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Abstract

Patients who undergo hematopoietic stem cell transplantation (HSCT) often experience multiple 

bacterial infections during the early post-transplant period. In this article, we consider a 

semiparametric regression model that correlates patient- and transplant-related risk factors with 

inter-infection gap times. Existing regression methods for recurrent gap times are not directly 

applicable to study post-transplant infection because the initiating event (transplant) is different 

than the recurrent events of interest (post-transplant infections); as a result, the time from 

transplant to the first infection and the time elapsed between consecutive infections have distinct 

biological meanings and hence follow different distributions. Moreover, risk factors may have 

different effects on these two types of gap times. We propose a semiparametric estimation 

procedure to evaluate the covariate effects on time from transplant to thefirst infection and on gap 

times between consecutive infections simultaneously. The proposed estimator accounts for 

dependent censoring induced by within-subject correlation among recurrent gap times and length 

bias in the last censored gap time due to intercept sampling. We study the finite sample properties 

through simulations and present an application of the proposed method to the post-HSCT bacterial 

infection data collected at the University of Minnesota.
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1. Introduction

Infections after hematopoietic stem cell transplantation (HSCT) are often a major source of 

mortality and morbidity among transplanted patients. During the early post-transplant 

period, bacterial infections are predominant among various infection types. Hence, 

characterizing the underlying early bacterial infection process and identifying risk factors 

are of primary interest in clinical practice. Our motivating data were from 516 patients who 

received their first HSCT using unrelated umbilical cord blood (UCB) as the graft source 

between 2000 and 2010 at the University of Minnesota. Transplanted patients were followed 

prospectively with infectious events recorded until the occurrence of disease relapse, a 

second transplant, death, or loss of follow-up. It is well-known that patients who undergo 

HSCT are at highest risk of infections prior to the engraftment of donor blood cells. 

Engraftment, especially neutrophil cell engraftment which is crucial for fighting against 

bacterial infections, may require as long as 42 days after transplant. In our analysis, we 

focus on bacterial infections observed within 42 days after transplant. The goal of this 

research is to identify important risk factors for early-phase bacterial infections. Specifically, 

we are interested in the effect of patient- and transplant-related factors on time from 

transplant to the first bacterial infection and on the interoccurrence times (i.e., gap times) 

from one bacterial infection to the next recurrent infection.

As pointed out by Wang and Chang (1999), analysis of recurrent gap time data can be 

challenging because of its unique sequential structure. In particular, gap times beyond the 

first event time are subject to dependent censoring induced by the correlation among gap 

times of the same subject even when the overall censoring time is independent of the 

recurrent event process. Moreover, it is noteworthy that the last censored gap times tend to 

be longer than the completely observed gap times due to intercept sampling. As a result, 

conventional regression methods for univariate time-to-event data or multivariate clustered 

survival data are not directly applicable to recurrent gap time data. In the literature, 

regression methods for recurrent gap time data have been developed based on modeling 

either the hazard functions of gap times (Huang and Chen, 2003; Sun, Park, and Sun, 2006) 

or the (transformed) gap times directly (Chang, 2004, referred to as “Chang’s method” 

hereinafter; Lu, 2005; Strawderman, 2005). More recently, quantile regressions have been 

studied for recurrent gap time data to account for data heteroscedasticity (Luo, Huang, and 

Wang, 2013). These methods, however, assume that all events, including the initiating event 

which defines time zero, are of the same type and all gap times, including time to the first 

occurrence of the recurrent events, have the same marginal distribution. As a result, applying 

these methods to study post-transplant infections can lead to incorrect inferential results 

because the time from the initiating event (transplant) to the first infection and the gap times 

between recurrent infections have different clinical implications. Recently, Lee et al. (2016) 

considered nonparametric estimation of the joint distribution of the time from transplant to 
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the first infection and the gap times between consecutive infections. To the best of our 

knowledge, no regression methods have been developed for recurrent gap time data under 

the setting described above.

In this paper, we propose a semiparametric regression model that allows the time from 

transplant to the first infection and the time elapsed between consecutive infections to have 

distinct baseline distributions and different degrees of association with the covariates. In 

particular, we assume that covariate effects are linearly related to the first event time and the 

gap times on a logarithmic scale and that the within-subject correlation can be characterized 

by a subject-specific random variable (i.e., frailty). The proposed model is similar in form to 

the accelerated failure time (AFT) model for univariate survival data (Kalbfleisch and 

Prentice, 2002, Chapter 7, and references therein), which is more attractive than the hazard-

based regression models for its direct interpretation of the covariate effects on survival time. 

