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Healthcare reimbursements in the US have been traditionally based upon a fee-for-service (FFS) scheme,

providing incentives for high volume of care, rather than efficient care. The new healthcare legislation tests

new payment models that remove such incentives, such as the bundled payment (BP) system. We consider

a population of patients (beneficiaries). The provider may reject patients based on the patient’s cost profile,

and selects the treatment intensity based on a risk-averse utility function. Treatment may result in success or

failure, where failure means that unforeseen complications require further care. Our interest is in analyzing

the effect of different payment schemes on outcomes such as the presence and extent of patient selection, the

treatment intensity, the provider’s utility and financial risk, and the total system payoff. Our results confirm

that FFS provides incentives for excessive treatment intensity and results in suboptimal system payoff. We

show that BP could lead to suboptimal patient selection and treatment levels that may be lower or higher

than desirable for the system, with a high level of financial risk for the provider. We also find that the

performance of BP is extremely sensitive to the bundled payment value and to the provider’s risk aversion.

The performance of both BP and FFS degrades when the provider becomes more risk averse. We design two

payment systems, hybrid payment and stop-loss mechanisms, that alleviate the shortcomings of FFS and

BP and may induce system optimum decisions in a complementary manner.
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1. Introduction

The much debated Affordable Care Act aims to make drastic changes to many aspects of the

healthcare system in the US. In particular, a key part of the legislation is designed to control for
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rising healthcare costs by transforming the way healthcare providers are paid. Under the current

fee-for-service (FFS) payment system, medical providers are compensated based on the volume of

services performed, such as the number of tests and treatment procedures provided to the patient.

Many healthcare experts criticize such a payment system on the basis that it rewards providers for

spending more without necessarily increasing the quality of care, instead of focusing on delivering

value and improving health outcomes (Feder, 2013).

Providers often have a choice of treatment options to follow for a patient and the option selected

is not necessarily the most beneficial from a system cost-benefit standpoint. Rosenthal (2013a)

notes that “Americans (...) are typically prescribed more expensive procedures and tests than

people in other countries”. Widespread abuses in the current system have received some media

attention in the recent past. For example, the same article remarks that colonoscopies “are often

prescribed and performed more frequently than medical guidelines recommend” and that “while

several cheaper and less invasive tests to screen for colon cancer are recommended as equally

effective by the federal government’s expert panel on preventive care – and are commonly used in

other countries – colonoscopy has become the go-to procedure in the United States.” Rosenthal

(2014) points to a dermatological procedure called Mohs surgery, noting that “while it offers clear

advantages in certain cases, it is more expensive than simply cutting or freezing off a lesion” and

tends to be overused with an increase of 400% in the last decade. Abelson and Cohen (2014) bring

attention to a drug known by the brand name Lucentis that is injected as often as once a month

as treatment for a kind of age-related macular degeneration in elderly patients, contributing to a

$3.3 billion spending from Medicare to about 3,300 ophthalmologists, when “a cancer drug that

is used as an alternative can cost much less”. The FFS system gives providers financial incentives

to treat more, not better, thus partly contributing to the nation’s rising healthcare costs. With

Medicare spending approaching $600 billion a year, even a small fraction improvement in average

spending may have a significant impact on the bottom line.

To help address this issue, better align incentives, and rein in costs, the Centers for Medicare

and Medicaid Services (CMS) has been experimenting a new payment initiative, called Bundled

Payment for Care Improvement (BPCI), since 2013. Under the bundled payment (BP) system, the

provider is compensated with one lump sum for a whole episode of care, regardless of the exact tests

and procedures implemented and regardless of eventual complications1. Currently CMS proposes

several models depending on whether the episode of care includes hospital stay and/or post-acute

care of various time windows. In the FFS system, when a beneficiary needs to undergo a given

treatment, the insurer covers the cost of each test, x-ray, specialist consultation, skilled nursing

visit, days of hospital stay, etc., including those incurred in case of potential complications and

even readmission. In contrast, under BP, the insurer only pays the pre-specified bundled payment

value upfront to cover all possible services rendered to the patient within a specified time window

1 Note that we use the term provider for any group of providers serving a patient within a certain episode of care.

The lump sum is paid jointly to all the providers serving the patient and is divided amongst them.
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around the treatment, including eventual complications. If actual costs are lower than the bundled

payment, the provider makes a profit; if total treatment costs (including possible complications

and readmission) exceed the lump-sum amount, the provider incurs a loss.

Proponents of BP claim that such a payment system promotes high quality of care while keeping

costs under control (Burns, 2013). Since complications and readmissions after discharge do not

lead to further reimbursements from the payer, providing high quality of care from the start of

treatment increases the chances of making a profit for the healthcare provider (MedPAC, 2013).

In addition, BP removes incentives to implement unnecessary procedures and hence is expected to

lower costs (MedPAC, 2013). Opponents of BP, on the other hand, argue that implementing this

scheme could jeopardize quality of care by means of increasing efficiencies and keeping costs low

(Feder, 2013). Furthermore, BP could lead to patient selection as healthcare providers would have

financial incentives to turn down those patients with high healthcare needs or potentially high

treatment costs (Burns, 2013). Additionally, some are concerned that bundled payments impose

significant financial risks on the provider as they incur a loss whenever treatment costs exceed the

set reimbursement amount (MedPAC, 2013; Mechanic and Tompkins, 2012). A high level of risk

for the provider may not only lead to much resistance toward adopting the new payment scheme

but also in the long term increases the risk of bankruptcy for healthcare providers and thus may

lead to diminished access to care. It may also result in provider decisions that are not optimal from

a system’s perspective in terms of patient selection and treatment level.

The risk borne by the provider under BP stems from three sources. One is the chance that the

patient develops complications following the first-stage (initial) treatment, as the patient will then

incur further costs (in a second stage) which may lead to financial losses for the provider. This risk

may be lowered by implementing the right treatment level on the patient (e.g., schedule nurse visits

after the procedure, follow-up with the patient to ensure they are taking their medications, etc).

Another source of risk, for a given patient risk profile, is the variability of the actual second-stage

cost. A high variability increases the risk exposure of the provider (potential loss). The third source

of risk is the patient type mix within the population. Specifically, a provider serving a potentially

costlier population (many patients with a high expected second-stage cost) is likely to incur further

losses, and a provider with more variability in the patient types will see more variability in her

total utility, again increasing her exposure. The latter effect is related to the population size: in a

small patient population, an outlier patient with a very high second-stage cost is less likely to be

compensated by low-cost patients.

While the BPCI initiative has just started its pilot program, there have been many initia-

tives in the past aiming at testing payment systems that distance themselves from a fee-for-

service approach in favor of a pay-for-performance, capitation, bundling, or diagnostic-related-

group (DRG) approach (Jain and Besancon, 2013). Among these, the largest-scale program was

arguably the prospective payment system (PPS) enacted in 1983. This program paid the provider

an amount depending on the patient’s classification within a certain DRG (Mayes, 2007). The key
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distinctions of BPCI with respect to PPS are as follows: (i) PPS applies only to inpatient hospital

stays, while BPCI could apply also to outpatient procedures, (ii) PPS includes only hospital ser-

vices, as opposed to physician services, while BPCI bundles all services received by the patient from

a variety of providers, (iii) PPS covers a relatively short time period – a single hospital stay – when

BPCI includes services provided during the hospital stay and after, for a pre-determined duration

(Hussey et al., 2012); as a result, when complications arise and a patient must be readmitted, under

BPCI the providers do not receive any new reimbursement, (iv) under PPS, a given provider’s

reimbursement is set based on the cost at comparable facilities (Office of Inspector General and

Office of Evaluation and Inspections, 2001), as opposed to BPCI, where the reimbursement is based

on the historical cost at this specific provider (Mechanic and Tompkins, 2012). PPS and other

similar programs have been studied in the literature, often from an empirical standpoint. There

are few attempts in the literature at modeling the effect of payment systems within an analytical

framework to compare their performance.

Our goal is to compare payment systems vis-a-vis a variety of performance measures, and test

whether the claims of proponents and opponents of BP are justified. More specifically, we propose

to answer the following research questions: (1) Do the payment schemes under consideration give

incentives for patient selection? (2) What is the treatment level selected by the provider, and how

does it compare with what would be system-optimal? (3) How does the financial risk borne by the

provider compare across different payment schemes? (4) How do the utility of the provider and the

total system payoff compare across the different payment schemes? (5) Is there another payment

system that could alleviate the shortcomings of schemes currently under consideration? (6) What

role does the provider’s risk aversion play?

We consider a population consisting of a finite number of beneficiaries (patients) seeking treat-

ment for a given episode of care, a provider2, and an insurer. Under the BP system, the provider

receives a fixed payment for the episode of care. The provider decides whether to accept the benefi-

ciary and, for beneficiaries receiving care, selects in a first stage the treatment level that maximizes

her expected risk-averse utility. In a second stage, after the treatment is provided, the beneficiary

may face complications and require further treatment, the likelihood of which depends on the first

stage treatment level. In case of complications, the provider incurs additional treatment costs that

will not be further reimbursed by the insurer. We use a similar framework to model the FFS sys-

tem with the exception that the payment to the healthcare provider is proportional to the cost of

treatment offered to the beneficiary. Furthermore, in case of complications, the provider receives

an additional payment that is proportional to the complication cost. We assume that the cost of

treating a beneficiary in the second stage is a random variable whose distribution depends on the

2 While we frame the discussion around a beneficiary obtaining treatment from one provider, our general model and

findings apply to situations where multiple medical providers make treatment decisions, since under the bundled

payment system all providers must coordinate care and split the lump sum payment among themselves.
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beneficiary’s “type”. The beneficiary type is characterized by the beneficiary’s expected compli-

cation cost and is observed by the provider. Therefore, the provider chooses to only accept those

beneficiaries that are expected to generate a non-negative utility; this allows us to model the issue

of patient selection.

In this paper we introduce a new model of healthcare payment systems that incorporates het-

erogeneous patients, considers provider risk aversion, allows for patient selection and includes

treatment level flexibility. We derive the optimal treatment intensities, patient selection levels, and

expected utilities under the BP and FFS payments, as well as at the system optimum (that is, a

Pareto-optimal outcome). Qualitatively, our findings are consistent with the observations made in

the public health policy literature. We find that FFS can never induce the system-optimal patient

selection level. We also show that under FFS, the provider takes advantage of variable payments

and generally selects the highest possible treatment level. In contrast, we show that BP may lead

to treatment levels that are either lower or higher than the system optimum depending on the

provider’s risk aversion and other factors. While we find that BP may yield a higher utility for the

provider and a higher system payoff than FFS, in general the performance of the BP mechanism

is extremely sensitive to the selection of the bundled payment value as well as the provider’s risk

aversion. Furthermore, we show that the BP system can induce suboptimal patient selection levels

and expose providers to high levels of risk.

Our results indicate that, in general, no BP or FFS payment system can achieve the system

optimum. However, minor adjustments can alleviate the shortcomings of both FFS and BP in many

scenarios. Specifically, inspired by various risk-sharing mechanisms in the operations and supply

chain management literature, we design two practical payment schemes: (1) a hybrid payment

system that is a combination of FFS and BP mechanisms, and (2) a stop-loss protection mechanism

that is a variation of the BP system. The hybrid payment mechanism improves various performance

measures and can achieve the system optimum when the provider is not very risk averse; the

stop-loss protection mechanism achieves the same when the provider is highly risk averse. They

each accomplish this by offering the provider incentives to exert optimal treatment efforts and

implement patient selection according to what is Pareto-optimal for the system. We also show that

for a limited range of parameters when the provider is moderately risk averse and the treatment

success probability is high enough, none of these payment schemes can be coordinating. Finally,

we investigate the provider’s overall risk burden by studying the relationship between population

size and risk exposure.

2. Literature review

Since the currently tested bundled payment system is recent, there is little literature directly

addressing it. However, current and past payment systems have been studied in the literature

from a variety of perspectives. Our work is related to two main research streams that have been
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built with contributions from the operations management, health economics and health policy

literatures.

First, our work is related to the quantitative assessment of payment system reforms and their

effects, which is typically done using empirical methods. As mentioned in Section 1, the prospective

payment system (PPS), based on patients’ diagnosis related group (DRG), presents some similarity

with the bundled payment (BP) system by using episode-based payments. Given that PPS was

established about 30 years ago, there are a number of empirical studies that have been conducted

to evaluate its effectiveness. McClellan (1997) performs an empirical analysis of PPS vs. FFS

reimbursement incentives. They conclude that the PPS payment scheme contributes to patient

selection while the FFS system contributes to an increase in the intensity of care for patients with

certain conditions. This empirical evidence matches our analytical results for BP and FFS.

While PPS applies only to hospital inpatient care, other care settings are subject to the same

issues caused by the FFS payment system. Huckfeldt et al. (2014) focus on home health agencies,

which have been subject in the past 20 years to payment reforms aiming at shifting reimbursement

away from FFS towards episode-based payments. They consider a payment system including a

fixed and a marginal reimbursement, somewhat similar to our hybrid system. They study the effect

of lowering either or both payment components on the treatment level and on patient selection, as

well as hospital readmission and mortality. Using data to develop empirical strategies, they find

that lowering only the marginal payment decreases admissions and increases only slightly the use

of resources, while lowering both the fixed and variable payment decreases both. In both cases,

they find little evidence of patient selection and limited effects on readmissions and mortality.

They suggest that reforms such as bundled payments are likely to impact provider behavior, and

that the level of payment could influence whether the reduction in the use of resources would

benefit the provider or the insurer. This paper contrasts with ours in three main aspects: (i) we

use optimization techniques rather than empirical strategies to obtain the provider decisions (ii)

we do not focus on a specific policy shift, but obtain the provider decisions for a given reimburse-

ment structure (iii) we consider alternative payment systems, such as the hybrid and stop-loss

protection payments, in the context of coordinating decisions to a system optimum. Similarly, Sood

et al. (2013) consider inpatient rehabilitation facilities and the effect of initiatives taken by Medi-

care aiming at reducing the marginal reimbursement and increasing the fixed reimbursement. The

authors investigate the extent to which providers respond to these changes in the payment system

by adjusting the number of admitted patients, types of patients admitted and intensity of care.

Using an empirical approach they show that the treatment intensity decreases as the payment sys-

tem moves towards a prospective payment system, despite an increase in payments to the facilities.

Along the same lines, Lee and Zenios (2012) evaluate reforms in the payment system for dialysis

providers for Medicare’s End-Stage Renal Disease program to shift toward a “pay-for-compliance”

system with limited risk adjustments to encourage providers to conform to standardized guidelines

of best practice. The authors use an empirical approach to develop an evidence-based optimal



Adida, Mamani, Nassiri: Bundled Payment vs. Fee-for-Service

Article Management Science; manuscript no. MS-14-01857 7

procedure for incorporating full risk adjustment and pay-for-compliance into the payment system.

They show that the payment scheme proposed by Medicare would not provide the desired incen-

tives, but the design they introduce would improve outcomes with no additional expenditures.

Hussey et al. (2012) provide a meta-analysis of research on bundled payments. They review 58

studies on the topic (excluding research on PPS) as well as 4 review articles on PPS, with the goal

of identifying the effect on quality of care and health care spending. Their review includes a total

of 20 different bundled payment interventions that aggregate costs over time for a single provider,

across providers, and/or involve warranties regarding the occurrence of complications, in the US

and abroad, and in a variety of settings (e.g. nursing homes, rehabilitation facilities, etc.). They

find weak but consistent evidence that bundled payment programs do succeed in containing costs

without significantly affecting quality of care, spending and utilization rate. Most of the studies

considered a single provider and were descriptive and observational.

There have also been initiatives involving “pay-for-performance” payment schemes to incentivize

providers to administer better quality of care. Rosenthal et al. (2004) do a meta-analysis of reports

of quality incentive programs from 1998 to 2003. They show that, although these mechanisms,

by rewarding good performance rather than improvements in performance, increase the quality

of care for some providers, low-quality providers often are not motivated to make the necessary

investments to improve their performance, which limits the impact of these programs.

Some empirical studies were developed in anticipation of BPCI with the goal of influencing the

design of the pilot program. Using existing Medicare data, Sood et al. (2011) investigate which

episodes of care are more suitable to be included in the pilot program and what the episode length

should be, based on the potential cost savings and the financial risk on the providers. Dobson and

Da Vanzo (2013) use recent beneficiary level claims data to make recommendations on how the

bundled payment system should be designed, including the conditions to include, episode length,

pricing of the bundle, risk adjustments and other design considerations.

