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Abstract 
 
The synthesis of artificial landforms is complementary to geomorphic analysis because it affords 
a reflection on both the characteristics and intrinsic formative processes of real world conditions. 
Moreover, the applied terminus of geomorphic theory is commonly manifested in the 
engineering and rehabilitation of riverine landforms where the goal is to create specific 
processes associated with specific morphology. To date, the synthesis of river topography has 
been explored outside of geomorphology through artistic renderings, computer science 
applications, and river rehabilitation design; while within geomorphology it has been explored 
using morphodynamic modeling, such as one-dimensional simulation of river reach profiles, 
two-dimensional simulation of river networks, and three-dimensional simulation of subreach 
scale river morphology. To date, no approach allows geomorphologists, engineers, or river 
rehabilitation practitioners to create landforms of prescribed conditions. In this paper a method 
for creating topography of synthetic river valleys is introduced that utilizes a theoretical 
framework that draws from fluvial geomorphology, computer science, and geometric modeling. 
Such a method would be valuable to geomorphologists in understanding form-process linkages 
as well as to engineers and river rehabilitation practitioners in developing design surfaces that 
can be rapidly iterated. The method introduced herein relies on the discretization of river valley 
topography into geometric elements associated with overlapping and orthogonal two-
dimensional planes such as the planform, profile, and cross section that are represented by 
mathematical functions, termed geometric element equations. Topographic surfaces can be 
parameterized independently or dependently using a geomorphic covariance structure between 
the spatial series of geometric element equations. To illustrate the approach and overall model 
flexibility examples are provided that are associated with mountain, lowland, and hybrid 
synthetic river valleys. To conclude, recommended advances such as multithread channels are 
discussed along with potential applications. 
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1. Introduction 

Geomorphologists fundamentally explore land-surface patterns on Earth and 
beyond through the analysis of natural landscape formation and evolution as well as 
anthropogenic activities. As important as it is to study what exists in the world, it is 
equally significant to create and study synthetic data unbounded by the existing set of 
known natural landforms and anthropogenic alterations. The synthesis (i.e., artificial 
physical or virtual reproduction) of Earth properties and landforms is a valuable 
component of scientific research because it enables inquiry into why landforms have 
specific shapes and characteristics (Rodriquez-Iturbe and Rinaldo, 1997; Perron et al., 
2009), how they evolve over time , what consequences arise from anthropogenic 
intervention, and how life and human populations relate to natural and human-altered 
landforms. Furthermore, it can also be used to contextualize known relationships of 
synthetic landforms to real world cases for analysis (Perron et al., 2008). The creation of 
synthetic data is valuable to Earth sciences specifically because it allows testing of 
conditions that may not be accessible in nature such that underlying causalities can be 
explored (Richards, 1978). Synthetic analysis is not a replacement for engaging the real 
world but a natural outgrowth of play-driven scientific curiosity (Wolman, 1995) in the 
digital age that can catalyze bigger conceptual leaps. The purpose of this paper is to 
introduce a new method for creating prescribed topography of river valleys using a 
geometric modeling framework that can be easily adjusted to create landforms of 
varying complexity. 

 
2. Background 

Landscape evolution modeling— from real world or artificial initial conditions— is 
a common method for the synthesis of landforms. While promising in replicating general 
landform characteristics at basin and larger scales (Perron et al., 2009), landscape 
evolution models (LEMs) are not appropriate for river reaches (e.g., 101–103 channel 
widths) and fluvial morphological units (e.g., 100–101 channel widths). In the case of 
deterministic river-corridor LEMs, the common approach is to use reduced complexity 
(e.g., cellular automata) models that either exclude or greatly simplify momentum 
conservation to obtain a basic representation of channel nonuniformity at 
morphological-unit to reach scales (Murray and Paola, 1994; Coulthard and Van De 
Weil, 2006; Coulthard et al., 2007). Unfortunately, none of these LEM schemes account 
for first-order controlling processes founded on landform nonuniformity (Hancock and 
Anderson, 1998; MacWilliams et al., 2006; Thompson, 2006), without which no accurate 
topographic representation can be reproduced in many fluvial settings. Therefore, as 
important as they are as a general learning tool at the landscape scale, these models 
are not well suited for exploring the full range of likely (and conversely impossible yet 
interesting to consider) morphologies of typical nonuniform river valleys at the river 
channel scale. 

The synthesis of river topography has been approached implicitly and explicitly 
from a variety of methods focusing on specific fluvial attributes at a variety of spatial 
scales ranging from particle clusters to river reaches. At the reach scale, one-
dimensional (1D) aspects of river geometry, such as the longitudinal profile, have been 
modeled using fractals (Robert, 1991), stochastic time series methods (Richards, 1976; 
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Knighton, 1983), diffusion modeling (Begin, 1988), and hybrid combinations of analytical 
and empirical relationships (Naden, 1987; Cao et al., 2003). In addition, two-
dimensional (2D) simulations of bed particle arrangements based on probabilistic and 
rule-based techniques are only appropriate in one specific landscape setting to date 
(Malmaeus and Hassan, 2002). The explicit treatment of morphodynamically derived 
models of river topography have shown considerable promise (Seminara, 2006; Luchi et 
al., 2010), but are still in their infancy when it comes to simulating large river reaches 
with multiple scales of material heterogeneity and the ability to resolve dynamic features 
at the channel width to subwidth scale. Computationally, these types of models are very 
consumptive and the resulting topographies are only as dynamic as provided in known 
equations. The inherent crux in the above approaches is that a 1D description is 
incomplete for many rivers, 2D treatments are limited in geographic scope, and three-
dimensional (3D) treatments are limited in their present simplicity, computational 
efficiency, and spatial domain. 

In the absence of model-derived synthetic landscapes for the sake of scientific 
inquiry, river engineers create design topographic surfaces from a blend of empiricism 
and heuristics. For example, in the Spawning Habitat Integrated Rehabilitation 
Approach, landforms are determined by establishing the key physical processes for the 
site and then using a blend of empirical functions and heuristics to draw the contours of 
complex fluvial features in CAD (Wheaton et al., 2004a; Elkins et al., 2007; Pasternack 
and Brown, 2013). Regardless of the underlying theoretical foundations, concepts are 
developed in 2D in the form of planform alignments, cross sections, and vertical thalweg 
profiles; then a computer-assisted drafting (CAD) program is used to link the three 
planes into a topographic design surface. This has been problematic because the 
complexity of fluvial form is often reduced during communication from geomorphologist 
to engineer via typical sections and standard details. Moreover, CAD programs do not 
have a spatially explicit method for the iterative manipulation of topographic surfaces, 
which is often needed to optimize river rehabilitation designs for competing uses 
(Wheaton et al., 2004b). 

Contrasting the above approaches, landscape and river synthesis has also been 
approached from a computer science perspective with an entirely different goal. In this 
framework the goal is to generate realistic looking landforms with little or no processes 
considered and a modicum of computer-aided artistry (Fournier et al, 1982; Musgravet 
et al., 1989; Prusinkiewicz and Hammel, 1993; Zhou et al., 2007). These techniques 
were initially born out of the idea that fractals could be used as representative models of 
landscapes (Fournier et al., 1982). They have the advantage that all scales of variance 
are generated. Since then, numerous algorithms have been developed to create entire 
landscapes and more recently river systems (Prusinkiewicz and Hammel, 1993). 
However, as these approaches seek visual realism as the goal of synthesis, they have 
no utility in yielding landforms that would naturally result from processes associated with 
landform characteristics. They also are not helpful in adjusting a landform after it has 
been created or creating a prescribed topographic configuration. 

There is tremendous scientific and applied benefit to having methods capable of 
creating river valleys of prescribed (e.g., explicitly defined) conditions without arriving at 
them through dynamic process-based modeling in that exploratory testing can allow 
testing into why specific landform configurations do and do not exist. Specifically, all of 
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the approaches described above that could generate a channel or river corridor would 
rely on the outcome of the underlying rules or governing equations, but cannot create a 
river of prescribed conditions. It may seem counterintuitive at first to want to study 
arbitrary landforms that naturally never form, but in a world heavily altered by humans 
this is exactly what society is confronted with. Thus, it is equally important to be able to 
understand why any arbitrary fluvial landscape is nonfunctional as a process-based 
landscape is functional. Lastly, river restoration practice would benefit from the ability to 
rapidly create design topographic surfaces that embrace fluvial geomorphic theory and 
can be easily adjusted for multiple design iterations. 

 
3. Objectives 

The specific objectives of this study were to (i) develop a geometric modeling 
framework for creating prescribed synthetic river valley topography that can be readily 
adjusted, (ii) illustrate the synthesis method with examples, (iii) offer suggestions on 
extending this approach, and (iv) discuss potential applications for form–process inquiry 
and river engineering. The significance of this study is that river scientists and 
professional practitioners may now use this approach as an alternative means of 
synthesizing numerous, diverse project design scenarios for numerical experimentation 
to advance theory (e.g., Cao et al., 2003; Pasternack et al., 2008) and river 
rehabilitation (e.g., Pasternack and Brown, 2013) as an alternative to problematic 
empirical methods of channel design (e.g., Simon et al., 2007; Pasternack, 2013). The 
point of this study was to introduce the method with the minimum required elements and 
illustrate what can be achieved with additional complexity, not enumerate all possible 
capabilities. While only single thread channels were explored in this paper, the 
approach is general enough to accommodate multiple threads (see section 6.3). 

