
Lawrence Berkeley National Laboratory
LBL Publications

Title
Separating signal and noise in atmospheric temperature changes: The importance of 
timescale

Permalink
https://escholarship.org/uc/item/8tx1q9pg

Journal
Journal of Geophysical Research, 116(D22)

ISSN
0148-0227

Authors
Santer, BD
Mears, C
Doutriaux, C
et al.

Publication Date
2011-11-27

DOI
10.1029/2011jd016263
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8tx1q9pg
https://escholarship.org/uc/item/8tx1q9pg#author
https://escholarship.org
http://www.cdlib.org/


Separating signal and noise in atmospheric temperature changes:
The importance of timescale

B. D. Santer,1 C. Mears,2 C. Doutriaux,1 P. Caldwell,1 P. J. Gleckler,1 T. M. L. Wigley,3

S. Solomon,4 N. P. Gillett,5 D. Ivanova,1 T. R. Karl,6 J. R. Lanzante,7 G. A. Meehl,3

P. A. Stott,8 K. E. Taylor,1 P. W. Thorne,6 M. F. Wehner,9 and F. J. Wentz2

Received 19 May 2011; revised 16 August 2011; accepted 21 August 2011; published 18 November 2011.

[1] We compare global‐scale changes in satellite estimates of the temperature of the lower
troposphere (TLT) with model simulations of forced and unforced TLT changes. While
previous work has focused on a single period of record, we select analysis timescales
ranging from 10 to 32 years, and then compare all possible observed TLT trends on each
timescale with corresponding multi‐model distributions of forced and unforced trends.
We use observed estimates of the signal component of TLT changes and model
estimates of climate noise to calculate timescale‐dependent signal‐to‐noise ratios (S/N).
These ratios are small (less than 1) on the 10‐year timescale, increasing to more than 3.9
for 32‐year trends. This large change in S/N is primarily due to a decrease in the
amplitude of internally generated variability with increasing trend length. Because of the
pronounced effect of interannual noise on decadal trends, a multi‐model ensemble of
anthropogenically‐forced simulations displays many 10‐year periods with little warming.
A single decade of observational TLT data is therefore inadequate for identifying a
slowly evolving anthropogenic warming signal. Our results show that temperature
records of at least 17 years in length are required for identifying human effects on
global‐mean tropospheric temperature.

Citation: Santer, B. D., et al. (2011), Separating signal and noise in atmospheric temperature changes: The importance of
timescale, J. Geophys. Res., 116, D22105, doi:10.1029/2011JD016263.

1. Introduction

[2] Since the late 1970s, it has been recognized that the
identification of human effects on climate is inherently a
signal‐to‐noise (S/N) problem [Hasselmann, 1979; Madden
and Ramanathan, 1980;Wigley and Jones, 1981;Wigley and
Raper, 1990; Allen et al., 1994; Santer et al., 1994, 1995].
The warming signal arising from slow, human‐caused
changes in atmospheric concentrations of greenhouse gases
is embedded in the background ‘noise’ of natural climate
variability. Yet much of the recent public discourse on the

reality of a discernible human influence on global climate
reflects pervasive confusion regarding the distinctions
between short‐term climate variability and long‐term climate
change. It is therefore important and timely to illuminate
some basic issues related to the S/N behavior of atmospheric
temperature data.
[3] Signal identification requires the application of stan-

dard signal processing methods [Hasselmann, 1979], which
exploit differences in the spatial pattern and/or the temporal
evolution of signal and noise [e.g., Hasselmann, 1979, 1993;
Santer et al., 1994, 1995, 1996; North et al., 1995; Tett et al.,
1996; Hegerl et al., 1996, 2007; Allen and Tett, 1999; Stott
et al., 2000; Barnett et al., 2001, 2005; Gillett et al., 2002].
Most attempts to identify anthropogenic “fingerprints” in
observational climate data rely on multi‐decadal records.
Shorter periods of record generally have small S/N ratios,
making it difficult to identify an anthropogenic signal with
high statistical confidence [Allen et al., 1994; Santer et al.,
1995, 1996; North et al., 1995; Hegerl et al., 1996]. The
timescale dependence of S/N ratios arises primarily because
the climate noise in most meteorological and oceanographic
time series is largest on short (daily to annual) timescales, and
becomes smaller over longer averaging periods [Santer et al.,
1995, 1996; Liebmann et al., 2010]. Fingerprint results show
a similar dependence on the spatial scale of the analysis, with
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higher S/N ratios for global‐ to hemispheric‐scale climate
changes [Stott and Tett, 1998].
[4] Because interannual noise is large, it can have a pro-

nounced impact on decadal trends, both in observations and
climate models. Models are therefore capable of simulating
decade‐long periods with little or no surface warming, even
under future anthropogenic forcing regimes. This has been
shown in two recent investigations [Easterling and Wehner,
2009; Knight et al., 2009]. These studies have not explicitly
analyzed S/N ratios as a function of timescale, which is our
primary concern here.
[5] The current investigation focuses on globally averaged

changes in the temperature of the lower troposphere (TLT)
rather than on detailed spatial (or spatio‐temporal) finger-
prints of surface or atmospheric temperature change. Pre-
vious fingerprint work with TLT has consistently identified
an anthropogenic influence on satellite‐ and radiosonde‐
based estimates of tropospheric temperature change (for
reviews of these studies, see Santer et al. [2006], Hegerl
et al. [2007], Hegerl and Zwiers [2011], and Thorne et al.
[2011a]). Our goal here is to use global‐scale TLT
changes for illustrating some basic features of the timescale‐
dependence of S/N ratios. Such information is difficult to
obtain from “space‐time” fingerprint studies, which com-
bine spatial and temporal information into a single vector.
[6] We focus on TLT because the magnitude of observed

changes in TLT and lapse rates – and the consistency of
these changes with climate model results – has been the
subject of considerable scientific debate [e.g., National
Research Council, 2000; Gaffen et al., 2000; Karl et al.,
2006; Hegerl et al., 2007; Thorne et al., 2007, 2011b;
Douglass et al., 2008; Santer et al., 2008; McKitrick et al.,
2010; Fu et al., 2011]. Most previous studies of the con-
sistency between modeled and observed TLT trends have
performed such comparisons over a single period of record
only – often a period less than the total length of the
observations. Typically, such work does not assess whether
modeled and observed temperature trends are consistent on
multiple timescales, and does not consider whether the
selected segment of the observed record is representative of
the longer‐term statistical behavior of the time series (an
exception is the work of Thorne et al. [2007]). Given recent
interest in comparing modeled and observed temperature
trends over both short periods of record (the last 10 to
15 years) and the full satellite era, we assess trend consis-
tency over a range of timescales (from 10 to 32 years) rather
than over a single period of record.
[7] We note that there is a related body of literature which

seeks to determine the “detection time” – the time at which
an anthropogenically‐forced climate signal can be statisti-
cally identified relative to background noise [see, e.g., Karl
et al., 1991; Allen et al., 1994; Santer et al., 1994;
Weatherhead et al., 1998; Henson et al., 2010]. Such work
uses either statistical or physical models (or both) to esti-
mate the structure and levels of the background noise
against which an observed, model‐predicted, or idealized
climate‐change signal must be detected. To date, “detection
time” studies (which are inherently a form of S/N analysis)
have not been performed with global‐scale changes in TLT.
Nor has such work typically utilized noise information from
a large, multi‐model archive (as we do here).

