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Abstract

Knowledge about the functional properties of the
world constrains and informs perception. For
example, looking at a table, chair, a building or a
sculpture, we are able to resolve occluded attach-
ments because we know that in order to stand,
an object’s center of gravity must lie within its
footprint. When when we see a floating wheel in
the interior of a vehicle, we know that it is proba-
bly the means by which the driver communicates
steering information to the chassis. Movable han-
dles imply input to machines; fixed handles imply
an upside and a downside to any object they grace.
We are constructing a machine-understanding
machine with which to explore the usefulness of
semantics in perception. This system will investi-
gate simple mechanical devices such as gear trains,
simultaneously building a representation of the
structures and functions of parts, and using that
representation to guide and disambiguate percep-
tion. In this paper we discuss how this work has
led to an understanding of perception in which a
semantics of structure and function play a central
role in guiding even the lowest level perceptual
actions.

Vision is Cognition
We distinguish visual understanding from visual recog-
nition by the central questions that drive the two activ-
ities. For recognition, the question is “What is out
there?” For understanding, the question is “What is
happening/can happen in this scene?” or more specif-
ically, “How can I interact fruitfully with the scene?”

Humans see and understand the world in terms of its
affordances [Gibson 66], which signal the potential for
function and for interaction. To see and act purpose-
fully, robots must likewise be designed with a capacity
for the visual understanding of the affordances of their
worlds [Brand & Birnbaum 92].

Visual understanding is, firstly, explaining the
scene with regard to the goals and causal knowledge
of the viewer, and secondly, explaining the image
with regard to the scene! —what is known as image

I.e. what is traditionally called computer vision: group-
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understanding[Birnbaum et al. 92). An explanation
should capture the why and how of a scene: the causal
relations between objects, the sources of motion and
stability, and the potential uses of these causal prop-
erties for the viewer. For example, in the reduction
engine pictured in figure 1, two gears are causally relat-
ed to each other in that they will transmit (and reverse)
rotational motion. The handle is causally related to
the viewer in that it affords the viewer an opportunity
to inject motion into the situation. A visual under-
standing of figure 1 will include the assessment, “This
is a device which, when powered from one handle, caus-
es the opposite wheel to rotate at a much higher torque
and slower speed.”

Figure 1: A reduction engine as it appears to the camera,
and an exploded schematic of its drivetrain. To understand
it, we piece together a coherent explanation of the what,
why, and how of this drivetrain, using clues from the image,
from knowledge of function and structure, and from new
views procured by perceptual acts.

Our prescription for visual understanding dispenses
with the conventional notion of an order of processing
(e.g. [Marr 82, Barrow & Tanenbaum 78)%). Instead
of a visual front end which outputs image segmenta-
tion descriptions for a back end to use, understanding
is a matter of negotiation between the constraints and
hypotheses of a generative semantics of function and
the activity of low-level visual routines. The seman-
tics guide the activity of the visual hardware through
queries: in the course of building an explanatory model

ing high-contrast gradients into edges, finding flow bound-
aries, matching to models, etc. [DARPA 92]

2This filter-then-analyze approach has has previously
been called into question by, among, others, Tanenbaum
himself; see [Witkin & Tanenbaum 83]
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from visual reports of clues to function, gaps and incon-
sistencies in the model to are used to general queries for
the visual routines, which cue various perceptual acts
that result in new reports3 The visual processes answer
queries by testing for features and tracking invariants
in the scene that have functional significance, such as
tracking parallel lines (generated by the edges of a rod)
to find the end of the rod. We are in the process of
constructing such a system and have analyzed sever-
al image sequences in the manner we suggest. This
papers describes aspects of a number of these analyses.

