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ABSTRACT OF THE DISSERTATION

Loglinear Model Selection and Inference for Contingency Tables

by

Arnab Chowdhury

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2018

Professor Subir Ghosh, Chairperson

We propose a class of multiplicative models to describe the dependence of the response

count on the effects of the explanatory variables and their interactions in a contingency

table. The proposed models are motivated by loglinear models for contingency tables.

Under these models, every cell count and/ or probability is the product of effects of

the categorical variables used as explanatory variables. Such models are useful in ana-

lyzing complete as well as incomplete tables. We present a connection between these

models and graphical probability models in describing conditional independence struc-

tures among the explanatory variables.

We extend the standard unsaturated loglinear models to a complete model retaining

the conditional independence structure. We characterize the extension of the unsatu-

rated model to the standard saturated model. We also compare the estimates of the

unknown parameters in these two saturated representations. Necessary and sufficient

conditions for the equivalence of the estimates of unknown parameters in these two

models are given. We propose a criterion function for model selection based on the

extensions of the unsaturated models. We discuss uniqueness and sum to zero proper-
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ties of these extensions. We illustrate model building, estimation and selection methods

with a auto-accident data set (Agresti, 2013). We also study the performance compari-

son of the newly proposed method with the standard methods that are commonly used

in practice.
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Chapter 1

Introduction

The main objective of this dissertation is to build a new class of multiplicative mod-

els to describe the dependence of the response count on the effects of the categorical

variables in a contingency table. Under these models, the cell counts and/ or proba-

bilities are the products of the effects of the categorical variables. These models can

be used to analyze complete as well as incomplete contingency tables. The proposed

models are the generalizations of the standard loglinear models and are motivated by

Relational models (Klimova et al., 2011).

1.1 Thesis Description

In Chapter 2, we introduce contingency tables and some standard models to describe

the data in the contingency tables. We also introduce the standard loglinear models and

the extension of these models which will be used for describing the effects of one or

more categorical variables on the response count. In this chapter we discuss different

unsaturated models and characterize the interaction parameters in different conditional

1



independence models. We also introduce undirected graphs to define conditional inde-

pendence and establish the connection with interaction parameters. In Chapter 3, we

discuss Maximum Likelihood Estimation and Minimum Discrimination Information

Estimation as the two estimation methods of unknown parameters in loglinear mod-

els. We also check the goodness-of-fit of these unsaturated models in this chapter. In

Chapter 4, we characterize the extension of the unsaturated model to the standard sat-

urated model. We also investigate the relation between the estimates of the unknown

parameters between these two saturated models in this chapter. In Chapter 5, we dis-

cuss different choices of the extension and some important properties of this extension.

We also introduce our criterion function for selecting the best fitted model based on

D in this chapter. The results and comparison of different criterion functions from the

simulation study are presented in Chapter 6. Chapter 7 presents the conclusion of this

dissertation.

1.2 Thesis Contribution

In this dissertation, we discuss a method of loglinear model building by adding one

or more new terms orthogonally to the terms of the existing model. This way we can

extend any lower order model to a higher order model. When we add all the new non-

existing terms to the existing model this way, we obtain a new saturated model (Sat-

urated 2). We compare this new saturated model with the standard saturated loglinear

model (Saturated 1). The orthogonal extension provide some conditional independence

structures among the categorical variables in the unsaturated lower order models. This

2



way of extending the loglinear models allows us to relate the parameters that are present

in the model to the parameters that are assumed to be zero in an orthogonal way. We

compare the Saturated 1 model with the Saturated 2 model. We establish the necessary

and sufficient conditions for the equivalence of the parameter estimates between these

two models. We demonstrate the uniqueness and sum to zero properties of this orthog-

onal extension. We also propose a new criterion function for selecting the best fitted

unsaturated model based on the extensions of the unsaturated models.

3



Chapter 2

Contingency Tables and Models

2.1 Summary

In this chapter, we introduce contingency tables and some standard models to de-

scribe the data in the contingency tables. We define the basic notations and terminolo-

gies in a contingency table (section 2.2). We present two contingency tables with no

missing observations and one contingency table with a missing observation (section

2.3). We describe the Poisson Probabililty Models (PPM), Multinomial Probability

Models (MPM), the Loglinear Models (LLM) and the Multiplicative Models (MM) (

section 2.4) which will be used in fitting the data (Chapter 5) in a contingency table.

These models are generally used for describing the effects of one or more categori-

cal variables on the response. We discuss different unsaturated LLMs (section 2.5). We

characterize the interaction parameters in conditional independence LLMs (section 2.6).

We use undirected graphs to define conditional independence between two categorical

variables and establish the connection with interaction parameters (section 2.7).

4



2.2 Contingency Tables

In many observational studies individuals are classified to different levels of one or

more categorical variables. The categorical variables are often called the explanatory

variables or the factors. The response is the number of observations or the counts be-

longing to the different level combinations of the factors. An m-way contingency table

is formed if the classification is done on m categorical variables X1, X2, .., Xm. The cells

in a multidimensional contingency table represent the level combinations of the cate-

gorical variables under consideration. The individuals with the same characteristics are

identified and the count is placed in a cell of a contingency table. In a contingency table

we are normally interested in the relations between one classification with respect to a

factor and one or more other classifications with respect to the other factors. In general,

we wish to determine the effects of the factors on the data by fitting a suitable model.

A two-way contingency table is the simplest form of classification where an indi-

vidual is classified by two categorical variables. Let Yi1i2 be the random variable repre-

senting the cell counts for i1-th level of X1 and i2-th level of X2 (i1 = 1, 2, .., I1; i2 =

1, 2, .., I2). We define pi1i2 as the cell probability of an individual belonging to the

i1-th category of X1 and i2-th category of X2, satisfying 0 < pi1i2 < 1, ∀ i1, i2 and∑
i1,i2 pi1i2 = 1. If we consider 0 and 1 be the two levels of a factor then for a 2 × 2 con-

tingency table, all possible level combinations of (X1, X2) are S = {(i1, i2); i1, i2 = 0, 1}.

We also define N = I1I2 as the total number of cells in a I1 × I2 contingency table. The

subscript i is used to denote different level combinations of the explanatory variables.

We define ni = ni1i2 = yi1i2 = yi = number of observations belonging to the i1-th category

of X1 and i2-th category of X2, where i = 1, 2, ..,N and
∑

i1,i2 ni1i2 =
∑

i ni = n = total

5



counts = total number of observations in the study. The rows represent the categories of

a variable X1 and the columns represent the categories of another variable X2. A blank

2 × 2 contingency table is presented in Table 2.1.

Table 2.1: A blank 2 × 2 contingency table with cell counts, Row and Column totals

X2

Row
(1) (0) Total

X1

(1) n10 n10 n1+

(0) n01 n00 n0+

Column n+1 n+0 n

Total

These notations can be generalized to an m-way contingency table. In an m-way

contingency table, we have N = I1 × I2 × . . . Im cells and ni1i2...im , pi1i2...im and µi1i2...im

represent the counts, probabilities and means of the cell (i1, i2, . . . , im), respectively. For

simplicity, we consider m categorical variables each with 2 levels 0 and 1. The set

S = {(i1, i2, . . . , im); i1, . . . im = 0, 1} is the collection of all possible level combinations

of (X1, X2, . . . , Xm). We also define λ = (λ, λ1, λ2, λ3, λ12, ..., λ123, ..., λ12...m)′, the un-

known parameters, where λ j1... jm is the joint effect of X1 . . . Xm. The cells represent the

presence or absence of the unknown parameters in the response Y. The elements xi j in

the design matrix X (except the first column) are 1 if the λ j is present in the expression

of ln µi and 0, otherwise. We define a design matrix X as

6



X =



1 x11 x12 .. x11x12 .. x11x12x13 .. x11x12..x1m

1 x21 x22 .. x21x22 .. x21x22x23 .. x21x22..x2m

1 x31 x32 .. x31x32 .. x31x32x33 .. x31x32..x3m

.. .. .. .. .. .. .. .. ..

1 xN1 xN2 .. xN1xN2 .. xN1xN2xN3 .. xN1xN2..xNm



.

2.3 Examples

The following are some examples of contingency tables. Example 2.1 and 2.2 rep-

resent complete contingency tables and Example 2.3 represents an incomplete contin-

gency table.

Example 2.1: Does seat-belt use in automobiles reduce fatal injuries? To answer this

question a study was performed to observe the injury outcomes of 68694 passengers in

autos and light trucks involved in accidents for one year in the state of Maine. Table 2.2

presents the injury outcomes of 68694(=n) passengers (Agresti, 2013). In this example,

we have 3 factors: Location (X1), Seat-belt use (X2) and Injury (X3), each at 2 levels.

For Location: Urban (0), Rural (1); Seat-belt use: No (0), Yes (1) and Injury: Yes (1),

No (0). The total number of all possible cells/ level-combinations are 2×2×2 = 8. The

counts are placed in each of the 8 cells.

Example 2.2: In this example we consider three categorical variables X1 = alcohol use,

X2 = cigarette use and X3 = marijuana use (Agresti, 2013), each having two categories

0 and 1. We denote the 8 category combinations by (i1, i2, i3), where iu = 0, 1; u = 1, 2, 3

7



Table 2.2: The response counts for different locations (X1), seat-belt use (X2) and in-

juries (X3)

X1 X2

X3

(0) (1)

(0)

(0) 17668 1808

(n000) (n001)

(1) 22556 1139

(n010) (n011)

(1)

(0) 9369 2057

(n100) (n101)

(1) 12827 1270

(n110) (n111)

and
∑

ni1i2i3 = n. The data are presented in Table 2.3.

The above two are the examples of contingency tables with no missing cell counts.

The following (Example 2.3) is an example of the contingency tables with missing ob-

servation.

Example 2.3: A sample of 156 dairy calves born in Okeechobee County, Florida, were

classified according to whether they caught pneumonia within 60 days of birth (Agresti,

2013). Calves that got a pneumonia infection were also classified according to whether

they got a secondary infection within 2 weeks after the first infection cleared up. Since

the calves cannot have secondary infection without having the primary infection, a

8



Table 2.3: The response counts of High School Seniors for Alcohol, Cigarette and

Marijuana Use

X1 Cigarette Use (X2)
Marijuana Use (X3)

Yes (1) No (0)

Yes (1)

Yes (1) 911 538

(n111) (n110)

No (0) 44 456

(n101) (n100)

No (0)

Yes (1) 3 43

(n011) (n010)

No (0) 2 279

(n001) (n000)

structural zero cell (a cell is known a priori to have a zero value) occurs in a 2 × 2

table corresponding to the cell (no primary infection, secondary infection). Table 2.4

shows the data.

2.4 Probability models for Contingency table

In this section we define different probability models for a contingency table. The

complete data provides only the counts at all level combinations of factors. These

counts immediately provide the estimates of probabilities or means at all level com-

binations of factors but do not immediately provide the dependence of means or proba-
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Table 2.4: Pneumonia infection in calves (Agresti, 2013)

Secondary infection
Row

Yes (1) No (2) Total

Primary
Yes (1) 30 63 93

infection No (2) – 63 63

Column Total 30 126 156

bilities on the individual factors and their interactions. To describe the dependence we

consider the response variable as the count in each cell and the categorical variables

used to define the cells or level combinations are treated as explanatory variables. For

simplicity, we consider a contingency table with N = 2m cells.

2.4.1 Relational Models (RM)

For the Relational Models (Klimova, Rudas, & Dobra, 2011), the cell means or

the cell probabilities are expressed as the product of some functions of the unknown

parameters involved in the model. In RMs, the cell means µ of the true distribution are

expressed as

ln µ = Xλ,

that is,

ln µi = λ +

m∑
j=1

xi jλ j +

m∑
j1< j2=1

xi j1 xi j2λ j1 j2 + ... + xi1xi2...ximλ12..m. (2.1)

10



From (2.1), µi can be expressed as

µi = exp[λ +
∑

j

xi jλ j + . . . ] =
∏

j

exp[λ + xi1λ1 + . . . ], (2.2)

the product of the unknown parameters (λ) in the model, where the elements of µ cor-

respond to the elements of S , the set of all possible cells. The µi is the element of µ

corresponding to the i-th element of S . The subscript i is used to denote different level

combinations of the explanatory variables. We discuss the commonly used loglinear

models for count data (section 2.4.2) which is a special case of RMs.

2.4.1.1 Dual and Non-dual representation of a Relational model

A relational model can be represented in either a dual (Klimova, Rudas, & Dobra,

2011) or a non-dual way.

Definition 2.1: For a non-null matrix D with rank(D) = N − rank(X) and D
′

X = 0, a

dual representation of a relational model is defined as

D
′

ln µ = 0. (2.3)

Definition 2.2: A non-dual representation of a relational model is defined as

D
′

ln µ = X∗λ , 0, (2.4)

where X∗ = D
′

X , 0.

If D = 0, then D
′

X = 0X = 0, for any design matrix X. We consider the situation

where D , 0. For saturated models, there always exists a matrix D, such that D
′

X , 0,

i.e., if D , 0, saturated models can also be expressed in non-dual form. We consider

the unsaturated models where 1 ≤ rank(D) < N. Unsaturated models can be expressed

11



in both dual and non-dual form when D , 0. For any unsaturated model, we can find

matrices Di , 0, i = 1, 2 with rank(Di) = N − rank(X) such that D
′

1 ln µ = 0, where

D
′

1X = 0 and D
′

2 ln p = D
′

2Xλ = X∗λ , 0, where D
′

2X = X∗ , 0.

We consider the relational model for independence between X1 and X2 in a 2 × 2

contingency table. The relational model for cell means (µ) is defined as

ln µ = Xλ, (2.5)

where µ = (µ00, µ01, µ10, µ11)′, λ = (λ, λ1, λ2)′and X =



1 0 0

1 0 1

1 1 0

1 1 1


, rank(X) = 3.

If we take D1 = (1,−1,−1, 1)
′

, we get

D
′

1X = 0,

and hence the dual representation of the relational model (2.5) is

D
′

1 ln µ = 0,

i.e.,

ln
µ00µ11

µ01µ10
= 0,

i.e., X1 is independent of X2. If we take D2 = (1, 1, 1, 1)
′

, we get

D
′

2X = (4, 2, 2) , 0,

and hence a non-dual representation of the relational model (2.5) is

D
′

2 ln µ = 4λ + 2λX1
1 + 2λX2

1 , 0.
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2.4.2 Loglinear Models (LLM)

We define the expected count for a cell by µi, i.e., E[Yi] = µi = npi. In all the models

introduced in this section, the effects of the explanatory variables on the response vari-

ables Yi are modeled through the parameters µi. We propose a general class of models

for a contingency table where we express the logarithm of the E[Y] as a linear func-

tion of the unknown parameters λ. In an LLM, we describe the dependencies of the

responses on the explanatory variables as

ln E[Yi] = λ +

m∑
j=1

xi jλ j +

m∑
j1< j2=1

xi j1 xi j2λ j1 j2 + ... + xi1xi2...ximλ12..m, (2.6)

where λ0 = λ and xi0 = 1 ∀ i = 1, 2, . . . ,N. We define the following

(x(1)
i )

′

λ(1) =

m∑
j=1

xi jλ j,

(x(2)
i )

′

λ(2) =

m∑
j1< j2=1

xi j1 xi j2λ j1 j2,

. . . ,

(x(u)
i )

′

λ(u) =
∑

j1< j2···< ju

xi j1 xi j2 . . . xi juλ j1 j2 ... ju ,

. . . ,

in lexicographic order. The LLMs are special cases of MMs since we can express E[Yi]

as

E[Yi] = exp[
m∑

u=1

(x(u)
i )

′

λ(u)] =

m∏
u=1

exp[(x(u)
i )

′

λ(u)]. (2.7)

If Yi’s are assumed to be independent Poisson distributions with parameters µi,

f (yi, µi) =
µie−µi

yi!
, yi = 0, 1, ..; µi > 0, (2.8)
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where µi is the expected count for the i-th cell, the model is called Poisson Loglinear

Model (PLLM). For Poisson model E[Yi] = µi and Var[Yi] = µi (Bishop et al., 2007).

