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Abstract

Differential privacy concepts have been successfully used to protect anonymity of individuals in 

population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise 

different privacy challenges, that of protecting private behaviors that can be revealed from time 

series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. 

But the accuracy requirement on inferences drawn from physiological data, together with well-

established limits within which these data values occur, render traditional privacy mechanisms 

inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy 

and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the 

efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 

participants and demonstrate that it is possible to retain meaningful utility, in terms of inference 

accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors.

Author Keywords

Behavioral Privacy; Differential Privacy; Mobile Health

INTRODUCTION

Smart phones with their onboard sensors and their ability to interface with a wide variety of 

external body worn sensors, provide an appealing mobile health (mHealth) platform that can 

be leveraged for continuous and unobtrusive monitoring of an individual in their daily life. 

The collected data can be shared with health care providers who can use the data to better 

understand the influence of the environment on an individual and be proactive with their 

prognosis. On one hand, mHealth platforms have the potential to usher in affordable 

healthcare, but, on the other hand, their ability to continuously collect data about an 

individual raises serious privacy concerns and limits their adoption – concerns that are 

largely absent during traditional episodic treatments.
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Motivating example

Consider a scientific study being conducted to assess the daily activities (e.g., sedentary 

versus active life styles) and behaviors of a user. To this end, the user participating in the 

study shares data from several body-worn sensors (e.g., respiration (RIP), electrocardiogram 

(ECG) and accelerometer sensors) with the study investigators. The data collected can be 

used to infer physical activities such as walking, running, stationary (from accelerometers), 

but also correlate these activities with behaviors such as conversation episodes, stress 
episodes, detect when the user is eating or drinking water/coffee, and if the user smokes or 

takes cocaine. Note, activity can be detected from accelerometer data [5], conversation 

episodes [35] from respiration data, onset of stress [34, 26] can be inferred from ECG data, 

eating from wrist-worn sensors [40], smoking from respiration and wrist-worn sensors [32, 

3, 38] and cocaine use from ECG data [25].

On one hand, some of the above inferences such as walking, conversation, eating are 

extremely useful in investigation of behavioral risk factors on health and wellness. But, on 

the other hand, inferences such as smoking, cocaine use and stress may be sensitive to the 

user and needs to be kept private. Thus, we have a conundrum, where the same time series 

data can be used for making both utility providing inferences (that are desirable) and also 

sensitive inferences (that need to be protected).

Challenges unique to physiological data

While there exists a large body of prior work on data privacy, there are several challenges 

that are unique to maintaining privacy of inferences drawn from time series of physiological 

data. First, the inferences themselves (e.g., detecting variation in heart rate, respiratory 

disorders) are extremely critical to proper diagnosis and incorrect inferences can severely 

affect and even threaten human life. Second, there are well-defined limits for various 

physiological signals (e.g., the interbeat interval in ECG is typically between 300ms and 2, 

000ms [13], and so on) and non-conformance to those thresholds can render the data 

unusable. Third, there is high degree of correlation between an observed human behavior 

and the data recorded by these physiological sensors. For example, physical activities such 

as walking or running are associated with higher heart and respiration rates. Finally, 

physiological signals are high-dimensional, are extremely rich in information, and when 

continuously collected embed minute elements of an individual’s lifestyle patterns. These 

patterns or inferences are often correlated making it difficult to protect the privacy of one 

inference in isolation of the others.

These above challenges place constraints on the mechanisms that can be used to protect 

privacy of physiological data. The constraints are in terms of the magnitude of noise that can 

be added while retaining the utility of the inferences and in handling of the correlation 

between the data streams from the various sensors. Anonymization techniques such as k-

anonymity [39], l-diversity [30], and t-closeness [27] propose data obfuscation aimed 

towards protecting the identity of a user within a subpopulation. However, we consider a 

setting where a single-user shares data with (possibly) many recipients (primary/secondary 

researchers), and the identity of the user is already known to the data recipients.
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A principled mechanism for preserving privacy during analysis is differential privacy [17]. 

While several variants of differential privacy have been proposed [23, 37, 21], the central 

idea there is to adequately obfuscate a query response computed on a multi-user statistical 

database (by adding noise typically drawn from a Laplace distribution) such that the 

presence or absence of any user in the database is protected. However, this notion of 

differential privacy cannot be directly applied to our single user setting to protect behavioral 

privacy. Recent model-based approaches for location privacy such as [24, 22] focus on 

effective data suppression to protect sensitive inferences, but these can’t be applied directly 

to protect behavioral privacy from mobile sensor data either due to unique challenges listed 

above.

Our approach

In this paper, we propose mSieve, a model-based data substitution approach to address the 

privacy challenges arising from sharing of personal physiological data. We group the 

inferences that can be drawn from shared data into two sets – a whitelist and a blacklist [11, 

10]. Inferences that are desirable for the user, such as tracking activity, conversation 

episodes, frequency of eating, are all utility providing to the user and are part of a whitelist. 

Other inferences such as smoking and onset of stress are sensitive to the user and need to be 

kept private. These inferences form part of the blacklist. Our goal is to prevent an adversary 

from making any of the inferences in the user-specified blacklist while being able to 

accurately compute the whitelisted inferences.

