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Abstract

Patients who undergo hematopoietic stem cell transplantation (HSCT) often experience multiple
bacterial infections during the early post-transplant period. In this article, we consider a
semiparametric regression model that correlates patient- and transplant-related risk factors with
inter-infection gap times. Existing regression methods for recurrent gap times are not directly
applicable to study post-transplant infection because the initiating event (transplant) is different
than the recurrent events of interest (post-transplant infections); as a result, the time from
transplant to the first infection and the time elapsed between consecutive infections have distinct
biological meanings and hence follow different distributions. Moreover, risk factors may have
different effects on these two types of gap times. We propose a semiparametric estimation
procedure to evaluate the covariate effects on time from transplant to thefirst infection and on gap
times between consecutive infections simultaneously. The proposed estimator accounts for
dependent censoring induced by within-subject correlation among recurrent gap times and length
bias in the last censored gap time due to intercept sampling. We study the finite sample properties
through simulations and present an application of the proposed method to the post-HSCT bacterial
infection data collected at the University of Minnesota.
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1. Introduction

Infections after hematopoietic stem cell transplantation (HSCT) are often a major source of
mortality and morbidity among transplanted patients. During the early post-transplant
period, bacterial infections are predominant among various infection types. Hence,
characterizing the underlying early bacterial infection process and identifying risk factors
are of primary interest in clinical practice. Our motivating data were from 516 patients who
received their first HSCT using unrelated umbilical cord blood (UCB) as the graft source
between 2000 and 2010 at the University of Minnesota. Transplanted patients were followed
prospectively with infectious events recorded until the occurrence of disease relapse, a
second transplant, death, or loss of follow-up. It is well-known that patients who undergo
HSCT are at highest risk of infections prior to the engraftment of donor blood cells.
Engraftment, especially neutrophil cell engraftment which is crucial for fighting against
bacterial infections, may require as long as 42 days after transplant. In our analysis, we
focus on bacterial infections observed within 42 days after transplant. The goal of this
research is to identify important risk factors for early-phase bacterial infections. Specifically,
we are interested in the effect of patient- and transplant-related factors on time from
transplant to the first bacterial infection and on the interoccurrence times (i.e., gap times)
from one bacterial infection to the next recurrent infection.

As pointed out by Wang and Chang (1999), analysis of recurrent gap time data can be
challenging because of its unique sequential structure. In particular, gap times beyond the
first event time are subject to dependent censoring induced by the correlation among gap
times of the same subject even when the overall censoring time is independent of the
recurrent event process. Moreover, it is noteworthy that the last censored gap times tend to
be longer than the completely observed gap times due to intercept sampling. As a result,
conventional regression methods for univariate time-to-event data or multivariate clustered
survival data are not directly applicable to recurrent gap time data. In the literature,
regression methods for recurrent gap time data have been developed based on modeling
either the hazard functions of gap times (Huang and Chen, 2003; Sun, Park, and Sun, 2006)
or the (transformed) gap times directly (Chang, 2004, referred to as “Chang’s method”
hereinafter; Lu, 2005; Strawderman, 2005). More recently, quantile regressions have been
studied for recurrent gap time data to account for data heteroscedasticity (Luo, Huang, and
Wang, 2013). These methods, however, assume that all events, including the initiating event
which defines time zero, are of the same type and all gap times, including time to the first
occurrence of the recurrent events, have the same marginal distribution. As a result, applying
these methods to study post-transplant infections can lead to incorrect inferential results
because the time from the initiating event (transplant) to the first infection and the gap times
between recurrent infections have different clinical implications. Recently, Lee et al. (2016)
considered nonparametric estimation of the joint distribution of the time from transplant to
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the first infection and the gap times between consecutive infections. To the best of our
knowledge, no regression methods have been developed for recurrent gap time data under
the setting described above.