In PLLM, the dependencies of the response on explanatory variables can be expressed

as

ln µi =
∑

j

xi jλ j. (2.9)

In addition to the Poisson model in (2.9), if the total sample size
∑

i Yi is fixed by

the design of the study then the probability distribution of Yi’s, conditional on the sum∑
i Yi = n, is the multinomial distribution with probabilitiy density (Bishop et al., 2007)

f (y|n) =
n!∏
i yi!

∏
i

pyi
i , (2.10)

where pi =
µi∑
i µi

and
∑

i pi = 1. Under Multinomial Loglinear Model (MLLM), the

expected value of Yi is

E[Yi] = npi.

In MLLM, we can model pi since the total sample size is fixed. For fixed sample size

n, the effects of the explanatory variables on the responses Yi is modeled as

ln pi =

m∑
j=0

xi jλ j, (2.11)

where 0 < pi < 1 ∀ i and the condition
∑

i pi = 1 implies

exp[λ0] =
1∑N

i=1 exp[
∑m

j=1 xi jλ j]
. (2.12)

The vector of unknown parameters λ is consists of main effects and interaction

terms. The LLM in (2.6) is called a saturated model if all the N(= 2m) parameters,

assuming each factor has 2 levels, are present in the model. Unsaturated models are the
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models where one or more components of λ are zero. In practice, unsaturated models

are preferred since they have less number of parameters to interpret the association. We

consider the class of models where some interaction parameters are not present (Section

2.5). We define λ = (λ, λ1, λ2, λ3, λ12, . . . , λ123, . . . , λ12...m)′ = (λ, λ
′

1, λ
′

2)′. The vector λ
′

1

contains all the main effect parameters and the vector λ
′

2 contains all the interaction pa-

rameters. The design matrix X can be written as

X =



1 x11 x12 .. x11x12 .. x11x12x13 .. x11x12..x1m

1 x21 x22 .. x21x22 .. x21x22x23 .. x21x22..x2m

1 x31 x32 .. x31x32 .. x31x32x33 .. x31x32..x3m

.. .. .. .. .. .. .. .. ..

1 xN1 xN2 .. xN1xN2 .. xN1xN2xN3 .. xN1xN2..xNm


= [ j|X∗1|X2]

= [X1|X2].

2.5 Different Unsaturated Loglinear Models

We are interested in the class of unsaturated models where two or higher order

interactions are not present. We define some classes of unsaturated loglinear models for

a contingency table with m categorical variables each at 2 levels in the following way:

C1 : 1 component of λ2 is zero, number of models in C1 =
(

N−m−1
1

)
;

C2 : 2 components of λ2 are zero, number of models in C2 =
(

N−m−1
2

)
;

...,

C(N − m − 1) : all components of λ2 are zero, number of models in C(N − m − 1) = 1.
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We also define λ2 as λ2 =


λ(1)

2

λ(0)
2

, where λ(1)
2 = non-zero components of λ2 and

λ(0)
2 consists of the components of λ2 that are zero and X(1)

1 = [ j|X1|X
(1)
2 ] as the design

matrix for an unsaturated model, where X2 = [X(1)
2 |X

(0)
2 ]. We want to find the best fitted

unsaturated model among all these models. We choose the best fitted unsaturated model

using the criterion functions (Chapter 3).

For example, we consider a 2×2×2 contingency table and all the unsaturated models

associated with it. Let Yi1i2i3 be the random variable representing the cell counts for i1-th

level of X1, i2-th level of X2 and i3-th level of X3 (i1 = 0, 1; i2 = 0, 1; i3 = 0, 1), pi1i2i3 be

the cell probability of an individual belonging to i1-th category of X1, i2-th category of

X2 and i3-th category of X3, satisfying 0 < pi1i2i3 < 1,∀i1, i2, i3 and
∑

i1,i2,i3 pi1i2i3 = 1.We

have N = 2 ∗ 2 ∗ 2 = 8 as the total number of cells. If we consider 0 and 1 be the two

levels of a factor, then for Table 2.2, all possible level combinations of (X1, X2, X3) are

S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

= {(i1, i2, i3); i1, i2, i3 = 0, 1}

= {(i); i = 1, 2, .., 8}.

We have, from Table 2.2, ni = ni1i2i3 = yi1i2i3 = yi = number of observations be-

longing to the i1-th category of X1, i2-th category of X2 and i3-th category of X3, where

i = 1, 2, ..,N(= 8) and
∑

i1,i2,i3 ni1i2,i3 =
∑

i ni = n, λ = (λ, λ1, λ2, λ3, λ12, λ13, λ23, λ123)′ =

(λ, λ
′

1, λ
′

2)′ are the unknown parameters, where λ
′

1 = (λ1, λ2, λ3)′, λ
′

2 = (λ12, λ13, λ23, λ123)′,

and the design matrix X can be written as

16



X =



1 x11 x12 x13 x11x12 x11x13 x12x13 x11x12x13

1 x21 x22 x23 x21x22 x21x23 x22x23 x21x22x23

1 x31 x32 x33 x31x32 x31x33 x32x33 x31x32x33

1 x41 x42 x43 x41x42 x41x43 x42x43 x41x42x43

1 x51 x52 x53 x51x52 x51x53 x52x53 x51x52x53

1 x61 x62 x63 x61x62 x61x63 x62x63 x61x62x63

1 x71 x72 x73 x71x72 x71x73 x72x73 x71x72x73

1 x81 x82 x83 x81x82 x81x83 x82x83 x81x82x83



=



1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 0 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0 0 0

1 1 1 1 1 1 1 1


We are interested in the class of unsaturated models where two or higher order

interactions are not present. The classes of unsaturated loglinear models are

C1 : 1 component of λ2 is zero, number of models in C1 =
(

8−3−1
1

)
= 4;

C2 : 2 components of λ2 are zero, number of models in C2 =
(

8−3−1
2

)
= 6;

C3 : 3 components of λ2 are zero, number of models in C3 =
(

8−3−1
3

)
= 4;

C4 : all 4 components of λ2 are zero, number of models in C4 =
(

8−3−1
4

)
= 1.
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For the data in Table 2.2, we consider the k-th unsaturaed loglinear model from one of

the classes C1, C2, C3 or C4.

ln µ = λ. j + X1λ1 + X(k)
2 λ

(k)
2 = X(k)

1


λ

λ1

λ(i)
2


. (2.13)

For example, we consider the unsaturated model from the class C2 with λ12, λ123 = 0,

i.e., λ1 = (λ1, λ2, λ3)′, λ(k)
2 = (λ13, λ23)′ and

X(k)
1 =



1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 1 1 1



. (2.14)

We present some unsaturated models in Tables 2.5 - 2.9 in a 2× 2× 2 contingency table

with the corresponding design matrices.
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2.6 Characterization of the interaction parameters in

LLMs

LLM describing the data well is used to determine the dependence of means or

probabilities on the individual factors and their interactions. LLMs describing the data

well provide the quantitative measures of direct association as well as conditional asso-

ciation between factors. We present two definitions of conditional independence of X1

and X2 given X3 and establish the equivalence between them (Theorem 2.1). We present

the conditional association between factors using the unknown λ parameters (Section

2.6.2) or the cell probabilities in both complete and incomplete contingency tables.

2.6.1 Conditional Independence

The main objective is to establish the conditions on the unknown parameters when

there exists a conditional independence between two variables. First, we define the

conditional independence in two ways and show their equivalence in Theorem 2.1.

Theorem 2.2 demonstrates the constraints on λ parameters when X1 is conditionally

independent of X2 given X3. We consider three categorical variables X1, X2 and X3,

each having two levels 0 and 1.

Definition 2.1. For a fixed category i3 of X3, the ratio

θI1I2(i3) =
pi1i2i3 p(1−i1)(1−i2)i3

pi1(1−i2)i3 p(1−i1)i2i3
, i3 = 0, 1, (2.15)

is called the conditional odds ratio.

Definition 2.2. X1 and X2 are conditionally independent given X3 if they are condition-
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ally independent at every level of X3 (Agresti, 2013), i.e.,

θI1I2(i3) = 1, ∀ i1, i2, i3 = 0, 1. (2.16)

If X1 and X2 are conditionally independent given X3, we have

θI1I2(i3) = 1⇐⇒ pi1i2i3 =
pi1(1−i2)i3 p(1−i1)i2i3

p(1−i1)(1−i2)i3
, ∀ i1, i2, i3 = 0, 1.

Definition 2.3. X1 and X2 are said to be conditionally independent given X3 (Agresti,

2013) if

pi1i2i3 =
pi1+i3 p+i2i3

p++i3
, ∀ i1, i2, i3 = 0, 1. (2.17)

Theorem 2.1. Definition 2.2 is equivalent to Definition 2.3.

Proof. (A) Definition 2.2⇒ Definition 2.3.

From Definition 2.2, we have, for i3 = 0, 1,

pi1i2i3 =
pi1(1−i2)i3 p(1−i1)i2i3

p(1−i1)(1−i2)i3
.

⇔ pi1i2i3 =
(p+i2i3−pi1i2i3 )(pi1+i3−pi1i2i3 )
(p++i3−p+i2i3−pi1+i3 +pi1i2i3 ) .

⇔ pi1i2i3 =
pi1+i3 p+i2i3

p++i3
.

(B) Definition 2.2⇐ Definition 2.3.

Again, we have, ∀ i1, i2, i3 = 0, 1,

pi1+i3 = pi1i2i3(1 +
pi1(1−i2)i3

pi1i2i3
),

p+i2i3 = pi1i2i3(1 +
p(1−i1)i2i3

pi1i2i3
),

p++i3 = pi1i2i3(1 +
pi1(1−i2)i3

pi1i2i3
+

p(1−i1)i2i3
pi1i2i3

+
p(1−i1)(1−i2)i3

pi1i2i3
).

If X1 and X2 are conditionally independent given X3, from Definition 2.3, we get

∀ i1, i2, i3 = 0, 1,

(1 +
pi1(1−i2)i3

pi1i2i3
)(1 +

p(1−i1)i2i3
pi1i2i3

) = (1 +
pi1(1−i2)i3

pi1i2i3
+

p(1−i1)i2i3
pi1i2i3

+
p(1−i1)(1−i2)i3

pi1i2i3
).
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⇔ pi1i2i3 =
pi1(1−i2)i3 p(1−i1)i2i3

p(1−i1)(1−i2)i3
.

This completes the proof.

2.6.2 Unknown parameters and Conditional Independence Model

In this section we establish a relation between the unknown parameters in a condi-

tional independence model. For example, we consider a 3-way contingency table each

having 2 levels: 0 and 1. We consider the general saturated model (2.6) in a contingency

table for µi1i2i3’s, describing the dependence of µi1i2i3’s on (i1, i2, i3), as

µi1i2i3 = exp{λ +

3∑
j=1

i jλ j +

3∑
j<k=1

i jikλ jk + i1i2i3λ123}, ∀ i1, i2, i3 = 0, 1. (2.18)

where λ, λ1, ..., λ12, ..., λ123 are unknown parameters. The equation (2.18) can also be

written as

µi1i2i3 = exp{λ +

3∑
j=1

i jλ j +

2∑
j=1

i ji3λ j3 + i1i2(λ12 + i3λ123}, ∀ i1, i2, i3 = 0, 1. (2.19)

A necessary and sufficient condition for the conditional independence of X1 and X2

given X3 is (λ12 + i3λ123) = 0,∀ i3 = 0, 1, shown in the following theorem. For i3 = 0

and i3 = 1, we have λ12 = 0 and λ12 + λ123 = 0, respectively. Hence the condition

(λ12 + i3λ123) = 0,∀ i3 = 0, 1 can be written equivalently as λ12 = 0 and λ123 = 0.

Theorem 2.2. X1 and X2 are conditionally independent given X3 if and only if λ12 = 0

and λ123 = 0.

Proof. From Definition 2.2, we have, ∀ i1, i2, i3 = 0, 1,

pi1i2i3 =
pi1(1−i2)i3 p(1−i1)i2i3

p(1−i1)(1−i2)i3
. (2.20)
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Under model (2.18) and using µi = npi, we can write the RHS of (2.20) as

RHS = exp{λ +

3∑
j=1

i jλ j + i1i3λ13 + i2i3λ23 + (−1 + 2i1 + 2i2 − 3i1i2)(λ12 + i3λ123)}.

(2.21)

From equation (2.19), we have

µi1i2i3 = exp{λ +

3∑
j=1

i jλ
X j

1 +

2∑
j=1

i ji3λ
X jX3

11 + i1i2(λX1X2
11 + i3λ

X1X2X3
111 )}, ∀ i1, i2, i3 = 0, 1.

(2.22)

Equation (2.20) must hold if

exp{i1i2(λ12 + i3λ123)} = exp{(−1 + 2i1 + 2i2 − 3i1i2)(λ12 + i3λ123)}, (2.23)

i.e., when

exp{(−1 + 2i1 + 2i2 − 4i1i2)(λX1X2
11 + i3λ

X1X2X3
111 )} = 1. (2.24)

(A) If part: If the condition λ12 = 0 and λ123 = 0, i.e., (λ12 + i3λ123) = 0 is true, then

exp{(−1 + 2i1 + 2i2 − 4i1i2)(λ12 + i3λ123)} = exp{0} = 1, (2.25)

and hence the conditional independence between X1 and X2 given X3 holds.

(B) Only if part: We assume that X1 and X2 are conditionally independent given X3

and we must have

exp{(−1 + 2i1 + 2i2 − 4i1i2)(λ12 + i3λ123)} = 1, (2.26)

i.e.,

(−1 + 2i1 + 2i2 − 4i1i2)(λ12 + i3λ123) = 0. (2.27)
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But we have no guarantee that (−1 + 2i1 + 2i2 − 4i1i2) = 0, ∀ i1, i2. Hence

(λ12 + i3λ123) = 0. (2.28)

This completes the proof.

Example 2.3 (Continued). We consider the incomplete contingency table in Example

2.3 and discuss the independence between Primary Infection (PI) and Secondary Infec-

tion (SI). From Table 2.4, we have

P(PI) = p11 + p12, P(PI and SI) = p11, P(PI and SIc) = p12, P(PIc and SIc) = p22 =

1 − p11 − p12, P(SI | PI) =
p11

p11+p12
, P(PI | SIc) =

p12
p12+p22

and

P(PIc | SIc) =
p22

p12 + p22
. (2.29)

We are interested in evaluating the effect of immunization. We want to compare the

models having no immunization effect with the models having an immunization effect.

Definition 2.4. The effect of immunization on the primary infection is defined by the

difference

P(PI) − P(SI | PI). (2.30)

Definition 2.5. The effect of immunization is said to be zero, i.e., the vaccination has

no effect on the primary infection if

P(PI) − P(SI | PI) = 0.

