λje
−γj(t2−t1)P×

j (t2)(2kBTP
×
j (t1)−iℏγjP o

j (t1))
)
.

(6.82)
We now further define

Yj ≡
1

ℏ

∫ t

0

dt1 e
−γj(t−t1)(2kBTP

×
j (t1)− iℏγjP o

j (t1)), (6.83)

as well as the auxiliary density matrices

ρn⃗(t) ≡ T (
∏
j

Ynj

j )Zρsys(0), (6.84)

with n⃗ = (n1, · · · , nN ) is a list of N integers where each integer nj corresponds to a site. The factor 1/ℏ
in Y makes Y dimensionless and ensures that all auxiliary density matrices have the same dimension.

Notice that ρ0⃗ is the physical density matrix, and that at time t = 0,

ρn⃗(0) =

{
ρsys(0) , n⃗ = 0⃗

0 , n⃗ ̸= 0⃗.
(6.85)

We can then obtain the HEOM by taking the time derivative of ρn⃗(t) (Eq. (6.84)) to arrive at

d

dt
ρn⃗(t) = − i

ℏ
H×

sysρ
n⃗ − (

∑
j

njγj)ρ
n⃗ −

∑
j

λj
ℏ
P×
j ρ

n⃗+êj + nj(
2kBT

ℏ
P×
j − iγjP

o
j )ρ

n⃗−êj , (6.86)
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where êj ≡ (0, · · · , 0, 1, 0, · · · , 0) is the “unit vector” with the jth element equals to 1 and all other
elements equal to 0.

Note that we began the derivation in the interaction picture where we rotated out Hvib, but
because the auxiliary density matrices contain only the system degrees of freedom, the rotation has
no effect on the auxiliary density matrices and one can interpret the HEOM (Eq.(6.86)) as being in
the Schrodinger picture. Numerically, a cutoff level Ncutoff has to be introduced, so that only the
auxiliary density matrices with

∑
j nj ≤ Ncutoff are solved. The total number of auxiliary density

matrices is
(
N+Ncutoff

Ncutoff

)
.

The numerical values of the parameters in the spectral density are taken from [122]. Specifi-
cally, λ is the reorganization energy, taken to be 37 cm−1 for all sites, and γ, with physical dimen-
sion of frequency, is the decay rate of the phonon correlation function, which characterizes the time
scale of vibration-induced fluctuations in the electronic excitation energy. For chlorophyll a, we take
γ = 30 cm−1; for chlorophyll b, we take γ = 48 cm−1 (see Appendix H). Under high temperatures
(characterized by ℏγ/kBT ≪ 1, where kB and T are the Boltzmann constant and temperature, re-
spectively), the interaction picture system density matrix (i.e., with

∑
j ω0|j⟩⟨j| rotated out) follows

the hierarchical equations of motion [48,49]

d

dt
ρn⃗(t) = −iH×ρn⃗ − (

∑
j

njγj)ρ
n⃗ −

∑
j

λjP
×
j ρ

n⃗+êj + nj(2kBTP
×
j − iγjP

o
j )ρ

n⃗−êj , (6.87)

where Pj ≡ |j⟩⟨j|, AoB ≡ {A,B} is the anticommutator superoperator, and A×B ≡ [A,B] is the
commutator superoperator. n⃗ = (n1, · · · , nN ) is a vector of N integers, where the element nj is the
hierarchical level of the jth site. êj ≡ (0, · · · , 0, 1, 0, · · · , 0) is the “unit vector” with the jth element

equals to 1 and all other elements equal to 0. ρ(⃗0) is the physical density matrix, and the other ρ(n⃗)’s
are non-physical auxiliary density matrices that capture the non-Markovian effects of the phonon
environment. The initial contition is

ρn⃗(0) =

{
ρsys(0) , n⃗ = 0⃗

0 , n⃗ ̸= 0⃗.
(6.88)

Numerically, a cutoff level Ncutoff has to be introduced so that only a finite number of auxiliary
density matrices with

∑
j nj ≤ Ncutoff are solved. Given the cutoff, the total number of auxiliary

density matrices is
(
N+Ncutoff

Ncutoff

)
[123].

HEOM terminator equations

The auxiliary density matrices having
∑

j nj = Ncutoff are called the terminators. To capture the

effect of the auxiliary density matrices ρn⃗+êj that are one level beyond the terminators, we first write
their time derivatives as

d

dt
ρn⃗+êj (t) = − i

ℏ
H×

sysρ
n⃗+êj−(γj+

∑
k

nkγk)ρ
n⃗+êj+

∑
k

(nk+δj,k)(
2kBT

ℏ
P×
j −iγjP o

j )ρ
n⃗+êj−êk , (6.89)

where we have dropped the terms involving auxiliary density matrices that are two levels beyond the
terminators. If the cutoff level is high enough such that (γj +

∑
k nkγk) is much larger than the scale

of Hsys, then Hamiltonian term in Eq. (6.89) can be dropped. Then solving Eq. (6.89) formally, we
have

ρn⃗+êj (t) =

∫ t

0

dτ e−(γj+
∑

k nkγk)(t−τ)
∑
k

(nk + δj,k)(
2kBT

ℏ
P×
j − iγjP

o
j )ρ

n⃗+êj−êk(τ). (6.90)
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Approximating e−(γj+
∑

k nkγk)|t−τ | as 2δ(t− τ)/(γj +
∑

k nkγk), Eq. (6.90) becomes

ρn⃗+êj (t) =
∑
k

nk + δj,k
γj +

∑
k nkγk

(
2kBT

ℏ
P×
j − iγjP

o
j )ρ

n⃗+êj−êk(t). (6.91)

Substituting Eq. (6.91) into Eq. (6.87) for the terminators, the time derivatives of the terminators
can now be written explicitly as

d

dt
ρn⃗(t) =− i

ℏ
H×

sysρ
n⃗ − (

∑
j

njγj)ρ
n⃗ +

∑
j

nj(
2kBT

ℏ
P×
j − iγjP

o
j )ρ

n⃗−êj

−
∑
j,k

λj
ℏ

nk + δj,k
γj +

∑
l nlγl

P×
j (

2kBT

ℏ
P×
k − iγkP

o
k )ρ

n⃗+êj−êk .

(6.92)

6.3.4 Hierarchical equations of motion for underdamped vibration and its
equivalence to Lindblad equation on an extended Hilbert space

In this Section, we derive the non-Markovian HEOM for treating the effects of a specific form of under-
damped modes on the reduced electronic system, and we show that the reduced system dynamics can
be equivalently obtained by solving a Markovian Lindblad master equation on the larger Hilbert space
consisting of the electronic plus vibrational degrees of freedom and then tracing out the vibrational
degrees of freedom.

We begin with a microscopic model for the electronic degrees of freedom, a single vibrational mode,
and a quantum white noise bath that damps the vibrational mode. The total Hamiltonian is written
as

H = Hel + S
b+ b†√

2
+ νb†b+

∫ ∞

−∞
dω ωa†(ω)a(ω) +

√
γ

2π

∫ ∞

−∞
dω a†(ω)b+ a(ω)b†. (6.93)

Hel is the electronic Hamiltonian; S is an arbitrary electronic system operator that couples to the
single vibrational mode b with frequency ν; the mode b is then coupled to a white noise bath a(ω) with
coupling constant γ. The initial state is assumed to be a product state of an arbitrary system state,
a thermal state with average phonon number of n̄ in the b vibrational mode, and a quasi-thermal
state in the white noise bath, where every a(ω) mode is in a thermal state with the same occupation
number n̄. Note that a true thermal state of the white noise bath at some fixed temperature will have
the occupation number of each mode dependent on the mode frequency ω.

First, we treat the electronic degrees of freedom and the single vibrational mode as the reduced
system. Rotating out the free bath evolution (i.e.,

∫∞
−∞ dω ωa†(ω)a(ω)), the total Hamiltonian becomes

H(t) = Hel+vib +
√
γ(a†(t)b+ a(t)b†), (6.94)

where Hel+vib = Hel + S(b+ b†)/
√
2 + νb†b and

a(t) =
1√
2π

∫ ∞

−∞
dω a(ω)e−iωt, (6.95)

similar to Eq. (6.7). The reduced system density matrix is formally expressed as a time-ordered
exponential

ρel+vib(t) =

〈
T exp

(∫ t

0

dτ − iH×
el+vib − i

√
γ(a†(τ)b+ a(t)b†)×

)〉
ρel+vib(0), (6.96)
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where the bracket ⟨· · · ⟩ means averaging over the initial state of the white noise bath. Since the quasi-
thermal white noise bath satisfies the Gaussian property [120] of Eq. (6.61), where uj are replaced by
either a(τ) or a†(τ), we can write the generalized cumulant expansion of Eq. (6.96) as

ρel+vib(t) = T exp

(∫ t

0

dτ − iH×
el+vib(τ)−

γ

2

∫ t

0

dτ2

∫ t

0

dτ1

⟨a†(τ2)a†(τ1)⟩(b(τ2)b(τ1) • −b(τ1) • b(τ2)) + ⟨a†(τ1)a†(τ2)⟩(•b(τ1)b(τ2)− b(τ2) • b(τ1))
+ ⟨a(τ2)a(τ1)⟩(b†(τ2)b†(τ1) • −b†(τ1) • b†(τ2)) + ⟨a(τ1)a(τ2)⟩(•b†(τ1)b†(τ2)− b†(τ2) • b†(τ1))
+ ⟨a(τ2)a†(τ1)⟩(b†(τ2)b(τ1) • −b(τ1) • b†(τ2)) + ⟨a†(τ1)a(τ2)⟩(•b(τ1)b†(τ2)− b†(τ2) • b(τ1))

+ ⟨a†(τ2)a(τ1)⟩(b(τ2)b†(τ1) • −b†(τ1) • b(τ2)) + ⟨a(τ1)a†(τ2)⟩(•b†(τ1)b(τ2)− b(τ2) • b†(τ1))
)

× ρel+vib(0).

(6.97)

Note that Hel+vib is time-independent, but we have added a time index here so that it can be properly
time-ordered inside the time-ordering operator. The delta function correlations

⟨a†(τ2)a†(τ1)⟩ = ⟨a(τ2)a(τ1)⟩ = 0

⟨a†(τ2)a(τ1)⟩ = n̄δ(τ2 − τ1)

⟨a(τ2)a†(τ1)⟩ = (n̄+ 1)δ(τ2 − τ1)

(6.98)

allow us to reduce the double integral inside the time-ordered exponential of Eq. (6.97) to a single
integral. Therefore Eq. (6.97) becomes

ρel+vib(t) = T exp

(∫ t

0

dτ − iH×
el+vib(τ) + γ(n̄+ 1)

(
b(τ) • b†(τ)− 1

2
b†(τ)b(τ)•)− 1

2
• b†(τ)b(τ)

)
+ γn̄

(
b†(τ) • b(τ)− 1

2
b(τ)b†(τ) • −1

2
• b(τ)b†(τ)

))
ρel+vib(0),

(6.99)

which is the solution to the Lindblad equation on the electronic plus vibrational degrees of freedom

d

dt
ρel+vib = −i[Hel+vib, ρel+vib] + γ(n̄+ 1)

(
bρel+vibb

† − 1

2
b†bρel+vib − 1

2
ρel+vibb

†b
)

+ γn̄
(
b†ρel+vibb−

1

2
bb†ρel+vib − 1

2
ρel+vibbb

†
)
.

(6.100)

On the other hand, we can also use the HEOM formalism to treat only the electronic degrees of
freedom as the reduced system. Working now in the interaction frame where we rotate out

H0 = νb†b+

∫ ∞

−∞
dω ωa†(ω)a(ω) +

√
γ

2π

∫ ∞

−∞
dω a†(ω)b+ a(ω)b† (6.101)

from Eq. (6.93), the electronic system density matrix has the formal solution of

ρel(t) =

〈
T exp

(∫ t

0

dτ − iH×
el (τ)− i(S(τ)q(τ))×

)〉
ρel(0), (6.102)

where q(τ) = (b(τ) + b†(τ))/
√
2 and the bracket ⟨· · · ⟩ means to average over the initial states of both

the vibration mode b and the white noise bath a(ω). Next, we want to show that q(τ) is Gaussian, so
that the cumulant expansion of Eq. (6.102) only contains up to the second cumulants.
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Defining U0(t) ≡ exp(−iH0t), b(t) ≡ U†
0 (t)bU0(t) follows the Heisenberg equation of motion

d

dt
b(t) = −iU†

0 (t)[b,H0]U0(t) = −iνb(t)− i

√
γ

2π

∫ ∞

−∞
dω a(ω, t), (6.103)

where a(ω, t) = U†
0 (t)a(ω)U0(t). a(ω, t) follows another Heisenberg equation of motion

d

dt
a(ω, t) = −iωa(ω, t)− i

√
γ

2π
b(t), (6.104)

which has the solution

a(ω, t) = e−iωta(ω)− i

√
γ

2π

∫ t

0

dτ e−iω(t−τ)b(τ). (6.105)

Substituting Eq. (6.105) into Eq. (6.103), we have

d

dt
b(t) = −iνb(t)− i

√
γa(t)− γ

2
b(t), (6.106)

which has the solution

b(t) = e(−iν−γ/2)tb− i
√
γ

∫ t

0

dτ e(−iν−γ/2)(t−τ)a(τ). (6.107)

Notice that b(t) is a sum of operators that satisfy the Gaussian property when averaged over the
initial thermal state. Therefore b(t) and q(t) also satisfy the Gaussian property. The mean, or the
first cumulant, of q(t) is ⟨q(t)⟩ = 0. The two-point correlation function, or the second cumulant, is

⟨q(t2)q(t1)⟩ =
1

2

(
⟨b†(t2)b(t1)⟩+ ⟨b(t2)b†(t1)⟩

)
=

1

2

(
eiν(t2−t1)e−γ/2(t2+t1)

(
⟨b†b⟩+ γ

∫ t2

0

dτ2

∫ t1

0

dτ1 e
−iν(τ2−τ1)eγ/2(τ2+τ1)⟨a†(τ2)a(τ1)⟩

)
e−iν(t2−t1)e−γ/2(t2+t1)

(
⟨bb†⟩+ γ

∫ t2

0

dτ2

∫ t1

0

dτ1 e
iν(τ2−τ1)eγ/2(τ2+τ1)⟨a(τ2)a†(τ1)⟩

))
=
n̄

2
eiν(t2−t1)e−γ/2|t2−t1| +

n̄+ 1

2
e−iν(t2−t1)e−γ/2|t2−t1|.

(6.108)

Using this correlation function and the Gaussian property, we can now write the cumulant expan-
sion of Eq. (6.102) as

ρel(t) = T exp

(∫ t

0

dτ − iH×
el (τ)

−
∫ t

0

dτ2S
×(τ2)

∫ τ2

0

dτ1 e
(iν−γ/2)(τ2−τ1)

( n̄
2
S(τ1) • −

n̄+ 1

2
• S(τ1)

)
+ e(−iν−γ/2)(τ2−τ1)

( n̄+ 1

2
S(τ1) • −

n̄

2
• S(τ1)

))
ρel(0)

≡ T Zρel(0),

(6.109)

where we defined Z as the superoperator exponential in the equation. Now we further define the
superoperators

A =

∫ t

0

dτe(iν−γ/2)(t−τ)
( n̄
2
S(τ) • − n̄+ 1

2
• S(τ)

)
(6.110)
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and

B =

∫ t

0

dτe(−iν−γ/2)(t−τ)
( n̄+ 1

2
S(τ) • − n̄

2
• S(τ)

)
, (6.111)

so the repeated time derivatives of Eq. (6.109) consist of terms of the form ρm⃗el = ρmA,mB

el ≡
T AmABmBZρel(0). Taking the time derivative of ρm⃗el

d

dt
ρm⃗el =− i[Hel, ρ

m⃗
el ] +mA(iν −

γ

2
)ρm⃗el +mB(−iν −

γ

2
)ρm⃗el

+mA(
n̄

2
Sρm⃗−êA

el − n̄+ 1

2
ρm⃗−êA
el S)

+mB(
n̄+ 1

2
Sρm⃗−êB

el − n̄

2
ρm⃗−êB
el S)

− [S, ρm⃗+êA
el + ρm⃗+êB

el ],

(6.112)

we obtain the HEOM for the electronic degrees of freedom coupled to a single underdamped vibrational
mode with the Hamiltonian of Eq. (6.93). êA and êB are the unit vectors in the A and B indices of

m⃗ = (mA,mB). ρ
0⃗ is the physical density matrix, and the initial condition is ρm⃗(0) = δ0⃗,m⃗ρel(0).

The main result in this section is that solving the Markovian Lindblad master equation (Eq.
(6.100)) on the electronic degrees of freedom plus the single vibrational degree of freedom and then
tracing out the vibrational degree of freedom is equivalent to solving the non-Markovian HEOM of
Eq. (6.112) on the electronic degrees of freedom alone. This is because both equations are derived
exactly from the same Hamiltonian (Eq. (6.93)) and the same initial condition.

This result can be generalized straightforwardly to an electronic system coupling to N independent
underdamped vibrational modes. To do so in the Lindblad description, we enlarge the Hilbert space to
include all N underdamped modes and then add a pair of Lindblad dissipators for each underdamped
mode, so that the Lindblad equation becomes

d

dt
ρel+vib =− i[Hel+vib, ρel+vib]

+

N∑
α=1

(
γα(n̄α + 1)

(
bαρel+vibb

†
α − 1

2
b†αbαρel+vib − 1

2
ρel+vibb

†
αbα

)
+ γαn̄α

(
b†αρel+vibbα − 1

2
bαb

†
αρel+vib − 1

2
ρel+vibbαb

†
α

))
,

(6.113)

where α indexes the N underdamped modes. In the HEOM description, we add a pair of HEOM
indices (mA,mB) to Eq. (6.112) for each underdamped mode, so that m⃗ = (m1

A,m
1
B , · · · ,mN

A ,m
N
B ).

Eq. (6.112) then becomes

d

dt
ρm⃗el =− i[Hel, ρ

m⃗
el ]

+

N∑
α=1

(
mα

A(iνα − γα
2
)ρm⃗el +mα

B(−iνα − γα
2
)ρm⃗el

+mα
A(
n̄α
2
Sαρ

m⃗−êαA
el − n̄α + 1

2
ρ
m⃗−êαA
el Sα)

+mα
B(
n̄α + 1

2
Sαρ

m⃗−êαB
el − n̄α

2
ρ
m⃗−êαB
el Sα)

− [Sα, ρ
m⃗+êαA
el + ρ

m⃗+êαB
el ]

)
.

(6.114)
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Figure 6.2: Comparison between solving the Lindblad Eq. (6.113) on the electronic plus vibra-
tional Hilbert space then tracing out vibrations and solving the HEOM Eq. (6.114) on the electronic
states alone, for a dimer system coupled to two underdamped modes. The parameter values are
(ν1, ν2, κ1, κ2, γ1, γ2) = (200, 200, 50, 50, 100, 100) cm−1. The temperature of the initial vibrational
state is 300 K. The electronic initial state is |1⟩. In solving the Lindblad equation, both harmonic
oscillators are truncated to the 8 lowest eigenstates. In solving the HEOM, we propagate only the
auxiliary density matrices ρm⃗ satisfying sum(m⃗) = m1

A +m1
B +m2

A +m2
B ≤ 5.

Due to the fact that in the Lindblad description, the dimension of Hilbert space scales exponentially
with the number of underdamped modes, HEOM can be more computationally efficient in simulating
the reduced electronic system dynamics.

Fig. (6.2) illustrates the equivalence of solving Eq. (6.113) then tracing out vibrations and
solving Eq. (6.114), for a dimer system coupled to two underdamped modes. The following vibronic
Hamiltonian is considered

Hel+vib = Hdimer + ν1b
†
1b1 + ν2b

†
2b2 + κ1|1⟩⟨1|

b1 + b†1√
2

+ +κ2|2⟩⟨2|
b2 + b†2√

2
, (6.115)

where Hdimer is given in Appendix H. |1⟩ and |2⟩ represent states with excitations on site 1 or 2.

