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ABSTRACT
The Internet-of-things ecosystem has been a driving force in the cre-

ation of smart communities where a variety of physical phenomena

can be monitored continuously, e.g., air quality, traffic conditions

on roads, energy consumption in buildings, etc. In this paper, we

address how IoT can be quickly and effectively deployed for short-

term and sporadic events (e.g., fire spread in a wildland area and

flood propagation), where monitoring the evolving event is criti-

cal. In particular, we propose QuIC-IoT, a model-driven planning

platform that aims to temporarily deploy a custom IoT infrastruc-

ture for monitoring short-term events, where phenomena-spread

is driven by models that are physics-based. Our driving usecase

event is a quasi-planned prescribed fire or RxFire - this is a wild-

fire resilience technique where intentional small fires are ignited

apriori by forestry personnel to destroy fuel and help contain the

spread of actual wildfires. Anomalies that may occur during these

quasi-planned events must be rapidly captured by the IoT deploy-

ment, e.g., escaped RxFires can escalate to catastrophic wildfires

under unpredictable conditions of wind, vegetation, etc. QuIC-IoT

incorporates domain expert-developed models to guide IoT deploy-

ment; the event area is partitioned into subregions and a criticality

metric that quantifies the likelihood of anomalies at each location

is computed. QuIC-IoT allows us to mix fixed and quasi-mobile IoT

devices to flexibly deploy IoT in challenging terrain and as the phe-

nomena (RxBurn) evolves. We evaluate QuIC-IoT in two real-world

forest settings (large and small) in Blodgett Forest, CA, USA, with

concrete burn plans developed by wildfire experts. Our experimen-

tal results reveal that QuIC-IoT enables over 3X improvement in

cost-effectiveness and performance (timely detection of anomalies)

as compared to baseline IoT deployment algorithms.
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1 INTRODUCTION
In recent years, we have seen the emergence of IoT devices, net-

works, and services in our everyday lives; recent efforts focus on

perpetually monitoring of physical phenomena in our communities,

e.g., noise monitoring in New York City [6], air quality monitoring

in Chicago [10], and water quality monitoring in California [31, 32].

These deployments incorporate sensors to capture physical phe-

nomena and convert them into a digital form; a range of networking

devices transmit the captured data to servers that transform it into

human-interpretable information. These long-term deployments

(sometimes lasting decades) provide decision-makers (humans in

the loop) with information to ensure safety of citizens, detect ad-

verse events, and respond to them in a timelymanner. Indeed, recent

urban planning toolkits [11, 28] incorporate IoT deployment design

as an integral part of this long-term urban planning workflow.

In this paper, we address the problem of planning an effective

IoT deployment for short-term and sporadic events in communi-

ties. Examples include occasional (but planned) activities within a

community – county fairs, sporting events, or disaster resilience

exercises such as the annual Great CA Shakeout Exercise. Ensuring

citizen safety, security and comfort in such settings is critical, espe-

cially in unexpected events such as natural or manmade disasters

(wildfire, floods, etc.). In planning a short-term deployment, we have

partial prior knowledge, e.g., geospatial location of event, planned

duration of activities, and an estimate of the number of people

involved. However, the evolution of events and associated activi-

ties/individuals can deviate significantly from the predetermined

plan, leading to uncertainty (e.g., a fire event during a concert). To

monitor the flow of events, a rapid pop-up IoT instrumentation is

deployed before the start of the event to capture events of interest;

the deployment is torn down after the event.
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Figure 1: Uncertainty of Physical Phenomena of Interest.

Particularly, we address the issue of short-term IoT planning

through a specific driving usecase of a quasi-planned event - a pre-
scribed fire or RxFire that is used to help build community resilience

to fire events, such as wildfires. While forestry experts typically

provide a burn plan, unpredictable weather and other environmen-

tal factors (e.g., high humidity) can impact the feasibility of the

burn; a sudden strong wind could blow embers to unnoticed areas

transforming the prescribed burn into a catastrophic wildfire. Fig.

1 illustrates how the uncertainty of physical phenomena can re-

sult in a large disaster and how IoT deployment can help capture

anomalies early on thus avoid potential large-scale damage.

Creating an IoT deployment with custom instrumentation for

short-term quasi-planned events, such as RxFires, poses multiple

challenges. First, accurately modeling phenomena dynamics, e.g.,

fire spread, is difficult but useful for effectively deploying sens-

ing technology. A comprehensive understanding of how the event

evolves can help determine vulnerability points (e.g., locations

prone to winds and high flames) and drive the sensor placement

process. Second, cost/budget and time constraints limit the extent

to which short-term custom instrumentation can be deployed. In

an RxFire, stakeholders must decide how to deploy limited sensing

resources - decisions of whether to concentrate sensing resources

at locations where there is a higher likelihood of fire escape or pro-

vide better coverage for the overall burn site must be made. Third,

timely communication of sensed data from the field for in-depth

analysis at an edge or cloud server (e.g., fire situational awareness)

is critical, but connectivity may be spotty or limited in challenged

settings. A joint instrumentation plan that provides both sensing

and networking coverage is required; such a plan must often be

adapted at the event site, where actual connection qualities can

vary.

In this paper, we study the short-term IoT deployment problem

that constructs an on-site monitoring system for applications that

require safe and effective operations and mission-critical decision-

making. The deployment aims to provide a plan for selecting and

deploying sensing and networking functionalities with a focus on

capturing safety-critical anomalous phenomena before they esca-

late into disasters. The captured data is sent to an edge server for

further analysis and decision-making. We discuss novel methods

and algorithms to (i) quantify a location’s importance/criticality

in terms of sensor deployment decisions, (ii) design sensing con-

figurations that can accurately capture physical phenomena, and

(iii) determine the location of networking devices to interconnect

the deployed sensing devices. To this end, we design, implement,

and evaluate a system called QuIC-IoT. Key contributions of this

paper include.

• We present a general method that quantifies each location’s

criticality given phenomena of interest. This is the first step in the

foundation of the IoT deployment problem to capture anomalies

(Sec. 4).

•We propose QuIC-IoT to generate a plan to construct IoT in-

frastructure at the event site that provides add-on information to

help decision-makers detect and prevent hazardous situations and

thus ensure a smooth event (Sec. 4).

•Wemodel the short-term IoT deployment problem into two dis-

tinct steps to deploy sensing and networking devices. We quantify

the cost-utility functions for different deployments, which are used

to formulate the short-term IoT deployment problem. The problem

is shown to be NP-hard (Sec. 4).

•We develop a suite of algorithms for the two-step process in

QuIC-IoT. Two methods are iteratively executed until it runs out

of the deployment budget: (i) sensor deployer for determining a

sensing unit’s component and location and (ii) network constructor

for connecting the deployed sensing unit to the edge server (Sec.

5).

•We conduct extensive evaluations of the proposed QuIC-IoT

framework and algorithms in two real-world RxFire settings in

Blodgett Forest, CA, USA: small burn and large burn. A real burn

plan is leveraged to determine abnormal fire behaviors. Our method

outperforms the baseline methods by up to 3.55 times in terms of

overall utility (Sec. 6).

2 RXFIRE - A DRIVING USECASE
We explore specific challenges in creating an effective deployment

for short-term monitoring of an evolving event through the con-

text of a prescribed fire or RxFire. RxFires are intentional fires that

are used to restore ecological processes in forests and to consume

accumulations of fuel (vegetation, litter, etc.) that would otherwise

burn with high intensity during a wildfire. When practiced at large

enough scales and frequencies, prescribed fires have a proven ef-

ficacy in reducing the probability of future hazardous wildfires

[29]. Unforecasted changes in weather conditions, such as wind,

temperature, and relative humidity, can pose challenges to conduct-

ing RxFires safely. Occasionally, RxFires can escape, meaning that

they burn onto the property of an adjacent landowner and cause

damage. Such escapes have consequences involving substantial

losses [18, 23]. Two escaped RxFires created the largest wildfire

in the history of the state of New Mexico, USA, in April 2022. It

destroyed at least 330 houses and affected nearly 500 square miles

(1,300 square kilometers) of forests; thousands of residents were

evacuated. Around 3,000 firefighters were dispatched to fight the
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Figure 2: QuIC-IoT’s architecture and workflow.

blaze, which cost over 132 million US dollars. The physical phenom-

ena of interest during an RxFire include fire behavior and sudden

weather and air quality change. Embers traveling beyond the de-

sired control lines may occur with enough frequency that an escape

becomes possible. A sudden change in wind direction is also of

concern, even if it does not cause an increase in the risk of escape.

Burning during certain wind directions is a key planning factor.

A change in wind direction could blow smoke to a sensitive area,

such as a road or residential neighborhood.