Figure 1 illustrates the flow of data and the various components of mSieve. In summary, 

given various streams of sensor data from a user, mSieve identifies sensitive data segments 

and substitutes them with the most-plausible non-sensitive data segments. To do so, it 

computes a Dynamic Bayesian Network (DBN) model over the user’s data. The model 

maintains a distribution over the various behavioral states (e.g., smoking, running, 

conversation etc.) of the user. Note, these states are computed using the data collected from 

the body-worn sensors. To perform substitution, segments of data that reveal sensitive 

behavior are detected and removed. The DBN model is then used to identify candidate 

replacement segments from the same user’s data that can be used in place of the deleted 

segments. We use several techniques (such as dynamic programming approach, and a greedy 

approach based best fit algorithm) to select the best segments that preserve privacy and 

simultaneously retain the overall statistics of the physiological signal (providing utility). To 

assess the privacy guarantees of our scheme, inspired by the privacy definition of differential 

privacy, we define the notion of differential behavioral privacy to protect sensitive 

inferences. The metric ensures that the information leaked about a sensitive inference from a 

substituted segment is always bounded.

We evaluate the efficacy of our substitution scheme using 660 hours of ECG, respiration, 

location and accelerometer data collected over multiple user studies with over 43 

participants. We demonstrate that sensitive behavioral inferences, contributing to privacy 

loss, such as onset of stress, smoking, and cocaine use can be protected while still retaining 

meaningful utility (≥ 85% accuracy when privacy sensitivity is high and ≥ 90% on average) 
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of the shared physiological signals in terms of its use for tracking heart rate, breathing 

irregularities, and detecting conversation episodes.

DEFINITIONS AND PROBLEM STATEMENT

We first introduce notations and define terms we use throughout the paper and also 

formalize the problem statement.

Sensor Data

Let ri(t) denote the sensor data from the ith sensor at time t, where i = 1, …, ns. We define 

 as the time-series of measurements from the ith sensor, from starting 

time ts to ending time te. Finally, r(t) denotes the collection of time-series data from all the 

different sensors, i.e., r(t) = {r1(t), r2(t), …, rns(t)}.

Inferences

An inference is a function computed (e.g., using a machine learning model) over a window 

of data values. Time-series data from different sensors (such as ECG, respiration, 

accelerometer) are used for computing inferences using data buffered over a chosen time 

interval. Let xi(t) be inference value of the ith inference at time t. We assume that all our 

inferences are binary classifiers, which output true when the inference occurs within the time 

interval and false otherwise1, i.e., xi(t) ∈ {0, 1}. We define  to be the 

time-series for the ith inference within the time interval (ts, te). Again, x(t) = {x1(t), x2(t), …, 

xn(t)} represents the collection of all possible inference time-series.

Whitelist and Blacklist of inferences

As mentioned earlier, a key component of our privacy mechanism is the separation of the 

possible inferences into a Whitelist (denoted by W) and a Blacklist (denoted by B). In 

mSieve, a whitelist is a set of inferences that are essential for obtaining utility from the 

shared data, and the goal of the recipient is to accurately compute the distribution p(xi), 

where xi ∈ W. Similarly, the blacklist B, is a list of inferences xi, whose release the user 

would like to protect from the recipient.

State

A bit vector of length n is used to represent a user state x = (x1, x2, …, xn) ∈ {0, 1}n. The ith 

element of the bit vector represents the value of the ith inference. Without loss of generality, 

we assign the first nw bit values of state x to the whitelist, i.e., xi for 1 ≤ i ≤ nw and the 

remaining nb bit values to the blacklist. We assume that whitelist and blacklist forms a 

disjoint partition of the inference set, i.e., n = (nw + nb). A state is sensitive, if one or more 

bits corresponding to inferences in set B, are set to one. All sensitive states are included in 

set B and the non-sensitive states are in set W.

1Any inference that produces categories can be easily converted to a set of binary inferences, one for each category of output.
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State Interval

We define a state interval, s = (x, ts, te) as a state x at which the user dwells during an 

interval (ts, te). Successive state intervals are indexed by sj, where j = 1, …, τ. The value of 

each inference stays the same during an interval. Interval changes to the next one when any 

of the inference values change. Unless otherwise specified, we use the shorthand notation 

for sj.xi.

State Sequence

We define a state sequence, s = (s1, s2, …, sτ), where sj.x ≠ sj+1.x and sj.te == sj+1.ts for all j 
= 1, …, τ − 1.

User Model

Transition among different user states can be modeled using graphical models such as 

Markov Chain (MC), Hidden Markov Models (HMM), and Dynamic Bayesian Network 

(DBN). The Markov models, while suitable for modeling the temporal correlation among the 

states across time intervals, do not capture their conditional independence within a particular 

time interval. Therefore, we model the transition between states as a DBN, Du. In each time 

slice of the DBN, we maintain a uniform Bayesian Network described below:

• Nodes: Each node of the DBN is a random variable Sj representing a user 

state at time interval j. Denoting the ith inference within the state as , we 

can write .

In addition to nodes, a DBN also contains two types of edges:

• Intra-slice links: For any time slice j, conditional independence between 

individual inferences X1 to Xn is maintained as a Bayesian Network (BN). 

Denoting the parents of node Sj by Pa(Sj) we have:

• Inter-slice links: A DBN not only models conditional independence 

among states within a time slice but also captures their temporal 

correlations across time slices. These transition probabilities among nodes 

in different BNs are represented by the inter slice links. We use a first 

order model, so these links are only between adjacent time slices.