[8] The structure of this paper is as follows. Section 2
describes the observational and model TLT data sets used
here. Section 3 compares simulated and observed trend
distributions on different timescales, and then briefly out-
lines how we assess whether observed TLT trends are sta-
tistically unusual relative to TLT trends in model control
runs and externally forced simulations. Section 4 analyzes
S/N ratios as a function of timescale, and provides time-
scale‐dependent estimates of the probability that model
unforced variability could plausibly explain observed TLT
trends. In Section 5, we examine the consistency between
TLT trends in observations and in simulations of externally
forced climate change. The possibility of spurious inflation
of our estimated S/N ratios by model variability errors is
addressed in Section 6. A short summary is given in
Section 7. Appendix A supplies detailed information on
statistical notation and on the calculation of p‐values and
S/N ratios.

2. Observational and Model Temperature Data

[9] We compare simulated and observed global‐scale
TLT trends using three different observational data sets,
each based on measurements of microwave emissions made
by Microwave Sounding Units (MSUs) on polar‐orbiting
satellites. The three MSU TLT data sets analyzed here were
developed by research groups at the University of Alabama
at Huntsville (UAH) [Christy et al., 2007] and Remote
Sensing Systems in Santa Rosa, California (RSS) [Wentz
and Schabel, 1998; Mears and Wentz, 2005]. Differences
between the temperature‐change estimates generated by
UAH and RSS arise from different choices made in the data
set construction process, particularly in the treatment of
inter‐satellite biases, drifts in instrument calibration, and the
effects of orbital drift [Karl et al., 2006]. Two versions of
the RSS TLT data (versions 3.2 and 3.3) were available,
which differ only in terms of the amount of information they
incorporate from Advanced Microwave Sounding Units
(AMSUs), and therefore differ only after 1998. All observed
MSU data sets span the period from 1979 through to the end
of 2010.
[10] To obtain model estimates of forced and unforced

TLT changes, we use output from phase 3 of the Coupled
Model Intercomparison Project (CMIP‐3) [Meehl et al.,
2007; Intergovernmental Panel on Climate Change,
2007], which was an important scientific resource for the
Fourth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC). We analyze three different types
of simulation in the CMIP‐3 multi‐model archive: (1) pre‐
industrial control runs with no changes in either anthropo-
genic or natural external influences on climate. These
simulations provide information on internal climate noise;
(2) 20th century (20CEN) runs with estimated historical
changes in human and (in some cases) natural external
forcings. Examples of such forcings include anthropogenic
changes in well‐mixed greenhouse gases, stratospheric
ozone, and sulfate aerosols, as well as natural changes in
volcanic aerosols and solar irradiance; and (3) simulations
with 21st century changes in greenhouse gases and anthro-
pogenic aerosols prescribed according to the A1B scenario
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of the IPCC Special Report on Emissions Scenarios
[Nakićenović and Swart, 2000].
[11] Most of the 20CEN simulations end in 1999 or 2000.

The A1B simulations were initiated from atmospheric and
ocean conditions at the end of the 20CEN runs, and then
integrated to at least 2099. The A1B runs provide a rea-
sonable estimate of GHG forcings over 2000 to 2010, but it
is not clear how realistically they represent the true net
aerosol forcing over this period.
[12] Assessing the realism of the A1B aerosol forcing is

hampered by substantial uncertainty in observed estimates
of the net forcing caused by anthropogenic aerosols [Forster
et al., 2007; T. M. L. Wigley and B. D. Santer, Quantifying
the anthropogenic component of 20th century warming,
manuscript in preparation, 2011]. In addition to this large
observational uncertainty in aerosol forcing, there are at
least several other reasons why we might expect to see
differences between the simulated and observed aerosol
forcing over the last decade. First, many of the CMIP‐3
20CEN and A1B simulations omit both the indirect effects
of aerosols on clouds and the direct effects of black carbon
aerosols (see auxiliary material).1 Second, the A1B scenario
may have underestimated the recent rapid increase in
anthropogenic sulfate emissions from China, and hence may
have underestimated the direct radiative forcing caused by
sulfate aerosols [Kaufmann et al., 2011].
[13] Splicing together output from the 20CEN and A1B

simulations facilitates the comparison of simulated and
observed atmospheric temperature changes over the full
observed MSU record (1979 to 2010). While splicing
increases the length of model record available for compar-
ison with observations, it can also introduce forcing dis-
continuities [Arblaster et al., 2011], which in turn impart
inhomogeneities to the simulated TLT changes.
[14] The synthetic MSU temperatures analyzed here are

computed from the CMIP‐3 pre‐industrial control runs and
the ‘spliced’ 20CEN/A1B runs (see Figures 1 and 2,
respectively). In most previous calculations of this type, the
average temperature of the lower troposphere was obtained
by applying a global‐mean TLT weighting function to the
atmospheric temperature profiles at each model grid‐point
[Douglass et al., 2008; Santer et al., 2008; McKitrick et al.,
2010]. Here, we use a new method developed at RSS
(C. Mears et al., Fast, simple methods for calculating syn-
thetic microwave sounder brightness temperatures from
discrete‐level data, submitted to Journal of Atmospheric and
Oceanic Technology, 2011), in which local weighting
functions were applied to model temperature profiles. The
local weights depend on the grid‐point surface pressure,
temperature, and type (land or ocean). This new method
provides more accurate estimates of synthetic MSU tem-
peratures, particularly over high elevation regions.
[15] Most of our trend calculations rely on a standard

least‐squares estimator of linear changes in tropospheric
temperature. We also explore the sensitivity of our model‐
versus‐observed trend consistency results to use of an
alternative trend estimator which is less sensitive to outliers
(see Section 6). All observed and simulated trends are
computed with monthly‐mean near‐global TLT data. For

simplicity, however, we refer to analysis timescales in years
rather than months.

3. Accounting for Climate Noise in Comparisons
of Modeled and Observed Trends

[16] Figure 3a shows why it is important to account for the
effects of climate noise in comparisons of modeled and
observed trends. On interannual timescales, one of the most
prominent manifestations of climate noise is the El Niño/
Southern Oscillation (ENSO). The relatively small values of
overlapping 10‐year TLT trends during the period 1998 to
2010 are partly due to the fact that this period is bracketed
(by chance) by a large El Niño (warm) event in 1997/98,
and by several smaller La Niña (cool) events at the end of
the MSU record (Figure 7b).
[17] To assess the effect of seasonal and interannual vari-

ability on 10‐year TLT trends, we fit linear trends to over-
lapping 120‐month segments of the 384‐month MSU TLT
record. For maximally overlapping 120‐month intervals (i.e.,
for overlap by all but one month), this yields 265 samples
of 120‐month trends. We use maximally overlapping trends
to guard against excluding the largest cooling or warming
trends from our analysis (see Appendix A).
[18] Ten‐year TLT trends in the RSS v3.3 data set range

from −0.05 to +0.44°C/decade (Figure 3a). The impact of
interannual variability on trends is markedly reduced by
trend fitting over 20‐year periods. All 145 of the 20‐year
RSS v3.3 TLT trends are positive, and the range of 20‐year
trends (0.15 to 0.25°C/decade) decreases by more than a
factor of four relative to the 10‐year trend case (Figure 3b).
Comparable results are obtained for RSS v3.2 and UAH
TLT data (not shown).
[19] Similar noise reduction also occurs in model TLT

data (Figures 4a–4c). On 10‐year timescales, distributions
of unforced and forced TLT trends overlap markedly
(Figure 4a). This overlap occurs because even under
anthropogenic and natural external forcing, interannual cli-
mate noise has a large influence on short, decadal trends.
When trends are computed over 20‐year periods, there is a
reduction in the amplitude of both the control run noise and
the noise superimposed on the externally forced TLT signal
in the 20CEN/A1B runs. Because of this noise reduction, the
signal component of TLT trends becomes clearer, and the
distributions of unforced and forced trends begin to separate
(Figure 4b). Separation is virtually complete for 30‐year
trends (Figure 4c).
[20] Figure 5 shows how we account for the effects of

interannual noise in assessing the consistency between
observed and simulated trends. As described above, we first
calculate maximally overlapping observed trends of length
L months. For the L = 120 case, there is nothing statistically
unusual about the small temperature trends with starting
dates in the post‐1998 period (Figure 5a). Similar periods
with near‐zero or negative decadal trends occurred at the
start of the satellite record and for starting dates around 1987.
The average observed 10‐year TLT trend over 1979 to 2010
is positive in all cases (0.17, 0.15, and 0.15°C/decade for
RSS v3.2, RSS v3.3, and UAH, respectively), with large
sampling uncertainty.
[21] For each of the 265 observed 10‐year trends, we can

use control TLT data to calculate the probability pc(i)′ that
1Auxiliary materials are available in the HTML. doi:10.1029/