Typically, planners of RxFires create a burn plan, defining de-

sired weather conditions that are known to result in desired fire

behaviors. Once the weather or fire behaviors deviate from the ideal

situation, the burn boss must cancel or postpone the operation to

mitigate risk. If an RxFire turns into a wildfire, contingency strate-

gies to deal with it are provided - including introducing retardants

by fire personnel at the escape locations. Besides, fire monitoring is

critical for staff safety and plan adherence. RxFires are usually op-

erated in remote locations that do not have infrastructure (sensing,

networking, and computing). The capacity to deploy IoT infrastruc-

ture to enable the capture of these physical phenomena during and

after RxBurns would be a substantial improvement in identifying

and then responding to anomalies. Besides, RxFires usually operate

with offline or delayed environmental information; the IoT infras-

tructure provides near real-time environmental monitoring that

assists the burn boss’s decision-making process.

Understanding the physical phenomena that govern fire spread

requires planners to conduct numerous experiments with different

control variables. Controlling and manipulating vital environment

variables (e.g., weather conditions) for repeated experiments is

challenging and time-consuming. For example, determining how

wind conditions affect fire spread is dictated by multiple factors -

terrain, vegetation, and other meteorological factors. Leveraging

past experience from previous fires in the region to derive accurate

models is hard. RxFires in a region are characterized by a long

period between burns; new vegetation after a burn may change the

characteristics of burn propagation.

Fortunately, expert-developed models/simulators capture the

complex physical factors and allow us to experiment with various

inputs that can influence phenomena (e.g., fire spread). For instance,

fire spread models have been widely used in domains like wildfire

prevention [3, 22]. Diversemodels exist, such as physics-, empirical-,

and semi-empirical-based, with different accuracy and efficiency.

In particular, FARSITE [15] is a semi-empirical fire simulator with

efficient execution time. Although such models provide a level of

understanding of physical phenomena, the underlying assumptions

pose issues in practice when fires are actually instantiated. For

instance, FARSITE requires weather conditions and ignitions as

inputs. Our proposed approach is to address the above problems by

integrating model-based techniques with a data-driven approach

that is realized through a customized IoT deployment.

3 QUIC-IOT - A MODEL-DRIVEN APPROACH
FOR SHORT-TERM IOT PLANNING

We aim to exploit knowledge of physical phenomena (e.g., wildland

fire spread) and associated models to drive the deployment of an

IoT infrastructure to capture the evolution of the phenomena. In

our proposed workflow, data captured by the IoT deployment is

communicated via one or more access networks to an (edge) server

where further analysis is conducted. The analysis of data from the

site can be used for a variety of purposes, including (i) adherence

check to a predetermined event plan and (ii) early detection of

anomalous behavior, i.e., the event is not proceeding as planned.

We argue that a comprehensive short-term IoT deployment must

consider the impact of the complex interaction between physical

phenomena (e.g., fire) and the changing environment (e.g., wind

speed) at the deployment site.

As an initial step, we partition the event site into non-overlapping

cells and leverage models (e.g., numerical, physics-based, or empir-

ical) to understand the physical phenomenon’s behavior. We then

derive a cell’s criticality (a measure defined later) by analyzing the

probability of an anomaly occurring at the site. The challenge is to

ensure coverage of the overall monitoring area so as to capture (not

miss) phenomena occurring over the entire site.We also assume that

instrumenting a short-term event at a site has cost constraints, i.e., a

fixed budget, which imposes a trade-off between deploying sensors

at high-criticality cells or maximizing the overall sensing coverage.

Moreover, the IoT infrastructure must provide network connectiv-

ity for sensors to transmit data to the edge server via the deployed

network devices, further complicating cost/coverage/timeliness

trade-offs. The crux of our approach is to merge models/simulators

of physical phenomena with data from IoT instrumentation. Fig. 2

illustrates a schematic system architecture for QuIC-IoT.
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Scenario generation and criticality analysis. First, we aim to

identify parameters that characterize the physical Phenomenon of
Interest (PHoI) - i.e., fire parameters in RxFires. Fire behavior param-
eters can help assess whether an RxFire operation is proceeding or

deviating from the prescribed plan. We utilize the FARSITE simula-

tor [15] to help generate multiple features that characterize the fire:

(i) flame length, (ii) fire spread rate, and (iii) spotting distance (fly-

ing distance of an ember). Environmental factors, including wind

speed/direction, temperature, and relative humidity, significantly

impact these fire behaviors/parameters. For a comprehensive study

of fire behaviors under wind conditions, we leverage WindNinja

[16], a wind simulator, to generate wind conditions (speed and di-

rection) in each cell based on the terrain. The composite FARSITE

andWindNinja simulators can then help generate fire behaviors for

each cell under diverse wind conditions, topography, vegetation,

and weather conditions.

The scenario generator component in QuIC-IoT generates nu-

merous realistic scenarios/inputs with a range of environmental

conditions and ignition locations that can serve as input into Wind-

Ninja/FARSITE. Domain experts provide information to create re-

alistic scenarios that might be of specific interest. For instance,

forestry experts usually start an RxFire from a higher altitude. A

sudden wind gust may blow embers to unnoticed locations, creating

an escape fire and possibly a wildfire. Such human expert-provided

corner situations are important to include in our investigation.

The output of the simulations is a series of values for each sce-

nario for the phenomena of interest being monitored - fire spread

rate, flame length, and spotting distance. This information is next

analyzed to derive the probability of an anomaly (e.g., escape fire)

occurring at a cell, quantified as the cell criticality. The criticality
analyzer module in QuIC-IoT implements a novel neural network
regression model that learns a function of the occurrences of differ-

ent values for each parameter of a cell. We define criticality as the

anomaly probability derived by applying an expert-defined thresh-

old on the regression function. In other words, locations with high

criticality are prone to anomalies.

Generating the deployment plan.We next exploit the derived

criticality to guide a customized IoT deployment for short-term

events with a specified period and PHoI. For instance, a safe and

efficient RxFire requires early anomaly detection for staff safety

and near real-time fire monitoring. High criticality cells have a high

priority of being monitored; however, guaranteeing the smooth

operation of the RxFire requires that the system maximizes the

sensing coverage area. This naturally induces a trade-off between

criticality and coverage that must be addressed by the deployment

algorithm. In addition to sensing coverage, communication devices

must also be deployed at the site, especially when there is a lack of

network infrastructure, as is the case with wildland fires. Sensing

requirements can vary based on monitoring needs resulting in

varying network bandwidth needs. Wind sensors monitoring a

sudden gust have low bandwidth requirements, whereas cameras

capturing fire images demand high bandwidth. Cost constraints

can induce complicated trade-offs in the choice of access networks.

Long-range low-bandwidth communication networks, e.g., LoRa,

provide lower cost and lower data accuracy as compared to short-

range high-bandwidth communication networks, e.g., WiFi, where

more devices are required to cover the whole site.

To generate a deployment plan for sensing and networking infras-

tructure, QuIC-IoT includes sensor deployer and network constructor
components, executed in an iterative algorithm until the budget

constraint is reached. In each iteration, the sensor deployer deter-

mines a sensing unit’s configuration, including a processing unit

(e.g., Raspberry Pi) and a selected set of sensors (cameras, tempera-

ture, wind, smoke). Each sensor requires a specific communication
technique for reliable transmission, e.g., cameras require WiFi for

high bandwidth transmission. QuIC-IoT ’s algorithms choose de-

ployment locations for sensing units based on criticality/coverage

measures. The network constructor then establishes connectivity

between the sensing unit to the edge server by deploying one or

multiple networking units. A transmission (Tx-)aware graph, embed-

ded with the Tx range information on its edges, is built during this

construction. We propose a Tx-aware shortest path to minimize the

number of units to achieve adequate connectivity.

Run-time monitoring and reconfiguration. Once the IoT

infrastructure is constructed, sensing units provide near real-time

observation of PHoI at the site. Real-time data, including imagery,

temperature, and wind, help the staff at the site decide their next

course of action to avoid dangers. As the event (Rxfire) progresses,

the deployment can be reconfigured based on situations in the

field; burn staff may require additional on-the-fly information from

locations with high priority as potential anomalies are reported.

Trade-off goals can vary during operation; real-time reconfiguration

decisions by the burn boss may favor IoT placement in high-priority

locations over maximizing coverage on the site. The addition of

specialized devices like drones can help capture emergent data

during the event.

4 MODEL-DRIVEN SHORT-TERM IOT
DEPLOYMENT PROBLEM

In this section, we mathematically model the geography and physi-

cal phenomena and derive the criticality of phenomena at a location

with semi-empirical models. Then, we model the IoT infrastructure

and formulate the short-term IoT deployment problem, which is

proved to be NP-hard. Table 1 summarizes all the notations used in

this paper.

4.1 Geography, Physical Phenomena, Criticality
Modeling geography and physical phenomena. A short-term

event (e.g., RxFire) is hosted at a site composed of a set of areas A
(e.g., burn area and surrounding area). An area 𝑎 ∈ A is further

divided into a set of cells C, where 𝑐 ∈ C is a cell represented

by its center for simplicity. A set Φ contains all parameters of all
Phenomena of Interest (PHoI) at the site, where 𝜙 ∈ Φ is a parameter.