This approach draws on aspects of the streamline-based modeling of river 
channels presented by Merwade et al. (2005), Prycz et al. (2009), and Legleiter (2014) 
as well as geostatistical modeling of river channels by Legleiter and Kyriakidis (2008), 
but is thought to be more general and flexible by providing a theoretical framework for 
general artificial synthesis of entire river valleys. An additional novel contribution is the 
use of geomorphic covariance structures (explained in section 4.5.1) in dependent 
parameterization of specific geometric elements. The approach herein also incorporates 
floodplain topography. Once the model is established attributes of the synthetic river 
valley can be adjusted for design or scientific exploration depending on the exact fluvial 
geomorphic elements of interest and the mathematical functions used to represent 
them. The novelty in this approach is that it draws from computer science, geometric 
modeling, and fluvial geomorphology to create topographic surfaces that— with 
parametric equations— can be used to efficiently evaluate relationships between river 
form and subsequent processes 

 
4. Synthesis framework 

Geometric modeling is implemented in a variety of ways, but a common 
approach is to mathematically represent an object in overlapping and orthogonal 2D 
planes to determine the 3D geometry of the modeled form— either through explicit or 
implicit mathematical equations (Mortenson, 1997; Tao Ju et al., 2005). With that in 
mind, consider that a river valley in Cartesian space can be decomposed into— at a 



5 
 

minimum— a primary channel and a floodplain that could be enclosed within a valley 
(Fig. 1; Knighton, 1998); and each of these elements can be viewed in 2D space in the 
planform, profile, or cross section views. Through this decomposition, river valley 
topography can be created by modeling specific fluvial geometric elements associated 
with each 2D plane via the development of mathematical functions that control the 
shape of each element and link elements to adjacent planes. Geometric element 
equations describe the shape of each fluvial element, treated herein as finite 
approximations. Each Cartesian plane has a minimum number of geometric elements 
needed to create a simple synthetic river valley. For example, the thalweg elevation, top 
of bank, and valley height are all fluvial geometric elements in the profile (��) plane. 
Similarly, the planform alignment, channel banks, and valley width limits are all fluvial 
geometric elements in the planform (��) plane. The channel cross section lies in the 
cross section (��) plane. River channel geometry is expressed in a channel-referenced 
coordinate system (��), and this is discussed in section 4.2 below. Within each fluvial 
geometric element equation, control functions can also be used to describe subreach 
scale variance of a particular fluvial element. Control functions can be deterministic 
equations, stochastically generated spatial series, or a blend. Herein the focus is on 
deterministic functions that allow parametric manipulation because when parametric 
mathematical equations are used the coefficients can adjust each geometric channel 
attribute— via 2D attribute linkage— to manipulate the topographic surface. To provide 
real-world context for prototype simulation, some of these control functions associated 
with fluvial geometric elements are scaled by the reach-average properties of the river 
valley, such as the bankfull width and depth, which could be selected independently or 
calculated using existing analytical or empirical relationships. Once programmed, an 
��� output of a synthetic river valley can be derived from a small set of parameters, 
such as values for the reach-average bankfull width, depth, slope, median sediment 
size, critical Shields stress, valley heights, and valley widths—although even simpler 
models can be developed. The final ��� output can then be used to construct 
topographic surfaces through interpolation that also can be adjusted via independent 
and dependent parameter manipulation. 

The basic steps in developing a geometric model of a synthetic river valley are (i) 
conceptualize, (ii) specify model domain, (iii) determine 2D fluvial geometric elements in 
the model, (iv) determine reach-average values of geometric elements, (v) develop 
geometric element equations, (vi) construct model, and (vii) parameterize. After 
summarizing the steps in this paragraph, details for each are explained in sections 4.1–
4.5. The first step is a conceptualization of the desired fluvial elements to be created, 
(including a clear description of the scale, type, and resolution of morphologic features), 
how the landform is represented in 2D planes, and the extent and resolution of 
modeling. Next, the model domain, resolution, horizontal coordinate system, horizontal 
datum, and vertical datum need to be selected. Following this, the average properties of 
the river reach need to be selected or determined (e.g., width, median particle size, and 
depth), since they are used to scale specific fluvial geometric elements to prototypical 
conditions. Scaling is defined in this context as the multiplicative adjustment of a control 
function by reach-average properties such as bankfull width and depth, where control 
functions are a subset of specific geometric element equations. Once the basic 
attributes of the reach are defined, the fluvial geometric elements and their equations for 



 

the synthetic river valley need to be determined for each of the three planes.
control functions are selected to represent 
geometric element of the river valley, some of which are scaled by specific reach
average river properties. Then, the model needs to be programmed to produce a
���	output, but this aspect is not explored in this 
outside the present scope. Finally, after model construction the synthetic river valley can 
be adjusted, through dependent and independent parameterization, 
landform conditions. 

Fig. 1. The major components of channel form represented a
after Knighton (1998) overlaid on an oblique section of the Eel River in California.
Image from Google Earth. 
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the synthetic river valley need to be determined for each of the three planes.
control functions are selected to represent the subreach scale variance of 
geometric element of the river valley, some of which are scaled by specific reach

Then, the model needs to be programmed to produce a
but this aspect is not explored in this article because model programming is 

Finally, after model construction the synthetic river valley can 
through dependent and independent parameterization, to create varying 

The major components of channel form represented as different planes 
after Knighton (1998) overlaid on an oblique section of the Eel River in California.

the synthetic river valley need to be determined for each of the three planes. After this, 
the subreach scale variance of each fluvial 

geometric element of the river valley, some of which are scaled by specific reach-
Then, the model needs to be programmed to produce an 

because model programming is 
Finally, after model construction the synthetic river valley can 

to create varying 

 
s different planes 

after Knighton (1998) overlaid on an oblique section of the Eel River in California. 
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4.1 Conceptualize 
As a first step in creating a synthetic river valley the landform of interest should 

be conceptualized by identifying (i) the purpose of modeling, (ii) the primary 
morphological features of the river valley, and (iii) the scale and resolution of these 
attributes in each 2D plane. Conceptualization provides the broad template upon which 
model components and their characteristics are based. Purposes of modeling could be 
to understand how specific channel and floodplain configurations affect ecological and 
geomorphic processes (Pasternack et al., 2008), to create prototypes of channel 
configurations for historical analysis (Jacobson and Galat, 2006), to develop river and 
stream rehabilitation scenarios (Elkins et al., 2007), or to evaluate land management 
impacts and engineering scenarios (Pasternack and Brown, 2013). Each of these 
applications could have varying model resolutions, spatial domains, number and type of 
geometric elements, and subsequent control functions. As part of conceptualization, 
several modeling aspects should be explicitly considered, such as river valley length, 
number of channels, scale-dependent variability of geometric elements, river 
morphology, and the model’s geometric elements— including their resolution. Scale is 
important because geomorphologists are now learning more than ever that processes 
and landform variability are scale dependent. For example, river profiles show varying 
characteristics depending on whether a single bedform, morphological unit, or entire 
river system is being considered. The number of channels also has a strong bearing on 
model construction because it drives the underlying placement of control functions for 
river planform and cross section models. River morphology is another important 
consideration that will affect the number and type of geometric elements and control 
functions. For example, a reach-scale model of a gravel-bed river could have frequent 
riffle–pool units necessitating a control function that allows vertical bed undulations. In 
addition, depending on valley type there could be a floodplain with gradually sloped 
sides, confining terraces, or a narrow V-shaped bedrock wall (for more examples, see 
Grant and Swanson, 1995). All of these valley states can be incorporated into the 
geometric model. Lastly, model resolution refers to the planform, profile, and cross 
sectional point density that the control functions populate. 

 
4.2 Specify model domain  

Specifying the model domain includes defining— in no order— a vertical datum, 
units, coordinate systems for fluvial geometric elements, model bounds, and longitudinal 
and cross section node intervals. The model operates in space so all units are for 
distance. A vertical datum, 	
, can be set arbitrarily or selected if the model is for a real 
river with a prespecified datum. For the horizontal plane, the model uses Cartesian as 
well as curvilinear, orthogonal coordinate systems. The curvilinear, orthogonal 
coordinate system is used initially for channel geometric elements such as the thalweg 
and channel banks (Smith and McLean, 1984) and is then transformed to Cartesian 
coordinates (Leigleiter and Kyriakidis, 2006). Toward describing the channel centerline 
in curvilinear coordinates, discrete nodes � with Cartesian coordinates (��, ��) are found 
for each centerline node � ranging from 1 to � (Fig. 2A). Spacing between nodes in the 
X direction is ��� = ���� − ��, which is equal to the total length of the model in the � 
direction, ��, divided by � − 1	, the total number of increments. Notice that ��� = ���� −�� varies from segment to segment as the path changes direction along the channel 
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centerline (Fig. 2A). 
With the Cartesian coordinates available for each centerline node, curvilinear, 

orthogonal coordinates, in the direction along the channel thalweg,	��, and perpendicular 
(orthogonal) to it, ��, are calculated (see Fig. 2B). For each forward increment of ��� 
and ���, the change in the channel referenced coordinate, ���, in the curvilinear, 
orthogonal system is first determined from the Pythagorean Theorem as	��� =
�(���)� + (���)� (Fig. 3). It follows that because ��� = ���� − ��, the cumulative distance 

in � (coordinate) is found from ���� = �� + ��� . For most rivers the minimum longitudinal 

channel node spacing, ���, should be on the order of approximately 
�
����������, because at 

least four points are needed to capture topographic highs and lows of undular bed relief 
(Rayburg and Neave, 2008). Orthogonal to the � direction is the � direction, which is 
also discretized (Figs. 2B and 3). Spatial increments ��� = ���� − �� are found by 

dividing half the total width of the cross section at each channel referenced node, 
 !"(#$)
� , 

by % for river left (� > 0) and river right (� < 0) sides of the channel centered node, 
where )��(��) is the local bankfull channel width and % is the number of nodes (Fig. 
2D). There are % − 1 increments for each side of the channel. Nodes �� are indexed by 

*, where * ranges from 1 at the centerline to % at the river left side and at the river right 
side (Fig. 2D), and the cumulative distance is hence	���� = �� + ���. For the cross-

sectional node spacing there should be increments, ���, no greater than ~	�+���������, with 

the simplest, though unsatisfactory, representation being a three-point distribution that 
has two banks and a thalweg. Regardless of the coordinate system used, all geometric 
elements are described through finite difference approximations. 

 



 

Fig. 2. Schematic of simple synthetic river valley geometric elements in 
planform along with description of 
(C) cross section. 