In this paper, we propose a semiparametric regression model that allows the time from
transplant to the first infection and the time elapsed between consecutive infections to have
distinct baseline distributions and different degrees of association with the covariates. In
particular, we assume that covariate effects are linearly related to the first event time and the
gap times on a logarithmic scale and that the within-subject correlation can be characterized
by a subject-specific random variable (i.e., frailty). The proposed model is similar in form to
the accelerated failure time (AFT) model for univariate survival data (Kalbfleisch and
Prentice, 2002, Chapter 7, and references therein), which is more attractive than the hazard-
based regression models for its direct interpretation of the covariate effects on survival time.
Moreover, the distribution of the frailty is left unspecified thus distinguishes the proposed
approach from parametric frailty models (Liu, Wolfe and Huang, 2004; Huang and L.iu,
2007; Zeng and Lin, 2008).

The proposed estimation procedure is motivated by the regression method for multistate data
developed by Huang (2002, referred to as “Huang’s method” hereinafter). Note that, by
restricting the analysis to data up to the second infection, Huang’s method can be directly
applied to study the covariate effects on bivariate gap times. This approach, however,
inevitably leads to loss of information because patients can experience more than two
infections during the course of follow-up. In our data example, some patients experienced as
many as six infections. Moreover, the number of infections is informative about the
distribution of the gap times. It is likely that patients with higher risk of infections
experience more infections, and thus have shorter gap times. To make better use of the
observed data, we extend Huang’s method by applying the weighted risk-set method
discussed by Luo and Huang (2011) to the gap times beyond the first infection using the
exchangeability among the uncensored gap times.

The remainder of this article is organized as follows. In Section 2, we first describe Huang’s
method after adapting it for the simplified bivariate gap time data and then propose an
estimation method for the recurrent infection data. In Section 3, we investigate the
performance of the proposed method by conducting a series of simulation studies. In Section
4, we apply the proposed method to the post-HSCT bacterial infection data collected at the
University of Minnesota. Concluding remarks are presented in Section 5.

2. Methods
2.1. Model Setup

We first introduce notations to describe the recurrent infection process after transplant. Let
X0 denote the time from transplant to the first infection and Y(J)., J=1,2, ..., the gap times

between two consecutive infections. The collection of all gap times of subject 7, /=1, ..., n
is denoted as N, = {X?, Y?j,j =12, } in the absence of censoring. Let A;denotea px 1

vector of baseline covariates collected at the time of transplantation. We assume that the log-

Stat Sin. Author manuscript; available in PMC 2019 September 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Leeetal.

Page 4

transformed time from transplant to the first infection and the log-transformed gap times
from one infection to the next are linearly related to the covariates, respectively, as follows.

0_ T )
logXl. =7t Ai ﬂ0+ €0

0 _ T .
long.J.— i1 +Ai ﬂl +gij’J =12,...,

where By and B, are p x 1 vectors of coefficients specific to the first event time and the
following gap times, respectively; (yp, ¥a) is the subject-specific latent random vector
shared by times from the same subject; and e, /=1, ..., 1, j=0, 1, ... are identically and
independently distributed (i.i.d.) random errors from an unspecified continuous distribution.
The latent vector (¥, ¥i1), which can be continuous or discrete, is used to account for the
heterogeneity among patients and the correlation between gap times within the same subject.
The distribution of the latent vector is left unspecified but required to have a finite second

moment. As the result, the joint distribution of (X, ¥%.¥%. ... is not completely specified,

thus renders the proposed model a semiparametric rather than a fully parametric model.

Let Cjbe the censoring time from transplant, whose survival function is G( = Pr(C; > §)
with a maximum support zo < 0o, We denote the number of observed infections before time
C;by m;. The random variable ;s finite and satisfies Pr(/m;> 1) > 0. When m; =0,

—1
0 ;- _q 0 0, 0 : ) 0 T L0
X; > C;when mj=1,X; <C;and X; +Y; > C;; and when m;>1, X; + z izl Yl.j < C;and

m.
X? + Zjl: 1 Y?j > C;. The censoring time Cjis assumed to be independent of V; (¥p, 7).

and A;. In practice, however, this random censoring condition may be a strong assumption.
Extensions of the proposed estimation procedure to handle conditional independent
censoring is discussed in Section 2.3.