These conditional probabilities are stored in a Conditional Probability table (CPT), which is 

associated with each node Sj. An illustration of a DBN representing temporal behavior 

among states is presented in Figure 2.
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Adversary Model

We use a DBN to capture adversarial knowledge. A DBN is a powerful graphical model that 

can effectively encode both the temporal and spatial correlation among inferences. It is also 

a generalization of Markov models (including the HMM) that are typically used to encode 

these information. We consider two types of adversarial attacks.

• Data-based attack: In this setting, the attacker has access to the raw sensor 

data.

• Model-based attack: The attacker has access to released inferences 

computed over raw data but not the raw data.

In addition, we assume that in both settings the attacker is aware of the blacklist inferences 

B, and the mSieve algorithm is publicly known.

The algorithms in mSieve, are designed under an assumption that an adversary uses a DBN 

or a less powerful model for capturing the correlation among the user states. However, if an 

adversary uses a model that is more expressive in terms of modeling state correlations, or 

has access to side channel information that is not contained in the user model then additional 

leakage may occur from the released data.

Privacy

The privacy guarantee we seek is such that an adversary with access to data released by 

mSieve should not be able to suspect a sensitive behavior in a released data with 

significantly higher likelihood than when suspecting the same behavior in a corresponding 

reference data.

Corresponding Reference Data—For a given sensor time series r⃗, a corresponding 

reference data  is such that it releases no more information about the blacklisted inferences 

than a null time-series, but is otherwise maximally close to r⃗.

Differential Behavioral Privacy—A system Λ preserves ε-privacy, if for any input 

sensor time series r⃗ with start time ts and end time te, it produces an output  with same ts 

and te such that for any query q(․; ․) on  about any sensitive state b ∈ B and for all K ∈ 

Range(q), and the same query q(․; ․) on any  with the same ts and te, the output is bounded 

by eε.

(1)

The parameter ε denotes privacy sensitivity. A low value of ε implies a high privacy level 

and vice-versa.
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Utility

We define utility over an entire released episode. Released data should preserve the same 

white list of inferences as the original data. Utility metric minimizes distribution difference 

between the original and released data.

Let pi be the probability of inference xi occurring in the actual signal. For simplicity, 

suppose Inference xi occurs for  duration out of a total of 

 time units in the original data, where I is the identity function. Then 

.

Utility Loss—Let P = (p1, p2, …, pnw) be the probability vector of the white listed 

inferences in the actual data and  be the probability vector of the white 

listed inferences in the released data, where  and t̂i is the duration of inference xi in the 

released data. Then, we define our utility loss metric as,

(2)

Problem Definition

The goal of mSieve is to obfuscate time series data r⃗ ∈ DB and generate  with the same 

start and end time such that it satisfies the privacy constrains in Equation (1) and minimizes 

the utility loss in Equation (2).

Problem 1—For any given tolerable privacy loss ε > 0, the utility-plausibility tradeoff can 
be formulated as the following optimization problem:

SYSTEM OVERVIEW

We now present an overview of the components, as shown in Figure 3, that are required to 

implement the end-to-end system from sensor data, to user states, to privacy preserving safe 

states, and finally to the release of sensor data.

Context Engine

The Context Engine (CE) generates inferences from raw sensor data. Inferred signals are 

more suitable for data modeling than unprocessed, raw sensor signals as it simplifies the 
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modeling task. CE transforms the raw sensor signals to task-specific feature signals. For 

example, RR-interval is more suitable to infer heart rate than raw ECG signal. CE takes raw 

signals as input and produces time series of inference values as output. All the white list and 

black list inferences are inferred by the CE.

Substitution Mechanism

We begin by segmenting the time series of inferences. Let τ be the total number of segments, 

where each segment is represented by state interval sj where 1 ≤ j ≤ τ. As mentioned earlier, 

we assume that inferences are represented by a single bit and thus at a particular time 

interval the CE provides as output a bit vector of size n, which also constitutes the user state 

sj.x ∈ {0, 1}n. Finally, the segmentation generates a sequence of such state intervals, s⃗ =< s1, 

s2, …, sτ >.

Some of the states in s⃗ can be sensitive to the user. The first step in our substitution 

algorithm is to remove the sensitive states and also all other states that might lead to the 

sensitive states. This introduces discontinuity in that state sequence; we call these gaps as 

holes. The next step is to perform a DBN lookup to identify plausible candidates to fill all 

the holes. This lookup operation on user DBN, Du, provides a set of candidate states for 

filling holes in any time interval j. We note that the plausible states are checked for 

continuation with the previous state. To select the best state from among the candidate states, 

we consider utility loss as our metric. We substitute a hole with a state or sequence of states 

that minimizes utility loss.

Context to Sensor Data

Another important consideration in the substitution process is to maintain signal continuity. 

The Context-to-Sensor-Data module accepts possible substitution candidates generated by 

the substitution mechanism and produces safe, privacy-preserving sensor data as output. 

This module communicates with the database to ensure that the released sensor data is safe, 

i.e., meets the privacy and utility criteria.

SOLUTION DETAILS

In this section, we discuss our proposed solution to mitigate privacy risks. Algorithm 1 takes 

raw sensor data r⃗, sensitive states B, and user DBN Du, and outputs raw data  that does 

not contain any signature about sensitive inferences.