Moreover, the distribution of the frailty is left unspecified thus distinguishes the proposed 

approach from parametric frailty models (Liu, Wolfe and Huang, 2004; Huang and Liu, 

2007; Zeng and Lin, 2008).

The proposed estimation procedure is motivated by the regression method for multistate data 

developed by Huang (2002, referred to as “Huang’s method” hereinafter). Note that, by 

restricting the analysis to data up to the second infection, Huang’s method can be directly 

applied to study the covariate effects on bivariate gap times. This approach, however, 

inevitably leads to loss of information because patients can experience more than two 

infections during the course of follow-up. In our data example, some patients experienced as 

many as six infections. Moreover, the number of infections is informative about the 

distribution of the gap times. It is likely that patients with higher risk of infections 

experience more infections, and thus have shorter gap times. To make better use of the 

observed data, we extend Huang’s method by applying the weighted risk-set method 

discussed by Luo and Huang (2011) to the gap times beyond the first infection using the 

exchangeability among the uncensored gap times.

The remainder of this article is organized as follows. In Section 2, we first describe Huang’s 

method after adapting it for the simplified bivariate gap time data and then propose an 

estimation method for the recurrent infection data. In Section 3, we investigate the 

performance of the proposed method by conducting a series of simulation studies. In Section 

4, we apply the proposed method to the post-HSCT bacterial infection data collected at the 

University of Minnesota. Concluding remarks are presented in Section 5.

2. Methods

2.1. Model Setup

We first introduce notations to describe the recurrent infection process after transplant. Let 

X0 denote the time from transplant to the first infection and Y j
0, j = 1, 2, …, the gap times 

between two consecutive infections. The collection of all gap times of subject i, i = 1, …, n 

is denoted as Ni = Xi
0, Y i j

0 , j = 1, 2, …  in the absence of censoring. Let Ai denote a p × 1 

vector of baseline covariates collected at the time of transplantation. We assume that the log-
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transformed time from transplant to the first infection and the log-transformed gap times 

from one infection to the next are linearly related to the covariates, respectively, as follows.

logXi
0 = γi0 + Ai

T β0 + εi0
logYi j

0 = γi1 + Ai
T β1 + εi j, j = 1, 2, …,

where β0 and β1 are p × 1 vectors of coefficients specific to the first event time and the 

following gap times, respectively; (γi0, γi1) is the subject-specific latent random vector 

shared by times from the same subject; and εij, i = 1, …, n, j = 0, 1, … are identically and 

independently distributed (i.i.d.) random errors from an unspecified continuous distribution. 

The latent vector (γi0, γi1), which can be continuous or discrete, is used to account for the 

heterogeneity among patients and the correlation between gap times within the same subject. 

The distribution of the latent vector is left unspecified but required to have a finite second 

moment. As the result, the joint distribution of (Xi
0, Y i1

0 , Y i2
0 , …) is not completely specified, 

thus renders the proposed model a semiparametric rather than a fully parametric model.

Let Ci be the censoring time from transplant, whose survival function is G(t) = Pr(Ci > t) 
with a maximum support τC < ∞. We denote the number of observed infections before time 

Ci by mi. The random variable mi is finite and satisfies Pr(mi > 1) > 0. When mi = 0, 

Xi
0 > Ci; when mi = 1, Xi

0 ≤ Ci and Xi
0 + Y i1

0 > Ci; and when mi > 1, Xi
0 + ∑ j = 1

mi − 1
Y i j

0 ≤ Ci and 

Xi
0 + ∑ j = 1

mi Y i j
0 > Ci. The censoring time Ci is assumed to be independent of Ni, (γi0, γi1), 

and Ai. In practice, however, this random censoring condition may be a strong assumption. 

Extensions of the proposed estimation procedure to handle conditional independent 

censoring is discussed in Section 2.3.

In the analysis of the post-HSCT infections, we focus on early-stage bacterial infections 

within 42 days after transplant and expect no trend in such a short follow-up period in 

general; in other words, we expect the exchangeability condition on the gap times between 

consecutive infections to hold approximately. As shown in Section 2.3, the exchangeability 

condition is crucial in the development of the proposed estimation procedure.

2.2. Existing Method for Bivariate Gap Time Data

To evaluate the covariate effects on time from transplant to the first infection and on gap 

times from one infection to the next, one can apply the regression method developed by 

Huang (2002) for multistate data by fixing the number of states to two. In what follows we 

adapt Huang’s method for bivariate gap time data.