2011JD016263.
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Figure 1. Time series of monthly mean, near‐global anomalies in lower tropospheric temperature (TLT)
in the pre‐industrial control runs performed with 22 different CMIP‐3 models. Model anomalies are aver-
aged over 82.5°N–70°S (the latitudinal extent of RSS TLT data), and are defined with respect to clima-
tological monthly means over the entire control run. For information on the processing of control run data,
refer to Table S3 in the auxiliary material.
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an internally generated trend could exceed the current
observed TLT trend. In our notation (see Appendix A), the
subscripts o, c, and f denote use of data from observations,
control integrations, and the forced 20CEN/A1B runs,
respectively. The index i is over the number of overlapping
L‐month trends in the observations. The prime notation
denotes ‘weighted’ p‐values, which account for inter‐model
differences in either the length of control integrations or in
the number of realizations of forced climate change. We
use these weighted p‐values solely to evaluate whether
observed trends are unusual relative to model distributions of

forced and unforced trends (rather than as a basis for con-
ducting formal statistical significance tests).
[22] Interannual noise has a large effect on pc(i)′

(Figure 5b). As expected, the smallest pc(i)′ values are
obtained for the largest observed 10‐year TLT trends, which
end at the time of the 1997/1998 El Niño. For RSS v3.2,
v3.3, and UAH TLT data, the mean pc(i)′ value of the 265
individual 10‐year trends, pc ′, is 0.20, 0.24, and 0.22
(respectively). On average, therefore, roughly 20% to 24%
of the unforced model trends are larger than the observed
10‐year trends. Note that the average of individual pc(i)′

Figure 2. Time series of monthly mean, near‐global TLT anomalies in the spliced 20CEN/A1B runs per-
formed with 20 different CMIP‐3 models. Spatial averaging and anomaly definition is as in Figure 1. For
detailed information regarding splicing of 20CEN and A1B runs, see Table S2 in the auxiliary material.
The y‐axis range is identical in each panel.
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values is very similar to the pc value calculated using the
average of individual observed trends.
[23] Our results show that observed 10‐year TLT trends

are not statistically unusual relative to unforced control run
trends. This does not mean that there is no underlying
externally forced signal in the observed data – merely that
the noise level on this timescale is large, which precludes
reliable identification of such a signal.
[24] Values of pf (i)′ (Figure 5c) are defined in an analo-

gous way to pc(i)′, and provide information on whether
observed TLT trends are unusually small relative to the
multi‐model distribution of forced TLT trends in the spliced
20CEN/A1B runs (see Appendix A). These simulations
provide 51 realizations of forced TLT changes over 1979 to
2010, generated with 20 different climate models. For
maximally overlapping 120‐month trends, there are 13515
(265 × 51) samples of forced trends. On the 10‐year time-
scale, pf ′ values are 0.39, 0.37, and 0.37 for RSS v3.2, v3.3,
and UAH (respectively). On average, therefore, between
37% and 39% of the 10‐year TLT trends in the forced

20CEN/A1B runs are actually smaller than the observed
10‐year trends.
[25] Even in the post‐1998 period with muted observed

warming, almost all individual pf (i)′ values exceed 0.10
(Figure 5c). This indicates that more than 10% of the model
trends are smaller than the post‐1998 10‐year trends in the
RSS and UAH data sets. We conclude from these results
that there is no statistical inconsistency between the recent
small observed 10‐year TLT trends and the trends obtained
from the externally forced model simulations.

4. Signal‐to‐Noise Ratios

[26] We now examine the relative sizes of signal and
noise estimates on different timescales. Consider the signal
estimates first. In both the observations and the 20CEN/A1B
runs, individual TLT time series consist of two components:
an externally forced signal, and internally generated noise
[Santer et al., 2008]. The underlying signal component may
have complex time evolution, but is approximated here by a

Figure 3. Satellite‐based estimates of monthly mean, near‐global TLT anomalies. Observations are
from RSS version 3.2 [Mears and Wentz, 2005]. Least squares linear trends were fitted to overlapping
(a) 120‐ and (b) 240‐month segments of the RSS time series. For visual display purposes, the trend overlap
shown here is by all but 12 months (rather than the one‐month overlap used for calculating p‐values; see
Appendix A). The largest negative and positive trends are highlighted in blue and red. Spatial averaging
and anomaly definition is as in Figure 2.
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linear trend. To obtain estimates of the signal, we calculate
averages of maximally overlapping trends, thereby reducing
the impact of seasonal and interannual climate noise.
[27] We emphasize that such trend averages (which we

refer to subsequently as ‘signals’) are only estimates of the
true (but unknown) signal. Since the observations have far
fewer trend samples than the multi‐model ensemble of
20CEN/A1B simulations, we expect observational estimates
of the underlying signal to be more contaminated by inter-
nally generated variability. In addition to the purely statis-
tical uncertainty inherent in estimating trends from noisy

data, model signal estimates incorporate uncertainties aris-
ing from inter‐model differences in: (1) the applied human
and natural external forcings; (2) the responses to these
forcings; and (3) the size and spatio‐temporal structure of
internal climate variability superimposed on the signal [Karl
et al., 2006].
[28] In both models and observations, the signal is always

positive (≥0.14°C/decade) over the timescale range exam-
ined here (Figure 6a). To first order, the signal is timescale‐
invariant. Average forced trends in the model 20CEN/A1B
simulations vary by less than 10% (from 0.24 to 0.26°C/

Figure 4. Sampling distributions of forced and unforced temperature trends on (a) 10‐, (b) 20‐, and
(c) 30‐year timescales. Results are for near‐global changes in TLT. Model output is from the CMIP‐3
control runs and spliced 20CEN/A1B runs [Meehl et al., 2007]. Some models have multiple control
runs and multiple realizations of forced climate change (see auxiliary material). All available model
output was used in generating trend sampling distributions. Least squares linear trends of length 120,
240 and 360 months were fitted to maximally overlapping segments of each model’s control‐ and
perturbed‐run synthetic TLT data (see Appendix A). Trends from individual models were then pooled
to form multimodel distributions. The analysis period for the 20CEN/A1B runs (1979 to 2010) is
identical to that used for the observations. Observed trend results are the averages of overlapping 120‐,
240‐ and 360‐month trends fitted to the RSS v3.2, v3.3, and UAH TLT data. The 5‐95 percentiles of
the observed trend distributions are shown for 120‐ and 240‐month trends only. Here and elsewhere,
multimodel average trends were calculated using the ensemble‐mean trends of individual models (if
multiple 20CEN/A1B realizations were available).
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decade) over 10‐ to 32‐year timescales. Average observa-
tional TLT trends show slightly greater percentage variation
with timescale, and range from 0.16 to 0.21°C/decade (0.15
to 0.19°C/decade) for RSS v3.2 (v3.3) data and from 0.14 to
0.18°C/decade for UAH results.