Algorithm 1

mSieve: Plausible Substitution Mechanism

Require: r⃗, B, Du, ε

1: s⃗ = getStateSequence(r)⃗

2: k ← 1

3: ŝ⃗ ← s⃗

4: for each interval j ∈ {1, 2, …, τ} do
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5:   if isHole(sj, Du, B, ε) is true then

6:

    

7:     ℂk = getPlausibleCandidateSet(Du, s⃗, hk, ε)

8:     k ← k + 1

9:   end if

10: end for

11: Selected candidate {c1, …, ck} = FillHole({hk}, {ℂk})

12:

13: for each hole hk = (․, ts, te), selected candidate ck do

14:   r̂(ts, te) = getSensorDataFromDB(ck, te − ts)

15: end for

16:

return 

Step 1: Sensor Data to State Sequence

We first convert the time-series of raw data samples from various sensors, r⃗, to time-series of 

inferences using (classifier) models. The classifier models are specific to an inference and 

detects the time interval over which the inference occurs. Let ei = {(ts, te)} denote the set of 

time intervals over which the ith inference is detected by a model where 1 ≤ i ≤ n = (nw + nb) 

(recall nw and nb are the number of whitelisted and blacklisted inferences respectively). We 

create the inference time series xi(t) for the ith inference as

Collectively, we define, x(t) = (x1(t), x2(t), …, xn(t)) as the n-dimensional state at time t.

Let  be the set of all time points (whether start or end) 

corresponding to the inference occurrences, arranged in ascending order and τ = |t| − 1. 

Note, a user stays in same state between time interval (ti, ti+1) for i = 1, 2, …, τ and ti ∈ t. 
We denote by si = (x(t), ti, ti+1), where ti < t < ti+1, the ith state interval. It is clear that two 

consecutive states are different. It forms a state sequence s⃗ = < s1, s2, …, sτ >.

Step 2: Locate and Delete Sensitive and Unsafe States

We consider three types of states. a) Sensitive state, b) Unsafe state, and c) Safe state. We 

define a state sj as sensitive state if any of the last nb bits are set to one, i.e., if 

, where ∨ is logical or operation (recall B is the set of sensitive states).

We define a state sj as unsafe state if it is not directly sensitive but may contain some 

information about blacklist, e.g., act of walking outside of a building to smoke and returning 
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back after smoking. We use the following local privacy check, which is similar as [22, 9], to 

mark a state as unsafe

(3)

This condition provides us with a mechanism to stem privacy leakage from unsafe states. 

Here, δ is our local privacy sensitivity. Lemma 1 below describes how to select δ.

Lemma 1—For any given ε > 0 there exist a δ < ε/2τ such that if

then 

A proof appears in the Appendix.

Deletion of sensitive and unsafe states in s⃗ results into  that is punctuated with holes. Each 

hole consists of a starting time ts, and an end time te. Thus, the kth hole is defined as hk = (ts, 
te). We denote the state occurring immediately before a hole hk as pre(hk), and the state after 

hk as next(hk).

Step 3: Candidate Generation

A candidate (i.e., a state sequence) is a sequence of states that can be substituted in place of 

a hole. A candidate should be such that it does not contain any sensitive or unsafe state and it 

maintains continuity, i.e., transitions among the states in the filled up time series should be 

plausible using similar criteria as in (3). If there does not exist a candidate long enough to 

fill the hole by itself, multiple state segments can be composed together to obtain the desired 

length. We use a recursive function, described in Algorithm 2, to generate candidates for 

each hole hk in time interval given by (ts, te). For kth hole, the GenerateCandidate 

function generates all the possible candidates cand for the duration given by the interval 

length of the hole, i.e., dur = hk.te − hk.ts, and stores the candidates in the set ℂk. Prior to 

invoking the GenerateCandidate function, we initialize set ℂk = ∅ and current candidate 

cand =< ․ > to an empty vector. Note, isConnect(sj, sj+1) returns true iff Equation (3) 

returns true.

If GenerateCandidate does not generate any candidate state sequence, i.e., ℂk = ∅, then 

we delete either the previous state pre(hk) or the next state next(hk) (whichever provides a 

lower utility loss), to enlarge the size of the existing hole. We then invoke 

GenerateCandidate again for this newly created hole. This iterative process of increasing 

the size of the hole increases the chances of finding a candidate and in our experiments we 

did not encounter any instance when the algorithm failed to find a suitable candidate. But, 

theoretically speaking, it is possible that the algorithm may not find any candidates due to 
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the continuity constraint. Further improving this algorithm and proving its convergence is 

still an open question that we leave for future work.

Algorithm 2

GenerateCandidate

Require: cand =< c1, …, cl >, ℂk, hk, remDur

1: if dur == 0 and isConnect(cl, next(hk)) then

2:   ℂk = ℂk ∪ cand

3: else if dur > 0 then

4:   for each sj ∈  do

5:     if isConnect(cl, sj) then

6:       remDur′ = remDur − (sj.te − sj.ts)

7:       cand′ =< c1, …, cl, sj >

8:       GenerateCandidate(cand′, ℂk, hk, remDur′)

9:     end if

10:   end for

11: end if

Complexity analysis—Since length of the holes and the states are dynamic we will use 

expected values to analyze complexity of this step. Let lh be the expected length of the hole, 

ls be expected length of a state and y be the expected number of states reachable from any 

state. Here, y is the branching factor and ℓ = ⌈(lh/ls)⌉ is the expected depth of the search tree. 