Define Zi0
0 = Xi

0 and Zi1
0 = Xi

0 + Y i1
0  for times from transplant to the first and the second 

infections, respectively. For any two subjects indexed by i and i′, their difference in 

covariates is denoted by Aii′ = Ai′ − Ai. The transformed times from transplant to the first 

and the second infections are defined as
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Zii′0
0 (b0) = exp(Aii′

T b0)Xi
0

Zii′1
0 (b) = exp(Aii′

T b0)Xi
0 + exp(Aii′

T b1)Yi1
0 ,

where b = (b0
T, b1

T)T, respectively, for i, i′ = 1, …, n. Given Ai and Ai′, it follows that Zii′0
0 (b0)

shares the same distribution with Zi′0
0 , and Zii′1

0 (b) with Zi′1
0  when b0 = β0 and b1 = β1 under 

the model assumption. By constructing the transformed time to the second infection as the 

sum of two transformed gap times ( Xi
0 and Y i1

0 ), the covariate effects on each gap time can 

be evaluated distinctively. Note that when Ai = Ai′, the transformed times reduce to Zi0
0  and 

Zi1
0 . While the aim is to assess covariate effects on the length of interoccurrence times 

between events, introduction of the time-to-event notation is necessary in order to properly 

address the problem of induced dependent censoring on gap times after the first infection. 

Now, consider bivariate vectors {Zi0
0 , Zii′0

0 (b0)} and {Zi1
0 , Zii′1

0 (b)}. It is obvious that given Ai 

and Ai′, {Zi0
0 , Zii′0

0 (β0)} has the same distribution as {Zi′i0
0 (β0), Zi′0

0 }, denoted by 

{Zi0
0 , Zii′0

0 (β0)} {Zi′i0
0 (β0), Zi′0

0 }, and also {Zi1
0 , Zii′1

0 (β)} {Zi′i1
0 (β), Zi′1

0 }, where β = (β0
T, β1

T)T. Let 

OL(·,·) denote a symmetric and continuous scalar function such that OL(t, s) = OL(s, t). We 

set OL(t, s) = 0 if t ∨ s ≥ L, where a ∨ b = max(a, b), for L < τC. Then it follows that, 

conditional on Ai and Ai′, OL0
{Zi0

0 , Zii′0
0 (b0)} OL0

{Zi′0
0 , Zi′i0

0 (b0)} and 

OL1
{Zi1

0 , Zii′1
0 (b)} OL1

{Zi′1
0 , Zi′i1

0 (b)} for constants L0 < τC and L1 < τC and b = β. This 

implies that, when evaluated under the truth, E[w(Ai, Ai′, β0)Aii′OL0
{Zi0

0 , Zii′0
0 (β0)}] = 0 and 

E[w(Ai, Ai′, β1)Aii′OL1
{Zi1

0 , Zii′1
0 (β)}] = 0 where w is a continuous and symmetric scalar 

weight function satisfying w(a1, a2, b) = w(a2, a1, b) for fixed b.

Let the observed times from transplant to the first two infections and the corresponding 

censoring indicators be denoted as Zi0 = Zi0
0 ∧ Ci, Δi0 = I(Zi0

0 ≤ Ci), Zi1 = Zi1
0 ∧ Ci, and 

Δi1 = I(Zi1
0 ≤ Ci), where a ∧ b = min(a, b). The observed gap times are Xi = Zi0 and Yi1 = 

Zi1−Zi0, respectively. The observed analogs of Zii′0
0 (b0) and Zii′1

0 (b) are then defined as

Zii′0(b0) = exp(Aii′
T b0)Xi,

Zii′1(b) = exp(Aii′
T b0)Xi + exp(Aii′

T b1)Y i1,
(2.1)

respectively. Recall that G(t) is the survival function for the censoring time.

Then, under the random censoring assumption, one can easily show that
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E
Δi0OL0

Zi0, Zii′0(β0)

G(Zi0 ∧ L0) |Ai, Ai′ = E[OL0
Zi0

0 , Zii′0
0 (β0) |Ai, Ai′]

and

E
Δi1OL1

Zi1, Zii′1(β)

G(Zi1 ∧ L1) |Ai, Ai′ = E[OL1
Zi1

0 , Zii′1
0 (β) |Ai, Ai′] .