Our work is also related to the stream of research that uses an analytical approach or economic

reasoning for understanding a variety of issues related to payment systems such as patient selection,

moral hazard, efficiency incentives, and contracts. Economists have been interested in designing

mechanisms that induce better outcomes than the FFS system. In a seminal paper, Shleifer (1985)

proposes a “yardstick competition” mechanism in which the payment that a firm receives depends

on the average cost at identical firms, as they reflect the attainable cost level. This provides

each firm with incentives to reduce its cost below that of others. The author shows that this

mechanism yields the system optimum for identical firms. This mechanism is in line with the way

reimbursements in PPS are set. Newhouse (1996) examines trade-offs related to risk and selection

in a fee-for-service and a prospective payment system from an economic standpoint. He shows that

when some of the yardstick competition model assumptions are relaxed, PPS alone no longer yields

optimal outcomes. Instead he proposes a mixed payment scheme incorporating features from both

systems, which is consistent with the hybrid system that we analyze.
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The operations management literature has also contributed to healthcare payment systems

research. In particular, some papers have taken a modeling and analytical approach aligned with

our work. Focusing on hospice care, Ata et al. (2013) introduce a dynamic model to understand

how the payment system in place for these facilities may be causing an increasing number of hospice

bankruptcies, mainly because of an annual cap. They also analyze how Medicare’s reimbursement

policy may give incentives for sometimes selecting short-lived patients and may influence treatment

choices. They propose an alternative that alleviates these issues.

One main issue that has been studied is that of moral hazard within a principal-agent framework

(Plambeck and Zenios, 2000): the provider, possibly enjoying hidden information, makes treatment

decisions that the insurer does not necessarily observe (hidden action), but that directly affect

the insurer’s payoff3. When treatment is not observable, payment terms must be based on patient

outcomes. Motivated by Medicare’s End-Stage Renal Disease program and the fact that Medicare

was considering capitated payments, Fuloria and Zenios (2001) find an optimal payment system

that induces system-optimal treatment choices in a dynamic setting for a risk-averse provider. The

optimal payment is outcome adjusted and consists of two components: a prospective payment per

patient and a retrospective payment adjustment based on adverse short-term patient outcomes,

which is reminiscent of the hybrid system analyzed in our paper (but in our model the treatment

intensity is observable and dictates reimbursement in FFS, and the insurer’s payoff does not depend

on the provider’s treatment decision in BP, hence there is no moral hazard). Unlike our model they

do not consider the issue of patient selection. In the presence of moral hazard and asymmetric

information, coordinating contracts can help align incentives and obtain the system optimum.

Yaesoubi and Roberts (2011) consider a preventive procedure such as a screening test administered

based on a threshold policy selected by the provider. They find that when the number of patients

seeking the intervention is verifiable, there exists a coordinating contract, but otherwise the FFS

system does not coordinate the channel as the provider selects a too low level of effort. In the

context of an online appointment scheduling system which enables the provider to allocate service

capacity under access-to-care requirements, Jiang et al. (2012) study optimal contracts between a

purchaser and a provider, where performance is achieved when a waiting-time target is met.

One of the coordinating mechanisms studied in our model (the hybrid payment scheme) is related

to the notion of two-part tariffs from the economics literature (e.g., Carlton and Perloff (1990,

chapt. 9, 10), Weng (1999), and Ha (2001)). However, unlike the classic two-part tariff mechanism

that coordinates one decision, our proposed mechanism can coordinate two decisions: treatment

level and patient selection level. Furthermore, often, especially in economics, a menu of two-part

tariffs is used to segment the market according to different customer types whereas in our model,

3 In much of the literature, it is assumed that the insurer is able to verify the diagnosis and health outcome of the

patient. Later Powell et al. (2012) argue that this claim is not always valid, as they find empirically that operational

conditions such as the system workload influence physicians’ diligence of paperwork execution.
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the “customer” being offered the contract is the provider (of a single type), and the purpose is to

coordinate the provider’s decisions.

Finally, our work is also related to a stream of literature, outside the healthcare area, that

endogenizes future implications of decisions, like avoidable medical complications occurring because

of inadequate treatment intensity in our model. In project management, the concept of Design-

Build-Operate-Maintain captures how the initial “design” and “build” phases of a project influence

the “operate” and “maintain” phases, and how future costs can be reduced by integrating these

phases (Dahl et al., 2005; Brady et al., 2005). Similarly, the practice of “servicizing” a product

by selling the functionality of the product rather than the product itself and being responsible

for maintenance and repairs, gives incentives to improve the quality of the product and extend

product life cycles (Agrawal and Bellos, 2013; White et al., 1999; Toffel, 2008). This also recalls

the idea of providers being responsible for treating medical complications at their own cost. In the

aerospace and defense industry, performance-based-contracts have emerged as an alternative to

time and material contracts, under which the supplier is compensated for the amount of resources

consumed (Guajardo et al., 2012).

3. Model

3.1. Modeling framework

In this section we outline the model framework and its assumptions. Table 1 in the Appendix

summarizes the notations used for the parameters and variables used in our model. We consider a

population consisting of a finite number (N) of beneficiaries (patients), a provider and an insurer.

Beneficiaries wish to undergo treatment for a certain non-emergency medical condition (episode of

care). The provider may accept or reject beneficiaries. A beneficiary receives payoff V when she

is given the treatment. Without loss of generality, we assume that beneficiaries have a reservation

utility equal to zero when they are denied treatment. If the beneficiary is accepted, the provider

selects the treatment level t ∈ [t, t] for this beneficiary so as to maximize her expected utility. We

model the provider as risk averse with a constant absolute risk aversion (CARA) utility function.

We denote the provider’s risk-aversion coefficient by θ. The first-stage treatment cost incurred by

the provider, c1(t), increases with the intensity of treatment. Treatment results in “success” or

“failure”, where failure means that the beneficiary is subject to complications requiring further

treatment (e.g., readmission). The probability of success is denoted by q(t). If the treatment fails,

the beneficiary suffers disutility TB, and the provider receives penalty TP (e.g. representing the

effect on her reputation). In case of failure in the first stage, we assume that the provider does not

make any more treatment level decision in the second stage. We denote by c2 the treatment cost

in case of complications. Note that c2 incorporates the costs of treatment until the complication is

resolved. In other words, we assume that all beneficiaries will be eventually treated and discharged;

death or life-long treatments are neglected for the episodes of care that we consider (in particular,

we do not consider chronic diseases). Figure 1 illustrates the sequence of events in our model.
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The second-stage cost c2 is a random variable with support [c, c], which captures patient het-

erogeneity. Beneficiaries are characterized by their “type”, µ, that is the expected second-stage

treatment cost. We assume a continuum of beneficiary types [µ,µ] with probability distribution

function f(·); the types of distinct beneficiaries are independent of each other. The provider is

able to identify the beneficiary type (e.g. using family history, health assessment, prior test results,

etc.) before deciding whether or not to accept the beneficiary. For a beneficiary of a given type µ,

the second-stage treatment cost follows a conditional probability distribution function gµ(·) with

conditional mean µ and conditional variance s2
µ. In particular, the beneficiaries’ second-stage costs

are not identically distributed.

We make the following assumption on the conditional probability distribution function gµ(.).

Assumption 1. The family of conditional probability distribution functions gµ(.) has the mono-

tone likelihood ratio property.

The family of distribution is said to have a monotone likelihood ratio if for any µ1 ≤ µ2 ∈ [µ,µ], the

ratio gµ2
(x)/gµ1

(x) is a non-decreasing function of x. Appendix B provides some details about the

monotone likelihood ratio property. This assumption is not very restrictive and many commonly

used distributions have this property (e.g., normal, uniform, exponential, gamma).

-

-

- - - -

Provider
Provider incurs c1(t)

and receives payment

Provider incurs penalty TP

and cost c2. She may

receive additional payment

Beneficiary type

µ arrives

Provider decides

whether to treat the

beneficiary and selects t

(if yes)
Complications

may occur with

probability 1− q(t)

(if yes) Provider treats

the beneficiary

Beneficiary Beneficiary accrues

payoff V
Beneficiary incurs disutility TB

Figure 1 Sequence of events

3.2. Discussion

In this section we discuss our modeling framework and assumptions.

3.2.1. Treatment level

The model described above is a stylized way of formalizing the very complex process of patient

admission and treatment selection considering financial and non-financial aspects of the decision

making. The “treatment level,” t, that we introduce is a measure of the intensity (not the quality)

of the treatment implemented. Our premise is that providers face a vast array of treatment routes
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with different costs and different advantages and must decide how to treat the patient considering

both costs incurred and potential benefits from the treatment options. Variable t hence illustrates

the number of blood tests, x-rays/imaging procedures, exams, or specialist consultations that are

selected. While this is certainly a crude way of modeling intricate treatment decisions, it enables

us to capture the essential incentives and trade-offs of different payment systems.

3.2.2. Beneficiary

The payoff V experienced by beneficiaries for receiving treatment is assumed to be homogeneous

over the population. This implies that, while some beneficiaries are more prone than others to

require further costly treatment if developing complications, all stand to benefit the same amount

from undergoing the procedure. For example, consider a knee replacement surgery episode. Patients

in need of this procedure would see their quality of life improve by a similar amount upon completion

(reduction of pain, improved mobility); however for various reasons (age, general health status,

strength of support at home) not all incur the same treatment cost if the initial treatment fails.

The beneficiary payoff is zero when denied treatment, V when given treatment with a successful

outcome, and V −TB when given treatment with a failed outcome. We assume that the beneficiary

has no financial responsibility for the procedure, although including a fixed co-payment does not

impact any of our findings. In our model, the beneficiary does not make any decision. As a result, our

model does not rely on any risk-attitude assumption for the beneficiary. We denote the beneficiary’s

utility function from receiving payoff w as UB(w). The beneficiary’s expected utility from receiving

treatment with level t can then be written as q(t)UB(V ) + (1− q(t))UB(V −TB).

3.2.3. Insurer

We model the insurer as risk neutral. Hence its utility is given by the financial cost of reimbursing

the provider for every beneficiary treated (which depends on the payment system). We assume risk

neutrality for the insurer because the population size of beneficiaries insured is typically large and

thus the insurer benefits from risk-pooling effects that make it immune to large variations in costs.

3.2.4. Provider

Unlike the insurer, the size of the beneficiary population served by a given provider is often not

very large, and therefore the provider’s costs may be subject to significant volatility. An outlier

beneficiary with a very high cost may, in the bundled payment system, incur a large loss for the

provider which may not be compensated by less costly patients because of the relatively small

beneficiary population size, and this may cause a significant financial strain for the provider. As

a result, we model the provider as risk averse. We consider that the provider’s utility exhibits a

constant absolute risk aversion (CARA) property (Pratt, 1964). That is, the provider’s utility from

a payoff w is given by:

UP (w) =
1

θ

(
1− e−θw

)
.
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In this model, θ > 0 is the risk-aversion coefficient. A payoff of zero provides no utility. The provider

makes decisions so as to maximize her expected utility with respect to the treatment outcome of

a beneficiary (success or failure)4. The case where the provider is risk neutral may be obtained by

considering the limiting case of θ approaching zero as the utility function then tends to w.

We assume that the provider may reject patients after assessing the patient’s expected compli-

cation cost, so the provider would only accept those patients expected to yield a positive utility.

While emergency patients may not legally be denied treatment, for non-emergencies (which are the

focus of this paper) physicians are free to choose which patients to serve. Indeed, McKoy (2006)

confirms that “Principle VI of the American Medical Association’s (AMA) Principles of Medical

Ethics, imply that no common law duty or ethical imperative exists (...) that requires a physician

to treat every patient.” According to Ellis and Fernandez (2013), “Providers of care also have

many tools for risk selection. The most obvious one is to refuse to treat certain patients, or to

refer more complex, expensive, or unwanted cases to other providers.” There is a large volume of

evidence showing that physicians do practice patient selection, sometimes referred to as “defensive

medicine.” In a study conducted by Studdert et al. (2005), 42 percent of responding physicians

have restricted their practices to avoid risky procedures, patients with complex conditions, or those

perceived to be litigious5. Often physicians avoid risky patients by unnecessarily referring them to

other specialists. Specifically in the context of bundled payments, Dyrda (2012) explicitly states

that patients deemed eligible for bundled payments for orthopedic surgery at a certain medical

facility are selected based on medical criteria, such as a low enough Body-Mass-Index and “a lack

of comorbidities increasing the likelihood of complications, such as diabetes or HIV.” They quote a

doctor who helped coordinate the program as saying that “We want ideally to have the healthiest

patients possible for all surgery, especially the episode of care because we want to minimize the

risk for infection, complications and readmissions.” This is consistent with our assumption that

the provider uses anticipated cost estimates to decide whether to accept a patient.

Finally, the provider’s treatment level and selection decisions are made for each individual

beneficiary. In other words the provider decisions for each beneficiary are independent of other

beneficiaries.

4 We note that the “Do No Harm” constraint that providers face is implicitly embedded in our formulation. We

interpret “Do No Harm” as meaning that the beneficiary’s expected utility under the treatment level selected by

the provider cannot be lower than when she does not receive treatment. It is straightforward to show that such a

constraint translates into a lower bound on the treatment level. Hence, our model captures this constraint through

the lower bound t.

5 This study found evidence of direct patient selection in a FFS environment, while in our model this type of patient

selection does not take place under FFS. Indeed, in Studdert et al. (2005) the threat of malpractice liability plays a

role in providers’ clinical behavior: the main reason for patient selection is the fear of litigation, lack of confidence in

liability insurance and burden of insurance premium. Our model does not capture liability insurance and the risk of

malpractice litigation, to focus on incentives created by the payment system alone.
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3.2.5. Treatment costs and success probability

We assume that the marginal treatment cost increase goes up as the treatment level goes up

(since presumably the provider selects the most cost-effective procedures among those that can

be deemed “optional”, first), whereas the probability of success improves less and less with the

increase in treatment level. Therefore, we model the first-stage cost c1(t) as increasing and convex

in t, and the probability of success q(t) as increasing and concave in t. For technical reasons due

to risk aversion, we make the following slightly stronger assumptions. Below, κ > 1 denotes the

reimbursement rate under the fee-for-service payment system (see more details in Section 4.1).

Assumption 2. First-stage cost c1(t) is increasing in t and satisfies the inequality:

c′′1(t)− θ(κ− 1)c′1(t)2 > 0 for all t∈ [t, t].

Assumption 3. Probability of success q(t) is increasing in t and satisfies the inequality:

q′′(t) + 2θq′(t)c′1(t)< 0 for all t∈ [t, t].

These assumptions ensure that the first-stage cost c1 is sufficiently convex and the probability of

success is sufficiently concave. Assumption 2 implies that c1 is convex, that is, higher treatment

intensity results in higher treatment costs, and that the marginal cost of extra procedures goes

up with the treatment level at a sufficiently high rate. Assumption 3 implies that q is concave,

that is, a more intense treatment level makes it more likely the treatment will be successful, but

the positive effect of increasing the treatment intensity lessens as the treatment level gets higher.

In particular, this assumption is consistent with the belief that providers would only intensify the

treatment level when this would improve the chances of a positive outcome, even though this may

not be justified from a cost-benefit standpoint. Thus, while we do consider financial incentives in

treatment decisions, the model does not assume providers are purely driven by financial motives,

by ruling out interventions that do not benefit patients.

We assume that the second-stage cost is independent of the first-stage treatment intensity. This

assumption is valid when a failure of treatment in the first stage generates a need for a certain

course of treatment independently of procedures undertaken in the first stage. For example, if

a patient is re-admitted to a hospital after an episode of care, new imaging (x-ray, MRI, etc.)

is generally done to obtain the most recent information, even if imaging had been done in the

first stage; new specialist consultations are ordered to have experts assess the current state of the

patient even if the patient had such consultation in the original episode of care; a new hospital

stay is necessary, regardless of how long the patient stayed in the hospital in the first stage. We

recognize that our model does not apply to situations where it is possible to gradually increase the

treatment intensity (i.e., if a physician may start at a low intensity, then in case of failure, try the

next more intense treatment option, etc.).