Then, the expected time complexity is O(ℓy).

Step 4: Select Candidate and Fill Holes

After the hole creation and candidate generation steps, we obtain a series of holes h1, …, hnh 
and a set of candidates ℂi for the ith hole. Let c⃗ =< c1, c2, …, cm >, where 1 ≤ j ≤ m is the 

index assigned to the candidate cj, it is the jth candidate to be encountered as we enumerate 

through candidates in sets ℂ1, ℂ2, …, ℂnh in that order. We define an allocator matrix A[i]
[k], where A[i][k] = 1 implies that candidate state sequence ck ∈ ℂ is a candidate for the ith 

hole, i.e. ck ∈ ℂi. Let, after hole creation,  be the duration of the jth whitelist in . Thus, 

the initial duration difference is  and the initial utility loss, . The 

next step is to select a candidate for each hole that minimizes the objective function 

specified in Equation 1. We formulate the above as a Hole Filing Problem stated below.

Problem 2—Hole filling Problem: As stated earlier, for the jth whitelisted inference, tj 

denotes its total duration in r⃗ and  its duration in . Let . The goal is to fill all 
the holes with candidate state sequences such that
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It can be shown that the above problem minimizes utility loss Uloss (in Equation 2). By 

reducing the bin packing problem to the unconstrained version of the hole filling problem, 

i.e., by setting A[i][k] = 1 for all i and k and the privacy sensitivity parameter ε, to a large 

number, it can be shown that the hole filling problem is NP-hard. Therefore, we first provide 

a dynamic programming based solution that gives optimal result but requires exponential 

memory. We then provide a greedy based solution that is not optimal but runs in polynomial 

time.

Dynamic Programming Solution

The main idea here is to compute the solutions to smaller sub-problems and store the 

solutions in a table, so that they can be reused repeatedly later to solve the overall problem. 

To do so, we need to decompose the hole filling problem in terms of smaller sub-problems 

and find a relation between the structure of the optimal solution for the original problem, and 

solution of the smaller sub-problems. We begin by defining the problem recursively as 

follows:

Recurrence Relation—Let L be similar to A, except that the entry L[i][j] stores the 

minimum utility loss achieved if the kth candidate is used to fill the ith hole, where 1 ≤ i ≤ nh 

and 1 ≤ k ≤ m.

To solve the problem, we use a bottom-up approach. At first, we compute the optimal result 

for the first hole. Then, using this result we compute the optimal result for the second hole 

and so on. We begin with the following initialization

Let  be the duration difference vector after assigning candidate ck to 

ith hole. Initialize  for all 1 ≤ k ≤ m and 1 ≤ j ≤ nw. To understand the working of the 

algorithm, suppose that holes h1 through hi−1 have all been assigned, and we are now ready 

to make an assignment for hi, i.e., we are now in stage i. Let durj(ck) be the duration of the 

jth whitelist in candidate ck. Then, we update L[i][k] with

(4)

For the l, that results into a minimum, we update  for 1 ≤ j ≤ nw. We 

also maintain an additional data structure pre(i, k) that stores index of previous candidate 

from where we update L[i][k], i.e. pre(i, k) = l. We continue this process till i = nh and k = 

m. Finally, we select ck for last hole hnh such that L[nh][k] is minimum. Using the pre data 

structure, we determine complete assignment of the holes by invoking 

AssignCandidate(nh, k) (Algorithm 3).
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Complexity analysis—Maximum number of candidates for each hole is O(ℓy) (since any 

combination of whitelisted inferences can be a candidate sequence) and the maximum 

number of holes is O(τ). Thus, the upper bound on space required for a dynamic program 

based solution is O(τℓy) and the upper bound on time is O(τℓyℓy).

Algorithm 3

AssignCandidate

Require: pre(․, ․), i, k

1: if i > 0 then

2:   Assign ck in ith hole

3:   call AssignCandidate(pre, i − 1, pre(i, k))

4: end if

Greedy Solution

We now provide a greedy strategy for the hole filling problem. For each hole, we choose an 

item that minimizes the utility loss, Uloss, among all the candidates. We repeat this process 

until all the holes are filled. This process is described in Algorithm 4.

Algorithm 4

GreedySolution

Require: 

1:

2: for each i = 1, 2, …, nh do

3:

  select 

4:   dj = dj + durj(ck); for all 1 ≤ j ≤ nw

5: end for

Since, in every iteration, we select an item that locally minimizes Uloss for that hole, this 

method does not always provide an optimal result. However, the space complexity reduces to 

O(τ) and time complexity reduces to O(τℓy) which is ℓy times smaller than the previous 

solution using dynamic programming.

Step 5: Sensor Data Substitution

Now, for each hole hk, we have to select a segment of sensor data that corresponds to the 

selected candidate state ck ∈ ℂk. For this, we maintain a mapping database, M, that stores 

sensor segment of different length for each possible state. However, for substituting the 

sensor data for a state within an interval, we have to maintain consistency at both boundaries 

of the hole. We use the case of ECG signals to illustrate feature value consistency. One can 

also consider morphological consistency or others relevant characteristics.
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Feature value consistency—Let rri be the ith RR interval in an ECG data, . The RR 

interval is used to calculate other features of the signal defined as below.