In the analysis of the post-HSCT infections, we focus on early-stage bacterial infections
within 42 days after transplant and expect no trend in such a short follow-up period in
general; in other words, we expect the exchangeability condition on the gap times between
consecutive infections to hold approximately. As shown in Section 2.3, the exchangeability
condition is crucial in the development of the proposed estimation procedure.

2.2. Existing Method for Bivariate Gap Time Data

To evaluate the covariate effects on time from transplant to the first infection and on gap
times from one infection to the next, one can apply the regression method developed by
Huang (2002) for multistate data by fixing the number of states to two. In what follows we
adapt Huang’s method for bivariate gap time data.

Define 3 = x¥ and % = XV + ¥? for times from transplant to the first and the second

infections, respectively. For any two subjects indexed by 7and 7/, their difference in
covariates is denoted by A, = A, — A,. The transformed times from transplant to the first

and the second infections are defined as
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0
Zii’O(bO) exp(A bo)X

20, ) = expALb)x? + expa b )r0,

where b = (bg,bT)T, respectively, for /, /' =1, ..., n. Given A;and A, it follows that Z0, (b,

shares the same distribution with z%., and Z?l.,l(b) with Z?,l when by = B and by = B under

s
the model assumption. By constructing the transformed time to the second infection as the

sum of two transformed gap times (X? and Y?l), the covariate effects on each gap time can
be evaluated distinctively. Note that when A; = A, the transformed times reduce to Z?O and

Z?l. While the aim is to assess covariate effects on the length of interoccurrence times
between events, introduction of the time-to-event notation is necessary in order to properly
address the problem of induced dependent censoring on gap times after the first infection.
Now, consider bivariate vectors {Zzo’ -i'o(bo)} and {Z?l,zg.,l(b)}. It is obvious that given A;

and A, (25.20,,(B,)) has the same distribution as {Z(8,). Z",}, denoted by

(20,70, (B~ Z04(Bo), 20}, and also (29, 20, (B)}~(20,, (B, 20}, where g = (87, p7)' . Let
Oy (+,) denote a symmetric and continuous scalar function such that O, (¢, s) = O,(s, . We
set Oy(t, s)=0if tvs=>L, where a vb=max(g b), for L < zo Then it follows that,

s . 0 0
conditional on A,and A, OLO{Z:O’Z 0By~ OL (Z: ,O,Z o)} and

0, {Z?I,ZO ()}~ oL {zl ' "il(b)} for constants Lg < tcand L1 < zcand b = B This

implies that, when evaluated under the truth, E[w(A; A, BpA,;, 0 {Z?O, ZO,O(ﬂO)}] =0and
0

E[w(A, A, BDA,; 0, {Z?I’Z?i’l(ﬂ)}] = 0 where wis a continuous and symmetric scalar
1

weight function satisfying wm(as, ay, b) = w(ay, a1, b) for fixed b.

Let the observed times from transplant to the first two infections and the corresponding

censoring indicators be denoted as Z,, = Z?O ACy Ay = =120 C)Zy= Z | AC;and

10—

=12 < C), where aA b=min(a, b). The observed gap times are X;= Zpand Yj =

i1 =

Zj—Zp, respectively. The observed analogs of Zii’O(bO) and Zii’l(b) are then defined as

”,O(bo) = exp(Ag,bO)x (2.1)
Z,,,(b) = exp(A; ,bO)X + exp(A; ’bl)Yzl’

respectively. Recall that G(J) is the survival function for the censoring time.

Then, under the random censoring assumption, one can easily show that
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AIOOLO[ ii’O(ﬂO)] o o
| —
E Gz ALy ArAr| = ELOy \Zig 2B 1A A
i0 0
and
AiloLl[Zil’Zii’l(ﬂ)l 0 0
| —
Bz ALy 8y Ay | = BLOL (200 243 (B) 1A A ).
It follows that
AtOOLO[ Zii’O(ﬁO)]
EIEWwA, A B)A i ——Gz a1y ArAr|[=0
i0 0
and
A110L1| ii’l(ﬂ)]
| —_
E[E|w(A, A, f A oz AT A,A || =0.