For instance, a parameter stands for flame length, spread rate, or

spotting distance for a fire; wind speed and wind direction are the

parameters to detect a sudden weather change. A requirement ma-
trix𝑀𝑟 indicates whether area 𝑎 requires monitoring the parameter

𝜙 , where each element𝑀𝑟 [𝑎, 𝜙] represents whether 𝜙 is required

in 𝑎. If 𝜙 is required in 𝑎,𝑀𝑟 [𝑎, 𝜙] = 1; otherwise,𝑀𝑟 [𝑎, 𝜙] = 0.

Deriving criticality with semi-empirical models. We in-

troduce the method (shown in Fig. 3) to derive the criticality, the
probability of an abnormal parameter 𝜙 (e.g., flame length above

1.7 feet) occurring in cell 𝑐 in area 𝑎. However, the actual anomaly
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Table 1: Notations Used in This Paper

Notation Description Notation Description Notation Description Notation Description
𝑎 an area A a set of areas 𝑐 a cell C a set of cells

𝜙 a parameter Φ a set of all parameters of PHoI 𝑑 a device D a set of devices

𝑡𝑑 a device’s characteristic tuple 𝑟𝑡𝑟 a device’s transmission range 𝑟𝑠𝑒𝑛 a device’s sensing range 𝜏 a device’s type

𝑀𝑟 requirement matrix 𝑀𝜙 module matrix 𝑚𝜙,𝑖 a module monitoring 𝜙 𝑢 an unit

U𝑠
a set of sensing unit U𝑛

a set of networking units L a set of candidate locations 𝑙 a location

𝑀𝑠
𝑝 placement matrix of 𝑢 ∈ U𝑠 𝑀𝑛

𝑝 placement matrix of 𝑢 ∈ U𝑛 𝑓𝑖𝑚𝑝 (𝑢,𝑚𝜙,𝑖 ) implementation function 𝑑𝑖𝑠𝑡 (𝑙, 𝑙 ′) distance function

𝑓𝑔 (𝑢) deployment function of 𝑢 𝑃 approximate PMF function 𝛼𝑑 𝑑’s sensing parameter 𝑡 anomaly threshold

𝑈 (𝑎, 𝑐, 𝜙,U) utility function 𝑝 (𝑢, 𝑐,𝑚𝜙,𝑖 ) sensing coverage 𝜎 (𝑎, 𝑐, 𝜙) criticality function 𝜅 (𝑚𝜙,𝑖 , 𝑢) connectivity

𝜒 deployment plan 𝑃 (𝜒 ′, 𝜒, 𝑙, 𝜙, 𝑐) sensing coverage improvement 𝐵 deployment budget 𝛿 (𝑢) cost of 𝑢

𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 ) Tx-aware shortest path G(𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 )) network coverage gain G(𝑢,𝑚𝜙,𝑖 , 𝑙, 𝜙) utility gain 𝑤 (𝑙1, 𝑙2) edge weight on 𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 )
Δ𝐶 (𝑢,𝑚𝜙,𝑖 ) cost of deploying 𝑢 with𝑚𝜙,𝑖 Δ𝐶 (𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 )) cost of deploying 𝑢 on 𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 ) 𝑙𝑛 nearest net device’s location 𝑙𝑒𝑑𝑔𝑒 edge server’s location

𝑒𝑛𝑒𝑡 marginal network coverage 𝑒𝑐𝑜𝑣 marginal utility 𝑤𝑛 network coverage weight 𝑤𝑠 sensing weight

probability is hard to derive since we cannot explore all possible

scenarios of PHoI. We leverage the scenario generator to generate

numerous scenarios to drive semi-empirical models. The models

generate a set of parameters (fire behaviors) based on the gener-

ated scenarios, and each parameter’s results from all scenarios are

grouped for further analysis. Two separate datasets are generated

for training and testing purposes. We leverage the neural network
regressionmodel to learn the criticality. Then, we design a criticality
analyzer to find a function 𝜎 (𝑎, 𝑐, 𝜙) that quantifies the criticality
for each 𝜙 in each 𝑐 of 𝑎 to minimize the mean squared error to

the training dataset with the following inputs: (i) training dataset

of simulation results generated by models for each 𝜙 and (ii) the

abnormal parameters defined by experts. Then, we further evaluate

the derived function’s performance with the testing dataset.

The criticality analyzer aims to derive each parameter’s Probabil-

ity Mass Function (PMF) for each cell. Its x-axis and y-axis represent

a parameter’s possible values and the probability of whether each

value occurs. Since it is hard to derive the actual PMF, we propose

to derive a function 𝑃 with minimized error to the actual PMF for

each parameter 𝜙 at each cell 𝑐 in area 𝑎. We select the maximum

value from 𝜙 ’s simulation results and divide it into several bins

(ranges) with equal sizes. 𝑃 ’s x-axis represents the derived bins,

whereas 𝑃 ’s y-axis records the occurrence probability of the values

in each bin. Let 𝑡 denote the threshold that a parameter becomes

abnormal. The anomaly probability or criticality can be derived by

applying the threshold on the PMF, i.e., 𝜎 (𝑎, 𝑐, 𝜙) = 𝑃 (𝑋 > 𝑡). We

propose using the regression technique to derive 𝑃 for an estimate

of 𝜙 . However, canonical regression models require a pre-defined

parameter/function as an input, which is difficult to determine due

to the limited understanding of PHoI. Therefore, we leverage neu-
ral network regression that automatically learns arbitrary functions

without a priori domain knowledge of the physical phenomena.

4.2 IoT Infrastructure and Sensing Models
IoT infrastructure for data collection. Sensors capture specific
parameters of PHoI and convert them into digital form (data); data

is then transmitted to an edge server for further analysis. The edge

server is usually at a fixed location, e.g., near the burn boss for

RxFire. A sensing unit is constructed by assembling several devices,
which usually contain a base unit, such as Raspberry Pi, several

sensors, and one or multiple networking interfaces. All possible

devices are provided in a set D, where 𝑑 ∈ D is a device. Besides,

𝑑 is characterized by a tuple 𝑡𝑑 = (𝑟𝑡𝑟 , 𝑟𝑠𝑒𝑛, 𝜏). 𝑟𝑡𝑟 and 𝑟𝑠𝑒𝑛 are 𝑑’s

transmission and sensing range, respectively. Each 𝑑 belongs to a

type 𝜏 , such as sensing, networking, and base unit. A module matrix
𝑀𝜙 indicates the implementations to capture each 𝜙 . Each row

vector indicates the required devices to implement a corresponding

module. Each element𝑀𝜙 [𝑖, 𝑑] on the 𝑖-th row represents whether

the 𝑖-th module requires device 𝑑 . If 𝑑 is required, 𝑀𝜙 [𝑖, 𝑑] = 1;

otherwise,𝑀𝜙 [𝑖, 𝑑] = 0. For simplicity, we use𝑚𝜙,𝑖 to represent a

module to implement to monitor𝜙 . Besides, a networking unit relays
data from multiple sensing units to the edge server via a particular

communication technique, such as WiFi or LoRa. A set of sensing

and networking units are denoted as U𝑠
and U𝑛

, respectively. For

simplicity, U𝑠
andU𝑛

are collectively denoted asU .

A sensing unit’s coverage for a parameter in a cell. We

model the sensing coverage of a sensor 𝑑 installed on sensing unit

𝑢 ∈ U𝑠
deployed at 𝑙 for 𝜙 as follows. We extend the truncated

attenuatedmodel [33], where𝑑 probabilistically covers each cell 𝑐 in

area 𝑎 with the probability attenuated (decaying) with its Euclidean

distance to 𝑙 , 𝑑𝑖𝑠𝑡 (𝑙, 𝑐), and truncated by 𝑑’s sensing range 𝑟𝑠𝑒𝑛 . For
simplicity, we assume each sensing unit has only one sensor 𝑑 for

each𝑚𝜙,𝑖 . The probability of 𝑢 at 𝑙 capturing 𝜙 in 𝑐 by𝑚𝜙,𝑖 is:

𝑝 (𝑢, 𝑐,𝑚𝜙,𝑖 ) =
{
𝑒−𝛼𝑑×𝑑𝑖𝑠𝑡 (𝑙,𝑐 ) , 𝑖 𝑓 𝑑𝑖𝑠𝑡 (𝑙, 𝑐) ≤ 𝑟𝑠𝑒𝑛 𝑎𝑛𝑑 𝑀𝑟 [𝑎, 𝜙] = 1;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(1)

where 𝛼𝑑 is a parameter related to 𝑑’s sensing capability. The sens-

ing coverage of 𝑢 to capture 𝜙 is the summation of the probability

of capturing 𝜙 in every 𝑐 by every installed𝑚𝜙,𝑖 .

Data structure to manage deployment.We design the follow-

ing data structure for bookkeeping the deployment information of

both sensing and networking units.