Definition 2.6. The effect of immunization is said to be positive, i.e., the vaccination

has a positive effect on the primary infection if

P(PI) − P(SI | PI) > 0.
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Definition 2.7. The effect of immunization is said to be negative, i.e., the vaccination

has a negative effect on the primary infection if

P(PI) − P(SI | PI) < 0.

If there is no immunization effect on the primary infection, from Definition 2.5, we have

P(PI) = P(SI | PI) =
P(PI and SI)

P(PI)
, i.e.,

P(PI ∩ SI) = P2(PI). (2.31)

Using (2.29), the equation (2.31) can be expressed as

p11 = (p11 + p12)2. (2.32)

The probability of getting the primary infection can be expressed as

P(PI) = P(PI ∩ SI) + P(PI ∩ SIc) = P(SI | PI)P(PI) + P(SIc | PI)P(PI). (2.33)

Using (2.30), the effect of immunization can be written as

P(PI) − P(SI | PI) = P(SI | PI)[P(PI) − 1] + P(SIc | PI)P(PI). (2.34)

From the definitions stated above, for positive/ zero/ negative effect of immunization,

we consider the following situations:

P(PI) − P(SI | PI) S 0. (2.35)

Using (2.34), we can express (2.35) as

P(PI)
1 − P(PI)

S
P(SI | PI)
P(SIc | PI)

. (2.36)

The LHS of (2.36) represents the odds of the primary infection and the RHS of (2.36)

represents the conditional odds of getting the secondary infection given that the calf had
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the primary infection. If there is no immunization effect, these two odds will be equal.

From equations in (2.29), we have

P(PI)
1 − P(PI)

=
p11 + p12

p22
and

P(SI | PI)
P(SIc | PI)

=

p11
p11+p12

p12
p11+p12

=
p11

p12
. (2.37)

If there is no immunization effect of the vaccination, from (2.36) and (2.37), we can

write

p11 + p12

p22
=

p11

p12
. (2.38)

Theorem 2.3: Definition 2.5 ≡ P(SI | PI) =
P(PI |SIc

)

P(PIc
|SIc

)

Proof. (A) Definition 2.5 ⇒ P(SI | PI) =
P(PI |SIc

)

P(PIc
|SIc

)

If there is no immunization effect on the primary infection, we have

p11 + p12

p22
=

p11

p12
, i.e.,

p11

p11 + p12
=

p12

p22
. (2.39)

From the equations in (2.29), the LHS of (2.39) is the probability of secondary infection

given that the calf has the primary infection, i.e., P(SI | PI) and the RHS of (2.39) can

be expressed as

p12

p22
=

p12
p12+p22

p22
p12+p22

=
P(PI | SIc)
P(PIc | SIc)

.

(B) P(SI | PI) =
P(PI |SIc

)

P(PIc
|SIc

)
⇒ Definition 2.5

If P(SI | PI) =
P(PI |SIc

)

P(PIc
|SIc

)
is true, we have

P(PI ∩ SIc)
P(PIc ∩ SIc)

=
P(PI ∩ SI)

P(PI)
. (2.40)

From (2.29), (2.40) can be expressed as

p12

p22
=

p11

p11 + p12
.
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This completes the proof.

In the next section, we discuss the connection between undirected graphs and con-

ditional independence. We present the graph theoretical interpretation of conditional

independence.

2.7 Undirected Graphs and Conditional Independence

A graph comprises nodes (also called vertices) connected by links (also known as

edges or arcs). Each node represents a random variable (or group of random variables),

and the links express the association between these variables. In directed graphs (Koller,

2009) the links have arrows representing the direction or path of information flow. In

these graphs, we can only move from one node to other node following the direction of

the arrow. The other major class of graphs, which will be discussed in next subsection,

is undirected graphs (Bishop, 2006; Koller, 2009), in which the links do not carry ar-

rows and have no directional significance. In these graphs, we can move from a node A

to a node B and come back to node A following the path if there is ann edge between

node A and node B. Directed graphs are useful for expressing the causal relationships

between random variables, i.e., if the occurrence of one variable causes the other vari-

able(s), whereas undirected graphs are better suited in expressing connections between

random variables, i.e., whether they are related to each other. These graphs are called

probabilistic graphical models when we express these associations using probability

distributions. These graphs provide a way to visualize the joint probability distribution

of these random variables including conditional independence structure among these
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variables. The graph captures the way in which the joint distribution over all of the

random variables can be decomposed into a product of marginal and/ or conditional

probabilities each depending only on a subset of the variables. Undirected graphical

models exhibit the pairwise Markov property that any two non-adjacent random vari-

ables are conditionally independent given all other variables. In the next subsection,

we discuss Undirected graphs and define Markov Blanket of a node in these graphs.

We discuss conditional independence properties and show conditional independence

structures by undirected graphs in subsection 2.7.2. We define cliques and potential

functions related to cliques to describe the factorization property of undirected graphs

in subsection 2.7.3.

2.7.1 Markov Random Fields or Undirected Graphs

Our goal is to establish connections between Markov Random Fields and condi-

tional independence among the random variables. A Markov random field (Koller,

2009), also known as a Markov network or an undirected graphical model, has a set

of nodes each of which corresponds to a variable or group of variables, as well as a

set of links each of which connects a pair of nodes. The links are undirected, that is

they do not carry arrows. In the case of undirected graphs, it is convenient to begin

with a discussion of conditional independence properties. To discuss the conditional

independence structure, we need to consider all the adjacent nodes connected by links

from a particular node. In order to do that, we define Markov blanket before discussing

Conditional Independence properties. A Markov blanket (Bishop, 2006) of a node, as

the name suggests, includes all the nodes connected to the node by edges.
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Definition 2.4. For an undirected graph, the Markov blanket of a node Xi consists of

the set of neighboring nodes. It has the property that the conditional distribution of

Xi, conditioned on all the remaining variables in the graph, is dependent only on the

variables in the Markov blanket. The Markov blanket for an undirected graph takes a

A

C

B

E

D

Figure 2.1: Markov Blanket

particularly simple form, because a node will be conditionally independent of all other

nodes conditioned only on the neighboring nodes. In Figure 2.1, nodes {A, B, D, E}

creates a Markov Blanket of node C. In the next subsection, we discuss the conditional

independence properties from undirected graphical models.

2.7.2 Conditional Independence Properties

The graph structure in a Markov network can be viewed as displaying a set of inde-

pendence assumptions among the random variables. In Markov networks, probabilistic

influence flows along the undirected paths in the graph, but it is “blocked” if we observe

the intervening nodes. For example, suppose A, B and C all three are preparing for an

exam. A and C study together whereas, B and C study together. But A and B do not

study together. A and B is connected only through C. If C takes the exam before A and
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B, there is no way A and C can influence each other and/ or B and C can influence each

other, i.e., A and B will be disconnected if C is observed. Suppose that in an undirected

graph we identify four sets of nodes, denoted A, B, C and D, and that we consider the

conditional independence property that A is conditionally independent of B given C,

i.e., A y B | C. Note that each of A, B, C and D could be a single node or a collection

of nodes.

A

C

B

D

A

C

B

D

Figure 2.2: Graphical representation of conditional independence and dependence.

Left: A y B |C. Right: A 6y B |C

To test whether this property is satisfied by a probability distribution which is de-

fined by a graph, we consider all possible paths that connect nodes in set A to nodes in

set B. If all such paths pass through one or more nodes in set C, then all such paths are

“blocked” (Koller, 2009) and so the conditional independence property holds. However,

if there is at least one such path that is not blocked, then the property does not necessar-

ily hold, or more precisely there will exist at least some distributions corresponding to

the graph that do not satisfy this conditional independence relation. This is illustrated

with an example in Figure 2.2. An alternative way to view the conditional independence

test is to imagine removing all nodes in set C from the graph together with any links that
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connect to those nodes. We then ask if there exists a path that connects any node in A

to any node in B. If there are no such paths, then the conditional independence property

must hold (Koller, 2009). In Figure 2.2 left, there is no direct path from A to B and

the path from A to B is blocked by C. We can say that A is conditionally independent

of B given C. But in Figure 2.2 right, A is not conditionally independent of B given C

and D since there exists a direct path between A and B. Using this concept, different

conditional independences are exhibited in Figure 2.3 using undirected graphs.

X1

X3

X2

X1

X3

X2

X1

X3

X2

Figure 2.3: All possible conditional independences among X1, X2 and X3. Left: X1 y

X2 | X3 Center: X1 y X3 | X2 Right: X2 y X3 | X1

In Figure 2.3, three types of conditional independences are shown when we have

three variables X1, X2 and X3. In the Left diagram, there is no direct path between X1

and X2. There exists a path between X1 and X2 blocked by node X3. Hence, X1 y

X2 |X3. Similarly, in the other two diagrams the paths between X1 and X3 and X2 and X3

are blocked by X2 and X1, respectively. We have presented conditional independence

structures using undirected graphs. In the next subsection, we will discuss how these

structures can be represented by probability distributions using potential functions.
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2.7.3 Factorization properties

In this subsection, we discuss how we can express the joint probability distribution

of the random variables from an undirected graph. The conditional independence of two

random variables Xi and X j given the others represented by the undirected graph implies

that if the nodes Xi and X j are not connected by a direct link then the corresponding vari-

ables are conditionally independent given all other variables representing the remaining

nodes (Bishop, 2006). This follows from the fact that there is no direct path between

these two nodes, and all other paths pass through nodes that are observed, and hence

those paths are blocked. This conditional independence property can be expressed as

p(Xi, X j | X{i, j}) = p(Xi | X{i, j})p(X j | X{i, j}),

where Xi, j denotes the set of nodes of all variables with Xi and X j removed. The factor-

ization of the joint distribution must therefore be such that Xi and X j do not appear in

the same factor in order for the conditional independence property to hold for all possi-

ble distributions belonging to the graph. This leads us to consider a graphical concept

called a clique, which is defined below.

Definition 2.5 A clique (Bishop, 2006) is defined as a subset of the nodes in a graph

such that there exists a link between all pairs of nodes in the subset.

In other words, the set of nodes in a clique is fully connected. Furthermore, a

maximal clique is a clique such that it is not possible to include any other nodes from

the graph in the set without it remaining a clique. These concepts are illustrated by the

undirected graph over four variables shown in Figure 2.4.

This graph has five cliques of two nodes each given by {A, C}, {C, B}, {B, E}, {E, C}
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A

C

B

E

Figure 2.4: Cliques

and {E, A} as well as two maximal cliques of three nodes each given by {A, C, E} and

{B, C, E}. The set {A, C, B, E} is not a clique since we are missing and edge between A

and B. We can therefore define the factors in the decomposition of the joint distribution

to be functions of the variables in the cliques. In fact, we can consider functions of the

maximal cliques, without loss of generality, because other cliques must be subsets of

maximal cliques.

Let us denote C as the collection of all maximal cliques and Xc be the nodes in c ∈

C. Then the joint distribution is written as a product of potential functions ψc(xc) over

the maximal cliques of the graph

p(X) =
1
Z

∏
c∈C

ψc(Xc),

where the quantity Z is called the partition function and is given by

Z =
∑

x

∏
c∈C

ψc(Xc).

These potential functions represent the local associations among the random variables

involved in a maximal clique. These functions may also be represented by probabil-

ity distributions. Z is the standardized constant such that
∑
x

p(X) = 1. For example,
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consider a simplest case with three nodes X1, X2 and X3 defining the conditional inde-

pendence between X1, X2 given X3, as illustrated in Figure 2.5. To reach X2 from X1,

X1

X3

X2

Figure 2.5: Conditional Independence of X1 and X2 given X3. X1 y X2 | X3

we need to go through X3. In this case, we have two maximal cliques given by {X1, X3}

and {X2, X3}. We define two potential functions given by ψ(X1, X3) and ψ(X2, X3) based

on the maximal cliques {X1, X3} and {X2, X3}, respectively. The joint distribution can be

written as

p(X1, X2, X3) ∝ ψ(X1, X3) ψ(X2, X3). (2.41)

If we choose ψ(X1, X3) = p(X3) p(X1 |X3) and ψ(X2, X3) = p(X2 |X3) and Z = 1, we have

p(X1, X2, X3) = p(X3) p(X1 | X3)p(X2 | X3). (2.42)

Dividing both sides of (2.30) by p(X3) (assuming p(X3) > 0), we have

p(X1, X2, X3)
p(X3)

= p(X1, X2 | X3) = p(X1 | X3)p(X2 | X3), (2.43)

the condition for conditional independence between X1 and X2 given X3. This condition

is equivalent to the condition defined in Definition 2.2. This can be generalized when

to m categorical variables. We have shown how the undirected graph in Figure 2.5
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implies the conditional independence between X1 and X2 given X3. Using theorem 2.2

and the undirected graphs to describe the conditional association, we have established

the connection between the undirected graphs and the unknown λ parameters.
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Table 2.5: Models with Design matrices

Models Design matrices Parameters assumed zero

λ + λ1 + λ2 + λ3 + λ123 X1 =



1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1




λ12

λ13

λ23



λ + λ1 + λ2 + λ3 + λ12 X1 =



1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1




λ13

λ23

λ123


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Table 2.6: Models with Design matrices

Models Design matrices Parameters assumed zero

λ + λ1 + λ2 + λ3 + λ13 X1 =



1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1




λ12

λ23

λ123



λ + λ1 + λ2 + λ3 + λ23 X1 =



1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1




λ12

λ13

λ123


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Table 2.7: Models with Design matrices

Models Design matrices Parameters assumed zero

λ + λ1 + λ2 + λ3 + λ12 + λ123 X1 =



1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 0

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 1 0

1 1 1 1 1 1




λ13

λ23



λ + λ1 + λ2 + λ3 + λ13 + λ123 X1 =



1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 0

1 1 0 0 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 1 1 1




λ12

λ23


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Table 2.8: Models with Design matrices

Models Design matrices Parameters assumed zero

λ + λ1 + λ2 + λ3 + λ23 + λ123 X1 =



1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 1 0

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 0

1 1 1 1 1 1




λ12

λ13



λ + λ1 + λ2 + λ3 + λ12 + λ13 X1 =



1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 0

1 1 0 0 0 0

1 1 0 1 0 1

1 1 1 0 1 0

1 1 1 1 1 1




λ23

λ123


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Table 2.9: Models with Design matrices

Models Design matrices Parameters assumed zero

λ + λ1 + λ2 + λ3 + λ12 + λ23 X1 =



1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 1 0

1 1 1 1 1 1




λ13

λ123



λ + λ1 + λ2 + λ3 + λ13 + λ23 X1 =



1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 1 1 1




λ12

λ123


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Chapter 3

Estimation of Unknown Parameters

and Goodness of Fit Tests

3.1 Summary

In this chapter, we discuss the estimation of the unknown parameters and/ or cell

probabilities in an LLM. We discuss Maximum Likelihood Estimation (section 3.2) and

Minimum Discrimination Information Estimation (section 3.3) as the two estimation

procedures. In section 3.4 we investigate the goodness-of-fit of the unsaturated models

using different criterion functions.

3.2 Maximum Likelihood Estimation

We consider the case of single multinomial sampling where the total sample size

n is fixed. The subscript i is used represent the cells. In Example 2.1, we define pi =
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proportion of the observations belonging to the i-th cell, pi(o)=
ni
n = observed proportion

of observations belonging to the i-th cell. For multinomial sampling (Bishop et al.,

2007) with cell count n and the corresponding probabilities p, the complete likelihood

function can be written as

f (n) =
n!∏

i
ni!