In the main body of the paper, we assume that the probability of success does not depend

on the patient type. Treatment failure may have a wide variety of causes, but for example it
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was shown that hospital readmissions are commonly caused by patients not understanding their

discharge instructions (such as medications), lack of follow-up care, and a rushed discharge process

(Dartmouth Atlas Project and PerryUndem Research & Communications, 2013). These factors are

independent of the patient’s average second-stage treatment cost (i.e., the patient type) when a

readmission does occur; therefore, as an approximation, we focus on the effect of measures taken

in the original treatment on the probability of success of the outcome. Appendix F examines the

effects of relaxing this assumption and making the success probability a function of the treatment

intensity as well as the patient type (i.e., the probability of success is modeled as q(t,µ)) when the

provider is risk-neutral. We find that most of the analysis can be carried over to this case and the

key managerial insights remain intact.

4. Payment models and system optimum

In this section we study fee-for-service, bundled payment, and the system optimum and we discuss

our findings.

4.1. Fee-for-service

In the fee-for-service (FFS) payment system, the insurer reimburses the provider for every proce-

dure or test done on the patient. This implies that the amount received from the insurer increases

in t. In addition, the reimbursement must cover the treatment costs (otherwise the provider would

reject every patient). In reality, reimbursement levels are set through a complicated process (some-

what lacking transparency) involving negotiations between the insurer and the medical group

representing the providers, and the negotiated rates and margins may vary significantly across

providers and even depending on the procedure (Rosenthal, 2013b). For modeling simplicity, we

assume that the insurer pays an amount proportional to the treatment costs: the provider receives

κc1(t) in the first stage, and κc2 in the second stage, where κ> 1. Thus the provider keeps a margin

of κ− 1 for all procedures run on a beneficiary.

Consider a given beneficiary. If the beneficiary is accepted and treated at intensity t, the expected

(with respect to the treatment outcome) utilities of the provider, insurer and beneficiary are:

πP (t) = q(t)UP ((κ− 1)c1(t)) + (1− q(t))UP ((κ− 1)(c1(t) + c2)−TP )

=
1

θ
− 1

θ
e−θ(κ−1)c1(t)

(
q(t) + (1− q(t))e−θ((κ−1)c2−TP )

)
πI(t) =−κ (c1(t) + (1− q(t))c2)

πB(t) = q(t)UB(V ) + (1− q(t))UB(V −TB).

After determining the type µ of the beneficiary, if the beneficiary is accepted the provider selects

the treatment level for this beneficiary so as to maximize her expected utility with respect to the

second-stage cost, which can be written:

Ec2|µ
[
πP (t)|µ

]
=

1

θ
− 1

θ
e−θ(κ−1)c1(t) (q(t) + (1− q(t))Jµ)
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where

Jµ =Ec2|µ

[
e−θ((κ−1)c2−TP )|µ

]
=

∫ c

c

e−θ((κ−1)c2−TP )gµ(c2)dc2.

Lemma 1. Jµ is non-increasing in µ.

Proofs for technical results are provided in Appendix E.

We denote ∆c= c1(t)−c1(t). The result below determines the provider’s treatment strategy that

maximizes her expected utility for a beneficiary of type µ.

Proposition 1. For a beneficiary of type µ who receives treatment under FFS, the provider

selects a treatment intensity

tFFS(µ) =

 t if µ<µ1;

t else,

where µ1 is uniquely defined as

Jµ1
= 1− 1− e−θ(κ−1)∆c

1− q(t)− (1− q(t))e−θ(κ−1)∆c
. (1)

We observe that (κ−1)c2−TP is the added payoff when the treatment fails compared to a successful

treatment. Hence (1/θ)(1−Jµ) is the expected utility (with respect to c2) of the added payoff due

to a failed treatment. When Jµ > 1, a failed treatment is expected to provide a negative added

utility, thus the provider has every incentive to select the highest possible treatment intensity. Note

that Jµ > 1 implies µ<µ1, so the result above confirms this intuition. If Jµ < 1, a failed treatment

is expected to provide a positive added utility, thus the provider faces a trade-off: treat little in

the first stage to increase the chance of failure and gain higher utility in the second stage, or treat

intensely in the first stage to receive more payoff from the insurer’s reimbursement in the first

round, despite an increase in the chance of success. She selects the latter when the amplitude of

utility differential is not too large, i.e. when

1−Jµ < 1−Jµ1
=

1− e−θ(κ−1)∆c

1− q(t)− (1− q(t))e−θ(κ−1)∆c
,

because the potential utility gain from first-stage failure is too low considering the chance of failure

under the two extreme treatment levels and the added utility in the first stage from treating

intensely. This occurs when (ceteris paribus) TP is large, ∆c is large, the chance of failure at t is

small or the chance of failure at t is large.

The result below determines the effect of the expected second-stage cost (µ) on the provider

utility. It illustrates that the incentives within the FFS system are not conducive to an efficient

use of resources, and is one of the main motivation for designing a different payment system.

Proposition 2. Under FFS, the provider’s expected utility for a beneficiary of given type µ

increases with µ. Hence, potentially costlier beneficiaries yield a higher expected provider utility.
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Since the beneficiaries with lower expected second-stage cost yield lower expected utility for

the provider, it is possible that they would not generate an expected utility sufficiently high to

motivate the provider to provide treatment. We refer to this outcome as “reverse patient selection”.

Reverse patient selection occurs when the reputation cost of a failed treatment is so large that for

beneficiaries with a very low expected second-stage cost, the potential loss from a failed treatment is

too high and is not compensated by the potential gain from the insurer payment. This is formalized

in the result below.

Proposition 3. Under FFS, the provider may have incentives to implement reverse patient

selection: if

1− e−θ(κ−1)c1(t)
(
q(t) + (1− q(t))Jµ

)
< 0 (2)

then the provider rejects beneficiaries of type µ≤ µFFS where µFFS is such that

1− e−θ(κ−1)c1(t)
(
q(t) + (1− q(t))JµFFS

)
= 0.

Because denial of treatment to potentially less costly patients is not a phenomenon generally

observed in the current FFS system, we will assume in the remainder of the paper that condition

(2) does not hold, i.e. the provider earns a non-negative expected utility even for the least costly

beneficiary type (µ), so there is no (reverse) patient selection under FFS. Also, because in practice,

under FFS, providers do not select a low treatment level to inflate the chance of treatment failure

for clear ethical reasons, we will assume that µ<µ1 so that on the relevant domain µ∈ [µ,µ], the

provider selects tFFS(µ) = t. Intuitively this condition ensures that the penalty cost incurred by the

provider, in case complications occur, outweighs the financial benefits. We summarize these two

technical assumptions below. Note that these assumptions are made only to guide the selection of

model parameters in a way that is aligned with practical observation; they have no impact on the

technical aspects of our results.

Assumption 4. We assume that model parameters are such that under FFS no beneficiary is

denied treatment and treatment level is never at the minimum level. That is,

1− e−θ(κ−1)c1(t)
(
q(t) + (1− q(t))Jµ

)
≥ 0, µ < µ1,

where µ1 is defined by (1).

4.2. Bundled payment

In the bundled payment (BP) system, the provider receives a pre-set lump sum payment denoted

by B to cover all services provided, including those in a potential second stage, should the first-

stage treatment fail, regardless of the treatment intensity selected. The lump sum B is set at the

average historical spending minus a required discount (Mechanic and Tompkins, 2012). We denote

by γ the discount rate, so that B is given by:

B = (1− γ)Eµ
[
Ec2|µ[κc1(tFFS(µ)) + (1− q(tFFS(µ)))κc2|µ]

]
= (1− γ)κ

(
c1(t) + (1− q(t))E[µ]

)
.

(3)
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Consider a given beneficiary. If the beneficiary is accepted and treated at intensity t, the expected

(with respect to the treatment outcome) utilities of the provider, insurer and beneficiary are:

πP (t) = q(t)UP (B− c1(t)) + (1− q(t))UP (B− c1(t)− c2−TP )

=
1

θ
− 1

θ
e−θ(B−c1(t))

(
q(t) + (1− q(t))eθ(c2+TP )

)
πI(t) =−B

πB(t) = q(t)UB(V ) + (1− q(t))UB(V −TB).

After determining the type µ of the beneficiary, if the beneficiary is accepted the provider selects

the treatment level for this beneficiary so as to maximize her expected utility with respect to the

second-stage cost, which can be written as

Ec2|µ
[
πP (t)|µ

]
=

1

θ
− 1

θ
e−θ(B−c1(t)) (q(t) + (1− q(t))Iµ) ,

where

Iµ =Ec2|µ

[
eθ(c2+TP )|µ

]
=

∫ c

c

eθ(c2+TP )gµ(c2)dc2.

Lemma 2. Iµ > 1 and Iµ is non-decreasing in µ.

The result below determines the provider’s treatment strategy that maximizes her expected

utility for a beneficiary of type µ.

Proposition 4. For a beneficiary of type µ who receives treatment under BP, the provider

selects a treatment intensity tBP (µ) such that

tBP (µ) =


t0 if t≤ t0 ≤ t;

t if t0 < t;

t if t0 > t,

where t0 is the unique solution of the equation

θc′1(t)

[
1− q(t) +

1

Iµ− 1

]
= q′(t). (4)

We note that the treatment decision of the provider under BP depends not only on µ, but also

on the entire distribution of the second-stage cost (through Iµ, an integral that depends on the

density function of c2). As a result, the specific distribution of the second-stage cost (and hence its

variance) for this patient type influences the treatment level through the quantity Iµ. Our model

ensures that the distribution of the second-stage cost is part of a given family of distributions

indexed by a single parameter, µ, the expected value. By Assumption 1, the second-stage cost has

a monotone likelihood ratio property, which ensures the monotonicity of the provider’s expected

utility with respect to µ, making µ a reasonable choice to model the patient type and provides a
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basis for selecting the treatment levels. Therefore, while the treatment levels are functions of the

entire distribution of the second-stage cost, in the remainder of this paper we continue to denote

the treatment levels with the argument µ only.

Proposition 4 states that the provider may choose an intermediary treatment intensity contrast-

ing with the analogous result under FFS, which states that all beneficiaries are treated at the same

maximal treatment intensity.

The result below confirms that the BP system possesses the desirable property of treating more

the beneficiaries expected to incur higher second-stage costs.

Proposition 5. Under BP, potentially costlier beneficiaries require a higher treatment inten-

sity.

Given that the second-stage treatment cost is not additionally compensated for under the BP

system, the provider opts for a higher treatment intensity so as to increase the probability of

success and reduce the risk of incurring additional charges for those beneficiaries who are on average

costlier in case of complication. Hence, one would expect that that potentially costlier beneficiaries

lead to a lower expected provider utility. The following result precisely shows that. Therefore, the

provider may have incentives to deny treatment to the costliest beneficiaries. This confirms one of

the criticisms of the BP system and illustrates a key difference with the FFS system under which

costlier beneficiaries lead to a higher expected provider utility.

Proposition 6. Under BP, the provider’s expected utility for a beneficiary of given type µ

is non-increasing with µ; hence the provider may have incentives to implement patient selection.

Namely, if

1− e−θ(B−c1(tBP (µ)))
[
q(tBP (µ)) + (1− q(tBP (µ)))Iµ

]
< 0,

then the provider rejects beneficiaries of type µ≥ µBP where µBP is such that

1− e−θ(B−c1(tBP (µBP )))
[
q(tBP (µBP )) + (1− q(tBP (µBP )))IµBP

]
= 0. (5)

When there is patient selection the provider rejects beneficiaries of type µ∈ [µBP , µ] and accepts

beneficiaries of type µ ∈ [µ,µBP ). Hence the expected number of beneficiaries that undergo treat-

ment is N ′ = N · p, where p ∈ [0,1], given by p = Pr(µ < µBP ) =
∫ µBP
µ

f(x)dx, is the probability

that a given beneficiary is not rejected.

4.3. Benchmark: the system optimum

Dranove (1996, Chap. 4, p. 62) notes in the context of medical treatments that “the social planner

is concerned with all incremental resources associated with treatment, whether borne by patients,

providers, or insurers.” When all agents are risk neutral, a natural way of defining the goal of a

central planner is that of maximizing the total expected system payoff6, comprising the beneficiary,

6 One may consider that the system optimum is subject to a “Do No Harm” constraint, similarly to the constraint

the providers face, as explained in Footnote 4. In this case, the beneficiary’s expected utility under the treatment
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insurer and provider. It is easy to see that for risk-neutral agents this is equivalent to finding a

Pareto-optimal solution, that is, a solution such that no agent’s expected payoff may be improved

without impairing another agent’s payoff. Then, since the payment system only impacts payment

exchanges internal to the system, the central planner’s goal is unaffected by the type of payment

system – FFS or BP; it only depends on the treatment level and patient selection threshold deci-

sions. Hence, coordination of the system aims at designing a payment system so that the treatment

level and selection threshold decisions match those maximizing the total expected system payoff.

When one or more of the agents is risk averse, it is no longer clear what the central planner’s goal

should be, as pointed out in Gan et al. (2004). Indeed, the sum of the agents’ expected utilities is

not a good candidate for the central planner’s objective because, for a given set of treatment and

patient selection decision (external decisions), the sum of the agents’ expected utilities depends

on the internal allocation of payoff among agents, namely it depends on the payment system.

This implies that it is impossible to define a certain set of external decisions – a system-optimal

treatment level and selection threshold – as those that should be matched under any payment

system if one wants to achieve coordination.

Observing that when all agents are risk neutral, the system-optimal decisions match the Pareto-

optimal decisions, Gan et al. (2004) propose using the concept of Pareto-optimality, widely used

in group decision theory, to define coordination of a system with at least one risk-averse decision-

maker. They suggest that the goal of a central planner is to make decisions in such a way that no

agent’s expected utility can be improved without impairing another agent’s expected utility.

The use of Pareto optimality as the criterion in group decision-making dates to Wilson (1968).

Wilson (1968) considers “ a group of individual decision-makers who must make a common decision

under uncertainty, and who, as a result, will receive jointly a payoff to be shared among them”.

He analyzes “the decision process (...) when the members have diverse risk tolerances”. This fits

well with our framework. Arrow (1963) discusses the “complex of services that center about the

physician, private and group practice, hospitals, and public health” in the context of medical-

care market in the presence of uncertainty and risk. He states that “the equilibrium is necessarily

optimal in the following precise sense (due to V. Pareto): There is no other allocation of resources

to services which will make all participants in the market better off.” Therefore, we use the notion

of Pareto-optimality in our paper to define the system optimum.

We consider the central planner’s decision of determining for each beneficiary type whether the

beneficiary should be treated and if so, at what level. A decision is said to be system-optimal if it

is Pareto-optimal for the system consisting of the provider, insurer and beneficiary.

level selected by the central planner cannot be lower than when she does not receive treatment. As explained in the

decentralized case, such a constraint translates into a lower bound on the treatment level. Hence, our model also

captures this constraint at the system optimum through the lower bound t.
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Proposition 7. A treatment and patient selection decision is Pareto-optimal if and only if the

system’s total expected payoff is maximized.

This result implies that, as long as one agent (the insurer) is risk neutral, coordination may

be achieved by maximizing the system’s total expected payoff, regardless of the beneficiary and

provider’s specific utility functions. Intuitively, once the total expected payoff is maximized, it is

possible to design payment exchanges internal to the system to ensure Pareto-optimality.

The expected (with respect to the treatment outcome) total system payoff from treating a

beneficiary with second-stage cost c2 at level t is

wS(t) =−c1(t) + (1− q(t))(−TP − c2−TB) +V.

If the beneficiary is of type µ, it is optimal for the system to choose the treatment intensity that

maximizes the system’s total expected payoff, which can be written as:

Ec2|µ[wS(t)|µ] =−c1(t) + (1− q(t))(−TP −µ−TB) +V.

The result below determines the central planner’s treatment strategy that maximizes the system’s

total expected payoff for a beneficiary of type µ.

Proposition 8. For a beneficiary of type µ who receives treatment, it is optimal for the system

to select a treatment intensity t∗(µ) such that

t∗(µ) =


t1 if t≤ t1 ≤ t;

t if t1 < t;

t if t1 > t,

where t1 is the unique solution of the equation

c′1(t) = (TP +µ+TB)q′(t). (6)

The following result characterizes how the system optimum changes as the beneficiary’s expected

second stage treatment cost varies.

Proposition 9. At the system optimum, potentially costlier beneficiaries require a higher treat-

ment intensity.