•Abinary implementation function 𝑓𝑖𝑚𝑝 (𝑢,𝑚𝜙,𝑖 ) indicateswhether
the 𝑖-th module𝑚𝜙,𝑖 in𝑀𝜙 is installed on 𝑢, i.e., all corresponding

devices are installed. If 𝑢 implements𝑚𝜙,𝑖 , 𝑓𝑖𝑚𝑝 (𝑢,𝑚𝜙,𝑖 ) = 1; oth-

erwise, 𝑓𝑖𝑚𝑝 (𝑢,𝑚𝜙,𝑖 ) = 0. Each 𝑢 implements up to one module for

each 𝜙 .

• A site has a set of candidate locations L for deploying sensing

and networking units. Each unit 𝑢 ∈ U has a deployment function
𝑓𝑔 (𝑢) = 𝑙 , where 𝑙 ∈ L is 𝑢’s deployment location.

• A placement matrix of sensing units 𝑀𝑠
𝑝 indicates whether

each location 𝑙 ∈ L can deploy sensing unit 𝑢’s module 𝑚𝜙,𝑖 . If

𝑚𝜙,𝑖 can be deployed at 𝑙 and, thus, 𝑢,𝑀𝑠
𝑝 [𝑙,𝑚𝜙,𝑖 ] = 1; otherwise,
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Figure 3: Criticality Analyzer’s workflow to derive the criticality of each parameter for each cell.

𝑀𝑠
𝑝 [𝑙,𝑚𝜙,𝑖 ] = 0. Similarly, a placement matrix of networking units

𝑀𝑛
𝑝 indicates the possible networking units to deploy for each loca-

tion 𝑙 ∈ L.

Connectivity of a module installed on a sensing unit.We

define connectivity 𝜅 (𝑚𝜙,𝑖 , 𝑢) to capture if sensing unit 𝑢’s module

𝑚𝜙,𝑖 with network interface𝑑 has a network connection.We assume

that 𝑢 is deployed at 𝑙 , i.e., 𝑓𝑔 (𝑢) = 𝑙 . Let 𝑢′ denote 𝑢’s nearest
networking unit with an identical communication technique as

𝑑 , and 𝑓𝑔 (𝑢′) = 𝑙 ′. If 𝑙 ′ is within 𝑑’s transmission range 𝑟𝑡𝑟 , 𝑢 is

connected; otherwise, 𝑢 is unconnected by 𝑑 . The connectivity of

𝑚𝜙,𝑖 on 𝑢 is:

𝜅 (𝑚𝜙,𝑖 , 𝑢) =
{
1, 𝑖 𝑓 𝑑𝑖𝑠𝑡 (𝑙, 𝑙 ′) ≤ 𝑟𝑡𝑟 ;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)

Note that a sensing unit can have multiple network interfaces with

different connectivity.

Utility of sensing units for a parameter in a cell. We argue

that deploying a sensing unit 𝑢’s utility contains three main fac-

tors: (i) 𝑢’s sensing coverage for capturing parameter 𝜙 in area 𝑎,

(ii) the criticality, 𝜎 (𝑎, 𝑐, 𝜙), of 𝜙 in each 𝑐 in 𝑎, iii) the connectivity,
𝜅 (𝑚𝜙,𝑖 , 𝑢), of 𝑢’s module𝑚𝜙,𝑖 capturing 𝜙 . We design the utility as

the sensing probability of deploying 𝑢 to capture 𝜙 in 𝑐 , i.e., Eq. (1),

weighted by 𝜙 ’s criticality in 𝑐 . Then, 𝑢’s connectivity is a binary

decision of whether the utility is zero, i.e., the captured informa-

tion cannot be transmitted without a network connection. Thus,

for deploying a set of sensing and networking units (collectively

denoted as U ), the utility to capture 𝜙 in cell 𝑐 in area 𝑎 is:

𝑈 (𝑎, 𝑐, 𝜙,U) = max

∀𝑓𝑖𝑚𝑝 (𝑢,𝑚𝜙,𝑖 )=1,
∀𝑢∈U𝑠

(𝜎 (𝑎, 𝑐, 𝜙)×𝜅 (𝑚𝜙,𝑖 , 𝑢)×𝑝 (𝑢, 𝑐,𝑚𝜙,𝑖 )) .

(3)

Costs and budget. Each unit has a deployment cost incurred

by purchasing or renting devices. Sensing unit 𝑢’s deployment

cost 𝛿 (𝑢) is the summation of each installed device’s cost. Each

networking unit 𝑢 ∈ U𝑛
has a deployment cost 𝛿 (𝑢). Besides,

each short-term event has a deployment budget 𝐵 for obtaining the

sensing and networking units.

4.3 Problem Formulation – Short-Term IoT
Deployment

Given the site’s geography information and the criticality of each

parameter in each cell, this problem aims to maximize the overall

utility under a fixed budget constraint by (i) creating a set of optimal

sensing units U𝑠∗
and networking units U𝑛∗

and (ii) determining

the deployment function for all units. We formulate the deployment

problem as follows.

max

∑︁
∀𝑎∈A

∑︁
∀𝑐∈C

∑︁
∀𝜙∈Φ

𝑈 (𝑎, 𝑐, 𝜙,U∗), (4a)

subject to:

∑︁
∀𝑢∈U∗

𝛿 (𝑢) ≤ 𝐵. (4b)

Eq. (4a) is the objective function that determines the components

and deployment function of units inU∗ = U𝑠∗ ∪U𝑛∗
to maximize

the overall utility. Eq. (4b) is the budget constraint to deploy sensing

and networking units collectively.

Theorem 1. Short-Term IoT deployment is NP-hard and can not
be approximated within 1 − 1/𝑒 .

Proof. We consider a special case where every sensing and

networking unit has an unlimited transmission range and costs 1

and 0, respectively. The site has only an area where all cells have

uniform criticality. Only one PHoI exists with a parameter, and only

one sensing unit can monitor it. Let the budget equal 𝐾 . The special

case aims to cover all cells with 𝐾 sensing units. Hence, the special

case, equivalent to the 𝐾-cover problem, cannot be approximated

within 1 − 1/𝑒 [14]. Thus, the short-term IoT deployment problem

is NP-hard. □
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5 QUIC-IOT ALGORITHMS
The short-term IoT deployment is NP-hard and complex due to

the intertwined relationships between deploying sensing and net-

working units. A sensing unit embedded with multiple modules

for different purposes may require multiple network interfaces. For

example, both low and high-bandwidth transmission techniques

can transmit regular sensor data, whereas high-resolution images

require high-bandwidth transmission like WiFi. Besides, the bud-

get limits the number of deployed sensing and networking units.

Exploiting long-range low-bandwidth transmission techniques like

LoRa has a higher coverage per device but supports fewer modules.

Reusing common devices for multiple parameters, such as using a

camera to capture flame length and fire spread rate, increases the

possible number of deployed devices and, thus, the coverage. Thus,

proposing a one-off method to solve the problem is challenging. We

divide the problem into two parts and address them by proposing

two components in QuIC-IoT with the following intuition. A sensor
deployer first determines a sensing unit’s location and composition.

Then, a network constructor guarantees that the edge server receives
the captured information by connecting the sensing unit to it.

Fig. 4 shows QuIC-IoT’s workflow to generate a deployment plan,

which is initialized as an empty set. First, the sensor deployer exam-

ines all possible deployment and composition of all possible sensing

units and selects a sensing unit with various intuitions. Then, the

network constructor identifies a path to deploy networking units

that connect the sensing unit to the edge server if necessary. QuIC-

IoT executes the process iteratively to derive a deployment plan

until the accumulated deployment cost exceeds the budget. The sen-

sor deployer’s efficiency is closely related to the number of possible

compositions of a sensing unit. If a sensing unit can be built with

𝑁 modules, the number of compositions is 2
𝑁
. However, we find

its impact relatively small in practice. A short-term event usually

has only a few PHoI and hence, the number of possible modules

installed on a sensing unit. A limited number of ports to sensors

and network interfaces (usually <10) of a base unit like Raspberry

Pi bounds the number of possible compositions. We propose a ba-

sic QuIC-IoT that maximizes the overall utility and connects each

sensing unit by the shortest path capturing the transmission char-

acteristic. Then, we propose to enhance QuIC-IoT by selecting the

sensing and networking units with the maximum marginal utility

and network coverage in each iteration.

5.1 Basic QuIC-IoT
We design a basic QuIC-IoT, BAS-QuIC, which aims to maximize

the overall utility during the deployment process. In each iteration,

the sensor deployer selects the sensing unit with the maximum
utility gain, which is derived by assuming the unit has a network

connection to the edge server. Then, the network constructor es-

tablishes the connection for the selected sensing unit by deploying

network units on the shortest path if necessary. Each pair of loca-

tions on the path has maximized transmission coverage. BAS-QuIC

includes the sensing unit and networking units on the path in the

deployment plan and executes the next iteration. The process ends

when the deployment cost exceeds the budget.