∏
i

(pi)ni . (3.1)

To avoid notational complications, we assume the design matrix X = M, where mi j =

the (i,j)-th element of the design matrix X. The exponent (k) represent the k-th loglinear

model in the above expressions. The kernel of the log-likelihood under model (3.1) can

be written as

l =

N∑
i=1

ni ln pi =

N∑
i=1

ni

s∑
j=1

m(k)
i j λ

(k)
j , (3.2)

given
∑

i pi =
∑

i exp(
∑

j m(k)
i j λ

(k)
j ) = 1. Maximizing the log-likelihood in (3.2) with the

constraint
∑

i pi = 1 is equivalent to maximizing the objective function (Klimova et al.,

2012)

l∗ =

N∑
i=1

ni

s∑
j=1

m(k)
i j λ

(k)
j − α(

∑
i

exp(
∑

j

m(k)
i j λ

(k)
j ) − 1), (3.3)

where α is the Lagrange multiplier.

Differentiating (3.3) with respect to λ(k)
1 , λ

(k)
2 , ..., λ

(k)
s and α, we get

dl∗

dλ(k)
1

= 0⇒
∑

i

nim
(k)
i1 = α(

∑
i

p̂im
(k)
i1 ),

dl∗

dλ(k)
2

= 0⇒
∑

i

nim
(k)
i2 = α(

∑
i

p̂im
(k)
i2 ), . . . ,

dl∗

dλ(k)
s

= 0⇒
∑

i

nim
(k)
i8 = α(

∑
i

p̂im
(k)
i8 ), and

dl∗

dα
= 0⇒

∑
i

p̂i = 1. (3.4)
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Since m(k)
i1 = 1, ∀i, i.e., all the elements in 1-st column of M(k) are equal to 1, the first

estimating equation can be written as
∑

i ni =
∑

i p̂i. From the first and last estimating

equations in (3.4), we get

α =
∑

i

ni = n. (3.5)

Using (3.5), the estimating equations can be written as

N∑
i=1

m(k)
i j n.(pi(o) − p̂i) = 0, ∀ j = 1, 2, ..., s, (3.6)

where n =
∑

i ni = α.

We also define p
0

= (pi(o))i=1,2,...,8; p̂ = ( p̂i)i=1,2,...,8. The estimating equations for the

Maximum Likelihood Estimation (MLE) in (3.6) can be expressed in matrix notation

as

M(k)
′

p̂ = M(k)
′

p
0

(3.7)

where rank (M(k)) = s ≤ N.

If we consider the saturated model, then rank (M(k)) = N. Pre-multilying both sides

of (3.7) by (M(k))−1, we get

p̂ = p
0
.

In Table 3.1, we show the counts for each cell in Example 2.1 for some fitted loglinear

models using maximum likelihood estimation.

Example 2.1 (Revisited). Table 3.1 displays the observed cell probabilities and the

estimated cell probabilities under some fitted unsaturated models. The column p
o

rep-

resents the observed cell probabilities (4 decimal places), the columns with heading p̂
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Table 3.1: ML estimates for different unsaturated models

Cell p
o

p̂ p̂ p̂ p̂

λ12, λ123 = 0 λ13, λ123 = 0 λ23, λ123 = 0 λ123 = 0

(0,0,0) 0.2572 0.2536 0.2481 0.2642 0.2568

(0,0,1) 0.0263 0.0264 0.0355 0.0194 0.0268

(0,1,0) 0.3284 0.3319 0.3229 0.3214 0.3288

(0,1,1) 0.0166 0.0165 0.0220 0.0235 0.0161

(1,0,0) 0.1364 0.1400 0.1455 0.1446 0.1368

(1,0,1) 0.0299 0.0298 0.0208 0.0217 0.0295

(1,1,0) 0.1867 0.1832 0.1921 0.1785 0.1863

(1,1,1) 0.0185 0.0186 0.0131 0.0268 0.0189

show the estimated cell probabilities with a description of the fitted model. We will

now consider the MLE of the cell probabilities in the incomplete contingency table de-

scribed in Example 2.3. We consider two different models as H0 : no immunization

effect on the primary infection and H1 : existence of an immunization effect. Before we

start writing the likelihood under these two models, it is convenient to define regular

and curved exponential families of distributions. We will be using sufficiency principle

in exponential families.

Definition 2.8. A family {Pη} of distributions is said to be a regular exponential family

of order s if the distributions Pη have densities of the form (Lehmann & Casella, 1998)
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p(x, η) = h(x) exp

 s∑
i=1

ηiTi(x) − A(η)

 , (3.8)

where ηi’s and A are real-valued functions of the parameters and Ti’s are real-valued

statistics, x is a point in the sample space κ, the support of the density and η = (η1, η2, ..., ηs)′:

natural parameters.

Definition 2.9. When the natural parameters of an exponential family are related in a

nonlinear way, (3.8) is said to form a curved exponential family of order q (Lehmann &

Casella, 1998). The densities in a curved exponential family can be expressed as

p(x, η(θ)) = h(x) exp

 s∑
i=1

ηi(θ)Ti(x) − B(η(θ))

 , (3.9)

where θ = (θ1, θ2, ..., θq)′ is a vector of parameters in<q, q < s.

Example 2.3 (Revisited). Under non immunization effect, let P(PI) = p11 + p12 = π.

Then we have P(PIc) = p22 = (1− π) and P(SI∩PI) = P2(PI) = p11 = π2, from (2.29).

⇒ P(SIc∩PI) = P(PI)−P(PI∩SI) = p12 = π−π2 = π(1−π) and P(SIc∩PIc) = p22 =

1 − π. If n11, n12 and n22 are the sample counts and if the number of infected calves is

Table 3.2: Probabilities under non immunization effect of primary infection

Secondary infection
Row

Yes (1) No (2) Total

Primary
Yes (1) π2 π(1 − π) π

infection No (2) – 1 − π 1 − π

Column Total π2 1 − π2 1
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a multinomial random variable with parameters N and (p11, p12, p22)′, the kernel of the

likelihood under H0 ∪ H1, is

LH0∪H1 = exp[n11 ln p11 + n12 ln p12 + n22 ln p22]. (3.10)

Since n22 = n − n11 − n12 and p11 + p12 + p22 = 1, equation (3.10) can be written as

LH0∪H1 = exp[n11 ln
p11

p22
+ n12 ln

p12

p22
− n ln(1 +

p11

p22
+

p12

p22
)]. (3.11)

The canonical parameters are η1 = ln p11
p22

and η2 = ln p12
p22

. From definition 2.8, this

is a regular exponential family of order 2 (=s) with sufficient statistic (n11, n12) and

A(η) = n ln(1 +
p11
p22

+
p12
p22

). Under H0 ∪ H1, the kernel of the log-likelihood is

lH0∪H1 = n11 ln
p11

p22
+ n12 ln

p12

p22
− n ln(1 +

p11

p22
+

p12

p22
). (3.12)

Differentiating (3.12) with respect to the parameters p11 and p12 respectively and equat-

ing them to zero, subject to p11 + p12 + p22 = 1, we get

p̂11 =
n11

n
, p̂12 =

n12

n
, p̂22 =

n22

n
.

Under H0, the kernel of the likelihood is

LH0 = exp[(2n11 + n12) ln π + (n12n22) ln(1 − π)]. (3.13)

Equation (3.13) can be expressed in matrix notation as

LH0 = exp[(n11, n12, n22)


2 0

1 1

0 1




ln π

ln(1 − π)

].

The likelihood in (3.13) has two canonical parameters η1(π) = ln π and η2(π) = ln(1−π)

with only a single parameter π ∈ (0, 1). From definition 2.9, the model under H0 is a
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curved exponential family (Casella et al., 2007) of order 1(=q). The sufficient statistic

is T = (T1,T2) = (2n11 + n12, n12 + n22). Under H0, the kernel of the log-likelihood is

lH0 = (2n11 + n12) ln π + (n12n22) ln(1 − π). (3.14)

Differentiating equation (3.14) with respect to π and equating it to zero, we get

π̂ =
2n11 + n12

2n11 + 2n12 + n22
=

T1

T1 + T2
= 0.4940.

Table 3.3 shows the estimated cell counts (2 decimal places) under no immunization

effect.

Table 3.3: Cell counts under non immunization effect of primary infection

Secondary infection
Row

Yes (1) No (2) Total

Primary
Yes (1) 38.07 38.99 π

infection No (2) – 78.94 78.94

Column Total 38.07 117.93 156

3.3 MDI Estimation

The aim of Minimum Discrimination Information (MDI) estimation (Gokhale et al.,

1978) is to get a good fit to the observed contingency table. This is achieved by fitting

loglinear models to the data using a minimal number of parameters satisfying some

constraints on the linear combination of observed cell entries. The constraints could

be given externally by the experimenter (External Constraint Problems) or could be
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matching marginals to the observed contingency table (Internal Constraint Problems),

which will be discussed later in this section. After fitting a loglinear model we want to

test how good is the fit and compare it with other unsaturated loglinear models using

the MDI statistic (Section 3.4.1) which can be used as a criterion function for selecting

the best fitted model. We will use the notations pi, p̂i, pio as the unknown probability,

estimated probability and the observed probability of the w-th cell in a contingency

table, respectively.

We use the Cross-Entropy or MDI (Kullback, 1959) as a measure of “closeness”

between two probability distributions. Suppose there are two probability distributions

or contingency tables defined over the same set of cells, say pi and πi, satisfying
∑
i

pi =∑
i
πi = 1.

Definition 3.1. The MDI is defined by

I(p : π) =
∑

i

pi ln(
pi

πi
). (3.15)

We note that the distribution πi is arbitrary. A suitable choice of πi will be made accord-

ing to the problem of interest, discussed later. I(p : π) is considered as a measure of the

deviation from p to π.

Many problems in the analysis of contingency tables may be characterized as esti-

mating a distribution or contingency table subject to certain constraints and then com-

paring the estimated table with an observed table to determine whether the observed

table satisfies a null hypothesis implied by a set of constraints. In accordance with the

principle of MDI estimation we select that member of the family of probability distri-
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butions satisfying the constraints

X
′

p = θ, (3.16)

which minimizes the MDI I(p : π) over the family of suitable probability distributions.

The design matrix X is N × s1 with rank(X) = s1 ≤ N and the vector of constraining

values θ is s1 × 1. We denote the MDI estimate of p by p̂ so that

I( p̂ : π) =
∑

i

p̂i ln(
p̂i

πi
) = min I(p : π). (3.17)

The constraints in (3.16) specify some linear functions of cell counts in the estimated

contingency table are equal to the same linear functions of cell counts in the observed

contingency table for internal constraint problems or to some externally given values

for external constraint problems. The equation (3.16) can also be written as

∑
i

xi j pi = θ j,∀ j = 1, 2, . . . , s1. (3.18)

To satisfy
∑
i

pi = 1, we take xi1 = 1,∀i = 1, 2, . . . ,N and θ1 = 1. We find the value of p

that minimizes (3.15) subject to the constraints (3.18) using Lagrange multipliers. The

objective function to minimize can be written as

∑
i

pi ln(
pi

πi
) −

s1∑
j=1

λ j(
∑

i

xi j pi − θ j), (3.19)

where λ j’s are Lagrange multipliers. Differentiating (3.19) with respect to pi’s and

equating to zero, we get

ln(
pi

πi
) =

s1∑
j=1

xi jλ j = λ1 +

s1∑
j=2

xi jλ j − 1,∀i = 1, 2, . . . ,N. (3.20)

If πi’s are known, the equations in (3.20) can be written as

ln(pi) = λ∗1 +

s1∑
j=2

xi jλ j,∀i = 1, 2, . . . ,N, (3.21)
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λ j’s are also called the natural parameters. This also explains why we consider loglinear

form for fitting models in contingency table. In case of ICP, the constraints can be

written in matrix notation as

X
′

p̂ = X
′

p
0
, (3.22)

where p
0

is the vector of observed probabilities and rank(X)= s1 ≤ N. Equation (3.22)

is equivalent to the Maximum Likelihood Estimating Equations in (3.3).

We now discuss two different classes of MDI estimation in a contingency tables with

examples. In one class of problems the constraints specify some requirement external

to the observed values, for example, that a set of marginals, have specified values as

determined by genetic or other theory or that marginals be homogeneous or that the

distribution satisfy certain symmetry conditions. These are called External Constraints

Problems (ECP). In such problems π is taken to be an observed contingency table, that

is, nπ = n = np
o
, where n =

∑
i

ni. We discuss this in the following illustrative example.

Example 3.1. A 2 × 2 contingency table with some arbitrary counts is shown in Table

0.1. The hypothesis of interest is H0 : P(Y = 0) = P(Z = 0). The hypothesis H0 is

equivalent to p00 + p01 = p00 + p10, i.e., p01 = p10. This is a linear constraint on the

underlying probabilities. We choose π = p
o

= vector of observed probabilities. p does

not satisfy the constraint given by H0. We find the estimate p̂ so as to minimize I(p : p
o
)

subject to the constraint p01 = p10. We are choosing p̂ that satisfy p01 = p10 and is as

close as possible to the observed data in the sense of minimizing (3.15). The constraints

can be written as

X
′

p = θ, (3.23)
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Table 3.4: An illustrative example

Z
Row

No (0) Yes (1) Total

Y
No (0) 35 15 50

Yes (1) 21 29 50

Column Total 56 44 100

where p = (p00, p01, p10, p11)
′

, X
′

=


1 1 1 1

0 1 −1 0

 and θ = (1, 0)
′

. The conditions in

(3.23) are

p00 + p01 + p10 + p11 = 1,

p01 − p10 = 0. (3.24)

We get the MDI estimates, by solving (3.24), as p̂ = (0.352, 0.178, 0.178, 0.292)
′

.

In another class of problems the constraints specify that the estimated distribution

or contingency table have some set of marginals which are the same as those of an

observed contingency table. These are called Internal Constraints Problems (ICP). In

such cases π is taken to be either the uniform distribution πi = 1
N , where N is the

number of cells, or a distribution already estimated subject to constraints contained in

and implied by the constraints under examination. The latter case includes the classi-

cal hypotheses of independence, conditional independence, homogeneity, conditional

homogeneity and interaction, all of which can be considered as instances of general-

ized independence. In case of ICP, the cell probability estimates are equal to the ML

estimates, shown in (3.22).

50



We consider Example 2.1. We want to fit the model to the data where X1 is condi-

tionally independent of X2 given X3. We specify the marginals of X1X3 and X2X3 table

in our fitted model. These marginals are equal to the marginals of X1X3 and X2X3 in the

observed table.

If we consider the transpose of the design matrix X, a 6 × 8 matrix, as

X
′

=



1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 1



,

and from the observed table, θ as

θ
′

= (1, 0.3715, 0.5502, 0.0913, 0.0484, 0.0351) and

p = (p000, p001, p010, p011, p000, p001, p010, p011)
′

,

we have the constraints as

p+++ = 1

p1++ = 0.3715

p+1+ = 0.5502

p++1 = 0.0913

p1+1 = 0.0484

p+11 = 0.0351 (3.25)

The first constraint in (3.25) satisfy the condition
∑
i

= pi = 1. The second constraint
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with the first one specify the marginals for X1 since p+++− p1++ = 1−0.3715 = 0.6285.

Similarly marginals for X2 and X3 are fixed by the next two constraints. All these four

constraints along with the last two, we specify the marginals of X1X3 and X2X3 table.