6.4 Interaction with both photons and phonons

6.4.1 System plus field plus vibration pure state

Generalizing the analysis presented in Section 6.2.6, one can write down a system+field+vibration
pure state as a function of time, given the system+vibration state initialized in the pure product
state |g⟩ ⊗ |v⟩, where |v⟩ is an arbitrary vibration state. In Section 7.2, we shall take |v⟩ to be the
eigenstate of Hvib, the vibrational Hamiltonian in the electronic ground state with energy Ev, so that
Hvib|v⟩ = Ev|v⟩. The overall pure state |ψ(t)⟩ is written as

|ψ(t)⟩ = |γ(t)⟩|vac⟩+ |g⟩
∑
l

∫ ∞

−∞
dtr |χl(t, tr)⟩a†l (tr)|vac⟩, (6.116)
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with

|γ(t)⟩ = −
∫ t

0

dτ ξ(τ)e(−iHsys+vib− 1
2

∑
l L

†
lLl)(t−τ)L†

inc|g⟩e−iHvibτ |v⟩ (6.117a)

χl(t, tr) =


δl,incξ(tr)e

−iHvibt|v⟩ , t < tr

δl,incξ(tr)e
−iHvibt|v⟩+ 1

2e
−iHvib(t−tr)⟨g|Ll|γ(tr)⟩ , t = tr

δl,incξ(tr)e
−iHvibt|v⟩+ e−iHvib(t−tr)⟨g|Ll|γ(tr)⟩ , t > tr.

(6.117b)

Here |γ(t)⟩ is an unnormalized system+vibration state with the system being in the excited subspace,
and χl(t, tr) is an unnormalized vibration state at time t. One can check that

ρ1,1(t) = |γ(t)⟩⟨γ(t)|+ |g⟩⟨g|
∑
l

∫ ∞

−∞
dtr |χl(t, tr)⟩⟨χl(t, tr)|

ρ1,0(t) = |γ(t)⟩⟨g|⟨v|eiHvibt

ρ0,0(t) = e−iHvibt|v⟩|g⟩⟨g|⟨v|eiHvibt

(6.118)

solves the single photon Fock state master equation (Eq. (6.37)) with vibration. For later convenience,
we drop the spontaneous emission terms and define

|γ′ξ,v(t)⟩ ≡ −
∫ t

0

dτ ξ(τ)e−iHsys+vib(t−τ)L†
inc|g⟩e−iHvibτ |v⟩ (6.119)

to emphasize the dependence on the temporal profile ξ(t) and the initial vibrational state |v⟩.

6.4.2 Combining the input-output and HEOM formalisms

To simultaneously study the effects of the single photon and the phonon bath on the excitonic system,
we now combine the input-output and HEOM formalisms. Two different formalisms are needed to
treat the effects of these two bosonic baths because of their different properties. The input-output
formalism is based on the frequency-independent coupling and the wide-band approximation (see
Section 6.2.2), which has been used extensively in quantum optics to treat the interaction of matter
with the photon field. The coupling to phonons, on the other hand, is frequency-dependent, and
therefore cannot be treated with the assumptions of the input-output formalism. The input-output
formalism allows us to explicitly calculate properties of the outgoing photon field (see Section 6.2.7),
while the HEOM formalism traces out the bath degrees of freedom. The HEOM formalism is well-
suited to treat the coupling to phonons, since the phonon correlation function is Gaussian, while the
correlation function (e.g. ⟨a†(t2)a†(t1)⟩, ⟨a†(t2)a(t1)⟩, etc.) of an N-photon Fock state is not Gaussian.
As an aside, we note that in contrast to a Fock state, for a multimode coherent state the correlation
function is Gaussian, and for a coherent state input one can in fact treat the interaction with photons
using the HEOM formalism. In addition, because the second cumulant ⟨a(t2)a†(t1)⟩ − ⟨a(t2)⟩⟨a†(t1)⟩
is proportional to a delta function for a coherent state, the resulting reduced system dynamics is
Markovian and does not involve auxiliary density matrices (see Section 7.1.1) [59,65].

To combine the input-output and HEOM formalisms, we use Eqs. (6.6), (6.8), and (6.59) to write
the full Hamiltonian as

Htotal = Hfield +Hvib +
∑
j

ω0|j⟩⟨j|+ (Hsys −
∑
j

ω0|j⟩⟨j|)︸ ︷︷ ︸
H

+Hsys-field +Hsys-vib. (6.120)

Here the term inside the parenthesis is the Hamiltonian appearing in the Fock state master equation,
and will be denoted simply as H. Moving into the interaction picture where we now rotate out
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Hfield +Hvib +
∑

j ω0|j⟩⟨j|, the full Hamiltonian becomes

Htotal(t) = H +
∑
j

|j⟩⟨j|uj(t) +
∑
l

(−ial(t)L†
l + h.c.). (6.121)

This is to be compared with the interaction picture Hamiltonian for the system+field state alone,
Eq. (6.8). Given a multimode Fock state photon in one spatial mode as the input field, the reduced
dynamics in the system+vibration degrees of freedom is then given by the Fock state master equation
Eq. (6.37), with H replaced by H+

∑
j |j⟩⟨j|uj(t). To apply the HEOM formalism to this, we rewrite

the Fock state master equation in the block matrix form

d

dt



ρN,N

...
ρm,n

...
ρ0,0

 =



−i∑j(Pjuj(t))
×ρN,N +

(
− iH× +

∑
l D[Ll]

)
ρN,N −

√
Nξ(t)L†×

incρN−1,N +
√
Nξ∗(t)L×

incρN,N−1

...

−i∑j(Pjuj(t))
×ρm,n +

(
− iH× +

∑
l D[Ll]

)
ρm,n −√

mξ(t)L†×
incρm−1,n +

√
nξ∗(t)L×

incρm,n−1

...
−i∑j(Pjuj(t))

×ρ0,0 +
(
− iH× +

∑
l D[Ll]

)
ρ0,0


.

(6.122)

Eq. (6.122) can be written in a more compact notation as

d

dt
Ξ(t) = (V(t) +W(t))Ξ(t), (6.123)

where

Ξ(t) =

ρN,N

...
ρ0,0

 , (6.124)

and V(t) and W(t) are linear operators on Ξ. V(t) is the operator that acts nontrivially on the
vibrational degrees of freedom. Its effect on Ξ is given by

V(t)Ξ =

−i∑j(Pjuj(t))
×ρN,N

...
−i∑j(Pjuj(t))

×ρ0,0

 . (6.125)

The effect of W(t) on Ξ is to produce the rest of the terms in Eq. (6.122). We note that W(t) acts
trivially on the vibrational degrees of freedom. Now, from Eq. (6.123), we can write the vector χ(t)
of reduced Fock state auxiliary density matrices on the system, i.e.,

χ(t) = Trvib(Ξ(t)) =

Trvib(ρN,N )
...

Trvib(ρ0,0)

 (6.126)

formally as a time-ordered exponential

χ(t) = Trvib

(
T exp

( ∫ t

0

dτ (V(τ) +W(τ)
)
ρvib,thermal

)
χ(0), (6.127)
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where we have used the fact Ξ(0) = χ(0)⊗ ρvib,thermal to pull out χ(0) from the partial trace.

Following Sec. 6.3.2, first we need to show that Eq. (6.127) factorizes as

χ(t) = T
〈
T exp

∫ t

0

dτW(τ)

〉 N∏
j=1

〈
T exp

∫ t

0

dτVj(τ)

〉
χ(0), (6.128)

where
∑

j Vj = V and Vj ’s action on χ is given by

Vj(t)χ =

−i
〈
(Pjuj(t))

×〉ρN,N

...
−i
〈
(Pjuj(t))

×〉ρ1,1
 . (6.129)

The brackets ⟨· · · ⟩ represent averaging with the phonon thermal state. To prove Eq. (6.128), it
suffices to show that any mixed generalized moment, written as a time-ordered product of V and W
at different time points, can be factored into a time-ordered product of a generalized moment with
V only and a generalized moment with W only. Using similar notations as in Eq. (6.70), a general
mixed moment 〈

T W(tw,1)W(tw,2) · · ·
N∏
j=1

Vj(tj,1)Vj(tj,2) · · ·
〉

(6.130)

can be expanded as

T W(tw,1)W(tw,2) · · ·
N∏
j=1

(∑
αj,1

∑
αj,2

· · · (−i)Pαj,1

j (tj,1)(−i)Pαj,2

j (tj,2) · · ·
〈
O{α,t}uj(tj,1)uj(tj,2) · · ·

〉)
,

(6.131)
where the meaning of P l

j (P r
j ) is augmented from that in Sec. 6.3.2 to mean left- (right-) multiplying

each Fock state auxiliary density matrix ρm,n by Pj . Eq. (6.131) can be simplified as

T
〈
T W(tw,1)W(tw,2) · · ·

〉 N∏
j=1

〈
T Vj(tj,1)Vj(tj,2) · · ·

〉
. (6.132)

Thus Eq. (6.128) is proved.

Following the steps in Sec. 6.3.2, one can show that〈
T exp

∫ t

0

dτW(τ)
〉
= T exp

∫ t

0

dτW(τ) (6.133)

and 〈
T exp

∫ t

0

dτ Vj(τ)
〉
=

T exp
(∫ t

0

dt2

∫ t2

0

P×
j (t2)P

×
j (t1)ℜ⟨uj(t2)uj(t1)⟩+ P×

j (t2)P
o
j (t1)ℑ⟨uj(t2)uj(t1)⟩

)
,

(6.134)

where P×
j and P o

j are augmented to act on every Fock state auxiliary density matrices.

Overdamped vibration

In the overdamped case, we write χ(t) as

χ(t) = T Zχ(0), (6.135)
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where Z is defined as

Z = exp(

∫ t

0

dt1 W(t1)−
∑
j

∫ t

0

dt2

∫ t2

0

dt1 λje
−γj(t2−t1)P×

j (t2)(2kBTP
×
j (t1)− iγjP

o
j (t1))). (6.136)

The integrand of the double integral is now understood as an operator that applies to every block
matrix Trvib(ρm,n) of χ. Following a similar procedure as employed for the derivation of HEOM in
Sec. 6.3.2, we then obtain the Fock state + HEOM master equation

d

dt
χn⃗(t) = W(t)χn⃗ − (

∑
j

njγj)χ
n⃗ −

∑
j

λjP
×
j χ

n⃗+êj + nj(2kBTP
×
j − iγjP

o
j )χ

n⃗−êj . (6.137)

Written in terms of individual auxiliary density matrices, this is equivalent to

d

dt
ρn⃗m,n =(−iH× +

∑
l

D[Ll])ρ
n⃗
m,n −√

mξ(t)L†×
incρ

n⃗
m−1,n +

√
nξ∗(t)L×

incρ
n⃗
m,n−1

− (
∑
j

njγj)ρ
n⃗
m,n −

∑
j

λjP
×
j ρ

n⃗+êj
m,n + nj(2kBTP

×
j − iγjP

o
j )ρ

n⃗−êj
m,n ,

(6.138)

with the initial condition

ρn⃗m,n(0) =

{
ρsys(0) , n⃗ = 0⃗ and m = n

0 , otherwise.
(6.139)

Note that ρ0⃗N,N is the only physical density matrix.

The set of equations in Eq. (6.138) consist of a double hierarchical structure. The supercripted
index n⃗ indexes the HEOM auxiliary density matrices, and the subscripted index (m,n) indexes the
Fock state master equation auxiliary density matrices. The total number of auxiliary density matrices
is
(
N+Ncutoff

Ncutoff

)
(Nphoton+1)2. Note that in general ρn⃗m,n ̸= ρn⃗†n,m, while the equality holds without HEOM.

Since the photon flux operators act trivially on the vibrational degrees of freedom, the expressions for

photon fluxes are the same as Eq. (6.50), with the replacement of ρm,n by ρ0⃗m,n.

We note that Eq. (6.138) is exact, given the Hamiltonian of Eq. (6.120) and the spectral density
of Eq. (6.78), which describes coupling to overdamped vibrational modes. The Hamiltonian does
not include any direct interaction between photons and phonons, consistent with the very different
energy scales between photons and phonons. It also does not include non-Condon effects such as the
Herzberg-Teller effect (i.e., photons exciting both excitons and phonons simultaneously) [124], signs
of which have recently been speculated to exist in LHCII [125].

The double hierarchical structure of Eq. (6.138) makes the computation quite expensive, so we
first turn to analytical studies to understand some of its features and consequences in Sections 7.1, 7.2,
and 7.3. Following this, in Section 7.4, we present a numerical simulation using the double hierarchical
structure for single photon Fock state absorption and excitonic energy transfer in the LHCII monomer
(14-mer) system.

underdamped vibration

To describe excitonic interactions with phonon spectral densities or phonon correlation functions other
than those arising from the Drude-Lorentz spectral density (Eq. (6.78)), one can simply replace the
HEOM part of the double hierarchy in Eq. (6.138) with the corresponding HEOM for the new spectral
densities (which are determined by the form of the phonon correlation functions). For example, to
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simulate the vibronic effects of underdamped phonon modes, we can combine the Fock state master
equation with Eq. (6.114).

Given an N-photon Fock state input light, we can combine the Lindblad equation (Eq. (6.113)) or
the HEOM (Eq. 6.114)) with the Fock state master equation Eq. (6.37). After combining with the
Fock state master equation, Eq. (6.113) now becomes

d

dt
ρel+vib m,n =− i[Hel+vib, ρel+vib m,n] +

∑
l

D[Ll](ρel+vib m,n)

+
√
mξ(t)[ρel+vib m−1,n, L

†
inc] +

√
nξ∗(t)[Linc, ρel+vib m,n−1]

+

M∑
α=1

(
γα(n̄α + 1)D[bα](ρel+vib m,n) + γαn̄αD[b†α](ρel+vib m,n)

)
,

(6.140)

and Eq. (6.114) becomes

d

dt
ρm⃗el m,n =− i[Hel, ρ

m⃗
el m,n] +

∑
l

D[Ll](ρ
m⃗
el m,n)

+
√
mξ(t)[ρm⃗el m−1,n, L

†
inc] +

√
nξ∗(t)[Linc, ρ

m⃗
el m,n−1]

+

M∑
α=1

(
mα

A(iνα − γα
2
)ρm⃗el m,n +mα

B(−iνα − γα
2
)ρm⃗el m,n

+mα
A(
n̄α
2
Sαρ

m⃗−êαA
el m,n − n̄α + 1

2
ρ
m⃗−êαA
el m,nSα)

+mα
B(
n̄α + 1

2
Sαρ

m⃗−êαB
el m,n − n̄α

2
ρ
m⃗−êαB
el m,nSα)

− [Sα, ρ
m⃗+êαA
el m,n + ρ

m⃗+êαB
el m,n]

)
.

(6.141)

Eq. (6.141) is the double hierarchical equation describing the excitonic system dynamics coupled
to underdamped vibrational modes under Fock state excitation. It should be compared with the
double hierarchical equation of Eq. (6.138), which describes the excitonic system dynamics coupled
to overdamped vibrational modes (with Drude-Lorentz spectral density) under Fock state excitation.
The initial condition of Eq. (6.140) is ρel+vib m,n = ρel+vib(0)δm,n, and ρel+vib N,N is the physical
density matrix given an N-photon Fock state input. The initial condition of Eq. (6.141) is ρm⃗el m,n =

ρel(0)δm,nδm⃗,⃗0, and ρ
0⃗
el N,N is the physical density matrix given an N-photon Fock state input.

Following the derivation of Section 6.4.2 and Section 6.3.4, one can show that solving the Fock state
master equation with Lindblad dissipators on the electronic plus vibrational degrees of freedom (Eq.
(6.140)) and then tracing out the vibrations is equivalent to solving the Fock state master equation +
underdamped HEOM (Eq. (6.141)). Fig. (6.3) demonstrates this equivalence numerically for a dimer
system coupled to two underdamped vibrational modes under a two-photon Fock state excitation.
The vibronic Hamiltonian takes the form

Hel+vib = Hdimer + ν1b
†
1b1 + ν2b

†
2b2 + κ1|1⟩⟨1|

b1 + b†1√
2

+ +κ2|2⟩⟨2|
b2 + b†2√

2
, (6.142)

where Hdimer is given in Appendix H. |1⟩ and |2⟩ represent states with excitations on site 1 or 2. The
system-light coupling strength Γ0 is increased by a factor of 105 from the physical value in order to
show that the equivalence is not due to the weak system-light interaction. This numerical equivalence
between the two different equations further verifies the correctness of our general approach to combine
Fock state master equations and HEOM equations into a double hierarchy.
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Figure 6.3: Comparison between solving the Fock state master equation (Eq. (6.140)) with a vibronic
Hamiltonian then tracing out the vibrations and solving the Fock state + underdamped HEOMmaster
equation (Eq. (6.141)). Calculations are performed on a dimer system with the vibronic Hamiltonian
of Eq. (6.142). The parameter values are (ν1, ν2, κ1, κ2, γ1, γ2) = (200, 200, 50, 50, 100, 100) cm−1. The
temperature of the initial vibrational state is 300 K. In solving the Lindblad equation, both harmonic
oscillators are truncated to the 5 lowest eigenstates. In solving the HEOM, we propagate only the
auxiliary density matrices ρm⃗ satisfying sum(m⃗) = m1

A +m1
B +m2

A +m2
B ≤ 5. Gray area: temporal

profile of the two-photon Fock state light pulse.
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Chapter 7

Analytical and numerical analysis
of the system dynamics

7.1 Fock state vs coherent state input

In this section we shall examine the relationship between the dynamics under Fock state input photon
fields and under coherent state input fields. We show that unlike coherent state inputs, Fock state
inputs do not induce any coherence between excited states with different total number of excitations.
If a Fock state input and a coherent state have the same average photon number and the same
temporal profile, then when the weak coupling condition NΓincτpulse ≪ 1 (where N is the average
photon number, Γinc is the coupling strength between system and the incoming paraxial mode (see Eq.
(6.12)), and τpulse is the pulse duration) holds, the system density matrices in the single excitation
subspace are the same. Furthermore, the output photon flux is also the same for both Fock and
coherent state input fields. We derive these results by first examining the case of a single input
photon, then generalizing to the case of N input photons to show that the excited part of the system
state is directly proportional to the number of photons.

7.1.1 System state

We first compare the system state under a coherent state input with that under an N-photon Fock
state input. We will neglect spontaneous emission here, since it has a small effect in the timescale of
the light pulse. In Appendix I, we perform a second order perturbation (PT2) analysis on the initial
state |g⟩⟨g|, and show that the system state can be written in the block matrix form as

ρc(t) =

(1− ⟨β′
α(t)|β′

α(t)⟩
)
|g⟩⟨g| |g⟩⟨β′

α(t)|

|β′
α(t)⟩⟨g| |β′

α(t)⟩⟨β′
α(t)|

 , (7.1)

where |β′
α(t)⟩ is defined in Eq. (6.46). In the presence of phonons, writing the initial phonon thermal

state as a mixture of pure states
∑

v Pv|v⟩⟨v|, the system+vibration state in PT2 is given by

ρc′(t) =
∑
v

Pv

(1− ⟨γ′α,v(t)|γ′α,v(t)⟩
)
|g⟩⟨g| Trvib |g⟩⟨γ′α,v(t)|

Trvib |γ′α,v(t)⟩⟨g| Trvib |γ′α,v(t)⟩⟨γ′α,v(t)|

 , (7.2)

where |γ′α,v(t)⟩ is defined in Eq. (6.119). Using the form for |γ′α,v(t)⟩ from Eq. (6.119), Eq. (7.2) shows

that the ground-excited state coherences will be proportional to α, i.e., to
√
N , while the excited state
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populations will be proportional to |α|2, i.e., to N , where N is the average number of photons in the
coherent state.

The perturbative approach works well when product of the perturbation α(t)L†
inc (or its Hermitian

conjugate) and the interaction time is ≪ 1. The coherent amplitude α(t) = αξ(t) is on the order of√
N/τpulse, where N is the average photon number and τpulse is the pulse duration, since N = |α|2 and

ξ(t) has the normalization
∫
dt|ξ(t)|2 = 1. Linc is on the order of

√
Γinc because Linc =

√
Γinc|g⟩⟨Binc|

(see Eq. (6.11)). Combining the order of magnitude estimates, we can conclude that the PT2 analysis
is accurate when NΓincτpulse ≪ 1.