Why and how are functional properties detectable
in an image? Scenes are structured, and the causally
‘loaded’ regions of a scene tend to be where parts inter-
face: where they are joined or where there are contrasts
in motion. This means that the parts of the scene
where change is most likely and most significant—the
parts of interest to a robot—often have characteristic
manifestations at predictable locations in the image.
For example, meshed gears produce adjacent regions
of optical flow with opposite curl. At the junction
itself, the flow will converge, then diverge. Statically,
a gear meshing introduces characteristic textures into
the image because of the toothing, and this manifests
itself as a local peak of a high-frequency component in
the image. This is what robots would look for if they
were made to fix car transmissions.

Understanding just a small part of a picture—even a
single component of a structure—immediately yields a
rich set of expectations about neighboring part bound-
aries, structural concomitants, typical axes of motion,
and so forth, and these in turn have characteristic man-
ifestations in the image. This is because most things in
our visual experience have the quality of design: their
construction reflects a host of functional constraints.
Even the simplest functional constraint—resistance to
the pull of gravity—profoundly influences design and
appearance, and generates for us many expectations
that guide visual cognition. This is equally true with-
in and outside the realm of man-made objects: The
world is pervaded by function.

In this paper we present the beginnings of a genera-
tive functional semantics for vision, with enough detail
to account for example scenes ranging in complexity
from sticks and strings to common machines.

The Importance of Being Connected

It is generally understood that the causal properties of
the scene are usually mediated by physical connections
between the parts it contains. Understanding an object
or scene requires visually tracing through the causally
most “loaded” connections between subparts* Toward
this end, we have been developing a catalog of connec-
tion types, in which each connection is indexed along

3This is similar in spirit to work in text-understanding
by [Ram 89]

Indeed, when we ask colleagues to look at the objects
and pictures in this paper, we see them visually trace out
the “functional drivetrain” of an object.

721

with a description of function, typical structural corre-
lates, and characteristic visual manifestations. We now
have a rich catalog of mechanical connections rang-
ing from E-clasp fasteners to gear meshings to hub-
axle interfaces—nearly 40 connection types at time of
writing. The descriptions of function and structural
correlates provide great leverage in visual search, gen-
erating hypotheses about neighboring parts, as-yet-
unperceived assemblies, and the relative locations of
parts.

Knowledge about connections provides a reasoner
with a special and highly useful set of expectations
about the world. In order to use this knowledge,
we also need to have good theories of how and why
parts are put together, and of the capabilities of our
vision system to extract useful features and invariants
from the image. This requires a large rule base which
expresses the principles of rational design, and which
describes—in terms of the visual routines—the percep-
tible artifacts of design. Design semantics tell us a
good deal about what kinds of image processing we
need. This is true of both abstract and specific con-
straints. At the abstract level, for instance, we have a
constraint such as the following:

A drivetrain assembly has function if it transduces,
regulates or switches motion. In visual terms, this
function is manifuest in the following rule: A patch
of the scene is ezplained if it connects to two patches
of differing motion (transduction); if it connects to
just one patch of motion bul appears 1o have signif-
icant mass (regulation); or if over time, ils position
relative to connecting paiches changes so that their
optical flow is no longer related (connection and dis-
conneclion)

Similarly, at the specific level, we have a rule such as
the following:

Most axis- and rail-mounted machine parts have
some symmetry with respect to their axes of motion
so to reduce vibration (and simplify manufacture).
This includes gears, carriages, and pistons. In visual
terms, this functional constraint implies the follow-
ing rule: For most moving parts, there is a way to
orient the camera so that motion of the part causes
a minimal change in ils visual profile.

We have developed a set of such rules sufficient to
produce explanations for the objects pictured in the
paper. This knowledge combines with an explicit (if
somewhat simplified) theory of the image-processing
and camera-orienting subsystems to make predictions
about which visual routines (e.g. [Ullman 84]) to
engage and what misclassifications they can make
about features in the image. To describe the vision
subsystem, we identify the assumptions and strategies
built into its camera-orienting and feature-extracting
processes, and then produce characterizations of when
and how various low-level routines will produce spuri-
ous reports:

e A change of perspective usually suffices to distin-
guish adjacency from occlusion. A report of non-



adjacency from the visual system is reliable; reports
of adjacency can be mistaken if the parts are close.

e A gradual dip and then recovery in the frequen-
cy of the strongest signal component taken along
a line through the image implies a periodic tex-
ture mapped onto a curved object, such as a gear.
[Bajcsy & Lieberman 76] If the camera is not ori-
ented in the plane of a gear before using the visual
toothed-wheel detector, there may be spurious nega-
live reports.