1. Point of time error: Limit check on the current value

2. Continuity error: Limit check on the first order difference

Let {rr1, …, rrk} be sequence of RR intervals calculated in an ECG data, . We define 

feature value error by,

mSieve maintains a database of sensor data corresponding to each candidate state, and while 

substituting, it selects sensor data corresponding to a released state that minimizes the 

boundary errors on both boundaries.

Limits of the mSieve Algorithm

We discuss three limits of mSieve. First, if all the inferences are part of the blacklist, then 

the released data will correspond to the null state x = ∅, i.e. xi = 0 for i = 1, …, n. No data 

release is possible in this case because every inference is sensitive.

Second, if either the number of data sources or the number of inferences are increased, then 

the size of the DBN will grow. This will increase the complexity of learning the adversary 

model. It will also increase the amount of space and time required to obtain a solution (see 

the complexity analysis of the dynamic program approach).

Finally, since there are imperfections in any computational model that can be used by 

mSieve to detect data segments corresponding to a blacklisted inference, there are some 

lower bounds on the privacy level that can be achieved with mSieve. We formalize it with 

the following lemma.

Lemma 2—Suppose false negative rate of the computational model used in mSieve for 

detecting black list b ∈ B is Fb. Define . Then lower bound of ε is ln(η).

A proof appears in the Appendix. We note that the above limit can be improved by using 

better inference models.
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EVALUATION

Study Design and Data Collection

We use data collected in two different studies to evaluate mSieve. We first summarize the 

data collection process and provide statistics of data from both studies which were approved 

by the IRB. In the first study (D1), physiological data was collected from 37 participants. 

The goal of this study was to evaluate the value of wearable sensors in monitoring and 

reflecting upon daily stress, activity, and conversation. Each participant wore mobile-sensors 

for one full day. In total, 37 days of data was collected (one participant per day).

In the second study (D2), data was collect from 6 daily smokers. Each participant wore 

mobile-sensors for three days, for a total of 18 days of data. The goal of this study was to 

develop and validate a computational model to detect smoking. In both studies, each 

participant wore a physiological chest band, inertial wristband, and GPS-enabled 

smartphone for a day. Each sensor transmitted data continuously to a mobile phone during 

the study period. At the end of each day, the data collected on the phone was transferred to a 

server.

In both studies, participants wore the sensors for 12.04±2.16 hours per day during their 

awake period. Using the accelerometer sensor, we found that participants were physically 

active for 22.19% of the time, on average. Physiological data in the natural environment can 

be of poor quality for several reasons, such as physical activity, loose attachment, wireless 

disconnection, etc. [36]. We note that stress assessment model is applied to the data to obtain 

stress at each minute only when data collected was of good quality and not affected by these 

confounders [26]. Table 2 summarizes the number of data-points collected from participants 

in each study.

Inferences from Sensor Data—We implemented the cStress model [26] to infer stress 
inference. It uses a set of features from both ECG and respiratory waveforms. If the stress 

probability of a particular minute is above 0.33, it is labeled as a stressed minute. We 

detected physical activity from wearable accelerometers using the model in [4]. We used the 

puff-Marker model [38] to detect smoking episodes from wrist sensor data and respiration 

data. Finally, we used the mConverse model [35] to infer conversation episodes.

Model Learning

A key element of our scheme is the DBN model that we use for identifying the substitution 

segments. For model learning, we divided the day into state intervals. We then used the data 

from all the users (not a specific user) to study the convergence of the model learning, i.e., 

find the time interval over which the transition probabilities converged to a stable value. Let 

Dcon be the converged transition matrix, and Dd be the conditional dependency probability 

matrix on day d. We define our normalized distance as  where the sum is 

over all elements of the matrix. Figure 4 shows the convergence of DBN for multiple users. 

For both cases, more than 80% convergence occurs within first 9 days and 90% convergence 

occurs within 14 days.
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Privacy-Utility Tradeoff

To understand the privacy-utility tradeoff of both the dynamic program and greedy 

approaches, we vary the privacy parameter ε and observe the utility loss Uloss in each case. 

We conducted four experiments, two on each dataset, by changing the configuration of the 

blacklist. In the first experiment, we set the Blacklist = {Stress}, and in the second 

experiment we set the Blacklist = {Conversation}, and performed our evaluation on dataset 

D1. In third and fourth experiments, we set the Blacklist = {Smoking} and Blacklist = 

{Stress} respectively and conducted the evaluation on dataset D2. In all the experiments, we 

vary ε from zero to one in steps of size 0.05. Figure 5 shows the results obtained for each of 

the four experiments. Note, in each plot we show the utility loss for both the dynamic 

program and greedy approaches. Note also init utility loss is the utility loss after creating 

holes. When ε = 0 we get eε = 1, which means that the posterior belief about blacklist 

should not be more than the prior expectation. At that point, Uloss is maximum and we get an 

average of 11% utility loss for the greedy algorithm and 7% utility loss for the DP 

algorithm. As we increase the value of ε, Uloss reduces. On average, we get less than 10% 

utility loss for both algorithm.