As a comparison, given a single photon Fock state input, neglecting spontaneous emission, the
system state without the influence of phonons is given exactly by

ρF1(t) =

(1− ⟨β′
ξ(t)|β′

ξ(t)⟩
)
|g⟩⟨g| 0

0 |β′
ξ(t)⟩⟨β′

ξ(t)|

 (7.3)

(see Eq. (6.45)), and in the presence of phonons it is given by

ρF1′(t) =
∑
v

Pv

(1− ⟨γ′ξ,v(t)|γ′ξ,v(t)⟩
)
|g⟩⟨g| 0

0 Trvib |γ′ξ,v(t)⟩⟨γ′ξ,v(t)|

 . (7.4)

Thus with or without phonons, when the Fock state temporal profile ξ(t) is equal to the coherent
amplitude α(t), the block diagonal terms of ρF1(t) turn out to be the same as those of ρc(t) in
this weak coupling situation. In contrast, the off-diagonal blocks representing the coherence between
ground and singly excited states are nonzero in ρc(t), while these blocks are 0 in ρF1(t). The fact that
the coherence terms between subspaces of different excitation number are zero for Fock state input
fields derives from a much more general observation, namely that: for the reduced system density
matrix, given the system initializes in the electronic ground state, an n-photon Fock state input does
not induce any direct coherence between system subspaces of different electronic excitation number.

The proof of this statement makes use of the excitation conserving property of the overall Hamil-
tonian. Defining the total excitation number as the number of photons plus the number of electronic
excitations in the system, the total excitation is equal to n, the photon number of the input Fock
state, at all times, since both the system-field and the system-vibration interactions conserve the total
excitation number. Any pure state |Ψ⟩ with n total excitations lives in the subspace

|Ψ⟩ ∈
n⊕

m=0

Sm ⊗Fn−m,

where Sm is the system m-excitation subspace, and Fm is the m-photon subspace of the field. Since
Fm and Fm′ are orthogonal to each other ifm ̸= m′, the reduced system density matrix Trfield|Ψ⟩⟨Ψ| =∑n

m=0 ρm is block-diagonal, with ρm being nonzero only in the m-excitation block. Any matrix element
connecting states with different excitation numbers is identically zero. In the more general case that
the system+field+vibration state is a mixture of different pure states with n total excitations, the
reduced system density matrix becomes a mixture of block-diagonal matrices, which is still block-
diagonal. Thus, the conservation of total excitation number by the Hamiltonian results in a coherence
selection rule on the reduced system density matrix which states that, under N photon Fock state
excitation, there are no coherences between reduced system states with different numbers of electronic
excitations.

For example under a single photon Fock state excitation, we note that coherence in the form

|excited, 0 photon⟩⟨ground, 1 photon|

87



is indeed generated in the system+field degrees of freedom. However, after tracing over the field,
the resulting matter coherence term |excited⟩⟨ground| in the reduced system density matrix vanishes
because ⟨1 photon|0 photon⟩ = 0. This fact is implicit in the Fock state hierarchy (Eq. (6.37)). The
necessity of including ρ0,1 to describe the dynamics of ρ1,1 shows that there are nevertheless relevant
ground-excited state coherences that are mediated via field states with different photon numbers.

The above proof of no coherence between system subspaces with different numbers of electronic
excitations (including no ground-excited state coherence), can be generalized to consider an initial
incoherent thermal state of light, i.e.,

ρfield,thermal =
∏
k,λ

∑
nk,λ

Pnk,λ
|nk,λ⟩⟨nk,λ|, (7.5)

where |nk,λ⟩ is the n-th number state of the mode of wavevector k and polarization λ. Pnk,λ
is

the probability described by the Bose-Einstein distribution. We assume that only photons whose
energies are close to ω0, the energy difference between exciton manifolds, interact with the system.
Furthermore, these interactions cause transitions between electronic excitation manifolds in a manner
that conserves the total number of excitations (i.e., absorption or emission). Since a thermal state
is a mixture of number states, by the same arguments as above, we can then conclude that: given
the system initializes in the electronic ground state, a thermal state does not induce any
coherence between system subspaces of different electronic excitation number. A similar
result was obtained in Ref. [76] using first order perturbation theory. We emphasize that this absence
of coherence between different system excitation subspaces is not due to the lack of temporal coherence
in the thermal state of light. Instead, it is due to the conservation of total excitation number and the
fact that thermal state is a mixture of number states and so inherits the selection rule on these that
we have shown above is imposed by the excitation conserving property of the overall Hamiltonian.

An alternative derivation based on perturbative expansion

The conclusion that an N-photon Fock state induces no coherence between system subspaces of
different electronic excitation number holds true regardless of the system-field coupling strength.
The argument in the previous section only makes use of the excitation-number-conserving prop-
erty of the system-field coupling. However, under weak system-field coupling (more precisely, for
NΓincτpulse ≪ 1), the second-order perturbative expansion of the system state provides a unified
comparison between Fock state excitation and coherent state excitation. To second order, the system
state is

ρ(t) = ρ(0)− iTrfield

∫ t

0

dt1 [HI(t1), ρ(0)]− Trfield

∫ t

0

dt1

∫ t1

0

dt2 [HI(t1), [HI(t2), ρ(0)]], (7.6)

where HI is the dipole-electric field coupling in the interaction picture, and ρ(0) = |g⟩⟨g|. The first
order perturbation term gives rise to ground-excited coherence and is proportional to the one-point
field correlation functions ⟨E(t)⟩ and ⟨E†(t)⟩. These are nonzero for a coherent state input, but zero
for a N-photon Fock state input. Therefore the ground-excited coherence is zero (nonzero) under
Fock (coherent) state excitation. The second order term contributes to the singly excited block of
the density matrix, and the contribution is proportional to the two-point correlations ⟨E†(t2)E(t1)⟩
and ⟨E(t2)E

†(t1)⟩. Therefore when an N-photon Fock state input and a coherent state input have
the same two-point correlations, they will induce the same dynamics in the singly excited block of the
system density matrix.

A thermal state input has one-point correlations equal to zero, so it does not induce any ground-
excited coherence. Different forms of the two-point correlations have been used to study the dynamics
under thermal light excitation [73, 78, 79]. But due to the short coherence time of the two-point
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correlations for black body radiation [126], it is common to let the two-point correlation functions
(for example ⟨E(t2)E

†(t1)⟩) be proportional to δ(t2 − t1). In that case, the effects of the second order
term are described by Lindblad dissipation channels [74,77].

7.1.2 Photon flux

The photon flux under a single photon coherent state input, also an averaged quantity, is similarly
identical to the flux under a single photon Fock state input. Substituting Eqs. (7.1) or (7.2) into
Eq. (6.48), and substituting Eqs. (7.3) or (7.4) into Eq. (6.50), we see that if the single photon Fock
state temporal profile ξ(t) is equal to the coherent amplitude α(t), then the photon fluxes from the
single photon Fock state input are the same as the photon fluxes from the coherent state within a PT2
description. Numerical comparison of the photon fluxes of a single photon Fock state and a coherent
state interacting with a dimer system is shown in Fig. 7.1.
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Figure 7.1: Photon flux in the paraxial channel for single photon Fock state and single photon coherent
state inputs interacting with a dimer system. Consistent with our analysis in Section 7.1.2, under
weak field excitation, the photon fluxes are identical.

7.1.3 N-photon Fock state input

In this section, we show that when NΓincτpulse ≪ 1, the singly excited part of the system density
matrix under excitation by an N-photon Fock state is on the order of NΓincτpulse and is equal to
N times that under excitation by a single photon Fock state. Since the single excitation probability
∼ NΓincτpulse ≪ 1, saturation effects can be ignored under this condition. If N ≥ 2, the probability of
double excitation is on the order of (NΓincτpulse)

2, much smaller than the single excitation probability.
Therefore we can restrict our analysis to the ground and singly excited states, and the absorption
probability from ground to the singly excited state is given by ∼ NΓincτpulse.

To understand this result, consider the N-photon Fock state hierarchy, which is shown schematically
in Figure (7.2). The diagonal density matrices ρm,m, indicated by the solid orange boxes, are initialized
in |g⟩⟨g|, and are considered as the “source” terms of the master equations. The off-diagonal density
matrices ρm,n (m ̸= n) are initialized in 0, and are considered as the “non-source” terms. An auxiliary

density matrix ρm,n couples downward to ρm−1,n and ρm,n−1, with coupling strength
√
mΓ and

√
nΓ,

respectively (see Eq. (6.37)). The couplings are drawn as bonds between auxiliary density matrices.
Perturbatively speaking, changes in the physical density matrix ρN,N are due to its coupling to other
“source” density matrices because they have nonzero initial values. Therefore if NΓincτpulse ≪ 1 (i.e.
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if the coupling
√
NΓincξ(t) times the interaction time τpulse is≪ 1), the dynamics of ρN,N is dominated

by its 2-bond couplings to ρN−1,N−1. The couplings to other source density matrices require more
than 2 bonds, which contribute much less than the 2-bond coupling. Double excitations in the system
require at least 4 bonds, so the probability for such events is much lower than for single excitations.
This justifies our restriction to the ground and singly excited states.

Focusing on the four auxiliary density matrices involved in the 2-bond coupling (i.e., ρN,N , ρN−1,N ,
ρN,N−1, and ρN−1,N−1) and dropping all other auxiliary density matrices, we notice that the four
auxiliary density matrices follow the same master equations as the single photon master equations,
with the replacement of Γinc in the single photon master equations by NΓinc. Since |β′

ξ(t)⟩ in Eq.

(7.3) and |γ′ξ,v(t)⟩ in Eq. (7.4) are both proportional to
√
Γinc, , the system state under the excitation

of an N-photon Fock state in the absence of phonons is

ρFN (t) =

(1−N⟨β′
ξ(t)|β′

ξ(t)⟩
)
|g⟩⟨g| 0

0 N |β′
ξ(t)⟩⟨β′

ξ(t)|

 , (7.7)

to the lowest order in NΓincτpulse. The corresponding equation in the presence of phonon coupling
follows similarly. Thus with or without phonons, the entire single excitation block of the system
density matrix (lower right block in Eq. 7.7), containing both population and coherence terms, is now
a factor of N times that derived from excitation by a single photon Fock state.

Comparing Eq. (7.7) and its generalization in the presence of phonons to the coherent state results
in Eqs. (7.1) and (7.2), and using the properties |β′

α(t)⟩ = α|β′
ξ(t)⟩ and |γ′α,v(t)⟩ = α|γ′ξ,v(t)⟩, we see

that the |ground⟩⟨ground| and the |excited⟩⟨excited| blocks of the system density matrix under the
excitation by a N-photon Fock state is the same as those under the excitation by a coherent state
with the same temporal profile and average photon number. This relationship is verified numerically
below for a dimer system under excitations with average 20 photons. It should be emphasized again
that this relationship holds when NΓincτpulse ≪ 1. It is well known that in the case of average single
photon, when Γincτpulse ∼ 1, a Fock state input and a coherent state input with the same temporal
profile can generate very different dynamics in a two-level system [127].

7.1.4 Numerical comparison between Fock state vs coherent state input

To give numerical verifications to the analysis above, we first calculate the system dynamics and photon
fluxes of a dimer system under excitation by a single photon Fock state pulse and by a coherent state
with coherent amplitude α = 1 (average |α|2 = 1 photon). Details of the dimer Hamiltonian and
transition dipoles are given in Appendix H. The temporal profile of both coherent state and Fock
state pulses are set to equal to the Gaussian form

ξ(t) =
(Ω2

2π

)1/4
e−Ω2(t−t0)

2/4, (7.8)

where the bandwidth Ω is chosen to be 0.06 fs−1, and the time delay t0 = 200 fs. 5 HEOM levels were
used for all calculations in this section. For Fock state inputs, the double hierarchical equations Eq.
(6.138) are used. For coherent state inputs, only the HEOM hierarchy is needed, since the coherent
state master equation does not involve any Fock state hierarchy.

If we characterize the pulse duration τpulse by the inverse bandwidth 1/Ω ≈ 16.6 fs, then Γincτpulse ≈
8.9× 10−7 ≪ 1. Therefore we expect the numerical results to show good agreement with the analyses
in Sections 7.1.1 and 7.1.2. Figure (7.3a) shows for example the site 2 probabilities, ⟨2|ρ|2⟩, and the
coherence term between site 1 and site 2, ⟨1|ρ|2⟩, under Fock state and coherent state inputs. Both
the population and the coherence terms are nearly identical under the two input light states, with the
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Figure 7.2: Fock state hierarchy for the (left) N-photon Fock state master equations and (right) single
photon Fock state master equations. Each box represents an auxiliary density matrix. Solid orange
boxes are the diagonal “source” terms, and the other boxes are the off-diagonal “non-source” terms.
The “bonds” between auxiliary density matrices represent the coupling between them. We label the
coupling strengths for some of the bonds. To the lowest order in Γincτpulse, only the top four auxiliary
density matrices (enclosed in red dashed lines) contribute to the dynamics of the physical density
matrix. The equations for the top four density matrices are the same as those for the single photon
master equations, with the replacement of Γinc by NΓinc.

relative difference smaller than the numerical accuracy of the numerical integrator (relative tolerance
= 10−3). The main difference between the two system states is in the ground-excited state coherence.
Figure (7.3b) shows for example the coherence term ⟨g|ρ|2⟩ under the two input light. As predicted
in Section 7.1.1 above, ⟨g|ρ|2⟩ is zero for a Fock state input, but nonzero for a coherent state input.

Similar results are obtained for the photon flux, since these are obtained by averaging over the
excited state density matrix (see Eqs. (6.50) and (6.48)).

To confirm the photon number dependence of Eq. (7.7), we consider a dimer system under ex-
citation by a 20-photon Fock state and under the excitation by a coherent state with α =

√
20,

corresponding to an average photon number of 20. For this example NΓincτpulse ≈ 1.8×10−5. Similar
to the result in Fig. 7.3 for excitation by single photons, Fig. (7.4a) shows that both the popula-
tion and coherence terms in the |excited⟩⟨excited| block of the system density matrix are almost the
same under excitation by a 20-photon Fock state as under and excitation by a coherent state with
an average of 20 photons. The difference between the singly excited blocks is again less than the
numerical accuracy of the numerical integrator. Furthermore, these values are 20 times larger than
the values from single photon calculations in Fig. (7.3a), confirming the dependence on N in Eq.
(7.7). Matrix elements between the ground state and the excited subspace are identically zero under
Fock state excitation, and are non-zero under coherent state excitation (see Fig. (7.4b)). We note
that the ground-excited coherence under a 20-photon coherent state excitation in Fig. (7.4b) is

√
20

times larger than the corresponding values in Fig. (7.3b), obtained under a single photon coherent
state excitation, consistent with the

√
N enhancement predicted by Eq. 7.2) (see also appendix I).

The fact that the coherent state and Fock state inputs give similar results when NΓincτpulse ≪ 1
means that we can in fact simulate the average dynamics under N-photon Fock state excitation by
simulating the dynamics under a coherent state and then setting the ground-excited coherence terms to
be zero. This can drastically reduce the computational runtime by avoiding the Fock state hierarchy.
For example, for the 20-photon input light fields above, the computational runtime of this Fock state
calculation is ≈ 500 s on a 1.6GHz dual-core CPU, while the runtime of the corresponding coherent
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(a) (b)

Figure 7.3: Time dependence of selected excitonic density matrix elements of a dimer under excitation
by a single photon Fock state pulse of light and by a coherent state pulse of light containing an average
of one photon. (a) Comparison of matrix elements ⟨2|ρ|2⟩ and ⟨1|ρ|2⟩ with indexing referring to the
excitations at sites 1 or 2, showing that density matrix component in the first excitation subspace
is almost identical under excitation by a Fock state (solid lines) and by a coherent state of light
(dotted lines) with the same average photon number. The differences between the matrix elements
under excitation by these two states of light are less than the numerical accuracy of the numerical
integrator. (b) Real and imaginary parts of matrix elements between the dimer ground state and the
excited state of chromophore 2, ⟨g|ρ|2⟩, under Fock state excitation (solid lines) and under coherent
state input light (dotted lines). For this single-photon excitation, the ground-excited coherence terms
are identically zero for a Fock state input (solid lines), but non-zero for a coherent state input (dotted
lines).

(a) (b)

Figure 7.4: Time dependence of selected excitonic density matrix elements of a dimer under excitation
by a 20-photon Fock state pulse of light and by a coherent state pulse of light containing an average
of 20 photons. (a) Comparison of matrix elements ⟨2|ρ|2⟩ and ⟨1|ρ|2⟩ in the |excited⟩⟨excited| block
under Fock state excitation (solid lines) and under coherent state input light (dotted lines). (b)
Comparison of the matrix element ⟨g|ρ|2⟩ under Fock state excitation (solid lines) and under coherent
state input light (dotted lines).
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state calculation is ≈ 1 s.

To assess the implications of this analysis for light absorption by photosynthetic systems, we con-
sider absorption by the Qy absorption bands of chlorophyll molecules, taking Chla as an example [72].
Regarding the absorption as a measurement process whereby the chlorophyll molecules detect incoming
light only at frequencies inside the width of the Qy band, then the corresponding duration of optimally
detectable light pulses is the inverse bandwidth τpulse = 1/Ω ∼ 1/(400 cm−1) ≈ 13 fs. This leads to an
absorption probability from a single incident photon that is equal to Γincτpulse ≈ 4× 10−7 for a single
chromophore with a transition dipole of 4 Debye (a value typical of chlorophyll molecules [112]). This
small value of absorption probability is consistent with results of previous calculations for coherent
states with an average of one photon and with bulk absorption cross-sections [59]. Given the very
low flux of natural sunlight, estimated using spectral irradiance data [128] and the size of a Chla
molecule [72], to be approximately 74 photons/nm2/s for a Chla monomer under full sunlight [59], it
is evident that incident single photons with temporal pulse durations ∼ 13 fs under natural sunlight
conditions will show the equivalence derived above for the excited states of the photosynthetic system
under Fock and coherent state excitation, as well as the difference derived above in the ground-excited
state coherences.

7.2 Analysis of Absorption

The spontaneous emission time scale τemission ∼ 10 ns is much longer than the system+vibration time
scale τsys+vib ∼ 10− 100 fs. If we let the pulse duration τpulse be much shorter than τemission, we can
study the dynamics within short times t ≪ τemission without considering the effects of spontaneous
emission, since spontaneous emission only reduces the total excitation probability by a small frac-
tion. Within the short time regime, we can define the absorption probability as the total excitation
probability

∑
j⟨j|ρ|j⟩ immediately after all but an exponentially small tail of the pulse has passed.

After this time the interaction with the phonon bath can redistribute the excitation between the
chromophores, but it does not change the total excitation probability.

From the solution to the pure state equations without phonons (Eq. (6.46)), we know that the
absorption probability as a function of time is

abs. prob.no phonon = ⟨β′
ξ(t)|β′

ξ(t)⟩. (7.9)

To find the absorption probability at time t when almost all of the pulse has passed, we notice that the
magnitude of the integrand in Eq. (6.46) is very small outside of the integration bounds (0, t), since
the temporal profile ξ(τ) is localized in this interval. Therefore we can extend the range of integration
to (−∞,∞). Next, we replace the Linc in Eq. (6.46) with

√
Γinc|g⟩⟨Binc| (see Eq. (6.11)), where Γinc

is the effective coupling constant to the incoming paraxial mode and |Binc⟩ is the normalized bright
state corresponding to the incoming mode polarization. Then Eq. (6.46) becomes

|β′
ξ⟩ = −

√
Γinc

∑
n

∫ ∞

−∞
dτ ξ(τ)e−i(En−E0)(t−τ)⟨n|Binc⟩|n⟩, (7.10)

where we inserted a resolution of identity
∑

n |n⟩⟨n| = 1 with n indexing the eigenstates of the
exciton system Hamiltonian Hsys of Eq (6.1). Since the H in the exponential of Eq. (6.46) already
has a carrier frequency E0 = ℏω0 rotated out (see Eq. (6.6)), the eigenvalue of H is the original
system eigenenergy En minus the carrier frequency E0, hence the factor En − E0 appearing in the
exponential in Eq. (7.10). Substituting Eq. (7.10) into Eq. (7.9), the absorption probability without
phonon becomes

abs. prob.no phonon = Γinc

∑
n

cn|ξ̃(En − E0)|2, (7.11)

93



where
cn = |⟨n|Binc⟩|2 (7.12)

is the overlap between the system eigenstate and the bright state, and

ξ̃(E) =

∫ ∞

−∞
dτ ξ(τ)eiEτ (7.13)

is the Fourier transform of the temporal profile. Note that
∑

n cn = 1, so the sum in Eq. (7.11) can
be thought of as a weighted average of the frequency components of the incoming pulse.