Solving the six equations with eight unknowns in (3.25), we get the cell probability

estimates as p̂ = (0.2536, 0.0264, 0.3319, 0.0165, 0.1400, 0.0298, 0.1832, 0.0186)
′

. The

following table shows the cell probability estimates for different unsaturated models in

Example 2.1. The second column (p
o
) represents the observed cell probabilities of the

Table 3.5: Cell probability estimates (MDI) for different unsaturated models

Cell p
o

p̂ p̂ p̂ p̂

λ12, λ123 = 0 λ13, λ123 = 0 λ23, λ123 = 0 λ123 = 0

(0,0,0) 0.2572 0.2536 0.2481 0.2642 0.2568

(0,0,1) 0.0263 0.0264 0.0355 0.0194 0.0268

(0,1,0) 0.3284 0.3319 0.3229 0.3214 0.3288

(0,1,1) 0.0166 0.0165 0.0220 0.0235 0.0161

(1,0,0) 0.1364 0.1400 0.1455 0.1446 0.1368

(1,0,1) 0.0299 0.0298 0.0208 0.0217 0.0295

(1,1,0) 0.1867 0.1832 0.1921 0.1785 0.1863

(1,1,1) 0.0185 0.0186 0.0131 0.0268 0.0189

2 × 2 × 2 contingency table described in Example 2.1. The third, fourth and the fifth

columns represent the MDI estimates of the cell probabilities using MDI estimation

when we fit the models λ12 = λ123 = 0, λ13 = λ123 = 0 and λ23 = λ123 = 0, respectively.

52



After careful consideration, we can see that the estimates from the model λ12 = λ123 = 0

and λ123 = 0 are closer to the observed cell probabilities compared to other models. In

the next section we discuss a few criterion functions for comparing different models.

3.4 Goodness-of-Fit Tests

A good-fitting loglinear model provides a basis for describing the relations among

the response and the categorical variables. Standard methods apply for checking the

model fit and making inferences about the model parameters. In this section, we discuss

three standard criterion functions and a proposed criterion function for selecting the

best fitted model. In our thesis, we considered different possible unsaturated models

and extended these models to a complete form, i.e., the design matrices are full row

rank matrices, i.e., rank(X)= N. We want to test whether the fitted unsaturated model is

a good fit to the observed data. The null and the alternative hypotheses can be written

as H0 : D0λ2 = 0 and Ha : D0λ2 , 0.

3.4.1 MDI Statistic

To test whether an observed contingency table satisfies the null hypothesis as rep-

resented by the MDI estimate we compute a measure of the deviation between the ob-

served distribution and the appropriate estimate of the MDI statistic. The MDI statistic

turns out to be

2nI( p̂ : p
o
) = 2n

∑
w

p̂i ln(
p̂i

pio
), (3.26)
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which is asymptotically distributed as a chi-square with appropriate degrees of freedom

under the null hypothesis. For the ICP, that is, with the constraints implied by a set

of observed marginals, or those of a generalized independence hypothesis, the MDI

statistic is

2nI(p
o

: p̂) = 2n
∑

i

p̂io ln(
pio

p̂i
). (3.27)

which is also asymptotically distributed as chi-square with appropriate degrees of free-

dom. In case of ICP, the MDI estimation procedure yields the same value as MLE. The

statistics is also equivalent to the Deviance for testing the model under null.

3.4.2 AIC

The Akaike Information Criterion (AIC) judges a model by how close its fitted

values tend to be to the true values. The saturated model is the most complex model

and gives the best fit to the data. In practice, simple models with less parameters are

preferred since their fit smooths the sample data and have simpler interpretations. Thus,

the optimal model is the one that tends to have fit to the true values. The criterion

function AIC selects the model that minimizes the quantity

-2*maximized log-likelihood + 2*number of parameters in the model.

This penalizes the model for having too many parameters. We can use AIC to aid in

variable selection when we have many potential predictors. From a set of candidate

models, we pick the one with smallest AIC. In table (0.3), we show the AIC values for

some unsaturated models fitted to the data in Example 2.1.
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3.4.3 BIC

An alternative criterion function Bayesian Information Criterion (BIC) penalizes

more severely for the number of parameters present in the model. The BIC is defined

as

-2*maximized log-likelihood + log(n)*number of parameters in the model.

It is derived based on a Bayesian argument for determining which of a set of models

has highest posterior probability.

3.4.4 SAC

We can always create a D matrix with the design matrix X1 of any unsaturated model

by using any one of the ways discussed in section 6.2. We create a D matrix for any

unsaturated model using the following

D = X2 − X1(X
′

1X1)−1X
′

1X2 = (I − X1(X
′

1X1)−1X
′

1)X2.

We can create the D matrices for all possible unsaturated models under consideration.

For each D under the extended complete models, using the sample proportions p
0

from

the generated sample, we can calculate Dλ̂2 (Section 5.3.1) by

Dλ̂2 = (I8 − (X1(X
′

1X1)X
′

1)) ln p
0
.

Dλ̂2 is a N × 1 vector. We propose a criterion function based on Dλ̂2. If the i-th unsat-

urated model is the best fit to the data, we would expect Dλ̂2 to be very close to 0. We

define a measure by adding all the absolute values in Dλ̂2. We call it Sum of Absolute

Components of Dλ̂2 (SAC(Dλ̂2)). We calculate the SAC(Dλ̂2) values (section 5.4) for
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different unsaturated models and choose the best model with minimum SAC(Dλ̂2). The

following table shows the AIC, BIC, MDI and SAC values for different unsaturated

models in Example 2.1.

Table 3.6: AIC, BIC, MDI and SAC values for different unsaturated models

Unsaturated Models AIC BIC MDI SAC

λ123 = 0 99.14 99.69 85.14 0.091

λ23, λ123 = 0 878.96 879.43 866.96 1.50

λ13, λ123 = 0 830.53 831.01 818.53 1.44

λ12, λ123 = 0 111.70 112.18 99.70 0.092

λ13, λ23, λ123 = 0 1596.57 1596.96 1586.57 1.51

λ12, λ23, λ123 = 0 877.73 878.13 867.73 1.50

λ12, λ13, λ123 = 0 829.31 829.71 819.31 1.47

The criterion function values are rounded to two decimal places. According to the

AIC, BIC and MDI statistic values the best fitted model is λ123 = 0, if we consider all

unsaturated models listed in Table (0.3). The second best fitted model is the model with

λ12, λ123 = 0, which implies conditional independence between X1 and X2 given X3.

These values are closer to the corresponding values of the best fitted model compared

to other saturated models. Our proposed criterion function, SAC, also suggests the fact

that the best fitted model is λ123 = 0, if rounded to sixteen decimal places. If we round

to two decimal places, the SAC values are same for both the models λ123 = 0 and

λ12, λ123 = 0. Although the unsaturated model satisfying λ12 = λ123 = 0 giving the
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Table 3.7: SAC values rounded to 16 decimal places

Unsaturated Models SAC

λ123 = 0 0.0900610778333877

λ12, λ123 = 0 0.0900610778333870

smallest value of SAC in Table 3.5, this value is very close to the SAC value for the

unsaturated model λ123 = 0. The values of AIC, BIC and MDI are also close to each

other for these two unsaturated models but to a greater extent.
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Chapter 4

Characterization of Relations between

Two Models : Saturated 1 and

Saturated 2

4.1 Summary

In previous chapters, we extended an unsaturated loglinear model to a complete

model in a 2 × 2 × 2 contingency table and investigated the validity of an unsaturated

model. In this chapter, we want to characterize the extension of the unsaturated model

to the saturated model. In section 4.2, we define the saturated model, an unsaturated

model and its extension to a complete model. We name these saturated models as

“Saturated 1” and “Saturated Representation 2”. We investigate the relation between

the “Saturated 1” and “Saturated Representation 2” in section 4.3. In section 4.4, we

investigate the estimates of the unknown parameters from each saturated representation
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of the unsaturated models. We demonstrate some conditions on the design matrices

when some parameter estimates are equal in these two representations.

4.2 Models

In this section we introduce the two saturated representations from an unsaturated

model. We can model pi since the total sample size is fixed. We will use the notations p

for cell probabilities in a contingency table, X1 for the design matrix of an unsaturated

model, X = [X1|X2] for the design matrix of “Saturated 1” model, X∗ = [X1|D0] for the

design matrix of “Saturated 2” model, and λ1 = (λ1, λ2, ..., λs1)
′

, λ = (λ1, λ2, ..., λN)
′

=

(λ
′

1, λ
′

2), λ∗ = (λ
′

1, λ
∗′

2 ) for the unknown parameters of the models, respectively, s1 < N.

4.2.1 Unsaturated Model

An unsaturated loglinear model in a contingency table with cell probabilities p is

described as

ln p = X1λ1, (4.1)

where λ1 = (λ1, λ2, ..., λs1)
′

are the unknown parameters, the matrix X1 with dimension

N × s1 is the design matrix of the unsaturated model and rank(X1) = s1 < N.

4.2.2 Saturated 1

We consider the saturated model for a contingency table as

ln p = Xλ = X1λ1 + X2λ2 = [X1 | X2]


λ1

λ2

 , (4.2)
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where ln p = (ln p1, ln p2, ..., ln pN)
′

, λ = (λ1, λ2, ..., λN)
′

= (λ
′

1, λ
′

2) are the unknown

parameters, X is the design matrix of the saturated model with dimension N × N,

rank(X)=N, rank(X1) = s1 < N, rank(X2) = N − s1 = s2, say and X
′

2X1 , 0. The

i-th row of (4.2) gives

ln pi =

N∑
j=1

xi jλ j. (4.3)

4.2.3 Saturated 2

We extend an unsaturated model to a complete model by constructing a D0 matrix

with dimension N × (N − s1) in the following way

ln p = X1λ1 + D0λ
∗

2 = [X1 | D0]


λ1

λ∗2

 , (4.4)

where rank(D0) = N − rank(X1) = N − s1 = s2, say, rank(X1) = s1 and X
′

1D0 = 0. The

i-th row of (4.4) gives

ln pi =

s1+N−s1∑
j=1

x∗i jλ
∗
j. (4.5)

In the above two saturated representations (4.2 and 4.4), we have considered two

different design matrices with full rank as

X = [X1|X2] and X∗ = [X1|D0] , (4.6)

where X
′

2X1 , 0 and D
′

0X1 = 0. If we pre-multiply both sides of (4.4) by D
′

0, we get, by

using D
′

0X1 = 0,

D
′

0 ln p = 0 + D
′

0D0λ
∗

2, (4.7)

and if we pre-multiply both sides of (4.4) by X
′

1, we get, by using X
′

1D0 = 0,

X
′

1 ln p = X
′

1X1λ1 + 0. (4.8)
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4.3 Saturated 1 versus Saturated 2

In the previous section, we have defined an unsaturated model and its extension to

a complete model. Both the saturated models (4.2 and 4.4) represent the same set of

cell probabilities. In this section we establish the relations between saturated model and

extended complete model, i.e., among X1, X2 and D0. In subsection 4.3.1, we create a

D0 using X1 and X2 and in subsection 4.3.2, we present the “Saturated 1” (S1) from a

“Saturated 2” (S2).

4.3.1 Relation Between X and D0

We consider two full rank matrices [X1 | X2] and [X1 | D0] where X
′

2X1 , 0 and

D
′

0X1 = 0 and express D0 from X1 and X2 using. Lemma 1 shows that there always

exists a matrix Q1 such that D0 = [X1 | X2] Q1.

Lemma 1 Let [X1 | X2] and [X1 | D0] be two matrices. There exists a matrix Q1 =
−(X

′

1X1)−1X
′

1X2

I

 of rank N−s1 such that D0 = [X1|X2]Q1 and X
′

1D0 = [X
′

1X1|X
′

1X2]Q1 =

0.

Proof. For any two given matrices [X1 | X2] and [X1 | D0], we can write

[X1 | X2] [X1 |Q1] = [X1 | D0], (4.9)

where rank(Q1) = N − s1.

From (4.9), we can express D0 as

D0 = [X1 | X2] Q1. (4.10)
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We can choose Q1 such that X
′

1D0 = [X
′

1X1 | X
′

1X2] Q1 = 0. We define

Q1 =


−(X

′

1X1)−1X
′

1X2

I

 . (4.11)

Using (4.11) in (4.10), we get

D0 = X2 − X1(X
′

1X1)−1X
′

1X2 = (I − X1(X
′

1X1)−1X
′

1)X2. (4.12)

Pre-multiplying both sides of (4.12) by X
′

1, we get

X
′

1D0 = X
′

1(I − X1(X
′

1X1)−1X
′

1)X2 = 0. (4.13)

This completes the proof.

Using Lemma 1, we can always create a D0 using a known X = [X1 |X2]. In Example

2.1, we consider the design matrix and the unknown parameters of the saturated model

in the following way

X = [X1 | X2] =



1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0

1 1 0 1 1 0 0 0

1 1 1 0 0 0 1 0

1 1 1 1 1 1 1 1



, λ1 =



λ

λ1

λ2

λ3

λ13

λ23



, λ2 =


λ12

λ123

 ,

where X1 is the design matrix of the unsaturated model with λ12, λ123 = 0 from the

class C2, i.e., the design matrix of the unsaturated model when X1 is conditionally
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independent of X2 given X3 in a 2 × 2 × 2 contingency table. Using (4.12), we get a D0

as

D0 = (I − X1(X
′

1X1)−1X
′

1)X2 =



0.25 0.00

0.25 0.25

−0.25 0.00

−0.25 −0.25

−0.25 0.00

−0.25 −0.25

0.25 0.00

0.25 0.25



, (4.14)

satisfying X
′

1D0 = 0.