It follows that

E E w(Ai, Ai′, β0)Aii′

Δi0OL0
Zi0, Zii′0(β0)

G(Zi0 ∧ L0) |Ai, Ai′ = 0

and

E E w(Ai, Ai′, β1)Aii′

Δi1OL1
Zi1, Zii′1(β)

G(Zi1 ∧ L1) |Ai, Ai′ = 0.

Then, the following estimating functions, which are in the form of U-statistics, can be 

obtained:

D0(b0) = n−2 ∑
i = 1

n
∑

i′ = 1

n
w(Ai, Ai′, b0)Aii′

Δi0OL0
Zi0, Zii′0(b0)

G0(Zi0 ∧ L0)
, (2.2)

D1(b) = n−2 ∑
i = 1

n
∑

i′ = 1

n
w(Ai, Ai′, b1)Aii′

Δi1OL1
Zi1, Zii′1(b)

G1(Zi1 ∧ L1)
, (2.3)

where Ĝ0(t) and Ĝ1(t) are the Kaplan–Meier estimators of the censoring time survival 

function G(t) using data {(Zi0, 1 − Δi0), i = 1, …, n} and {(Zi1, 1 −Δi1), i = 1, …, n}, 

respectively. The artificial limits L0 and L1 are imposed to handle the case in which Zi0
0  and 

Zi1
0  have larger maximum support than τC. Note that subjects whose first or second infection 

time is censored only contribute to the denominator in functions (2.2) and (2.3) for the 
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estimation of the censoring time survival function. To obtain the estimator of β0, we solve 

D0(b0) = 0, of which the solution is denoted as β̂0. Then, we solve D1 ( β̂0
Tb1

T)
T

= 0 to derive 

the estimator of β1. We denote the resulting estimator of β derived from Huang’s method as 

β̄.

As discussed in Huang (2002), the log-rank estimating equation approaches for the 

univariate AFT model can be directly applied to the data for the estimation of β0. However, 

such approaches cannot be used for the estimation of β1 when the association between the 

first event time and the gap time between the first and second infections can not be 

completely characterized by the observed covariates. The gap time between consecutive 

infections is subject to informative censoring induced by within-subject correlation. The 

estimating equations based on the U-statistic functions in (2.2) and (2.3) properly address 

this issue.

2.3. Proposed Method for Post-Transplant Recurrent Infections Data

As mentioned earlier, applying Huang’s method for multistate data to our recurrent infection 

data by ignoring the data beyond the second infection will inevitably lead to loss of 

information. Moreover, the number of infections, mi is informative about the gap time 

distribution. We propose to extend Huang’s method for bivariate gap time data described in 

Section 2.2 by applying the weighted risk-set technique discussed in Luo and Huang (2011). 

It was demonstrated by Luo and Huang (2011) that the weighted risk-set method can be used 

to pool the exchangeable gap times together within a subject to improve efficiency in model 

estimation. The weighted risk-set technique has been used in the one-sample estimation 

method for the post-transplant recurrent infection data by Lee et al. (2016). We apply the 

technique to our proposed regression method in a similar fashion. To proceed, we define 

mi
∗ = mi − 1 for mi ≥ 2 and mi

∗ = 1 for mi < 2 and denote the observed uncensored gap times 

beyond the second infection by Y i j = Y i j
0  for j = 2, …, mi

∗, where mi > 2. Obviously, we have 

Δij = 1 for j = 2, …, mi
∗. Under the assumptions in Section 2.1, the observed uncensored gap 

times, Yij, j = 1, …, mi
∗, are i.i.d. conditional on mi, (γi0, γi1), and Ai. It follows that the 

observed uncensored gap time pairs, (Xi, Yij), j = 1, …, mi
∗, are also conditionally i.i.d. Thus, 

the exchangeability among the observed uncensored gap time pairs follows. Under this 

condition, we can replace Zi1 with Zij = Xi+Yij, j = 1, …, mi
∗, and the sum of the transformed 

gap times, Zii′1(b) in (2.1) with Zii′ j(b) = exp(Aii′
T b0)Xi + exp(Aii′

T b1)Y i j, for j = 1, …, mi
∗, and 

prove that
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E 1
mi

∗ ∑
j = 1

mi
∗

E
Δi jOL1

Zi j, Zii′ j(b)

G(Zi j ∧ L1) |mi, (γi0, γi1), Ai

=E
Δi1OL1

Zi1, Zii′1(b)

G(Zi1 ∧ L1) .