Then, the following estimating functions, which are in the form of U-statistics, can be

obtained:
1 1 AiOOL {ZiO’ Zii’O(bO)]
0
Dy(by) =n" w(A, A, byA. = , (2.2
o0 =T 2 B A Ao Go(Zip A Ly) @2

8,0, 2, 2,,)]

n n
D, (b) = n2 wA,A.,b)A,,— . (23
1() i;l i’gl ( [y 1) ii Gl(ZilALl) ( )

where Go(9) and Gy(9 are the Kaplan—Meier estimators of the censoring time survival
function G(9) using data {(Zp, 1 - Ap), i=1, ..., myand {(Z, 1 -Ap), =1, ..., ni},
respectively. The artificial limits Ly and L, are imposed to handle the case in which Z?O and

Z?l have larger maximum support than z.. Note that subjects whose first or second infection

time is censored only contribute to the denominator in functions (2.2) and (2.3) for the
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estimation of the censoring time survival function. To obtain the estimator of £, we solve

A A T
Do(bo) = 0, of which the solution is denoted as g,. Then, we solve Dll(ﬂgb{) = 0 to derive

the estimator of B;. We denote the resulting estimator of g derived from Huang’s method as
.

As discussed in Huang (2002), the log-rank estimating equation approaches for the
univariate AFT model can be directly applied to the data for the estimation of £,. However,
such approaches cannot be used for the estimation of 8; when the association between the
first event time and the gap time between the first and second infections can not be
completely characterized by the observed covariates. The gap time between consecutive
infections is subject to informative censoring induced by within-subject correlation. The
estimating equations based on the U-statistic functions in (2.2) and (2.3) properly address
this issue.

2.3. Proposed Method for Post-Transplant Recurrent Infections Data

As mentioned earlier, applying Huang’s method for multistate data to our recurrent infection
data by ignoring the data beyond the second infection will inevitably lead to loss of
information. Moreover, the number of infections, m;is informative about the gap time
distribution. We propose to extend Huang’s method for bivariate gap time data described in
Section 2.2 by applying the weighted risk-set technique discussed in Luo and Huang (2011).
It was demonstrated by Luo and Huang (2011) that the weighted risk-set method can be used
to pool the exchangeable gap times together within a subject to improve efficiency in model
estimation. The weighted risk-set technique has been used in the one-sample estimation
method for the post-transplant recurrent infection data by Lee ef a/. (2016). We apply the
technique to our proposed regression method in a similar fashion. To proceed, we define

m;“ =m; — 1 for m;=2 and ml* = 1 for m;< 2 and denote the observed uncensored gap times
beyond the second infection by Y= Y?j for j=2, m;k where m;> 2. Obviously, we have
Ajj=1for j=2, mf Under the assumptions in Section 2.1, the observed uncensored gap
times, Yj;, j = 1mf are i.i.d. conditional on m;, (yp, ¥i), and A;. It follows that the

observed uncensored gap time pairs, (Xj Yj), j= 1. m:" are also conditionally i.i.d. Thus,

the exchangeability among the observed uncensored gap time pairs follows. Under this
condition, we can replace Z with Z;= X+ Yj; j=1, m:k and the sum of the transformed

gap times, Z;,,(b) in (2.1) with Z,,, (b) = exp(A]b)X; +exp(Alb DY forj=1,...m, and

prove that

Stat Sin. Author manuscript; available in PMC 2019 September 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Leeetal. Page 8

*

1 m; AijOLl ‘Zij’ Zii’j(b)
_— |

E * E GZ..AL) lmis (YZO’ Yll)’Al

m;j=1 ijo 1

AiloLl{Zil’Zii’l(b)]

=E
G(Zil ALI)

Hence, we propose to replace the estimating equation based on (2.3) with the following
estimating function for the estimation of Bi:

- "7 80, {22 0)]
_ 1 ij L1 ij><ii'j
Dib)=n"2) le(Ai,Ai,,bl)Aﬁ, ;Z

i=1i"= ji=1

= (2.4)
Gl(Zij AL

. . . . A T i
The estimator ﬂAl is derived by solving DT{(ﬂOT, blT) } =0, where ﬂAO is the same as the one

from the existing method discussed in Section 2.2. As discussed earlier, the last censored
recurrent gap times are usually longer than the uncensored gap times due to intercept
sampling. To avoid bias, the last censored gap times of subjects with /m;= 2 are not used in
Equation (2.4). Under the regularity conditions (C1)—(C3) listed in Web Appendix A.1,

n!"2(8 — p) is asymptotically normal with mean zero and variance £ 1Q(=1)7, which can be

~— ]~ —=_1T = —~
consistently estimated by Y, 19(2 1) . The definitions of Z, Q, ¥, and Q, and the detailed
proofs can be found in Web Appendices A.2-A.5.

Compared with D1(b) in (2.3), additional uncensored recurrent gap times beyond the second
infection are utilized in the construction of (2.4), hence the proposed estimation method is
expected to provide more efficient estimation on £, than applying Huang’s method to data
up to the second infection. We show the efficiency gain of using the proposed estimator over
Huang’s method in Web Appendix A.6. In this article, we choose O, (¢, $) = log [{(Z V' 9) A
L}] - log(L) and w= 1 to achieve numerical stability of the proposed estimation procedure.
Specifically, with these functions, the estimating equations become monotone and a unique
solution is attainable. Other choices for O; and whave been discussed by Huang (2002).

We note that the estimating functions (2.2) and (2.3), and the proposed estimating function
(2.4) are all constructed based on the random censoring assumption. We may relax the
assumption by allowing censoring to depend on covariates and be conditionally independent
of the gap time distribution given A. As pointed out by Huang (2002), one can replace the
estimators of the censoring time survival function, Go(# and Gy(#), in the estimating
functions with some consistent estimators of the conditional survival function, G(4A). If the
covariates have finite number of values such as treatment arms in randomized trials, G(#/A)
can be estimated nonparametrically by the covariate-specific Kaplan—Meier estimator éj(t/
A), using data (Zj; 1 - Aj) for 7such that A;= A and /=0, 1. When A involves continuous

Stat Sin. Author manuscript; available in PMC 2019 September 11.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Leeetal. Page 9

covariates, one may postulate a semiparametric regression model such as the proportional
hazards model for the censoring distribution. We note that modelling the censoring
mechanism may not be robust. As an alternative, one may adopt the local Kaplan—-Meier
estimator to estimate G(¢/A) nonparametrically (Dabrowska, 1989; Wang and Wang, 2009).
Under the conditional independent censoring assumption, we have

AiOOLO[ZiO’ Zii’O(ﬂO)]

GZyALyIA)

_ 0 .0
!Ai’Ai’ —EIOLO ZiO’Zii’O(ﬂO) lAi’Ai’J

and

m; AijOLl {Zij’ Zii,j(ﬁ)’

1
El— Z E GZ ;LK) by Oy Vg Ap Ay

_ 0 0
_E[OL1 [zil,zﬁ,l(ﬂ)l 1A, Ai,] .

Thus, following the same spirit of (2.2) and (2.4), we can obtain the following estimating
functions:

(2.5)

) 800, |ZiZio0)|
DE(b,) = n~2 WA, A, b)A,,—— O
oo igl i’gl PO Gz ALyIAY

*
non m A0, \Z.. 7., (b)
. _ 1 ij Ll[ i<’y
D¢ *(b) = n~? w(A,A.,bDA.|— -
! ,-; l.,z::l A P j; G\(Z;; AL{IA)

. (26)

where GA/(t/A), /=0, 1, are consistent estimators of G(#/A). We denote the solution to

. ~ i ~ . . e~ T
Dg(by) = 0 as g, The estimator g, can be obtained by solving D *{(ﬂg, blT) } =0. Let

~ ~T ~T T ~
B = (ﬂg,ﬁlT) . In Web Appendix B, we provide proofs of the asymptotic properties of g

under the conditional independent censoring assumption when the covariate-specific
Kaplan—Meier estimator is used for the estimation of G(#A). Similar techniques can be used
for establishing the asymptotic properties when a semiparametric regression model is used
for estimating G(#/A).
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3. Simulation Studies