4.3.2 Non-uniqueness of D0

For any two matrices D(1)
0 and D(2)

0 , satisfying X
′

1D(1)
0 = 0 and X

′

1D(2)
0 = 0, we can

always find a full rank matrix Rs2×s2 (C. R. Rao, 2006) such that

D(1)
0 R = D(2)

0 , (4.15)

where rank(R)=N − s1 = s2. For any given D(1)
0 , we can write an extended complete

model as

ln p = X1λ
(1)
1 + D(1)

0 λ(1)
2 . (4.16)

Pre-multiplying both sides of (4.15) first by D(1)
′

0 and then by (D(1)
′

0 D(1)
0 )−1, we get

R = (D(1)
′

0 D(1)
0 )−1D(1)

′

0 D(2)
0 , (4.17)
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with full rank. Using (4.17), we can express D(1)
0 λ(1)

2 as

D(1)
0 λ(1)

2 = D(1)
0 RR−1λ(1)

2 = D(2)
0 λ(2)

2 , (4.18)

where D(2)
0 = D(1)

0 R and λ(2)
2 = R−1λ(1)

2 . If we consider D(2)
0 as in (4.12), constructed

from X1 and X2, using (4.18) from (4.16), we can write

ln p = X1λ
(1)
1 + (I − X1(X

′

1X1)−1X
′

1)X2λ
(2)
2 . (4.19)

We define

λ(2)
1 = (λ(1)

1 − (X
′

1X1)−1X
′

1X2λ
(2)
2 ). (4.20)

Using (4.20), from (4.19) we can write ln p as

ln p = X1λ
(2)
1 + X2λ

(2)
2 . (4.21)

In Example 2.1, we consider the unsaturated model λ12, λ123 = 0 from the class C2 with

the design matrix X1 and a computer generated D(1)
0 as

X1 =



1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 1 1 1



; D(1)
0 =



0.49 −0.10

0.10 0.49

−0.49 0.10

−0.10 −0.49

−0.49 0.10

−0.10 −0.49

0.49 −0.10

0.10 0.49



. (4.22)
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If we consider a D(2)
0 in (4.14), we get R =


0.5886 0.0983

0.3919 0.4902

 .
From a computer generated D(1)

0 in (4.22) and using X1, we can express ln p as

ln p =



λ + 0.49λ12 − 0.10λ123

λ + λ3 + 0.10λ12 + 0.49λ123

λ + λ2 − 0.49λ12 + 0.10λ123

λ + λ2 + λ3 + λ23 − 0.10λ12 − 0.49λ123

λ + λ1 − 0.49λ12 + 0.10λ123

λ + λ1 + λ3 + λ13 − 0.10λ12 − 0.49λ123

λ + λ1 + λ2 + 0.49λ12 − 0.10λ123

λ + λ1 + λ2 + λ3 + λ13 + λ23 + 0.10λ12 + 0.49λ123



. (4.23)

We consider a new λ as λ(2) =


λ(2)

1

λ(2)
2

, where λ(2)
1 , λ(2)

2 are, from (4.18) and (4.20),

λ(2)
1 = (λ(1)

1 − (X
′

1X1)−1X
′

1)X2λ
(2)
2 ) =



λ + 0.49λ12 − 0.10λ123

λ1 − 0.98λ12 + 0.20λ123

λ2 − 0.98λ12 + 0.20λ123

λ3 − 0.39λ12 + 0.59λ123

λ13 + 0.78λ12 − 1.18λ123

λ23 + 0.78λ12 − 1.18λ123



,

λ(2)
2 = R−1λ(1)

2 =


1.96λ12 − 0.39λ123

−1.57λ12 + 2.35λ123

 .
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Using this new λ(2), ln p can be expressed as

ln p =



1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0

1 1 0 1 1 0 0 0

1 1 1 0 0 0 1 0

1 1 1 1 1 1 1 1





λ + 0.49λ12 − 0.10λ123

λ1 − 0.98λ12 + 0.20λ123

λ2 − 0.98λ12 + 0.20λ123

λ3 − 0.39λ12 + 0.59λ123

λ13 + 0.78λ12 − 1.18λ123

λ23 + 0.78λ12 − 1.18λ123

1.96λ12 − 0.39λ123

−1.57λ12 + 2.35λ123



= [X1|X2]


λ(2)

1

λ(2)
2

 .

(4.24)

4.4 Parameter Estimates for S1 and S2

In this section, we investigate if the estimates of the unknown parameters in these

two representations are same or not. If they are not same, we are interested if they are

partially same or not. Lemma 2 shows a necessary and sufficient condition when some

row(s) of the inverses of two matrices of the form X and X∗ are same. Lemma 3 and

Theorem 3 show when the estimates of λ2 and λ∗2 are same from two different saturated

representations. If the estimates of λ2 and λ∗2 are same then the estimates of λ1 are not

same from both the models and is proved in Corollary 4.

We define the matrices As1×s1 with rank (A) = s1, Bs2×s1 , Es1×s2 , Cs2×s2 with rank (C)

= s2, D01
s1×s2

and D02
s2×s2

with rank (D02) = s2 such that we can rewrite the design matrices
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in (4.2) and (4.4) as

X = [X1|X2] =


A E

B C

 and X∗ = [X1|D0] =


A D01

B D02

 , (4.25)

respectively. We can always partition the design matrices in the above way for any un-

saturated model from the classes C1, C2,...C(N-m-1). In order to achieve this partition

of X and X∗, we may need to interchange some rows in the design matrices (Section

5.4) , i.e., to change the order of the cells 1, 2, ...,N.

Lemma 2 Let


A E

B C

 and


A D01

B D02

 be two matrices with rank(A) = s1 and rank

(C) = rank(D02) = s2, s1 + s2 = N. The following conditions are equivalent if B is of

full row rank, i.e., rank(B) = s2 ≤ s1.

(i) (C − BA−1E)−1 = (D02 − BA−1D01)−1,

(ii) (C − BA−1E)−1BA−1 = (D02 − BA−1D01)−1BA−1.

Proof. (i) =⇒ (ii)

If we post-multiply (i) by BA−1, we get (ii). For this to be true, we don’t need the matrix

B to be full row rank. For any matrix B and A, this is always true.

(ii) =⇒ (i)

Let BA−1 = B∗ with rank(B∗) = s2 ≤ s1. If we post-multiply (ii) by B∗
′

, we get

(C − BA−1E)−1B∗B∗
′

= (D02 − BA−1D01)−1B∗B∗
′

. (4.26)

We can invert the matrix B∗B∗
′

since it is a square matrix with full rank. If we post-

multiply both sides of (4.26) by the inverse of the matrix B∗B∗
′

, we get

(C − BA−1E)−1 = (D02 − BA−1D01)−1.
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This completes the proof.

Lemma 3 If the condition (i) in Lemma 2 is true then there always exists a non-

singular matrix P =


Is1 0

−BA−1 Is2

 with det(P) = 1 such that PX − PX∗ =


A∗ E∗

B∗ 0


holds.

Proof. If we pre-multiply both X and X∗ by P and consider the difference, we have

PX − PX∗ =


A E

0 C − BA−1E

 −


A D01

0 D02 − BA−1D01

 (4.27)

If the condition (i) in Lemma 2 is true then from (4.27), we get

PX − PX∗ =


A∗ E∗

B∗ 0

 , (4.28)

where A∗ = 0, B∗ = 0 and E∗ = E − D01.

Theorem 4 Let [X1|X2] and [X1|D0] be two matrices such that X
′

2X1 , 0 and D
′

0X1 = 0.

If there exist square matrices A with rank s1, C with rank N − s1 (= s2, say) and D02

with rank N − s1 such that the condition (C−BA−1E)−1 = (D02−BA−1D01)−1 holds then

the estimates of λ2 and λ∗2 are same.

Proof. Let the condition (C−BA−1E)−1 = (D02 −BA−1D01)−1 holds for any representa-

tion of X and X∗ in (4.25). We also consider ln p as ln p =


ln p1

s1×1

ln p2
s2×1

. Both the design

matrices are from saturated models. With the observed data, we can consider ln p
0

as

an estimate of ln p. Since both the matrices X and X∗ are of full rank, we can invert
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them and get the estimates of λ and λ∗ using
λ1

λ2

 =


A E

B C


−1

ln p
0

=


. . . . . .

−(C − BA−1E)−1BA−1 (C − BA−1E)−1

 ln p
0

and


λ1

λ∗2

 =


A D01

B D02


−1

ln p
0

=


. . . . . .

−(D02 − BA−1D01)−1BA−1 (D02 − BA−1D01)−1

 ln p
0
.

(4.29)

Using Lemma 2, we can say that if (C − BA−1E)−1 = (D02 − BA−1D01)−1 is true then

the last s2 rows of both the inverses X and X∗ are same and hence the estimates of λ2

and λ∗2 are same. This completes the proof.

Corollary 5 If the estimates of λ2 and λ∗2 are same then the estimates of λ1 from satu-

rated models are not same.

Proof. From Lemma 1, we can always say that there exists a full rank matrix QN×N =
Is1 −(X

′

1X1)−1X
′

1X2

0 Is2

 such that [X1 | X2] Q = [X1 | D0], where D
′

0X1 = 0.

Using the above and considering D0 as (I − X1(X
′

1X1)−1X
′

1)X2, we can write ln p as

ln p = X1λ
(1)
1 + (I − X1(X

′

1X1)−1X
′

1)X2λ
∗

2 = X1(λ(1)
1 − (X

′

1X1)−1X
′

1X2λ
∗

2) + X2λ
∗

2.

(4.30)

From the saturated representation 1, ln p can be expressed as

ln p = X1λ
(2)
1 + X2λ

∗

2. (4.31)

Comparing (4.30) and (4.31), we have

λ(2)
1 = λ(1)

1 − (X
′

1X1)−1X
′

1X2λ
∗

2.
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This completes the proof.

The lemmas and the theorems always hold for the matrices

X = [X1|X2] =


A E

B C

 and X∗ = [X1|D0] =


A D01

B D02

 , (4.32)

where rank(A)= s1, rank(C) = rank(D02)= s2. In the next subsections, we will show

that we can always find the matrices of the form X and X∗ in (4.32) for any unsaturated

model under consideration. For example 2.1, since we are not considering the unsatu-

rated models without the general effect λ and the main effects λ j,∀ j = 1, 2, . . . , 3, we

are not changing the first 4 columns of matrix X. We are permuting the next 4 columns

to construct X2 for each unsaturated model. To achieve the rank conditions, permuting

the columns is not enough. We need to permute the rows corresponding to the cells of

the X matrix. All possible unsaturated models are grouped into two categories: highest

order interaction is present in the unsaturated model (Section 4.4.1) and highest order

interaction is not present in the unsaturated model (Section 4.4.2). We consider the

2× 2× 2 contingency table described in Example 2.1. In the unsaturated models where

the highest order interaction λ123 is not present the matrix E is always a null matrix and

the partition is unique. If we decide the unsaturated model, i.e., fix the columns of X2,

we can always find this partition by creating E = 0. In the unsaturated models where

the highest order interaction λ123 is present the matrix E , 0 since there is a row with

all 1’s (λ123 is present). To satisfy the rank conditions, we need to permute the rows of

the design matrix and this partition is also unique.
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Chapter 5

Orthogonal Extension of Unsaturated

Models using D Matrices

5.1 Summary

In this chapter we discuss more on the extended complete model. We will be using

the notation D instead of D0. In section 5.2, we present different choices of D matrices

for an unsaturated model. We discuss some properties of D matrix and Dλ2 vector in

section 5.3. We propose a criterion function based on Dλ2 for selection of best fitted

models in section 5.4.
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5.2 Different choices of D matrices for an unsaturated

model

In this section we consider different choices of D matrices for an unsaturated model.

For simplicity, we consider the auto-accidents example. In this example, we have 8(=

N) cells and we try to fit different unsaturated models with the design matrix X1 with

rank (X1) = s1 < N. We can extend these unsaturated models to complete models by

creating a matrix D with rank N − s1 such that D
′

X1 = 0 in the following ways.

1. Take any N − s1 independent columns from the matrix ((I − X1(X
′

1X1)−1X
′

1) and

create a D.

2. D = ((I − X1(X
′

1X1)−1X
′

1)X2 (Lemma 1).

3. A computer generated D matrix such that D
′

X1 = 0.

5.3 Properties of D

In this section, we discuss some properties of the matrix D (or the vector Dλ2).

Theorem 6 shows the uniqueness property of Dλ2. The sum of all elements in Dλ2 is

always zero and this is proved in Theorem 7.

5.3.1 Uniqueness property

For a given unsaturated model, i.e., for a given X1 design matrix, we can find dif-

ferent D matrices using the methods discussed in Section 5.2. In all different choices of

D, the estimated Dλ2 is always the same. The proof is shown in the next theorem.
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Theorem 6 For any unsaturated model, Dλ̂2 is unique.

Proof. From any unsaturated model in (4.1), we can construct a saturated model given

in (4.4). Using (4.4), we have

Dλ̂2 = ln p
0
− X1λ̂1. (5.1)

From (4.7), the estimate of λ̂1 does not depend on D and hence (5.1) can be written as

Dλ̂2 = ln p
0
− X1(X

′

1X1)−1X
′

1 ln p
0
. (5.2)

The RHS of (5.2) is independent of D. This completes the proof.

5.3.2 Sum of all elements is zero

We investigate the elements of Dλ2 closely. We propose a criterion function for

model selection based on D in Section 5.4.

Theorem 7 Sum of all elements in Dλ2 is zero.

Proof. The design matrix of an unsaturated loglinear model can be written as

X1 = [ j | X1
1].

We create a matrix D such that

X
′

1D = 0. (5.3)

Let dk be the k-th column of the D matrix, k = 1, 2, ...,N − s1. From the first column of

X1 and using (5.3), we get

j
′

dk = 0, ∀ k = 1, 2, ...,N − s1. (5.4)
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From (5.4), we have

N∑
i=1

dik = 0, ∀ k = 1, 2, ...,N − s1. (5.5)

If λ2 = (λ21, λ22, ..., λ2(N−s1))
′

, the i-th element of Dλ2 is
∑N−s1

k=1 dikλ2k.

The sum of all elements in Dλ2 is

Sum (Dλ2) =

N−s1∑
k=1

λ2k

N∑
i=1

dik (5.6)

Using (5.5), from (5.6), we have

Sum (Dλ2) =

N−s1∑
k=1

λ2k(0) = 0.

This completes the proof.

5.3.3 “Element Zero” property of D matrix

We are only interested in the unsaturated models where one or more interactions are

absent. We divide the unsaturated models into three groups k = 1, 2 and 3, where k

is the number of interactions added to the fitted model. We create D matrices for each

of the unsaturated models in one of the ways described in section 5.2. We see some

symmetries in the elements of Dλ̂2. We have already shown that the sum of all the

elements in Dλ̂2 is zero. We also observe that some elements are zero and/or some val-

ues are positive and some values are negative with the same magnitude. In this section

we investigate the “Element Zero” property of Dλ̂2. The following theorem shows a

necessary and sufficient condition for a diagonal element to be zero in a symmetric and

idempotent matrix. This condition helps to explain “Element Zero” property of Dλ̂2.

Theorem 8 For a symmetric, idempotent matrix An×n, a diagonal element is zero if and

only if all the elements in the row and column representing its position are zero.
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Proof. Let i-th row/column of a symmetric, idempotent matrix A be

a
′

i = (ai1, ai2, ..., ain) = (0, 0, ..., 0). (5.7)

The matrix A is symmetric and idempotent, i.e.,

ai j = a ji, ∀i , j and

A2 = A. (5.8)

Using (5.7-5.8) we get the (i, i)-th diagonal element of the matrix A as

aii = a
′

ia = 0.

Let the (i, i)-th diagonal element of a symmetric, idempotent matrix A be zero. From

(5.8), we can write

aii = a
′

ia =

n∑
j=1

a2
i j = 0. (5.9)

If (5.9) is true then we must have ai j = 0, ∀ j. This completes the proof.

Corollary 9 For a symmetric, idempotent matrix D = (I − X1(X
′

1X1)−1X
′

1), an element

in Dλ̂2 is zero if and only if all the elements in the row and column representing its

position in D are zero.

5.4 A proposed criterion function SAC(Dλ̂2)

We now present a new criterion function for model selection based on D. We can

always create a D matrix with the design matrix X1 of any unsaturated model by using

any one of the ways discussed in section 6.2. Let us assume that we create a D matrix

75



for any unsaturated model using the following

D = X2 − X1(X
′

1X1)−1X
′

1X2 = (I − X1(X
′

1X1)−1X
′

1)X2.

We can create the D matrices for all possible unsaturated models under consideration.

For each D under the extended complete models, using the sample proportions p
0

from

the generated sample, we can calculate Dλ̂2 by

Dλ̂2 = (I8 − (X1(X
′

1X1)X
′

1)) ln p
0
.