 
Because there are two coordinate systems, a coordinate transformation from 

curvilinear, orthogonal coordinates to Cartesian coordinates is needed for 
geometric elements such as the valley floo
Cartesian coordinates are given subscript 
orthogonal direction according to the node numbering scheme.
∆-$
∆#$ = −

∆./
0/12 and 

∆.$
∆#$ =

∆-/
0/12 as shown in Fig

perpendicular to the center line
coordinates as: 

 

 

where (����,�3�, ����,�3�) are the 

having curvilinear, orthogonal

calculated Cartesian coordinates 
curvilinear coordinates (����, �

9 

. Schematic of simple synthetic river valley geometric elements in 
planform along with description of (�, �)coordinate system (inset), (B

Because there are two coordinate systems, a coordinate transformation from 
coordinates to Cartesian coordinates is needed for 

geometric elements such as the valley floodplain. In Fig. 3 curvilinear, orthogonal
Cartesian coordinates are given subscript � for the centerline direction and 
orthogonal direction according to the node numbering scheme. Using similar triangles 

shown in Fig. 3, the Cartesian coordinates of the nodes 

perpendicular to the center line may be expressed as a function of curvilinear 

����,��� =	����,� − ���� ∆-$∆#$  
����,��� =	����,� + ���� ∆.$∆#$  

are the known Cartesian coordinates along the channel center 

, orthogonal coordinates (����, ��3� = 0) and (����,���, ��
coordinates of the nodes perpendicular to the centerline having 

����) where ∆��, ∆��, and ∆�� are also known along the 

 
. Schematic of simple synthetic river valley geometric elements in (A) 

(B) profile, and 

Because there are two coordinate systems, a coordinate transformation from 
coordinates to Cartesian coordinates is needed for nonchannel 

curvilinear, orthogonal and 
for the centerline direction and * for the 

Using similar triangles 

of the nodes 

curvilinear 

(1) 

(2) 

channel center 

���,���) are the 

ar to the centerline having 
are also known along the 



 

centerline (Fig. 3). 

Fig. 3. Schematic and nomenclature for inverse coordinate transformation from 
(�, �) to (�, �). 

 
4.3 Determine fluvial geometric 

For this set of steps the 
need to be determined in each 2D plane 
functions can be used for their spatial description
earlier, a geometric element is a 2D aspect of the synthetic river valley that will be 
locally modeled using a mathematical control function and is denoted here with
letter (e.g., bankfull width geometric element 
simple synthetic river valley, a minimum set of fluvial geometric elements 
defined (Fig. 2) in planform (��
In planform the minimum recom
bankfull channel extent, the channel centerline, 
�5�, and valley top widths, �56
floodplain floor elevation, 	5�, 
channel cross section is a key geometric element, linking planform and profile elements, 
and is bounded vertically by the thalweg 
by the bankfull width and the position of the onset

10 

Schematic and nomenclature for inverse coordinate transformation from 

eometric elements  
For this set of steps the fluvial geometric elements of the synthetic river valley 

in each 2D plane so that in subsequent steps mathematical 
functions can be used for their spatial description in the model domain. As defined 

geometric element is a 2D aspect of the synthetic river valley that will be 
mathematical control function and is denoted here with

bankfull width geometric element is denoted as ���). For the case of a 
simple synthetic river valley, a minimum set of fluvial geometric elements 

��/��), profile (��/��), and cross section planes 
In planform the minimum recommended elements are	���, which defines the local 

channel centerline, 89 ,	left and right valley floor 
�56. For the profile, the thalweg, 	6 ,	top of bank,

, and floodplain top elevation, 	56 , are needed.
is a key geometric element, linking planform and profile elements, 

is bounded vertically by the thalweg trough and bank crest as well as
position of the onset of the floodplain. 

 
Schematic and nomenclature for inverse coordinate transformation from 

geometric elements of the synthetic river valley 
so that in subsequent steps mathematical 

As defined 
geometric element is a 2D aspect of the synthetic river valley that will be 

mathematical control function and is denoted here with a capital 
For the case of a 

simple synthetic river valley, a minimum set of fluvial geometric elements can be 
planes (��/��). 

which defines the local 
left and right valley floor widths, 

top of bank, 		6:� 
are needed. Finally, the 

is a key geometric element, linking planform and profile elements, 
as well as horizontally 
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4.4 Develop equations for fluvial geometric elements  

In this step one must create geometric element equations that are representative 
of the scales of variability desired in each 2D plane for each geometric element. First, 
the type and scale(s) of variability in prototypical spatial series for each geometric 
element should be identified as an extension of the conceptualization step. For single-
thread gravel-bed channels in a simple valley, Table 1 shows each of the primary fluvial 
geometric elements considered so far by 2D plane with scale-dependent attributes of 
natural spatial series (e.g., variables that change with distance) reported in the 
literature. These attributes are simplified from spatial series descriptions— specific 
landscapes will have exogenic controls that can override any of these descriptions at 
any point in space. In addition, each element has some level of inherent randomness 
found in nature in each of the spatial series and this aspect is omitted in Table 1. What 
is most important is that the creation of each geometric element equation is dependent 
on the type of feature and its relevant spatial scales to be modeled. For example, to 
simulate a longitudinal river profile of a single-thread riffle – pool channel at the reach 
scale would require functions that are at least quasi-oscillatory and linearly sloping. 
However, if a basin-scale synthetic river valley is simulated, then the longitudinal profile 
may also have an exponentially decreasing function to represent the larger scale shift in 
landscape position from mountain to lowland. 

Once geometric elements are defined and the type(s) of spatial series attribute(s) 
are selected, the user can then begin to create geometric element equations that model 
the basic attributes but also allow manipulation through parameters. Each geometric 
element equation may have several basic components, including a fluvial scaling 
component, consisting of the reach-average value and a scaled control function for 
morphological-unit-scale variance, a reach and/or basin scale trend, a random 
component, coordinates of connected geometric elements, and spatial offsets. The 
control functions used can be scaled or unscaled, but the channel geometric elements 
such as ���, 	6, and the cross section are recommended to be scaled. Each of these 
components can be linearly related to form a final geometric element equation as will be 
shown in section 4.4 below. A general expression for an arbitrary geometric element 
equation is not presented here because not all geometric elements necessarily require 
each of the above components, depending on the scale of the model and application. 
Next, the basis for the fluvial scaling component and the selection of control functions 
are discussed. 
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Fluvial 
geometric 
elements 
by 2D 
plane 

Spatial series attributes 

Morphologic scale 
(10

0
-10

1
 channel widths) 

Reach scale 
(10

1
-10

2
 channel widths) 

Basin scale 
(>10

2
 channel widths) 

Planform   

 Planform 
alignment 

Oscillatory (Langbein and 
Leopold , 1966) 

Oscillatory (Ferguson, 1973, 
1976) 

Fractal (Nikora, 1991; 
Rodriquez-Iturbe and 
Rinado, 1997) 

Bankfull 
width 

Phased to bed elevation 
(Richards, 1976b;Wilkinson et 
al., 2004) and Centerline 
(Luchi et al., 2012)  

Oscillatory (Richards, 1976b) 
Increases downstsream as 
a power function (Leopold 
and Maddock, 1953) 

Valley 
width  

Constant 

Quasi-oscillatory or constant  
(Grant and Swanson, 1995; 
Wohl et al., 1993; McDowell, 
2001) 

Fractal or multi-fractal 
(Beauvais and 
Montgomery, 1996; 
Gangodagamage et. al., 
2007) 

Profile 

elevation 
  

Thalweg 
Quasi-periodic (Yang, 1971; 
Ferguson, 1973; Richards, 
1976a; Knighton, 1983) 

Linear sloping (Richards, 
1976a; Ferguson, 1973; 
Knighton, 1983) 

Concave  (Langbein and 
Leopold, 1964; Langbein 
and Leopold, 1966; Tanner 
1971; Sinha and Parker, 
1996) 

Top of 
bank 

Follows Valley Floor  

Valley 
floor  

Constant 

Linear sloping or oscillatory 
(White et. al., 2010; 
Gangodagamage et al., 
2007) 

Concave  
(Gangodagamage et al., 
2007) 

Valley top Constant Constant 
Concave; oscillatory 
(Montgomery, 1994) 

Channel 

cross 

section 

   
Asymetrical to symmetric; 
concave down (Knighton, 
1982; Milne, 1983; Rayburg 
and Neave, 2008) 

Phased to curvature of 
channel meander alignment 
(Knighton, 1982; Milne, 1983) 

Decreasing confinement 
and width-to-depth ratio in 
downstream (Leopold and 
Maddock, 1953) 

 
Table 1. Scale-dependent attributes of spatial series associated with common 
geometric elements 

 
4.4.1 Fluvial scaling  

While the fluvial geometric elements are governed by mathematical equations 
that describe their shape, some form of scaling using real world dimensions has to 
occur to relate the function to prototypical dimensions of the desired river valley, 
especially for channel elements. In this article, channel elements are all scaled by 
reach-average properties of the river valley, where the notation for all reach-average 
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properties will be shown as capital letters with an over bar (e.g., the reach-average 

bankfull width is denoted as ���	������). Valley elements are not scaled herein for simplicity, 
although this does not always have to be the case. The theoretical foundation for the 
fluvial scaling of a single-thread river valley is that the local bankfull value of a geometric 
element,	;��(��), may be expressed as the combination of the reach-average bankfull 

value, ;��	�����, plus this value multiplied by a control function, <(��). The control function 
models the morphological-unit variance at the scale of the channel through linear 

scaling by ;��	�����. Thus, the fluvial scaling component of the general geometric element 
equation is: 

 ;��(��) = 	;��	�����<(��) + ;��	����� (3) 
Note that the geometric elements and control functions above are for orthogonal, 
curvilinear coordinates, but some geometric elements can be constructed in Cartesian 
coordinates as a function of ��. The theoretical basis for Eq. (3) is rooted in the concept 
of quasi-equilibrium (Langbein and Leopold, 1964), whereby rivers are dynamic 
systems with a multitude of time and space varying conditions, but still maintain some 
modal condition (Huang et al., 2004; Huang and Nanson, 2007; Nanson and Huang, 
2008). 