The analysis above can be generalized to take into account the effects of phonons. To distinguish
between the analysis without or with phonons, we denote the eigenstate and eigenenergy of Hsys (Eq.
(6.1)) as |n⟩ and En, respectively. We denote the eigenstate and eigenenergy of Hsys+vib (Eq. (6.59))

as |ñ⟩ and Ẽn, respectively.

First, we assume an initial phonon state |v⟩ that is an eigenstate of Hvib, the vibrational Hamil-
tonain in the ground electronic state, with energy Ev. Following the same procedure that we used to
obtain Eq. (7.10), we rewrite Eq. (6.119) as

|γ′ξ,v⟩ = −
√
Γinc

∑
n

∫ ∞

−∞
dτ ξ(τ)e−i(Ẽn−E0)tei(Ẽn−E0−Ev)τ ⟨ñ|Binc, v⟩|ñ⟩. (7.14)

|Binc, v⟩ denotes the product state |Binc⟩ ⊗ |v⟩. The absorption probability ⟨γ′ξ,v|γ′ξ,v⟩ given a pure
initial vibrational state |v⟩ is evaluated as

abs. prob. pure phonon,v = Γinc

∑
n

c′n,v|ξ̃(Ẽn − Ev − E0)|2, (7.15)

with c′n,v = |⟨ñ|Binc, v⟩|2. Note that the vibronic eigenstates |ñ⟩ can be expanded in the eigenbasis of
the shifted harmonic oscillators corresponding to the vibrational Hamiltonian in the excited electronic
states. This will result in Franck-Condon vibration overlap factors appearing in the expression of
c′n,v. However, due to the fact that the vibrational modes are distributed over all sites and that
dipole-dipole coupling mixes the excitonic states, one cannot in general decompose |ñ⟩ into a simple
product of an electronic state and a vibrational state. Therefore we will simply use the symbol |ñ⟩
to represent the complicated superposition of different vibrational states in the electronically excited
subspace.

To obtain the absorption probability given an initial phonon thermal state, note that the thermal
state can be treated as a classical mixture of energy eigenstates |v⟩. Therefore the total absorption
probability becomes

abs. prob.thermal phonon =
∑
v

Pv abs. prob.pure phonon,v = Γinc

∑
ñ,v

c̃n,v|ξ̃(Ẽn − Ev − E0)|2, (7.16)

where Pv is the Boltzmann weight

Pv =
exp(−Ev/kBT )∑
u exp(−Eu/kBT )

, (7.17)

and we introduce a thermally weighted squared overlap of the vibronic eigenstate |ñ⟩ with the bright
state,

c̃n,v = Pvc
′
n,v = Pv|⟨ñ|Binc, v⟩|2. (7.18)

Since
∑

ñ,v c̃n,v = 1, Eq. (7.16) can be thought of as a weighted average of |ξ̃(Ẽn − Ev − E0)|2.
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To understand the factor Ẽn − Ev − E0 in Eq. (7.16), we consider the sys+vib eigenenergy Ẽn

to be in the range [Esys + Ev − O(Eint), Esys + Ev + O(Eint)], where Eint is the energy scale of the
system-vibration interaction. Then

Ẽn − Ev − E0 ∈ [Esys − E0 −O(Eint), Esys − E0 +O(Eint)]. (7.19)

This indicates that the interaction with vibration broadens the photon frequency range that the system
can interact with, from exactly Esys − E0 in Eq. (7.11), to the range [Esys − E0 − O(Eint), Esys −
E0 +O(Eint)] in Eq. (7.16). In the case of zero system-vibration interaction, Eint = 0 and Eq. (7.16)
reduces to Eq. (7.11).

7.2.1 Absorption probability is proportional to system-field coupling

From Eqs. (7.11) and (7.16), we see that the absorption probability is proportional to Γinc, with or
without phonons. The only assumption we have made to arrive at these results is that the spontaneous
emission time scale (1/Γl ∼ τemission ∼ 10 ns) is much longer than both the system+vibration time
scale (τsys+vib ∼ 10−100 fs) and the pulse duration τpulse. In other words, Γinc is the small parameter
in the problem.
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Figure 7.5: Effect of artificially increasing the system-field coupling strength Γ0. Here Γ0 is artificially
increased by 7 orders of magnitude from the reference physical value (see Sec. 6.2.2). The resulting
increase in absorption probability is plotted in the vertical axis as the ratio of this to the reference
physical absorption probability. The temporal profile of the single photon pulse is a Gaussian centered
at 150 fs, with FWHM of 55.5 fs. Two types of absorption probabilities are plotted: maximum
absorption probability (blue) and the absorption probability at 300 fs (orange). The absorption
probability depends linearly on Γ0 across many orders of magnitude until the emission time scale
τemission ∼ 1/Γ becomes comparable to the pulse time scale τpulse. At very large Γ0, spontaneous
emission causes deviation from the linear relationship. The black dotted line represents unit absorption
probability.

Figure (7.5) examines to what extent the linear relationship between the absorption probability
and Γinc holds, or equivalently, to what extent can Γinc be consider a small parameter. Since Γinc =
Γ0η

∑
j |dj · ϵ̂|2, we artificially increased the unit spontaneous emission rate Γ0 by a factor of 1 to

107 in order to change the value for Γinc. The absorption probability as a function of Γ0 was then
evaluated numerically for a dimer system with 5 HEOM levels, using a Gaussian pulse with temporal
profile ξ(t) (Eq. (7.8)) centered at 150 fs with a pulse duration of τpulse = 1/Ω = 16.7 fs. The
emission time scale τemission is on the order of 1/Γinc = 18.7 ns. In Figure (7.5) we plot the maximum
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absorption probability and the absorption probability at 300 fs. We see that the linear relationship
between absorption probability and Γ0 holds up to ≃ 104 times the physical value of Γ0, indicating
that for up to 104 times the physical value of Γ0, Γinc can still be treated as the small parameter in
the absorption process. At a value 105 times the reference physical Γ0 value, the emission time scale
τemission ∼ 187 fs becomes comparable to τpulse ∼ 16.7 fs, so that spontaneous emission occurs before
the tail of the Gaussian pulse has passed, making the absorption porbability at 300 fs significantly
smaller than the maximum absorption probability. Another reason that the linear relationship cannot
hold for large Γ0 is of course that the absorption probability cannot exceed one. This limit is plotted
as the black dashed line in Figure 7.5.

The simple observation that the absorption probability is proportional to Γinc = Γ0η
∑

j |dj · ϵ̂|2
allows us to quantitatively predict the absorption probability upon varying many different parameters.
For example, changing the paraxial beam geometry or the position of the system inside the paraxial
spatial mode results in changes in the geometric factor η. The effect of the dielectric environment is
contained in the factor Γ0. The effect of light polarization and dipole orientations is described by the
factor

∑
j |dj · ϵ̂|2. One can analyze the factor

∑
j |dj · ϵ̂|2 using a singular value decomposition, as

described in detail in Appendix M. Numerical illustrations of this method for a dimeric system are
also given there.

7.2.2 How absorption probability depends on pulse duration

To analyze the dependence of absorption probability on pulse duration, we first write a general single
photon Fock state photon temporal profile ξ(t) in the scaling form

ξ(t) =
1

√
τpulse

f(
t− t0
τpulse

) (7.20)

in order to focus on its dependence on the pulse duration τpulse. Here f(x) is the scale-invariant pulse
shape function, which is dimensionless and square-normalized, i.e.,

∫
|f(x)|2dx = 1. The prefactor

1/
√
τpulse gives ξ(t) the correct dimension and ensures that

∫
|ξ(t)|2 dt = 1. We note that τpulse simply

characterizes the pulse duration in a general sense, as long as the pulse is reasonably localized in time.
Given a pulse shape, one has the freedom to define τpulse up to some O(1) factors. For example, for
the Gaussian temporal profile (Eq. 7.8), one could define τpulse =

√
2/Ω as the standard deviation of

ξ(t); alternatively, one could define τpulse = 1/Ω as the standard deviation of |ξ(t)|2.

Using Eq. (7.20), we rewrite the absorption probability without phonons (Eq. (7.11)) as

abs. prob.no phonon = Γincτpulse
∑
n

cnA((En − E0)τpulse) (7.21)

or with (Eq. (7.16)) phonons as

abs. prob.thermal phonon = Γincτpulse
∑
ñ,v

c̃n,vA((Ẽn − Ev − E0)τpulse), (7.22)

where we have defined the function

A(Eτpulse) =
∣∣ ∫ dx f(x)eiEτpulsex

∣∣2. (7.23)

In the following analysis, we assume that the pulse shape function ξ(t) is real, so that f(t) is real and
A(Eτpulse) is a real and even function.
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7.2.3 Absorption probability in the short pulse regime

For short pulses, characterized by τpulse ≪ τsys+vib, (En−E0)τpulse in Eq. (7.21) or (Ẽn−Ev−E0)τpulse
in Eq. (7.22) will be much less than 1. Furthermore, if A(Eτpulse) is analytic at τpulse = 0, then for
short pulses, we can Taylor expand it to the second order as

A(Eτpulse) = a− bE2τ2pulse. (7.24)

The linear term vanishes because A(Eτpulse) is an even function. The expansion coefficients a and b
are determined by the pulse shape alone and not by the pulse duration.

Substituting Eq. (7.24) into Eqs. (7.21) and (7.22), we obtain for the short pulse regime,

abs. prob.no phonon = Γincτpulse

(
a− bτ2pulse

∑
n

cn(En − E0)
2

)
(7.25)

and

abs. prob.thermal phonon = Γincτpulse

(
a− bτ2pulse

∑
ñ,v

c̃n,v(Ẽn − Ev − E0)
2

)
. (7.26)

The term
∑

n cn(En−E0)
2 in Eq. (7.25) is a bright-state weighted average of the system eigenenergy

detunings squared. If the pulse center frequency is set to the average of the system eigenenergies,
then this quantity is a skewed variance of the eigenenergies in which eigenstates with more overlap
with the bright state have more weight. Similarly, the term

∑
ñ,v c̃n,v(Ẽn − Ev − E0)

2 in Eq. (7.26)

is a thermally weighted and bright-state weighted average of (Ẽn − Ev − E0)
2, where more weight is

placed on eigenstates (indexed by ñ) having high overlaps with the bright state and on vibration states
(indexed by v) with higher Boltzmann weights. Next, we define an effective energy spread parameter

∆2 =
∑
n

cn(En − E0)
2 =

∑
n

|⟨n|Binc⟩|2(En − E0)
2 (7.27)

or
∆2 =

∑
ñ,v

c̃n,v(Ẽn − Ev − E0)
2 =

∑
ñ,v

Pv|⟨ñ|Binc, v⟩|2(Ẽn − Ev − E0)
2, (7.28)

depending on whether or not the interaction with phonons is taken into account. Since ∆ characterizes
the energy spread of a system, we can identify 1/∆ as a characteristic system+vibration time scale,
τsys+vib. Substituting Eqs. (7.27) and (7.28) into Eqs. (7.25) and (7.26), we have a universal expression
for the absorption probability in the short pulse regime:

universal short pulse abs. prob. = Γincτpulse(a− b∆2τ2pulse). (7.29)

We thus find that despite the complexity of the system and the interaction with phonons, we can
describe the absorption probability of the chromophore system in the short pulse regime by only two
parameters, Γinc and ∆.

One important implication of Eq. (7.29) is that a single photon with a delta function temporal
profile does not interact with the system, since in the limit τpulse → 0, the quantity abs. prob. = 0.
An analogous situation in atomic physics is that to make a π-pulse, the electric field E times the
pulse duration τ times some constants must be equal to π (i.e., Eτ ∼ π, or E ∼ τ−1). The photon
number, proportional to the energy, in a π-pulse is proportional to the electric field squared times
pulse duration (E2τ), which is proportional to τ−1. Therefore to make a π-pulse infinitely short in
time requires an infinite number of photons. Hence, a single photon with a delta function temporal
profile cannot interact with the system.
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To test the validity of Eq. (7.29), we first consider a Gaussian pulse as in Eq. (7.8), and define
τpulse = 1/Ω. Comparing Eq. (7.8) to Eq. (7.20), yields the scale-invariant pulse shape function

f(x) =
1

(2π)1/4
e−x2/4, (7.30)

from which we obtain (using Eq. (7.23))

A(y) =
√
8πe−2y2

. (7.31)

This results in parameter values a =
√
8π and b = 2

√
8π for the Taylor expansion coefficients of A(y)

in Eq. (7.24).

We can then evaluate the absorption probability for different systems, with and without phonons,
and test Eq. (7.29) by plotting the scaled absorption probability, abs. prob./Γincτpulse, as a function
of τpulse with the latter given in system-independent units of 1/∆. For systems without phonons,
∆ is computed directly using Eq. (7.27) by diagonalizing the system Hamiltonian and calculating
the overlaps between the eigenstates and the bright state. For systems with coupling to phonons, ∆
cannot be computed directly, and is obtained instead by fitting Eq. (7.29) to values of the scaled
absorption probability.

To fit the energy spread parameter ∆ numerically, we simulate the absorption dynamics with a 5-
level HEOM in each calculation. The pulse is centered at time t = 10τpulse. The absorption probability
is taken as the total excitation probability at time t = 20τpulse. We calculate data points for shorter
and shorter pulses until the fitted ∆ converges. Numerically, we find that the estimated variance of
the fitted ∆ decreases to some minimum value and then increases as the pulse shortens. We take
the ∆ value with the smallest estimated variance as the ∆ for the system. As a check, applying this
fitting procedure to numerical calculations for systems without phonons yields good agreement with
the analytically calculated ∆. The resulting values of ∆ for various different size systems with and
without phonons are tabulated in table (7.1).

monomer monomer dimer dimer 7-mer 7-mer 14-mer
no with no with no with no

phonon phonon phonon phonon phonon phonon phonon
∆ (cm-1) 50 124.1 75.3 145.2 306.7 330.8 383.1
1/∆ (fs) 106.1 42.7 70.4 36.5 17.3 16.0 13.8

Table 7.1: ∆ and 1/∆ for various chromophore systems, with or without phonons. For systems without
phonons, ∆ was calculated directly using Eq. (7.27). In the monomer system without phonons, a
50 cm-1 detuning was introduced, so ∆ is exactly equal to 50 cm-1. For systems with phonons, ∆
was obtained by numerically fitting to the scaled absorption probability obtained from numerical
calculations with a 5-level HEOM at temperature T = 300 K.

Figure (7.6) plots the scaled absorption probability, namely abs. prob./Γincτpulse, as a function of
τpulse in units of 1/∆ for various systems, calculated with or without phonons. For short enough pulse
durations (τpulse <≈ 0.15/∆ in this case), it is evident that the numerically calculated absorption
probabilities match Eq. (7.29) very well for all of the systems considered here. We note that for
carrier frequencies similar to the excitation energies of chromophores, pulse durations τpulse as short
as ≈ 33 fs have been produced experimentally [109,129].

We further note that as the temperature of the initial phonon state increases, the effective energy
spread parameter ∆ also increases. The temperature dependence of ∆ for the dimer system with
phonons is shown in Fig. (7.7).
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Figure 7.6: Scaled absorption probability (defined as abs. prob./Γincτpulse) plotted against τpulse for
various systems under Gaussian pulses. τpulse is measured in system-dependent time units of 1/∆.
The values of 1/∆ are tabulated in table (7.1). For short enough pulse duration, the absorption
probability follows the analytical expression of Eq. (7.29), shown as the gray dashed line. For systems
with phonons, the absorption probability was obtained from numerical calculations with a 5-level
HEOM at temperature T = 300K. To reduce the runtime of the computations, the special HEOM
terminator equations (Eq. (6.92)) were not used here.
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Figure 7.7: Temperature dependence of the effective energy spread parameter ∆ for a dimer system.
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Since ∆ is independent of pulse shape, having measured it with one pulse form allows us to
quantitatively understand the absorption probability under many other pulse shapes. For example,
we previously measured 1/∆ = 37.1 fs for the dimer system with phonons under short Gaussian pulses.
We can use this information to predict the absorption probability under short square pulses and short
exponential pulses by inserting the corresponding expansion coefficients a and b. For example, consider
the square pulse specified by

f(x) =

{
1 , |x| ≤ 0.5

0 , otherwise
, (7.32)

and the exponential pulse, specified by

f(x) =

{
e−x/2 , x ≥ 0

0 , otherwise
. (7.33)

Eq. (7.24) gives the coefficients a = 1, b = 1/12 for square pulses, and a = 4, b = 16 for exponential
pulses. Fig. (7.8) shows the short pulse absorption probabilities for these two pulse shapes. The
absorption probabilities also follow the scaling relation of Eq. (7.29), using the same ∆ parameter
obtained from Table 7.1.
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Figure 7.8: Scaled absorption probability as a function of pulse duration for (a) square pulses and
(b) exponential pulses. Taking 1/∆ = 37.1 fs for the dimer system with phonons, as measured by
Gaussian short pulses, we find good agreements between numerical results and analytical expressions.

7.2.4 Absorption Probability in the Long Pulse Regime

The long pulse regime is characterized by τsys+vib ≪ τpulse ≪ τemission, where the pulse duration τpulse
is much longer than the chromophore system and vibrational time scale τsys+vib, but still much shorter
than the emission time scale τemission so that spontaneous emission can be ignored. For many pulse
shapes (e.g., Gaussian, square, exponential), A(Eτpulse) is a localized function peaked at Eτpulse = 0,
and

∫
dy A(y) is an O(1) constant. Therefore, for large τpulse, treating A(Eτpulse) as a function of E,

we can set

A(Eτpulse) =
k

τpulse
δτpulse(E), (7.34)

where k =
∫
dy A(y) is a pulse shape dependent O(1) constant and δτpulse(E) is a sharply peaked

function with width on the order of ∼ 1/τpulse. In the limit τpulse → ∞, δτpulse(E) becomes a true
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delta function δ(E). Substituting Eq. (7.34) into Eq. (7.21), we find

long pulse abs. prob.no phonon = Γinck
∑
n

cnδτpulse(En − E0). (7.35)

The physical explanation for the delta function is that long pulses have very small energy bandwidths,
of order ∼ 1/τpulse, so the center frequency of the pulse needs to be resonant with an eigenenergy in
order to have any significant absorption probability.

If an eigenenergy Em is resonant with the pulse center frequency, the sum in the absorption
probability expression (Eq. (7.21)) will be dominated by the resonant eigenstate, and we find that

long pulse abs. prob.no phonon, resonant = Γincτpulse|⟨m|Binc⟩|2a, (7.36)

where a = A(0) is defined by Eq. (7.24). In this case, the absorption probability is proportional to the
pulse duration τpulse, provided that τpulse ≪ τemission so that spontaneous emission can be ignored. If
E0 is not resonant with any eigenenergy, then the absorption probability is near zero in the long pulse
regime due to the delta function in Eq. (7.35). Numerical verification of these results is presented
below.

!
"⁄

(b) (c)

pulse duration (fs)

!
"⁄

(a)
!
"⁄

Figure 7.9: Dependence of absorption probability on pulse duration for a dimer system (a) without
phonons and with pulse center frequency resonant with the upper eigenenergy (b) without phonons
and with an off-resonant pulse center frequency in the middle of the two eigenenergies (c) with phonons
and with an off-resonant pulse center frequency in the middle of the two eigenenergies.

Figure (7.9) shows the absorption probabilities for a dimer system under a Gaussian pulse in
three different scenarios, in each case as a function of pulse duration over a range of six orders
of magnitude. The Gaussian temporal profile is centered at 10 τpulse,. Two types of absorption
probabilities are measured. The first is the final absorption probability, which is defined as the
absorption probability at 20 τpulse. The second is the maximum absorption probability, defined as the
maximum probability during the time interval t = 0 to t = 20 τpulse. We identify the characteristic
system or system+vibration timescale τsys+vib as 1/∆, indicated on the plots by dashed vertical lines.
The short and long pulse regimes are identified by τpulse < 0.1/∆ and τpulse > 10/∆, respectively.