[29] In contrast, the standard deviation of the multi‐model
sampling distribution of unforced trends decreases by more
than a factor of four over the 10‐ to 32‐year timescale range
(Figure 6b). This is the primary reason for the increase in S/N
with increasing trend fitting period (Figure 6c). For all three

Figure 5. (a) Comparison of modeled and observed trends on the 10‐year timescale. All results are for
modeled and observed 120‐month trends in near‐global TLT. For each observed data set (RSS v3.2, v3.3,
and UAH), there are 265 overlapping 120‐month trends for the period 1979 to 2010. The average of these
trend values, bo, is plotted on the right side of Figure 5a, together with the 5–95 percentiles of the
observed trend distributions. Each observed trend was compared with multimodel sampling distributions
of (b) unforced and (c) forced 120‐month trends, allowing calculation of pc(i)′ and pf (i)′ values (respec-
tively; see Appendix A). The averages of the 265 individual pc(i)′ and pf (i)′ values, pc ′ and pf ′, are
indicated by squares in Figures 5b and 5c. The regions where pc(i)′ and pf (i)′ are less than 0.05 (i.e., where
observed trends are statistically unusual relative to the multimodel sampling distributions of unforced and
forced trends) are marked in grey. Note that two different sets of x‐axis labels are provided, identifying
both the start month (top axis) and the end month (bottom axis) of the trend‐fitting period.
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observational TLT data sets, S/N ratios increase from
roughly 1.0 for 10‐year trends to greater than 3.9 for 32‐year
trends. Because S/N ratios are very low on the 10‐year
timescale, one cannot use such short observational records to
make meaningful inferences about the presence or absence of
a slowly‐evolving anthropogenic warming signal.

[30] On timescales longer than 17 years, the average
trends in RSS and UAH near‐global TLT data consistently
exceed 95% of the unforced trends in the CMIP‐3 control
runs (Figure 6d), clearly indicating that the observed multi‐
decadal warming of the lower troposphere is too large to be
explained by model estimates of natural internal variability.

Figure 6. Behavior of signal‐to‐noise ratios (S/N) as a function of increasing trend length. All results are
for modeled and observed trends in near‐global TLT. The analysis is for trends on timescales ranging from
10 to 32 years. Results are for (a) the estimated signal component of trends; (b) noise trends; (c) S/N ratios;
(d) values of pc ′ and (e) pf ′; and (f) the ratio between the multimodel average TLT trend and the average
observed TLT trend. Observed trends in Figure 6a are values of bo, and represent the averages of RSS v3.2,
v3.3, and UAH trend distributions (see Appendix A). Model results in Figure 6a are the multimodel average
trends, calculated from sampling distributions of forced TLT trends obtained from the spliced 20CEN/A1B
runs. Ensemble‐mean results were used in estimating multimodel average trends. The 5–95 percentile
range (based on the full multimodel trend sampling distribution) is shaded in yellow. Results in Figure 6b
are the standard deviations of the multimodel sampling distributions of unforced trends, calculated using
both overlapping and non‐overlapping time series segments. S/N ratios in Figure 6c are simply the esti-
mated signal trends in Figure 6a divided by the standard deviations of unforced trends in Figure 6b
(computed with overlapping chunks). The pc ′ (pf ′) values in Figures 6d (6e) were computed with over-
lapping time series segments, and provide information on whether observed TLT trends are unusually large
(small) with respect to multimodel sampling distributions of unforced (forced) trends. Values of pc ′ and
pf ′ < 0.05 are shaded in grey. For full details of statistical notation and all calculations, refer to
Appendix A.
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This conclusion is dependent on the fidelity with which
models simulate the amplitude of observed climate noise,
particularly on multi‐decadal timescales – an issue that we
explore later in Section 6.

5. Consistency Between TLT Trends in
Observations and 20CEN/A1B Runs

[31] We consider next the estimated pf ′ values obtained
for the comparison of modeled and observed TLT trends
(Figure 6e). There is no timescale on which observed trends
are statistically unusual (at the 5% level or better) relative to
the multi‐model sampling distribution of forced TLT trends.
We conclude from this result that there is no inconsistency
between observed near‐global TLT trends (in the 10‐ to
32‐year range examined here) and model estimates of the
TLT response to anthropogenic forcing.
[32] The results in Figure 6e were obtained with a least‐

squares estimator for linear trends. It is interesting to con-
sider whether the use of a trend estimator which is less
sensitive to outliers [see, e.g., Lanzante, 1996; Santer et al.,
2000] leads to different conclusions regarding the consis-
tency between TLT trends in observations and the model
20CEN/A1B runs.
[33] One such estimator minimizes the absolute deviations

between the data and the linear fit [Press et al., 1992]. We
repeated all calculations of pf ′ values using this ‘least
absolute deviations’ (LAD) approach. On the longest and
shortest timescales considered in our analysis, the least‐
squares and LAD trend estimators produce very similar
results (see auxiliary material, Figure S1). For timescales
ranging from roughly 19 to 30 years, the LAD estimator
yields systematically higher values of pf ′ – i.e., model
forced trends are in closer agreement with observations. We
conclude from this that our use of a least‐squares estimator
provides a conservative estimate of the consistency between
TLT trends in observations and the 20CEN/A1B runs.
[34] Recently, it has been claimed that model‐based esti-

mates of global‐scale TLT changes are a factor of three
larger than the observed ‘residual’ TLT trend (J. R. Christy,
Testimony in Hearing before the Subcommittee on Energy
and Power, Committee on Energy and Commerce, House of
Representatives, March 8, 2011, http://republicans.energy-
commerce.house.gov/Media/file/Hearings/Energy/030811/
Christy.pdf) (hereinafter Christy, online document, 2011).
This residual trend was estimated after statistical removal of
ENSO and volcanic signals from UAH TLT data, but not
from model data. The net effect of removing ENSO and
volcanic signals was to reduce the UAH TLT trend over
1979 to 2010 from 0.14 to 0.09°C/decade (Christy, online
document, 2011).
[35] Our comparison of ‘raw’ modeled and observed

trends (Figure 6f) does not involve removal of ENSO and
volcanic effects from observations alone, and is not
restricted to a single period of record. We find that for the
range of TLT trends considered here, there is no trend length
at which the multi‐model average trend, bf , is more than
1.73 times larger than bo, the average observed TLT trend
(see Figure 6f). Across the 10‐ to 32‐year range of trend
lengths, the average ratio of bf /bo is 1.35 for RSS v3.2, 1.46
for RSS v3.3, and 1.55 for UAH.