Dλ̂2 is a N × 1 vector. We propose a criterion function based on Dλ̂2. If the i-th

unsaturated model is the best fit to the data, we would expect Dλ̂2 to be very close

to 0. We define a measure by adding all the absolute values in Dλ̂2. We call it Sum

of Absolute Components of Dλ̂2. We calculate the sum of the absolute values of Dλ̂2

(SAC(Dλ̂2)) for different unsaturated models and choose the best model with minimum

SAC(Dλ̂2). Table 3.6 represent the SAC values of different unsaturated models fitted to

the data in Example 2.1.
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Chapter 6

Simulation

6.1 Summary

In this chapter, we study the comparison between the proposed criterion function

“SAC” and the standard method “-2logL” in finding the best fitted model through sim-

ulation. In section (6.2), we discuss the generation of random samples from a multino-

mial loglinear model. We generate samples from six different multinomial models. In

the next two sections (6.3) and (6.4), we discuss the methods of calculating “-2logL”

and “SAC”, respectively, for the unsaturated models. In the section simulation and

model comparisons, the results are shown from all the samples for each multinomial

model. In section (6.6), we discuss a property of the proposed criterion function.
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6.2 Generation of random samples

In this section, we discuss how we generate multinomial random samples for a

given set of λ values in a contingency table. We consider six different models with six

different sets of λ values. Since we are interested in the unsaturated models where 2

or higher order interactions are absent, we choose the sets of λ values by varying the

interaction parameter values. In the saturated model for a 2 × 2 × 2 contingency table,

we have 8 unknown parameters, i.e. λ = (λ, λ1, λ2, λ3, λ12, λ13, λ23, λ123)′ and 7 out of

8 are independent. We consider λ as the dependent parameter. We select 7 numerical

values for (λ1, λ2, λ3, λ12, λ13, λ23, λ123)′. From these values, we find λ using the relation

λ = − ln
(
1 + eλ1 + eλ2 + eλ3 + eλ1+λ2 + eλ1+λ3+λ13 + eλ2+λ3+λ23 + eλ1+λ2+λ3+λ13+λ23

)
,

satisfying the condition
∑
w

pw = 1. Table 6.1 shows the λ parameter values for six

different models. With the design matrix X (saturated model) and the λ values from

Table 6.1, we get the cell probabilities using the relation

pw = exp

∑
j

xw jλ j

 . (6.1)

Table 6.2 represents the corresponding cell probabilities for each set of λ values in Table

6.1. In Table 6.2, the last 4 rows under each model represent the values of the interaction

parameters, λ12, λ13, λ23 and λ123, respectively. We want to generate samples from a

loglinear model representing some parameters with small numerical values. We choose

the values of λ12 and λ123 very close to zero compared to other interaction parameter

values in models 1 - 6 (Table 6.1). In models 3 and 4, λ13 values is also close to zero

but higher than λ12 and λ123 values. In model 5, all the interaction parameter values

are close to zero with λ12 and λ123 being the smallest and the highest, respectively. In
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model 6, we choose only one interaction λ12 value to be small. We generate 100, 000

multinomial samples for each set of p from the table Table 6.2 with fixed size n = 68694

in R.

Table 6.1: λ values for six simulated models

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

λ −2.4654 −4.3262 −1.3008 −2.0844 −0.7839 −3.9759

λ1 −1.6094 0.5000 −1.6094 0.5000 −1.6094 −1.6094

λ2 −0.9163 −0.9163 −0.9163 −0.9163 −0.9163 −0.9163

λ3 −1.2040 −1.2040 −1.2040 −1.2040 −1.2040 −1.2040

λ12 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

λ13 3.2834 3.2834 0.0500 0.0500 0.0150 3.2834

λ23 2.3434 2.3434 2.3434 2.3434 0.0200 2.3434

λ123 0.0300 0.0300 0.0300 0.0300 0.0300 1.9738

6.3 Method I

In this method, we partition the design matrix X
′

8×8 matrix (saturated model) into

X
′

1 and X
′

2, where X
′

1 is 8 × 4 and X
′

2 is also 8 × 4. The columns of X
′

1 represent the

parameters λ, λ1, λ2 and λ3 and the columns of X
′

2 represent the parameters λ12, λ13, λ23

and λ123. We will take one or more columns from X
′

2 and add to X
′

1. We denote k as the

number of columns added to X
′

1 from X
′

2. If k = 4, we get the saturated model. We only

consider the unsaturated models with k = 1, 2, 3. In this way, we create design matrices
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Table 6.2: Cell Probabilities for the six simulated models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

cell1 (0,0,0): 0.0850 0.0132 0.2803 0.1244 0.4566 0.0188

cell2 (0,0,1): 0.0255 0.0040 0.0841 0.0373 0.1370 0.0056

cell3 (0,1,0): 0.0340 0.0053 0.1121 0.0498 0.1826 0.0075

cell4 (0,1,1): 0.1062 0.0165 0.3504 0.1555 0.0559 0.0235

cell5 (1,0,0): 0.0170 0.0218 0.0561 0.2051 0.0913 0.0038

cell6 (1,0,1): 0.1360 0.1743 0.0177 0.0647 0.0278 0.0300

cell6 (1,1,0): 0.0069 0.0088 0.0227 0.0829 0.0369 0.0015

cell7 (1,1,1): 0.5895 0.7561 0.0767 0.2805 0.0118 0.9094

for different unsaturated models. With these design matrices for k = 1, 2, 3, we fit the

unsaturated log-liner models to the generated data using “glm” function in R. For all

possible unsaturated models, we calculate “−2 ln (L̂)” and we select the best model with

minimum −2 ln (L̂) value under different k. We repeat this process to all the rest of the

samples from the same model.

6.4 Method II

In this method, we create a D matrix with the new design matrix X1 (after adding

one or more columns from X2) and with the new X2 (after deleting one or more columns

from X2) using the following

D = X2 − X1(X
′

1X1)−1X
′

1X2 = (I − X1(X
′

1X1)−1X
′

1)X2.
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For each D under the extended complete models, using the sample proportions p
0

from

the generated sample, we calculate Dλ̂2 by

Dλ̂2 = (I8 − (X1(X
′

1X1)X
′

1)) ln p
0
.

We calculate the sum of the absolute values of Dλ̂2 (SAC(Dλ̂2)) for different unsaturated

models and choose the best model with minimum SAC(Dλ̂2).

6.5 Simulation and Model Comparisons

We generate 100,000 samples from a known distribution with p. We consider the

set of unsaturated models where at least one 2nd or higher order interactions are present.

For the LLMs describing the dependence structure among the categorical variables in

Example 2.1, we have three 2-factor interactions λ12.λ13, λ23 and one 3-factor interaction

λ123. We define “k” as the number of interaction(s) present in the model. The possible

values of “k” are 1,2 and 3 since we are only considering the unsaturated models. If we

consider only one interaction present in the model, i.e., k=1, we get
(

4
1

)
= 4 unsaturated

models. The number of possible unsaturated models when k=2 and k=3 are
(

4
2

)
= 6 and(

4
3

)
= 4 respectively. The total number of unsaturated loglinear models is 4 + 6 + 4 = 14.

We fit these 14 unsaturated loglinear models to each sample data. We calculate the

values of the criterion functions -2logL, SAVC(Dλ̂2), AIC and BIC for all these fitted

models under each sample. For a criterion function, we select the best fitted unsaturated

models satisfying “the smaller the better” from each sample for different values of k.

We find the best fitted model in each group of k=1,2,3 under each sample. This process

is repeated for each of the six models described in Tables 6.2 and 6.3. The frequency
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distribution of best fitted models are displayed for different values of k under each

model. We also present the count of the interaction parameters that are present in the

best fitted models for different values of k.

6.5.1 k=1

We compare all four unsaturated models when taking one column from X2 to X1.

Table (6.3) to (6.8) show the frequency distribution of the best fitted models for all 6

models when only one interaction parameter is in the model. The values represent the

number of times a specific model has been selected as the best model by each criterion

function. The values in Tables (6.9) to (6.14) show the counts where parameters are

present in the best model for each interaction parameter. In Model 1, Table (6.1), λ12

has the smallest value and λ123 has the second smallest value. The criterion function

“-2logL” suggests the model “λ12, λ23, λ123 = 0” as the best fitted model every time

whereas our proposed criterion function suggests two models: “λ12, λ13, λ23 = 0” with

approximately 63% times and “λ12, λ23, λ123 = 0” with approximately 37% times. This

result for Model 1 is suspicious since a higher percentage of best fitted models involve

λ123 present in the model by both criterion functions. The SAC works better in this case

since 37% times it chooses the model where λ13 (highest numerical value) is present. In

Model 2, −2logL works better than SAC since it selects the model where λ13 is present

in all samples. In Models 3, 4 and 6, both the criterion functions select the same model

all the time. In Models 5, the numbers are distributed in all the 4 possible models for

k=1 by both criterion functions. It is needed to mention that the criterion function SAC

has a tendency of selecting the best fitted model where λ123 (second smallest numerical
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value) is present.

Table 6.3: Frequency distribution of best fitted models for k=1, Model 1

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ123 is present λ12, λ13, λ23 = 0 100, 000 63316

λ12 is present λ13, λ23, λ123 = 0 0 0

λ23 is present λ12, λ13, λ123 = 0 0 0

λ13 is present λ12, λ23, λ123 = 0 0 36684

Total 100, 000 100, 000

Table 6.4: Frequency distribution of best fitted models for k=1, Model 2

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ123 is present λ12, λ13, λ23 = 0 0 70847

λ12 is present λ13, λ23, λ123 = 0 0 0

λ23 is present λ12, λ13, λ123 = 0 0 0

λ13 is present λ12, λ23, λ123 = 0 100, 000 29153

Total 100, 000 100, 000
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Table 6.5: Frequency distribution of best fitted models for k=1, Model 3

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ123 is present λ12, λ13, λ23 = 0 0 0

λ12 is present λ13, λ23, λ123 = 0 0 0

λ23 is present λ12, λ13, λ123 = 0 100, 000 100, 000

λ13 is present λ12, λ23, λ123 = 0 0 0

Total 100, 000 100, 000

Table 6.6: Frequency distribution of best fitted models for k=1, Model 4

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ123 is present λ12, λ13, λ23 = 0 0 0

λ12 is present λ13, λ23, λ123 = 0 0 0

λ23 is present λ12, λ13, λ123 = 0 100, 000 100, 000

λ13 is present λ12, λ23, λ123 = 0 0 0

Total 100, 000 100, 000
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Table 6.7: Frequency distribution of best fitted models for k=1, Model 5

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ123 is present λ12, λ13, λ23 = 0 37824 63545

λ12 is present λ13, λ23, λ123 = 0 14311 8973

λ23 is present λ12, λ13, λ123 = 0 29266 13806

λ13 is present λ12, λ23, λ123 = 0 18599 13676

Total 100, 000 100, 000

Table 6.8: Frequency distribution of best fitted models for k=1, Model 6

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ123 is present λ12, λ13, λ23 = 0 100, 000 100, 000

λ12 is present λ13, λ23, λ123 = 0 0 0

λ23 is present λ12, λ13, λ123 = 0 0 0

λ13 is present λ12, λ23, λ123 = 0 0 0

Total 100, 000 100, 000
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Table 6.9: Number of times parameters are present in the best fitted models for k=1,

Model 1

λ12 λ13 λ23 λ123

present(−2logL) 0 0 0 100, 000

absent(−2logL) 100, 000 100, 000 100, 000 0

present(SAC) 0 36684 0 63316

absent(SAC) 100, 000 63316 100, 000 36684

Table 6.10: Number of times parameters are present in the best fitted models for k=1,

Model 2

λ12 λ13 λ23 λ123

present(−2logL) 0 100, 000 0 0

absent(−2logL) 100, 000 0 100, 000 100, 000

present(SAC) 0 29153 0 70847

absent(SAC) 100, 000 70847 100, 000 29153
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Table 6.11: Number of times parameters are present in the best fitted models for k=1,

Model 3

λ12 λ13 λ23 λ123

present(−2logL) 0 0 100, 000 0

absent(−2logL) 100, 000 100, 000 0 100, 000

present(SAC) 0 0 100, 000 0

absent(SAC) 100, 000 100, 000 0 100, 000

Table 6.12: Number of times parameters are present in the best fitted models for k=1,

Model 4

λ12 λ13 λ23 λ123

present(−2logL) 0 0 100, 000 0

absent(−2logL) 100, 000 100, 000 0 100, 000

present(SAC) 0 0 100, 000 0

absent(SAC) 100, 000 100, 000 0 100, 000
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Table 6.13: Number of times parameters are present in the best fitted models for k=1,

Model 5

λ12 λ13 λ23 λ123

present(−2logL) 0 0 100, 000 0

absent(−2logL) 100, 000 100, 000 0 100, 000

present(SAC) 0 0 100, 000 0

absent(SAC) 100, 000 100, 000 0 100, 000

Table 6.14: Number of times parameters are present in the best fitted models for k=1,

Model 6

λ12 λ13 λ23 λ123

present(−2logL) 0 0 0 100, 000

absent(−2logL) 100, 000 100, 000 100, 000 0

present(SAC) 0 0 0 100, 000

absent(SAC) 100, 000 100, 000 100, 000 0
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6.5.2 k=2

We compare all six unsaturated models when taking one column from X2 to X1.

Table (6.15) to (6.20) show the frequency distribution of the best fitted models for all

6 models (Table 6.1) when two of the interaction parameters are present in the model.

The values represent the number of times a specific model has been selected as the best

model by each criterion function. The values in Tables (6.21) to (6.26) show the counts

where parameters are present in the best model for each interaction parameter. When

k=2, both the criterion functions selects the true model λ12 = λ123 = 0 for each sample.

SAC is identifying the parameter with the smallest close-to-zero value more frequently

than the deviance statistic in 100,000 realizations of the simulated data (Table 6.23).

The deviance statistic is identifying the next close-to-zero value more frequently than

the SAC (Table 6.10). In Models 3 and 4, these two select the true model more than

50% of the times. In Model 6, the deviance selects the model with λ12 present 13 times.

But the SAC always selects the model with λ12 is not present.

6.5.3 k=3

For k=3, we have four possible unsaturated models. In Models 1 and 2, SAC selects

the model λ12 = 0 most of the times than model λ123 = 0 compared to −2logL. It

suggests that SAC detects the model smallest parameter value more often than −2logL.