In sum, not only do we need knowledge of the causal
structure of the world, but we need knowledge of how
that causal structure is revealed (and sometimes mis-
taken) by perceptual actions. One kind of knowledge
tells us what is missing or wrong in our explanation
of a scene; the other kind tells us how to find missing
information in the image, or where to find mistaken
interpretations in the explanation.

Examples

Figure 2: Views of a tensegrity object standing up, on
its side, and from above. Different views lead to different
explanations.

Tensegrity

A tensegrity [Fuller 75) is a rigid structure of rods and
cables. The simplest possible construction, consisting
of three rods and nine cables is pictured in figure 2.
None of the rigid elements touch each other, yet the
whole structure stands. People find tensegrity con-
structions fascinating because a very basic assumption
of visual explanations fails to apply, namely that a rigid
object is decomposable into substructures that support
each other [Birnbaum et al. 92]. The only means of
connection in the tensegrity is tethering; there is no
support and only the illusion of suspension. In fact,
gravity plays no role in its stability.

It is, however, the illusion of suspension that allows
the tensegrity to be explained. A first view of the struc-
ture will reveal a large part (a rod) which looks as if it
should be falling. To explain its stability, one scans up
the rod, looking for an attachment which prevents it
from falling in the direction that it leans. Near the top,
a cable from another rod prevents this collapse. How-
ever, this does not explain why the rod doesn’t pitch
in a direction perpendicular to the cable, and a further
scan reveals a nearly perpendicular cable which par-
tially fulfills this function: it keeps the rod from falling
“outwards.” To explain why it does not fall inward, we
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look for a third fixating element, and find a third cable
attached to the endpoint that has a small vector com-
ponent contrary to inward motion. The rod endpoint
18 now considered stable, as all motions are restricted
(some, apparently, by gravity). The rod as a whole,
however, may not be. Thus, to explain why the rod
doesn't slide out from underneath itself, a similar set
of scans discovers three more tethers. Now, the rod is
provisionally considered stable. Yet all the cables need
to be explained, and this leads to similar explanations
of the other two rods. At the end, every part has been
assigned a function, and every force appears to have
been countered.

However, this results in a circular explanation, where
each part is, ultimately, held up by itself. In order to
“ground” this explanation, we must invoke the prin-
ciple of symmetry. Symmetry is a design stratagem
for canceling out all forces. It is necessary to know
about symmetry, and how to look for some kinds of
symmetry in an image, if one is to explain why static
objects stand up. Symmetry is the most common form
of balance, which is often the ultimate explanation of
stability.

Symmetry is also a way of resolving explanatory
loops. For the tensegrity object we propose a three-
fold rotational symmetry around a vertical axis, and
orient the camera above the structure. The endpoints
are used to estimate where the symmetrical axis is, and
once the camera is collinear with this axis, a visual rou-
tine processes the image to find evidence of rotational
symmetry. Finding symmetry completes the explana-
tion.

Reduction Engine

A reduction engine works on the principle that a small
gear connected to a large gear will reduce speed and
increase torque. To explain such a machine, the input
and output must be found, the drivetrain must be
traced, and the parts that serve to frame and stabilize
the object must be identified. The order of discovery
of all these assemblies is not important—finding any
one or part of any one produces many functional clues
about where and how to look for other parts.

For example, finding a protuberance from the face of
a wheel (an ellipse in the image) is a good indicator of
an axis or handle. An ellipsis-finding Hough transform
will tell us where to expect the axis. If the protruber-
ance is off-center, then it is a handle, which indicates
that the part is an input or output to the machine.