Typical scaling variables for alluvial river morphology are reach-average slope 
(=̅), bankfull width (���������), median sediment size (?+@�����), and either hydraulic radius (A�������) 
or bankfull depth (B�������)	(Gioia and Bombardelli, 2001; Church, 2006; Parker et al., 2007; 

Eaton et al., 2010). For the channel geometric elements ���������, =̅, and ?+@����� are used as 
initial inputs governed by the landscape setting of interest for synthesis. Ultimately, 
these may be thought of as deriving from the balance of genetic controls, such as 
lithology, tectonics, anthropogenic impacts, landscape position, flow regime, and 
sediment supply. From these initial scaling values, B�������	is determined in this model 
based on determining the critical depth for incipient motion so that the geometry reflects 
a quasi-equilibrium state. This approach is used because many gravel- and sand-bed 
rivers adjust their bankfull depth such that the channel is in pseudo-equilibrium with the 
reach-average critical Shields stress, CD∗F  for bed material entrainment (Lisle et al., 2000; 
Parker et al., 2007; Wilkerson and Parker, 2011). Thus, for a given alluvial river in 
quasi-equilibrium, the critical depth for incipient motion should be comparable to B�������. 
This allows a unique B������� to be determined for each synthetic river valley using the 
Shields equation (or any user-preferred equation that related B������� to input values) along 

with an estimate of =̅, ?+@�����, and CD∗F . Assuming B������� is approximated by the hydraulic 
radius, the critical depth at incipient motion can be approximated by,  

 B�������~	BDHIJIDKL����������� = 	 (MN	OMP)
QR�����ST∗���MPU̅  (4) 

where V# and V  are the specific weight of sediment and water, respectively. As this 
shows, geometric modeling can be mindful of geomorphology; it can strictly adhere to 
known empiricism or allow deviations from convention to explore wide-ranging 
possibilities. 

For a single-thread river valley, the control functions governing the variable 
shapes of the channel geometric elements (e.g., local bankfull width, thalweg elevation, 
and cross-sectional form) are scaled using ���������	and B�� 	������. For the bankfull width control 
function the obvious scaling variable is ���������. The thalweg elevation control function 
could be scaled by ?+@����� or B�� 	������, but the latter is derived from ��������� so it does not make 
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sense to use it. Local cross-sectional form, however, is commonly scaled by local 
values of the bankfull width and depth, )��(��) and ℎ��(��), as lateral and vertical scale 
factors, respectively (Deutch and Wang, 1996; James, 1996; Merwade, 2004; Jacobson 
and Galat, 2006). 

 
4.4.2 Control functions 

Recall that a scaled control function, which expresses the subreach scale 
variance of the river valley, may be nested within each geometric element equation. The 
type of control function(s) used for each geometric element will ultimately dictate the 
level of parametric manipulation possible in the final ��� representation of the synthetic 
river valley. As a guide, Table 2 shows example mathematical functions commonly used 
to model the 	6, ���, and 89 geometric elements, which are the most commonly 
modeled attributes of river channels. The selection of control functions is driven initially 
by the conceptualization of the synthetic river valley where the type and scale(s) of 
variability in prototypical spatial series for each geometric element should be 
considered. While each geometric element has been modeled with a variety of 
approaches, the types of control functions can be broadly classified as deterministic, 
stochastic, or hybrid combinations. Deterministic functions are beneficial for creating 
river valleys of prescribed conditions because parameter manipulation of each control 
function can allow parsimonious manipulation of the 3D river valley topography. 
Stochastic functions differ in that they have coefficients that are empirically derived but 
are driven by pseudo-random algorithms built on predefined random seeds. For these 
types of functions control over the shape of a landform is limited, but multiple 
realizations can be generated and if the same seed is used, then different users can 
repeat the same outcome. 

Of all the potential mathematical and functions available for this article the 
examples shown in the following section used sinusoids as control functions. First, 
sinusoids succinctly capture the essence of control function selection, scaling, and 
manipulation because the oscillations are controlled by parameters that adjust the 
frequency, amplitude, and phase of the waveform. Second, rivers are a continuum of 
topographic variations shaped by a quasi-harmonic interaction between water flow and 
material transport (Nelson, 1990; Furbish, 1998). Lastly, it is also possible to spectrally 
decompose specific river properties and inversely use specific frequencies in synthesis, 
similar to Clarke (1988). 

The general sinusoidal model used in the examples below is: 

 �(��) = 	∑ (YD	Z[�(\D�H + ]D) + Y#	���(\#�H + ]#))^_
^3�   (5) 

where �� is the dependent control function value, YD , \D, and ]D are the amplitude, 
angular frequency, and phase for the cosine component and Y#, \#, and ]# are the 
amplitude, angular frequency, and phase for the sinusoidal component, ` denotes the 
order and ranges from 1 to a, and 	�H	is the Cartesian stationing in radians. The 

Cartesian stationing in radians, �H, is scaled to �. by the relationship 	�H = 	2c .$	de and 

similarly for ��. Thus, amplitude, phase, and frequency are contextualized by reach 
length. 
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Geometric 
element 

Mathematical 
function/ 

model type 
Scale Sources 

Thalweg 

Exponential B Tanner, 1971; Yang, 1971; Snow and Slingerland, 1987 

Power B Yang, 1971; Snow and Slingerland, 1987 

Logarithmic B Yang, 1971; Snow and Slingerland, 1987 

Hybrid B Schumm, 1960; Langbein and Leopold, 1964; Ohmori, 1991 

2nd order, 
autoregressive 

R, M Knighton, 1983; Richards, 1976a 

Variogram R, M Robert and Richards, 1988  

Regression R, M Anderson et al., 2005 

Linear trend R, M Leopold et al., 1964; Knighton, 1998 

Variogram R Legleiter and Kyriakidis, 2006; Legleiter, 2014 

Cross 
section 

Polynomial  NA James, 1996 

Statistical 
distribution  

NA Merwade, 2004; Jacobson and Galat, 2006  

Curvature 
based 

asymetry  
NA Deutch and Wang, 1996 

Analytical NA Bridge, 1977; Beck, 1988 

Rectangular NA Chow, 1959 

Semi-circle NA Chow, 1959 

Triangular NA Chow, 1959 

Trapezoid NA Chow, 1959 

Channel 
alignment 

2nd order, 
autoregressive 

M,R,B Ferguson, 1976 

Analytical M,R,B Kinoshita, 1961  

Sinusoid  M,R,B Langbein and Leopold, 1966 

Table 2. Mathematical functions used to model the meander planform alignment, 
thalweg profile, and cross section geometric elements drawn from the literature. 
M refers to morphologic unit scale (100-101 channel widths), R refers to reach 
scale (101-102 channel widths), and B refers to basin scale (>101 channel widths) 

4.4.3 Planform geometric elements 
In the planform dimension, this study evaluated only the basic geometric 

elements of a single thread synthetic river valley: channel planform alignment, 89, 
bankfull width, ���, valley floor width, �5�, and valley top width, �56. In the following 
subsections, the modeling approach and potential control functions for the local values 
of each geometric element are explained in detail. The notation for local values of 
geometric elements is lowercase symbols (e.g., the local bankfull width is denoted as 
)��	(��)). 

 

4.4.3.1 Channel centerline 
Many rivers are sinuous at some length scale, so having the ability to simulate a 
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meandering channel centerline, 89, is essential for the creation of most synthetic river 
valleys. The geometric element equation for 89 	could be constructed from existing 
deterministic equations that are unscaled or alternatively from empirical relationships 
that scale wavelength based on discharge or channel dimensions (Schumm, 1960; 
Ferguson, 1975).  For meandering streams 89 	can be defined most simply using a 
sinusoidal model (Langbein and Leopold, 1966; Darby and Delbono, 2002), although 
other more complex models exist (Kinoshita, 1961; Ferguson, 1973, 1976; Nikora and 
Sapozhnikov, 1993). Regardless of the geometric element equation constructed, in this 
paper 89 	is first developed in Cartesian coordinates by modeling the position of the 
alignment in which � is a function of distance along the � coordinate. The channel 
centerline coordinate in the � plane at node	�	is �9(��), which is described by Eq. (5) in 
the examples.  

 

4.4.3.2 Local bankfull width 
The geometric element for the bankfull width, ���, describes planform alignment 

of the channel extents at each bank and marks the beginning of the valley floodplain, 
following the channel planform alignment as a function of	��. However, before 
coordinates can be developed for the extent of the channel banks a spatial width series 
needs to be developed that allows for variations in the local bankfull channel width. 
Based on the scaling approach described above, )��	(��) is determined according to 
Eq. (3) such that the geometric element equation for the local bankfull width at each 
location �� is given by  
 )��	(��) = ���	������<(��)+���	������ (6) 
where )��	(��) is the local bankfull width at location �� and ���	������is the reach-average 
bankfull width. This is a simple relationship that states that the bankfull width at any 
location is the average value for the reach plus a scaled component that may be more 
or less than the average value at any location in the channel depending on the control 
function, <(��). Note that )��	(��) is first developed in the curvilinear, orthogonal 
coordinate system following	��, and the Cartesian transformed coordinates for both 
banks are:  

 �f�(��)	= �9(��) 	+ g��3h < 0 !"(#$)� i g∆.$∆#$ 	i (7) 

 �d�(��)	= �9(��) 	+ g��3h > 0 !"(#$)� i g∆.$∆#$ 	i (8) 

where �f�(��)	and �d�(��)	are the right and left bank coordinates at each location �� and 
all other variables are defined as above.  

 

4.4.3.3 Local valley width 
In planform the valley consists of two geometric elements, the width of the valley 

floor,	�5�, and the valley top width, �56. There exists a paucity of information on the 
spatial series attributes for these geometric elements other than they both oscillate at 
reach and basin scales and exhibit multifractal scaling (Table 1). Rather than use 
control functions for both of these elements, only		�5� varies as a function of distance 
downstream, while �56	is treated as a constant spatial offset defined by �56������ alone, but 
this could easily be changed. The basis for this approach is that in conjunction with a 
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vertical offset for B56�����, sloping valley walls can be created. Therefore, the focus in this 
section is on determining a geometric element equation only for	�5�. 

The local valley floor width could be scaled according to Eq. (3) and follow �� 
similar to )��(��), but this is not done here for two reasons. First, Cartesian coordinates 
are used for �5�, because floodplain and valley topography can be driven by 
nonchannel processes (e.g., mass movements of hillslopes and anthropogenic 
activities) as well as channel processes (Grant and Swanson, 1995). Second, using a 
scaled control function for )5�(��) as in Eq. (6) limits the potential for nonuniformity of 
the valley floor. A different approach, used herein, is to consider each side (e.g., right 
and left) of 	�5� and 	�56 as components of the geometric elements and use control 
functions with separate parameters that are functions of ��.  