In Figure (7.9a), there is no coupling to phonons and the pulse center frequency is set to be
resonant to the higher eigenenergy of the 2 × 2 dimer Hamiltonian. The effective energy spread
parameter ∆ = 130.8 cm−1 (see Eq. (7.27)) corresponds to a characteristic time scale of 1/∆ = 40.6
fs. In the long pulse regime, the absorption probability follows the linear relationship given by Eq.
(7.36) up to τpulse = 105 fs. The long pulse absorption probability is not shown due to the small scale
of the absorption probability.
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Figure (7.9b) considers the same dimer system without phonons, but with the pulse center fre-
quency set to be off-resonant at the average of the two non-degenerate eigenenergies (or equiva-
lently, the average of the site energies). The effective energy spread parameter ∆ = 75.3 cm−1, and
1/∆ = 70.4 fs. Consistent with our analysis, the final absorption probabilities in the long pulse regime
are very close to zero and are smaller than the numerical accuracy of the numerical integrator. The
maximum absorption probability drops to zero more slowly than the final absorption probability.

In the presence of phonons, substituting Eq. (7.34) into Eq. (7.22), we find

long pulse abs. prob.thermal phonon = Γinck
∑
ñ,v

c̃n,vδτpulse(Ẽn − Ev − E0), (7.37)

where c̃n,v are the thermally weighted vibronic overlap with bright state, Eq. (7.18). The absorption
probability is non-zero if the sum of a vibrational energy Ev and the pulse center frequency E0 is
equal to some eigenenergy Ẽn of Hsys+vib (Eq. (6.59)). If the vibrational states are dense enough that
the spacings between the vibronic energy levels are much less than 1/τpulse, the width of δτpulse(E),
we may treat the vibrational energies as a continuum. Defining a coarse-grained version of the bright
state overlap function c̃n,v,

c̃(Ẽn, Ev) =
∑
ñ′,v′

cn′,v′δ(Ẽn − Ẽn′)δ(Ev − Ev′) (7.38)

and writing the sums as integrals ∑
ñ,v

c̃n,v →
∫
dẼndEv c̃(Ẽn, Ev), (7.39)

Eq. (7.37) becomes

long pulse abs. prob.thermal phonon = Γinck

∫
dẼndEv c̃(Ẽn, Ev)δτpulse(Ẽn − Ev − E0). (7.40)

If the vibrational states are dense enough, it is reasonable to assume that c̃(Ẽn, Ev) varies slowly
on the scale of 1/τpulse, the width of δτpulse(E), since we are in the regime τsys+vib ≪ τpulse. Hence

Eq. (7.40) can be well-approximated by replacing δτpulse(Ẽn − Ev − E0) with a true delta function

δ(Ẽn − Ev − E0), and hence

long pulse abs. prob.thermal phonon = Γinck

∫
dEv c̃(Ẽn = Ev + E0, Ev). (7.41)

This shows that in the long pulse regime, when the system is coupled to a dense spectrum of phonons,
the absorption probability is independent of pulse duration.

An alternative derivation of the long pulse absorption probability with phonons, presented in
appendix J, shows that when τpulse is much longer than the time required for the system to reach a
steady state due to phonon interactions, we have

long pulse abs. prob.thermal phonon ∼ Γincτsteady
N

, (7.42)

where ∼ means on the order of, N is the number of chromophores and τsteady is the time scale for
the system to approach steady state. Note that this expression does not imply that the absorption
probability is inversely proportional toN , since Γinc generally increases asN increases (see Eq. (6.12)).

Figure (7.9c) shows the absorption probability for the dimer system with phonons (calculated
with 5 HEOM levels). The pulse center frequency is chosen to be the average of the two system
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eigenenergies. Since the coupling to phonons broadens the frequency that the system can interact with,
having the pulse center frequency equal to one of the eigenenergies will not result in any qualitative
difference. For this example the effective energy spread parameter ∆ = 145.2 cm−1, and 1/∆ = 36.5
fs (see table (7.1)). Consistent with our analysis, the absorption probability in the long pulse regime
is quite independent of τpulse until very large τpulse values, when emission effects become significant.
If we simply take τsteady in Eq. (7.42) to be 1/γ, where γ is the HEOM parameter characterizing
the phonon dephasing rate, then the order of magnitude estimate Γincτsteady/2 ≈ 5 × 10−6 is also
consistent with the numerical result.

To understand the general behavior of the coarse grained bright state overlap function c̃(Ẽn, Ev),
we plot this in Figure (7.10) for a model dimer system where each chromophore is coupled to two
discrete vibrational modes. The total Hamiltonian is

H = Hsys +Hvib + κ
∑
j=1,2

∑
k=1,2

αjk|j⟩⟨j|(bjk + b†jk), (7.43)

with Hsys expressed in the site basis as

Hsys =
∑
j=1,2

ϵj |j⟩⟨j|+ J(|1⟩⟨2|+ |2⟩⟨1|), (7.44)

and
Hvib =

∑
j=1,2

∑
k=1,2

ωjkb
†
jkbjk, (7.45)

with bjk the annihilation operator for the k-th vibrational mode coupled to site j. The numerical
values for the parameters in Eqs. (7.43)-(7.45) are listed in Appendix K. The parameter κ sets the
overall coupling strength between the excitonic system and the vibrations. Figure (7.10) shows the

discretized bright state overlap function c̃(Ẽn, Ev) for system-vibration coupling values κ = 0, 0.1,
and 1. When there is no system-vibration coupling (κ = 0), the vibronic energy is simply the sum

of the system energy and the vibrational energy, i.e., Ẽn = En + Ev. On the other hand, Eq. (7.41)

requires that
∫
dEv c̃(Ẽn = E0 + Ev, Ev) be non-zero for there to be a finite absorption probability.

Therefore the pulse center frequency E0 has to be equal to a system eigenenergy En in order to have
nonzero absorption probability. The two sharp diagonal peaks in panel (a) correspond to the lines

Ẽn = En +Ev for each of the two system energies En, indicating that for long pulses, the absorption
probability is nonzero only when the pulse frequency is equal to one of the two system energies En. As
the system-vibration coupling increases, the peaks broaden and their heights decrease, indicating that
the pulse center frequency no longer has to be exactly equal to the system energies En for there to
be nonzero absorption probability and consequently the resonant absorption probability at E0 = En

decreases.

7.3 Analysis of emission

In the analytical studies of the previous section we have ignored the effect of spontaneous emission at
long times. We now make use of the separation of time scales between the sys+vib dynamics and the
spontaneous emission to analyze the long time emission behavior.

7.3.1 Uniform exponential decay of excited states in the presence of phonons

The HEOM reaches a steady state on the time scale of τsteady ∼ 100 fs, which is much shorter than the
spontaneous emission time scale τemission ∼ 10 ns. Therefore at a sufficiently long time after the pulse
has passed, specfically, when t− τpulse ≫ τsteady, the chromophore system should reach a quasi-steady
state with respect to the phonon bath that decays slowly to the ground state due to spontaneous
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Figure 7.10: c̃(Ẽn, Ev) for a dimer system coupled to 4 vibrational modes (2 on each chromophore).
Plots (a)-(c) correspond to the exciton-phonon coupling strengths κ = 0, 0.1, and 1, respectively. At
κ = 0, the two sharp diagonal peaks indicate that for long pulses, only two frequencies give rise to
significant absorption probability. As κ increases, the diagonal peaks broaden, and the pulse frequency
does not have to be exactly resonant to the system eigenenergy for there to be significant absorption
probability.

emission. (By quasi-steady state we mean that the chromophore system is in steady state with regard
to the phonon bath, but not yet with regard to the photon bath.) We claim that under an N-photon
Fock state input, the long time system state takes the form

ρ(t) = |g⟩⟨g|+ be−Γlong timet
(
ρst − |g⟩⟨g|+O(ϵ)

)
, (7.46)

where the decay rate Γlong time is given by

Γlong time = (1 +O(ϵ))
∑
l

Tr(L†
lLlρst). (7.47)

Here ρst is the normalized HEOM steady state in the excited subspace, ϵ ∼ τsys+vib/τemission is a small
parameter, and b is a constant to be determined. A detailed derivation of Eqs. (7.46) and (7.47) is
provided in Appendix L. These equations show that in the quasi-steady state the excited part of the
system decays to the ground state following a single exponential whose decay rate is equal to the total
emission rate (see Eq. (6.50)).

The constant b has some arbitrariness in it, in the sense that b depends on where the time t = 0
is defined. However, once we fix the t = 0 point in time, we can determine the constant b numerically
by first integrating ρ(t) to some final time tf that is sufficiently long enough for the system to reach
a quasi-steady state. According to Eq. (7.46), the total excitation probability to the lowest order is
then given by b exp(−Γlong timetf ). Therefore we take

b = (total excitation prob. at tf )e
Γlong timetf . (7.48)

The normalized steady state ρst in Eqs. (7.46) and (7.47) can be evaluated independently of the Fock
state hierarchy by propagating the HEOM with an initial state in the excited subspace to long enough
time.

This long time behavior implies that we only need to solve the Fock state + HEOM equations
(Eqs. (6.137) - (6.138)) numerically until the system reaches the quasi-steady state with respect with
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the phonons. This happens within several mulitples of τsteady after the pulse has passed. From this
point onwards, the system will behave according to Eq. (7.46), with the total emission rate given by
Eq.(7.47).

Figure (7.11) shows the excitation probabilities for each chromophore site on a log scale as a
function of time for a dimer system. The difference between the density matrix values obtained from
numerical integration of the double hierarchy of equations, Eq. (6.138), and those obtained from the
lowest order long time analytical expression is quantified by the Euclidean distance

||ρnum − ρana|| =
√∑

i,j

|(ρnum)ij − (ρana)ij |2, (7.49)

and is plotted in Figure (7.11). Note that we have increased the reference value of spontaneous
emission rate Γ0 by a factor of 1000 over the physically relevant value in order to see the spontaneous
emission within a reasonable amount of numerical integration time. Figure (7.11) shows that in the
quasi-steady state after ∼ 4 ps, the numerical difference ||ρnum − ρana|| ∼ 10−5 is about 2 orders of
magnitude smaller than the absorption probability (∼ 10−3), indicating good convergence. Comparing
the ∼ 10−3 probabilities with Eq. (7.46) indicates that for this system b ∼ 10−3 and the small
parameter ϵ ∼ 10−2. The numerically fitted value of Γlong time (2.678×10−2 ps, fitted from 8 to 10 ps)
is in similarly good agreement with the value Γlong time (2.685× 10−2 ps−1) obtained from Eq. (7.47),
with a relative difference on the order of ϵ ∼ 10−2, in accordance with Eq. (7.47). (Note that if we
had not increased Γ0 1000 times, ϵ would be on the order of 10−5, making the analytical expression
even more accurate.)

7.3.2 Collective vs Independent Emission

After the incoming pulse has passed, the total emission rate of the chromophoric system is

Rcoll =
∑

l∈{x,y,z}

Tr(L†
lLlρ) = Γ0

∑
j,k

d∗
j · dk⟨j|ρ|k⟩, (7.50)

(see Eq. (6.50)), where

Lx =
√
Γ0

∑
j

d∗
j · x̂|g⟩⟨j| (7.51)

and similarly for Ly and Lz (see Eq. (6.10)). As mentioned in Section 6.2.2, Γ0 is the unit spontaneous
emission rate and dj the unitless transition dipole moment of site j. The x, y, or z-polarized component
of the field couples the ground state to a collective bright state

∑
j dj · x̂l|j⟩. Eqs. (7.50) and (7.51)

constitute the correct description of emission, which is intrinsically collective [83–85].

It is sometimes assumed that the chromophores spontaneously emit independently of one another
[59]. In this case, the total emission rate would be given by

Rindep =

N∑
j=1

Tr(L†
jLjρ) =

N∑
j=1

Γ0|dj |2⟨j|ρ|j⟩, (7.52)

with
Lj =

√
Γ0|dj | |g⟩⟨j|. (7.53)

Here Γ0|dj |2 is the spontaneous emission rate of chromophore j. We refer to the spontaneous emission
described by Eqs. (7.52) - (7.53) as independent emission.

The difference between collective and independent emission rates

Rcoll −Rindep = Γ0

∑
j ̸=k

d∗
j · dk⟨j|ρ|k⟩, (7.54)
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Figure 7.11: Double hierarchy calculations of the absorption probability for a selected dimer system in
LHCII as a function of time. Solid blue and red lines (using the left axis) show excitation probabilities
on chromophore sites 1 and 2, respectively, in a log scale as a function of time. The dashed line shows
the difference (measured by the Euclidean distance, scale on the right axis) between the numerical
density matrix obtained by integrating the double hierarchy of Eq. (6.138) and the lowest order
analytical expression of Eq. (7.46). For these calculations the value of Γ0 was increased by 1000
relative to the physical value in order to see emission in a reasonable amount of numerical integration
time. The quasi-steady state ρst is found by propagating the HEOM with initial condition ρ(0) = |1⟩⟨1|
up to 20 ps, at which time each element of the density matrix remains constant up to 12 digits after
the decimal point.
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derives from the coherence between different excited states, i.e., from the off-diagonal terms in the
density matrix, as well as from the non-orthogonality of the different transition dipoles. In an idealized
system where all individual chromophores have the same emission rates Γ, then Rindep = Γ, but Rcoll

can vary between 0 and NΓ, depending on the dipole orientations and the extent of excitonic coherence
between chromophores.

The long time emission behavior is dominated by the HEOM steady state ρst (see Eq. (7.46)).
Therefore to observe the difference between collective and independent emission at long times, we
need only to substitute ρst into Eqs. (7.50), (7.52), and (7.54). Since ρst ∝ Trvib(e

−βHsys+vib) [130],
we find that ρst ∝ e−βHsys to the lowest order of the system-vibration coupling. Figure (7.12))

(a) (b)

(d)(c)

Figure 7.12: Magnitudes of matrix elements of the HEOM steady state density matrix ρst for a dimer
and a 7-mer of chromophores in LHCII. (a), (b): dimer and 7-mer system, respectively, in the site
basis. (c), (d): dimer and 7-mer system system, respectively on the energy basis. In the energy
eigenbasis, the steady state is almost diagonal. In the site basis, coherences between different sites are
present but they are generally smaller than the population terms, consistent with weakly delocalized
(Frenkel) excitons.

shows the result of numerical calculations of the HEOM steady state for a selected dimer and an
7-mer system in LHCII. These show that ρst is close to being diagonal in the energy eigenbasis,
and that in the site basis, the off-diagonal coherence terms are generally smaller than the diagonal
population terms. This behavior is consistent with the Frenkel character of excitons in LHCII, which
show delocalization over a small number of sites (2-3). Due to the random orientation of the dipoles
and the smallness of the coherence between different sites, there is only a modest difference between
collective and independent emission rates. In our LHCII examples, the dimer system has Rindep =
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3.23 × 10−2 ns−1 and Rcoll = 3.59 × 10−2 ns−1; the 7-mer system has Rindep = 3.28 × 10−2 ns−1 and
Rcoll = 4.54× 10−2 ns−1. These small differences are consistent with experimental results for LHCII
trimers that show very little enhancement due to collective emission [131]. In contrast, bacterial LHI
and LHII complexes, which have relatively ordered structures and dipole orientations, exhibit collective
emission with enhancement factors of 3-4 over independent emission [132], while bacterial chlorosomes
show less enhancement than might be expected from their initial delocalization lengths [133–135]
because of exciton relaxation and dynamical disorder [136].

7.4 Double hierarchy solutions for LHCII with calculation of
photon fluxes

In this Section we present a numerical solution of the double hierarchy for the Fock state + HEOM
master equations (Eq. (6.138)) for an LHCII monomer (14-mer) system. The incoming pulse has a
Gaussian temporal profile

ξ(t) =
(Ω2

2π

)1/4
e−Ω2(t−t0)

2/4, (7.55)

where Ω is the frequency bandwidth, here chosen to be the standard deviation of the site energies
(Ω ≈ (17.7 fs)−1 or 299 cm−1). t0 is the time of the center of the pulse, chosen to be late enough in time
(150 fs) that no appreciable tail of the Gaussian pulse is present before t = 0. The center frequency is
set to be the average site energy (ω0 ≈15445 cm−1) (see Figure (7.13)). An experimentally reasonable
value for the incoming paraxial beam geometric factor is η = 0.11. In order to maximize the total
absorption probability, the incoming field polarization was chosen to be the singular vector of the
dipole matrix D with the largest singular value (see Appendix M). We set this singular vector to
point along the +z-axis, which is found to lie approximately in the plane of the thylakoid membrane
separating the stroma and lumen of a thylakoid disc (see Figure (7.13)). The other two orthogonal
singular vectors are set to point along the x- and y-axes. 5 HEOM levels were included in the
calculation. To check the error due to truncating the HEOM levels, we also performed the calculation
with 4 HEOM levels and compare the results below. For any time-dependent quantity fn(t) obtained
from n-level HEOM calculations, we determine an estimated error bar fn(t) ± err(t), where err(t) is
the moving average of |fn(t)− fn−1(t)| in the t± 20 fs window.

Figure (7.14) shows the calculated site probabilities as functions of time. The site probabilities
rise initially as the incoming pulse passes. These show oscillations over the following few hundreds of
fs, due to the excitonic dipole-dipole couplings and to the interaction with phonons, as discussed in
many recent studies [49,69]. At later times the system slowly approaches a quasi-steady state due to
the dephasing interaction with phonons. This is not a true steady state because the excited state site
probabilities decay over the ns spontaneous emission time scale (see Section 7.3). In the absence of
exciton-phonon interactions, the site probabilities will continue to oscillate due to excitonic coherence
until the ns time scale spontaneous emission removes the excitation.

Figure (7.15) now shows the total excitation probability, defined as the sum of all local excitation
probabilities on individual sites. Following an initial rise over the duration of the pulse, this remains
nearly constant at around 4 × 10−7 after the pulse has passed over the time scale of 1 ps. The
extremely low absorption probability is due to the exceedingly small magnitude of the system-light
coupling Linc =

√
Γinc|g⟩⟨Binc|. This is a generic feature of natural light harvesting systems [59] which

can also be related to the exceedingly slow rate of spontaneous emission (cf. Eq. (6.50)) relative to
the system and system-phonon time scales.

Since the pulse bandwidth was taken here to be the same as the standard deviation of the site
energies (Figure 7.13(c)), the pulse is neither in the short nor long pulse regime. However, if we apply
the long pulse result that the absorption probability is on the order of Γincτsteady/N (see Eq. (7.42)),
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Figure 7.13: Transition dipole moments and excitonic energy levels of LHCII. (a) Relative positions
and transition dipole moments of the 14 chlorophylls in a LHCII monomer. Blue arrows refer to
chlorophylls on the stromal side, red arrows to chlorophylls on the lumenal side. The coordinate
system is defined by the singular vector basis of the dipole matrix D. With this convention, the z axis
lies approximately in the plane separating the stroma and lumen, and polarization along z is found to
maximize the total absorption probability. (b) LHCII chlorophyll transition dipole moments projected
into the x-y plane. The intensity of the color of each arrow indicates the extent of overlap between
the bright state and the chlorophyll at that site (i.e., |⟨j|Binc⟩|2), which is proportional to the square
of the z-component of the dipole momen, |dj · ẑ|2). (c) Site energies of the 14 chlorophylls in a LHCII
monomer. The blue curve on the right represents the frequency distribution (ω0 + |

∫
dt ξ(t)eiωt|2) of

the Gaussian single photon pulse.

Figure 7.14: Numerical calculations of the absorption dynamics and subsequent excitonic energy
transport for the LHCII monomer, a 14-mer system, using the double hierarchy for the Fock state
+ HEOM master equation. The 14 site probabilities as functions of time are plotted. The error
due to finite HEOM levels are indicated by the colored regions around the solid lines. Gray region
represent the Gaussian temporal profile squared |ξ(t)|2 (see Eq. (7.8)), which has the normalization∫
|ξ(t)|2dt = 1.