Sensing unit with the maximum utility gain. We define the

utility gain as the sensing coverage improvement weighted by each

cell’s criticality after (i) deploying a new sensing unit, (ii) upgrading

(installing a newmodule) a sensing unit in the deployment plan, and

(iii) leveraging the sensing unit in the plan for another parameter.

In each iteration, the sensor deployer (Algo. 1) has the following

inputs: (i) the current deployment plan 𝜒 , (ii) a set of candidate

locations L, (iii) a set of all PHoI’s parameters Φ, (iv) a module

matrix𝑀𝜙 that describes the implementation methods to capture

Φ, and (v) a placement matrix𝑀𝑠
𝑝 that shows possible deployment

locations for each module. A set of sensing units
ˆU𝑠

is recorded

in 𝜒 . The deployment information of each 𝑢 ∈ ˆU𝑠
consists of

two functions,
ˆ𝑓𝑖𝑚𝑝 (𝑢,𝑚𝜙,𝑖 ) and ˆ𝑓𝑔 (𝑢), representing its current

implemented modules and deployment function, respectively.

The sensor deployer computes the utility gain for all possible

compositions of a sensing unit at each candidate location 𝑙 for

capturing each parameter 𝜙 (line 3). A possible utility gain can

be derived from: (i) installing a new sensing unit (line 12), (ii) up-

grading a sensing unit in 𝜒 (line 9), and (iii) reusing a sensing unit

in 𝜒 (line 7). The one with the maximum utility gain is included

in
ˆU𝑠

of 𝜒 (line 14). In particular, let U𝑠′ = ˆU𝑠 ∪ 𝑢 denote the

sensing unit set of a new plan 𝜒 ′ after including 𝑢 deployed at 𝑙

in 𝜒 . 𝑓 ′
𝑖𝑚𝑝

(𝑢,𝑚𝜙,𝑖 ) = 1 and 𝑓 ′𝑔 (𝑢) = 𝑙 are 𝑢’s implementation and

deployment functions in 𝜒 ′. The sensing coverage improvement for
cell 𝑐 by adopting 𝜒 ′ is:

𝑃 (𝜒 ′, 𝜒, 𝑙, 𝜙, 𝑐 ) =
∑︁

∀𝑓 ′
𝑖𝑚𝑝

(𝑢,𝑚𝜙,𝑖 )=1,

∀𝑢∈U𝑠′

𝑝 (𝑢, 𝑐,𝑚𝜙,𝑖 )−
∑︁

∀ ˆ𝑓𝑖𝑚𝑝 (𝑢,𝑚𝜙,𝑖 )=1,
∀𝑢∈ ˆU𝑠

𝑝 (𝑢, 𝑐,𝑚𝜙,𝑖 ) .

(5)
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Then, the utility gain to adopt 𝜒 ′ is:

G(𝑢,𝑚𝜙,𝑖 , 𝑙, 𝜙) =
∑︁

∀𝑐∈C,∀𝑎∈A
𝜎 (𝑎, 𝑐, 𝜙) × 𝑃 (𝜒 ′, 𝜒, 𝑙, 𝜙, 𝑐) . (6)

Note that, in Algo. 1, we let 𝑢 =∼ represent upgrading a sensing

unit in 𝜒 by adding module𝑚𝜙,𝑖 ; if 𝑢 =∼ and𝑚𝜙,𝑖 =∼, a sensing
unit in 𝜒 can be leveraged for other parameters.

Network construction with the Tx-aware shortest path.
Once a new sensing unit or module is installed at candidate lo-

cation
ˆ𝑙 , the network constructor (Algo. 2) checks the existence

of a network connection to the edge server provided by the cur-

rent plan. Two routes that have possibly fewer hops are from
ˆ𝑙 : (i)

directly to the edge server at location 𝑙𝑒𝑑𝑔𝑒 (line 2) and (ii) to the

nearest networking unit at location 𝑙𝑛 with a connection to the edge

server (line 3). We design a Transmission range (Tx)-aware graph
that captures the transmission characteristic if networking units are

deployed. Each vertex represents a candidate location 𝑙 ∈ L, and

the edge between 𝑙 ∈ L and 𝑙 ′ ∈ L has a weight𝑤 (𝑙, 𝑙 ′) capturing
the characteristic. The network constructor selects the Tx-aware
shortest path of the aforementioned two routes with fewer hops

to deploy networking units to reduce cost (line 4). In particular,

let 𝑙 ∈ L and 𝑙 ′ ∈ L denote two locations in a Tx-aware graph;

moreover, the newly included sensing unit or module has network

interface 𝑑 with a transmission range 𝑟𝑡𝑟 . The weight between 𝑙

and 𝑙 ′ is:

𝑤 (𝑙, 𝑙 ′) =
{
𝑟𝑡𝑟 −𝑑𝑖𝑠𝑡 (𝑙,𝑙 ′ )

𝑟𝑡𝑟
, 𝑖 𝑓 𝑑𝑖𝑠𝑡 (𝑙, 𝑙 ′) ≤ 𝑟𝑡𝑟 ,

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(7)

where 𝑑𝑖𝑠𝑡 (𝑙, 𝑙 ′) is the distance between 𝑙 and 𝑙 ′.

5.2 Enhanced QuIC-IoT – Maximizing Marginal
Utility and Network Coverage

We design an enhanced QuIC-IoT, EN-QuIC, that further optimizes

the deployment process of BAS-QuIC. We propose to deploy the

devices with a higher marginal performance (improvement per

budget spent) in sensing and networking to optimize the overall

utility, especially under a stringent deployment budget.

Marginal utility in sensor deployer. We introduce the sensor

deployer’s marginal utility, which is the utility gain per budget

spent on deploying/upgrading a sensing unit. EN-QuIC and BAS-

QuIC share the same algorithm structure (Algo. 1). Instead of utility

gain, EN-QuIC computes the marginal utility for all possible com-

positions of a sensing unit at each candidate location 𝑙 for capturing

each parameter 𝜙 (line 3). Three possible deployments are: (i) in-

stalling a new sensing unit (line 12), (ii) upgrading a sensing unit

(line 9), and (iii) reusing a sensing unit (line 7). In particular, let

Δ𝐶 (𝑢,𝑚𝜙,𝑖 ) denote the cost of deploying a new sensing unit 𝑢 with

module𝑚𝜙,𝑖 . Similar to the utility gain, in Algo. 1, if 𝑢 =∼, it rep-
resents the cost of adding an extra𝑚𝜙,𝑖 to 𝑢. Hence, the marginal

utility of the sensor deployer is:

𝑒𝑐𝑜𝑣 = G(𝑢,𝑚𝜙,𝑖 , 𝑙, 𝜙)/Δ𝐶 (𝑢,𝑚𝜙,𝑖 ) . (8)

𝑒𝑐𝑜𝑣 is computed at lines 9 and 12 instead of G(𝑢,𝑚𝜙,𝑖 , 𝑙, 𝜙). If a
sensing unit can be reused (line 7), 𝑒𝑐𝑜𝑣 = ∞.

Marginal network coverage in network constructor. We

define the network constructor’s marginal network coverage as the
network coverage gain per budget spent on deploying networking

units. Similar to BAS-QuIC, the network constructor (Algo. 2) iden-

tifies the Tx-aware shortest path from a sensing unit’s location
ˆ𝑙 to

(i) the edge server’s location 𝑙𝑒𝑑𝑔𝑒 (line 2) and (ii) the nearest net-

working unit’s location 𝑙𝑛 (line 3), which are denoted as 𝑃 (ˆ𝑙, 𝑙𝑒𝑑𝑔𝑒 )
and 𝑃 (ˆ𝑙, 𝑙𝑛). The network constructor selects the shortest path with

higher marginal network coverage for each sensing unit. In particu-

lar, let 𝑙𝑑𝑠𝑡 denote the destination of a Tx-aware shortest path. The

network coverage gain is G(𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 )), the number of additional can-

didate locations covered by deploying network units on 𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 ).
Besides, let Δ𝐶 (𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 )) denote the cost to deploy network units

on 𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 ). If a network unit has been deployed at a location,

there is no extra cost since we can reuse it. The marginal network

coverage of deploying networking units on 𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 ) is:
𝑒𝑛𝑒𝑡 = G(𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 ))/Δ𝐶 (𝑃 (ˆ𝑙, 𝑙𝑑𝑠𝑡 )), (9)

where 𝑙𝑑𝑠𝑡 is either 𝑙𝑒𝑑𝑔𝑒 or 𝑙𝑛 .

EN-QuIC provides user-specified weights𝑤𝑠 and𝑤𝑛 of marginal

performance in deploying sensing and networking units. EN-QuIC

computes the following for each sensing unit and its Tx-aware

shortest path:𝑤𝑠 ×𝑒𝑐𝑜𝑣 +𝑤𝑛 ×𝑒𝑛𝑒𝑡 . The one with the highest value

is included in the deployment plan in each iteration.