[36] Possible reasons for the fact that bf is consistently
larger than bo will be discussed in detail in subsequent work,
which will examine the latitude‐altitude structure of differ-
ences between modeled and observed atmospheric temper-
ature trends. Here, it is sufficient to note that many of the
20CEN/A1B simulations neglect negative forcings arising
from stratospheric ozone depletion, volcanic dust, and
indirect aerosol effects on clouds. Even CMIP‐3 simula-
tions which include these factors were performed roughly
7‐10 years ago, and thus do not include solar irradiance
changes over the last 11‐year solar cycle [Wigley, 2010;
Kaufmann et al., 2011], decreases in stratospheric water
vapor concentrations over 2000 to 2009 [Solomon et al.,
2010], and increases in volcanic aerosol loadings over the
last decade [Vernier et al., 2011; Solomon et al., 2011]. It is
likely that omission of these negative forcings contributes
to the positive bias in the model average TLT trends in
Figure 6f. Given the considerable technical challenges
involved in adjusting satellite‐based estimates of TLT changes
for inhomogeneities [Mears et al., 2006, 2011], a residual
cool bias in the observations cannot be ruled out, and may
also contribute to the offset between the model and observed
average TLT trends.
[37] A notable feature of our results is the decrease in

values of pf ′ for trend lengths L > 20 years (Figure 6e). This
is partly a consequence of the decrease in noise amplitude
with increasing trend length, so that any errors in model
signal trends are less obscured by noise on longer time-
scales. The timescale dependence of pf ′ is also affected by
forcing discontinuities at the splice point between the
20CEN and A1B runs [Arblaster et al., 2011]. These dis-
continuities occur between 21 and 22 years after the 1979
start date used for comparisons with observational TLT data.
They have the largest impact on 25‐ to 30‐year trends
spanning the splice point.
[38] Another factor contributing to the decrease in pf ′ with

increasing trend length is the occurrence of several La Niña
events near the end of the satellite record (see Figure 7b).
The cooling induced by this clustering of La Niñas appears
to be statistically unusual with respect to average model
estimates of interannual variability (Figure 7a), and has a
larger influence on observed 30‐year TLT trends than on
10‐year trends. This is because each observational TLT data
set has only 25 overlapping 30‐year trends, all of which are
affected by the La Niña‐induced cooling at the end of the
satellite record. For shorter 10‐year trends, however, there
are 265 overlapping samples, which diminishes the impact
of the recent cluster of La Niñas. Note that the addition of
observed TLT data for 2010 almost doubled the RSS and
UAH pf ′ values for 30‐year trends – i.e., observed trends
became less unusual relative to the multi‐model sampling
distribution of forced trends.

6. Comparison of Modeled and Observed TLT
Variability

[39] If models systematically underestimate the amplitude
of near‐global TLT variability on multi‐decadal timescales,
the S/N ratios in Figure 6c are likely to be spuriously
inflated. Whether such a systematic error exists is difficult to
determine. Because satellite TLT records are relatively
short, observations cannot provide a strong constraint on

SANTER ET AL.: TEMPERATURE SIGNAL‐TO‐NOISE RATIOS D22105D22105

10 of 19



model‐based estimates of low‐frequency TLT variability.
Nor is it clear whether well‐constrained observed estimates
of high‐frequency TLT variability provide useful insights
into the direction and size of model variability errors on
multi‐decadal timescales.
[40] To investigate these issues, we applied high‐pass and

band‐pass filters to the modeled and observed TLT data.
The band‐pass filtering focuses on TLT variability on
timescales of 10 years, with half‐power points at 5 and
20 years, while the high‐pass filter has a half‐power point at
two years, and excludes all variability on timescales longer
than 5 years (see auxiliary material, Figure S2). An example
of the high‐pass and band‐pass filtered components of the
RSS v3.3 TLT data is shown in Figure 8a. All filtering
operations were performed after removal of least‐squares
linear trends, to avoid inflation of the variability estimate by
the trend.
[41] Results shown in Figure 9 are the temporal standard

deviations of the high‐ and band‐pass filtered TLT data,
calculated over the 384‐month period from January 1979 to
December 2010. Model information in Figure 9 is from the
spliced 20CEN/A1B runs rather than the control simulations.

The former are the simulations most relevant for direct
comparison with observations. This is because the TLT
variability in observations and in many of the 20CEN/A1B
runs (see auxiliary material) has both an internally generated
component and a component related to volcanic and solar
forcing. In contrast, TLT variability in the control runs is
solely generated by processes internal to the climate system,
and has no contribution from natural external forcing.
[42] There is no evidence from Figure 9 that models

systematically underestimate the amplitude of observed TLT
variability on timescales of 5–20 years. For the band‐pass
filtered data, the ratio Rband between the multi‐model aver-
age temporal standard deviation and the observed temporal
standard deviation is roughly 1.2 for RSS v3.2 and RSS v3.3
and 1.1 for UAH – i.e., the model variability on 5–20‐year
timescales is actually 10–20% larger than observed. If the
observational estimates are reliable, the ‘observed’ S/N
ratios in Figure 6c are likely underestimates of the true S/N
ratios on multi‐decadal timescales.
[43] One interesting aspect of Figure 9 is that the CMIP‐3

models have a relatively weak functional relationship
between the amplitude of high‐ and low‐frequency TLT

Figure 7. Time series (a) of simulated and observed changes in monthly mean near‐global TLT over
1979 to 2010 and (b) of observed changes in Niño 3.4 SSTs. Observational results in Figure 7a are from
RSS version 3.3. Model results are multimodel average TLT changes computed from the spliced 20CEN/
A1B runs. All anomalies are defined as in Figure 3. RSS TLT anomalies are shaded red (blue) if they are
larger (smaller) than the multimodel average. The grey shaded envelope is the multimodel average ± twice
the standard deviation of the average control run interannual variability in 22 CMIP‐3 control runs, cal-
culated as described in Appendix A. The recent cooling near the end of observed TLT records is outside the
‘model average’ envelope of interannual variability. The observed Niño 3.4 SST data in Figure 7b are from
NOAA ERSST version 3b [Smith et al., 2008], and have a trend of −0.038°C over January 1979 to
December 2010. Note the lag of roughly six months between the Niño 3.4 SST variability and global‐scale
TLT anomalies [Wigley, 2010].
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variability. The correlation between the high‐ and band‐
pass filtered results is only 0.48, and the direction of the
model‐average variability bias differs in the high‐ and low‐
frequency variability cases. While Rband exceeds 1.0, the
ratio Rhigh is 0.96 for all three observational data sets,
indicating that the observed high‐frequency variability is
slightly larger than the multi‐model average.
[44] These results suggest that model errors in well‐

observed interannual variability may not provide reliable
information on the size and direction of model errors in low‐
frequency variability. This reflects the fact that different
modes of variability have different characteristic timescales.
Model performance in simulating ENSO physics, and in
capturing the interannual variability induced by ENSO, is not
necessarily an accurate predictor of model skill in repre-
senting longer‐timescale modes of climate variability (like
the Pacific Decadal Oscillation and the Atlantic Multidecadal
Oscillation).
[45] Because of the relatively short length of observational

TLT records, there is considerable uncertainty in the obser-

vational estimate of low‐frequency TLT variability. Longer
observed SST records provide a stronger constraint on model
estimates of decadal variability. We therefore estimated Rband

and Rhigh with band‐ and high‐pass filtered SST data from
the CMIP‐3 20CEN/A1B runs and version 3b of the NOAA
ERSST observational data set [Smith et al., 2008]. Filtering
of SST data was performed as described above for TLT, but
using the longer, 64‐year period from January 1947 to
December 2010 (see Figure 8b). Choice of this period avoids
problems with observational SST data in the early 1940s
[Thompson et al., 2008]. All SSTs were spatially‐averaged
over 50°N–50°S, which minimizes model‐versus‐observed
SST differences associated with inaccurate simulation of the
latitudinal extent of ice margins.
[46] As in the case of TLT, the analysis of filtered SST

data yields Rband > 1.0 and Rhigh < 1.0 (Rband = 1.13 and
Rhigh = 0.91, respectively; see Figure 10). In contrast to
Swanson et al. [2009], we find no evidence that CMIP‐3
models systematically underestimate the amplitude of
observed decadal SST variability. Since changes in SST and