Hence, we propose to replace the estimating equation based on (2.3) with the following 

estimating function for the estimation of β1:

D1
∗(b) = n−2 ∑

i = 1

n
∑

i′ = 1

n
w(Ai, Ai′, b1)Aii′

1
m j

∗ ∑
j = 1

mi
∗ Δi jOL1

Zi j, Zii′ j(b)

G1(Zi j ∧ L1)
. (2.4)

The estimator β̂1 is derived by solving D1
∗{(β0

T, b1
T)

T
} = 0, where β̂0 is the same as the one 

from the existing method discussed in Section 2.2. As discussed earlier, the last censored 

recurrent gap times are usually longer than the uncensored gap times due to intercept 

sampling. To avoid bias, the last censored gap times of subjects with mi ≥ 2 are not used in 

Equation (2.4). Under the regularity conditions (C1)–(C3) listed in Web Appendix A.1, 

n1/2( β̂ − β) is asymptotically normal with mean zero and variance Σ−1Ω(Σ−1)T, which can be 

consistently estimated by ∑−1Ω(∑−1)
T

. The definitions of Σ, Ω, ∑, and Ω, and the detailed 

proofs can be found in Web Appendices A.2–A.5.

Compared with D1(b) in (2.3), additional uncensored recurrent gap times beyond the second 

infection are utilized in the construction of (2.4), hence the proposed estimation method is 

expected to provide more efficient estimation on β1 than applying Huang’s method to data 

up to the second infection. We show the efficiency gain of using the proposed estimator over 

Huang’s method in Web Appendix A.6. In this article, we choose OL(t, s) = log [{(t ∨ s) ∧ 
L}] − log(L) and w = 1 to achieve numerical stability of the proposed estimation procedure. 

Specifically, with these functions, the estimating equations become monotone and a unique 

solution is attainable. Other choices for OL and w have been discussed by Huang (2002).

We note that the estimating functions (2.2) and (2.3), and the proposed estimating function 

(2.4) are all constructed based on the random censoring assumption. We may relax the 

assumption by allowing censoring to depend on covariates and be conditionally independent 

of the gap time distribution given A. As pointed out by Huang (2002), one can replace the 

estimators of the censoring time survival function, Ĝ0(t) and Ĝ1(t), in the estimating 

functions with some consistent estimators of the conditional survival function, G(t|A). If the 

covariates have finite number of values such as treatment arms in randomized trials, G(t|A) 

can be estimated nonparametrically by the covariate-specific Kaplan–Meier estimator Ĝj(t|
A), using data (Zij, 1 − Δij) for i such that Ai = A and j = 0, 1. When A involves continuous 
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covariates, one may postulate a semiparametric regression model such as the proportional 

hazards model for the censoring distribution. We note that modelling the censoring 

mechanism may not be robust. As an alternative, one may adopt the local Kaplan–Meier 

estimator to estimate G(t | A) nonparametrically (Dabrowska, 1989; Wang and Wang, 2009). 

Under the conditional independent censoring assumption, we have

E
Δi0OL0

Zi0, Zii′0(β0)

G(Zi0 ∧ L0 |Ai)
|Ai, Ai′ = E[OL0

Zi0
0 , Zii′0

0 (β0) |Ai, Ai′]

and

E 1
mi

∗ ∑
j = 1

mi
∗

E
Δi jOL1

Zi j, Zii′ j(β)

G(Zi j ∧ L1 |Ai)
|mi, (γi0, γi1), Ai, Ai′

=E OL1
Zi1

0 , Zii′1
0 (β) |Ai, Ai′ .

Thus, following the same spirit of (2.2) and (2.4), we can obtain the following estimating 

functions:

D0
c(b0) = n−2 ∑

i = 1

n
∑

i′ = 1

n
w(Ai, Ai′, b0)Aii′

Δi0OL0
Zi0, Zii′0(b0)

G0(Zi0 ∧ L0 |Ai)
. (2.5)

D1
c ∗(b) = n−2 ∑

i = 1

n
∑

i′ = 1

n
w(Ai, Ai′, b1)Aii′

1
mi

∗ ∑
j = 1

mi
∗ Δi jOL1

Zi j, Zii′ j(b)

G1(Zi j ∧ L1 |Ai)
, (2.6)

where Ĝj(t|A), j = 0, 1, are consistent estimators of G(t|A). We denote the solution to 