109



and taking for simplicity τsteady = 1/γ ≈ 150 fs, we arrive at an absorption probability on the order
of ∼ 3× 10−7, consistent with the numerically observed absorption probability even though we are in
the intermediate pulse regime.
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Figure 7.15: Total absorption probability for LHCII on interaction with a single Fock state photon
pulse, defined as the sum over all excitation probabilities for individual sites, plotted as a function
of time. The HEOM error bar here (estimated from the difference between calculations with 4 and
5 levels of the HEOM hierarchy) is smaller than the width of the curve. After the pulse, the total
absorption probability remains nearly constant at around 4× 10−7 and will decay very slowly to zero
on a ns time scale due to spontaneous emission.

To analyze the change in photon flux due to absorption and emission by LHCII, the photon fluxes
are partitioned into four channels. These are (1) the incoming paraxial channel, z-polarized, with a
geometric factor of η = 0.11 (corresponding to a detection area of 7.3% of the 4π solid angle, see
discussion above Eq. (6.10)), (2) all other z-polarized light not captured by the incoming channel.
(3) all x-polarized light, and (4) all y-polarized light. The system-light coupling operator Ll for each
channel is given by Eq. (6.10), where the incoming channel has a geometric factor η = 0.11, the other
z-polarized mode has η = 1 − 0.11 = 0.89, and the x- and y-polarized channels have η = 1. The
photon fluxes in all four of these channels are plotted as functions of time (see Eq. (6.50)) in Figure
(7.16). Due to the very small system-light coupling, most of the amplitude of the incoming single
photon pulse does not excite the system and appears as outgoing flux in the incoming channel (see
Figure (7.16)). The fluxes in the other channels, as well as that in the incoming channel after the
pulse has passed, are on the order of s−1, around 13 orders of magnitude smaller than the incoming
flux before the pulse has passed the LHCII. The very small value of these fluxes after incidence of the
single photon is due to the combined effects of the low, ∼ 10−7, total excitation probability, the weak
emission rate, Γ ∼ (10 ns)−1, and the limited overlap between the system state and the bright state
of each channel.

7.5 Conclusion

In Part II, we have combined an input-output formalism for optical fields with the HEOM formalism for
phonon baths to study the excitonic dynamics of photosynthetic light harvesting systems interacting
with N-photon Fock state pulses under the influence of coupled phonon degrees of freedom. This
combined formalism results in a double hierarchy of equations of motion that need to be solved to
obtain the excitonic density matrix. We demonstrated the numerical use of this double hierarchy
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Figure 7.16: Outgoing photon flux in four different channels following excitation of LHCII by a
single photon Fock state pulse. Left panel: Due to the small value of the chromophore system-light
interaction, the input photon temporal profile squared |ξ(t)|2 (gray region) closely overlaps with the
flux in the paraxial channel (blue dashed line) Right: Zooming in on the photon flux by about 12
orders of magnitude. Notice that the photon flux is now measured in s−1 instead of fs−1. The small
difference between the input photon temporal profile and the outgoing flux in the paraxial channel is
now evident.

for single photon absorption and excitonic energy transfer by the LHCII light harvesting complex,
possessing 14 chlorophyll chromophores. Under the condition that the system-light coupling is very
weak, as for natural light harvesting systems, we developed a number of useful analytic results that
can also be applied to larger systems. These include (1) the dependence of the absorption probability
on light polarization, dipole orientation, and pulse duration in the limits of short and long pulses, (2)
the time evolution of the chromophore system at long times due to spontaneous emission, and (3) the
close relationship between the dynamics under Fock state pulses and under coherent state pulses.

To study the absorption behavior, by neglecting the long time spontaneous emission, we could
derive expressions for the system state and consequently for the absorption probability. Expressing
the temporal profile of the pulse in a scaling form, we were then able to analyze the dependence of
absorption probability on pulse duration. In the short pulse regime, by defining a system-dependent
energy spread parameter ∆ that characterizes the system+vibration time scale (τsys+vib ∼ 1/∆),
we found a universal behavior for the absorption probability across all chromophoric systems up to
at least the 14 chromophore LHCII system, as well as for different pulse shapes. In the long pulse
regime, the absorption probability no longer shows universal behavior and needs to be treated in a
case-by-case basis. Taking a chromophore dimer system as an example, we analyzed the different
single photon long pulse absorption behavior in three different cases: resonant absorption without
phonon coupling, off-resonant absorption without phonon coupling, and off-resonant absorption with
phonon coupling. In particular, when phonon coupling is present, the long pulse absorption probability
becomes independent of the pulse duration.

To study the chromophore system states at long times, we used the fact that the HEOM has a
steady state to show that the chromophore system possesses a quasi-steady state, where it reaches a
steady state with respect to the phonon bath but has not reached a steady state with respect to the
photon bath due to the slow spontaneous emission. This enabled us to understand the chromophore
system dynamics in the ps to ns timescale, where numerical integration of the double hierarchy
becomes expensive. Furthermore, we used this result to analyze the difference between independent
and collective emission as a function of the degree of orientational order and of excitonic coherence.
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We found that for subsystems of LHCII the difference between collective and independent emission
is small, implying no significant collective effects, consistent with experimental results for LHCII
trimers [131] and expectations based on the non-uniform dipole orientations and the weak extent of
coherence between different sites in the excitonic states for LHCII.

An important outcome of this work is the implication of the comparison of the light absorption
by photosynthetic systems under excitation by Fock states of light with excitation by coherent states
of light. For weak system-field couplings NΓincτpulse ≪ 1 (meaning small photon numbers N , weak
field-chromophore complex coupling constants Γinc, and short pulse durations τpulse), we showed that
excitation by a coherent state yields the same excited state density matrix, i.e., both populations and
coherences, as does excitation by a Fock state with the same temporal profile and average photon
number. This implies that simulating the excitonic dynamics under a short coherent state pulse with
an average of N photons, then setting the coherence between ground and excited states to be zero
gives an operationally equivalent simulation of the excitonic dynamics under an N -photon Fock state
excitation. This equivalence holds both with or without phonons. Using physically relevant values of
parameters, we showed this equivalence numerically for N = 1 and N = 20 photons.

This equivalence result and the analysis of absorption probabilities in the limits of short and long
pulses reveal a useful complementarity between coherent state and Fock state studies. For N-photon
Fock state studies, coherent states can be used to numerically simulate the more computationally
expensive Fock state calculations. On the other hand, the excitation number-conserving property
of single photon Fock states has provided us with clues to solve the N-photon Fock state master
equations analytically in the physically relevant weak coupling limit. This analytical understanding of
the absorption probability applies not only to N-photon Fock states, but also to coherent states due
to the equivalence in the weak coupling limit. We see that analysis of both Fock and coherent state
excitation is valuable for understanding the dynamics of light absorption by light harvesting systems
in the weak coupling regime that is relevant to natural photosynthesis in vivo.

Finally, we note that the analysis in this work applies to the average state dynamics, relevant to an
ensemble of light harvesting systems and an ensemble of experiments with single photons, in which only
the output flux of photons is measured. For consideration of individual experiments with detection
of single emitted photons, we can apply a quantum trajectory picture, as described in Ref. [53], and
obtain additional information about the dynamics of the light harvesting system conditioned upon
observation of individual fluorescent photons. In this interesting situation an incident single photon
Fock state and an incident coherent state with an average of one photon no longer give equivalent
results [53].
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Contribution to other works

Vibrationlly assisted energy transfer

I have been involved in the study of vibrationally assisted energy transfer (VAET). This study is a
part of a collaboration with experiments in Professor Hartmut Haeffner’s group, which use ion traps
to simulate the VAET process. We study the energy transfer dynamics in the case of two electronic
states coupled to one vibrational mode [62] and in the the case of three electronic states coupled to two
vibrational modes [61]. We simulate the dynamics by including a truncated vibrational Hilbert space,
compared to for example the HEOM method, where the vibrational degrees of freedom are traced
out. In the case of three electronic states coupled to two vibrational modes [61], various resonant
energy transfer mechanisms are identified, where different combinations of vibrational quanta interact
resonantly with the electronic energy gap. I have contributed to the perturbative analysis of these
mechanisms.

In the case of two elctronic states coupled to one vibrational mode [62], the effective Hamiltonian
in the single excitation subspace is written as

H =
∆

2
σz +

J

2
σx + νa†a+

κ

2
σz(a+ a†),

where σz = |eg⟩⟨eg| − |ge⟩⟨ge|, σx = |eg⟩⟨ge| + |ge⟩⟨eg|, and a is the annihilation operator for the
vibrational mode. In the absence of vibrational coupling (i.e., κ = 0), the electronic system follows
a Rabi oscillation with frequency

√
∆2 + J2. I have contributed to the study by showing that, if

the vibrational frequency is resonant with the electronic energy gap (i.e., ν =
√
∆2 + J2) and if the

vibrational coupling is weak (i.e., κ is the small parameter), then the electronic system follows a slow
oscillation at frequency κJ

ν

√
n, in addition to the fast Rabi oscillation. The parameter n is the initial

Fock state number of the vibration.

I have also found that if the initial state is an eigenstate of the vibrational parity operator Π and
of the Pauli operator σz, and if all coefficients in the initial state have the same phase modulo π, then
the transfer probability P (t) is invariant when simultaneously changing the signs of ∆ and ν. The
initial state coefficients are expressed in a basis such that the matrix representation of H is real-valued.
This invariance property has practical importance in the context of trapped-ion simulation of these
dynamics, since sweeping ν to negative values can be easier than sweeping ∆ to negative values. This
invariance is in fact a combination of three symmetries. First, if the initial state is an eigenstate of the
vibrational parity operator Π, then the transfer probability P (t) is invariant under the sign change
κ→ −κ. Second, if the initial state is an eigenstate of σz, then P (t) is invariant under the sign change
J → −J . Finally, if all coefficients in the initial state have the same phase modulo π, then P (t) is
invariant under the overall sign change H → −H. Combining all three symmetries, we see that P (t)
is invariant under the sign change (∆, ν) → (−∆,−ν).

113



Quantum trajectories of energy transfer dynamics due to pho-
ton counting

I have also helped develop a quantum trajectory picture of the energy transfer dynamics [53], in
contrast to the averaged dynamics described in Part II. The trajectories are based on photon counting
measurements. Given a single photon Fock state input, when an output photon is measured, the
matter system undergoes a quantum jump and collapses to the ground state. If no output photon is
observed, then we can infer that the matter system is in the excited state. Thus given a single photon
Fock state input, the photon counting measurement provides additional information about the matter
system state. We show that given a classical-like coherent state input, not much information about
the system state can be gained by photon counting measurements.

The trajectory picture is derived from a model of Markovian phonon bath. On average, the effects
of the Markovian phonon bath is described by the Lindblad master equation. This is in contrast
to the phonon coupling model in Part II, where the non-Markovian phonon effects are captured by
the HEOM. The Markovian model for phonon effects allows us to simulate larger light harvesting
systems by reducing the computational cost. We simulate the average dynamics of the PSII C2S2M2

supercomplex containing 316 chlorophyll pigment molecules, and we obtain a simulated quantum
efficiency of 92.5%, consistent with bulk experimental measurements.

A quantum algorithm for ab initio calculation of nonlinear sus-
ceptibilities

I have collaborated with quantum algorithm experts in the Whaley group to develop a quantum
algorithm for ab initio calculation of nonlinear susceptibilities [63]. These nonlinear susceptibilities
are used to compute the nonlinear spectra of molecules. I have used the perturbative formalism
for nonlinear spectroscopy [46] to define the nonlinear susceptibilities in a form that my quantum
algorithm collaborators can process readily.
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Open questions and future
directions

Currently, many proposals for quantum light spectroscopy make use of entangled photon pairs and
require both photons interact with the matter system. In general, these types of experiments are
very difficult to do, since the probability for a molecule to interact with two photons is very small.
We note that entangled photon pairs have been demonstrated to be able to greatly enhance the
two-photon absorption probability [137]. However, these results have not been widely accepted yet
due to measurement discrepancies and a possible explanation with one-photon processes [138]. More
work is needed to understand the magnitude of entangled two-photon absorption in realistic molecular
systems and whether entangled two-photon absorption can be used to enhance classical spectroscopy.
The use of bright squeezed light in molecular spectroscopy is also a possibility that has received little
attention. These type of light would have the advantage of having a larger number of photon and
retaining some non-classical properties.

Another avenue for quantum light spectroscopy is to detect the quantum properties (e.g., the g(2)

photon correlation function) of emitted light, rather than exciting the matter system with non-classical
light. In the context of photosynthetic energy transfer, g(2) spectroscopy has been shown theoretically
to provide information about the steady state coherence and the vibronic coupling [39–42]. How-
ever, these proposals require that photon counting measurement be performed with sub-ps resolution,
which is still beyond the current experimental capabilities. Outside of the context of photosynthetic
energy transfer, and working in the longer ns-timescale, g(2) spectroscopy has been demonstrated
experimentally to reveal dipole-dipole coupling between individual molecules [4], exciton-exciton an-
nihilation [139], number of molecules [2], and molecular conformations [140]. One main difference
between g(2) spectroscopy and typical classical light spectroscopy is that the behavior of g(2) depends
strongly and non-trivially on the number of molecules. In classical light spectroscopy, the signal
is usually simply proportional to the number of molecules. Most of the proposed or demonstrated
g(2) spectroscopy measurements are performed with a single or a few molecules. The usefulness of
g(2) spectroscopy for ensemble measurements is still largely unknown and should be explored, since
ensemble measurements are much easier to implement.
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Appendix A

Small solid angle mode in real
space and time

For convenience purposes, we copy Eq. (1.19) here:

f̃(x, t) =

∫
d3k f(k)eik·xe−ic|k|t. (A.1)

f(k) is a function that has significant amplitude only in a small region R in k-space. R is centered at
kl. It has a transversal width of σ⊥ and a longitudinal width of σ∥. Without loss of generality, we let
kl to be located on the z-axis. We assume f(k) is slowly varying such that within the small region,
|∂f(k)/∂kx| and |∂f(k)/∂ky| is at most on the order of 1/σ⊥, and that |∂f(k)/∂kz| is at most on the
order of 1/σ∥.

Without assuming a specific functional form for f(k), we can already understand the behavior of
f̃(x, t = 0) and f̃(x, t→ ∞). When t = 0,

f̃(x, 0) =

∫
d3k f(k)eik·x (A.2)

is simply the Fourier transform of f(k). Since f(k) is a slowly-varying function having a transversal
span of∼ σ⊥, f̃(x, 0) has significant amplitude only within a transversal cross sectional area of∼ 1/σ2

⊥.
When t → ∞, the the complex exponent in the integrand of Eq. (A.1) tends to be fast-varying with
respect to |k|. Therefore the integrand tends to be highly oscillatory in the kz direction, making the
integral tend to 0. For f̃(x, t) to be nonzero, the exponent

iϕ = i(k · x− c|k|t) (A.3)

in Eq. (A.1) needs to be stationary with respect to k, for some k in the small region R. The stationary
condition is obtained by setting the derivative ∇kϕ to be zero. After calculating the derivative, we
have the stationary condition as

x = k̂ct, (A.4)

where k̂ = k/|k| is the unit vector in the direction of k. In order for the condition of (A.4) to hold
for some k in R, x needs to have a magnitude of ct and a direction that lies inside the small solid
angle section. Therefore, f̃(x, t → ∞) has significant amplitude only when x lies inside the cone of
the small solid angle.
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To give a specific example, let f(k) be the Gaussian function

f(k) = exp
(
− k2x + k2y

2σ2
⊥

− ζ2

2σ2
∥

)
, (A.5)

where ζ = kz − k0 and k0 = |kl|. To solve the integral in Eq. (A.1) approximately, we approximate

|k| =
√
k2x + k2y + k2z in the exponent by its Taylor expansion around k0. Keeping only the lowest

order terms in kx, ky, and ζ,

|k| = k0 + ζ +
k2x
2k0

+
k2y
2k0

. (A.6)

Now the integral in Eq. (A.1) becomes

f̃(x, y, z, t) = eik0z−ick0t

∫
dkx exp

(
− k2x

( 1

2σ2
⊥

+
ict

2k0

)
+ ikxx

)
∫
dky exp

(
− k2y

( 1

2σ2
⊥

+
ict

2k0

)
+ ikyy

)
∫
dζ exp

(
− ζ2

2σ2
⊥

+ iζ(z − ct)
)
.

(A.7)

After performing the Gaussian integrals, we see that

|f̃(x, y, z, t)| = A exp
(
− x2 + y2

2w2
⊥

−
(z − ct)2σ2

∥

2

)
, (A.8)

where the transversal width w⊥ in real space is

w⊥ =
1

σ⊥

√
1 +

(ctσ2
⊥

k0

)2
, (A.9)

and the position-independent constant A is

A =

√√√√√ 2σ2
∥π

3(
1

2σ2
⊥

)2
+
(

ct
2k0

)2 . (A.10)

In the longitudinal direction, f̃(x, y, z, t) behaves as a wavepacket traveling at the speed of light due
to the Gaussian factor centered at z − ct. The transverse width is time-dependent, and it is minimal
at t = 0. When t = 0, w⊥ = 1/σ⊥, so the cross section area is on the order of 1/σ2

⊥. At long enough
time such that t ≫ k0

cσ2
⊥
, w⊥ = ctσ⊥

k0
. At long times, the pulse is centered around z = ct in the

z-direction, so the divergence angle of the small solid angle mode in real space and time is given by
∆θ = w⊥/ct = σ⊥/k0. Note that this divergence angle in real space is the same as the angular spread
of the small region R in k-space, given by σ⊥/k0.
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Appendix B

Classical input-output relation

Our starting point for the derivation of the classical input-output relation is the inhomogeneous wave
equation for the electric field

∇2E− 1

c2
∂2E

∂t2
=

1

ϵ0c2
∂2P

∂t2
(B.1)

derived from the macroscopic Maxwell’s equations [141], where E is the electric field and P is the
polarization field, or the density of the dipole moment. Let E and P take the form

E(r, t) = Ẽ(z, t)eikz−iωt + c.c. (B.2a)

P(r, t) = P̃(z, t)eikz−iωt + c.c., (B.2b)

where ω = ck is the carrier wave frequency, and z is in the direction of the field propagation. The
notation c.c. stands for complex conjugate. In Eq. (B.2) we have assumed that E(r, t) and P(r, t)
change very slowly in the transverse x and y directions, so that the dependence on x and y is ignored.
We further assume that Ẽ and P̃ are slowly varying envelope functions such that∣∣∣∂2Ẽ

∂t2

∣∣∣≪ ω
∣∣∣∂Ẽ
∂t

∣∣∣≪ ω2
∣∣∣Ẽ∣∣∣ and

∣∣∣∂2Ẽ
∂z2

∣∣∣≪ k
∣∣∣∂Ẽ
∂z

∣∣∣≪ k2
∣∣∣Ẽ∣∣∣ (B.3a)

and ∣∣∣∂2P̃
∂t2

∣∣∣≪ ω
∣∣∣∂P̃
∂t

∣∣∣≪ ω2
∣∣∣P̃∣∣∣ and

∣∣∣∂2P̃
∂z2

∣∣∣≪ k
∣∣∣∂P̃
∂z

∣∣∣≪ k2
∣∣∣P̃∣∣∣. (B.3b)

Substituting Eq. (B.2) into the second order equation of Eq. (B.1) and applying the slowly varying
envelope approximation (Eq. (B.3)), we obtain a first order equation

∂Ẽ

∂z
+

1

c

∂Ẽ

∂t
=

ik

2ϵ0
P̃. (B.4)

Defining a retarded time

s = t− z

c
(B.5)

and changing the variables in Eq. (B.4) from (z, t) to (s, t), we can reduce the partial differential
equation in Eq. (B.4) to an ordinary differential equation of the variable t, for each fixed s, i.e.,

∂

∂t
Ẽ′(s, t) =

ikc

2ϵ0
P̃′(s, t). (B.6)
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To be clear on the variables, we have defined Ẽ′(s, t) = Ẽ(z, t) and P̃′(s, t) = P̃(z, t). Eq. (B.6) can
be solved as

Ẽ′(s, t) = Ẽ′(s, 0) +
ikc

2ϵ0

∫ t

0

dτ P̃′(s, τ). (B.7)

Let the matter sample be located between z = −ϵ and z = ϵ. Then the polarization field P̃(z, t) is
nonzero only when |z| < ϵ, and P̃′(s, t) is nonzero only when |t − s| < ϵ/c. The input field Fin(s) is
defined as Ẽ′(s, 0), where s > ϵ/c, so that the field is upstream of the matter sample. The output
field Fout(s) is defined as = Ẽ′(s, t), where t > s+ ϵ/c, so that the field is downstream of the matter
sample. Now, we can re-write Eq. (B.7) as

Fout(s) = Fin(s) +
ikc

2ϵ0

∫ s+ϵ/c

s−ϵ/c

dτ P̃′(s, τ). (B.8)

This is the classical input-output relation. Note that, given a fixed s, P̃′(s, τ) is nonzero only when
τ ∈ (s − ϵ/c, s + ϵ/c). By the definitions of the input and output fields, (s − ϵ/c, s + ϵ/c) is always
contained inside (0, t).