Figure 8. Observed time series of monthly mean anomalies of raw and filtered (a) TLT and (b) SST
data. The analysis periods are 1979–2010 (TLT) and 1947–2010 (SST). TLT results are from version
3.3 of the RSS data set [Mears et al., 2011], and were spatially averaged over 82.5°N–70°S. SST data
are from version 3b of the NOAA ERSST data set [Smith et al., 2008], and were averaged over a slightly
smaller domain (50°N–50°S). After removal of a least squares linear trend from the raw anomalies, a
Butterworth filter was used to perform band‐pass and high‐pass filtering. There is virtually no overlap
between the frequencies isolated by the high‐ and band‐pass filters. The least squares linear trends in TLT
(0.149°C/decade) and SST (0.092°C/decade) are also shown. The correlation between the band-pass
filtered TLT and SST time series in Figures 8a and 8b is 0.92 for the period of overlap.
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TLT are closely coupled when averaged over sufficiently
large spatial domains and timescales [Wentz and Schabel,
2000], our analysis of SST variability supports the direct
analysis of TLT variability in Figure 9. Our SST results
suggest that model‐based estimates of TLT variability are
adequate for the purpose of estimating the noise component
of S/N ratios – at least on the 5‐ to 20‐year timescales we
focused on in the band‐pass filtered data.
[47] In view of the difficulty of reliably constraining

model variability estimates on multi‐decadal timescales, it is
useful to consider the implications of a large model error in
the amplitude of low‐frequency TLT variability. Even if we
assumed that model‐based estimates of internal variability
on the 32‐year timescale were biased low by 50%, S/N
ratios for near‐global TLT trends over the full satellite era
would still be highly significant, and would exceed 2.6 in all

three observational TLT data sets (2.91 for RSS v3.2, 2.67
for RSS v3.3, and 2.61 for UAH). As noted above, our
analysis of band‐pass filtered TLT and SST data suggests
that on average, the CMIP‐3 models actually overestimate
observed temperature variability on the 10‐year timescale.
Thus a 50% variability underestimate on the 32‐year time-
scale appears unlikely, but cannot be definitively ruled out
given the relatively short observational records available.

7. Discussion and Conclusions

[48] Efforts to apply rigorous statistical methods to the
problem of identifying human effects on climate commenced
over 30 years ago [Hasselmann, 1979]. At the inception of
this endeavor, it was recognized that any human‐caused
climate change signal is embedded in the noise of natural

Figure 9. Comparison of simulated and observed temporal variability of near‐global TLT anomalies.
Variability on monthly to interannual timescales (x‐axis) is plotted against variability on timescales of
5–20 years (y‐axis). Filtering of model and observational TLT data was performed as described in
Figure 8 and in the main text. All results are for the 384‐month period from January 1979 to Decem-
ber 2010. Model results were calculated using synthetic TLT data from 51 realizations of the spliced
20CEN/A1B runs. The triangles denote 20CEN simulations which include volcanic forcing (see auxiliary
material). With the exception of MPI‐ECHAM5 and IAP‐FGOALS1.0g, model simulations without
volcanic forcing tend to have smaller values of low‐frequency TLT variability. The dashed lines are
centered on the RSS v3.3 result. Temporal standard deviations for the band‐ and high‐pass filtered RSS
v3.2 data (not shown) are virtually identical to the RSS v3.3 results. The multimodel average is the
‘weighted’ form (see Appendix A), calculated using the ensemble‐mean temporal standard deviations.
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climate variability, and that separation of human and natural
influences requires information on signal and noise proper-
ties over a range of timescales.
[49] We have provided such information here for the

specific example of near‐global changes in lower tropo-
spheric temperature (TLT). We relied on control runs from
the CMIP‐3 multi‐model archive for our estimates of cli-
mate noise. Estimates of externally forced climate‐change
signals were obtained from three different sets of satellite‐
based observations and from CMIP‐3 simulations of 20th
and 21st‐century climate change. In contrast to almost all
previous work, we compared modeled and observed TLT
changes on multiple timescales (using maximally over-
lapping trends) rather than over a single period of record.
For timescales less than the record length, this strategy
reduces the impact of climate noise on estimates of the
signal component of observed (and simulated) temperature
trends. The fact that our pf ′ values (even for 30‐year TLT
trends) are sensitive to the addition of a single year of
observational data (see Figure 6e) indicates the dangers of
ignoring the effects of interannual variability on signal

estimates, as was done, for example, by Douglass et al.
[2008].
[50] Because of the large effect of year‐to‐year variability

on decadal trends, roughly 10% of the 10‐year TLT trends
in the 20CEN/A1B runs are less than zero (Figure 4a). This
result shows that anthropogenically forced models can rep-
licate the recent muted warming of the surface [Easterling
and Wehner, 2009; Knight et al., 2009] and the lower tro-
posphere. Claims that minimal warming over a single
decade undermine findings of a slowly‐evolving externally‐
forced warming signal (e.g., as in Investor’s Business Daily
[2008] and W. Happer, Testimony on climate science in
the political arena, Hearing before the Select Committee
on Energy Independence and Global Warming, House of
Representatives, 111th Congress, May 20, 2010, http://
globalwarming.house.gov/files/HRG/052010SciencePolicy/
happer.pdf) are simply incorrect.
[51] Our estimated signal‐to‐noise (S/N) ratios for global‐

scale TLT changes were less than 1.0 on the 10‐year
timescale (Figure 6c). On the 32‐year timescale, however,
S/N exceeded 3.9 in all three observational TLT data sets.

Figure 10. Same as Figure 9 but for the comparison of the simulated and observed temporal variability
of near‐global SST anomalies. Filtering of model and observational SST data was performed as described
in Figure 8 and in the main text. All results are for the 768‐month period from January 1947 to December
2010. There is one fewer 20CEN/A1B realization than in Figure 9 because realization 2 of the NCAR
PCM 20CEN run commences in 1961, and does not cover the entire analysis period (see auxiliary
material, Table S2). SST data were spatially averaged over 50°N–50°S. Observational SSTs are from
version 3b of the NOAA ERSST data set [Smith et al., 2008].
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The latter result shows that natural internal variability, as
simulated by current climate models, is a highly unlikely
explanation for the observed lower tropospheric warming
over the satellite era (Figure 6d). Comparisons between
simulated and observed low‐frequency TLT variability sug-
gest that our estimates of S/N ratios on 5–20 year timescales
are conservative (Figures 9 and 10). The strong timescale
dependence of S/N ratios arises primarily because of the large
decrease in noise amplitude as the period used for trend fitting
increases (Figure 6b).
[52] On all timescales examined here, the TLT trends in

the observational satellite data sets are not statistically
unusual relative to model‐based distributions of externally
forced TLT trends (Figure 6e). While this consistency is
encouraging, it should be qualified by noting that: (1) the
multi‐model average TLT trend is always larger than the
average observed TLT trend (Figures 6a and 6f); and (2) as
the trend fitting period increases, values of pf ′ decline,
indicating that average observed trends are increasingly
more unusual with respect to the multi‐model distribution of
forced trends (Figure 6e). Possible explanations for these
results include the neglect of negative forcings in many of
the CMIP‐3 simulations of forced climate change (see
auxiliary material, Table S1), omission of recent temporal
changes in solar and volcanic forcing [Wigley, 2010;
Kaufmann et al., 2011; Vernier et al., 2011; Solomon et al.,
2011], forcing discontinuities at the ‘splice points’ between
CMIP‐3 simulations of 20th and 21st century climate change
[Arblaster et al., 2011], model response errors, residual
observational errors [Mears et al., 2011], and an unusual
manifestation of natural internal variability in the observa-
tions (see Figure 7a).
[53] Although we considered three different observational