Note that costlier beneficiaries lead to lower system’s total expected payoff (like BP, and unlike

FFS, for the expected provider utility); hence it may not be in the benefit of the system, from a

cost-benefit standpoint, to necessarily provide treatment to every single patient. For example, if a

beneficiary has very high first-stage and expected second-stage costs, the probability of success is

low, failure penalties are high, and/or for the considered episode of care the utility to be obtained

by the beneficiary upon receiving treatment is not very large, the costs may outweigh the benefits

and the best decision from the perspective of the entire system would be to deny treatment to this

beneficiary. The following result formalizes this argument.
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Proposition 10. The system’s total expected payoff for a beneficiary of given type µ decreases

with µ; hence it may be system-optimal to implement patient selection. Namely, if

V −TP −µ−TB − c1(t∗(µ)) + (TP +µ+TB)q(t∗(µ))< 0, (7)

then the total system payoff is maximized when beneficiaries of type µ≥ µ∗ are rejected, where

V −TP −µ∗−TB − c1(t∗(µ∗)) + (TP +µ∗+TB)q(t∗(µ∗)) = 0. (8)

This result implies, in particular, that the FFS system cannot be aligned with the system opti-

mum because FFS may not lead to patient selection (only to reverse patient selection under certain

conditions). The BP system optimal solution presents some similarities to the system optimum

and we show in the next section that it may be possible to align the patient selection decision with

that of the system optimum.

4.4. Discussion

4.4.1. Treatment intensity

In the following we compare the treatment levels under BP and FFS as well as the system

optimum. We start by focusing on the case of a risk-neutral provider and we then consider risk-

averse providers.

Proposition 11. If the provider is risk neutral, for a beneficiary of type µ, the treatment levels

under the different payment settings are ranked as follows:

tBP (µ)≤ t∗(µ)≤ tFFS(µ). (9)

The left inequality in (9) implies that the BP system in general achieves a lower treatment level

than the system optimum, validating one of the main criticisms of the BP system, namely that

it could lead to skimping on patient care to keep the costs down. This is because the treatment

level selection by the provider does not take into account the beneficiary disutility from treatment

failure, which is a factor in the system-optimal treatment level.

Because FFS only selects extreme treatment levels, while at the system optimum the treatment

level is generally intermediate (i.e., in general t∗(µ)< tFFS(µ)), the treatment level decision under

FFS cannot in most cases achieve the system-optimal treatment level either. The lack of coordi-

nation can be attributed to the fact a single player (the insurer) bears all the risk under FFS. We

observe a similar result in other contexts; Cachon (2003) argues that when the risk is taken only

by a single party, coordination cannot be achieved in many supply chains. The following result

states that when risk aversion is sufficiently small, the finding obtained for risk-neutral providers

continues to hold for risk-averse providers.
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Corollary 1. If the provider is risk averse and risk aversion is small7, for a beneficiary of type

µ, the treatment levels under the different payment settings are ranked as follows:

tBP (µ)≤ t∗(µ)≤ tFFS(µ).

Note that for an arbitrary level of risk aversion, the treatment level under BP for a risk-averse

provider may exceed the system-optimal treatment level, as illustrated in Figure 2 in the Appendix.

In fact, it can be observed that the treatment level under BP may vary non-monotonically with

risk aversion8; therefore a provider that is more risk averse does not necessarily treat with a higher

intensity. As θ increases, the provider becomes more risk averse. Intuitively, the provider faces a

trade-off: increasing the treatment level to improve the chance of success for the treatment, while

incurring further first-stage costs, or decreasing the treatment level to reduce the first-stage cost

despite a decrease in the chance of success. The curvature of the utility function and the success

probability function contribute to determining which of these effects dominates the other. While

θ is not too large, if the probability of success is large enough (as in Figure 2a for lower values of

θ), the provider prioritizes the increase in the chance of success, but otherwise (as in Figure 2b),

the provider aims at reducing the guaranteed first-stage costs. When θ is large, the first-stage cost

increase caused by an increase in the treatment level may have an impact on the expected utility

that is so large that it is not compensated by the benefit of increasing the probability of success,

hence the treatment level decreases in θ.

As noted in the introduction, one of the concerns with a bundled payment mechanism is that it

may lead providers to skimp on care, that is, to reduce the intensity of treatment in an effort to

reduce cost. It follows from Corollary 1 that this concern is valid when providers are risk neutral

or not very risk averse (and possibly also in other cases). Figure 2 illustrates that when providers

are moderately risk averse, they may treat with either too much or too little intensity (compared

to the system optimum).

4.4.2. Patient selection

As noted in Section 4.3, FFS may only lead to reverse patient selection while the system optimum

may only have direct patient selection. As a result, the patient selection decisions under the FFS

setting and at the system optimum may not be aligned (unless none implements any kind of patient

selection). However, as the next result illustrates, since BP leads to direct patient selection, it may

be possible to align the patient selection outcomes under BP and the system optimum.

7 Risk aversion being small is a sufficient, but not necessary, condition. In some cases, the inequalities hold for any

risk-aversion coefficient (e.g., Figure 2b in the Appendix). In other cases (e.g., Figure 2a in the Appendix), there is

a threshold which can be found by finding the smallest solution θ to the equality tBP (µ) = t∗(µ).

8 It can be shown that the treatment level under BP for a risk-averse provider increases with θ iff θĪµ− (Iµ− 1)[1 +

(1− q(tBP (µ)))(Iµ− 1)] ≥ 0, where Īµ =
∫ c
c

(c2 + TP )eθ(c2+TP )gµ(c2)dc2 and tBP (µ) solves (4). Note that Iµ and Īµ

depend on θ.
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Proposition 12. If there is patient selection at the system optimum, there exists a discount

value γC such that the BP patient selection decision matches the system optimum.

Hence, by carefully selecting the discount value (that is, the bundled payment value), the BP

system may reach the system optimum in terms of patient selection. In other words, by adjusting

B, the insurer can directly control the level of patient selection. For example, a very high B would

generate no patient selection at all because any beneficiary would generate a positive utility, but

a very low B would motivate the provider to reject every beneficiary.

4.4.3. Beneficiary population size

The previous analysis describes how the provider’s risk aversion and the payment system help

determine the decisions that the provider makes regarding every individual patient. However, it is

also of interest to understand the amount of downside risk that the provider’s average payoff is

subject to in an aggregate way, from serving the entire beneficiary population. In this section, we

measure the amount of downside risk that the provider’s payoff is subject to overall, by considering

the total payoff from serving a population of N beneficiaries and its variability.

A perceived shortcoming of the BP mechanism is the increased level of risk that it imposes on

providers especially for those with low volume of patients for a certain episode. Tompkins et al.

(2012) argue that the main source of risk for providers is the variation in average per patient

episode costs. In other Medicare initiatives, such as the Shared Savings Program, many patients

participate (Accountable Care Organizations have at least 5000 enrollees), lowering the financial

risk burdened by the providers due to random variations across individual beneficiaries. In contrast,

an average medical provider participating in the BPCI experiment has between 100 and 200 cases

for their highest volume episodes (Mechanic and Tompkins, 2012); thus the losses imposed by a

few costly beneficiaries may not be offset by less costly beneficiaries, and the average historical cost

used to calculate the bundled payment value may significantly differ from the average cost in a

given subsequent year. To address the issue of financial risk to the provider under BP, we consider

the effect of the beneficiary population size N and we derive analytical bounds on the size of N

that guarantees a minimum provider per-beneficiary average payoff with a certain probability. Such

a minimum threshold is analogous to the notion of value-at-risk studied in the financial literature.

Recall that N is the size of the beneficiary population that refers to the provider for treatment.

This beneficiary group can be viewed as a sample, extracted from a larger population, that consists

of those beneficiaries who selected to receive care from this particular provider. Suppose beneficiary

i is of type µi and has a true second-stage cost ci2, for i= 1, . . . ,N . Without loss of generality we

assume that µ1 ≤ µ2 ≤ · · · ≤ µN . Under BP, the provider only accepts those beneficiaries for whom

µi <µBP . Let N ′ be the highest index of the beneficiary types who are accepted by the provider;

i.e., N ′ is equal to the largest j for which µj < µBP . Because the provider implements treatment

level tBP (µi), the true provider expected payoff (with respect to treatment outcome) of treating

beneficiary i= 1, . . . ,N ′ is wPi =B− c1(tBP (µi))−TP (1− q(tBP (µi)))− (1− q(tBP (µi)))ci2, and the
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(sample) average of the provider’s payoff for the treated beneficiaries, wP , is:

wP =
1

N ′

N ′∑
i=1

wPi =B− 1

N ′

N ′∑
i=1

[c1(tBP (µi)) + (ci2 +TP )(1− q(tBP (µi)))]. (10)

Following the approach adopted by Gan et al. (2004), in order to capture the risk faced by

providers under the BP mechanism because of limited volume of cases for certain episodes and high

levels of variability in treatment costs, we consider the provider’s financial risk exposure, defined

as the α-percentile of the total average payoff faced by the provider for some small α; i.e. the value

ρ such that Pr
(
wP <ρ

)
= α.

Thanks to the Hoeffding’s inequality (Hoeffding, 1963), we find a relationship between ρ, α and

the accepted beneficiary population size N ′9 . The next result formalizes this argument.

Proposition 13. Let the size of the accepted population be10

N ′ =
(ζ − ξ)2

2(B− δ− ρ)2
ln

(
1

α

)
, (11)

then the provider’s risk exposure is at most ρ, that is, Pr
(
wP <ρ

)
≤ α, where wP is defined in

(10) and

ζ = c1(tBP (µBP )) + (c+TP )(1− q(tBP (µ))), ξ = c1(tBP (µ)) + (c+TP )(1− q(tBP (µBP )))

δ=Ec2|E[c2]≤µBP
[
c1(tBP (E[c2])) + (c2 +TP )(1− q(tBP (E[c2])))|E[c2]≤ µBP

]
.

Note that in the above proposition B − δ is the provider’s average net payoff from accepted

beneficiaries and ζ − ξ is the expected gap in treatment cost between the highest- and lowest-cost

beneficiaries accepted by the provider. So if this gap (ζ − ξ) is large or if the payoff threshold

(ρ) is close to the provider’s average payoff (B− δ) then the provider needs a large population of

accepted beneficiaries to keep her financial risk (α) low. The following corollary directly results

from Proposition 13.

Corollary 2. Financial risk and risk exposure of the provider decrease when

(a) the size of the accepted beneficiary population increases, or

(b) the cost gap between the most and least costly beneficiaries decreases.

This result indicates that the population size N is an important factor in determining the risk

borne by providers. If a medical provider cannot attract a large enough patient population size

for a certain episode of care, then she may not be able to efficiently risk-pool among the patients

and potentially high-cost patients could pose a significant burden on the provider. Therefore the

beneficiary population size, N , should be taken into account when considering the implementation

of the BP mechanism.

9 Note that because the coefficients ci2 are not identically distributed and also due to the value of N ′ not being

generally large, we cannot use the central limit theorem to approximate the probability above.

10 This proposition provides the sufficient accepted population size to have a risk exposure of ρ for a given α.
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5. Proposed payment schemes

To alleviate the drawbacks of the BP system while maintaining some of the advantages of the FFS

system, such as the low risk borne by the provider, in this section we consider alternative payment

mechanisms with the goal of aligning the treatment level and patient selection level selected by

the provider to that of the system optimum and thereby fully coordinating this system. We first

consider a hybrid payment, which is a combination of FFS and BP mechanisms, in Section 5.1. In

Section 5.2 we analyze a stop-loss protection scheme, which modifies the BP model to limit the

total provider cost. Both payment schemes are applicable in practice. The implementation of the

hybrid payment system would be no more complicated than the BP mechanism currently tested,

and some forms of the stop-loss protection model are readily being implemented in some Medicare

programs (Tompkins et al., 2012).

5.1. A hybrid system

In this section we propose a hybrid payment (HP) system that is a combination of BP and FFS.

Specifically, the insurer pays both a fixed amount B′ to the provider (as in BP) as well as a

variable amount (as in FFS) at each stage of treatment. Similar to the FFS system, the variable

payment is proportional to the treatment cost: βc1(t) for the initial treatment, and βc2 in case of

complications. Because of the existence of a fixed payment we set the variable payment factor β

to be less than one.

Note that the proposed hybrid system is equivalent to a BP mechanism adjusted for risk-sharing,

in which the provider keeps only a fraction F of the savings if her treatment costs are lower than

the bundled payment B, and in return is only responsible for fraction F of losses if her treatment

costs are higher than the bundled payment B, as long as B′ = FB and β = 1−F . Such a risk-

adjusted BP mechanism is analogous to the payment scheme intuitively proposed in Feder (2013)

(but not analyzed quantitatively), where the provider is paid through a FFS system and yet is

rewarded for spending reductions.

Consider a given beneficiary. If the beneficiary is accepted and treated at intensity t, the expected

(with respect to the treatment outcome) utilities of the provider, insurer and beneficiary are:

πP (t) = q(t)UP (B′− (1−β)c1(t)) + (1− q(t))UP (B′− (1−β)c1(t)− (1−β)c2−TP )

=
1

θ
− 1

θ
e−θ(B

′−(1−β)c1(t))
(
q(t) + (1− q(t))eθ((1−β)c2+TP )

)
πI(t) =−B′−β[c1(t) + (1− q(t))c2]

πB(t) = q(t)UB(V ) + (1− q(t))UB(V −TB).

After determining the type µ of the beneficiary, if the beneficiary is accepted the provider selects

the treatment level for this beneficiary so as to maximize her expected utility with respect to the
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second-stage cost, which can be written:

Ec2|µ
[
πP (t)|µ

]
=

1

θ
− 1

θ
e−θ(B

′−(1−β)c1(t)) (q(t) + (1− q(t))Lµ) ,

where

Lµ =Ec2|µ

[
eθ((1−β)c2+TP )|µ

]
=

∫ c

c

eθ((1−β)c2+TP )gµ(c2)dc2.

Lemma 3. Lµ > 1 and Lµ is non-decreasing in µ.

The result below determines the provider’s treatment strategy that maximizes her expected

utility for a beneficiary of type µ.

Proposition 14. For a beneficiary of type µ who receives treatment under the hybrid system,

the provider selects a treatment intensity tHP (µ) such that

tHP (µ) =


t2 if t≤ t2 ≤ t;

t if t2 < t;

t if t2 > t,

where t2 is the unique solution of the equation

θ(1−β)c′1(t)

[
1− q(t) +

1

Lµ− 1

]
= q′(t). (12)

It is clear that the hybrid system shows much resemblance to the BP system and shares some

of its analytical properties; in particular it exhibits the same incentives for patient selection, as

noted in the result below (the proof is very similar to the proofs of Propositions 5 and 6 and is

thus omitted).

Proposition 15. Under the hybrid system, (i) potentially costlier beneficiaries require a higher

treatment intensity; (ii) the provider’s expected utility for a beneficiary of given type µ decreases

with µ; hence the provider may have incentives to implement patient selection: namely, if

1− e−θ(B
′−(1−β)c1(tHP (µ)))

[
q(tHP (µ)) + (1− q(tHP (µ)))Lµ

]
< 0,

then the provider rejects beneficiaries of type µ≥ µHP where µHP is such that

1− e−θ(B
′−(1−β)c1(tHP (µHP )))

[
q(tHP (µHP )) + (1− q(tHP (µHP )))LµHP

]
= 0. (13)

We now show that when the provider is risk neutral, there exists a fraction β and a fixed payment

B′ that coordinate the decisions in the hybrid system to that of the system optimum (i.e., that

lead to the same patient selection and treatment level as the system optimum for all patients).

Proposition 16. When the provider is risk neutral, a hybrid system with β = TB/(TB + T P )

and B′ = V T P/(TB +TP ) (i.e. B′ = V (1−β)) aligns the patient selection and treatment intensity

outcomes to those of the system optimum.
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In the case of a risk neutral provider, even though FFS could not coordinate any of the decisions

and BP could only align the incentives in terms of patient selection level, HP can coordinate

both the patient selection level and treatment intensity. This is because the HP system acts as a

risk-sharing mechanism to distribute high-cost patients’ risk between the provider and insurer.

When the provider is risk averse, this result no longer holds. There are two reasons for this. The

first is mathematical: the way that the treatment levels are computed under the hybrid system and

the system optimum are so structurally different that the solutions cannot match for all beneficiary

types. The second is intuitive: the hybrid system is a mixture of a FFS system and BP system.

Hence, the treatment level under HP lies between the BP and the FFS levels. However, when the

provider is risk averse, the BP treatment level may exceed the system-optimal treatment level.

Since the FFS treatment level is at the upper extreme, it follows that the HP treatment level also

exceeds the system-optimal treatment level, hence no coordination is possible.

The following result investigates how a hybrid system with a menu of payment terms may

coordinate the treatment level and patient selection to that of the system optimum as long as the

BP treatment level does not exceed the system-optimal treatment level. By Corollary 1, this will

for example be true when the risk aversion is small.