Dynamic Program vs. Greedy Algorithm

Utility Loss—We computed the Uloss value for both the dynamic programming algorithm 

and the greedy algorithm. In Figure 8, we also show Uloss after substitution. DP always 

produces better result than the greedy algorithm and both produce better results than the 

initial Uloss. For some users, initial Uloss is less than our solution. This is because, using our 

approach, we always fill each hole resulting in occasional overfilling of the whitelist 

inferences.

Distribution of Safe, Unsafe, and Sensitive States—We investigate the distribution 

of the three states in the data released by each algorithm. To do so, we vary the value of the 

privacy sensitivity ε and observe the percentage of nodes that are safe, unsafe, and sensitive. 

Figure 6 shows the results. Recall that because of plausible substitution, in addition to safe 

and sensitive states, we also have unsafe states that are not-sensitive, yet unsuitable for 

release as they are highly correlated with sensitive states. As we increase the value of ε, the 

number of safe states also increases. For a given privacy sensitivity to ε = 0.5, the average 

distribution of the various state types in a user trajectory is shown in Figure 7.

RELATED WORK

Various transformation techniques have been proposed to protect data privacy. Below, we 

summarize some of the techniques relevant to our problem setting.

Anonymization metrics

A vast majority of the literature on privacy preserving data publishing consider 

anonymization metrics, such as k-anonymity [39], l-diversity [30], and t-closeness [27]. 

These approaches operate under the threat model in which an adversary is aware of quasi-

identifiers in a multi-user dataset and wants to perform linkage attack using other auxiliary 

data sources to infer the sensitive attributes of individuals within the same dataset. We 
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consider a different setting where data from a single user (no multi-user database is present) 

is being protected against sensitive inferences. We further assume that the identity of the 

user is known and hence the anonymization mechanisms are not useful. In addition, instead 

of static (time-independent) relational databases, we consider time-series of physiological 

sensor data.

Data Randomization

Randomization techniques add noise to the data in order to protect the sensitive attributes of 

records [2, 1]. Evfimievski et al. [20] proposed a series of randomization operators to limit 

the confidence of inferring an item’s presence in a dataset using association rule mining. 

Differential privacy offers a formal foundation for privacy-preserving data publishing [15, 

18]. It can be classified as a data distortion mechanism that uses random noise (typically 

from a Laplace distribution) to ensure that an attacker, with access to the noisy query 

response, fails to guess the presence or absence of a particular record in the dataset. 

Compared to the general-purpose data publication offered by k-anonymity, differential 

privacy is a strictly verifiable method [28]. A survey of results on differential privacy can be 

found in [17]. While most of the research on differential privacy has focussed on interactive 

settings [23, 37, 21], non-interactive settings as an alternate to partition-based privacy 

models have also been considered in recent works [6, 19, 42]. Since we focus on 

physiological data, the randomization approaches are often unsuitable as they distort the data 

making it unusable for critical inferences, especially for physiological data.

Distributed privacy preservation

Results are aggregated from datasets that are partitioned across entries [33]. Partitioning 

could be horizontal [12, 14, 16, 29], i.e., records distributed across multiple entries, or 

vertical [12, 14, 41], i.e., attributes distributed across multiple entries. It is possible that 

individual entities may not allow sharing their entire dataset. However, they consent to 

limited information sharing with the use of a variety of protocols. The overall goal of such 

techniques is to maintain privacy for each individual entity, while obtaining aggregated 

results. We consider a single user setting for which the above techniques do not work.

Data Synthesis

Synthetic data generators exists for location data [8] that are used to protect the privacy of 

sensitive places. To obtain these synthetic traces, data from different users are pooled 

together into a population-scale model, which is then used to generate the data. 

Physiological data of each person is unique and used for obtaining bio-metrics [7, 31]. Thus, 

population-scale models often results in significant degradation in utility of the data. The 

well-defined temporal correlation between data segments in a physiological time series (i.e., 

continuity between presiding and succeeding contexts) makes it even harder to generate 

synthetic data.

In summary, protecting behavioral privacy when sharing time series of mobile sensor data 

(especially physiological data), pose new challenges and unique research opportunities that 

have usually not been considered in prior works.
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LIMITATIONS AND DISCUSSION

We presented mSieve, as a first step towards building systems that can use substitution as an 

effective mechanism to protect privacy of behavior while sharing personal physiological 

data. Instead of random substitution of sensitive segments, which can degrade the utility of 

the overall dataset, mSieve performs model-based substitution. Our approach opens up new 

directions in privacy and differential privacy research, namely to define suitable metrics and 

mechanisms that can be used to protect private behaviors in a time series of mobile sensor 

data. Specific challenges are as follows:

• Algorithmic Scalability: There are several aspects that constitute the 

scalability of the system. Although, we have applied our model to several 

data sources, its applicability to other newer sources of mobile sensor data 

is yet to be established. Furthermore, an increase in the number of sensors, 

would imply a significant increase in the number of possible inferences 

(obtained using different combinations of the sensors), and a 

corresponding increase in the whitelist and blacklist set sizes. Improving 

the efficiency of our algorithms in computing candidate segments in such 

scenarios, which effectively would depend on the size of the DBN model, 

is an interesting open question.

• Offline vs. Online: Our model is an offline model that assumes 

availability of all data. In practice, data may need to be shared in real-time 

as they are produced. Significant adaptations may be needed to develop an 

online version of mSieve that can run in real-time on mobile phones.