In the reduction engine, a wall lies directly behind
the wheel, so the axis is invisible. However, it is rea-
sonable to expect that the axis is fixed in place by the
frame, so the wall is hypothesized to be part of the
frame, and the axis is hypothesized to pass through
it. Scanning along the line of the hypothesized axis
brings a toothed-texture into center view, which can
be verified as a gear with the appropriate curvature
for the axis. The axis is now provisionally explained.

To explain the gear, it must mesh with at least
one other gear (or a chain). [Brand & Birnbaum 92]



describes a system for scanning a camera across a train
of meshed gears, reporting when a bounding wall has
been hit or no more gears have been found. When
this finds a meshing gear, the first gear is explained.
Explaining this second gear requires looking for an axis
to carry along the motion to another part, since no oth-
er connecting gears can be found. The axis is almost
entirely hidden, so the same strategy that verified the
first axis is used. At this point, the operations just
described repeat to explain the remainder of the mech-
anism.

Other Examples

Even without the ability to move the camera to
scan for new information, functional expectations will
resolve ambiguities in the interpretation of a scene.
[Halabe 92] has implemented a program with a modest
semantics of attachment and stability that will “reat-
tach” legs of Tinkertoy constructions that have been
“severed” by occlusion.

Figure 3: A house of cards and a toy horse. Stability
constraints make it possible to reason about occlusions such
as the horse’s hind leg and the obscured card.

Similar analyses have been done with various houses
of cards (e.g. figure 3), in which connections mediate
support or friction, but there is no attachment.

A Functional Analysis of Vision

We believe that the use of functional semantics in the
design of vision systems and visual primitives applies to
the whole range of systems that process images and/or
perform visual reasoning. Whether designing a hard-
wired animat, or compiling the knowledge to be used
in a mechanical reasoning system, a functional analy-
sis will outline the kinds of features that are needed
for choosing actions [Brand 91], the kinds of image-
predicates that are necessary to support those features,
and the kinds of ambiguities that the system will face.

Semantic constraints are pervasive in the world, thus
we need a functional semantics for every kind of scene.
We outline below the main functional relationships
inherent in different kinds of scenes, to show the basic
building blocks of visual semantics for different tasks.
We identify three general types of scenes, briefly sketch
the fundamental questions that drive explanation in

Static Objects

e Will it fall apart? (How is the motion of all parts

constrained?) The means of static constraint are
blockage (support and containment are special cas-
es), attachment, and tethering (again, suspension
is a special case). Blockage is detectable though
adjacency in the image, especially in the horizontal
plane, where one part is supporting another. Attach-
ment can be inferred from off-horizontal adjacency,
partial containment, and characteristic attachment
artifacts such as screw and rivet heads. Tethering
can be inferred from adjacency to the end of a long
thin object such as a cable.

e Will it fall on me? (How is the center of grav-
ity placed within the footprint? Or how is the
object affixed to something heavier?) Typical means
of standing include spread feet (or narrow tops),
counter-balancing, and anchoring. Spread feet are
often visible as protuberance on the ground plane
diverging from the object-image center. Narrow-
ing can be calculated, for example, as a gross
geometric predicate, or by looking for finer detail
higher up in the image (e.g. a greater proportion
of high-frequency components). Counter-balancing
and symmetry are profoundly difficult to find in
an image; we are compiling a host of methods,
including looking for anomalously thick or long pro-
jections to diagnose counter-balancing. Anchoring
often requires projections into the ground plane,
often accompanied by bumps in the plane (e.g. tree
roots).

e What can it hold up? (What devices of support,
attachment, etc., does it have that are not used in
its own skeletal integrity?) This is often a mat-
ter of identifying objects which afford support or
attachment but do not participate in the explana-
tion of the object’s stability. Unused high horizontal
surfaces (tabletops), hook shapes or vertical points
(coatstands), and regions of concavity (bowls) are
good indicators of overall function.