estimates of TLT changes (and one observational estimate
of SST changes), our analysis does not comprehensively
explore the impact of data uncertainties on model evalua-
tion. In the future, studies of the consistency between sim-
ulated and observed temperature trends will be able to
employ both multi‐model ensembles (like CMIP‐3) and
new ensembles of observational upper‐air [Mears et al.,
2011; Thorne et al., 2011b] and SST data [Kennedy et al.,
2011a, 2011b]. These observational ensembles account for
multiple sources of uncertainty in the construction of ‘cli-
mate‐quality’ temperature records, and will allow us to
explicitly include observational uncertainty in estimates of
pf ′ values.
[54] In summary, because of the effects of natural internal

climate variability, we do not expect each year to be inex-
orably warmer than the preceding year, or each decade to be
warmer than the last decade, even in the presence of strong
anthropogenic forcing of the climate system. The clear
message from our signal‐to‐noise analysis is that multi‐
decadal records are required for identifying human effects
on tropospheric temperature. Minimal warming over a sin-
gle decade does not disprove the existence of a slowly‐
evolving anthropogenic warming signal.

Appendix A
A1. Statistical Notation

[55] In the following, we provide a brief introduction to
the statistical notation (Table A1) used in our discussion of

model‐versus‐observed trend comparisons. We perform
such comparisons on timescales ranging from 120 months to
384 months (in increments of 12 months). For the sake of
simplicity, we do not explicitly include the selected analysis
timescale in our notation.
[56] Note that the index j is a combined index over models

and over realizations of either the control run or 20CEN/
A1B run. For example, the PCM model has four different
realizations of the spliced 20CEN/A1B run (see Table S2 in
the auxiliary material). In the L = 120‐month case, and for

Table A1. Notation

Notation Definition

Abbreviations
MMA Multi‐model average
MMSD Multi‐model sampling distribution

Subscripts
o Subscript denoting observational data
c Subscript denoting output from model control runs
f Subscript denoting output from model forced experiments

Indices
i Index over number of maximally overlapping trends

in observations
j Index over number of models (and control run/forced

run realizations)

Sample Sizes
L Length of trend‐fitting period (months)
No No. of overlapping L‐month trends in observed data set
Nc No. of overlapping L‐month trends in control run MMSD
Nf No. of overlapping L‐month trends in 20CEN/A1B MMSD
Nc( j) No. of overlapping L‐month trends in jth model control run
Nf ( j) No. of overlapping L‐month trends in jth model

20CEN/A1B run
Nmodel No. of models (22 for control runs, 20 for 20CEN/A1B runs)

Summation Variables
Kc(i) No. of overlapping L‐month trends in control run

MMSD > bo(i)
Kf (i) No. of overlapping L‐month trends in 20CEN/A1B

MMSD < bo(i)
Kc(i, j) No. of overlapping L‐month trends in jth model control

run > bo(i)
Kf (i, j) No. of overlapping L‐month trends in jth model

20CEN/A1B run < bo(i)

Linear Trends
bo(i) Linear trend for ith L‐month segment of observed time series
bf (i, j) Linear trend for ith L‐month segment of jth model’s

20CEN/A1B time series
bo Average (over index i) of bo(i)

bf ( j) Average (over index i) of bf (i, j)

bf MMA of overlapping L‐month trends from 20CEN/A1B runs

Statistics for Model‐Versus‐Observed Trend Comparisons
pc(i) Unweighted p‐value for comparison of bo(i) and control

run MMSD
pf (i) Unweighted p‐value for comparison of bo(i) and

20CEN/A1B MMSD
pc(i, j) p‐value for comparison of bo(i) and jth model control run
pf (i, j) p‐value for comparison of bo(i) and jth model 20CEN/A1B

run
pc(i)′ Weighted p‐value, model average of pc(i, j)
pf (i)′ Weighted p‐value, model average of pf (i, j)
pc ′ Weighted p‐value, average over index i of pc(i)′
pf ′ Weighted p‐value, average over index i of pf (i)′

SANTER ET AL.: TEMPERATURE SIGNAL‐TO‐NOISE RATIOS D22105D22105

15 of 19



maximally overlapping trends calculated over the 384‐
month period January 1979 to December 2010, PCM pro-
vides 265 × 4 samples of forced TLT trends, and Nf ( j) =
1060. All 1060 of these 120‐month TLT trends were used in
computing pf (i, j) values for PCM. Alternately, some models
have multiple realizations of the pre‐industrial control run,
or (because of missing data), multiple segments of a single
pre‐industrial control run (see Table S3 in the auxiliary
material). For example, two realizations of the GISS‐
AOM control run were performed, each of length 3012
months. So for the L = 120‐month case, the GISS‐AOM
provides 2893 × 2 samples of overlapping 120‐month
trends, and the GISS‐AOM value of Nc( j) = 5786.

A2. Statistical Analysis

A2.1. Calculation of p‐Values

[57] We calculate two different types of p‐value. The first
type, pc(i) (where i is an index over the number of maxi-
mally overlapping observed trends), is for comparisons of
observed trends and trends estimated from CMIP‐3 model
control runs with no changes in natural or anthropogenic
forcings. The second type of p‐value, pf (i), is based on
comparisons of observed trends against the externally‐
forced trends in the spliced 20CEN/A1B experiments.
[58] As used here and subsequently, ‘overlapping’ signifies

trend overlap by all but one month. For L = 120 months, the
first trend is over January 1979 to December 1988, the second
trend is over February 1979 to January 1989, etc. Note that all
least‐squares linear trends were computed from time series
of monthly‐mean anomalies of spatially‐averaged (82.5°N–
70°S) observed and simulated TLT data. Anomalies in the
20CEN/A1B runs were defined relative to climatological
monthly means over the 384‐month period January 1979 to
December 2010. Control run anomalies were defined relative
to climatological monthly means over the full length of each
model’s control integration.
[59] We compute both ‘unweighted’ and ‘weighted’ forms

of pc(i) and pf (i). The weighted forms, pc(i)′ and pf (i)′, are
distinguished by the use of prime notation (′), and account
for inter‐model differences in either the length/number of
realizations of the control run or in the number of realiza-
tions of the spliced 20CEN/A1B run (respectively).
[60] Consider first the ‘unweighted’ form of pc(i). For a

stipulated trend length L (in months), the pc(i) value is
defined as:

pc ið Þ ¼ Kc ið Þ=Nc

i ¼ 1; . . . ;No
ðA1Þ

where Kc(i) is the number of L‐month trends in the MMSD
of control run trends that are larger than bo(i) (the current
L‐month observed trend), Nc is the total number of over-
lapping L‐month trends in the MMSD of control run
trends, and No is the total number of overlapping L‐month
observed trends in the 384‐month analysis period. For L =
120 months, Nc = 120965 and No = 265.
[61] The time series of spatially‐averaged TLT anomalies

from individual models are not concatenated prior to trend
calculation (which could spuriously inflate trends spanning
the ‘splice point’ between two different model control runs).