With that in mind, at a minimum the geometric element equation for each side 
of	�5� should have components that allow for (i) an offset of an average valley toe 
width	�5�������, (ii) a control function to create subreach variability, and (iii) terms that 
prohibit overlapping of valley and channel elements. First, constant offsets for �5������� are 
applied equally by dividing this value in half for both sides –for the left side this value is 
subtracted and for the right side it is added (Fig. 2B). Second, by definition the spatial 
relationship of )5�(��) to )��(��) is such that the right and left valley floor coordinates 
�5�f(��) and �5�d(��)	should lay outside of the channel bank coordinates, �f�(��) and 
�d�(��). However, as each valley floor coordinate is defined by an unscaled control 
function, <(��), it is necessary to eliminate potential overlaps of �5�f(��) and 
�5�f(��)	with �f�(��) and �d�(��). This is done for	�f5�(��) by determining the maximum 
value of �f�(��) and the minimum value of <(��) and adding those values as additional 
spatial offsets. Similarly, for �d5�(��), the minimum value of �d�(��) is determined and 
added as a spatial offset while the minimum value of <(��) is determined and subtracted 
from that offset. Therefore, the geometric element equations for the valley floor toe for 
the right and left sides are expressed as, respectively: 

 �f5�(��) = <(��) + jk"�������
� +�Y�(�f�(��)	) − ���(<(��))  (9) 

 �d5�(��) = −<(��) − jk"�������
� +���(�d�(��)	) + ���(<(��) (10) 

where �f5�(��) and �d5�(��)	are the right and left local �� coordinates of the floodplain 
toe at location ��, �5������� is the user specified average width of the valley floor, and all 
other variables are defined as above. This equation states that the valley floor 
coordinates are dependent on a control function, <(��), plus half of the reach-average 

valley floor width, �5�������, and two additional terms that account for restricting the valley 
floor geometric element from overlapping with the channel elements. A detriment to this 
approach is that the local values of 	�5� and 	�56 are determined by the largest 
oscillations in the bank coordinates, �f�(��)	and	�f�(��), rather than solely �5������� and 

�56������. While for Eqs. (9-10) the minimum and maximum bounds of the bank coordinates 
are taken for the entire reach, although a moving average could also be used. Further, 
while in Eqs. (9) and (10) the valley widths are unscaled by any of the reach-average 
properties, relationships based on watershed hydrology for valleys formed by fluvial or 
glacial processes (Montgomery, 2002) could be used to incorporate this aspect.  

Because only an offset for	�56������ is used, the geometric element equations for the 
left and right valley top coordinates, �d56(��)	and �f56(��), are:  
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 �f56(��) = �f5�(��) + jkl�������
�  (11) 

 �d56(��) = �d5�(��) − jkl�������
�  (12) 

 
4.4.4 Local profile attributes 

In profile there is a minimum of four geometric elements needed to create a 
synthetic river valley: (i) thalweg elevation, 	6; (ii) bank top, 	6:�; (iii) height of the 
valley floor,		5�; and (iv) height of the valley top,		56. For the model considered herein, 
	6 initially has a control function dependent on	��, but is later transformed to ��,��. The 

basic rational and equations for each of these elements are presented next. 
 

4.4.4.1 Local thalweg elevation 
In profile 	6 	is specified as a function of ��, located in planform tangent to 89, 

describing the characteristics of the bed slope and vertical undulations in the channel. 
Longitudinal profiles are the most heavily studied geometric element and this is 
reflected in the amount of information available for their spatial descriptions (Tables 1–
2). According to theory, scale-dependent properties of longitudinal profiles of rivers 
suggest that such profiles have specific mathematical components depending on their 
length and upstream contributing area (Tanner, 1971; Ohmori, 1991). Many 
mathematical functions have been reported for river profiles (Table 2) at different 
scales. At the reach scale there is a linear trend commonly referred to as the average 
slope (Einstein, 1950; Leopold et al., 1964; Knighton, 1998). In addition, theory and 
observation also show that the bed elevation in alluvial rivers is quasi-oscillatory at 
morphological-unit to reach scales owing to periodic bedforms, whose frequency varies 
with its landscape position and/or gradient (Keller and Melhorn, 1978; Wohl et al., 1993; 
Montgomery and Buffington, 1997). Thus, the creation of a geometric element equation 
for 	6 for the reach-scale channel morphology will at a minimum need to provide a 
linear trend and a quasi-oscillatory component that is scaled according to Eq. (3). 

While there are a variety of expressions and combinations thereof (Table 2) that 
could be used to construct a geometric element equation for the local vertical bed 
elevation	�6(��), this study constructed a geometric element equation based on (i) a 
scaled component that has subreach scale oscillations determined by a control function, 
<(��); (ii) a linear sloping component; and (iii) a vertical datum. Thus, the geometric 
element equation is: 

 �6(��) = (B��	������<(��)+B�������) + =̅(∆��) + 	
 (13) 
where		
is a user-defined datum. 

 

4.4.4.2 Local top of bank elevation 
The top of bank represents the vertical extent of the channel at the intersection 

with the valley floodplain. Information on the scale-dependent spatial series attributes of 
	6:� is lacking in the peer-reviewed literature (Table 1). However, a simple geometric 
element equation can be constructed using a sloping line that is offset some fixed height 

by B�������. This is performed by first determining the height of the maximum bed undulation 
for the detrended thalweg series, �Y�(�6f(��)) and then adding B������� to the downstream 
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most model node ��3�; while for subsequent nodes at �6:�(����), it is modeled as a 
simple sloping line. The geometric element equations are thus: 

 �6:�(��3�) = �Y�(�6f(��)	)+B��	������ (14) 

 �6:�(����) = �6:�(��) + =̅(∆��) (15) 
where �6:�(��) is the top of bank elevation and �6f(��) is the detrended residual series 
for the thalweg along the channel at location ��. This relationship assumes that 
maximums in thalweg elevation are associated with riffle crests that are in quasi-
equilibrium with the reach-average bed slope, bankfull depth, and median sediment size 
such that the riffle crest is at equilibrium with its sediment supply via grain size and 
incipient motion characteristics for the bankfull geometry. Note that the first term in Eq. 
(14) assumes all bed undulations have uniform height. For bed undulations with variable 
frequencies and amplitudes this could be modified using a window size commensurate 
with the spacing of bedforms so that the top of bank is defined relative to local riffle 
crests. Moreover, the top of bank in natural channels varies depending on channel type, 
which could be expressed through an additional control function nested within the 
geometric element equation. 

 

4.4.4.3 Local valley floor elevation 
In this model there are two valley elevations, the valley floor, 	5� and valley top, 

	56. There is relatively very little information in the peer-reviewed literature on the 
spatial series of valley floor and top elevations at scales other than the basin (Table 1). 

In general, the valley slope, =5���	, is thought to equal =̅	for equilibrium conditions, but can 
deviate for nonequilibrium conditions (Nanson and Huang, 2008). Moreover, 
undulations in this profile can occur from tributary fans, mass movement and wasting, 
geologic controls, and land use practices for human-modified river valleys. For 	56, the 
elevation profile can be highly variable and range from completely flat over plateaus, 
oscillatory owing to uplift and incision (Montgomery, 1994), and/or downstream sloping 
for river valleys that transition to lowlands. 

In this article a geometric element equation for 	5� is constructed using two basic 
components consisting of (i) a vertical offset for the average valley floor height above 

the channel, B5������ (Fig. 2), and (ii) a sloping term that allows for a valley slope, =5���. Note 
that only a simple offset is used herein, while a scaled control function could be used in 
applications to enable vertical variability of the two valley heights, for example to add 
terraces. Then, for		56, an additional vertical offset can be added for the average valley 
height, B56�����. While a control function could be used to simulate oscillations in 	56, we 
omit this term in this model. The geometric element equations for this configuration are: 
 �5�(��) = �6:�(��) + B5������ + =5���(∆��) (16) 
 �56(��) = B56����� + �5�(��) (17) 

where B56����� is a user-defined vertical height of the valley from bottom to top, �6:�(��) is 
the Cartesian transformed top of bank coordinate, �5�(��) is local valley floor height, 
and �56(��) is local valley top height as well as vertical extent of the model (Fig. 2). 

 
4.4.5 Local channel cross-sectional geometry 

The channel cross section topography is defined by a geometric element 
equation that populates the cross section points, ��, whose generation is described 
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above (section 4.2). Cross section elevations are defined by mathematical functions that 
describe the elevation of each node	�0/(��) at locations orthogonal to the channel 

centerline. In this article, cross sections are developed in curvilinear, orthogonal 
coordinates and then transformed to Cartesian coordinates using Eqs. (1–2). Each 
cross section is bounded vertically by �6:�(��) and �6(��) defining the bankfull depth as 
	ℎ��(��) = �6:�(��) − �6(��). In addition, the local bankfull width, )��(��), bounds the 

cross section laterally as �� ∈ g !"(#$)� , n !"(#$)� i. As discussed above, cross section 

functions are commonly scaled locally by )��(��)	and 	ℎ��(��). Therefore, a generic 
expression for the cross section geometric element is: 
 �0/(��) = 	<(ℎ��(��),)��(��)) + �6(��) (18) 

Several potential control functions exist for channel cross sections (Table 2). 
These include power functions (James, 1996), polynomials (James, 1996), probability 
distributions (Merwade, 2004; Jacobson and Galat, 2006), simple geometric shapes 
(Chow, 1959), and analytical functions (Bridge, 1977; Beck, 1988; Deutch and Wang, 
1996). For cross sections to have asymmetric properties they are commonly related to 
local parameters of the channel centerline such as curvature (Deutch and Wang, 1996). 
To model multiple channels in a cross section, the four-parameter Weibull distribution 
used by Jacobson and Galat (2006) can be used. 