To turn this into a form that is more similar to Eq. (2.5), we convert P̃′ into P̃ in the integral
inside Eq. (B.8), and re-write the integral as∫ s+ϵ/c

s−ϵ/c

dτ P̃(c(τ − s), τ). (B.9)

Changing the integration variable from τ to z = c(τ − s), the integral becomes

1

c

∫ ϵ

−ϵ

dz P̃(z, s+ z/c). (B.10)

We can now write the classical input-output relation as

Fout(s) = Fin(s) +
ik

2ϵ0

∫ ϵ

−ϵ

dz P̃(z, s+ z/c). (B.11)

Comparing this to the quantum input-output relation (Eq. (2.5)), the time variable s + z/c of the

polarization P̃ here corresponds to the time variable s +
k̂l·xj

c of the dipole operator in Eq. (2.5).
The integral over z here corresponds to the sum over molecules in Eq. (2.5). The factor of i in the
classical expression comes from the correspondence ia(s) ↔ E (ignoring a real-valued constant factor)
between the field operator a(s) and the classical electric field E.
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Appendix C

Fermi’s golden rule rate for
spontaneous emission photon flux

Consider a molecule with two electronic states, a ground state |g⟩ and an excited state |e⟩. The
molecule may contain nuclear degrees of freedom, which will be implicit in the analysis. Let the initial
electronic state of the molecule be in the excited state. Then the golden rule expression for the decay
rate from |e⟩ into |g⟩ can be written in terms of the correlation function [142], i.e.,

excited state decay rate =

∫ ∞

−∞
dτ ⟨H(τ)H(0)⟩. (C.1)

Here, the expectation value is evaluated with respect to |e⟩|vac⟩, the electronically excited state of the
molecule times the vacuum state of the photon field. Substituting the Hamiltonian (Eq. (1.32)) into
the golden rule expression, we find the excited state decay rate is equal to

excited state decay rate =

2M∑
l=1

⟨e|L†
lLl|e⟩, (C.2)

meaning that the total decay rate of the excited state is the sum of the spontaneous emission rates into
each of the spatial modes. Given a general system state ρsys(t) that may not be the excited state |e⟩,
the spontaneous emission photon flux in the l-th spatial mode is equal to the excited state population
Tr(|e⟩⟨e|ρsys(t)) times the emission rate into the l-th spatial mode ⟨e|L†

lLl|e⟩. This product can be
shown to be equivalent to Eq. (2.8) by noting that

Tr
(
|e⟩⟨e|ρsys(t)

)
⟨e|L†

lLl|e⟩
= Tr

(
|e⟩⟨e|L†

lLl|e⟩⟨e|ρsys(t)
)

= Tr
(
L†
lLlρsys(t)

)
.

(C.3)

The last equality is obtained by noting that in our two-level system, L†
lLl is proportional to |e⟩⟨e|.
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Appendix D

Perturbative expansion of
Heisenberg-evolved operators

Following the notation in Sec. 3.1, we define a time-evolution superoperator U(t) that evolves an
operator in time as

U(t) = U†(t) • U(t), (D.1)

where the dot • notation means that the effect of the superoperator acting on a general operator
X is to substitute the operator X into the dot •. Specifically, U(t)X = U†(t)XU(t). Note that a
Heisenberg picture operator AH(t) is related to the interaction picture operator A(t) by

AH(t) = U(t)A(t) (D.2)

(see Eq. (1.28)). Our task of expanding AH(t) from A(t) now reduces to expanding the superoperator
U(t). Just as U(t) is a linear operator on the vector space of quantum states, the superoperator U(t)
is also a linear operator on a larger vector space of operators.

Taking the time derivative of Eq. (D.1) using the Schrodinger equation (Eq. (1.26)), we obtain

d

dt
U(t) = −iU†(t)[•, H(t)]U(t)

= −i[U†(t) • U(t), HH(t)],
(D.3)

where HH(t) = U†(t)H(t)U(t) is the Hamiltonian in the Heisenberg picture. We have written the
time derivative in two ways. The first line involves the interaction picture Hamiltonian H(t), and
the second line involves the Heisenberg picture Hamiltonian HH(t). Defining the superoperator L[A],
where A is a general operator, as

L[A] = −i[•, A], (D.4)

we can re-express Eq. (D.3) in superoperators in two ways. The second line in Eq. (D.3) can be
written as

d

dt
U(t) = L[HH(t)]U(t), (D.5)

while the first line in Eq. (D.3) can be written as

d

dt
U(t) = U(t)L[H(t)]. (D.6)
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Solving Eq. (D.5) iteratively from the initial condition U(0) = 1, we have

U(t) =1 +

∫ t

0

dt1 L[HH(t1)]

+

∫ t

0

dt2

∫ t2

0

dt1 L[HH(t2)]L[HH(t1)]

+

∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 L[HH(t3)]L[HH(t2)]L[HH(t1)] + · · · .

(D.7)

This result can be expressed compactly as

U(t) = T+ exp

(∫ t

0

dτ L[HH(τ)]

)
, (D.8)

where the forward time-ordering T+ orders the superoperators L from right to left in the order of
the smallest to the largest time variable. Substituting this expansion into Eq. (D.2), we obtain the
time-ordered expansion for AH(t) as

AH(t) =A(t)− i

∫ t

0

dt1 [A(t), HH(t1)]

+ (−i)2
∫ t

0

dt2

∫ t2

0

dt1 [[A(t), HH(t1)], HH(t2)]

+ (−i)3
∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 [[[A(t), HH(t1)], HH(t2)], HH(t3)] + · · · .

(D.9)

On the other hand, solving Eq. (D.6) iteratively from the initial condition U(0) = 1, we have

U(t) =1 +

∫ t

0

dt1 L[H(t1)]

+

∫ t

0

dt2

∫ t2

0

dt1 L[H(t1)]L[H(t2)]

+

∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 L[H(t1)]L[H(t2)]L[H(t3)] + · · · .

(D.10)

This result can be expressed compactly as

U(t) = T− exp

(∫ t

0

dτ L[H(τ)]

)
, (D.11)

where the backward time-ordering T− orders the superoperators L from right to left in the order of
the largest to the smallest time variable. Substituting this expansion into Eq. (D.2), we obtain the
anti-time-ordered expansion for AH(t) as

AH(t) =A(t)− i

∫ t

0

dt1 [A(t), H(t1)]

+ (−i)2
∫ t

0

dt2

∫ t2

0

dt1 [[A(t), H(t2)], H(t1)]

+ (−i)3
∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 [[[A(t), H(t3)], H(t2)], H(t1)] + · · · .

(D.12)
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We have now obtained two different expansions of the Heisenberg picture operator AH(t). Com-
paring Eq. (D.8) to Eq. (D.11), we find a surprisingly elegant superoperator identity:

T+ exp

(∫ t

0

dτ L[HH(τ)]

)
= T− exp

(∫ t

0

dτ L[H(τ)]

)
. (D.13)
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Appendix E

Relationship between Eqs. (4.13)
and (4.15)

To show that the Heisenberg picture signal of Eq. (13) is equal to the interaction picture signal of
Eq. (15), it suffices to show

Tr
(
ρ(−∞)a†pr, out(t2)apr, out(t1)

)
= Tr

(
ρ(∞)a†pr(t2)apr(t1)

)
. (E.1)

The presence of ρ(∞) in the interaction picture is not very intuitive, but this can be understood if we
consider the following relation [52]:

apr,out(t
′) = U†(t)apr(t

′)U(t), (E.2)

where t > t′. U(t) is defined below Eq. (17). Taking a common time variable t, such that t > t1, t2.
The left-hand side of Eq. (E.1) becomes

Tr
(
ρ(−∞)U†(t)a†pr(t2)U(t)U†(t)apr(t1)U(t)

)
. (E.3)

Using the invariance of the trace under cyclic permutation and the unitary property U(t)U†(t) = 1,
(E.3) becomes

Tr
(
U(t)ρ(−∞)U†(t)a†pr(t2)apr(t1)

)
. (E.4)

Finally, taking t→ ∞, so that U(t)ρ(−∞)U†(t) → ρ(∞), we obtain the right-hand side of Eq. (E.1).
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Appendix F

Numerical parameters of Sec. 4.3

Using the two-state jump model in [56] for the matter system and following the notation in that work,
we take ωfe = 11000 cm−1, δ = 200 cm−1, k = 120 cm−1, and γ = 100 cm−1. From Eq. (19) of [56],
we derive the matter correlation function

F̃ (ω′, ω; t0) = e−i(ω−ω′)t0
( 1

(ω − ω′ + iγ)

1

(ω − ω+ + 2iγ)

+
2iδ

k + 2iδ

1

(ω − ω′ + i(k + γ))

1

(ω − ω− + i(k + 2γ))

− 2iδ

k + 2iδ

1

(ω − ω′ + i(k + γ))

1

(ω − ω+ + 2iγ)

)
,

(F.1)

where ω± = ωfe ± δ. We note that this is slightly different from Eq. (20) of [56]. We then multiply

F̃ (ω′, ω; t0) by a factor of 20, so that around 10% of the probe is absorbed at the peak of the pump-
probe spectrum. The factor of 20 effectively takes into account the light beam geometry, the molecular
dipole strength, and the number of molecules in the sample.

The biphoton wavefunction of [56] takes the Gaussian form

Φ(ω, ωr) = N e−
(ω+ωr−ω0)2

2σ2 e−β[(ω−ω0/2)T2+(ωr−ω0/2)T1]
2

, (F.2)

where N is a normalization factor ensuring
∫
dωdωr|Φ(ω, ωr)|2 = 1, β = 0.04822, ω0 = 22000 cm−1,

σ = 1000 cm−1, T1 = −19.69 fs, and T2 = 70.31 fs. If we choose a fixed value of ωr, then the bivariate
Gaussian biphoton wavefunction reduces to a single-variable Gaussian function ∝ e−(ω−ω′

0)
2/2σ′2

with
a modified center frequency

ω′
0 =

( 1

σ2
+ 2γT 2

2

)−1
[
ω0 − ωr

σ2
+ 2γT2

(ω0

2
(T1 + T2)− ωrT1

)]
(F.3)

and variance

σ′ =
( 1

σ2
+ 2γT 2

2

)−1/2
. (F.4)

This gives the explicit form of the quantum-inspired classical probe pulse corresponding to the bipho-
ton pulse, which is thus seen to depend on the biphoton parameters γ, T1, T2, ω0 and σ, in ad-
dition to ωr. When ωr = 10400 cm−1, the quantum-inspired pulse has ω′

0 = 10874.81 cm−1 and
σ′ = 236.09 cm−1. When ωr = 11400 cm−1, the quantum-inspired pulse has ω′

0 = 11083.46 cm−1 and
σ′ = 236.09 cm−1.
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Appendix G

Quantizing a paraxial mode

The vector potential of a paraxial beam propagating in the +z direction takes the form

Apara(x, t) = u(x, t)eik0z−iω0t + c.c., (G.1)

where u(x, t) is a slowly varying envelope function, and k0 and ω0 = ck0 are the carrier wavevector
and frequency, respectively. The slowly varying envelope is characterized by the conditions{

|∂2u
∂t2 | ≪ ω0|∂u∂t | ≪ ω2

0 |u|
|∂2u
∂z2 | ≪ k0|∂u∂z | ≪ k20|u|.

(G.2)

Under these conditions, the wave equation ∇2A = 1
c2

∂2A
∂t2 reduces to the paraxial wave equation

∇2
⊥

2k0
u+ i(

∂u

∂z
+

1

c

∂u

∂t
) = 0, (G.3)

which is first order in z and t. Therefore we can eliminate one variable and write

u(x, t) = f(tr)ũ(x, y, z), (G.4)

where f is an arbitrary function and tr ≡ t− z/c is the retarded time. ũ(x) satisfies the Schrödinger-
like equation

−i∂ũ
∂z

=
∇2

⊥
2k0

ũ. (G.5)

We normalize ũ according to ∫
dxdy |ũ(x, y, z)|2 = 1. (G.6)

If we fix the spatial mode ũ(x), the field degree of freedom is in the arbitrariness of f(tr). We express
the Fourier components of f(tr) as

f(tr)e
−iω0tr =

1√
L

∑
q

ϕqe
−icqt︸ ︷︷ ︸

ϕq(t)

eiqz, (G.7)

where q takes the values 2πn/L, n = 0,±1,±2, · · · . L will be taken to infinity at the end of calculation.
Due to the paraxial approximation, ϕq is localized around q = k0. Substituting Eqs. (G.7) and (G.4)
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into Eq. (G.1), we have

Apara(x, t) =
1√
L

∑
q

ũ(x)ϕq(t)e
iqz + c.c.

=
1√
L

∑
q

[ũ(x)ϕq(t) + ũ∗(x)ϕ∗−q(t)]e
iqz.

(G.8)

From the last equality, we see that the quantity in the square bracket is simply the Fourier-transformed
vector potential Aq. Because A(x) is real-valued, Aq = A∗

−q, so {Aq|q > 0} completely specifies
A(x). Since {ϕq} (containing both positive and negative q’s) contains twice as many parameters as
{Aq|q > 0}, {ϕq} is a redundant description of the vector potential. To remedy this issue, we set
ϕq = 0, ∀q < 0. So

Apara(x, t) =
1√
L

∑
q>0

ũ(x)ϕq(t)e
iqz + c.c., (G.9)

where the sum only ranges over positive q’s. The free field electromagnetic Lagrangian in the Coulomb
gauge is [113,143]

L =
ϵ0
2

∫
d3x (

∂A

∂t
)2 − c2(∇×A)2. (G.10)

Using Eq. (G.9), the first term in the Lagrangian is evaluated as∫
d3x (

∂A

∂t
)2 =

1

L

∫
d3x

∑
q1,q2>0

[
ũ2(x)ϕ̇q1 ϕ̇q2e

i(q1+q2)z + c.c.
]
+ 2|ũ(x)|2ϕ̇q1 ϕ̇∗q2ei(q1−q2)z

≈ 2
∑
q

|ϕ̇q|2,
(G.11)

where ϕ̇ denotes the time derivative dϕ/dt. We dropped the term in the square bracket here because
performing the spatial integral gives

∫
dz(
∫
dxdyũ2)ei(q1+q2)z. And since the spatial mode is slowly

varying in z, this integral is non-vanishing only when q1+q2 ≈ 0. However, the paraxial approximation
asserts that ϕ̇q is non-vanishing only when q ≈ k0. In this respect, the quantity in the bracket is non-
vanishing only when q1 + q2 ≈ 2k0, which is incompatible with q1 + q2 ≈ 0. Therefore the term in the
bracket is always small and can be dropped.

In the second term of the Lagrangian,

∇×A =
1√
L

∑
q>0

(∇× ũ+ iqẑ × ũ)ϕqe
iqz + c.c. (G.12)

For the TEM00 Gaussian beam considered here, ∇ × ũ is identically zero. For other beam modes
∇× ũ is generally nonzero, but it is small compared to the next term iqẑ× ũ, because the sum

∑
q>0

is dominated by contributions from q ≈ k0 and in general |∇ × ũ| is much smaller than |k0ũ|. The
spatial integral of (∇×A)2 follows similarly as above.

The Lagrangian now takes the form of a collection of harmonic oscillators

L = ϵ0
∑
q>0

|ϕ̇q|2 − ω2
q |ϕq|2, (G.13)

where ωq ≡ cq. We first quantize the real and imaginary parts of ϕq using a set of bosonic operators

ã
(Re)
q , and ã

(Im)
q , so that the real part of ϕq is quantized as

Reϕq =

√
ℏ

4ϵ0ωq
(ã(Re)

q + ã(Re)†
q ) (G.14)
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and the imaginary part of ϕq is quantized as

Imϕq =

√
ℏ

4ϵ0ωq
(ã(Im)

q + ã(Im)†
q ) (G.15)

Then we transform the “ãq” operators into the “aq” operators using a
(r)
q = (ã

(Re)
q + iã

(Im)
q )/

√
2

and a
(l)
q = (ã

(Re)
q − iã

(Im)
q )/

√
2. The quantized version of the complex-valued ϕq becomes [144]

ϕq = Reϕq + iImϕq =

√
ℏ

2ϵ0ωq
(a(r)q + a(l)†q ), (G.16)

where a
(r)
q and a

(l)
q are two sets of bosonic operators with commutation relations [a

(ν)
q , a

(ν′)†
q′ ] =

δν,ν′δq,q′ and [a
(ν)
q , a

(ν′)
q′ ] = [a

(ν)†
q , a

(ν′)†
q′ ] = 0. The field Hamiltonian is

H =
∑
q>0

ℏωq(a
(r)†
q a(r)q + a(l)†q a(l)q ). (G.17)

Substituting Eq. (G.16) into Eq. (G.9), we arrive at

Apara(x, t) =
∑
q>0

√
ℏ

2ϵ0ωqL
ũ (x)

(
a(r)q e−iωqt + a(l)

†

q eiωqt
)
eiqz + h.c. (G.18)

Here we see that the transformed operators a
(r)
q ’s and a

(l)
q ’s correspond to right- and left-traveling

waves, respectively. The reason that left-traveling waves appear in our quantization is because if we
considered left-traveling waves in Eq. (G.1), we would have obtain the exactly same Lagrangian.

Since we are only considering the right-traveling waves in this work, we will discard the a
(l)
q ’s and

drop the superscript (r). To obtain the continuum limit L→ ∞, we make the replacements
∑

q>0 →
L/(2πc)

∫∞
0
dω and aq →

√
2πc/La(ω), to ensure the commutation relation [a(ω), a†(ω′)] = δ(ω−ω′).

Finally, using the relation E = −∂A/∂t, we have

Epara(x, t) =

∫ ∞

0

dω

√
ℏω

4πϵ0c
(iũ(x)a(ω)e−iωtr + h.c.). (G.19)

Since the size of the chromophoric system is much smaller than the wavelength of visible light, we can
apply the dipole approximation and set the light-matter interaction to the form −d · E(x0), where
d is the dipole moment operator of the chromophoric system, and x0 is the position of this, which
is considered as fixed. Without loss of generality, let x0 = 0, and let ũ(0) be real-valued. We then
rewrite the electric field of the paraxial mode at location 0 as

Epara(x = 0, t) =

∫ ∞

0

dω

√
ℏω

4πϵ0c
ũ(0)(ia(ω)e−iωtr + h.c.). (G.20)

128



Appendix H

Chromophore system parameters

Matrix elements of the Hamiltonian H and the HEOM parameters λ and γ are expressed in units of
cm−1. The dipole matrix D is in units of Debye. The i-th row of D contains the transition dipole
moment of the i-th site.

H.1 monomer

H = 15222

d =
(
4 0 0

)

λ = 37

γ = 30

H.2 dimer

We choose the a602 and a603 chlorophylls in the LHCII monomer (parameters given below) as the
dimer system. Both dipole moments have a magnitude of 4 Debye. The angle between the dipole
moments is ϕ = 2.282 rad.