We conducted a series of simulation studies to evaluate the performance of the proposed
method, each with 1000 datasets and 7= 150 and 300 subjects per dataset. We generated
time to the first infection and gap times between two consecutive infections for each subject
from the following model

0, _ T
log(Xl.) _yi0+Ai ﬂ0+8io

0, _ T .
log(Yl.j) =7 +Ai ﬂl +(:‘l.j,j =12,...,

respectively, where A;= (A, Ap) " with A, sampled from a Bernoulli distribution with
probability 0.5 and A, from a uniform distribution (0, 1). The true covariate effects are B =
(-0.5,0.5)"and B, = (0.5, 0.5) ". We generated the mutually independent error terms &;;
from a normal distribution with mean zero and variance equal to 0.25 and the subject-
specific latent vector (¥, ¥) from a bivariate normal distribution with unit mean and
variance-covariance matrix

2

oy o0
5 |

poyoy 0]

Note that p accounts for the degree of association between the (transformed) time to the first
infection, log(X?), and one of the (transformed) gap times after the first infection, 1og(Y?j),

and o indicates the level of correlation between two (transformed) gap times after the first
infection, log(Y?j) and 10g(Y?j,). We set o5 = 0.5, and consider o7 = 0.1 or 0.5, and p= 0 or 0.5

in different scenarios. The censoring time Cj, /=1, ..., nwas sampled independently from a
uniform distribution (0, U), where U= 10, 30, or 50. The average number of infections
observed per subject (in) increases with U.

We applied the proposed method to the simulated data. We select constant values smaller
than the largest observed follow-up time of Zp and Z; for Ly and L, respectively. For
comparison, we also applied Huang’s method and Chang’s method. The simulation results
are summarized in Tables 1, 2, and 3 for varying range of censoring times. The proposed
method and Huang’s method are virtually unbiased across all settings. The empirical
standard deviations and the standard errors are close to each other, and the coverage
probabilities are reasonably close to the nominal level. Note that the two methods share the
same estimator for the covariate effects on time to the first infection (). However, the
proposed method yields more efficient results than Huang’s method in the estimation of
covariate effects on gap times after the first infection (8;) in all settings. The efficiency of
the proposed method relative to Huang’s method increases as more recurrent infections are
observed per subject (i.e., as i increases in Tables 1 to 3).

As expected, biased results are obtained from Chang’s method, which assumes that all gap
times, including the time from transplant to the first infection, are equally distributed.
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Specifically, it fails to capture the different effects of covariate A; on the two different types
of time variables, the time from transplant to the first infection and the gap times between
recurrent infections (-0.5 and 0.5, respectively) for the simulated data. Under the simulation
setting, covariate A; = 1 is associated with shorter time from transplant to the first infection,
but prolonged gap time from one infection to the next. By using Chang’s method, this
distinction is ignored and hence the estimated “overall effect” of A; is diminished. The
covariate effect of A, is set to be the same for the two types of time variable (0.5 for both),
but the estimated effect of this variable on the pooled gap times based on Chang’s method is
found to be biased from 0.5. This suggests that if one of the covariates in Chang’s method
has differential effects on the two types of gap times, the estimation on the effect of other
covariates which do not have differential effects would also be affected.

In addition, we carried out simulation studies to assess the performance of the proposed
method under conditional independent censoring. We consider a setting where the two
covariates A; and A, are generated independently from a Bernoulli distribution with
probability 0.5 and the censoring time from a uniform distribution (0, 20) if A; =1ora
uniform distribution (0, 30) if Ay = 0. The results are shown in Table 4. Similar findings are
observed as for those under the random censoring condition.

4. Application

To illustrate the proposed estimation method, we analyzed the post-HSCT bacterial infection
data introduced in Section 1. The data are composed of 516 HSCT recipients who used
unrelated UCB as the graft source. Since we are interested in the incidence and
characteristics of infections after HSCT for both pediatric and adult patients (Saavedra et al.,
2002, Barker et al., 2005, Yazaki et al., 2009), we stratify the data to two groups: pediatric
patients (< 18 years old, 7= 155) and adult patients (= 18 years old, 7= 361) at the time of
transplant. Patient- and transplant-related characteristics for the overall group, and the
pediatric and adult groups separately, are summarized in Web Table S1.