5.3 Reconfiguration During A Short-Term Event
Once the IoT infrastructure is deployed, it captures PHoI and trans-

mits the data to the edge server. QuIC-IoT reconfigures the IoT

deployment based on the captured evolution of PHoI and experts’

domain knowledge. First, QuIC-IoT re-analyzes each cell’s criti-

cality by leveraging the captured data (e.g., wind speed) to drive

models (e.g., fire simulators) to generate a new set of parameters

(e.g., fire behavior). Additional specialized devices (e.g., drones) are

then leveraged to capture emergent data by giving a set of possi-

ble candidate locations. QuIC-IoT re-executes the algorithms with

the new inputs, such as candidate locations, criticality estimates,

devices, etc., to generate a new deployment plan/reconfiguration.

5.4 Practicality of QuIC-IoT
QuIC-IoT can be applied to monitor other impending disaster sce-

narios, such as floods, hurricanes, and wildfires, where there may

be days/hours of warning time. Tools to model physical phenom-

ena (flood modeling, hurricane prediction) have been developed by

domain experts and can be utilized to instrument communities for

damage and loss monitoring. QuIC-IoT can help identify locations

experiencing a higher probability of severe damage and impact.

Besides, devices may fail or disconnect from communication net-

works in unpredictable ways. Sensing quality may be damaged due

to high temperatures despite fireproofing of components. Candidate

locations generated by QuIC-IoT may be inconvenient to instru-

ment - local connectivity and sensing issues may exist, and this

will require data recalibration or even repositioning of devices dur-

ing deployment/operation. Our ongoing research aims to address

these issues via reliability methods, including health monitoring of

the IoT deployment using heartbeat protocols, exploiting mobile

data collectors (e.g., drones) when connectivity issues arise during

operation, and redundant sensors and sensing modalities.

Moreover, QuIC-IoT is designed for IoT deployment in a rela-

tively small and bounded region. Our prescribed fire usecase usually
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Figure 5: Prototype system for RxFire monitoring.

Table 2: Module Composition and Devices’ Cost

Raspberry Weather PM Pi Fire-Proof LoRa

Pi Station Sensor Camera Case Dongle

Cost 139.95 113.05 33.99 14.99 100 84.99

Fire#1 X X

Fire#2 X X X

Air Quality#1 X X

Air Quality#2 X X X

Weather#1 X X

Weather#2 X X X

involves a few personnel (<10), a few square miles at most, and

takes around a day to finish the operation. Hence, the level of instru-

mentation expected is smaller (i.e., fewer devices) than a city-scale

deployment, like the one considered in SONYC [6]. The fact that

these scoped situations are short-term and also a factor in keeping

the complexity within bounds. In general, a larger, long-term city-

wide deployment involves many stakeholders/communities with

various requirements of sensing, communication, and computing,

which complicates the problem. In fact, our previous work [11]

addresses the nature of IoT planning in urban/suburban communi-

ties (like Irvine, CA, USA) where the reuse of deployed devices for

multiple purposes over time is of value.

6 EVALUATING THE QUIC-IOT APPROACH
In this section, we evaluate the QuIC-IoT approach for short-term

IoT deployment. We developed a prototype system for our driving

usecase, monitoring RxFires, in a lab setting. This allowed us to inte-

grate and refine system components and their interaction, e.g., the

criticality analyzer and physics-based modeling tools to estimate

the anomaly probability of Rxfires. We conduct a broad range of ex-

periments with various settings to evaluate QuIC-IoT’s algorithms.

Two burns with different scales are explored: (i) a small regular-

size burn from a real burn plan and (ii) a large burn to explore

the possibility of increasing the burn site’s size and, thus, RxFire’s

efficiency. We evaluate the efficacy of our placement methods under

multiple weather conditions (normal, abnormal, and extreme) and

burn scales. QuIC-IoT’s capability to capture anomalies is evaluated

and quantified.

Day 1 Burn

Day 2 Burn

Day 3 Burn

Edge Server

Actual Burn Site in 

a Forest in North America 

Snippet of the

Real Burn Plan

(a) (b)

Figure 6: Snippet of a real burn plan: (a) canopy cover of the
burn site and (b) environmental/fire behavior prescription.

6.1 QuIC-IoT Lab Prototype
For a RxFire operation, we build a prototype system that moni-

tors the following physical phenomena: (i) fire spread, (ii) sudden

weather change, and (iii) sudden air quality change. Ensuring a safe

RxFire operation requires monitoring the following parameters of

fire spread: (i) flame length, (ii) fire spread rate, and (iii) spotting dis-

tance (distance an ember travels). Parameters of a sudden weather

change include temperature, wind speed/direction, and relative hu-

midity. Particulate Matters (PM) 2.5 and 10 are regular parameters

for detecting a sudden air quality change. The fire breaks partition

a burn site into two areas: the operation region (burn area) and

the others (surrounding area). Both areas require fire monitoring,

whereas only the surrounding area requires weather and air qual-

ity monitoring. Table 2 lists the modules’ composition (required

devices) that can monitor each parameter and each device’s cost. A

transparent fire-proof case enables a sensing unit, e.g., a Raspberry

Pi with a camera, to be deployed in the burn area. The prototype’s

primary communication technologies include WiFi and LoRa. A

camera requires a higher bandwidth provided by WiFi, whereas

other sensors accept both technologies. The Raspberry Pi’s onboard

WiFi antenna and a LoRa dongle via USB are the network interface

for transmission. The data exchange between the Raspberry Pis

and the edge server relies on a WiFi router and a LoRa gateway,

which cost $110 and $299.9, respectively.

We build a prototype system to demonstrate and verify the re-

quired functionality at a real burn site, such as sensing, commu-

nication, and computing, before taking them to the field. Fig. 5

shows the prototype at a mock burn site created by a grid mat.

Each red light mimics a flame in a grid. A weather station consists

of a Raspberry Pi connected via GPIO to an off-the-shelf weather

shield embedded with temperature and relative humidity sensors;

the weather shield connects to an anemometer and a wind vane via

RJ11 cables. The weather station transmits its data through a LoRa

dongle. A multi-functional sensing unit has a PM sensor and a Pi

camera for air and fire monitoring with built-in WiFi functionality.

A WiFi router and a LoRa gateway forward the data to the edge

server, which is a laptop in the middle. The Raspberry Pis execute

SCALE client [7] that (i) publishes the data to an MQTT broker on

the edge server and (ii) transmits the camera’s images via restful
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API to the edge server. The edge server receives the data via sub-

scribing and restful API and stores the data in a local PostgreSQL

database.

6.2 Experimental Setup
Input from domain experts and a real dataset.We exploit an

existing dataset from the LANDFIRE project [1] to drive the simu-

lation environment - this includes detailed features such as vegeta-

tion, slope, canopy, etc., derived from satellite images. The dataset’s

resolution bounds the minimum cell size we use (30mX30m); the

chosen resolution in the dataset reflects a single vegetation type

in a specific cell; this allows for faster fire simulation. The domain

experts provide us with a detailed burn plan derived from past ex-

periences and simulations that take into account the dimensions of

the burn site (with clearly identified fire breaks), topography, fuel,

and expected weather conditions. Domain experts on the paper also

provided us with potential candidate locations to deploy devices in

this burn plan. However, to model uncertainty, we explore numer-

ous scenarios with varied inputs, such as budgets to instrument

burn sites, weather conditions, and varied candidate deployment

locations, which are introduced as follows.

Settings derived from a real burn plan. Fig. 6 shows a snip-
pet of the real burn plan in Blodgett Forest, CA, USA, where Fig.

6(a) is the canopy cover of the burn site that hosts three separate

RxFires on three consecutive days. We conduct the experiments

in two real-world burn sites (rectangles centered at approximately

the Day-2 burn center) derived from the burn plan: (i) small burn

(≈500 m2
) and (ii) large burn (≈3000 m2

). For each burn site, we

derive the topography (elevation, slope, aspect) and vegetation (fuel

model, canopy cover) data from LANDFIRE [1]. Fig. 6(b) records

the prescribed range of environmental and fire-related parameters

in each area (burn and surrounding) in an actual burn plan. It also

provides the forest’s historical environmental parameters
1
. We fur-

ther define three weather types: (i) normal weather with prescribed

parameters, (ii) abnormal weather with parameters from high to

the maximum, e.g., 10–21 for wind speed, and (iii) extreme wind

with a wind speed of force 6–8 in the Beaufort wind scale [35].