Objects with internal motion (Machines)

e How is motion constrained and channelled®? In
machines, the means of constraining motion always
leave a dimension or two of freedom. This is prin-
cipally achieved by partial containment (eyes, hubs,
sockets, etc.) in the man-made world, and by flexion
in the natural world. This is a difficult problem for
us, since most of a containment device is obscured
from view. At present, we plan to simply infer con-
tainment devices from the limited motions of parts.
There is some potential in developing a library of
visual signatures for containment devices, much as
the screw-head is a signature for a largely invisible
part.

3This is very similar to the question asked of static

each, outline the basic principles used in these expla-
nations, and describe how they may be detected in an
image.

objects. In fact, we had analyzed several machines before
realizing that static objects are a special case, in which all
motion is restricted.
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¢ Why are all these parts moving? (How is motion
communicated? What kinds of connections are
there?) The principal means for communication of
motion are attachment and friction. Communication
produces characteristic patterns of flow in adjacent
regions. Optical flow algorithms may only suffice
to reveal regions of varying motion, requiring other
visual processes to close in on and resolve details of
how motion is communicated.

e What kind of motion does this produce? Classifi-
cation of motion into rotation, translation, lifting,
swinging, hammering, etc., provides a useful index
to function, and often suggests a likely mechanism.
For example, repeated translational motion along a
line almost always requires an associated rotational
motion.

e How do I connect with it? (What is the interface
to the rest of the world?) This is similar to the
use question asked of static objects. There is a
fairly limited range of control devices which specifi-
cally interface to the human hand, and which have
characteristic shapes: handles, buttons, dials, and
steering wheels, for example. These will have to be
resolved by local searches in the image for charac-
teristic shapes.

Terrains

e Where are the animate objects? (What’s moving
and what are our relative positions in the food
chain?) This is largely a matter of noticing inde-
pendent translational motion in the image sequence.
Visually, we look for small regions of depth change,
as well as texture anomalies.

e Where can I pass or flee? (What part of the ter-
rain is navigable for an agent with legs or wheels
like mine?) The most important constraint for land
navigation is continuity of ground plane, followed by
smoothness. Another important affordance for nav-
igation are things that can be climbed. For this rea-
son, it is useful to look for low-frequency texture on
objects that rise out of the ground plane, for example
a tree with rough bark. One special case-stairs-adds
the constraint that the vertical texture have a single
strong frequency component.

o Where can I take shelter or hide? (What part of
the terrain has limited accessibility and/or limited
visibility?) The key to this function is identifying
places in the world where vision itself doesn’t work
very well. One hides in caves or overhangs, which
are bounded regions of relative darkness and low
contrast, or one hides in underbrush: areas of omni-
directional high frequency image noise.

Vision Requires Outlook

Vision has long suffered the notion that an artificial
visual cortex will be a “front end” for an intelligent
system that itself is not necessarily visually sophisti-
cated. A consequence of this view is that much tal-
ent and energy has been invested in trying to find an
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appropriate form of output for vision systems. Once an
output representation has been invented, there is the
usual struggle of finding a robust algorithm to map
images to reasonable (literally) outputs. This has typ-
ically resulted in recognition systems, which match the
image to a database of models via reverse optics trans-
formations (e.g. [Horn 86]). We have learned from this
work that no single algorithm or image transform ever
works more than perhaps 80% of the time®.

Recently, some researchers have given attention to
the use of visual processing, that is, what happens in
the “back end” (e.g. [Ballard 89]). This has led to a
reformulation of vision in which processing is specifi-
cally aimed at quickly extracting the features that are
most decisive for the immediate pursuit of a goal. In
the “active vision” paradigm, the back end is recipro-
cally considerate of the front end, reorienting the cam-
era to procure ever better input for the feature detec-
tors. This is typical in visual navigation systems, which
extract surprisingly few topographic features from the
image, and then make strikingly good use of them.
This is a significant development because it incorpo-
rates the notions of (1) functionally derived features
and (2) focus of attention, both deployed according to
an analysis of the dynamics of the task.