We focus on early-phase bacterial infections experienced within 42 days of transplant. The
follow-up of the recurrent infection process was terminated by the 42 day cut-off (89%),
death (5%), relapse (4%), or a second transplant (2%) before day 42. Among the 25 deaths,
only 7 were related to infection; of whom, 3 (< 1% of all patients) were related to bacterial
infection. Hence, we do not expect a serious violation of the independent censoring
assumption in our data. Infectious episodes were defined according to the criteria described
by Barker et al. (2005). A total of 397 bacterial infectious episodes were observed for all
patients; 86 in children and 311 in adults during the first 42 days after transplant. On
average, each patient experienced 0.77 infections, with children experiencing fewer
infections than adults (0.55 vs. 0.86). The detailed summary of the infections can be found
in Table 5. About 59% of pediatric patients and 48% of adult patients experienced no
infections. Among all patients, about 81% (88% of child and 78% of adult patients) had the
time from transplant to the second infection censored. To assure that the gap times after the
first infection were similarly distributed, we carried out the trend test by Wang and Chen
(2000) for each patient group. We found no evidence of trend in these gap times (p-value =
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1.00 and 0.51 for children and adults, respectively). Hence, the exchangeability condition is
a reasonable assumption for the gap times after the first infection in our data.

First, we conducted univariate regressions to identify potential risk factors. The regression
parameters were estimated using the proposed method under the random censoring
assumption. The estimated regression coefficients and the asymptotic standard error
estimates are presented in Table 6 (upper panel). We found that for pediatric patients,
younger age, single donor (vs. double donors), and higher total nucleated cell (TNC) dose
were significantly associated with prolonged time to the first bacterial infection, whereas
higher CD34 dose level was associated with shorter recurrent gap times between consecutive
bacterial infections. For adult patients, older age was significantly associated with longer
time to the first bacterial infection, and non-myeloablative regimen without anti-thymocyte
globulin (ATG), as compared to myeloablative regimen, was significantly associated with
both a longer time to first infection and longer gap times between two consecutive
infections. Other factors including cytomegalovirus (CMV) serostatus, human leukocyte
antigen (HLA) matching, and graft-versus-host disease (GVHD) prophylaxis were not found
to be associated with either type of time variable for either patient cohort.

Multivariable regressions were conducted with all covariates considered in the univariate
analysis. The results are shown in the lower panel of Table 6. For pediatric patients, single
donor type and higher TNC dose remained to be significantly associated with time to the
first infection, but age lost its significance. No factor showed significant association with gap
times after the first infection. The loss of significance in age may be due to the confounding
of other factors as we found that age was associated with both number of donors and TNC
dose level among pediatric patients. Specifically, double UCB stem cells were used more
frequently for older children and older children tended to require higher TNC dose than
younger children based on our data. For adults, age remained to be a significant factor for
time to the first infection, while the effect of receiving non-myeloablative regimen without
ATG on time to the first infection, compared to receiving myeloablative regimen, became
nonsignificant in the multivariable regression. In addition, the CD34 dose level turned
marginally significant for the gap times between infections for adult patients.

5. Concluding Remarks

In this article, we proposed a semiparametric regression model for recurrent gap time data
which allows covariates to have different effects on the first event time and on the following
gap times. In our data, patients’ recurrent infection process was initiated by the event of
transplant, which is a different type of event than the recurrent events (i.e., infections).
Hence, the first event time (i.e., time from transplant to the first infection) and the following
gap times (i.e., gap times between two consecutive infections) may have different clinical
significance and should be modeled differently. Unlike many existing recurrent gap time
regression models (e.g., Huang and Chen, 2003), our proposed model has the flexibility to
assess the potentially different covariate effects on the two different types of gap times. Note
that our proposed method still needs the exchangeability condition on the gap times between
the same-type recurrent events as many existing recurrent gap time models. Hence, it is
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advised to examine this condition using the trend test (Wang and Chen, 2000) before
applying the proposed method as we have demonstrated.