Utilizing wind and fire spread models. We exploit a wind

simulator, WindNinja [16], and a fire simulator, FARSITE [15], to

generate RxFires under different conditions. Static inputs include

the information in the data from LANDFIRE, where a burn site is

divided into 30m×30m cells by default. WindNinja generates sophis-

ticated wind parameters (speed, direction) for each cell based on

the terrain and initial wind speed/direction. The initial wind speed

and direction are uniformly sampled from the range defined in

each weather type and from 0–360 degrees, respectively. FARSITE

generates fire behaviors/parameters for each cell with environ-

mental inputs, a fire break, and an ignition. Environmental inputs,

including the generated wind parameters and other parameters

(temperature and relative humidity), are uniformly sampled within

the range defined in each weather type. The small burn uses the

Day-2 burn fire break, i.e., the red polygon in Fig. 6(a). The large

burn’s fire break is a quadrilateral, with four corners uniformly

generated within a distance of up to 1 km to each of the nearest two

borders of the burn site. Each simulation has a uniformly generated

1
Weather Underground: https://www.wunderground.com/history

ignition line within the fire break with a length of 25 and 150 m for

small and large burns.

Parameters of sensing and networking units. We derive

the parameters from experts and our prototyping experience. In

the experiments, we exploit the prototype’s real settings, e.g., cost,

modules, and monitoring requirements of each area. Each sensor’s

sensing range (in meters) is: (i) weather station–300, (ii) PM sensor–

200, and (iii) camera–100; the sensing parameter, 𝛼𝑑 , in Eq. (1) is the

reciprocal of sensing range for each sensor. The transmission ranges

of WiFi and LoRa are 100 m and 1 km, respectively. Finally, the

candidate locations are generated in two ways: (i) each cell’s center

and (ii) uniformly sampled on the fire break. Only sensing units

equipped with a fire-proof box can be deployed in the burn area. All

devices can be deployed on the fire break and in the surrounding

area. The edge server location for the small burn is indicated in Fig.

6(a). The edge server for the large burn is at a fixed location near

the fire break.

6.3 Evaluating QuIC-IoT Criticality Analysis
We evaluate the criticality analyzer in QuIC-IoT with the following

settings: (i) small burn under all three possible weather types and

(ii) large burn with normal and abnormal weather conditions. The

burn plan is used to determine abnormal parameters, i.e., the value

exceeds the prescribed range of low parameters in Fig. 6(b). We

generate the training and testing datasets of identical sizes to derive

a similar probability distribution for a fair comparison. We use the

Mean Squared Error (MSE) as the evaluation metric and report the

average MSE of the probability in the derived PMF.

We compare the QuIC-IoT’s criticality analyzer (developed with

neural network regression) with three other regression models:

(i) polynomial, (ii) SVM, and (iii) random forest. The criticality

analyzer’s architecture includes two hidden layers of 64 nodes with

a ReLU activation function. Its output layer contains only one node

with a Sigmoid activation function. We train the criticality analyzer

with 100 epochs. We report the best results for the polynomial

and random forest regression, derived with a degree of 7 and 200

trees, respectively. A hundred equal-sized bins are used to count

the occurrences in the PMF function for all models.

We use solid and dashed lines to represent the training and test-

ing results in Fig. 7. Generally, the QuIC-IoT’s criticality analyzer

has the lowest average MSE in testing. Note, however, in Fig. 7(c),

while polynomial regression has a slightly lower MSE during test-

ing, its average MSE is far worse in quantifying the criticality for

flame length and fire spread rate. In Fig. 7(c) and (f), random for-

est regression has much lower MSEs in training than our method;

however, its performance deteriorates in testing, representing pos-

sible overfitting. Moreover, since the criticality analyzer’s learning

process relies on the occurrence of anomalies, it performs better

in small burns with extreme wind scenarios. That is, its average

MSE is below 2% in Fig. 7(a)–(b) and 5% in Fig. 7(d)–(e). Moreover,

Table 3 shows the training times of the proposed criticality analyzer

and traditional baseline methods with 1000 data points. The mean

training time of all cells is reported. Since neural networks have

higher complexity, QuIC-IoT has the longest mean training time

and the highest standard deviation; however, its training time is

relatively short and bounded (<7.4s). Note that we train the model
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Figure 7: Average MSE of the fire spread’s parameters in different burns. (a) Flame length in small burns. (b) Fire spread rate in
small burns. (c) Spotting distance in small burns. (d) Flame length in large burns. (e) Fire spread rate in large burns. (f) Spotting
distance in large burns.

on a CPU; hence the training time could be further optimized by

leveraging a GPU for parallelization.

6.4 Experimental Results
RxFire in Blodgett Forest, CA, USA.We first evaluate QuIC-IoT’s

algorithms in the small burn setting. To the best of our knowledge,

the short-term IoT deployment problem has no prior solutions.

Thus, we develop two simple baseline sensor deployers: (i) tradi-

tional (TRAD) that purely maximizes the overall sensing coverage

with a similar greedy heuristic in [33] and (ii) maximum criticality

(Crit) that deploys a sensing unit to the location with the maximum

criticality in each iteration. For comprehensive studies, we sepa-

rately evaluate QuIC-IoT’s sensor deployer and network constructor

by various combinations. We denote the basic and enhanced QuIC-

IoT’s sensor deployer as QuIC and QuIC
+
. QuIC-IoT’s network

deployers, Tx-aware shortest path and maximummarginal network

coverage, are denoted as S and M. A hyphen concatenates a sensor

deployer and a network constructor to form a deployment method,

e.g., QuIC-S and QuIC
+
-M represent BAS-QuIC and EN-QuIC, re-

spectively. We use the following performance metrics to evaluate

all 8 combinations under a range of budgets for instrumentation - (i)

the overall utility, Eq. (4a), of the IoT instrumentation, (ii) the cost

performance (C/P) index, the ratio of the overall utility, Eq. (4a), to

the overall budget spent in the deployment, Eq. (4b), (iii) mean sens-

ing coverage, averaging the ratio of the covered area to the overall

area of all parameters, and (iv) the number of implemented data

flows. Note that different sensors have different sensing/coverage

capabilities, which are captured by the 𝛼𝑑 parameter in Eq. (1). We

capture the difference by setting 𝛼𝑑 related to each sensor’s sensing

range, i.e., the reciprocal of its sensing range. The covered area is

composed of the cells that are covered by (with a positive value)

Eq. (1) for each parameter. These performance metrics allow us to

evaluate the IoT deployment under each setting.

By conducting comprehensive experiments, we derive the best

weight of the marginal performance in sensing𝑤𝑠 and networking

𝑤𝑛 , which are 0.8 and 0.2, for EN-QuIC. We exploit the results from

the previous experiments to set the criticality for fire behaviors in

each cell; other parameters’ criticality in each cell is uniformly set

to 1. We let solid and dashed lines in Fig. 8 represent the network

constructor with S and M. Deployment methods with S network

constructor (excluding QuIC
+
-S) are non-marginal network con-

structor methods, i.e., solid lines excluding QuIC
+
-S. In Fig. 8(a),

EN-QuIC derives the highest overall utility with improvements

up to 49.33% compared to the baseline methods. BAS-QuIC’s over-

all utility improves up to 27.21% compared to other non-marginal

network constructor methods. Maximizing the marginal network

coverage improves the overall utility by up to 30.29% compared to

non-marginal network constructor methods due to efficient budget

management. Fig. 8(b) confirms that EN-QuIC has the highest C/P

index. Besides, the C/P index decreases for all methods when the

budget increases since the sensing coverage increases, as shown in

Fig. 8(c). The marginal gain of deploying units decreases when the

sensing coverage increases.

Fig. 8(c) shows that EN-QuIC derives comparable sensing cover-

age as TRAD-M, which maximizes the sensing coverage; however,

EN-QuIC derives the highest overall utility, as shown in Fig. 8(a),

due to the rigorous consideration of sensing coverage, criticality,

and connectivity. Though BAS-QuIC has the lowest sensing cov-

erage, it still has the highest utility among non-marginal network

constructor methods due to the effective deployment that maxi-

mizes the overall utility. Moreover, the sensing coverage improves

while applying the M network constructor, meaning that maximiz-

ing the marginal network coverage spares the budget such that

more sensing units can be deployed. Fig. 8(d) shows that EN-QuIC
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Large Burn Small Burn
Mean Training Time (ms) Standard Deviation (ms) Mean Training Time (ms) Standard Deviation (ms)

Fire Behevior Poly SVM Rnd Forest QuIC Poly SVM Rnd Forest QuIC Poly SVM Rnd Forest QuIC Poly SVM Rnd Forest QuIC

Flame Length 1.758 0.641 256.746 7220.582 0.269 0.122 11.129 273.549 1.553 0.63 256.506 7336.509 0.124 0.15 10.09 452.831

Fire Spread Rate 1.778 0.666 266.562 7339.404 0.269 0.114 11.765 319.565 1.642 0.631 263.987 7369.863 0.214 0.099 9.954 321.488

Spotting Distance 1.772 0.681 256.282 7297.73 0.266 0.13 10.744 273.575 1.747 0.691 258.642 7259.192 0.272 0.133 9.449 435.992

Table 3: Execution Time of each Learning Technique

implements the most data flows due to effective budget manage-

ment. By adopting the M network constructor, the number of im-

plemented data flows increases by around 1.17 times compared to

non-marginal network constructor methods, which all implement

a similar number of data flows.