Proposition 17. When the provider is risk averse and tBP (µ)≤ t∗(µ), there exists a cost share,

β, and a bundled payment, B′, that coordinate the provider’s treatment level and patient selection

decisions with the system optimum for a given beneficiary type.

We note that when the provider is risk averse and tBP (µ) > t∗(µ), the hybrid system cannot

coordinate decisions to those of the system optimum.

5.2. Stop-loss protection

A major drawback of the BP system is having a fixed reimbursement amount while the benefi-

ciaries’ cost varies for a given beneficiary type and across beneficiary types. Note that in our BP

formulation, if a beneficiary is high-cost type (µ≥ µBP ), then the provider has the option of not

accepting the beneficiary. However, if a beneficiary is low-cost type (µ < µBP ) and accepted for

treatment, the full burden of the beneficiary’s actual cost, which varies depending on the realiza-

tion of c2 given µ, is borne by the provider. Such variability is undesirable for the provider due to

the potential existence of a few outlier cases which increase the risk borne by the provider.

The concern over the high-cost outlier cases has been acknowledged by CMS in other pro-

grams such as the Medicare Shared Savings Program and inpatient prospective payment system

(Tompkins et al., 2012). One remedy for this problem is implementing a stop-loss protection mech-

anism. Under our proposed stop-loss protection, the provider is only responsible for a beneficiary’s

second-stage costs below a certain threshold. Any realized second-stage costs over the pre-specified

threshold are burdened by the insurer.
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Let S be the stop-loss protection level for the readmission cost. Hence, the provider’s cost for

providing treatment level t is equal to c1(t) in case of success and c1(t)+min{c2, S} in case of failure.

That is, the provider’s expected total realized cost (with expectation taken over the treatment

outcome) for providing treatment level t is equal to c1(t) + (1− q(t))min{c2, S}. Therefore, under

the BP mechanism with stop-loss protection, we can write the different agents’ expected (with

respect to the treatment outcome) utilities for a treated beneficiary of type µ as

πP (t) = q(t)UP (B− c1(t)) + (1− q(t))UP (B− c1(t)−min{c2, S}−TP )

=
1

θ
− 1

θ
e−θ(B−c1(t))

(
q(t) + (1− q(t))eθ(min{c2,S}+TP )

)
πI(t) =−B− (1− q(t)) (c2−min{c2, S})

πB(t) = q(t)UB(V ) + (1− q(t))UB(V −TB).

After determining the type µ of the beneficiary, if the beneficiary is accepted the provider selects

the treatment level for this beneficiary so as to maximize her expected utility with respect to the

second-stage cost, which can be written:

Ec2|µ
[
πP (t)|µ

]
=Ec2|µ

[
1

θ
− 1

θ
e−θ(B−c1(t))

(
q(t) + (1− q(t))eθ(min{c2,S}+TP )

)
|µ
]

=
1

θ
− 1

θ
e−θ(B−c1(t))

(
q(t) + (1− q(t))Ec2|µ

[
eθ(min{c2,S}+TP )|µ

])
=

1

θ
− 1

θ
e−θ(B−c1(t)) (q(t) + (1− q(t))Mµ(S)) ,

where

Mµ(S) =Ec2|µ

[
eθ(min{c2,S}+TP )|µ

]
=

∫ S

c

eθ(c2+TP )gµ(c2)dc2 + eθ(S+TP )

∫ c

S

gµ(c2)dc2.

The next result shows that there may exist a payment system consisting of a BP mechanism

augmented with a menu of stop-loss protection levels that coordinates the provider’s treatment and

selection decisions with the system optimum if the BP treatment level exceeds the system-optimal

treatment level.

Proposition 18. When t∗(µ)≤ tBP (µ), there exist a stop-loss protection level, S, and a bundled

payment, B, that coordinate the provider’s treatment level and patient selection decisions with the

system optimum for a given beneficiary type if

q(t∗(µ))≤ ec+T
P

ec+TP − 1
− 1

θ(TP +TB +µ)
. (14)

The result above complements the coordination result of Proposition 17 as unlike the HP system,

which could only coordinate the system when tBP (µ) ≤ t∗(µ), Proposition 18 shows that it is

possible to align the provider’s incentives to the system optimum using a stop-loss mechanism when

tBP (µ)≥ t∗(µ). This result shows the existence of an alternative payment mechanism that aligns
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the incentives of the provider and the system optimum by sharing the risk of high-cost patients

with the insurer. The hybrid mechanism considered in Section 5.1 was another way of sharing

the risk between the provider and insurer. Under HP the insurer pays for a certain percentage of

costs for all patients, while under the stop-loss mechanism the insurer participates in supporting

the treatment costs of high-cost patients only. The hybrid system intends to allocate some of the

risk borne by the provider due to cost uncertainty to the insurer, to give incentives to raise the

treatment level to that of the system optimum even though it increases the deterministic first-stage

cost. When the provider treats at an intensity that is already too high under BP, the stop-loss

mechanism requires to give the provider incentives to lower the treatment level by reducing the

second-stage related costs.

Finally, while the insurer provides financial support to the provider for costly patients in the

stop-loss protection system, this mechanism may not necessarily increase the insurer’s total pay-

ment. The lump sum payment B for a BP system modified with a stop-loss mechanism to achieve

coordination with the system optimum is less than that in the BP mechanism without stop-loss

protection, which would reduce the insurer’s guaranteed payment to the provider.

We end this section by providing conditions under which neither the hybrid payment nor stop-

loss protection scheme can coordinate the system. Given that Propositions 17 and 18 provide

necessary and sufficient conditions for the coordinating payments, we have the following corollary.

Corollary 3. There are no hybrid payment or stop-loss protection mechanisms that can coor-

dinate the system if both of the following conditions hold:

t∗(µ)< tBP (µ), q(t∗(µ))>
ec+T

P

ec+TP − 1
− 1

θ(TP +TB +µ)
.

6. Summary of findings from the numerical experiments

Appendix D provides the details of numerical experiments that address the motivating questions

formulated in the introduction and that explore the differences in outcomes for the various payment

mechanisms presented above. We present here the main conclusions.

Based on our extensive numerical experiments we make the following observations.

Observation 1: Performance of BP in terms of the system payoff and provider utility is highly

dependent on the value of B and the resulting degree of patient selection, with larger values of B

favoring the BP system. Furthermore, the BP system performs poorly in terms of risk imposed on

the provider.

Observation 2: Higher risk aversion by the provider degrades the performance of both FFS and

BP mechanisms. The system payoff and provider utility are significantly reduced for larger values

of risk aversion under the BP system, mainly due to an increasing level of patient selection.

Observation 3: The hybrid and stop loss payment systems are particularly more effective at reduc-

ing the downside risk (patient population size) compared to BP when B is small.
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Observation 4: We can find a coordinating mechanism (hybrid or stop-loss protection) for the

majority of parameter values. For moderate risk aversion and high success probabilities no hybrid

or stop-loss coordinating mechanism may be found. Otherwise, one of the proposed contracts

coordinates. The hybrid payment system typically coordinates for lower risk aversions and the

stop-loss mechanism coordinates for higher risk aversions.

7. Concluding remarks

This paper is one of the first attempts at using a model-based approach for evaluating the perfor-

mance of a variety of payment systems for healthcare services, including fee-for-service (FFS) and

bundled payment (BP). The BP system is widely seen as a promising direction for reform due to its

potential for re-aligning incentives, re-allocating risks and promoting quality of care over volume.

While most experts agree that FFS is not a sustainable system, some point out that BP could have

some unintended consequences which could negatively affect both patients and providers. Even

though it is still too early to draw complete conclusions from the BPCI pilot program that CMS

is currently running in selected facilities, our analysis sheds some light on some of the questions

raised by proponents and opponents of this new type of payment system.

Our findings on FFS confirm the broad understanding that while FFS does not generally lead

to patient selection and does not impose any risk on providers, it provides incentives for excessive

treatment intensity and thus a high cost for the insurer. We find that the bundled payment system

performance is extremely sensitive to the payment value for the bundle and the provider’s risk

aversion; practical implementation of the system should involve detailed evaluation of providers’

risk attitudes and careful selection of the payment value. Depending on the provider’s risk aver-

sion level and other factors, BP could lead to suboptimal patient selection, treating more or less

intensively than would be desirable for the system, a lower system payoff than FFS, and to an

extremely high financial risk borne by the provider which increases the chance of bankruptcy and

could lower the number of providers. This could have seriously damaging long-term consequences

such as reduced access to care, quality of care, and care availability.

Interestingly, we obtain that some fairly minor modifications of the bundled payment system

could go a long way toward improving its performance and reducing its shortcomings. A combi-

nation of FFS and BP, so-called hybrid payment system in our paper, could markedly improve

most performance measures – including provider utility, provider risk, and system payoff – without

imposing significant implementation hurdles. A stop-loss mechanism could also improve the BP

performance by spreading risks that are otherwise concentrated on the provider. In fact our results

show that, when carefully designed, one of these two payment schemes can indeed fully coordinate

the decisions of the provider with the system optimum in most, but not all, cases.

Our findings suggests that the current FFS system can be improved upon without sacrificing

the quality of healthcare, but the proposed BP system should be very carefully implemented to

avoid creating new issues, possibly using simple adjustments. Further research using empirical
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results from the BPCI pilot program should test whether these findings are confirmed by the data

collected. A modeling approach can also be used to introduce more refined models specific to

certain providers (home health agencies, inpatient rehabilitation facilities, nursing homes, etc.) and

investigate whether the findings obtained are robust with respect to the type of care considered.
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Appendix A: Notation

t treatment level for a beneficiary, to be selected by the provider within [t, t]

q(t) probability of “success” of the treatment

c1(t) first-stage cost of treatment incurred by the provider

c2 second-stage random cost of treatment in case of first-stage treatment failure, within [c, c]

µ beneficiary type, defined as the average second-stage cost of treatment, within [µ,µ]

gµ(·) conditional probability distribution function of c2 given µ; has mean µ and variance s2
µ

f(·) probability distribution function of µ; has support [µ,µ]

κ payment factor under FFS: insurer pays provider κ times the treatment cost in both stages

B lump-sum payment from the insurer to the provider for treating the beneficiary under BP

V payoff of beneficiary for receiving treatment

TB disutility of the beneficiary due to unsuccessful treatment (TB > 0)

T P penalty of the provider due to unsuccessful treatment (TP > 0)

θ provider’s risk-aversion parameter

UP (w) utility of the provider when receiving payoff w

UB(w) utility of the beneficiary when receiving payoff w

πj(t) total expected utility of agent j for a beneficiary of a given type under treatment level t,

where j = P, I,B for the provider, insurer and beneficiary respectively

N size of beneficiary population seeking treatment

wj payoff of agent j, where j = P, I,B,S for the provider, insurer, beneficiary and system respectively

γ discount rate used to obtain the bundle payment value from the historical spending

Table 1 Notations

Appendix B: Monotone Likelihood Ratio Property

Definition 1. Suppose that the distribution of X is in a parametric family of density functions

{gµ(x)}µ∈[µ,µ] indexed by a parameter µ taking values in an interval [µ,µ]. The family of distribution is said

to have a monotone likelihood ratio if for any µ1 ≤ µ2 ∈ [µ,µ], the ratio gµ2
(x)/gµ1

(x) is a non-decreasing

function of x.

Lemma 4. Suppose that {gµ(x)}µ∈[µ,µ] has a monotone likelihood ratio. If ψ is a non-decreasing function,

then φ(µ) =E[ψ(X)] is a non-decreasing function of µ.

Proof Let µ1 ≤ µ2 ∈ [µ,µ], A = {x : gµ1
(x) > gµ2

(x)}, B = {x : gµ1
(x) < gµ2

(x)}, a = supx∈Aψ(x), b =

infx∈B ψ(x). By the monotone likelihood ratio property, a≤ b. Therefore,

φ(µ2)−φ(µ1) =

∫
ψ(x)(gµ2

(x)− gµ1
(x))dx



Adida, Mamani, Nassiri: Bundled Payment vs. Fee-for-Service

36 Article Management Science; manuscript no. MS-14-01857

≥ a
∫
A

(gµ2
(x)− gµ1

(x))dx+ b

∫
B

(gµ2
(x)− gµ1

(x))dx

=−a
∫
B

(gµ2
(x)− gµ1

(x))dx+ b

∫
B

(gµ2
(x)− gµ1

(x))dx

= (b− a)

∫
B

(gµ2
(x)− gµ1

(x))dx

≥ 0,

where the second equality follows from∫
A

(gµ2
(x)− gµ1

(x))dx+

∫
B

(gµ2
(x)− gµ1

(x))dx=

∫
gµ2

(x)dx−
∫
gµ1

(x)dx= 1− 1 = 0.

�

Note that if ψ is a non-increasing function of Y , E[−ψ(Y )] =−E[ψ(Y )] is a non-decreasing function of µ,

therefore E[ψ(Y )] is a non-increasing function of µ.

Simple calculations show that the following parametric families of continuous density functions have the

monotone likelihood property:

• Exponential distribution λe−λx (indexed by µ= 1/λ);

• Normal distribution (1/(σ
√

2π))e−(x−µ)2/(2σ2) indexed by µ (for fixed σ);

• Gamma distribution xk−1e−x/θ/(θkΓ(k)) indexed by θ (for fixed k).

• Uniform distribution [a, b] indexed by a (for fixed b).

Appendix C: Additional Figure
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Figure 2 Treatment level for a range of risk aversion of the provider for

q(t) = a− 0.4e−8 t, TP = 1, TB = 2, µ= 20, sµ = 2, t= 0, t= 1, c1(t) = 1 + 2 t4, and gµ(.) is a normal density

function.
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Appendix D: Numerical Analysis

In this section we present numerical experiments that address the motivating questions formulated in the

introduction of the paper and that explore the differences in outcomes for the various payment mechanisms

analyzed. We use different performance measures to assess the various payment systems and compare them to

one another. Note that in this entire section when we refer to the hybrid and stop-loss payments, we consider

the coordinating mechanisms for those values of the parameters when these payments can coordinate the

provider’s decisions as illustrated in Propositions 16 and 18. In Section D.1 we describe the input parameters

used for this numerical study. Section D.2 compares the average provider utilities and system payoffs under

FFS, BP, and at the system optimum. Section D.3 evaluates coordination issues by first characterizing regions

for which each of the proposed contracts is coordinating and also the region for which no hybrid or stop-loss

coordinating mechanism was found. We then assess the financial risk exposure borne by the provider under

different payment mechanisms. Section 6 in the main body of the paper provides a summary of observations

made from our numerical experiments.

D.1. Input parameters

We use parameter values corresponding to a specific condition, GastroEsophageal Reflux Disease (GERD),

obtained from the medical and health economics literature as described below. Based on Heudebert et al.

(1997), in a given episode of care, there are five different treatment levels; (1) routine visit and consultation,

(2) daily dose prescription omeprazole 20 mg tablet for a period of 30 days, (3) manometry, (4) endoscopy,

and (5) Laparoscopic Nissen Fundoplication (LNF) surgery, where each treatment level is cumulative (for

example, level 2 is to prescribe the drug and do a routine consultation). Costs for different levels of treatment

are obtained from Heudebert et al. (1997) and summarized in Table 2. If complications occur, the average

second-stage cost can be as low as $109, which means the condition can be resolved by an office visit and

a standard dose of omeprazole; thus we set µ= 109. Alternatively, the complications can be so severe that

an Open Nissen Fundoplication (ONF) surgery is required. Using estimates for the cost of this procedure in

Richards et al. (1996) and a yearly rate of increase of 3% to approximate the cost of ONF in 1997 values, we

estimate that the highest average second-stage cost µ lies within $8,000 – $10,000. For the purpose of our

numerical experiments, we set µ at $9,414, but we run sensitivity analysis on this parameter and find that

our observations remain unaffected. Finally, we assume that the expected second-stage cost (patient type)

is uniformly distributed on [µ,µ].

We set each patient’s utility V as one unit of quality-adjusted-life-years (QALY). There is no consensus in

the health economics literature on the value of a QALY, however Heudebert et al. (1997) state that the health

economics community considers $50,000 – $100,000 as an acceptable marginal cost-effectiveness (cost for an

additional unit of QALY) range. We use similar values as proxies for the value of a QALY. Therefore, we

vary V within the range $25,000 – $80,000, in order to evaluate the sensitivity of the outcomes with respect

to this parameter, and we obtain similar results. Heudebert et al. (1997) estimate the patient’s disutility

from complications, TB, to be within [0.05 V, 0.5 V]; we vary the value of TB in the same range but choose

TB = 0.1V for the results in this section. Finally, in order to estimate the value of κ, we use the Medicare
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Figure 3 Parameter values for numerical experiments

reimbursement data for LNF from Gerson et al. (2000) and compare them to the LNF procedure cost from

Heudebert et al. (1997), which leads, after adjusting for the year discrepancy, to κ= 1.4. We vary κ within

the range 1.3 – 1.5 and find that our observations remain valid.