Recognition vision builds a model of the scene by
explaining the image in terms of the physics of light
and the configuration of the scene. It incorporates
analyses of optical physics and of shape, which give
it a mathematical, nonfunctional slant. Active vision
work tends to be miserly in its representation, but tries
to participate directly in the causality of the scene. It
incorporates analyses of the task and of visual invari-
ance across motion, which give it a decided functional
slant and, significantly, a good measure of robustness’

What is missing in vision, though hinted at by active
vision, is a functional analysis of the world—of what
is being looked at. The purpose of vision is not to
describe the image in terms of segmentation candi-
dates, but to explain the scene in terms of what we
believe about the world. The primary visual belief that
humans enjoy is the dictum that “form follows func-
tion.” The world that we see is one of design, every-
where imbued with function, and interesting mainly
because we have to interact with it.

The questions we ask of our eyes are: “Will it fall
on me?” “Will it support my weight?” “Where can
I pass?”” “What does it do?” These functional ques-
tions lead straight to structural questions: “Does the
center of gravity lie outside the footprint?” “What are
the load-bearing lines?” “Where is the ground plane
navigable by foot?” “How does its motion relate to a
human activity?” The structural questions in turn lead
to questions posed of the world (of the image or of an
image stream): “Where above the ground plane is the
visual centroid?” “How thick is the train of connect-

®Minsky, personal communication
" Active vision aims to reduce uncertainty through track-
ing; thus the importance of invariance across motion.



ed substructures that rises from the ground plane to
carry my weight?” “Where is the illumination gradient
smooth or striped (steps)?” “Where is a handle-shaped
object and the drivetrain that it moves?”

One might object to our emphasis on questions such
as, “Why is this part here?” and, “How do these things
relate? when humans seem able to answer, “What
is out there?” so effortlessly. Humans have prodi-
gious visual memories, and equally uncanny powers of
recognition. However, it is not recognition we are try-
ing to explain; it is the original cognition. Given the
amount of work this takes, it is not surprising that
we are equipped with a caching mechanism which uses
the memory of the first cognition to speed perception
of the same object later on.

Related Work

Recent work in the understanding of diagrams indi-
cates that researchers have found it useful to employ
a simple semantics in conjunction with a simulated
visual search for “regions of interest” in the diagram.
[Narayan & Chandrasekaran 91] give an example of a
straight flat line that is a shared boundary between two
objects, which consequently have the potential to slide
against each other. [Forbus et al. 87] provide a model
for the qualitative analysis of rigid body interactions,
given a qualitative description of the scene. Both are
primarily post-visual paradigms, whereas we intend for
our semantic analyses to interactively guide and dis-
ambiguate visual processes. It is also worth noting
that most kinematic analyses of scenes, whether qual-
itative, diagrammatic, or truly visual, use a semantics
of motion. In contrast, we are interested firstly in a
semantics of funclion; and only secondly in its mani-
festation as motions, shapes and textures.

The work of the Vision and Modeling Group at the
MIT Media Lab is also of note because, in trying
to model the objects in the scene in terms of bent
and deformed superquadrics [Pentland 90}, they are
also, in a sense, explaining the scene. This inter-
esting approach differs from ours in that it is func-
tionally neutral; such explanations tell how the scene
could be made from simple lumps of clay that are
deformed and combined to produce complex shapes.
No hypotheses about causal relationships and function
are present in these explanations, nor does such knowl-
edge guide explaining at the level of image-processing
either. However, their work has interesting possibilities
because the models, once constructed, are imbued (via
simulation) with a causality which includes rigid and
elastic body dynamics, mass, and gravity. This could
be used to provide feedback to an image-to-model con-
structor, by telling it whether or not the model is sta-
ble and static, or unbalanced and lacking in structural
integrity.
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