Large scale RxFire. We evaluate QuIC-IoT’s ability to support

RxFire operations in large burn area settings. Increasing the burn

size improves the efficiency of RxFire, e.g., burning the whole area

in Fig. 6(b) in one day rather than three days. We also explore the

methods’ efficacy under limited deployment budgets. We assume

all sensing and networking units are fire-proof and can be deployed

in both burn and surrounding areas. The burn site is resized into

100m×100m cells, and cell centers are candidate locations. Fire is the

only PHoI. The rest of the settings are identical to the experiments

in small burns. We compare QuIC-IoT with the baseline methods

and report the results in Fig. 9.

Fig. 9(a) shows that EN-QuIC derives the highest overall utility

and improves up to around 3.55 times compared to the baseline

methods. TRAD-S has the second highest overall utility since the

traditional method derives a higher sensing coverage in a large

area where the units cannot fully cover, as shown in Fig. 9(c). Note

that even though TRAD-S seems to perform comparably to EN-

QuIC, EN-QuIC still outperforms TRAD-S by 13.57% of utility (12K

budget). The two algorithms have the same time complexity since

TRAD-S only adopts a different greedy metric in Algo. 1. Thus,

EN-QuIC is still the most appropriate method in this setting. Typ-

ically, applying the M network constructor has a significant im-

provement, especially for QuIC
+
, by up to 3.29 times. However, the

traditional method’s utility deteriorates (e.g., TRAD-M) since the

method cannot trade off deploying sensing and networking units

for maximizing sensing and networking coverage. Fig. 9(b) shows

that EN-QuIC maintains the highest C/P index, as TRAD-S’s index

decreases when the budget increases. More networking units are

deployed due to lacking optimizing the network coverage.

Fig. 9(c) shows that both QuIC
+
methods significantly increase

sensing coverage with an increasing budget. Maximizing the overall

utility and maximizing the marginal performance in both sensing

and networking improve the sensing coverage as the traditional

method. When the budget is sufficient for effective deployment,

EN-QuIC even derives a higher sensing coverage than purely maxi-

mizing the sensing coverage, i.e., TRAD-S. Fig. 9(d) shows that the

number of implemented data flows has a similar trend as the sensing

coverage. That is, the number of connected data flows bounds the

number of locations covered by sensing units in large area settings.

Overall, the results show that EN-QuIC has an effective deployment

in a large burn site. Even with insufficient budgets, EN-QuIC still

maintains the best performance compared to the baseline methods.

Evaluating anomaly capture rate.We evaluate the effective-

ness of a generated deployment plan to capture anomalies using

experimental settings for small and large burns as discussed earlier.

The wind and fire spread model are exploited to generate simu-

lations with three fire behaviors, i.e parameters: (i) flame length,

(ii) fire spread rate, and (iii) spotting distance. For each cell, the

simulator generates a unique value for each of the fire behavior

parameters above. We identify the cell as having an anomaly when

the parameter value exceeds an abnormality threshold (as defined

by the domain expert). A sensor can only capture a cell’s anomaly

if the cell is within its sensing range. Thus, we approximate the

ability of a deployment to capture anomalies using a metric called

the anomaly capture rate, i.e. the ratio of captured anomalies to the

total number of anomalies. Small burns use abnormal weather and

extreme wind to generate anomalies, whereas large burns leverage

only abnormal weather. Each setting has 100 simulations. We report

the average percentage of the captured anomalies of all three behav-

iors. Fig. 10(a) shows that EN-QuIC captures the most anomalies

in small burns. Almost all anomalies (up to 97.5%) are captured

with sufficient deployment budgets. Since BAS-QuIC has the lowest

sensing coverage, its ability to capture anomalies is the worst. Fig.

10(b) shows that EN-QuIC captures more anomalies than TRAD-S

with sufficient budgets for large burns. Its anomaly capture rate

increases significantly compared to TRAD-S, whereas these two

methods’ sensing range differs relatively insignificant, as shown

in Fig. 9(c). That is because EN-QuIC captures more anomalies per

sensing coverage.

7 RELATEDWORK
The IoT deployment problem has been studied across different do-

mains; much of this work focuses on issues of sensor placement for

capturing physical phenomena in the focus domain and gateway

deployment for ensuring network access, given the geospatial range

of interest. The canonical sensor placement problem (also known as

the point coverage problem) [33] aims to maximize the overall sens-

ing coverage by instrumenting sensors using models that capture a

sensor’s coverage and capacity. Multiple variants/constraints are

studied while maximizing coverage, including under a limited num-

ber of sensors, minimizing network cost, under different coverage

criteria, etc. The problem can be equated to the well-known NP-

hard set-cover problem, which is usually solved by greedy heuristic

methods. Sensing coverage may depend on the sensor’s detection

angle using an unlimited model (360 degrees) [9, 34, 39] or a limited

angle model [2, 8, 17, 24]. Additionally, the distance between a sen-

sor and a possible location where the phenomena occur impacts the

coverage in a stochastic manner; the coverage probability decays

with distance [25] and is further truncated by a threshold [40, 41].

Domain-specific sensor placement techniques have been developed
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Figure 8: Experiment results in an RxFire in a forest in North America: (a) overall utility, (b) cost performance index, (c) mean
sensing coverage, and (d) the number of implemented data flow.
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Figure 9: Experiment results in a large RxFire burn: (a) overall utility, (b) cost performance index, (c) mean sensing coverage,
and (d) the number of implemented data flows.
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Figure 10: The ratio of captured anomalies in: (a) small burns
and (b) large burns.

for wide-area infrastructure such as smart agriculture [36], water in-

frastructure [31, 32, 37], and smart power grids [21, 30]. An event’s

impacts on the area in terms of demography and economy are con-

sidered during the deployment [31, 32]; however, the impacts are

relatively static compared to physical phenomena, which are highly

dynamic and complex to model. In contrast to the above efforts,

we exploit a more in-depth approach to integrate expert-developed

models to identify and prioritize critical locations where sensors

must be placed to help detect potential anomalies, desirably even

before they occur.

The gateway deployment problem aims to deploy gateways to

provide network access to sensors in specific regions. This prob-

lem has been studied in the context of various access networks,

including mesh networks [4], LoRa [26], and 5G ultra-dense net-

works [27]. Metrics or constraints used in related studies include

throughput and coverage and their joint maximization [38], energy

efficiency [5, 12], and QoS constraints [4, 13, 19, 20]. In several of

these efforts, network component placement focuses on network

construction, assuming known locations of sensors that have often

already been deployed (or vice-versa). A joint planning that uses

a cross-layer approach is proposed in SmartParcels [11] to deploy

sensors and network devices in an integrated manner. A key dis-

tinguishing feature of the work proposed in this paper is the role

played by expert-developed models in addressing joint placement.

8 DISCUSSION AND FUTURE DIRECTIONS
We presented QuIC-IoT, a framework to construct and deploy IoT

infrastructure for short-term events by leveraging expert-developed

models to understand the parameters (e.g., fire behaviors) of phys-

ical phenomena of interest (e.g., fire spread). QuIC-IoT analyzes

each location’s criticality (anomaly probability) by integrating sim-

ulation results of numerous scenarios capturing real-world physical

conditions (e.g., weather conditions, terrain, vegetation, etc.). The

platform considers the generated criticality, sensing coverage, net-

work connectivity, and marginal performance in deploying sensing

and networking units while constructing IoT infrastructure. We

plan to extend our model-based approach to study other complex

scenarios and physical phenomena where rapid and flexible instru-

mentation can help gain situational awareness. We plan to more

deeply understand the role of observation granularity to gain deeper

436



IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Tung-Chun Chang, Tirtha Banerjee, Nalini Venkatasubramanian, and Robert York

insights into real events and design adaptation mechanisms for dy-

namic reconfiguration of sensors, data collection, and analytics

in challenged network scenarios. Such adaptation can enable the

deployment of resilient infrastructure and systems that can cope

with the dynamics of physical phenomena in real time. Moreover,

during the operational phase (e.g., RxBurn) - we can exploit UAVs

to gather information to augment the in-situ instrumentation de-

ployed apriori (days before burn in our case) by QuIC-IoT. This

paper focuses on addressing an offline problem given a burn plan

and geospatial information about the burn site. The emphasis is to

utilize the physics-based modeling tools used by domain experts to

help with planning the instrumentation of the target site. An offline

cost-benefit analysis can help wildfire management authorities to

determine sensing/communication components (that may need to

be purchased) and where to deploy them. We expect to use UAVs in

conjunction with QuIC-IoT during the dynamic setting - key prob-

lems to be addressed include the determination of live monitoring

tasks, energy-efficient and task-dependent motion planning, and

ensuring wireless connectivity in the wildland setting. For example,

only images that contain an abnormal fire are useful to analyze for

a quick response, such as releasing retardant to the area identified

with anomalies.
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