Similarly for Models 3-5, SAC performs better in selecting the model with λ12 = 0. In

Models 5 and 6, SAC works better than the deviance in identifying the parameter with

the smallest close-to-zero value.
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Table 6.15: Frequency distribution of best fitted models for k=2, Model 1

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ23, λ123 are present λ12, λ13 = 0 0 0

λ12, λ123 are present λ13, λ23 = 0 0 0

λ12, λ13 are present λ23, λ123 = 0 0 0

λ13, λ123 are present λ12, λ23 = 0 0 0

λ12, λ23 are present λ13, λ123 = 0 0 0

λ13, λ23 are present λ12, λ123 = 0 100, 000 100, 000

Total 100, 000 100, 000

Table 6.16: Frequency distribution of best fitted models for k=2, Model 2

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ23, λ123 are present λ12, λ13 = 0 0 0

λ12, λ123 are present λ13, λ23 = 0 0 0

λ12, λ13 are present λ23, λ123 = 0 0 0

λ13, λ123 are present λ12, λ23 = 0 0 0

λ12, λ23 are present λ13, λ123 = 0 0 0

λ13, λ23 are present λ12, λ123 = 0 100, 000 100, 000

Total 100, 000 100, 000
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Table 6.17: Frequency distribution of best fitted models for k=2, Model 3

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ23, λ123 are present λ12, λ13 = 0 42081 47700

λ12, λ123 are present λ13, λ23 = 0 0 0

λ12, λ13 are present λ23, λ123 = 0 0 0

λ13, λ123 are present λ12, λ23 = 0 0 0

λ12, λ23 are present λ13, λ123 = 0 2789 1342

λ13, λ23 are present λ12, λ123 = 0 55130 50958

Total 100, 000 100, 000

Table 6.18: Frequency distribution of best fitted models for k=2, Model 4

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ23, λ123 are present λ12, λ13 = 0 41407 46860

λ12, λ123 are present λ13, λ23 = 0 0 0

λ12, λ13 are present λ23, λ123 = 0 0 0

λ13, λ123 are present λ12, λ23 = 0 0 0

λ12, λ23 are present λ13, λ123 = 0 5777 3770

λ13, λ23 are present λ12, λ123 = 0 52816 49370

Total 100, 000 100, 000
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Table 6.19: Frequency distribution of best fitted models for k=2, Model 5

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ23, λ123 are present λ12, λ13 = 0 20836 24214

λ12, λ123 are present λ13, λ23 = 0 15039 22150

λ12, λ13 are present λ23, λ123 = 0 11205 7488

λ13, λ123 are present λ12, λ23 = 0 15118 27175

λ12, λ23 are present λ13, λ123 = 0 16763 7822

λ13, λ23 are present λ12, λ123 = 0 21039 11151

Total 100, 000 100, 000

Table 6.20: Frequency distribution of best fitted models for k=2, Model 6

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ23, λ123 are present λ12, λ13 = 0 0 0

λ12, λ123 are present λ13, λ23 = 0 0 0

λ12, λ13 are present λ23, λ123 = 0 0 0

λ13, λ123 are present λ12, λ23 = 0 0 0

λ12, λ23 are present λ13, λ123 = 0 13 0

λ13, λ23 are present λ12, λ123 = 0 99987 100, 000

Total 100, 000 100, 000
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Table 6.21: Number of times parameters are present in the best fitted models for k=2,

Model 1

λ12 λ13 λ23 λ123

present(−2logL) 0 100, 000 100, 000 0

absent(−2logL) 100, 000 0 0 100, 000

present(SAC) 0 100, 000 100, 000 0

absent(SAC) 100, 000 0 0 100, 000

Table 6.22: Number of times parameters are present in the best fitted models for k=2,

Model 2

λ12 λ13 λ23 λ123

present(−2logL) 0 100, 000 100, 000 0

absent(−2logL) 100, 000 0 0 100, 000

present(SAC) 0 100, 000 100, 000 0

absent(SAC) 100, 000 0 0 100, 000

93



Table 6.23: Number of times parameters are present in the best fitted models for k=2,

Model 3

λ12 λ13 λ23 λ123

present(−2logL) 2789 55130 100, 000 42081

absent(−2logL) 97211 44870 0 57919

present(SAC) 1342 50958 100, 000 47700

absent(SAC) 98658 49042 0 52300

Table 6.24: Number of times parameters are present in the best fitted models for k=2,

Model 4

λ12 λ13 λ23 λ123

present(−2logL) 5777 52816 100, 000 41407

absent(−2logL) 94223 47184 0 58593

present(SAC) 3770 49370 100, 000 46860

absent(SAC) 96230 50630 0 53140
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Table 6.25: Number of times parameters are present in the best fitted models for k=2,

Model 5

λ12 λ13 λ23 λ123

present(−2logL) 5777 52816 100, 000 41407

absent(−2logL) 94223 47184 0 58593

present(SAC) 3770 49370 100, 000 46860

absent(SAC) 96230 50630 0 53140

Table 6.26: Number of times parameters are present in the best fitted models for k=2,

Model 6

λ12 λ13 λ23 λ123

present(−2logL) 13 99, 987 100, 000 0

absent(−2logL) 99, 987 13 0 100, 000

present(SAC) 0 100, 000 100, 000 0

absent(SAC) 100, 000 0 0 100, 000
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Table 6.27: Frequency distribution of best fitted models for k=3, Model 1

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ13, λ23, λ123 are present λ12 = 0 51143 62773

λ12, λ23, λ123 are present λ13 = 0 0 0

λ12, λ13, λ123 are present λ23 = 0 0 0

λ12, λ13, λ23 are present λ123 = 0 48857 37227

Total 100, 000 100, 000

Table 6.28: Frequency distribution of best fitted models for k=3, Model 2

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ13, λ23, λ123 are present λ12 = 0 55043 58533

λ12, λ23, λ123 are present λ13 = 0 0 0

λ12, λ13, λ123 are present λ23 = 0 0 0

λ12, λ13, λ23 are present λ123 = 0 44957 41467

Total 100, 000 100, 000
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Table 6.29: Frequency distribution of best fitted models for k=3, Model 3

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ13, λ23, λ123 are present λ12 = 0 46476 55344

λ12, λ23, λ123 are present λ13 = 0 12963 12594

λ12, λ13, λ123 are present λ23 = 0 0 0

λ12, λ13, λ23 are present λ123 = 0 40561 32062

Total 100, 000 100, 000

Table 6.30: Frequency distribution of best fitted models for k=3, Model 4

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ13, λ23, λ123 are present λ12 = 0 40095 49677

λ12, λ23, λ123 are present λ13 = 0 18855 18633

λ12, λ13, λ123 are present λ23 = 0 0 0

λ12, λ13, λ23 are present λ123 = 0 41050 31690

Total 100, 000 100, 000
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Table 6.31: Frequency distribution of best fitted models for k=3, Model 5

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ13, λ23, λ123 are present λ12 = 0 27104 32107

λ12, λ23, λ123 are present λ13 = 0 25568 26008

λ12, λ13, λ123 are present λ23 = 0 19141 27228

λ12, λ13, λ23 are present λ123 = 0 28187 14657

Total 100, 000 100, 000

Table 6.32: Frequency distribution of best fitted models for k=3, Model 6

Fitted models where parameters=0 −2logL SAC(Dλ̂)

λ13, λ23, λ123 are present λ12 = 0 100, 000 100, 000

λ12, λ23, λ123 are present λ13 = 0 0 0

λ12, λ13, λ123 are present λ23 = 0 0 0

λ12, λ13, λ23 are present λ123 = 0 0 0

Total 100, 000 100, 000
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Table 6.33: Number of times parameters are present in the best fitted models for k=3,

Model 1

λ12 λ13 λ23 λ123

present(−2logL) 48857 100, 000 100, 000 51143

absent(−2logL) 51143 0 0 48857

present(SAC) 37227 100, 000 100, 000 62773

absent(SAC) 62773 0 0 37227

Table 6.34: Number of times parameters are present in the best fitted models for k=3,

Model 2

λ12 λ13 λ23 λ123

present(−2logL) 44957 100, 000 100, 000 55043

absent(−2logL) 55043 0 0 44957

present(SAC) 41467 100, 000 100, 000 58533

absent(SAC) 58533 0 0 41467
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Table 6.35: Number of times parameters are present in the best fitted models for k=3,

Model 3

λ12 λ13 λ23 λ123

present(−2logL) 53524 87037 100, 000 53439

absent(−2logL) 46476 12963 0 40561

present(SAC) 44656 87406 100, 000 67938

absent(SAC) 55344 12594 0 32062

Table 6.36: Number of times parameters are present in the best fitted models for k=3,

Model 4

λ12 λ13 λ23 λ123

present(−2logL) 59905 81145 100, 000 58950

absent(−2logL) 40095 18855 0 41050

present(SAC) 50323 81367 100, 000 68310

absent(SAC) 49677 18633 0 31690

6.6 Property of SAC

From all the tables above, we can conclude that “SAC” works better than the crite-

rion function “−2logL” in detecting the smallest interaction. In all the models, λ12 has

the smallest magnitude in comparison to other interaction parameters. When k=1, 3,
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Table 6.37: Number of times parameters are present in the best fitted models for k=3,

Model 5

λ12 λ13 λ23 λ123

present(−2logL) 59905 81145 100, 000 58950

absent(−2logL) 40095 18855 0 41050

present(SAC) 50323 81367 100, 000 68310

absent(SAC) 49677 18633 0 31690

Table 6.38: Number of times parameters are present in the best fitted models for k=3,

Model 6

λ12 λ13 λ23 λ123

present(−2logL) 0 100, 000 100, 000 100, 000

absent(−2logL) 100, 000 0 0 0

present(SAC) 0 100, 000 100, 000 100, 000

absent(SAC) 100, 000 0 0 0
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both the criterion functions are selecting the model (in most cases) where λ23 is present

and the other interaction parameters are assumed to be zero. When k=2, SAC as well

as −2logL work very well in selecting the best fitted model. If we carefully look at the

tables where the counts represent the absence or presence of each interaction parame-

ter, we can say that the SAC works better than −2logL in selecting the best fitted model

where the smallest interaction parameter is absent. This shows that our proposed crite-

rion function detects the model with maximum frequency when the parameter, with the

smallest value in the original model, is assumed to be zero.
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Chapter 7

Conclusion

In this dissertation, we propose a new method of loglinear model building by adding

one or more new terms orthogonally to the terms of the existing model. When we add

all the new non-existing terms to the existing model this way, we obtain a new saturated

model (Saturated 2). We compare this new saturated model with the standard saturated

model (Saturated 1). The proposed orthogonal extension provide the conditional in-

dependence structure among the categorical variables in the unsaturated model (section

2.4.1.1, p.10). This way of extending the loglinear models allows us to relate the param-

eters that are present in the model to the parameters that are assumed to be zero in an

orthogonal way. We estimated the unknown model parameters by using the maximum

likelihood estimation method. We compared the Saturated 1 model with the Saturated 2

model. We also established the necessary and sufficient conditions for the equivalence

of the parameter estimates between these two models. We demonstrated the uniqueness

and sum to zero properties of this orthogonal extension. Our proposed new criterion

function is based on the extensions of the unsaturated models. Our proposed method
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is computer intensive and comparable with the methods using the AIC and BIC. SAC

is identifying the parameter with the smallest close-to-zero value more frequently than

the deviance statistic in 100,000 realizations of the simulated data (Table 6.23). The de-

viance statistic is identifying the next close-to-zero value more frequently than the SAC

(Table 6.10). When number of non-zero parameters is less than 3, SAC is perform-

ing overall better than the deviance statistic in correctly identifying the smallest value

close-to-zero. The performance of SAC is more balanced in frequency for identifying

the close-to-zero values in 100,000 realizations of the simulated data.

104



Bibliography

[1] Agresti, A. 2013. Categorical Data Analysis. Wiley, Third Edition.

[2] Aitchison, J., and Silvey, S.D. 1958. Maximum-likelihood estimation of parameters
subject to restraints. The Annals of Mathematical Statistics.

[3] Aitchison, J., and Silvey, S.D. 1960. Maximum-likelihood estimation procedures
and associated tests of significance. J. Roy. Statist. Soc. Ser. B, 22: 154-171.

[4] Anderson, A. H. 1974. Multidimensional contingency tables. Scand. J. Statist., 1,
115-127.

[5] Barndorff-Nielsen, O. E. 1976. Factorization of likelihood functions for full expo-
nential families. J. Roy. Statist. Soc. Ser. B 38: 37-44.

[6] Barndorff-Nielsen, O. E. 1978. Information and Exponential Families. Wiley.

[7] Bergsma, W., and Rudas, T. 2003. On conditional and marginal association. Ann.
Fac. Sci. Toulouse, 11: 455-468.

[8] Birch, M. W. 1963. Maximum likelihood in three-way contingency tables. J. Roy.
Statist. Soc. Ser., B(25): 220-233.

[9] Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning.
Springer.

[10] Bishop, Yvonne M., Fienberg, S. E., and Holland, P. W. 2007. Discrete Multivari-
ate Analysis. Springer.

[11] Brown, L. D. 1988. Fundamentals of statistical exponential families. Hayward,
Calif.: Institute of Mathematical Statistics.

[12] Casella, G., and Berger, R. L. 2002. Statistical Inference. Pacific Grove, Calif.:
Duxbury.

[13] Christensen, R. 1997. Loglinear Models and Logistic Regression. Springer.

[14] Darroch, J. N., and Ratcliff, D. 1972. Generalized iterative scaling for loglinear
models. The Annals of Mathematical Statistics, 43, 1470-1480.

[15] Fienberg, S. E. 1970. An iterative procedure for estimation in contingency tables.
The Annals of Mathematical Statistics, 41, 907-917.

105



[16] Fienberg, Stephen E. 2007. The Analysis of Cross-Classified Categorical Data.
Springer, Second edition.

[17] Fienberg, Stephen E., and Rinaldo, A. 2007. Three centuries of categorical data
analysis: Loglinear models and maximum likelihood estimation. Journal of Statis-
tical Planning and Inference.

[18] Ghosh, S., and Nyquist, H. 2016. Model fitting and optimal design for a class of
binary response models. Journal of Statistical Planning and Inference.

[19] Gokhale, D. V., and Solomon K. 1978. The Information in Contingency Tables.
Marcel Dekker, Inc.

[20] Goodman, L. A. 1968. The analysis of cross-classified data: independence, quasi-
independence, and interaction in contingency tables with or without missing cells.
J. Amer. Statist. Assoc., 63:1091-1131.

[21] Goodman, L. A. 1972. Some multiplicative models for the analysis of cross-
classified data. Proceedings of the Sixth Berkley Symposium on Mathematical
Statistics and Probability, 649-696.

[22] Goodman, L. . and Hout, M. 1998. Statistical methods and graphical displays
for analyzing how the association between two qualitative variables differs among
countries, among groups, or over time: a modified regression-type approach. Soci-
ological Methodology, 28, 175-230.

[23] Haberman, S. J. 1974. The Analysis of Frequency Data (Vol. IV). The University
of Chicago Press.

[24] Klimova, A., and Rudas, T. 2015a. Iterative scaling in curved exponential families.
Scandinavian Journal of Statistics.

[25] Klimova, A., and Rudas, T. 2015b. On the closure of relational models. Journal of
Multivariate Analysis.

[26] Klimova, A., Rudas, T. and Dobra, A. 2011. Relational models for contingency
tables. Journal of Multivariate Analysis.

[27] Koch, G. G., and Bhapkar, V. P. 1982. Chi-square tests. Encyclopedia of Statistical
Sciences, 1.

[28] Koller, Daphne, and Friedman, Nir. 2009. Probabilistic Graphical Models: Prin-
ciples and Techniques. Massachusetts Institute of Technology.

[29] Lauritzen, Stephen L. 1996. Graphical Models. Oxford Science Publications.

[30] Rao, A. Ramachandra, and Bhimasankaram, P. 2000. Linear Algebra. Hindustan
Book Agency (India).

[31] Rao, C. R. 2006. Linear Statistical Inference and Its Applications. Wiley.

106



[32] Rohatgi, V. K., and Saleh, A. K. Md. E. 2001. An Introduction to Probability and
Statistics. Wiley Series in Probability and Statistics, Second edition.

[33] Ross, Sheldon M. 2010. Introduction to Probability Models. Academic Press, 10th
edition.

[34] Roy, S. N., and Kastenbaum, M. A. 1956. On the hypothesis of no “interaction”
in a multiway contingency table. Ann. Math. Stat., 27: 749-757.

[35] Roy, S. N., and Mitra, S. K. 1956. An Introduction to some nonparametric general-
izations of analysis of variance and multivariate analysis. Biometrica, 43: 361-376.

[36] Rudas, T. 1998. Odds Ratios in the Analysis of Contingency Tables. Sage Publica-
tions, Inc.

107