D0
c(b0) = 0 as β

∼
0. The estimator β

∼
1 can be obtained by solving D1

c ∗{(β
∼

0
T, b1

T)
T

} = 0. Let 

β
∼ = (β

∼
0
T, β

∼
1
T)

T
. In Web Appendix B, we provide proofs of the asymptotic properties of β

∼

under the conditional independent censoring assumption when the covariate-specific 

Kaplan–Meier estimator is used for the estimation of G(t|A). Similar techniques can be used 

for establishing the asymptotic properties when a semiparametric regression model is used 

for estimating G(t|A).
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3. Simulation Studies

We conducted a series of simulation studies to evaluate the performance of the proposed 

method, each with 1000 datasets and n = 150 and 300 subjects per dataset. We generated 

time to the first infection and gap times between two consecutive infections for each subject 

from the following model

log(Xi
0) = γi0 + Ai

T β0 + εi0
log(Yi j

0 ) = γi1 + Ai
T β1 + εi j, j = 1, 2, …,

respectively, where Ai = (Ai1, Ai2)T with Ai1 sampled from a Bernoulli distribution with 

probability 0.5 and Ai2 from a uniform distribution (0, 1). The true covariate effects are β0 = 

(−0.5, 0.5)T and β1 = (0.5, 0.5)T. We generated the mutually independent error terms εij 

from a normal distribution with mean zero and variance equal to 0.25 and the subject-

specific latent vector (γi0, γi1) from a bivariate normal distribution with unit mean and 

variance-covariance matrix

σ0
2 ρσ0σ1

ρσ0σ1 σ1
2 .

Note that ρ accounts for the degree of association between the (transformed) time to the first 

infection, log(Xi
0), and one of the (transformed) gap times after the first infection, log(Y i j

0 ), 

and σ1 indicates the level of correlation between two (transformed) gap times after the first 

infection, log(Y i j
0 ) and log(Y i j′

0 ). We set σ0
2 = 0.5, and consider σ1

2 = 0.1 or 0.5, and ρ = 0 or 0.5 

in different scenarios. The censoring time Ci, i = 1, …, n was sampled independently from a 

uniform distribution (0, U), where U = 10, 30, or 50. The average number of infections 

observed per subject (m) increases with U.

We applied the proposed method to the simulated data. We select constant values smaller 

than the largest observed follow-up time of Zi0 and Zi1 for L0 and L1, respectively. For 

comparison, we also applied Huang’s method and Chang’s method. The simulation results 

are summarized in Tables 1, 2, and 3 for varying range of censoring times. The proposed 

method and Huang’s method are virtually unbiased across all settings. The empirical 

standard deviations and the standard errors are close to each other, and the coverage 

probabilities are reasonably close to the nominal level. Note that the two methods share the 

same estimator for the covariate effects on time to the first infection (β0). However, the 

proposed method yields more efficient results than Huang’s method in the estimation of 

covariate effects on gap times after the first infection (β1) in all settings. The efficiency of 

the proposed method relative to Huang’s method increases as more recurrent infections are 

observed per subject (i.e., as m increases in Tables 1 to 3).

As expected, biased results are obtained from Chang’s method, which assumes that all gap 

times, including the time from transplant to the first infection, are equally distributed. 
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Specifically, it fails to capture the different effects of covariate A1 on the two different types 

of time variables, the time from transplant to the first infection and the gap times between 

recurrent infections (−0.5 and 0.5, respectively) for the simulated data. Under the simulation 

setting, covariate A1 = 1 is associated with shorter time from transplant to the first infection, 

but prolonged gap time from one infection to the next. By using Chang’s method, this 

distinction is ignored and hence the estimated “overall effect” of A1 is diminished. The 

covariate effect of A2 is set to be the same for the two types of time variable (0.5 for both), 

but the estimated effect of this variable on the pooled gap times based on Chang’s method is 

found to be biased from 0.5. This suggests that if one of the covariates in Chang’s method 

has differential effects on the two types of gap times, the estimation on the effect of other 

covariates which do not have differential effects would also be affected.

In addition, we carried out simulation studies to assess the performance of the proposed 

method under conditional independent censoring. We consider a setting where the two 

covariates A1 and A2 are generated independently from a Bernoulli distribution with 

probability 0.5 and the censoring time from a uniform distribution (0, 20) if A1 = 1 or a 

uniform distribution (0, 30) if A1 = 0. The results are shown in Table 4. Similar findings are 

observed as for those under the random censoring condition.