For this paper the examples described below utilized the channel cross section 
control function of Deutsch and Wang (1996). The model is based in the curvilinear, 
orthogonal coordinate system and is presented here based on modifications by 
Leigleiter and Kyriakidas (2008). The parameter, o(��), determines the position of 
lateral depth given by: 

 o(��) = �
� (1 − |qU(��)|/qrU)	when qrU(��) < 0	 (19) 

 o(��) = �
� (1 + |qU(��)|/qrU)	when qrU(��) > 0 (20) 

 o(��) = �
�	when qU(��) = 0	 (21) 

where	qU(��)	is centerline curvature and qrU is the maximum curvature of the centerline. 
When the channel curves to the right the channel is deepest toward the left and the 
elevation at each location, ��, is given by: 

 �0/(��) = 4ℎ��(��) g !"(#$)n0 !"(#$) i
L2(#$) t1 − g !"(#$)n0 !"(#$) i

L2(#$)u (22) 

where v�(��) = − ln(2) / ln o(��). Then, when the channel curves to the left it is deepest 
toward the right and the elevation at each location, ��, is given by: 

 �0/(��) = 4ℎ��(��) g1 −  !"(#$)n0
 !"(#$) i

Ly(#$) t1 − g1 − j !"(#$)n0
 !"(#$) i

Ly(#$)u (23) 

where v�(��) = − ln(2) /(1 − lno(��)). 
The channel centerline and its curvature can be linked or separate control 

functions can be used for both. A benefit of having a separate expression for qU is that 
channels can be created with asymmetrical cross sections at locations other than pools 
in meander bends and this approach is utilized herein. To model the centerline 
curvature in the examples in this paper, Eq. (5) is used with	` = 1 and no cosine term, 
because computing the derivatives of a single sinusoid is trivial and the function still 
allows for control of the phase and frequency of curvature, thus cross-sectional 
asymmetry. Based on the standard definition for the curvature of a plane curve 
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described by a sinusoid, the curvature of the channel alignment is given by: 

 qU(��) = 	 nKz	{|}~�z.���z�
(��~Kz	��{~�z.���z�	�y)�/y

 (24) 

where the numerator in Eq. (24) is the second derivative and the denominator is the first 
derivative of Eq. (5) with ` = 1. 

 
4.5 Parameterization 

Parameterization is the final step of creating a synthetic river valley where the 
parameters of the geometric element equations are adjusted to meet user-specified 
attributes defined through the conceptualization process. This includes specification of 
reach-average properties of the river corridor and also each control function parameter 
independently (e.g., the frequency of bed oscillations) and in some cases dependently 
(e.g., the relationship between thalweg elevation and bankfull width). The extent of 
independent and dependent parameterization will depend on the purpose of modeling, 
which fluvial elements are being included, the mathematical function used, and expert 
judgment. For independent parameterization, reach-average properties are specified to 
match the attributes set during conceptualization. Moreover, the river valley can further 
be put into this context by casting the reach-average values in terms of other 
geomorphic indices such as the width-to-depth ratio, channel sinuosity, and 

confinement ratio. Channel sinuosity, =d, is determined as 
d�
de and also can be 

independently parameterized by the sinuosoidal parameters in Eq. (5). Moreover, the 
degree of channel confinement within the valley floor can be contextualized by a 

confinement ratio, �9���� = 	 j!"�������
j!"�jk"�����������������jkl���������	. In addition, the control functions provide another 

avenue for parameterizing the model. For example, the control function for 	6 could be 
used to manipulate the number and spacing of riffle–pools or even residual pool depth. 
For dependent parameterization, the spatial covariance between geometric elements 
may be used to contextualize parameterization of the synthetic river valley as described 
next. 

 
4.5.1 Geomorphic covariance structure 

In this study, dependent parameterization of the geometric model is 
contextualized by the spatial covariance of specific geometric elements, which is termed 
the geomorphic covariance structure (GCS). A GCS is a spatial covariance relationship 
between two or more geometric attributes in a river valley. For example, the serial 
covariance, q�(��), between pairs ��	and	��		can be calculated from detrended and 
standardized series residuals, ��	and ��	 by the product �� ∗ ��	. The basis for the use of a 
GCS in dependent parameterization is that alluvial river systems in dynamic equilibrium 
can have ideal relationships between the covariance of specific geometric variables, 
such as 	6 and ��� or 	6 and qU that can aid in dependent parameterization (Brown 
and Pasternack, 2012). Interpretation of a GCS is based on the sign of the covariances. 
For example consider three basic cases: (i) if ��	 > 0 and �� > 0 then q�(��) > 0, (ii) if ��	 < 0 and �� < 0 then q�(��) > 0, and (iii) if ��	or ��	are < 0 then q�(��) < 0. Thus, 
when q�(��) > 0 the local geometric elements covary and when otherwise do not. By 
thinking through how and where variables that control geomorphic process need to 
covary, it is possible to design a GCS to operationalize a geomorphic process concept 
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via tailored nonuniform, stage-varying channel forms to yield functional form–process 
dynamics. 

 
5. Geometric model construction 

To illustrate river valley synthesis via geometric modeling, the above framework 
and equations were used to build a geometric model capable of creating a wide array of 
topographic configurations. This approach was chosen instead of merely adjusting each 
parameter and coefficient in the geometric model and illustrating arbitrary topographic 
configurations. Specifically, a single geometric model was built for a single-thread, 
gravel-bed river valley to illustrate how independent and dependent parameterization 
can be employed to make a prototypical straight lowland river (S1), straight mountain 
river (S2), meandering lowland river (S3), meandering mountain river (S4), and two 
hybrid configurations (S5–S6). Generating these examples involved drawing on 
fundamental descriptions of reach-scale and morphological-unit-scale variability in two 
distinct physiographic settings, mountains and lowlands, and then extrapolating 2D 
geometric functions to yield 3D surfaces. Independent parameterization was needed to 
provide reach-average values for geometric elements for mountain and lowland valleys. 
Dependent parameterization was performed using ideal GCS relationships that contrast 
fluvial landforms in these settings. The simulations presented herein were programmed 
in Microsoft Excel® and exported into an ��� format so that topographic surfaces with 
contour overlays could be rendered with a program (herein, SURFER v. 8) to visualize 
results. Upon creating surfaces, a low-pass Gaussian filter was used with 30 passes to 
smooth out visual irregularities produced in the interpolation process, since no 
breaklines or other visualization aids were used with the native point cloud. The steps 
from section 4 were used to create the examples; below only the specific 
conceptualization and parameterization steps unique to each example are discussed. 
After that, the utility of GCS in directly creating topographic features is presented in 
section 6.1. The use of GCS functions to create indirect features— specifically between 
channel and floodplain elements— is presented in Brown (2014). 

 
5.1 Example conceptualizations 

Lowland and mountain gravel-bed rivers are typically differentiated by valley and 

channel slope, where the former typically has =̅ < 0.01 (Leopold et al., 1964; Wohl et al., 
1993; Montgomery and Buffington, 1997). Moreover, lowland rivers are ostensibly 
thought to be less confined, having lower values of the confinement ratio (�9����) and 

median sediment size (?+@�����) as well as higher values of sinuosity (=dF ) and width-to-depth 

ratiogj!"�������
�!"������ithan mountain rivers (Schumm, 1960; Leopold et al., 1964; Knighton, 1998; 

Church, 2006; Wohl, 2010). Despite these variables being used heavily in 
geomorphology to provide a broader understanding of landform changes that occur 
along physiographic gradients, mountain and lowland rivers can also be differentiated 
by their GCS functions. 

Alluvial lowland rivers that lack significant topographic forcing elements and are 
unconfined (�9���� << 1) exhibit positively correlated peaks in spatial series of bankfull 
width and thalweg. This means that topographic highs along the longitudinal bed profile 
are correlated with higher than average values of bankfull width (Richards, 1976b; Hey 
and Thorne, 1983; Hudson, 2002; White et al., 2010), which happens because mass 
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continuity for the channel-forming flow dictates that wider than average cross-sectional 
areas have a lower C��∗  than areas that have narrower cross-sectional area (Carling and 
Wood, 1994; Repetto et al., 2002; Caamaño et al., 2009). Mechanistically, this is related 
to the presence of velocity reversals or flow convergence routing, whereby the channel 
form is indicative of a joint geomorphic and hydrodynamic interaction (Wilkinson et al., 
2004; MacWilliams et al., 2006; Sawyer et al., 2010). Moreover, it is common in freely 
meandering alluvial rivers that pools are located at outside bends owing to secondary 
flows driven by centripetal forces (Rhoads and Welford, 1991), which implies a negative 
serial covariance between the spatial series of channel curvature and thalweg elevation. 
Thus, alluvial lowland pool–riffle channels in quasi-equilibrium may be characterized as 
having quasi-oscillatory GCS patterns where q�(�6 , )��) ≥ 0 and q�(�6 , Z#) ≤ 0. 

Mountain rivers, especially in confined canyons where �9����~1 , predominantly 
have forcing bedrock elements, large wood, and coarse sediments that promote 
structurally locked steps and cascades (Montgomery and Buffington, 1997; Church and 
Zimmerman, 2007). Mechanistically these can occur from a variety of interactions 
between flow, sediment, wood, and structural forcing elements in a manner analogous 
to the jammed-state hypothesis for step–pool formation (Church and Zimmerman, 
2007). This can result in bankfull width and thalweg elevation having a negative spatial 
covariance as well as channel curvature and thalweg elevation having a positive one. In 
the Grand Canyon for example, rapids form at constrictions that accumulate coarse 
material supplied from tributaries and lateral erosion, creating locally narrow 
topographic highs (Dolan et al., 1978). Thus, GCS functions for confined mountain 
rivers can be the opposite of those for unconfined alluvial rivers, characterized as also 
having quasi-oscillatory GCS patterns with q�(�6 , )��) ≤ 0 and 0 ≤ q�(�6 , Z#) ≥ 0. The 
benefit of this type of conceptualization whereby GCS properties of prototypical 
landforms are utilized is that the architecture of the geometric model can remain static 
across diverse settings, while dependent control function manipulation of geometric 
elements can allow the creation of different topographic surfaces. 