Due to a lack of data in prior work on the values of TP and q(t), we alter each of these parameters in

a wide range to assess their impact on the numerical results. We assume that the provider’s penalty from

complications is not higher than the patient’s disutility, and therefore vary TP within [0.01V, 0.1V ] in 0.01V

increments; we find that the value of TP has little impact on the outcome. For our numerical experiments,

we set TP at 0.02V . Finally, we assume that the probability of success follows a general exponential form

a− be−ct. We run the numerical experiments for different values of a, b, and c and find that different forms of

the success probability, as described above, do not change the qualitative nature of the findings. Therefore,

in this section11 we present the results for the following success probability: q(t) = 0.99− 0.6e−1.14t. Under

this probability model, the success likelihood is a small 39% if no action is taken, and a high 99% if the

maximum treatment level is exerted. Figure 3 illustrates the functional forms of c1(t) and q(t). Note that

this is consistent with Assumptions 2 and 3; we also check that with the parameter values that we selected,

Assumption 4 is satisfied.

D.2. Total average provider utility and system payoff

Section 4 studies the average utilities for a given beneficiary type. In this section we compare the total

average provider utility for all beneficiary types, ΠP (Equations (15) and (16)), and the total average system

payoff, W S(Equations (17)–(19)), under different payment schemes. Note that due to the possibility that

coordinating hybrid and stop-loss protection payments do not exist, these two mechanisms are not studied

11 In section D.3 we let parameter a vary.
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t {1, 2, 3, 4, 5}
c1(t) {$39, $109, $755, $1,860, $4,700}
V varied in [$25,000, $80,000]

TP varied in [0.01V, 0.1V ], set at 0.02V

TB varied in [0.05V,0.5V ], set at 0.1V

κ varied in [1.3,1.5], set at 1.4

µ varied in [$100, $200], set at $109

µ varied in [$8,000, $10,000], set at $9,414

µ random variable with uniform distribution in [µ,µ]

c 0.001 percentile of the exponential with mean µ

c 0.999 percentile of the exponential with mean µ

c2|µ random variable with exponential distribution with average µ

Table 2 Parameter values for numerical experiments

in this subsection. More numerical analysis on hybrid and stop-loss payment schemes is carried out in the

next subsection.

We use the law of total expectation in order to find ΠP for FFS and BP. Because the provider’s utility at

the system optimum depends on how the total system payoff is split among the agents of the system, we do

not depict ΠP at the system optimum.

ΠP
FFS =Eµ

[
Ec2|µ

[
πP (t)|µ

]]
=

1

θ
− 1

θ
e−θ(κ−1)c1(t)

(
q(t) + (1− q(t))Eµ [Jµ]

)
, (15)

ΠP
BP =Eµ

[
Ec2|µ

[
πP (tBP (µ))|µ

]]
=

∫ µBP

µ

[
1

θ
− 1

θ
e−θ(B−c1(tBP (x)))

(
q(tBP (x)) + (1− q(tBP (x)))Ix

)]
f(x)dx. (16)

Similarly, we can find the total expected system payoff, W S, under FFS, BP, and the system-optimal

(denoted by SO) decisions.

W S
FFS = V − c1(t)− (1− q(t))

(
TB +TP +E[µ]

)
, (17)

W S
BP =

∫ µBP

µ

[
V − c1(tBP (x))− (1− q(tBP (x)))(TB +TP +x)

]
f(x)dx, (18)

W S
SO =

∫ µ∗

µ

[
V − c1(t∗(x))− (1− q(t∗(x)))(TB +TP +x)

]
f(x)dx. (19)

Figure 4 illustrates the average system payoff in $1000s under BP, FFS and at the system optimum for V =

$25,000 as 1−γ and θ change. Note that the proportion of past cost reimbursed by the provider under the BP

mechanism, 1− γ, is proportional to the bundled payment value, B, as B = (1− γ)κ
(
c1(t) + (1− q(t))E[µ]

)
from (3).

Figure 4(a) plots the average system payoff from (17), (18), and (19), respectively, for increasing values of

the bundled payment value. By definition the system optimum leads to the highest system payoff. The system
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payoff initially increases under BP; this is due to the fact that in this range, a higher value of B motivates

the provider to accept a larger pool of beneficiaries for treatment, up to the point when 1−γ = 0.7. At that

point, the entire patient population is selected for treatment. For 1−γ ≥ 0.7, the decrease in insurer’s payoff

as B increases is offset by the increase in the provider’s payoff and as the result the system payoff under BP

is constant.

Figure 4(b) plots the average system payoff for increasing values of the provider’s risk aversion. From

Propositions 1 and 8 and Assumption 4, it is clear that the system-optimal and the FFS treatment levels

are independent of θ. Hence, the total system payoff is also independent of θ under SO and FFS, as can be

observed in Figure 4(b). Under BP, the treatment level does depend on θ, in a way that varies according

to µ. More importantly, the patient selection level changes with θ. We find (not shown in this figure) that

the patient selection threshold for BP changes sharply for θ near 0.06: beyond this value of the risk-aversion

parameter, more and more patients are denied treatment (more than system-optimum), which adversely

impacts the system payoff, resulting in a sharp drop.

Figure 5(a) and (b) show the effect of the bundled payment value and the provider’s risk aversion, respec-

tively, on the average provider utility, by plotting the provider’s total expected utility in $1000s under FFS

and BP from (15) and (16). Clearly, under BP the provider’s utility increases with the value of B as illus-

trated in Figure 5(a) since the provider’s payoff increases in B, while FFS is not affected by changes to the

bundled payment value.

Under FFS, the treatment level (and hence the provider payoff) does not vary with θ. However, for a fixed

payment level and hence a fixed payoff, the provider’s utility function decreases in θ. Therefore, we observe

in Figure 5(b) that the average provider’s utility under FFS decreases in θ. Under BP, in addition to the

utility function decreasing in θ, the treatment level also changes with θ. In this case, for most values of µ,

the treatment level goes up in θ to lower the chance of complications. This leads to a higher first-stage cost

which negatively impacts the provider utility; therefore, the average provider utility decreases faster under

BP than under FFS. The curvature changes around θ = 0.13 because the selection threshold drops at that

point and the patient pool used to average the provider utility is reduced for higher values of θ.

It is interesting to observe that when providers are not too risk averse and if B is sufficiently large, both the

system and providers themselves benefit from BP as compared to FFS. This is because they no longer treat

at the highest possible level, the gain due to the difference between treatment costs and bundled payment

exceeds the margin they earn under FFS. Unsurprisingly, the performance of BP critically depends on the

value of B (or γ) and θ. For lower values of B and higher values of θ, BP can lead to a lower average system

payoff than FFS because of low reimbursement from the insurer leading to suboptimal treatment levels and

intense patient selection.

One key observation from Figures 4 and 5 is that while BP can be an effective mechanism to increase

the provider’s utility and/or system payoff compared to FFS, its performance is extremely sensitive to the

choice of the bundled payment value, B, and the degree of risk aversion θ. For certain values of B and θ, it

can be a fairly effective tool, otherwise, its performance can even be dominated by that of FFS, mainly due

to patient selection. In Figure 4, the whole population has been selected under the system optimum due to

our choice of parameters.
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D.3. Coordinating mechanisms

We start this section by investigating coordination under the proposed mechanisms, namely hybrid payment

and stop-loss. Figure 6 shows the effect of the risk-aversion parameter, θ, and the constant parameter of

the success probability function, a, on the payment scheme that would coordinate the supply chain. We

allow a to vary in [0.2,1] to guarantee that the probability of failure q(t) is between zero and one for our

set of treatment levels. Based on this figure, for smaller values of θ, HP coordinates. Note that this is

consistent with the result of Corollary 1, which states that when provider’s risk aversion is small enough,

tBP (µ) ≤ t∗(µ) and therefore the HP mechanism coordinates (Proposition 17). For large enough values of
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θ, tBP (µ) ≥ t∗(µ) and condition (14) is satisfied so the stop-loss mechanism coordinates, consistent with

Proposition 18. For moderate values of θ and large enough values of a (leading to large values of the function

q), where tBP (µ)≥ t∗(µ) but condition (14) is violated, no hybrid or stop-loss coordinating mechanism can

be found.
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Figure 6 Coordination by stop-loss mechanism or hybrid payment scheme or none for V = $60,000, TP = 0.02V

and µ= 8,000

As highlighted earlier, one of the provider’s main concerns under BP is the downside risk resulting from

high-cost patients. Therefore, in this section we turn our attention to the risk exposure measure introduced

in Section 4.4.3. More specifically, for a fixed α and ρ, we find the patient population size that guarantees

Pr
(
wP <ρ

)
= α, where wP is defined in (10) for BP. We use a similar measure for HP and stop-loss (SL), and

compare the patient population size that guarantees a certain risk exposure to that of the BP mechanism.

Table 3 illustrates the performance of the BP system compared to the coordinating mechanisms proposed

in this paper in terms of the population size required to limit the provider’s risk exposure. Table 3(a)

compares the ratio of the population size of the BP to HP systems (N
′(BP)

N′(HP)
where N ′ is obtained from (11))

to reach a certain level of risk exposure under each payment mechanisms. As demonstrated in Figure 6, HP

is coordinating only for small values of θ; therefore we set the parameter values as follows: α= 0.02, θ→ 0

and ρBP = 0.9(B− δBP ), and we modify ρ accordingly for HP, where δ is the conditional expected provider

payoff, obtained from Proposition 13 for BP and can be obtained similarly for HP. Note that a ratio of

greater than 1 indicates a higher risk borne by the provider under the BP mechanism than HP. In general we

find that (a) the patient population size is highly dependent on the value of B under BP, and (b) the patient

population size that guarantees a certain risk exposure under HP is a small fraction of the one needed for

BP.
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1− γ

0.65 0.7 0.75 0.8 0.85 0.9
N′(BP)
N′(HP)

40.3 35.1 29.1 26.0 22.0 19.9

(a) V = $25,000, TP = 0.01V

1− γ

0.06 0.08 0.1 0.12 0.14 0.16
N′(BP)
N′(SL)

18.7 7.4 3.8 2.3 1.5 1.1

(b) V = $45,000, TP = 0.01V

Table 3 Patient population size N needed for provider risk exposure of ρ= 0.9(B− δ)

In Table 3(b), we perform a similar comparison with the stop-loss (SL) payment mechanism. We notice

from Figure 6 that the SL and HP payments cannot both coordinate for the same parameter values. Therefore,

we choose a different parameter set of parameters: α= 0.4 and θ = 0.2, to assure that SL is a coordinating

payment mechanism. Also, in order to make a fair comparison we limit the of range bundled payment values

to an interval near the value of the coordinating bundled payment under SL. (Otherwise, a larger value of

B would heavily benefit BP while the coordinating bundled payment value under SL is relatively small.)

Under the selected set of parameters, 1− γ for SL is 0.1225 thus we vary 1− γ ∈ [0.06,0.18] for BP. Based

on Table 3(b), the stop-loss population size also is less than the BP population size needed to meet a certain

level of risk exposure, given that the bundled payment under BP is comparable to that of SL. This confirms

that SL helps lower the provider’s risk exposure as compared with BP.

In conclusion, both the coordinating SL and HP perform much better than BP overall in terms of provider

risk exposure, and especially for smaller values of the BP bundle payment.
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Appendix E: Proofs

Proof of Lemma 1 We have

Jµ =

∫ c

c

e−θ((κ−1)c2−TP )gµ(c2)dc2 = eθT
P

∫ c

c

e−θ(κ−1)c2gµ(c2)dc2.

Under Assumption 1, we apply Lemma 4 to the function ψ(x) = e−θ(κ−1)x and we find that E[e−θ(κ−1)c2 ] is

non-increasing in µ, hence the result. �

Proof of Proposition 1. The provider’s expected utility for a type µ-patient is

Ec2|µ
[
πP (t)|µ

]
=

1

θ
− 1

θ
e−θ(κ−1)c1(t) (q(t) + (1− q(t))Jµ)

where

Jµ =

∫ c

c

e−θ((κ−1)c2−TP )gµ(c2)dc2.

Taking the derivative with respect to t, we find

dEc2|µ
[
πP (t)|µ

]
/d t= e−θ(κ−1)c1(t) ((κ− 1)c′1(t)(q(t) + (1− q(t))Jµ) + (Jµ− 1)q′(t)/θ) .

If Jµ ≥ 1, because we also know that κ≥ 1, c′(t)≥ 0, q′(t)≥ 0, 0 ≤ q(t)≤ 1 and Jµ ≥ 0, it follows that

the provider’s objective function is non decreasing in t, and thus the provider selects the highest possible

treatment level t. If Jµ < 1, we need to evaluate the second derivative of the provider’s expected utility:

d2Ec2|µ
[
πP (t)|µ

]
/d t2 = e−θ(κ−1)c1(t)[(κ− 1)(c′′1(t)− θ(κ− 1)c′1(t)2)(q(t) + (1− q(t))Jµ)

− (1− Jµ)q′′(t)/θ+ 2(κ− 1)c′1(t)q′(t)(1− Jµ)].

By Assumption 2, we have c′′1(t)−θ(κ−1)c′1(t)2 ≥ 0. Since q′′(t)≤ 0 it follows that d2Ec2|µ [πP (t)|µ]/d t2 ≥ 0

and Ec2|µ [πP (t)|µ] is therefore a convex function of t. Hence, it is maximized at either the lowest or the

highest possible treatment levels t or t, whichever leads to the highest value of the provider’s objective

function. We have

Ec2|µ
[
πP (t)|µ

]
>Ec2|µ

[
πP (t)|µ

]
⇔ e−θ(κ−1)c1(t)

(
q(t) + (1− q(t))Jµ

)
≤ e−θ(κ−1)c1(t) (q(t) + (1− q(t))Jµ)

⇔ e−θ(κ−1)∆c <
q(t) + (1− q(t))Jµ
q(t) + (1− q(t))Jµ

⇔ Jµ >
q(t)e−θ(κ−1)∆c− q(t)

1− q(t)− (1− q(t))e−θ(κ−1)∆c
= 1− 1− e−θ(κ−1)∆c

1− q(t)− (1− q(t))e−θ(κ−1)∆c

where in the right-hand side above, the denominator is clearly positive since q increasing implies 1− q(t)>

1− q(t). It follows that

tFFS(µ) =

 t if Jµ ≥ 1− 1−e−θ(κ−1)∆c

1−q(t)−(1−q(t))e−θ(κ−1)∆c

t else.

By Lemma 1,

Jµ ≥ 1− 1− e−θ(κ−1)∆c

1− q(t)− (1− q(t))e−θ(κ−1)∆c
⇔ µ≤ µ1,



Adida, Mamani, Nassiri: Bundled Payment vs. Fee-for-Service

Article Management Science; manuscript no. MS-14-01857 45

where µ1 is such that

Jµ1
= 1− 1− e−θ(κ−1)∆c

1− q(t)− (1− q(t))e−θ(κ−1)∆c
.

�

Proof of Proposition 2. By Lemma 1, we have J ′µ ≡ ∂ Iµ/∂ µ ≤ 0. Hence, on each domain (µ < µ1 or

µ> µ1), we have

∂ Ec2|µ
[
πP (t)|µ

]
/∂ µ=−1

θ
e−θ(κ−1)c1(tFFS(µ))(1− q(tFFS(µ)))J ′µ ≥ 0.

Moreover, from the proof of Proposition 1, it is clear that Ec2|µ [πP (t)|µ] is continuous at the breakpoint

µ= µ1. The result thus follows. �

Proof of Proposition 3. We first show that the provider’s expected utility at the slope breakpoint µ1 is

positive. This is because
1

θ
>

1

θ
e−θ(κ−1)c1(t) > 0

and Jµ1
< 1, which implies that q(t) + (1− q(t))Jµ < 1.

As a result, the provider may earn a negative expected utility by treating patients with a very low µ if

the provider’s expected utility is negative at µ. The cost threshold of reverse patient selection is then µFFS

such that
1

θ
− 1

θ
e−θ(κ−1)c1(t)

(
q(t) + (1− q(t))JµFFS

)
= 0.