Instead, overlapping trends are calculated separately from
each realization of each individual model’s TLT time series,
and each model’s TLT trends are then accumulated in a
multi‐model trend distribution.
[62] In the ‘weighted’ form, pc(i)′, individual pc(i, j) values

are first calculated separately for each model, and the accu-
mulated pc(i, j) values are then averaged:

pc ið Þ′ ¼
XNmodel

j¼1

pc i; jð Þ=Nmodel

i ¼ 1; . . . ;No

ðA2Þ

where j is an combined index over the number of models
and the number of control run realizations per model, and
Nmodel (the number of CMIP‐3 models with pre‐industrial
control runs from which synthetic MSU temperatures could
be calculated) = 22. The individual pc(i, j) values for each
model are calculated as follows:

pc i; jð Þ ¼ Kc i; jð Þ=Nc jð Þ
i ¼ 1; . . . ;No; j ¼ 1; . . . ;Nmodel

ðA3Þ

where Kc(i, j) is, for the ith observed trend and the jth model,
the number of L‐month trends in the pre‐industrial control
run larger than bo(i).
[63] Values of pc(i) and pc(i)′ are very similar, indicating

that inter‐model differences in control run length do not
distort our estimates of whether observed TLT trends are
unusually large relative to trends arising from internally‐
generated variability. We show only ‘weighted’ pc(i)′ values
in the main text.
[64] In comparisons involving forced trends from the

CMIP‐3 20CEN/A1B runs, we seek to determine whether
the model TLT trends are unusually large relative to
observed trends, as some analysts have claimed [Douglass
et al., 2008]. Values of pf (i) are defined in an analogous
way to pc(i) values:

pf ið Þ ¼ Kf ið Þ=Nf

i ¼ 1; . . . ;No
ðA4Þ

where Kf (i) is the number of L‐month trends in the 20CEN/
A1B MMSD that are smaller than the current observed
trend, Nf is the total number of overlapping L‐month trends
in the 20CEN/A1B MMSD, and No is the total number of
overlapping L‐month observed trends in the 384‐month
analysis period.
[65] Unlike pc(i) calculations with the CMIP‐3 pre‐

industrial control runs (where synthetic TLT data for the full
length of each control run were used in the calculations, but
only 384 months of observational TLT data were analyzed),
all pf (i) and pf (i)′ values were computed using the same
384‐month period (January 1979 to December 2010) in the
spliced 20CEN/A1B runs and the observations. The spliced
20CEN/A1B runs provide a total of 51 realizations of
forced TLT changes over January 1979 to December 2010.
For the case of overlapping 120‐month trends, Nf = 13515
(265 × 15).
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[66] As in the comparisons with control run trends, a
‘weighted’ form of pf (i) can be calculated:

pf ið Þ′ ¼
XNmodel

j¼1

pf i; jð Þ=Nmodel

i ¼ 1; . . . ;No

ðA5Þ

where Nmodel (the number of CMIP‐3 models with 20CEN
and A1B runs from which synthetic MSU temperatures
could be calculated) = 20, and pf (i, j) is defined in an
analogous way to pc(i, j) in equation (A3). Averaging the No

individual values of pf (i)′ yields pf ′:

pf ′ ¼
XNo

i¼1

pf ið Þ′=No

i ¼ 1; . . . ;No

ðA6Þ

with pc′ defined similarly.
[67] Our use of maximally overlapping trends has the

advantage of reducing the impact of seasonal and interan-
nual noise on estimates of the signal components of TLT
trends, both in the observations and in the spliced 20CEN/
A1B runs. However, it has the disadvantage of decreasing
the statistical independence of trend samples.
[68] While non‐independence of samples is an important

issue in formal statistical significance testing, it is not a
serious concern here. This is because our pc(i)′ and pf (i)′
values are not used as a basis for formal statistical tests.
Instead, they simply provide useful information on whether
observed TLT trends are unusually large relative to model‐
based estimates of unforced trends, or unusually small rel-
ative to model estimates of externally‐forced trends. Note
also that we process observed TLT data and model output
in identical ways, with the same overlap between succes-
sive L‐month trends – i.e., we are not generating funda-
mentally different temporal autocorrelation structure in the
model and observational trend samples.
[69] The key point is that whether we employ overlapping

or non‐overlapping model trends has very small impact on
estimates of pc(i)′ or pf (i)′. This suggests that the sample
sizes of non‐overlapping trends (in both the CMIP‐3 control
runs and the 20CEN/A1B runs) may be adequate for
obtaining reasonable estimates of pc(i)′ and pf (i)′.
[70] However, because of the relatively short length of

satellite temperature records, the use of non‐overlapping
observed TLT trends can have a large impact on both pc(i)′
and pf (i)′. For each observational TLT data set, the 1979 to
2010 analysis period contains three non‐overlapping 10‐year
trends, two non‐overlapping trends >10 years and ≤16 years,
and only one non‐overlapping trend >16 years and ≤32 years.
As shown in Figure 3a of the main text, the use of non‐
overlapping time series segments does not adequately sam-
ple the impact of interannual variability on trends. This is
why we focus primarily on pc(i)′ and pf (i)′ values calculated
with overlapping L‐month observed trends.
[71] The implicit assumption in all of our p‐value calcu-

lations is that results from individual models are independent.
This assumption is almost certainly unjustified [Masson and
Knutti, 2011]. While it would be interesting to explore the
sensitivity of trend consistency results to the selection of

different subsets of “independent” CMIP‐3 models, we do
not perform such an analysis here. We suspect that the
identification of “independent” model subsets may be sensi-
tive to the variables, statistical procedures, and metrics used
to assess inter‐model dependencies.

A2.2. Calculation of Signal‐to‐Noise Ratios

[72] Two types of signal‐to‐noise ratio are shown in
Figure 6. The first is the ‘observed’ signal‐to‐noise ratio, Ro,
in Figure 6c:

Ro ¼ bo=sfbcg ðA7Þ

where bo is the average of all overlapping L‐month observed
TLT trends, and s{bc} is the standard deviation of the
MMSD of overlapping L‐month control run TLT trends.
The model signal‐to‐noise ratio in Figure 6c, Rf , is defined
similarly:

Rf ¼ bf =sfbcg ðA8Þ

where bf is the MMA of the overlapping L‐month TLT
trends obtained from the 20CEN/A1B runs. Figure 6c shows
Ro and Rf for 23 different values of L (120, 132, 144, …,
372, and 384 months).
[73] Note that, in an analogous way to the calculation of

unweighted and weighted p‐values, unweighted and
weighted forms of the MMA can be computed. The
unweighted MMA is simply the arithmetic average of all
available overlapping, L‐month trends in the 20CEN/A1B
runs. The weighted MMA (which is what we use here, and
what we show in Figure 6a of the main text) is calculated by
first computing (for the jth model) the average of all avail-
able overlapping, L‐month trends in all realizations of the
jth models’s 20CEN/A1B runs, and then averaging these
ensemble‐mean ‘average’ trends. For the sample sizes of
forced TLT trends available here, weighted and unweighted
forms of the MMA yield very similar results.

A2.3. Calculation of Model Average TLT Variability

[74] The grey shaded envelope in Figure 7a provides
information on the model average TLT variability. This
was estimated in the following way. For the first realiza-
tion of each of the CMIP‐3 pre‐industrial control runs for
which synthetic MSU temperatures could be calculated
(see Table S3 in the auxiliary material), we computed spatial
averages of TLT over 82.5°N–70°S (the latitudinal extent of
RSS TLT data). From each of these 22 time series, we
extracted the first 1200 months of near‐global TLT data,
defined anomalies relative to climatological monthly means,
and then detrended the anomaly data. These detrended
anomalies were used to calculate sc

2(j), the temporal TLT
variance of the jth model. The model average variability, sc,
is given by:

sc ¼
ffiffiffiffi
s2c

q
ðA9Þ

where s2c is the model‐average temporal variance. Use of the
first 1200 months of each model’s pre‐industrial control run
(and use of the first realization only) ensures that our estimate
of sc is not biased by inter‐model differences in the length
and number of realizations of the control run.
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