 
5.2 Parameterization 

Independent parameterization is needed for reach-average variables and for 
each control function. Reach-average values for lowland (S1 and S3) and mountain 
rivers (S2 and S4) were selected from the literature (Table 3; e.g., Leopold et al., 1964; 
Knighton, 1998; Lisle et al., 2000). For the hybrid scenarios (S5 and S6) values were 
chosen for large confined alluvial rivers (e.g., Grant and Swanson, 1995; White et al., 
2010). For S1 through S6 the values for the amplitude, frequency, and phase shift in Eq. 
(5) were specified for control functions for 	6, ���, �5, 89, and qU (see Table 4 for 

additional parameterization values). Similarly, sinuosity, =d, was determined by 
d�
de as 

described above in section 4.5 with S3 having a higher sinuosity than S4. 
Dependent parameterization for these landforms relied on relating each GCS to 

conceptual or even quantitative aspects of a river valley landscape and are shown as 
2D plots for each set of variables in section 5.3. For a positive GCS, the sinusoid control 
function between two elements should have no equal frequencies and no phase shift. 
For a negative GCS, the sinusoid control functions should have a phase shift between 
the two elements and their frequencies should also be equal. For these examples, S1 
and S3 were unconfined and had positive GSCs for thalweg elevation and bankfull 



24 
 

width. In addition, for meandering S3 to have a pool at each outside bend and a riffle at 
each bend apex, thalweg elevation and channel curvature were set out of phase by π/2 
and centerline frequency was set to 1/2 of the thalweg frequency. Scenario 2 and S4 
required a negative GCS with WBF out of phase with ZT, so a phase shift of π was 
applied. For S5 and S6, each GCS was arbitrarily manipulated to create complex 
topography to illustrate the overall approach. 

Example 

Reach Average Parameters S1 S2 S3 S4 
S5 S6 

Channel slope S 0.002 0.02 0 0.02 0.001 0.001 

Valley slope SV 0.002 0.02 0 0.02 0.001 0.001 

Bankfull width (m) WBF 30.00 10.00 30.00 10.00 50.00 50.00 

Median sediment size (m) D50 0.064 0.26 0.03 0.26 0.032 0.032 

Bankfull depth (m) HBF 2.11 1.13 1.06 1.13 2.11 2.11 

Valley top height (m) ZVT 0.00 5.00 1.00 5.00 10.00 5.00 

Valley bottom height (m) ZVB 0.00 5.00 0.00 5.00 4.00 2.00 

Valley bottom width (m) WVB 25.00 1.00 50.00 1.00 25.00 25.00 

Valley top width (m) WVT 25.00 1.00 50.00 1.00 100.00 200.00 

Confinement ratio WC 0.38 0.83 0.23 0.83 0.29 0.18 

Width to depth ratio WBF/HBF 14.20 8.88 28.41 8.88 23.67 23.67 

Sinuosity SL 1.00 1.00 1.13 1.01 1.17 1.07 

Longitudinal node spacing ∆x 0.53 0.18 0.53 0.18 1.27 2.54 

Cross section node spacing ∆n 0.10 0.10 0.10 0.10 0.10 0.10 

Model length  Lx 420.00 140 420 140 1000 2000 

Vertical datum ZD 1000.00 1000 1000 1000 1000 1000 

Number of increments m 784 784 784 784 784 784 

Table 3. Reach average synthetic river simulation parameters for examples 

 
5.3 Evaluation of GCS parameterization on topographic surfaces 

This section visually evaluates the topographic surfaces for S1–S6 and 
discusses how complex topography can be created and subsequently adjusted by 
dependent GCS parameterization. The intent is not to individually manipulate each 
geometric element while holding all others constant, but rather to show how GCS 
manipulation provides a compact method for holistically creating and adjusting 
topographic surfaces with a single geometric model. This is the most useful aspect of 
geometric modeling for synthesizing river valleys with mutually or independently 
adjustable geometric elements. This section also highlights the role of varying control 
functions in creating topographic complexity. 

For S1 and S2, a single waveform (Eq. 5; ` = 1;	Y9 , \9 , ]9 = 0) was used for 
	6 	and ��� to illustrate the utility of GCS manipulation in creating straight channels with 
varying topographic surfaces (Table 4; Fig. 4). For S1, q�(�6 , )��) ≥ 0, which has the 
effect of creating topographic high points in areas that are locally wide and topographic 
low points in areas that are locally wide, consistent with geomorphic theory (Fig. 4a). 
Using the sign of �6f(��) as an index for riffle and pool locations, where �6f(��) > 0 are 
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riffles and �6f(��) < 0 are pools, station 100 would be classified as the center of a riffle 
where stations 0 and 325 would be pool centers. In contrast, S2 has q�(�6 , )��) ≤ 0, 
which has the effect of creating topographic high points in areas that are locally narrow, 
which is also consistent with the conceptualizations envisioned in the first step of the 
modeling process (Fig. 4B). Using relative bed elevation as to discriminate between 
riffles and pools, stations 50 and 125 would be the center of a riffle or step, while 
stations 18 and 88 would be pool centers. Together with independent parameterization 
for the reach-average variables (Table 3), the GCS of geometric elements that have 
simple control functions can create the topography of idealized end-member landforms 
associated with mountain and lowland settings. 

 
S1 S2 S3 S4 S5 S6 

Control Curve 
Parameters 

Symbol Sine  
Sin
e  

Sine  
Sin
e  

Sine  
Cosin

e 
Sine

1
 

Cosine
1
 

Sine
2
 

Cosine
2
 

Thalweg amplitude azt 0.25 2.00 1.00 2.00 0.50 2.00 1.00 0.50 0.25 0.50 

Thalweg frequency bzt 1.00 2.00 2.00 2.00 1.25 2.00 4.00 4.00 5.00 2.00 

Thalweg phase shift θzt 0.00 3.14 1.57 0.00 3.14 3.14 0.00 0.00 0.00 0.00 

Channel width amplitude awbf 0.25 0.25 0.25 0.25 0.20 0.30 0.30 0.20 0.10 0.10 

Channel width frequency bwbf 1.00 2.00 2.00 2.00 2.00 0.50 4.00 4.00 2.00 2.00 

Channel width phase shift θwbf 0.00 0.00 1.57 3.14 1.57 0.00 0.00 0.00 0.00 0.00 

Centerline curvature 
amplitude 

acc 0.00 0.00 0.10 0.10 0.25 NA 0.25 NA NA NA 

Centerline curvature 
frequency 

bcc 0.00 0.00 1.00 2.00 1.00 NA 2.00 NA NA NA 

Centerline curvature 
phase shift 

θcc 0.00 0.00 0.00 3.14 1.00 NA 3.14 NA NA NA 

Channel meandering 
amplitude 

acm 0.00 0.00 50.0 5.00 
100.0

0 
50.00 

175.
0 

75.00 50.0 10.00 

Channel meandering 
frequency 

bcm 0.00 0.00 1.00 1.00 1.00 2.00 0.20 2.00 1.00 7.00 

Channel meandering 
phase shift 

θcm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Left valley floor amplitude arvf 0.00 2.00 50.0 5.00 75.00 25.00 100. 75.00 50.0 10.00 

Left valley floor frequency brvf 0.00 2.00 1.00 1.00 1.50 4.00 0.20 2.00 1.00 7.00 

Left valley floor phase 
shift 

θrvf 0.00 0.00 3.14 3.14 0.00 3.14 0.00 3.14 0.00 0.00 

Right valley floor 
amplitude 

alvf 0.00 2.00 
50.0

0 
5.00 25.00 55.00 100. 75.00 50.0 10.00 

Right valley floor 
frequency 

blvf 0.00 2.00 1.00 1.00 4.50 1.50 0.20 2.00 1.00 7.00 

Right valley Floor phase 
shift 

θlvf 0.00 0.00 0.00 3.14 3.14 0.00 3.14 0.00 3.14 3.14 

 
Table 4. Control function parameters for examples S1 through S6. 



 

Fig. 4. Topographic surface and GCSs for S1 (A,B) and S2 (C,D) illustrating 
the varying GCS’s can create different channel conf
at intervals of 2 m and labels are omitted for clarity.
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a positive peak at approximately station 100 and a negative peak at station 275, both of 
which would be commonly classified as pools because of the pr
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points are associated with channel bends 
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m and labels are omitted for clarity. 

For S3 and S4, the channels meander with a similar q�(�6 , )��) as S1 and S2
to explore the role of the GCS, q�(�6 , Z#), in creating topography

matches the conceptualizations of bed elevation and channel curvature in section 
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. Topographic surface and GCSs for S1 (A,B) and S2 (C,D) illustrating how 

igurations. Contour lines are 

as S1 and S2, 
, in creating topography that 

in section 5.1 
to negative along	��, with 

a positive peak at approximately station 100 and a negative peak at station 275, both of 
esence of lower bed 

This is consistent with commonly reported relationships of 
in quasi-equilibrium. 

nd 350 that coincide with 
, the result is that topographic high 

5C). 



 

Fig. 5. Topographic surface and GCSs for S3 (A,B) and S4 (C,D) illustrating
topographic response of channel meandering. Contour lines are at intervals of 2
m and labels are omitted for clarity.

River valleys S1–S4 illustrate two important components of 
First, even with only a single waveform (
parameters, GCS manipulation of 
surfaces with drastically different characteristics
harmonics in Eq. (5) can yield
increased complexity (Fig. 6),
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the 	6, ���, �5, 89 ,	and qU geometric elements 
topographic surface and associated 
increasing the order of Eq. (5) to 
become even more complex (Fig
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. Topographic surface and GCSs for S3 (A,B) and S4 (C,D) illustrating
topographic response of channel meandering. Contour lines are at intervals of 2
m and labels are omitted for clarity. 
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only a single waveform (Eq. 5; of ` = 1;	Y9 , \9 , ]9 = 0) and 

GCS manipulation of otherwise identical models can create topographic 
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can yield topographic surfaces that have the potential for vastly 
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Fig. 6. Topographic surface and GCS
GCS structure and topographic response when more complex waveforms are 
used as control functions for
lines are at intervals of 2 m and labels are omitted for clarity.

 
6. Discussion 
6.1 Utility of geometric modeling for 

Geometric modeling was able to 
conditions to have fundamental attributes of lowland and mountain river
scale. The technique was able to simulate reach
mountain and lowland settings that included well known GCS
geometric attributes such as bankfull width and thalweg
sinusoidal amplitude of Eq. (5
elevation. The frequency component
scaling— allows simple modeling of riffle and pool spacing in these simulations
capture morphological-unit-scale patterns
user-defined to produce simpler landscapes
variables can yield extremely complex yet organized
relationships of the local �6 to 
creating different topographic surfaces based on individual 2D relationships.
Specifically, the conceptual attributes discussed that differentiate lowland and mountain 
rivers were captured through these GCS
complex control functions are used
geomorphic process or ecological function is
identification of the GCS can reveal the 
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. Topographic surface and GCSs for S5 (A,B) and S6 (C,D) illustrating the 
GCS structure and topographic response when more complex waveforms are 
used as control functions for 	6, ���, �5, 89, and qU geometric elements.

m and labels are omitted for clarity. 
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or ecological function is associated with a GCS, then the 
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basis of pure topographic analysis without hydrodynamic or morphodynamic simulation, 
which is a grand challenge in geomorphology today. While they may appear simplistic at 
this scale, future geometric and/or stochastic models can incorporate subreach-scale 
topographic variability— the possibilities are limitless. Notably, subwidth-scale features 
can be an important attribute of these types of rivers, especially in mountain settings, 
but this phenomenon is not addressed here. Section 6.5 discusses how this can be 
tackled in the existing framework. 