�

Proof of Lemma 2 We have

Iµ =

∫ c

c

eθ(c2+TP )gµ(c2)dc2 = eθT
P

∫ c

c

eθc2gµ(c2)dc2.

It is clear that Iµ > 1. Under Assumption 1, we apply Lemma 4 to the function ψ(x) = eθx and we find that

E[eθc2 ] is non-decreasing in µ, hence the result. �

Proof of Proposition 4. The provider’s expected utility for a type µ-patient is

Ec2|µ
[
πP (t)|µ

]
=

1

θ
− 1

θ
e−θ(B−c1(t)) (q(t) + (1− q(t))Iµ)

where

Iµ =

∫ c

c

eθ(c2+TP )gµ(c2)dc2.

Taking the derivative with respect to t, we find

dEc2|µ [πP (t)|µ]

d t
= e−θ(B−c1(t))

(
−c′1(t)(q(t) + (1− q(t))Iµ)− 1

θ
(1− Iµ)q′(t)

)
(20)

d2Ec2|µ [πP (t)|µ]

d t2
= e−θ(B−c1(t))

(
−θc′1(t)2(q(t) + (1− q(t))Iµ)− (1− Iµ)q′(t)c′1(t)

− c′′1(t)(q(t) + (1− q(t))Iµ)− c′1(t)q′(t)(1− Iµ)− 1

θ
(1− Iµ)q′′(t)

)
=−e−θ(B−c1(t))

[
(1− Iµ)

(
1

θ
q′′(t) + 2c′1(t)q′(t)

)
+ θc′1(t)2(q(t) + (1− q(t))Iµ) + c′′1(t)(q(t) + (1− q(t))Iµ)

]
.
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The second bracketed term above is clearly non-negative. by Assumption 2, the last one is non-negative and

the first one is positive. Hence, for a given µ, the provider’s objective is a concave function of t. As a result,

it is maximized at the only stationary point as long as this point lies in the feasible interval. Setting the first

derivative of the provider’s expected utility to zero leads to (4). �

Proof of Proposition 5. If there exists a µ≤ µ̃≤ µ for which tBP (µ̃) = t, we show that for all µ̃≤ µ≤ µ,

tBP (µ) = t. To see this, note that if tBP (µ̃) = t, then

q′(t)− θc′1(t)

(
1− q(t) +

1

Iµ̃− 1

)
≥ 0, ∀t∈ [t, t].

On the other hand, because Iµ− 1> 0 and increasing in µ by Lemma 2, it follows that

q′(t)− θc′1(t)

(
1− q(t) +

1

Iµ− 1

)
≥ 0, ∀t∈ [t, t],∀µ̃≤ µ≤ µ.

Therefore, tBP (µ) = t. Using a similar logic, it follows that if there exists a µ≤ µ̌≤ µ for which tBP (µ̌) = t,

we show that for all µ≤ µ≤ µ̌, tBP (µ) = t.

For all other values of µ∈ [µ,µ], tBP is the solution to (4). Taking the derivative of (4), we have

d tBP (µ)

dµ

[
θc′′1
(
tBP (µ)

)(
1− q

(
tBP (µ)

)
+

1

Iµ− 1

)
− θc′

(
tBP (µ)

)
q′
(
tBP (µ)

)
− q′′

(
tBP (µ)

)]
− θc′1

(
tBP (µ)

) I ′µ
(Iµ− 1)2

= 0,

where by Lemma 2, I ′µ ≡ ∂ Iµ/∂ µ≥ 0. By assumption 3, because c1 and q are increasing, we have

−q′′
(
tBP (µ)

)
− θc′

(
tBP (µ)

)
q′
(
tBP (µ)

)
>−q′′

(
tBP (µ)

)
− 2θc′

(
tBP (µ)

)
q′
(
tBP (µ)

)
> 0.

By Lemma 2, Iµ− 1> 0 and I ′µ ≥ 0. By Assumption 2, c′′1 (tBP (µ))≥ 0. It thus follows that d tBP (µ)/dµ≥ 0

for all µ∈ [µ,µ]. �

Proof of Proposition 6. Clearly, if t0 < t or t0 > t, we have d tBP (µ)/dµ = 0 and the result holds. If

t≤ t0 ≤ t then taking the derivative of the provider’s expected utility evaluated at tBP (µ) for a given µ, with

respect to µ, and using (4) we get

dEc2|µ [πP (tBP )|µ]

dµ
=−1

θ
e−θ(B−c1(tBP ))

[
d tBP (µ)

dµ
(1− Iµ)

(
q′(tBP )− θc′1(tBP )

[
1− q(tBP ) +

1

Iµ− 1

])
+ (1− q(tBP ))I ′µ

]
=−1

θ
e−θ(B−c1(tBP ))(1− q(tBP ))I ′µ ≤ 0,

where the second equality follows from (4), and the inequality follows from Lemma 2. This indicates that the

provider earns a non-positive utility by treating patients with a very high µ if the provider utility is negative

at µ. The cost threshold of patient selection is then µBP that leads to an expected utility equal to zero. �

Proof of Proposition 7 This proof is adapted from Gan et al. (2004). Let S the set of decisions made

by the central planner (treatment level and possibly patient selection level depending on µ). Let w(S) the

(uncertain) system payoff:

w(S) =wP (S) +wI(S) +wB(S).
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Because the insurer is risk neutral, the system agents’ expected utilities for the set of decisions are:

πP (S) =E[UP (wP (S))]

πI(S) =E[wI(S)]

πB(S) =E[UB(wB(S))].

Consider SC a coordinating set of decisions, i.e. decisions that lead to Pareto-optimal expected utilities.

Suppose that SC does not maximize the expected system payoff, i.e. there exists S∗ such that E[w(S∗)]>

E[w(SC)]. Under decisions S∗, we internally allocate the payoff distribution or arrange side payments between

the insurer and both the beneficiary and provider so that wP (S∗) = wP (SC) and wB(S∗) = wB(SC). Then

the beneficiary and provider are indifferent between S∗ and SC (they get the same utility under each possible

scenario, hence the same expected utility), and the insurer is left with the payoff

wI(S∗) =w(S∗)−wP (S∗)−wB(S∗)

=w(S∗)−wP (SC)−wB(SC)

=w(S∗)−w(SC) +wI(SC).

Hence

πI(S∗) =E[wI(S∗)] =E[w(S∗)]−E[w(SC)] +E[wI(SC)]>E[wI(SC)] = πI(SC),

where the inequality follows from the assumption that E[w(S∗)]>E[w(SC)]. Therefore the provider is better

off with S∗ than with SC . This contradicts the Pareto-optimality of SC .

For the reverse, suppose that S∗ maximizes the expected system payoff. If S∗ is not Pareto-optimal, there

exists SC that improves at least one agent’s expected utility whithout reducing any other agent’s expected

utility. Hence,

πP (SC) +πI(SC) +πB(SC)>πP (S∗) +πI(S∗) +πB(S∗).

Under decisions S∗, we internally allocate the payoff distribution or arrange side payments between the

insurer and both the beneficiary and provider so that wP (S∗) = wP (SC) and wB(S∗) = wB(SC). It follows

that πP (SC) = πP (S∗) and πB(SC) = πB(S∗). Therefore,

E[wI(SC)] = πI(SC)>πI(S∗) =E[wI(S∗)] =E[w(S∗)]−E[w(SC)] +E[wI(SC)],

which implies E[w(S∗)]−E[w(SC)]< 0, contradicting the fact that S∗ maximizes the expected system payoff.

Proof of Proposition 8. Clearly, for a given µ, by Assumptions 2 and 3, the central planner’s objective is

a concave function of t, hence it is maximized at the only stationary point as long as this point lies in the

feasible interval. �

Proof of Proposition 9. Clearly, if t1 < t or t1 > t, we have d t∗(µ)/dµ= 0 and the result holds. If t≤ t1 ≤ t,
taking the derivative of (6), we have

d t∗(µ)

dµ

[
c′′1 (t∗(µ))− (TP +µ+TB)q′′ (t∗(µ))

]
− q′ (t∗(µ)) = 0.
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By Assumptions 2 and 3, and because q is increasing in t, we find that d t∗(µ)/dµ≥ 0. �

Proof of Proposition 10. Clearly, if t1 < t or t1 > t, we have dEc2|µ [πP (t)|µ]/dµ≤ 0. If t≤ t1 ≤ t, taking

the derivative of the expected total system payoff for a given µ, with respect to µ, and using (6) we get

dEc2|µ [πP (t)|µ]

dµ
=
d t∗(µ)

dµ

[
−c′1 (t∗(µ)) + (TP +µ+TB)q′ (t∗(µ))

]
− (1− q (t∗(µ)))

=−(1− q (t∗(µ)))≤ 0.

This indicates that the total expected system payoff may be negative when treating patients with a very

high µ if the total expected system payoff is negative at µ. The expected second-stage cost threshold for

patient selection is then µ∗ that leads to a total expected system payoff equal to zero. �

Proof of Proposition 11. When the provider is risk neutral, it aims at maximizing its expected payoff

Ec2|µ
[
πP (t)|µ

]
=B− c1(t)− (1− q(t))(µ+TP ).

This problem is identical to finding the system-optimal solution when V = TB = 0. It follows that the optimal

risk-neutral treatment level under BP is 
tN0 if t≤ tN0 ≤ t;

t if tN0 < t;

t if tN0 > t,

where tN0 is the unique solution of the equation

c′1(t) = (TP +µ)q′(t). (21)

If tN0 < t, then by definition t∗(µ) ≥ tBP (µ) = t and the left inequality holds. If tN0 > t then by concavity

of the hospital’s expected payoff we have c′1(t) ≤ (TP + µ)q′(t) for all t ∈ [t, t]. Therefore, clearly c′1(t) ≤

(TP +µ+TB)q′(t) and t∗ = t and the left inequality is tight. Finally if t≤ tN0 ≤ t then we have

c′1(t1) = (TP +µ+TB)q′(t1), c′1(tN0 ) = (TP +µ)q′(tN0 ).

Suppose t1 ≤ tN0 . Because c1 is convex,

0≥ c′1(t1)− c′1(tN0 ) = TB q′(t1) + (TP +µ)(q′(t1)− q′(tN0 )).

Since q is increasing, TB q′(t1)> 0, hence q′(t1)−q′(tN0 )< 0. This contradicts that q is concave. Thus t1 > t
N
0 .

Moreover, tN0 = tBP (µ)≥ t, so t1 > t. If t1 ≤ t, then t1 = t∗(µ), and the first inequality follows. If t1 > t,

then t∗(µ) = t≥ tBP (µ). So the left inequality holds for all cases. By Assumption 4, tFFS(µ) = t hence the

second inequality is clear. �

Proof of Corollary 1. Since the first order Taylor expansion of Iµ as θ→ 0 is∫ c

c

(1 + θ(c2 +TP ))gµ(c2)dc2 = 1 + θ(µ+TP ),



Adida, Mamani, Nassiri: Bundled Payment vs. Fee-for-Service

Article Management Science; manuscript no. MS-14-01857 49

the limit of the left hand side of (4) is

lim
θ→0

θc′1(t)

[
1− q(t) +

1

Iµ− 1

]
= c′1(t) lim

θ→0

θ

Iµ− 1
= c′1(t)

1

µ+TP
.

Therefore as θ approaches zero, the (risk-averse) solution of (4) approaches the (risk-neutral) solution of

(21).

Hence, the result follows from Proposition 11 after observing that the risk-neutral case corresponds to the

limit of the risk-averse case for θ→ 0, and that tBP (µ) is clearly continuous in θ. �

Proof of Proposition 12. We want to show that there exists a coordinating bundled payment BC ≥ 0 such

that µ∗ = µBP . From (8) and (5), we find that this holds iff

1− e−θ(BC−c1(tBP (µ∗)))
[
q(tBP (µ∗)) + (1− q(tBP (µ∗)))Iµ∗

]
= 0.

This equation can be rewritten as

eθBC = eθ c1(tBP (µ∗))
[
q(tBP (µ∗)) + (1− q(tBP (µ∗)))Iµ∗

]
.

There exists a solution BC ≥ 0 satisfying the above equation when the right-hand side above is greater than or

equal to 1. We note that because Iµ > 1 and 1−q(tBP (µ∗))≥ 0, we have q(tBP (µ∗))+(1−q(tBP (µ∗)))Iµ∗ ≥ 1,

hence

eθ c1(tBP (µ∗))
[
q(tBP (µ∗)) + (1− q(tBP (µ∗)))Iµ∗

]
≥ eθ c1(tBP (µ∗)) ≥ 1.

As a result, there exists a coordinating bundled payment BC ≥ 0 given by

BC = c1(tBP (µ∗)) +
1

θ
ln
(
q(tBP (µ∗)) + (1− q(tBP (µ∗)))Iµ∗

)
.

Setting γC such that B =BC in (3) leads to the result.

�

Proof of Proposition 13. Replacing the term for wP from (10) in Pr
(
wP <ρ

)
, we get:

Pr
(
wP <ρ

)
= Pr

(
B−

N′∑
i=1

c1(tBP (µi)) + (ci2 +TP )(1− q(tBP (µi))ci2)

N ′
<ρ

)

= Pr

(
N′∑
i=1

c1(tBP (µi)) + (ci2 +TP )(1− q(tBP (µi))ci2)

N ′
>B− ρ

)

= Pr

(
N′∑
i=1

c1(tBP (µi)) + (ci2 +TP )(1− q(tBP (µi))ci2)

N ′
− δ >B− ρ− δ

)

Letting δ = Ec2|E[c2]≤µBP [c1(tBP (E[c2])) + (c+TP )(1− q(tBP (E[c2])))], and using (Hoeffding, 1963, Theo-

rem 2), we get

Pr
(
wP <ρ

)
≤ e−

2N′(B−ρ−δ)2

(ζ−ξ)2 ,

where ζ = c1(tBP (µBP )) + (c + TP )(1 − q(tBP (µ))) and ξ = c1(tBP (µ)) + (c + TP )(1 − q(tBP (µBP ))). The

statement of the proposition is obtained by equating α= e
− 2N′(B−ρ−δ)2

(ζ−ξ)2 and solving for N ′.
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�

Proof of Lemma 3 We have

Lµ =

∫ c

c

eθ((1−β)c2+TP )gµ(c2)dc2 = eθT
P

∫ c

c

eθ(1−β)c2gµ(c2)dc2.

It is clear that Lµ > 1. Under Assumption 1, we apply Lemma 4 to the function ψ(x) = eθ(1−β)x and we find

that E[eθ(1−β)c2 ] is non-decreasing in µ, hence the result. �

Proof of Proposition 14. The provider’s expected utility for a type µ-patient is

Ec2|µ
[
πP (t)|µ

]
=

1

θ
− 1

θ
e−θ(B

′−(1−β)c1(t)) (q(t) + (1− q(t))Lµ)

where

Lµ =

∫ c

c

eθ((1−β)c2+TP )gµ(c2)dc2.

Taking the derivative with respect to t, we find

dEc2|µ [πP (t)|µ]

d t
= e−θ(B

′−(1−β)c1(t))

(
−(1−β)c′1(t)(q(t) + (1− q(t))Lµ)− 1

θ
(1−Lµ)q′(t)

)
d2Ec2|µ [πP (t)|µ]

d t2
= e−θ(B

′−(1−β)c1(t))
(
−θ(1−β)c′1(t)2(q(t) + (1− q(t))Lµ)− (1−Lµ)q′(t)(1−β)c′1(t)

− (1−β)c′′1(t)(q(t) + (1− q(t))Lµ)− (1−β)c′1(t)q′(t)(1−Lµ)− 1

θ
(1−Lµ)q′′(t)

)
=−e−θ(B′−(1−β)c1(t))

[
(1−Lµ)

(
1

θ
q′′(t) + 2(1−β)c′1(t)q′(t)

)
+θ(1−β)2c′1(t)2(q(t) + (1− q(t))Lµ) + (1−β)c′′1(t)(q(t) + (1− q(t))Iµ)

]
.

The second bracketed term above is clearly non-negative. The last one is non-negative by Assumption 2.

The first one is positive by Lemma 3 and Assumption 2 after noting that (1/θ)q′′(t) + 2(1− β)c′1(t)q′(t)≤

(1/θ)q′′(t) + 2c′1(t)q′(t). Hence, for a given µ, the provider’s objective is a concave function of t. As a result,

it is maximized at the only stationary point as long as this point lies in the feasible interval. Setting the first

derivative of the provider’s expected utility to zero leads to (12).