When the exchangeability condition on recurrent gap times beyond the first infection time is
not satisfied, one can apply the multistate gap times model (Huang, 2002) to the data. The
covariates effects on gap times between two consecutive infections are not constrained to be
the same in the model. Note that the number of states in Huang’s method, which
corresponds to the number of infections in our case, needs to be pre-specified. If the number
of states is large, however, the events of higher states may become rare, which could result in
inefficient estimation.

Our study focuses on early-phase infections after transplantation and on the effect of factors
which do not vary over time, e.g., patient- and transplant-related characteristics. When a
longer follow-up period is of interest, the recurrent gap times’ structure may become more
complex and be affected by time-varying variables. Research in extending the model to
handle time-dependent covariates is warranted. In addition, informative censoring may
become a nontrivial issue in a study with longer follow-up time. In this case, informative
censoring events such as death can be modeled jointly with the recurrent infection process
using the method considered by Huang and Liu (2007).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary of regression analysis of risk factors for early bacterial infections for children and adult patients:
Estimated regression coefficients (standard error) are presented for the univariate regression in the upper panel
and the multivariate regression in the lower panel.

Children Adults
Variables 15t gap >2nd gap 1t gap > 2" gap
Univariate Regression

Age at Transplant

(Years) ~0.09(0.03% ~0.05(0.06) (gg3(0.01%  001(001)
CMV Serostatus

Positive vs. Negative -0.49 (0.37) 0.67 (0.35) -0.10(0.23)  -0.01(0.27)
Type of Transplant

Double vs. Single -0.81(0.28% ~0.08(052) -038(0.41) -0.49(0.38)
Conditioning Regimen (vs. Myeloablative)

Non-myeloablative w ATG NI NI 0.50 (0.32) 0.18 (0.46)

Non-myeloablative wo ATG NI NI 126 (023" 0.85(0.367
HLA Match Score

5-6/6 vs. 4/6 -0.74(0.39) -054(0.78)  0.31(0.26)  0.19 (0.29)
GVHD Prophylaxis

CSA/MMF/MTX vs. Other -0.74(0.38)  0.34(0.37) -0.29(0.61) -1.32(0.85)
CD34+ Dose Level

High vs. Low -001(043) _17p(069% 005(0.27)  -0.44(0.37)
TNC Dose Level

High vs. Low 102(032% ~029(049) -0.13(027) -0.19(032)

Age at Transplant

(Years) -0.03 (0.04)
CMV Serostatus
Positive vs. Negative -0.36 (0.29)

Type of Transplant
Double vs. Single -0.87 (0.3979
Conditioning Regimen (vs. Myeloablative)
Non-myeloablative w ATG NI
Non-myeloablative wo ATG NI

HLA Match Score

5-6/6 vs. 4/6 -0.61 (0.38)
GVHD Prophylaxis

CSA/MMF/MTX vs. Other -0.07 (0.43)
CD34+ Dose Level

High vs. Low —-0.70 (0.43)

Multivariable Regression

-0.11 (0.06)

0.77 (0.43)

-0.32 (0.66)

NI
NI

-1.06 (0.73)

0.84 (0.88)

-1.32 (1.01)

0.03 (0.0179
0.01 (0.22)

-0.21 (0.49)

-0.43 (0.45)
0.56 (0.30)

0.16 (0.22)
0.05 (0.82)

0.14 (0.28)

-0.02 (0.02)

-0.12 (0.26)

-0.46 (0.63)

0.883 (0.54)

1.43(0.437
0.11 (0.28)

1.04 (1.58)

-0.89(0.427)
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Children Adults
Variables 15t gap > 2" gap 15t gap > 2nd gap
TNC Dose Level
High vs. Low 142 (045% —0.75(076) -0.16(0.26)  0.14(0.45)

*
P-value < 0.05;

NI: Conditioning regimen was not included in the model for pediatric patients since 97% of children in our data received myeloablative
conditioning regimen.
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