H.3 7-mer

The 7-mer system consists of chlorophylls a602, a603, b608, b609, a610, a611, and a612 in the LHCII
monomer (parameters given below).
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Appendix I

Second order perturbation analysis
of coherent state input

Neglecting the slow spontaneous emission, the coherent state master equation (Eq. (6.26)) becomes

d

dt
ρ = −i[H − iα(t)L†

inc + iα∗(t)Linc, ρ]. (I.1)

Rotating out the Hamiltonian H, the interaction frame density matrix ρ̃(t) = eiHtρ(t)e−iHt follows
the equation

d

dt
ρ̃(t) = [−α(t)L†

inc(t) + α∗(t)Linc(t), ˜ρ(t)], (I.2)

where Linc(t) ≡ eiHtLince
−iHt. Given the initial state ρ̃(0) = |g⟩⟨g|, to second order perturbation we

have,

ρ̃(t) = |g⟩⟨g|+
∫ t

0

dt1 − α(t1)L
†
inc(t1)|g⟩⟨g| − α∗(t1)|g⟩⟨g|Linc(t1)

+

∫ t

0

dt2

∫ t2

0

dt1 − α∗(t2)α(t1)Linc(t2)L
†
inc(t1)|g⟩⟨g| − α(t2)α

∗(t1)|g⟩⟨g|Linc(t1)L
†
inc(t2)

+ α∗(t2)α(t1)L
†
inc(t1)|g⟩⟨g|Linc(t2) + α(t2)α

∗(t1)L
†
inc(t2)|g⟩⟨g|Linc(t1).

(I.3)

In obtaining the equation above, terms involving Linc(t)|g⟩⟨g| and |g⟩⟨g|L†
inc(t) were dropped. Since

Linc =
√
Γinc|g⟩⟨Binc| (see Eq. (6.11)), these terms are identically zero. Using the fact that e−iHt|g⟩ =

|g⟩, Linc(t) can be simplified as Lince
−iHt, and L†

inc(t) can be simplified as eiHtL†
inc(t). Switching the

time index t1 and t2 in the first and the third terms in the double integral,

ρ̃(t) = |g⟩⟨g|+
∫ t

0

dt1 − α(t1)e
iHt1L†

inc|g⟩⟨g| − α∗(t1)|g⟩⟨g|Lince
−iHt1

+

∫ t

0

dt2

∫ t2

0

dt1 − α(t2)α
∗(t1)|g⟩⟨g|Lince

iH(t2−t1)L†
inc + α(t2)α

∗(t1)e
iHt2L†

inc|g⟩⟨g|Lince
−iHt1

+

∫ t

0

dt1

∫ t1

0

dt2 − α(t2)α
∗(t1)Lince

iH(t2−t1)L†
inc|g⟩⟨g|+ α(t2)α

∗(t1)e
iHt2L†

inc|g⟩⟨g|Lince
−iHt1 .

(I.4)
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The first term in the first double integral is in fact equal to the first term in the second double integral.
To see this, notice that

|g⟩⟨g|Lince
iH(t2−t1)L†

inc = Lince
iH(t2−t1)L†

inc|g⟩⟨g| = ⟨g|Lince
iH(t2−t1)L†

inc|g⟩|g⟩⟨g|. (I.5)

Now using the property
∫ t

0
dt2
∫ t2
0
dt1 +

∫ t

0
dt1
∫ t1
0
dt2 =

∫ t

0
dt2
∫ t

0
dt1 to combine the double integrals

and rotating back to the original frame, i.e., ρ(t) = e−iHtρ̃(t)eiHt, we write ρ(t) in block matrix form
as

ρ(t) =

(1− ⟨β′
α(t)|β′

α(t)⟩
)
|g⟩⟨g| |g⟩⟨β′

α(t)|

|β′
α(t)⟩⟨g| |β′

α(t)⟩⟨β′
α(t)|

 , (I.6)

where

|β′
α(t)⟩ ≡ −

∫ t

0

dτ α(τ)e−iH(t−τ)L†
inc|g⟩. (I.7)

Generalization to include an initial phonon pure state follows similarly. Specifically, given an initial
pure state |g⟩|v⟩ that is a product state of the chromophore ground state and a pure vibrational
state |v⟩, we first compute the chromophore system + vibration density matrix to the second order
perturbation. Tracing out the vibrational degrees of freedom, we obtain the reduced chromophore
system density matrix ρphonon, pure(t) as

ρphonon, pure(t) =

(1− ⟨γ′α,v(t)|γ′α,v(t)⟩
)
|g⟩⟨g| Trvib |g⟩⟨γ′α,v(t)|

Trvib |γ′α,v(t)⟩⟨g| Trvib |γ′α,v(t)⟩⟨γ′α,v(t)|

 , (I.8)

where

|γ′ξ,v(t)⟩ ≡ −
∫ t

0

dτ ξ(τ)e−iHsys+vib(t−τ)L†
inc|g⟩e−iHvibτ |v⟩. (I.9)

If the initial phonon state is a thermal mixture of pure states
∑

v Pv|v⟩⟨v|, where each pure state
|v⟩ has the Boltzmann weight Pv, then the reduced chromophore system state in the second order
perturbation is simply a thermal mixture of the states Eq. (I.8).

ρphonon, mixed(t) =
∑
v

Pv

(1− ⟨γ′α,v(t)|γ′α,v(t)⟩
)
|g⟩⟨g| Trvib |g⟩⟨γ′α,v(t)|

Trvib |γ′α,v(t)⟩⟨g| Trvib |γ′α,v(t)⟩⟨γ′α,v(t)|

 . (I.10)
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Appendix J

Absorption probability with
phonon in the long pulse regime

In our typical HEOM parameter regimes, the time scale for the system to reach the steady state,
τsteady, is on the order of 100 fs. Then if τsteady ≪ τpulse, the system essentially remains in a steady
state with respect to the HEOM during τpulse. Using the notation of appendix L, we write the physical
density matrix as

ρ0⃗1,1(t) = P (t)ρst + (1− P (t))ρg, (J.1)

where P (t) is the excitation probability. Substituting this ansatz into the Fock state + HEOM master
equations, Eq. (6.138), and applying Eq. (L.7), we can write the time dependence of the excitation
probability as

d

dt
P (t) = −ξ(t)Tr(L†

incρ
0⃗
0,1) + c.c. (J.2)

The time derivative of P (t) depends on ρ0⃗0,1. To solve for ρ0⃗0,1, we first write the equations for the
auxiliary density matrices with Fock state index (0, 1) in the vectorized form

d

dt
v0,1(t) = −ξ∗(t)v0,0Linc +Av0,1, (J.3)

where vm,n represents the vectorized form of all ρn⃗m,n. v0,0 is independent of time and consists of

|g⟩⟨g| in the n⃗ = 0⃗ component and 0 in all other components. The notation v0,0Linc means right
multiplying every auxiliary density matrix in v0,0 by Linc. Solving formally for v0,1,

v0,1(t) = −
∫ t

0

dτ eA(t−τ)ξ∗(τ)
(
v0,0Linc

)
. (J.4)

Since the HEOM does not connect different excitation subspaces, and the only two HEOM steady
states are in the |ground⟩⟨ground| and |excited⟩⟨excited| blocks, the fact that |g⟩⟨g|L is in the |ground⟩⟨excited|
block implies that v0,0L only contains the transients of HEOM that decay to zero on the time scale of
τsteady. Therefore the factor e

A(t−τ) only contributes significantly when τ ∈ [t−O(τsteady), t]. Within
this time interval, the pulse temporal profile ξ(τ) is essentially constant. Using Eq. (6.11), we can
then approximate v0,1 as

v0,1(t) = −
√

Γincξ
∗(t)

∫ O(τsteady)

0

dτ eAτ
(
v0,0|g⟩⟨Binc|

)
. (J.5)
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The physical HEOM index n⃗ = 0⃗ component of the integrand eAτ
(
v0,0|g⟩⟨Binc|

)
is strictly in the

|ground⟩⟨excited| block for all τ , and we write the integrand as |g⟩⟨ζ(τ)|, where |ζ(τ)⟩ is some un-
normalized state in the singly excited subspace. This is because the action of the HEOM, eAτ , does
not change the excitation number, and the n⃗ = 0⃗ component of the initial state v0,0|g⟩⟨Binc| (i.e.,
|g⟩⟨Binc|) lies in the |ground⟩⟨excited| block. We now write the n⃗ = 0⃗ component of the integral in
Eq. (J.5) in the form ∫ O(τsteady)

0

dτ |g⟩⟨ζ(τ)|, (J.6)

where |ζ(0)⟩ = |Binc⟩, the normalized bright state, and |ζ(τ)⟩ decays to 0 on the order of τ = τsteady.
Therefore the value of this integral is in the |ground⟩⟨excited| block and has magnitude on the order
of τsteady. We write this order of magnitude estimate as τsteady|g⟩⟨ϕ|, where |ϕ⟩ is some normalized

excited state induced by the HEOM. Now we can express the order of magnitude estimate of the n⃗ = 0⃗
component of v0,1 in Eq. (J.5) as

ρ0⃗0,1(t) ∼ −
√

Γincξ
∗(t)τsteady|g⟩⟨ϕ|. (J.7)

Substituting this into Eq. (J.2), we find

d

dt
P (t) ∼ Γinc|ξ(t)|2τsteady

∣∣⟨ϕ|Binc⟩
∣∣2. (J.8)

Because |ϕ⟩ arises from the HEOM and |Binc⟩ arises from the dipole orientations, they are quite
independent of each other, and we expect |⟨ϕ|Binc⟩|2 ∼ 1/N , where N is the number of chromophores.
(To obtain this scaling we used the fact that the average square overlap of two independent, uniformly
distributed normalized vectors in an N-dimensional Hilbert space is 1/N .) Integrating P (t) over the
pulse duration, we have

long pulse abs. prob. with phonon ∼ Γincτsteady
N

. (J.9)

We have now arrived at the important result that in the long pulse regime, i.e., τpulse ≫ τsteady, the
absorption probability in the presence of phonon coupling is independent of the pulse duration.
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Appendix K

Numerical parameters for c̃(Ẽn, Eν)

In Section 7.2.4, we discuss the long pulse absorption probability using a model dimer system. Each
chromophore of the dimer system is coupled to two discrete vibrational modes. The parameters are
listed in Table K.1 below.

parameter value (cm-1)
αj1 42.5
αj2 50.9
ωj1 40
ωj2 100
ϵ1 15287
ϵ2 15157
J 38.1
kBT 200

Table K.1: Numerical values for the parameters of Eqs. (7.43) - (7.45) in the main text. The values are
used to generate Figure (7.10). The αjk’s and ωjk’s are the same for both sites and thus independent
of the site index j.

For ease of calculation, instead of treating c(En, Ev) as a function of continuous variables as in
Eq. (7.38), we discretized En and Ev into 20 cm-1 bins and replaced the delta function δ(E1 −E2) in
Eq. (7.38) by the binning function

χ(E1, E2) =

{
1

20 cm−1 E1 and E2 are in the same bin

0 otherwise,
(K.1)

where the factor 1/20 cm−1 ensures proper normalization
∫
dE1 χ(E1, E2) = 1. Then the discretized

c̃(Ẽn, Ev) takes the form

c̃(Ẽn, Ev) =
∑
ñ′,v′

c̃n′,v′χ(Ẽn, Ẽ
′
n)χ(Ev, E

′
v). (K.2)
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Appendix L

Detailed proof of the long time
emission behavior (Eqs. 7.46 and
7.47)

We first note that on restriction to the ground and singly excited subspaces of the system Hilbert
space, the HEOM has two steady state solutions. One is the ground state ρg = |g⟩⟨g|, and the
other lies in the singly excited subspace. We denote the normalized steady state in the singly excited
subspace as ρst. We express the HEOM in a vectorized form as dv/dt = Av, where the vector v
contains the vectorized physical system density matrix and all vectorized HEOM auxiliary density
matrices, and A is a matrix such that Av gives the HEOM time derivative. The two steady states v1

and v2 satisfy Av1 = Av2 = 0, and are degenerate eigenvectors of A with eigenvalue 0. v1 consists
of ρg in the physical density matrix and 0 in all other auxiliary density matrices. v2 consists of ρst in
the physical density matrix and takes some nonzero values in other auxiliary density matrices.

After the single photon pulse has passed (i.e.. when ξ(t) becomes negligibly small), the Fock state
indices in Eq. (6.138) decouple from each other, and the physical (1, 1) component of the Fock state
hierarchy evolves with the HEOM plus the Lindblad dissipators that account for spontaneous emission.
We therefore write the system dynamics as dv/dt = (A + D)v, where D is the Lindblad dissipator∑

l D[Ll]. Since the energy scale of D is much smaller than the energy scale of A, we can think of D
as a perturbation on A that breaks the degeneracy of v1 and v2. v1 remains the eigenvector with zero
eigenvalue, since one can check directly that Dv1 = 0. Following a degenerate perturbation theory
approach, to the lowest order the other perturbed eigenvector v′

2 can be written as a linear combination
of the unperturbed eigenvectors plus a correction of order ϵ ∼ |D|/|A| ∼ τsys+vib/τemission:

v′
2 = c1v1 + c2v2 +O(ϵ). (L.1)

The corresponding eigenvalue (denoted as −Γlong time for reasons to be clear in a moment) is small in
magnitude, on the energy scale of spontaneous emission. Note that we do not assume the eigenvectors
are orthogonal, since A and A+D are in general not normal operators.

At long times, when the transients of HEOM decay away, the vectorized system plus auxiliary
density matrices take the form

v(t) = d1v1 + d2v
′
2e

−Γlong timet. (L.2)
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Using Eq. (L.1), we write the physical density matrix at long times as

ρ(t) = d1ρg + d2e
−Γlong timet(c1ρg + c2ρst +O(ϵ)). (L.3)

Since the excited state will eventually decay to the ground state, Γlong time has a positive real part. In
fact, we will see below that to the lowest order Γlong time is purely real. Using the fact that ρ(∞) = ρg
and Trρ = 1, we obtain d1 = 1 and c1 = −c2, and hence

ρ(t) = ρg + be−Γlong timet(ρst − ρg +O(ϵ)), (L.4)

where b = d2c2. Thus the excited portion of the system density matrix follows a single exponential
decay into the ground state.

To determine the value of Γlong time, we first take the time derivative of Eq. (L.4)

d

dt
ρ(t) = −bΓlong timee

−Γlong timet(ρst − ρg +O(ϵ)). (L.5)

On the other hand, substituting Eq. (L.4) into the Fock state + HEOMmaster equation (Eq. (6.138)),
we have

d

dt
ρ(t) =

(
HEOM+

∑
l

D[Ll]
)(
ρg + be−Γlong timet(ρst − ρg +O(ϵ))

)
, (L.6)

where “HEOM” is used as shorthand for the Hamiltonian evolution term together with the HEOM
part of the Fock state + HEOM master equation, Eq. (6.138).

The rate of change of the total excited subspace probability is

dP

dt
= Tr(Πex

dρ

dt
), (L.7)

where Πex ≡∑j |j⟩⟨j| is the excited subspace projector. From Eq. (L.5), we have

dP

dt
= bΓlong timee

−Γlong timet(1 +O(ϵ)), (L.8)

and from Eq. (L.6), we have

dP

dt
= be−Γlong timet

∑
l

Tr(L†
lLlρst +O(ϵ)). (L.9)

The HEOM term does not contribute to dP/dt, since HEOM does not change the system excitation
number. Comparing Eq. (L.8) to Eq. (L.9), we then arrive at the identification

Γlong time = (1 +O(ϵ))
∑
l

Tr(L†
lLlρst). (L.10)
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Appendix M

Using singular value decomposition
to obtain collective dipole moments

To understand the effect of light polarization, it is useful to re-express
∑

j |dj ·ϵ̂|2 as the matrix product

ϵ†D†Dϵ, where ϵ is a 3× 1 unit vector representing the light polarization and D is an N × 3 matrix
with the j-th row being the transition dipole moment of the j-th chromophore. We then perform
a singular value decomposition on D by writing the orthonormal eigenvectors of D†D (or singular
vectors of D) as e1, e2, and e3, corresponding to the non-negative eigenvalues d21, d

2
2, and d

2
3, where d1,

d2, and d3 are the non-negative singular values. Without loss of generality, we let d1 ≥ d2 ≥ d3 ≥ 0.
Light polarized in e1 maximizes ϵ†D†Dϵ, therefore maximizing the absorption probability. Expressing
everything in the singular vector basis, given a light polarization ϵ̂ = a1e1 + a2e2 + a3e3, then∑

j

|dj · ϵ̂|2 = a21d
2
1 + a22d

2
2 + a23d

2
3. (M.1)

To confirm numerically the linear dependence of the absorption probability on
∑

j |dj · ϵ̂|2, we
consider single photon excitation of a dimer system coupled to a vibrational bath via the double
hierarchy of photon field and HEOM bath. We let each chromophore have a transition dipole moment
of 4 Debye, the relevant value for chlorophyll molecules [112]. Since any two vectors in 3-dimensional
space have a common plane, we only need to consider two singular vectors. The third singular
vector is perpendicular to the common plane, and has 0 singular value. On the plane, one of the
singular vectors lies in the middle of the two dipoles, corresponding to a singular value of dinner =
4
√
1 + cosϕ, where ϕ (satisfying 0 ≤ ϕ ≤ π) is the angle between the two dipoles. We call this singular

vector the inner singular vector. The other singular vector, labeled as the outer singular vector, is
orthogonal to the inner singular vector on the common plane, and corresponds to a singular value of
douter = 4

√
1− cosϕ. When 0 ≤ ϕ ≤ π/2, dinner ≥ douter, so the inner singular vector maximizes the

absorption probability. When π/2 ≤ ϕ ≤ π, douter ≥ dinner, and the outer singular vector maximizes
the absorption probability.

As a first example, we fix the angle between the two dipole moments to be ϕ ≈ 2.28 rad, cor-
responding to the dipole orientations of chlorophylls a602 and a603 in LHCII. We vary the light
polarization along the plane that contains both dipole moments, and parameterize the polarization
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by the angle θ to the outer singular vector (see Figure (M.1)). Using Eq. (M.1), one can show that∑
j

|dj · ϵ̂|2 = 16(1− cosϕ cos 2θ). (M.2)

Figure (M.1) shows the results of numerical calculations with the double hierarchy. These show
that the maximum absorption probability is indeed proportional to Eq. (M.2) across all θ. Since ϕ is
between π/2 and π, the maximal (minimal) absorption probability occurs at the outer (inner) singular
vector.

𝜃 polarization

singular 
vector

dipole 
moment

Figure M.1: Double hierarchy calculations of single photon absorption for a chromophore dimer system
within LHCII, fixing the dipole orientations and varying the light polarization, which is parameterized
by θ. The maximum absorption probability is proportional to Eq. (M.2). 5 HEOM levels were included
in the calculation. See text for details of the dimer system.

In another example, we fix the polarization to be either the inner singular vector or the outer
singular vector, and vary the angle ϕ between the dipole moments. Substituting the appropriate θ
into Eq. (M.2), when the polarization is the inner singular vector,

∑
j |dj · ϵ̂|2 = 32 cos2(ϕ/2), and

when the polarization is the outer singular vector,
∑

j |dj · ϵ̂|2 = 32 sin2(ϕ/2). Figure (M.2) shows

the linear dependence of the maximum absorption probability on
∑

j |dj · ϵ̂|2 again. When ϕ = 0, the
inner singular vector aligns with both dipoles, maximizing the absorption probability, while the outer
singular vector is perpendicular to both dipoles, giving zero absorption probability. The opposite is
true when ϕ = π.

This type of singular value analysis can be applied to more general chromophore systems to
understand the dependence of the absorption probability on the polarization of the incident Fock
state photon and the dipole orientations.

Experimentally, the light harvesting systems are typically randomly oriented in solution. Assum-
ing a uniform distribution over all orientations, averaging over all system orientations while fixing the
polarization is equivalent to averaging over all polarization directions while fixing the system orien-
tation. Note that rotating the system around the polarization direction does not change

∑
j |dj · ϵ̂|2.

Averaging the polarization over all solid angles Ω , we have

avg
(∑

j

|dj · ϵ̂|2
)
=

1

4π

∫
dΩ
∑
j

|dj · ϵ̂(Ω)|2 =
1

3

∑
j

|dj |2, (M.3)

which depends only on the magnitude and not on the relative orientation of the dipole moments.
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𝜙

dipole 
moment

Inner 
singular 
vector

outer 
singular 
vector

Figure M.2: Double hierarchy calculations of single photon absorption for a chromophore dimer
system, varying the angle ϕ between the dipoles, and letting the light polarization to be either the
inner or outer singular vector. The maximum absorption probability is proportional to Eq. (M.2). 5
HEOM levels were included in the calculation. See text for details of the dimer system.
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