4. Application

To illustrate the proposed estimation method, we analyzed the post-HSCT bacterial infection 

data introduced in Section 1. The data are composed of 516 HSCT recipients who used 

unrelated UCB as the graft source. Since we are interested in the incidence and 

characteristics of infections after HSCT for both pediatric and adult patients (Saavedra et al., 
2002, Barker et al., 2005, Yazaki et al., 2009), we stratify the data to two groups: pediatric 

patients (< 18 years old, n = 155) and adult patients (≥ 18 years old, n = 361) at the time of 

transplant. Patient- and transplant-related characteristics for the overall group, and the 

pediatric and adult groups separately, are summarized in Web Table S1.

We focus on early-phase bacterial infections experienced within 42 days of transplant. The 

follow-up of the recurrent infection process was terminated by the 42 day cut-off (89%), 

death (5%), relapse (4%), or a second transplant (2%) before day 42. Among the 25 deaths, 

only 7 were related to infection; of whom, 3 (< 1% of all patients) were related to bacterial 

infection. Hence, we do not expect a serious violation of the independent censoring 

assumption in our data. Infectious episodes were defined according to the criteria described 

by Barker et al. (2005). A total of 397 bacterial infectious episodes were observed for all 

patients; 86 in children and 311 in adults during the first 42 days after transplant. On 

average, each patient experienced 0.77 infections, with children experiencing fewer 

infections than adults (0.55 vs. 0.86). The detailed summary of the infections can be found 

in Table 5. About 59% of pediatric patients and 48% of adult patients experienced no 

infections. Among all patients, about 81% (88% of child and 78% of adult patients) had the 

time from transplant to the second infection censored. To assure that the gap times after the 

first infection were similarly distributed, we carried out the trend test by Wang and Chen 

(2000) for each patient group. We found no evidence of trend in these gap times (p-value = 
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1.00 and 0.51 for children and adults, respectively). Hence, the exchangeability condition is 

a reasonable assumption for the gap times after the first infection in our data.

First, we conducted univariate regressions to identify potential risk factors. The regression 

parameters were estimated using the proposed method under the random censoring 

assumption. The estimated regression coefficients and the asymptotic standard error 

estimates are presented in Table 6 (upper panel). We found that for pediatric patients, 

younger age, single donor (vs. double donors), and higher total nucleated cell (TNC) dose 

were significantly associated with prolonged time to the first bacterial infection, whereas 

higher CD34 dose level was associated with shorter recurrent gap times between consecutive 

bacterial infections. For adult patients, older age was significantly associated with longer 

time to the first bacterial infection, and non-myeloablative regimen without anti-thymocyte 

globulin (ATG), as compared to myeloablative regimen, was significantly associated with 

both a longer time to first infection and longer gap times between two consecutive 

infections. Other factors including cytomegalovirus (CMV) serostatus, human leukocyte 

antigen (HLA) matching, and graft-versus-host disease (GVHD) prophylaxis were not found 

to be associated with either type of time variable for either patient cohort.

Multivariable regressions were conducted with all covariates considered in the univariate 

analysis. The results are shown in the lower panel of Table 6. For pediatric patients, single 

donor type and higher TNC dose remained to be significantly associated with time to the 

first infection, but age lost its significance. No factor showed significant association with gap 

times after the first infection. The loss of significance in age may be due to the confounding 

of other factors as we found that age was associated with both number of donors and TNC 

dose level among pediatric patients. Specifically, double UCB stem cells were used more 

frequently for older children and older children tended to require higher TNC dose than 

younger children based on our data. For adults, age remained to be a significant factor for 

time to the first infection, while the effect of receiving non-myeloablative regimen without 

ATG on time to the first infection, compared to receiving myeloablative regimen, became 

nonsignificant in the multivariable regression. In addition, the CD34 dose level turned 

marginally significant for the gap times between infections for adult patients.

5. Concluding Remarks

In this article, we proposed a semiparametric regression model for recurrent gap time data 

which allows covariates to have different effects on the first event time and on the following 

gap times. In our data, patients’ recurrent infection process was initiated by the event of 

transplant, which is a different type of event than the recurrent events (i.e., infections). 

Hence, the first event time (i.e., time from transplant to the first infection) and the following 

gap times (i.e., gap times between two consecutive infections) may have different clinical 

significance and should be modeled differently. Unlike many existing recurrent gap time 

regression models (e.g., Huang and Chen, 2003), our proposed model has the flexibility to 

assess the potentially different covariate effects on the two different types of gap times. Note 

that our proposed method still needs the exchangeability condition on the gap times between 

the same-type recurrent events as many existing recurrent gap time models. Hence, it is 
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advised to examine this condition using the trend test (Wang and Chen, 2000) before 

applying the proposed method as we have demonstrated.