 
6.2 Appropriate control functions 

The approach to geometric modeling of river valleys presented in this paper 
relies on using control functions for parametric descriptions of 2D topographic variability. 
Understandably, the question as to what is the most representative control function for 
specific geometric elements is presently open-ended. Multiple applications exist, each 
perhaps requiring a different function to represent the signature of dominant processes 
as well as controls such as lithology and vegetation. Therefore, exploring the utility of 
diverse mathematical functions as control curves would be a valuable addition. Some 
examples that show immediate promise are kriging (Leigleiter and Kyriakidis, 2008), 
using specific variogram models for different scales (Robert and Richards, 1988), auto-
regressive moving average stochastic models (Richards, 1976a; Knighton, 1983), 
specified power spectral density structures for spatial variables in the frequency domain 
with randomly re-assigned phases (Newland, 1984), nonlinear wave functions (e.g., 
cnoidal waves), and harmonic synthesis as shown herein. In addition, splines and 
Bezier curves could prove beneficial (Mortenson, 1997) using control points in lieu of 
control functions. 

There are tradeoffs in using specific control functions in generating complexity, 
especially in terms of control over landform synthesis. For example, compared to a 
simple sinusoid the addition of harmonics (e.g., Fig. 6B) makes it more difficult to 
analytically derive expressions for morphometric parameters, such as number of riffles 
and pools, their spacing, residual pool depth, and riffle-riffle height. While an AR2 
model, such as in Ferguson (1976), is capable of producing a noisier spatial series, it is 
still driven by randomness that limits full parametric adjustment. Further, Fourier series 
are recommended over AR2 models because the same level of complexity can be 
achieved with much more parametric control. At this stage of river valley synthesis the 
priority is on mindful control and unrestrained synthetic exploration. 

 
6.3 Modeling multithread channels 

To lay out the geometric-modeling foundation for river valley synthesis this article 
only addressed single-thread river channels. The extension of this approach to 
anabranching and braided channels could be made using several approaches. First, in 
the conceptualization several geometric element sets could be modeled for each 
channel so that each thread is explicitly defined. A drawback to such an approach is 
that the intersection of channel threads would cause an overlap unless junctions are 
modeled as specific geometric elements. In the case where geometric elements for 
channel junctions are not used, simple rule-based filtering of overlaps could also give 
this approach promise. An entirely different approach is to rely on using cross section 
functions that explicitly have multithread characteristics. For example, the four-
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parameter Weibull distribution used by Jacobson and Galat (2006) models multiple 
channels in a cross section, though with less options possible when treating each 
thread with independent functions. Moreover, cross section control functions based on 
sinusoids could be harmonically created by analogy with bar modes (Furbish, 1998). In 
this approach the bar mode could vary with the valley width, channel curvature, or bed 
elevation defining an entirely new GCS altogether. Further research is needed to 
evaluate the relative merits of these approaches, but extension of the modeling 
approach herein to more complex channel patterns is foreseeable. 

 
6.4 Potential applications 

Four potential applications that this technique could have an immediate impact in 
are illustrated in this section, including form–process inquiry, river restoration design, 
historical river reconstruction, and geomorphology education. 

 
6.4.1 Form–process inquiry 

Form–process inquiry could benefit from geometric modeling through direct 
testing of GCS structures and topographic response as well as creating digital elevation 
models (DEMs) for hydrodynamic and/or morphodynamic modeling. The use of GCS 
functions coupled with subsequent hydrodynamic, sediment transport, and ecological 
modeling of synthetic DEMs could help geomorphologists understand form–process 
mechanisms. Starting with a GCS configuration, one can iteratively adjust river valley 
DEMs allowing a stepwise analysis into the role of specific landform characteristics. For 
example, several studies have relied on creating prototypical riffle–pool units to 
understand geometric controls on riffle–pool maintenance (Richards, 1978; Carling and 
Wood, 1994; Pasternack et al., 2008), and this tool would easily accommodate such 
inquiry. However, such studies typically look at one to a few units, whereas geometric 
modeling would enable inquiry of longer corridors and include floodplain elements. By 
creating topographic surfaces such as S1 through S4 subsequent flow modeling would 
elucidate which GCS relations create conditions for riffle–pool maintenance. Insight into 
chaotic dynamics and nonlinear complexity could also be gained by subsequent 
morphodynamic modeling of simulated terrains to understand the role of initial 
conditions in landscape evolution (Perron and Fagherazzi, 2012). 

 
6.4.2 River engineering and restoration design 

River engineering and restoration could benefit from this approach because it 
allows the design of synthetic (i.e., alternative new and restored) river topography that 
can be rapidly adjusted and iterated upon. Currently river restoration designs typically 
create restored river reaches through graphical manipulation of surface contours via 
CAD programs (Wheaton et al., 2004a). The approach presented herein facilitates 
similar user flexibility, but allows the generation, and any subsequent iterations, of 
channel form to be linked to parametric equations that can be further related to 
hydrodynamic and ecohydraulic design criteria, removing much subjectivity from 
synthesis of restored river reaches. This extension is easily met, as real world 
coordinates can be used in lieu of specific planform geometric elements that are often 
fixed in river rehabilitation design, such as the centerline alignment or valley width. In 
this context the user can manipulate the GCS of q�(�6 , Z#) and q�(�6 , )��) to initially 
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represent ideal channel topography. For example, single-thread meandering rivers are a 
common planform and channel typology used in river restoration and S3 could be used 
as a guide for their creation. Based on subsequent flow, sediment transport, and habitat 
modeling, GCS relations can then be manipulated through simple parameter 
adjustments to meet specific stage-dependent ecohydraulic design criteria. 

 
6.4.3 Historical reconstruction 

This approach could also facilitate mechanistic modeling of historical reach-scale 
and morphological-unit scale landforms. For example, historical data often lack 3D 
detail making them difficult to visualize and analyze. While river synthesis cannot create 
completely unknown conditions, it could approximate landforms using the best available 
information, analogous to forensic facial reconstruction. For example, used in 
conjunction with historical maps and geologic data the synthesis of ancient channel 
morphology would allow an evaluation of aquatic habitats potentially present in these 
environments (e.g., Jacobson and Galat, 2006). Alternate approaches could use 
paleochannel information to determine the number, type, and subsequent 
characteristics of channels with geometric modeling used to create synthetic DEMs 
(Pyrcz et al., 2009). 

 
6.4.4 Education 

Synthetic river valleys could be a major tool in educating students on what makes 
rivers unique as topographic surfaces via active learning pedagogy. Renwick (1985) 
and Fonstad (2006) both suggested that LEMs and synthetic data have value in Earth 
sciences education. In particular, Fonstad (2006) argued that a stepwise progression in 
model complexity can be helpful for students to understand the roots and consequences 
of complexity. For the model presented herein, undergraduate students could build 
synthetic DEMs with varying GCS functions and then evaluate surfaces heuristically 
from hydrodynamic, geomorphic, ecologic, and civil engineering perspectives. In 
building a synthetic river, students also come to understand firsthand the basic 
mathematical properties of rivers relative to other landforms and civil structures, an 
insight that should always be appreciated. Meanwhile, graduate students can study 
similar river valley processes by combining geometric models with numerical flow and 
sediment transport modeling to understand relationships between channel geometry, 
sediment transport, and aquatic ecology (Pasternack, 2011). 

 
6.5 Recommended advances 

Recommended advances to further develop and improve geometric modeling of 
synthetic river valleys include the use of more sophisticated control curves (section 6.2), 
hierarchical modeling of scale-dependent variability, the inclusion of stochastic 
modeling, object-based modeling or import of nonfluvial elements (e.g., boulders, 
bridges, levees, and wood jams) as highly detailed, independent meshes or voxels, and 
the modeling of multithread channels (section 6.3). Hierarchical modeling is a preferred 
approach in simulating landscape complexity because scale-dependent topographic 
features can be explicitly modeled (Clarke, 1988; Werner, 1999). A hierarchical 
modeling approach that represents the total variance of each control function as the 
linear sum of scale-specific variance may afford insights into scale-dependent effects of 
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river topography on habitat, sediment transport, and landscape change. Using control 
functions, such as Eq. (5), it could also be possible to simulate real or artificial river 
topography by identifying desirable scale-dependent harmonics of fluvial geometric 
elements (Clarke, 1988). In this case, one could determine the harmonics of a 
geometric element via spectral analysis and use that information to populate the 
sinusoidal parameters of the geometric model. The inclusion of object-based geometric 
models, such as individual boulders that can be scaled by flow, drainage area, or 
sediment type would allow for added layers of physical complexity required for 
microhabitat. Moreover, the use of spatially explicit patches of known bounds could be 
used to allow rapid synthesis and modification of surface roughness for modeling 
bedrock and alluvial surfaces. 

 
7. Conclusions 

This article introduced a geometric modeling framework for synthesizing 
prescribed river valley topography. A theoretical framework and workflow demonstrated 
how to create geometric models capable of generating adjustable topographic surfaces. 
The flexibility of the model was illustrated with six lowland and mountain topographic 
surfaces adjusted through independent and dependent GCS parameterization to create 
landforms of varying complexity. A key aspect of the model was the dependent 
parameterization of GCS relations between geometric elements that can be used to set 
the location of riffles and pools relative to the bankfull width and channel centerline, 
among other geometric elements. The approach presented herein can be used by 
geomorphologists for form–process inquiry and by engineers in designing river 
restoration projects. Thus, synthesis of prescribed river topography is a significant 
advance in understanding linkages between form, flow, ecology, and society. 
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