• Adversarial Setting: Stronger adversarial models, where the adversary 

may possess more information regarding the user than the behavioral 

model captures, may lead to new challenges in ensuring privacy 

guarantees and represents interesting privacy research. In fact, this also 

represents a significant bottleneck for model-based privacy approaches, 

where a model is essential for maintaining the utility of the shared data, 

but the very use of a specific model leads to assumptions on adversarial 

capabilities. While in principle such approaches can be modified to protect 

against a worst-case adversary, it is difficult to provide meaningful utility 

in such cases.

• Plausibility: The current formulation of mSieve only provided local 

plausibility by adjusting the boundaries of substituted segments. 

Incorporating plausibility as part of the privacy formulation itself will be 

an interesting extension of the current work.

• Privacy leakage due to Graylist: We consider inferences that are 

associated with whitelist or blacklist, but other behaviors could be inferred 

from raw sensor data. We call those additional inferences as graylist. 
Information leakage due to graylist need to be investigated further.

• New and emerging inferences: Finally, rapid advances are being made in 

being able to infer human behaviors from seemingly innocuous sensor 
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data, which may challenge the notion of white list and black list, 

especially when raw sensor data is being shared.

CONCLUSION

We presented mSieve, a system that uses substitution as a mechanism to protect privacy of 

behaviors to facilitate sharing of personal physiological data collected continuously in the 

natural environment. Instead of random substitution of sensitive segments, which can 

degrade the utility of the overall dataset, we perform model-based substitution. We employ a 

Dynamic Bayesian Network model that allows us to search for plausible user-specific 

candidate segments that satisfy the statistics of the sensitive segment and thus preserve the 

overall consistency of the shared data. Through experimentation on real-life physiological 

datasets, we demonstrated that our substitution strategies can indeed be used for preserving 

the utility of inferences while achieving differential behavioral privacy. This work opens the 

doors for follow up research and real-life deployment as adoption of physiological sensors in 

daily wearables such as smartwatches grow.
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APPENDIX

PROOF OF LEMMAS 1 AND 2

Proof. (Lemma 1)

If we take a sample from expected output  then  and 

. Recall, inferences are computed over time intervals. We 

assume that inferences calculation are independent between time intervals, i.e., P(ri → Si ∈ 

B|ri−1) = P(ri → Si ∈ B) (ri is independent of ri−1). Thus,  and 

correspondingly, .
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Combining the above equations together and denoting P(Si ∈ B|ri) by P(ri → Si ∈ B) we 

get, . This is same as 

. Finally, if the ratio of the joint probabilities of 

states is bounded then a blacklist query corresponding to the states will also be bounded by 

the same value. Thus,  Since, 

 Thus, 

Proof. (Lemma 2)

The probability of detecting a blacklist inference from released data is equal to the false 

negative of the computational model, i.e. P(r̂ → X ∈ B) = Fb. Let r̄ be the data segment 

drawn from the reference database. Thus, probability of detecting blacklist from r̄ is close to 

zero, i.e. P(r̄ → X ∈ B) → 0 thus ln(P(r̄ → X ∈ B)) → 0. Using our privacy definition, |

ln(P(r̂ → X ∈ B)) − ln((P(r̄ → X ∈ B))| ≤ ln(η) − 0 = ln(η). Thus, we pick ε such that ln(η) 

≤ ε.
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Figure 1. 
Illustration of the mSieve process.
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Figure 2. 
DBN showing user states over different time slices.
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Figure 3. 
An overview of the mSieve framework.
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Figure 4. 
Convergence rate for DBN training. The model is trained using aggregate data from all the 

users.
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Figure 5. 
Privacy-Utility tradeoff for different blacklist configurations and varying privacy sensitivity 

ε. Results are shown for both the datasets.
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Figure 6. 
Variation in the percentage of node types with privacy sensitivity ε. Recall, lower value of ε 
means higher privacy.
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Figure 7. 
Percentage of node types for the different users. Users IDs are sorted in ascending order of 

safe node percentage. Privacy sensitivity ε = 0.5.
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Figure 8. 
Comparison of utility loss for the DP and Greedy algorithms. The user IDs are sorted 

according to the utility loss using the DP algorithm.
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Table 1

Summary of notations used.

User model, DBN Du

Raw sensor data

Actual sensor data

Released sensor data

Duration difference di = ti − t̂i ∀1 ≤ i ≤ n

State x = (x1, …, xn) ∈ {0, 1}n

State interval s = (x, ts, te)

Actual state sequence s⃗ =< s1, s2, …, sτ >

Obfuscated state sequence ŝ⃗ =< ŝ1, ŝ2, …, ŝτ >

Set of sensitive states B

Set of safe states W

Set of all states  = W ∪ B

Hole hk

Candidate states for kth hole ℂk
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Table 2

Data statistics from both studies (M = million).

Sensor Avg. # sample per
participant

Total # sample

D1
(1 day)

D2
(3 days)

D1
(37×1 days)

D2
(6×3 days)

Respiration 0.78M 1.66M 28.80M 9.98M

ECG 2.15M 5.95M 79.76M 35.74M

Accelerometer 2.04M 4.58M 75.81M 27.47M

Gyroscope 2.07M 4.58M 76.60M 27.48M
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