When the exchangeability condition on recurrent gap times beyond the first infection time is 

not satisfied, one can apply the multistate gap times model (Huang, 2002) to the data. The 

covariates effects on gap times between two consecutive infections are not constrained to be 

the same in the model. Note that the number of states in Huang’s method, which 

corresponds to the number of infections in our case, needs to be pre-specified. If the number 

of states is large, however, the events of higher states may become rare, which could result in 

inefficient estimation.

Our study focuses on early-phase infections after transplantation and on the effect of factors 

which do not vary over time, e.g., patient- and transplant-related characteristics. When a 

longer follow-up period is of interest, the recurrent gap times’ structure may become more 

complex and be affected by time-varying variables. Research in extending the model to 

handle time-dependent covariates is warranted. In addition, informative censoring may 

become a nontrivial issue in a study with longer follow-up time. In this case, informative 

censoring events such as death can be modeled jointly with the recurrent infection process 

using the method considered by Huang and Liu (2007).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 6

Summary of regression analysis of risk factors for early bacterial infections for children and adult patients: 

Estimated regression coefficients (standard error) are presented for the univariate regression in the upper panel 

and the multivariate regression in the lower panel.

Children Adults

Variables 1st gap ≥ 2nd gap 1st gap ≥ 2nd gap

Univariate Regression

Age at Transplant

 (Years) −0.09 (0.03*) −0.05 (0.06) 0.03 (0.01*) 0.01 (0.01)

CMV Serostatus

 Positive vs. Negative −0.49 (0.37) 0.67 (0.35) −0.10 (0.23) −0.01 (0.27)

Type of Transplant

 Double vs. Single −0.81 (0.28*) −0.08 (0.52) −0.38 (0.41) −0.49 (0.38)

Conditioning Regimen (vs. Myeloablative)

 Non-myeloablative w ATG NI NI 0.50 (0.32) 0.18 (0.46)

 Non-myeloablative wo ATG NI NI 1.26 (0.23*) 0.85 (0.36*)

HLA Match Score

 5-6/6 vs. 4/6 −0.74 (0.39) −0.54 (0.78) 0.31 (0.26) 0.19 (0.29)

GVHD Prophylaxis

 CSA/MMF/MTX vs. Other −0.74 (0.38) 0.34 (0.37) −0.29 (0.61) −1.32 (0.85)

CD34+ Dose Level

 High vs. Low −0.01 (0.43) −1.72 (0.69*) 0.05 (0.27) −0.44 (0.37)

TNC Dose Level

 High vs. Low 1.02 (0.32*) −0.29 (0.49) −0.13 (0.27) −0.19 (0.32)

Multivariable Regression

Age at Transplant

 (Years) −0.03 (0.04) −0.11 (0.06) 0.03 (0.01*) −0.02 (0.02)

CMV Serostatus

 Positive vs. Negative −0.36 (0.29) 0.77 (0.43) 0.01 (0.22) −0.12 (0.26)

Type of Transplant

 Double vs. Single −0.87 (0.39*) −0.32 (0.66) −0.21 (0.49) −0.46 (0.63)

Conditioning Regimen (vs. Myeloablative)

 Non-myeloablative w ATG NI NI −0.43 (0.45) 0.883 (0.54)

 Non-myeloablative wo ATG NI NI 0.56 (0.30) 1.43 (0.43*)

HLA Match Score

 5-6/6 vs. 4/6 −0.61 (0.38) −1.06 (0.73) 0.16 (0.22) 0.11 (0.28)

GVHD Prophylaxis

 CSA/MMF/MTX vs. Other −0.07 (0.43) 0.84 (0.88) 0.05 (0.82) 1.04 (1.58)

CD34+ Dose Level

 High vs. Low −0.70 (0.43) −1.32 (1.01) 0.14 (0.28) −0.89 (0.42*)
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Children Adults

Variables 1st gap ≥ 2nd gap 1st gap ≥ 2nd gap

TNC Dose Level

 High vs. Low 1.42 (0.45*) −0.75 (0.76) −0.16 (0.26) 0.14 (0.45)

*
P -value < 0.05;

NI: Conditioning regimen was not included in the model for pediatric patients since 97% of children in our data received myeloablative 
conditioning regimen.
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