�

Proof of Proposition 16. Similarly to the proof of Proposition 11, we find that under the hybrid payment

scheme, the treatment level satisfies (unless it lies at one of the extremes):

c′1(t2) =

(
TP

1−β
+µ

)
q′(t2).

Moreover, if

B′− (1−β)c1(tHP (µ))− (TP + (1−β)µ)(1− q(tHP (µ)))< 0,

then the provider rejects patients of type µ≥ µHP where

B′− (1−β)c1(tHP (µHP ))− (TP + (1−β)µHP )(1− q(tHP (µHP ))) = 0. (22)
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The system-optimal treatment level satisfies (unless it lies at one of the extremes):

c′1(t1) = (TP +µ+TB)q′(t1).

These two equations giving treatment levels are equivalent iff TP/(1−β) = TP +TB, i.e. β = TB/(TB +TP ).

From (8) and (22), we have

µ∗ =
V − c1(t∗(µ∗))

1− q(t∗(µ∗))
−TP −TB, µHP =

B′/(1−β)− c1(tHP (µHP ))

1− q(tHP (µHP ))
− TP

1−β
.

These two quantities are equal iff

V − c1(t∗(µ∗))

1− q(t∗(µ∗))
−TP −TB =

B′/(1−β)− c1(tHP (µHP ))

1− q(tHP (µHP ))
− TP

1−β
. (23)

In this case, when β = TB/(TB +TP ) we also have tHP (µHP ) = t∗(µ∗), hence equation (23) can be rewritten

B′ = (1−β)

(
V − (TP +TB)(1− q(t∗(µ∗))) +TP

1− q(t∗(µ∗))
1−β

)
= (1−β)

(
V +

(
TP

1−β
− (TP +TB)

)
(1− q(t∗(µ∗)))

)
= (1−β)

(
V +

(
TP

1−TB/(TB +TP )
− (TP +TB)

)
(1− q(t∗(µ∗)))

)
= V (1−β).

�

Proof of Proposition 17. As shown in the proof of Proposition 14, the objective of the provider under

HP is a concave function with the following first derivative.

dEc2|µ [πP (t)|µ]

d t
=
e−θ(B

′−(1−β)c1(t))

θ

(
q′(t)− θ(1−β)c′1(t)

[
1− q(t) +

1

Lµ− 1

])
, (24)

where

Lµ =

∫ c

c

eθ((1−β)c2+TP )gµ(c2)dc2 = eθT
P

∫ c

c

eθ(1−β)c2gµ(c2)dc2.

We first show the existence of β that can coordinate the treatment levels, and then show there exists a B′ to

coordinate patient selection levels. We consider three cases: (1) t∗(µ) = t, (2) t∗(µ) = t, and (3) t < t∗(µ)< t.

Case 1: t∗(µ) = t. If β→ 1 then (24) implies that the derivative of Ec2|µ [πP (t)|µ] is non-negative for all

t∈ [t, t] since c′1(t), q(t), and Lµ are all finite parameters. Therefore, tHP (µ)|β→1 = t= t∗(µ).

Case 2: t∗(µ) = t. If β→ 0 then (24) is the same as the derivative of the hospital’s utility under BP with

bundled payment B′. Note that we assumed tBP (µ) ≤ t∗(µ) = t. Since t∗(µ) = t it follows tHP (µ)|
β→0 =

tBP (µ) = t= t∗(µ).

Case 3: t < t∗(µ)< t. In order to show that the there exists a β to coordinate the treatment levels in this

case, we need to show the existence a β for which t∗(µ) is the root of (24), where t∗(µ) solves the following

at the system optimum:

c′1(t) = (TP +µ+TB)q′(t).
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Plugging t∗(µ) into (24) and using the property of the system optimum solution, we need to show the

existence of β for which:

1

TP +µ+TB
− θ(1−β)

[
1− q(t∗(µ)) +

1

Lµ− 1

]
= 0. (25)

Thus, a hybrid system coordinates the treatment level decision iff there exists a β ∈ [0,1] that satisfies (25)

(note that β affects Lµ as well, so this equation is not linear in β). We note that clearly there is no β

that satisfies (25) for all µ, hence it is impossible to design a hybrid payment scheme that coordinates

simultaneously all beneficiary types.

When β→ 1−, the left-hand-side of (25) equals 1/(TP +µ+TB)> 0.

When β = 0, Lµ = Iµ and thus the left-hand-side of (25) equals:

1

TP +µ+TB
− θ
[
1− q(t∗(µ)) +

1

Iµ− 1

]
,

which is the derivative of the provider’s utility under BP evaluated at t∗(µ). Hence, when t∗(µ)≥ tBP (µ),

then the above expression is non-positive.

Because the left-hand-side of (25) is positive for β = 1 and non-positive for β = 0, while being continuous

in β, it follows that there exists β∗ ∈ [0,1] that satisfies (25) and thus that coordinates the treatment level

decision.

We now show the existence of B′ for which patient selection levels are coordinated. Recall that at the

system optimum, if

V −TP −µ−TB − c1(t∗(µ)) + (TP +µ+TB)q(t∗(µ))< 0,

then the total system payoff is maximized when beneficiaries of type µ≥ µ∗ are rejected, where

V −TP −µ∗−TB − c1(t∗(µ∗)) + (TP +µ∗+TB)q(t∗(µ∗)) = 0.

At HP, if

1− e−θ(B′−(1−β)c1(tHP (µ)))
[
q(tHP (µ)) + (1− q(tHP (µ)))Lµ

]
< 0

then the provider rejects beneficiaries of type µ≥ µHP where µHP is such that

1− e−θ(B′−(1−β)c1(tHP (µHP )))
[
q(tHP (µHP )) + (1− q(tHP (µHP )))LµHP

]
= 0.

We want to show that there exists a coordinating bundled payment B′C ≥ 0 such that µ∗ = µHP . From the

equations above, we find that this holds iff

1− e−θ(B′C−(1−β)c1(tHP (µ∗)))
[
q(tHP (µ∗)) + (1− q(tHP (µ∗)))Lµ∗

]
= 0.

This equation can be rewritten as

eθB
′
C = eθ(1−β)c1(tHP (µ∗))

[
q(tHP (µ∗)) + (1− q(tHP (µ∗)))Lµ∗

]
.

There exists a solution B′C ≥ 0 satisfying the above equation when the right-hand side above is greater than or

equal to 1. We note that because Lµ > 1 and 1−q(tHP (µ∗))≥ 0, we have q(tHP (µ∗))+(1−q(tHP (µ∗)))Lµ∗ ≥ 1,

hence

eθ(1−β)c1(tHP (µ∗))
[
q(tHP (µ∗)) + (1− q(tHP (µ∗)))Lµ∗

]
≥ eθ(1−β)c1(tHP (µ∗)) ≥ 1.
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As a result, there exists a coordinating bundled payment B′C ≥ 0 given by

B′C = (1−β)c1(t∗(µ∗)) +
1

θ
ln (q(t∗(µ∗)) + (1− q(t∗(µ∗)))Lµ∗) .

�

Proof of Proposition 18. For a given µ, the provider selects the treatment level t∈ [t, t] that maximizes

Ec2|µ
[
πP (t)|µ

]
=

1

θ
− 1

θ
e−θ(B−c1(t)) (q(t) + (1− q(t))Mµ(S))

where

Mµ(S) =

∫ S

c

eθ(c2+TP )gµ(c2)dc2 + eθ(S+TP )

∫ c

S

gµ(c2)dc2.

Taking the derivative of the provider’s utility we have:

∂ Ec2|µ [πP (t)|µ]

∂ t
=
e−θ(B−c1(t))

θ
[q′(t)Mµ(S)− q′(t)− θq(t)c′1(t)− (1− q(t))θc′1(t)Mµ(S)] .

∂2Ec2|µ [πP (t)|µ]

∂ t2
=
e−θ(B−c1(t))

θ
[(q′′(t) + 2θc′1(t)q′(t))(Mµ(S)− 1)− θc′′1(t)q(t)− θc′′1(t)(1− q(t))Mµ(S)

−θ2(c′1(t))2q(t)− θ2(c′1(t))2(1− q(t))Mµ(S)
]
.

Note that the first term in the bracket is negative due to Assumption 3, and the other terms are negative

due to convexity of c1(t) and concavity of q(t). So the solution of the first derivative is indeed the maximizer

of the hospital’s utility. Now let, (for clarity of exposition, because here µ is fixed, we write t∗ instead of

t∗(µ) below)

∂ Ec2|µ [πP (t)|µ]

∂ t

∣∣∣∣
t=t∗,S=c

= e−θ(B−c1(t∗))

[
−c′1(t∗)(q(t∗) + (1− q(t∗))eθ(c+TP ))− 1

θ
q′(t∗)(1− eθ(c+TP ))

]
(26)

and
∂ Ec2|µ [πP (t)|µ]

∂ t

∣∣∣∣
t=t∗,S=c

= e−θ(B−c1(t∗))

[
−c′1(t∗)(q(t∗) + (1− q(t∗))Iµ)− 1

θ
q′(t∗)(1− Iµ)

]
. (27)

Note that (26) is negative due to (14). Furthermore, (27) is identical to the derivative with respect to t of

the expected provider utility under BP (20) evaluated at t= t∗. As shown in the proof of Proposition 4, the

expected provider utility under BP is a concave function of t, and its derivative is equal to zero at t= tBP .

When t∗ ≤ tBP , concavity implies that the derivative of the expected provider utility under BP evaluated at

t= t∗ is positive. Therefore, there exists a stop-loss protection level for which the derivative of the provider’s

objective is zero.

We recall: at the system optimum, if

V −TP −µ−TB − c1(t∗(µ)) + (TP +µ+TB)q(t∗(µ))< 0,

then the total system payoff is maximized when beneficiaries of type µ≥ µ∗ are rejected, where

V −TP −µ∗−TB − c1(t∗(µ∗)) + (TP +µ∗+TB)q(t∗(µ∗)) = 0,

which results in

µ∗ =
V − c1(t∗(µ∗))

1− q(t∗(µ∗))
−TP −TB. (28)
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In the stop-loss mechanism, if

1− e−θ(B−c1(tSL(µ)))
[
q(tSL(µ)) + (1− q(tSL(µ)))Mµ(S)

]
< 0

then the provider rejects beneficiaries of type µ≥ µSL where µSL is such that

1− e−θ(B−c1(tSL(µSL)))
[
q(tSL(µSL)) + (1− q(tSL(µSL)))MµSL(S)

]
= 0.

If we solve the above equation for B and use coordinating S∗ (if exists) we have

B =
1

θ
ln
(
q(t∗(µSL)) +

(
1− q(t∗(µSL))

)
MµSL(S∗)

)
+ c1(t∗(µSL)). (29)

In order to be able to coordinate the patient selection level there should exist a non-negative B such that

µ∗ = µSL. From Equation (29), it is clear that B is non-negative (MµSL > 1). µ∗ as appeared in Equation

(28), can be replaced with µSL in Equation (29). �

Appendix F: Patient Type-Dependent Probability of Success

In this section we examine scenarios where the probability of complication depends not only on the treatment

level in the first stage but also on the patient type. That is, the success probability is stated as q(t, µ).

To keep the model tractable and derive analytical results, we assume that the provider is risk neutral and

maximizes her expected payoff. Interestingly, most of the analysis implemented in the paper and all of the

managerial insights carry over to this case so long as the following two assumptions hold.

Assumption AC1. The success probability q(t, µ) has the following properties:

1.
∂q(t, µ)

∂µ
≤ 0.

2.
∂2q(t, µ)

∂t∂µ
≥ 0.

The first part of the assumption states that the success probability is lower for potentially costlier patients.

Therefore this assumption states that a less costly patient is more likely to be healthier and therefore may

have a higher probability of success compared to costlier patient for the same treatment level. The second

part of the assumption states that marginal increase in the treatment level is more effective for costlier

patients supposedly since these are the patients who are in more need of the treatment in the first place.

We note that in this case the provider’s and system’s payoffs are

πP (t) = (κ− 1)c1(t) + (1− q(t, µ))(−TP + (κ− 1)c2), (provider’s payoff under FFS). (30)

πP (t) =B− c1(t) + (1− q(t, µ))(−TP − c2), (provider’s payoff under BP). (31)

πP (t) =B′+ (β− 1)c1(t) + (1− q(t, µ))(−TP + (β− 1)c2), (provider’s payoff under HP). (32)

πS(t) =−c1(t) + (1− q(t, µ))(−TP − c2−TB) +V, (system’s payoff). (33)

Under Assumption AC1 the two key results of our paper continue to hold true as stated in Propositions AC1

and AC2 below
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Proposition AC1. For a patient of type µ, the treatment levels under the different payment settings

are ranked as follows:

tBP (µ)≤ t∗(µ)≤ tFFS(µ).

Proposition AC2. A hybrid system with β = TB/(TB +TP ) and B′ = V TP/(TB +TP ) (i.e. B′ = V (1−
β)) aligns the patient selection and treatment intensity outcomes to those of the system optimum.

Propositions AC1 and AC2 are the equivalents of Propositions 11 and 16, respectively. In the remainder

of the this section we state and derive the results required for the proof of these statements.

F.1. Proofs

Proof of Proposition AC1. Using Lemmas AC1, AC2, and AC3 below, the proof is similar to the proof

of Proposition 11. �

Proof of Proposition AC2. Using Lemmas AC3 and AC4 below, the proof is similar to the proof of

Proposition 16. �

Lemma AC1. Under the FFS mechanism defined in (30), the optimal treatment intensity is tFFS = t.

Proof. Using Assumption 4, the proof is similar to the proof of Proposition 1 when θ→ 0. �

Lemma AC2. Under the BP mechanism defined in (31),

(a) the optimal treatment intensity is given by

tBP (µ) =


t0 if t≤ t0 ≤ t;

t if t0 < t;

t if t0 > t,

(b) costlier beneficiaries require a higher treatment intensity, and

(c) the provider may have incentives to implement patient selection.

Proof.

Part (a): The proof is similar to the proof of Proposition 4 when θ→ 0.

Part (b): The proof is similar to the proof of Proposition 5 when θ→ 0 with the qualification that taking

derivative of (31) with respect to µ results in

∂q(t, µ)

∂t
+
(
TP +µ

) ∂2q(t, µ)

∂t∂µ
=
d tBP (µ)

d µ

(
c′′1(t)− (TP +µ)

∂2q(t, µ)

∂t2

)
︸ ︷︷ ︸

≥0

.

The necessary and sufficient condition for the claim to hold true is then,
∂q(t, µ)

∂t
+
(
TP +µ

) ∂2q(t, µ)

∂t∂µ
≥ 0.

This condition is satisfied considering Assumption AC1.

Part (c): The proof is similar to the proof of Proposition 6 when θ→ 0 with the qualification that taking

the derivative of the provider’s expected utility for a given µ, with respect to µ we have
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dEc2|µ [πP (t)|µ]

dµ
=
d tBP (µ)

dµ

[
−c′1

(
tBP (µ)

)
+ (TP +µ)

∂q(t(µ), µ)

∂t
|t=tBP

]
−
[
1− q

(
tBP (µ)

)]
+ (TP +µ)

(
∂q(tBP (µ), µ)

∂µ

)
=−

[
1− q

(
tBP (µ)

)]
+ (TP +µ)

(
∂q(tBP (µ), µ)

∂µ

)
< 0.

The last inequality holds based of Assumption AC1. Therefore, the provider’s expected utility for a ben-

eficiary of a given type µ decreases with µ, and the provider may have an incentive to implement patient

selection, if

B− c1(tBP (µ))−
(
TP +µ

)
(1− q(tBP (µ), µ))< 0.

�

Lemma AC3. Under the system optimum case defined in (33),

(a) the optimal treatment intensity is given by

t∗(µ) =


t1 if t≤ t1 ≤ t;

t if t1 < t;

t if t1 > t,

(b) costlier beneficiaries require a higher treatment intensity, and

(c) the central planner may have incentives to implement patient selection.

Proof. The proof is similar to the proof of Lemma AC2. �

Lemma AC4. Under the HP mechanism defined in (32),

(a) the optimal treatment intensity is given by

tHP (µ) =


t2 if t≤ t2 ≤ t;

t if t2 < t;

t if t2 > t,

(b) costlier beneficiaries require a higher treatment intensity, and

(c) the provider may have incentives to implement patient selection.

Proof. The proof is similar to the proof of Lemma AC2. �


