
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Designing Robot Behavior in Human-Robot Interactions

Permalink
https://escholarship.org/uc/item/8tz6x0t9

Author
Liu, Changliu

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8tz6x0t9
https://escholarship.org
http://www.cdlib.org/

Designing Robot Behavior in Human-Robot Interactions

by

Changliu Liu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Masayoshi Tomizuka, Chair
Professor Francesco Borrelli

Professor Michael Christ

Fall 2017

Designing Robot Behavior in Human-Robot Interactions

Copyright 2017
by

Changliu Liu

1

Abstract

Designing Robot Behavior in Human-Robot Interactions

by

Changliu Liu

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Human-robot interactions (HRI) have been recognized to be a key element of future
robots in many application domains such as manufacturing, transportation, service and
entertainment. These applications entail huge social and economical impacts. Future robots
are envisioned to function as human’s counterparts, which are independent entities that
make decisions for themselves; intelligent actuators that interact with the physical world;
and involved observers that have rich senses and critical judgements. Most importantly, they
are entitled social attributions to build relationships with humans. We call these robots co-
robots.

Technically, it is challenging to design the behavior of co-robots. Unlike traditional robots
that work in structured and deterministic environments, co-robots need to operate in highly
unstructured and stochastic environments. The fundamental research question to address
in this dissertation is how to ensure that co-robots operate efficiently and safely in dynamic
uncertain environments.

The focus of this dissertation is 1) to set up a unified analytical framework for various
human-robot systems; 2) to establish a methodology to design the robot behavior to address
the fundamental problem.

A multi-agent framework to model human-robot systems is introduced in Chapter 2. In
order to address the uncertainties during human-robot interactions, a unique parallel plan-
ning and control architecture is introduced in Chapter 2, which has a cognition module for
human behavior estimation and human motion prediction, a long term global planner to
ensure efficiency of robot behavior, and a short term local planner to ensure real time safety
under uncertainties. The functionalities of these components are discussed in Chapter 3 to
Chapter 5. Chapter 3 discusses the cognition module, which includes offline classification
and online adaptation of various human behaviors. Chapter 4 and Chapter 5 discuss the op-
timal control or optimization problems for short term and long term robot motion planning.
In a cluttered environment, the optimization problems are highly nonlinear and non-convex,
hence hard to solve in real time, which may delay the robot’s response in emergency sit-
uations. Fast online algorithms are developed to handle the issue: the convex feasible set

2

algorithm (CFS) for the long term optimization, and the safe set algorithm (SSA) for the
short term optimization. In particular, the CFS algorithm transforms the non-convex op-
timization problem into a sequence of convex optimization problems that can be solved
efficiently online, which converges in fewer iterations and runs faster than conventional non-
convex optimization solvers as shown in Chapter 6.

A method for theoretical evaluation of the designed behaviors is discussed in Chapter 7.
The experimental platforms to evaluate the design are discussed in Appendix A. Applications
of the proposed method on different co-robots are discussed in Chapter 8 and Chapter 9.
Chapter 8 illustrates the application on automated vehicles in the framework of the robustly
safe automated driving (ROAD) system. Chapter 9 discusses the application on industrial
collaborative robots in the framework of the robot safe interaction system (RSIS).

i

To my family

ii

Contents

Contents ii

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Human-Robot Interactions: An Overview . 1
1.2 Modes of Interactions . 2
1.3 Robot Behavior Design . 4

1.3.1 The Three Components in A Behavior System 4
1.3.2 Design of the Knowledge . 8
1.3.3 Design of the Logic . 9
1.3.4 Design of the Learning Process . 10

1.4 Real Time Computation . 11
1.5 System Evaluation . 11
1.6 Dissertation Contributions and Outline . 12

I Theory 15

2 Framework and Architecture 16
2.1 The Multi-Agent Model for Human-Robot Interactions 16

2.1.1 The General Multi-Agent Model . 16
2.1.2 Models for Different Modes of Interactions 17
2.1.3 Features of Human-Robot Systems 19

2.2 Agent Behavior Design and Architecture . 20
2.2.1 Knowledge: The Optimization Problem 20
2.2.2 Logic: The Motion Planning Skill . 22
2.2.3 Learning Process: The Cognition Skill 26

2.3 Conclusion . 27

3 Cognition: Understanding Others’ Behaviors 28

iii

3.1 Overview . 28
3.2 Classification of the Behaviors . 29

3.2.1 Dynamic Classification using Hidden Markov Model 29
3.2.2 Example: Behavior Classification of Surrounding Vehicles 29

3.3 Adaptation of the Behavior Model . 30
3.3.1 Online Learning Using Parameter Adaptation 30
3.3.2 Quantifying the Uncertainty . 32
3.3.3 Example: Identification of a Linear Time Varying System 33

3.4 Conclusion . 34

4 Safety-Oriented Local Motion Planning 35
4.1 Overview . 35
4.2 The Safety-Oriented Behavior Design . 37
4.3 The Safe Set Algorithm (SSA) . 41

4.3.1 The Algorithm . 41
4.3.2 Example: Local Planning of a Planar Robot Arm 43

4.4 The Safe Exploration Algorithm (SEA) . 44
4.4.1 The Algorithm . 44
4.4.2 Example: Local Planning of a Vehicle 46

4.5 An Integrated Method for Time Varying Topology 48
4.5.1 The Algorithm . 48
4.5.2 Example: Robot Navigation in a Crowded Environment 51

4.6 Conclusion . 51

5 Efficiency-Oriented Global Motion Planning 53
5.1 Overview . 53
5.2 Problem Formulation . 54
5.3 Optimization-Based Trajectory Planning . 56

5.3.1 Problem Formulation . 56
5.3.2 Quadratic Approximation . 57
5.3.3 Examples: Trajectory Planning for Various Systems 60

5.4 Optimization-Based Speed Profile Planning 62
5.4.1 Problem Formulation . 63
5.4.2 Quadratic Approximation . 66
5.4.3 Example: Speed Profile Planning for Autonomous Vehicles 68

5.5 Conclusion . 71

6 Real-Time Numerical Optimization 74
6.1 Non-Convex Optimization on Linear Space 74

6.1.1 The Benchmark Problem . 74
6.1.2 The Convex Feasible Set Algorithm 78
6.1.3 Theoretical Results . 81

iv

6.1.4 Applications . 82
6.2 Non-Convex Optimization on Nonlinear Space 85

6.2.1 The Benchmark Problem . 86
6.2.2 The Slack Convex Feasible Set Algorithm 88
6.2.3 Theoretical Results . 90
6.2.4 Applications . 92

6.3 Conclusion . 94

7 Evaluation of Systems under Information Asymmetry 97
7.1 Overview . 97
7.2 Evaluation of the Interactions in Multi-Agent Systems 99

7.2.1 The Multi-Agent Model . 99
7.2.2 The Simultaneous Dynamic Game . 100
7.2.3 Evaluation of the Interactions: the Trapped Equilibrium 102

7.3 The Equilibria in Quadratic Games . 102
7.3.1 The Model and Assumptions . 102
7.3.2 The Benchmark System in the Nash Equilibrium 103
7.3.3 The Blame-Me Strategy and the Trapped Equilibrium 103
7.3.4 The Blame-All Strategy and the Trapped Equilibrium 106

7.4 Example: Robot-Robot Cooperation . 109
7.5 Conclusion . 110

II Applications 111

8 The Robustly-Safe Automated Driving (ROAD) System 112
8.1 Overview . 112
8.2 The Multi-Agent Traffic Model . 113

8.2.1 The System Model . 115
8.2.2 The Optimal Control Problem . 116

8.3 The Functions in the ROAD System . 116
8.3.1 Cognition: Understanding Other Road Participants 117
8.3.2 Online Motion Planning and Control 121

8.4 Performance . 123
8.4.1 On-Road Autonomous Driving . 123
8.4.2 Driving in Unstructured Environments 130

8.5 Discussion and Conclusion . 131

9 The Robot Safe Interaction System (RSIS) 137
9.1 Overview . 137
9.2 Algorithmic Safety Measures: The Optimization Problem 139

9.2.1 Problem Formulation . 139

v

9.2.2 The Optimization Problem . 140
9.3 Algorithmic Safety Measures: The Controller Architecture 140

9.3.1 The Controller Architecture . 140
9.3.2 The Baseline Controller . 141
9.3.3 The Human Model and the Human Motion Predictor 141
9.3.4 The Safety Controller . 142

9.4 Case Studies . 144
9.4.1 Planar Robot Arm . 144
9.4.2 Six Degree of Freedom Robot Arm 147

9.5 Discussion and Conclusion . 148

10 Final Words 153

A Evaluation Platforms 155
A.1 Overview . 155
A.2 A Multi-Vehicle Human-in-the-Loop Simulation Platform 156
A.3 A Human-in-the-loop Simulation Platform for Industrial Robots 159
A.4 A Dummy-Robot Platform for Industrial Robots 159

Bibliography 161

vi

List of Figures

1.1 Various modes of human-robot interactions. 3
1.2 Components in a behavior system. 5
1.3 The life cycle of a behavior system. 6
1.4 Different ways to design the logic. 6
1.5 The classification of behavior systems. 8
1.6 Dissertation outline. 14

2.1 The block diagram of the multi-agent system. 17
2.2 The block diagram of the decomposable multi-agent system. 18
2.3 The designed architecture of the logic in this dissertation. 21
2.4 Illustration of the accumulation of uncertainty in the long term planning. 23
2.5 Illustration of the local optima problem with the local planner. 24
2.6 Illustration of the performance of the parallel planning. 25
2.7 The time flow in the parallel planners. 26
2.8 Cognition: the designed learning process in this dissertation. 27

3.1 Behavior classification for a vehicle in a two-lane case. 30
3.2 Identification of a linear time varying system. 33

4.1 Conflicts in multi-agent systems and safety issues in human-robot interactions. . 36
4.2 Illustration of the state space safety constraints XS, R1

S, R2
S and R3

S. 38
4.3 Solving the conflicts by re-planning in the safe region R3

S. 39
4.4 The safety index and the safe set. 40
4.5 Application of the SSA algorithm on a planar robot arm. 42
4.6 Illustration of the safety constraint in the belief space. 45
4.7 Application of the SEA algorithm and the SSA algorithms on an AGV. 46
4.8 Comparison between the SEA algorithm and the SSA algorithm. 49
4.9 Application of the integrated method on robot navigation. 52

5.1 The global motion planning problem and typical methods. 54
5.2 The constraints for a planar robot arm in Cartesian and Configuration spaces. . 58
5.3 The convex feasible set and its geometric interpretation. 59
5.4 Trajectory smoothing for a mobile vehicle. 61

vii

5.5 Trajectory smoothing for a robot arm. 62
5.6 Trajectory smoothing for an areal vehicle. 63
5.7 Two optimization schemes to obtain the speed profile. 64
5.8 Illustration of the constraints and the topological trajectories on the s− T graph. 65
5.9 Urban driving scenarios. 68
5.10 Speed profile planning for driving on a curvy road. 70
5.11 Speed profile planning for overtake. 71
5.12 The optimal time stamps for overtake. 72
5.13 Speed profile planning for turning at intersection. 73

6.1 Illustration of Assumption 6.2, the geometric features of the constraint Γ. 75
6.2 Geometry of problem 6.1 and the idea of the convex feasible set algorithm. . . . 76
6.3 Representing Γ using Γi and φi. 78
6.4 The choice of sub-gradient ∇̂φi(xr) on non-smooth point xr. 80
6.5 Definition of local optima. 81
6.6 Simulation environment and the optimal trajectories for different horizon h. . . 84
6.7 The decomposed time per iteration using Algorithm 6.1. 85
6.8 The run time statistics. 85
6.9 Geometric illustration of the non-convex optimization on a nonlinear space. . . . 87
6.10 The relaxation of the nonlinear equality constraint. 90
6.11 The motion planning problem in 2D. 95
6.12 Decomposition of the computation time in SCFS. 95
6.13 Profiles of cost and feasibility in SCFS and ITP-J. 96
6.14 Performance of SCFS under different conditions. 96

7.1 The response curve and the Nash Equilibrium 100
7.2 The update of the control law under the adaptive algorithm (the Blame-Me strategy)100
7.3 The update of the control law under the Blame-All strategy 101
7.4 Multi-robot cooperation . 108
7.5 The trajectories under different strategies . 108
7.6 The simulation profile under the Blame-Me strategy 109
7.7 The simulation profile under the Blame-All strategy 109

8.1 Architecture for the robustly-safe automated driving (ROAD) system 113
8.2 Illustration of the function of the ROAD system. 114
8.3 The kinematic bicycle model. 114
8.4 The block diagram for local interactions among road participants. 115
8.5 The structure of the learning and prediction center. 118
8.6 The behavior transition model and the hidden Markov model. 119
8.7 The structure of the decision making center. 121
8.8 The safety constraint US with respect to a front vehicle. 124
8.9 The safety constraint US with respect to a vehicle in the adjacent lane. 125

viii

8.10 The test vehicle: Lincoln MKZ. 126
8.11 Case 1 in lane following: stationary obstacle. 127
8.12 Case 2 in lane following: slow front vehicle. 128
8.13 Case 3 in lane following: fast cut-in vehicle. 129
8.14 Case 1 in lane change: a parallel vehicle in the target lane. 130
8.15 Case 2 in lane change: a slowing down vehicle in the target lane. 131
8.16 Case 3 in lane change: simultaneous lane change from opposite directions. . . . 132
8.17 Performance of the ROAD system in heavy traffic. 133
8.18 The safety constraints and maneuvers for lane following in mixed traffic. 134
8.19 The safety constraints and maneuvers for lane change in mixed traffic. 135
8.20 Considering the dynamic constraint together with the safety constraint. 135
8.21 Application of the ROAD system for driving in a parking lot 136
8.22 A driver assistive system using the ROAD system. 136

9.1 Human-robot collaboration and co-inhabitance in future production lines. 138
9.2 The controller architecture. 141
9.3 The human model and the capsules. 142
9.4 The planar robot arm and the simulation environment. 145
9.5 The simulation result of the planar robot. 146
9.6 The 6DoF robot arm and the simulation environment. 147
9.7 The simulation profile of the 6DoF robot arm 149
9.8 The simulated response of the 6DoF robot arm: scenario 1 150
9.9 The simulated response of the 6DoF robot arm: scenario 2 151

A.1 The evaluation platforms. 157
A.2 A multi-vehicle platform to evaluate autonomous driving 158
A.3 The human-in-the-loop simulation platform for industrial robots. 159
A.4 The dummy-robot platform for industrial robots 160

ix

List of Tables

3.1 The notations in state estimation and prediction. 32

6.1 Comparison among CFS, ITP and SQP. 84
6.2 Comparison among SCFS, ITP, ACT and SQP. 94

9.1 Running time of the safety controller. 149

x

Acknowledgments

The past five years has been an incredible journey in my life. I would not have come this
far without the tremendous help from many people.

My deep and sincere gratitude goes to my Ph.D. advisor Professor Masayoshi Tomizuka,
who has been a great mentor to me during the past five years for his profound knowledge,
insightful visions, enthusiasm on work, and humor in life. Moreover, Professor Tomizuka
respects all my research ideas, inspires me to explore the unknowns, and offers the strongest
support in my career development. I sincerely wish I could be a great person, an extraordi-
nary mentor as he is in the future.

To the late Professor J. Karl Hedrick, I am deeply thankful for his generous help and
support during my Ph.D study. Professor Hedrick was on my dissertation committee. He
also served as the chair of my qualifying exam committee and as a member in my Master of
Science committee. His kindness and generosity live forever in my heart.

I am very grateful to Professor Francesco Borrelli and Professor Michael Christ for serving
in my dissertation committee. Professor Christ, who also served as the chair in my Master
of Art committee and as a member in my qualifying exam committee, is the person that
leads me to the beautiful world of Mathematics, which provides me a powerful tool to see
through complications. Meanwhile, I am thankful to Professor Pieter Abbeel and Professor
Kameshwar Poolla for serving in my qualifying exam committee, as well as to Professor Jon
Wilkening for serving in my Master of Art committee.

Special thanks go to Berkeley Fellowship, Denso International America and FANUC
Corporation, Japan, the sponsors for the work in this dissertation. The valuable discussions
with employees in those companies enhanced this dissertation from the industrial perspective.

Being a member in the Mechanical System Control (MSC) laboratory has been wonderful
in the past five years. I received tremendous help from former MSC members: Dr. Wenjie
Chen, Professor Xu Chen, Professor Wenlong Zhang, and Dr. Yizhou Wang, who are like
big brothers and have provided so many precious suggestions to me in life and career. In
addition, I sincerely thank my collaborators for all inspiring discussions: Wei Zhan, Jianyu
Chen, Chen Tang, and Long Xin in autonomous driving, and Dr. Chung-Yen Lin, Hsien-
Chung Lin, Te Tang, Yu Zhao, Yujiao Cheng, and Yongxiang Fan in robotics. I was also
inspired by many current and past colleagues in the MSC lab and thank you all: Chi-Shen
Tsai, Kan Kanjanapas, Mike Chan, Cong Wang, Raechel Tan, Junkai Lu, Robot Matthew,
Minghui Zheng, Chen-Yu Chan, Liting Sun, Kevin Haniger, Xiaowen Yu, Yaoqiong Du,
Shiying Zhou, Shuyang Li, Cheng Peng, Daisuke Kaneishi, Zining Wang, Kiwoo Shin, Yu-
Chu Huang, Jiachen Li, Zhuo Xu, and Yeping Hu. In addition, I would like to thank all my
friends in Berkeley for the wonderful time that we spent together, in particular, Yubei Chen,
Chang Liu, Haoyu Wu, Shiman Ding, and Chen Chen.

Last but not least, my deepest love goes to my parents, my uncle and aunt, my cousins
Julia and Angela, and my fiancé Xingxing, for your unconditioned love, support and encour-
agement.

1

Chapter 1

Introduction

1.1 Human-Robot Interactions: An Overview

Human-robot interactions (HRI) have been recognized to be a key element of future
robots in many application domains such as manufacturing, transportation, service and
entertainment. In factories, robots are leaving their cages and starting to work cooperatively
with human workers [69]. Manufacturers are interested in combining human’s flexibility and
robot’s productivity in flexible production lines [62, 64]. Meanwhile, as automated driving is
widely viewed as a promising technology to revolutionize today’s transportation system [21],
substantial research efforts are directed into the field from research groups and companies
[33]. As a consequence, autonomous vehicles interact with vehicles driven by human drivers
on public roads, which poses new challenges in road safety [106]. Another example is in the
field of rehabilitation. In order to rebuild the sensory connection of a patient after a stroke,
robots or exoskeletons are needed to guide and assist the patient in walking. There are close
physical interactions between the patient and the robot [63]. Others like nursing robots [109]
or robot guide dogs [131] are also in great demand and involve HRI.

These applications entail huge social and economical impacts [20, 29]. Future robots are
envisioned to function as human’s counterparts, which are independent entities that make
decisions for themselves; intelligent actuators that interact with the physical world; and
involved observers that have rich senses and critical judgements. Most importantly, they
are entitled social attributions to build relationships with humans [38]. We call these robots
co-robots.

Technically, it is challenging to design the behavior of co-robots. Unlike traditional robots
that work in structured and deterministic environments, co-robots need to operate in highly
unstructured and stochastic environments. The fundamental research question to address
in this dissertation is how to ensure that co-robots operate efficiently and safely in dynamic
uncertain environments.

Due to the broadness and complexity of HRI [29], the following aspects need to be
considered when addressing the fundamental question.

CHAPTER 1. INTRODUCTION 2

• Diverse modes of interactions

The potential applications of co-robots lie in various domains, with different modes of
interactions [30, 70, 107]. A unified model for various HRI applications is indispensable
in order to provide a comprehensive understanding of HRI, guide the design of the
robot behavior, and serve as an analytical framework for performance evaluation of
the human-robot systems.

• Design of the behaviors

Behavior is the way in which one acts or conducts oneself, especially toward others.
We study the methodology of behavior design, i.e. how to realize the design goal (to
ensure that co-robots operate efficiently and safely in dynamic uncertain environments)
within the design scope (the inputs and outputs of the robotic system).

• Software embodiment of the behavior and its computation efficiency

The designed behavior is recorded as lines of codes. The complexity of the software will
increase dramatically when the environment or the task becomes more complicated.
To ensure timely responses to environmental changes and guarantee safety during op-
eration, real time computation and actuation is crucial. Efficient algorithms are highly
demanded.

• Analysis, synthesis and evaluation of complex human-robot systems

The effectiveness of the designed robot behavior needs to be evaluated in the human-
robot systems. The evaluation can be performed theoretically as well as experimen-
tally. The difficulty in theoretical analysis is the complication of interweaving software
modules. The difficulty in conducting experiments is that the tolerance of failure is
extremely low when human subjects are in the loop, i.e. human safety is critical. Thus
it is important to develop effective evaluation platforms for human-robot systems.

The focus of this dissertation is to 1) set up a unified analytical framework for various
human-robot systems; 2) establish a methodology to design the robot behavior to address
the fundamental problem. The considerations in those aspects will be elaborated in the
following sections.

1.2 Modes of Interactions

The interaction between a human and a robot may have various modes. We divide it
into two kinds of relationships: parallel relationships and hierarchical relationships.

Parallel HRI. In a parallel relationship, a human and a robot are two independent
entities that make their own decisions, which is also called peer-peer interaction [30] in
literature. Typical examples for parallel relationships are 1) the interaction between an
automated vehicle and a human-driven vehicle and 2) the interaction between an industrial

CHAPTER 1. INTRODUCTION 3

(a) Parallel relationships in human-robot interactions.

(b) Hierarchical relationships in human-robot interactions.

Figure 1.1: Various modes of human-robot interactions.

co-robot and a human worker in production lines. In either case, the robot (the automated
vehicle or the industrial co-robot) and the human (the human-driven vehicle or the human
worker) are peers as opposed to hierarchical master-slave. In the parallel relationships shown
in Fig.1.1a, the actions of the human and the robot either need to be synchronized (e.g.
when the human and the robot are moving one workpiece cooperatively) or need to be
asynchronized (e.g. two vehicles cannot occupy the conflict zone at the same time when
they are crossing the intersection). We call the synchronized actions as collaboration and
the asynchronized actions as competition (since there will always be a vehicle that pass the
conflict zone first). Competition is the most common interaction mode. If the resource that
human and robot are competing for is the space, competition can be understood as collision
avoidance.

CHAPTER 1. INTRODUCTION 4

Hierarchical HRI. In hierarchical relationships, either the human or the robot transfers
part of the responsibility of decision making to the other. Typical examples in hierarchical
relationships are listed below, which is also shown in Fig.1.1b. (1) The interaction between an
automated vehicle and the passenger inside the vehicle, where the human passenger transfers
the right of driving to the vehicle1. (2) The interaction between a robot nurse and a patient,
where the robot decides the trajectory for the patient2. (3) The interaction between a human
and a human-assistive device such as an exoskeleton. The human can be guided by the robot,
but can also “fight” against the robot. (4) The interaction between a human driver and a
driver-assistance system3. The driver-assistance system can function as a guardian angel
[56] that allows human to decide in safe situations and takes over in emergencies, or as a
slave that takes charge in safe situations and asks human to take over in emergencies.4 (5)
The interaction between a human and a robot when the human teaches the robot a skill by
lead-through. In this case, the robot is following the trajectory decided by the human. (6)
The interaction between a tele-operator and a tele-operated robot, where the robot purely
follows the command from the human5. As discussed in the above examples, the allocation
of responsibilities varies for different hierarchical interactions. When human dominates the
decision process, it is called supervisory interaction [99] in literature.

The modes of interactions among multiple humans and robots can be built from those
basic interaction modes between one human and one robot. A multi-agent framework will
be proposed in Chapter 2 to provide a unified framework to analyze various kinds of in-
teractions, where every intelligent entity (human or robot) is viewed as one agent. In this
dissertation, parallel relationships are studied with two major application domains: indus-
trial collaborative robots and automated vehicles.

1.3 Robot Behavior Design

In this dissertation, we focus on behavior design from the perspective of physical move-
ment, e.g. how to generate safe and efficient motions during interactions.

1.3.1 The Three Components in A Behavior System

To generate desired robot behavior, we need to 1) provide correct knowledge to the
robot in the form of internal cost regarding the task requirements and internal model6 that

1Online figure: http://www.autonews.com/article/20160111/OEM06/301119965/autonomous-vehicle-
architects-begin-to-contemplate-the-human-inside.

2Online figure: http://newatlas.com/riba-robot-nurse/12693/.
3Online figure: http://editorial.autoweb.com/autowebs-guide-to-adaptive-cruise-control/.
4Note that the level of autonomy of an intelligent vehicle is divided into six categories in the SAE

International’s new standard J3016 [134], which ranges between the two extremes: either the human driver
makes all the decisions or the automated vehicle makes all the decisions.

5Online figure: http://www.telepresenceoptions.com/2014/08/r/.
6Note that “internal” means that the cost and model are specific to the designated robot.

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Components in a behavior system.

describes the dynamics of the environment, 2) design a correct logic to let the robot turn the
knowledge into desired actions, and 3) design a learning process to update the knowledge and
the logic in order to make the robot adaptable to unforeseen environments. Knowledge, logic
and learning are the major components of a behavior system as shown in Fig.1.2. In the block
diagram, the robot obtains data π from the human-involved environment and generates its
action u according to the logic g(π|J ,M)7, which is a mapping from information to action
that depends on its knowledge: the internal cost J and the internal modelM. The learning
process updates the knowledge and the logic based on the data π, which is necessary since
1) the designed knowledge may not cover all possible scenarios and 2) the environment may
be time varying. The mathematical formulation will be further explained in Chapter 2.

The lifetime of a robot is divided into three phases: the design phase, the training phase
and the execution phase as shown in Fig.1.3. We call the first two phases offline and the
third online. In the design phase, the three components in Fig.1.2 are built into the robot.
In the training phase, the robot can learn the knowledge from experience or from human
demonstration. The difference between the knowledge learned from human demonstration
and the knowledge designed by human is that the former does not require the human to
have a mathematical or quantitative representation of the knowledge. In many cases, such
mathematical representations is hard to obtain and unintuitive for human. For example, it
is easier for a human to gesture a trajectory than to come up with a mathematical function
of the trajectory. In the execution phase, the robot performs its task and interacts with
its human counterparts. While performing the tasks, the robot can update the knowledge
or the logic through online learning. However, due to limitations in computation power,
the online learning is restricted to small-scale parametric adaptation. Structural changes
such as learning a new skill from scratch can only be performed by offline learning in the
training phase. The training phase and the execution phase can be performed iteratively
in an everlasting learning system. It is also possible that the robot goes directly from the

7The function g is also called a control law in classic control theory or a control policy in decision theory.

CHAPTER 1. INTRODUCTION 6

Figure 1.3: The life cycle of a behavior system.

(a) Model-based exact policy. (b) Model-based implicit policy. (c) Model-free policy.

Figure 1.4: Different ways to design the logic.

design phase to the online execution phase without going through the training phase.
Knowledge is the key content of a behavioral system. How much it should be designed

(nature) and how much it should be learned (nurture) still remains arguable [28]. Although
knowledge can be learned, the two other components, logic and learning, are essentially
algorithms, hence should be designed. There are three ways to obtain the logic g as shown
in Fig.1.4. The contours in the figures represent the internal cost J (u, π). The darker the
color, the higher the cost. Recall that the logic g is a mapping from π to u. (1) We can
solve the optimization g(π) = minu J (u, π) given M explicitly in the design phase and get
an exact policy as shown in the red curve in Fig.1.4a. Since the internal cost is non-convex,
the function g may be discontinuous. (2) The optimization can also be solved online in the
execution phase. An algorithm (e.g. gradient descent) needs to be designed such that given
any observation π, a desired control input will be obtained. This provides an implicit policy
as shown in Fig.1.4b. Due to the non-convexity of J , the control input u computed online
may only be a local optimum. Note that these two methods assume explicit J andM, hence
are model-based logics. (3) We can also approximate the policy using parametric functions
(e.g. neural networks) in the training phase. A set of training data in the form of (π, u)
pairs should be obtained. Then the function g can be approximated from the training data
as shown in Fig.1.4c. Since no explicit knowledge is required, this is a model-free logic.

CHAPTER 1. INTRODUCTION 7

The three-component behavior system represents a variety of existing methods. We
summarize the methods into the following four categories ranging from nature-oriented to
nurture-oriented as shown in Fig.1.5.

• Category 1: the designer specifies the internal cost and the internal model and designs
logics to solve the optimization explicitly without any learning process. Representative
methods are 1) classic control method and Markov decision process (MDP) where exact
policies are obtained in the design phase (e.g. in the control of flexible robot joints [63,
137], or in safety critical situations [49, 152]), and 2) model predictive control (MPC)
method where the optimization is computed in the execution phase [26, 90, 94].

• Category 2: the designer specifies the internal cost, designs the logic explicitly, and
defers to the learning process to identify the internal models. Classic adaptive control
and adaptive MPC belong to this category. Application of this approach in human-
robot interactions can be found in [46, 81, 98, 121]. The advantage of this method is
that it can account for time varying environmental changes, especially when human
is in the loop, while the designer still have control over the task performance through
explicit design of the knowledge and the logic.

• Category 3: the designer only designs the logic and the learning process explicitly.
The knowledge is obtained in the training phase by either trial-and-error or expert
demonstration. Representative methods are model-based reinforcement learning and
inverse reinforcement learning such as apprentice learning [1, 7, 41]. Application of this
approach in human-robot interactions can be found in [4, 103, 135]. The advantage
of this method is that mathematical modeling of the task and the environment is no
longer required in the design phase.

• Category 4: the designer designs the learning process explicitly and uses a function
(e.g. neural network) to approximate the logic. The robot will obtain the knowledge
(e.g. parameters in the network) in the training phase. Unlike in Category 3, the
knowledge is not explicitly learned, but implicitly encoded in the network. Repre-
sentative methods are model-free reinforcement learning such as deep reinforcement
learning [100] and imitate learning [65]. In addition to human subjects, the imitated
object may be a behavior system in Category 1 to 3 [130]. This method is good for
problems where 1) the task and the environment are extremely hard to model, 2) the
state space is too large and 3) real time computation is critical.

In this dissertation, we work on a method in Category 2 as it allows designers to have more
control over the robot behavior in order to guarantee safety during human-robot interactions.
The existing methods in designing the three components will be reviewed below.

CHAPTER 1. INTRODUCTION 8

Figure 1.5: The classification of behavior systems.

1.3.2 Design of the Knowledge

The knowledge is a combination of the internal cost and the internal model. The internal
cost provides incentives for the robot to finish the desired task efficiently as well as to interact
safely with other agents in the system. The internal model should be designed in order to
match the ground truth behavior of the environment.

Internal Cost. Internal cost is a function that depends on the robot’s state and action,
which can be divided into static cost and dynamic cost. Static cost is a function on current
state and action. Dynamic cost is a function on a trajectory that goes into the future, which
is a discounted sum of all static costs along the trajectory8. Dynamic cost can be summed
either for fixed time horizon (finite time or infinite time) or for fixed task cycle. Fixed
time horizon is adopted in linear quadratic regulator (LQR), preview control and receding
horizon control. Fixed task cycle optimization is also called minimum time problem as time
is treated as a decision variable, which is usually adopted in trajectory planning with a fixed
target. Dynamic cost is considered in this dissertation. The internal cost J will refer to the
dynamic cost in the following discussion. The design of J will be discussed with respect to
specific applications as set forth in Chapter 8 and Chapter 9.

Internal Model: Since the robot model is usually known in advance, we focus on the
models of other intelligent entities in the environment, especially humans. As pointed out in
[24], the biggest challenge in human-robot collaboration comes from human factors. To make

8In the MDP context, the static cost is equivalent to the reward function and the dynamic cost is
equivalent to the value function or the Q function.

CHAPTER 1. INTRODUCTION 9

co-robots human-friendly, human behavior needs to be modeled, learned, and predicted [6,
18, 114, 153]. The following three kinds of models are frequently used to describe humans’
behaviors: (1) the reactive model, in which a human’s dynamics is described using a state
space model, and the inputs are the identified features that affect his or her behavior [124].
Since his or her motion will be adjusted once the features change, it is considered to be
reactive. (2) the rational model, in which a human is treated as a cost minimizer [102,
140], whose cost function depends on both his or her behavior and the robot’s behavior.
The human will reason his or her best action given his or her belief in the robot’s behavior.
(3) the Bayesian model, in which a human is treated as a stochastic agent [138], and a
Bayesian network [110, 117] is associated to his decisions, i.e. the human’s motion follows a
probabilistic distribution conditioned on the robot’s behavior. It should be noted that it is
hard to obtain the cost function or probability distribution that precisely describes a human’s
behavior in sophisticated problems. Moreover, it is dangerous to assume that a human will
always adapt his or her motion to a robot’s motion, as it intrinsically implies that the robot
can “control” the human [9]. Since no universal model exists that can precisely describe
human behavior, learning is necessary.

1.3.3 Design of the Logic

The fundamental logic is to find the minimum in the internal cost J given the data π
and the internal modelM. As discussed in Section 1.3.1 and illustrated in Fig.1.4, we have
three ways to design the logic. A model-based exact policy is suitable for well-defined tasks
and environments, however, hard to cover a variety of complicated scenarios that co-robots
may face. A model-free policy can cover many scenarios (if trained using enough data) and
is computationally efficient. However, due to its strong dependency on data and lack of
explainability, safety is hard to be guaranteed. In order to increase the flexibility of the
logic to account for diverse scenarios and to provide safety guarantees, we adopt the model-
based implicit policy. As the mapping g is complicated, it is segmented into several sub
functions in a “see-think-do” structure, where “see” deals with perception, “think” concerns
with decision making and motion planning, and “do” refers to motor control, which will be
further explained in Chapter 2. “Think” is the core function. Motion planning methods can
be divided into two groups depending on their planning-horizons, namely the global planner
(or the long term planner) and the local planner (or the short term planner).

Global planners evaluate the internal cost in a long time horizon. A comprehensive
model of the environment is needed. The existing global motion planning methods go into
two categories: planning by construction or planning by modification. Planning by con-
struction refers to the method which extends a trajectory by attaching new points to it
until the target point is reached. Search-based methods such as A* or D* search [127] and
sampling-based methods such as rapidly-exploring random tree (RRT) [66, 68] are typical
planning-by-construction methods. Planning by modification refers to the method that per-
turbs an existing trajectory such that the desired property is obtained. Optimization-based
motion planning methods belong to this category, where the perturbation can be understood

CHAPTER 1. INTRODUCTION 10

as gradient descent in solving the optimization [34, 57, 123]. Each type of methods has pros
and cons. The trajectories planned by construction are easier to be feasible. However, as
the space is usually discretized during trajectory construction, the constructed trajectories
are not as smooth as the trajectories planned by modification. In this dissertation, we focus
on optimization-based methods, which will be discussed in Chapter 5. If the environment
is previously known without any uncertainty, the global planner is capable of finding the
global optimal trajectory. However, in practice, it is computationally expensive to build the
model of the environment given limited sensing ability.

Local planners try to only plan a few steps in the near future based on the limited
knowledge of the environment obtained by current sensory data. Such planners require
less computation power, and are good choices for robots with limited sensing abilities. An
extreme case of a local planner is the reactive controller where the planning horizon reduces
to one. There are usually closed-form solutions for a reactive controller, e.g. a direct mapping
from the sensory data to the control, which can greatly relieve the computation burden9.
Existing reactive methods include virtual force field, potential field method [61], sliding mode
method [45] and a family of biologically inspired methods [13]. However, as it only regulates
the motion locally, a local planner is sensitive to local optima, e.g. it is possible for the robot
to get stuck in some location and cannot reach the target. Thus the global convergence
to the target needs to be addressed when designing a local planner. In general, it is very
hard to guarantee global convergence for local planners, as the system under consideration is
nonlinear (as the robot motion is nonholonomic), time-varying (as the obstacles in the system
are moving and deforming), and stochastic (as the information about the environment is
limited).

In this dissertation, we propose a parallel planning architecture that has a global planner
and a local planner running in parallel to leverage the advantages of the two planners, which
will be discussed in detail in Chapter 2.

1.3.4 Design of the Learning Process

The learning process updates the knowledge and the logic according to the observed data.
In this dissertation, we focus the learning on the internal model, which is a cognition skill.
In particular, interpretation and prediction of human motions are considered. Learning can
be done both offline (in the training phase) and online (in the execution phase). Offline
learning is usually used to classify human behaviors and to identify models to describe
human behaviors as discussed in [8, 39, 116]. On the other hand, online learning is capable
of adapting the offline learned models to humans’ time-varying behaviors online as discussed
in [43, 121]. The methods for learning will be discussed in Chapter 3.

9A reactive control policy is similar to an exact policy in Fig.1.4a in that they are both direct mapping
from the sensory data to the control. However, only local information is considered in the reactive control
policy, while the exact policy evaluates global information when it is computed in the design phase.

CHAPTER 1. INTRODUCTION 11

1.4 Real Time Computation

To ensure safe and efficient HRI, real time computation is critical, especially in optimization-
based motion planning. The problem may be highly nonlinear due to the dynamic con-
straints, and highly non-convex due to the constraints for obstacle avoidance, making it
hard to solve the optimization in real time.

Various methods have been developed to deal with the nonlinearity and non-convexity
[104, 129]. One popular way is through convexification [133], e.g. transforming the non-
convex problem into a convex one. Some authors tried to transform the non-convex problem
to semidefinite programming (SDP) [36]. Some authors proposed to introduce lossless con-
vexification by augmenting the space [2, 53]. And some authors proposed successive linear
approximation to remove non-convex constraints [92, 93]. However, the first method requires
the cost function to be quadratic. The second approach highly depends on the linearity of
the system and may not be able to handle various obstacles. And the third approach may not
generalize to non-differentiable problems. One of the most popular convexification method is
the sequential quadratic programming (SQP) [128, 136], which approximates the non-convex
problem as a sequence of quadratic programming (QP) problems and solves them iteratively.
The method has been successfully applied to offline robot motion planning [58, 123]. How-
ever, as SQP is a generic algorithm, the unique structure of the motion planning problems is
neglected, which usually results in failure to meet the real time requirement in engineering
applications.

In practice, the cost function for motion planning is designed to be convex [115, 145],
while the non-convexity mainly comes from the physical constraints, e.g. robot dynamics and
collision avoidance. By exploiting the geometric structure of the problems, we propose the
convex feasible set algorithm (CFS) [76] and the slack convex feasible set algorithm (SCFS)
[82] to handle motion planning problems with convex objective functions and non-convex
constraints. It will be shown in Chapter 5 and Chapter 6 that these methods perform better
than generic methods in motion planning problems.

For short term planning, we exploit the idea of invariant set to transform the non-convex
state space constraint into a convex control space constraint using the safe set algorithm
(SSA) and the safe exploration algorithm (SEA). SSA ensures that the system state would
always stay in a safe set given the predicted human behavior. SEA further constrains the
robot motion by the perceived uncertainties in the predictions and seeks to reduce the un-
certainty level by learning human behavior actively. These two algorithms will be discussed
in Chapter 4.

1.5 System Evaluation

The evaluation of the human-robot system can be performed theoretically as well as
experimentally.

CHAPTER 1. INTRODUCTION 12

Theoretical Evaluation. During theoretical analysis, the questions to answer are:
(1) will the logic find the optimal action given the internal cost and internal model? (2)
will the learning process generate converging sequence of the internal models? (3) will the
designed internal cost lead to desired behavior of the multi-agent system? The first two
questions are modular-wise. The third question is system-wise which concerns with the
stability, robustness stability and optimality of the closed loop system, e.g. whether the
closed loop multi-agent system is self-organized [91]. System level analysis is challenging due
to 1) the complication of interactions among different agents, 2) the difficulty in justifying
the assumptions on human behavior; 3) the insufficiency of existing tools in game theory to
analyze suboptimal agents10. In Chapter 7, a new method will be explored to analyze the
system performance with suboptimal agents.

Experimental Evaluation. For experimental evaluation of human-robot systems, in
order to protect human subjects during the early phase of deployment, various evaluation
platforms are developed which take the advantage of virtual reality and teleoperation to
separate humans and robots. The platforms will be discussed in Appendix A.

1.6 Dissertation Contributions and Outline

This dissertation aims to establish a set of methodologies for designing the behavior of
co-robots in order to maximize their performance in dynamic uncertain environments.

The remainder of the dissertation is organized as follows: Chapter 2 overviews the pro-
posed method in a multi-agent framework, while Chapter 3-5 provides detailed discussions
of the method. Chapter 3 discusses the identification of human behaviors. Chapter 4 dis-
cusses short term or local robot motion planning, and Chapter 5 long term or global robot
motion planning. Chapter 6 discusses the optimization solvers for real time computation.
Chapter 7 proposes a method to analyze the performance of the multi-agent system. Chap-
ter 8 illustrates the application of the method on automated vehicles in the framework of
the robustly safe automated driving (ROAD) system. Chapter 9 discusses the robot safe
interaction system (RSIS) as an application of the methodology on industrial collaborative
robots.

Each chapter is intended to be self-contained. The relationship among different chapters
are shown in Fig.1.6. Some of the work has been published in [77–87, 89] or under review in
[76].

The major contributions of the dissertation are summarized below:

• Proposed an unified framework to 1) model human-robot interactions under different
modes of interactions and 2) analyze the performance of the multi-agent system with
sub-optimal agents. (Chapter 2 and Chapter 7)

10The basic assumption in game theory is that all agents are rational, e.g. always behaving optimally,
which, however, may not be true as the logic that we designed for the robot may not be perfect.

CHAPTER 1. INTRODUCTION 13

• Developed a unique robot behavior architecture, in particular a unique parallel plan-
ning and control architecture which includes a long term efficiency-oriented planner
and a short term safety-oriented planner to leverage the benefits of the two planning
schemes. (Chapter 2 to Chapter 5)

• Developed the safe set algorithm (SSA) and the safe exploration algorithm (SEA) for
safety-oriented short term planning and control in human-robot systems. (Chapter 4)

• Developed the convex feasible set algorithms (CFS) and the slack convex feasible set
algorithms (SCFS) for real time non-convex optimization, which outperforms existing
algorithms in optimization-based motion planning problems. (Chapter 6)

• Demonstrated the effectiveness of the proposed method in real world applications on
automated vehicles and industrial co-robots. (Chapter 8 and Chapter 9)

CHAPTER 1. INTRODUCTION 14

Figure 1.6: Dissertation outline.

15

Part I

Theory

16

Chapter 2

Framework and Architecture

Human-robot interactions can be modeled in a multi-agent framework, where robots and
humans are regarded as agents. In this chapter, a multi-agent model will be introduced first,
followed by the discussion of agent behavior design and architecture.

2.1 The Multi-Agent Model for Human-Robot

Interactions

2.1.1 The General Multi-Agent Model

An agent is defined to be an independent autonomous entity which has the “see, think
and do” ability, i.e. an agent observes through sensors and acts upon the environment using
actuators and directs its activity towards achieving goals. The identification of individual
agents depends on scenarios. For interactions among human workers and industrial robots,
a human worker can be regarded as an agent. For interactions among automated vehicles
and human-driven vehicles, a human driver together with the vehicle is viewed as one agent.
Moreover, if a group of robots are coordinated by one central decision maker, they are
regarded as one agent.

Suppose there are N agents in the environment and are indexed from 1 to N . Denote
agent i’s state as xi, its control input as ui, its data set as πi for i = 1, ..., N . The physical
interpretations of the state, input and data set for different plants in different scenarios vary.
For robot arm, the state can be joint position and joint velocity, and the input can be joint
torque. For automated vehicle, the state can be vehicle position and heading, and the input
can be throttle and pedal angle. When communication is considered, the state may also
include the transmitted information and the input can be the action to send information.
Let xe be the state of the environment.

Denote the system state as x = [xT1 , . . . , x
T
N , x

T
e]T ∈ X where X is the state space of the

system. The open loop system dynamics can be written as

ẋ = f(x, u1, u2, . . . , uN , w), (2.1)

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 17

where w is a noise term.
According to the discussion in Chapter 1.3 and Fig.1.2, agent i’s behavior system gener-

ates the control input ui based on the data set πi, e.g.

ui = Bi(πi). (2.2)

Note that the function Bi contains the three components (knowledge, logic and learning).
When there is no learning process, then Bi(πi) = gi (πi|Ji,Mi) where gi is the logic function
of agent i and Ji is its internal cost. Agent i’s internal model Mi includes the estimates
of the system dynamics (2.1) and other agents’ behaviors, i.e. the function Bj for j 6= i.
The data set contains observations on the system state x, which is a combination of the
measured data and the communicated information. Agent i’s data set at time T contains all
the observations yi(t) from the start time t0 up to time T , i.e. πi (T) = {yi (t)}t∈[t0,T] where

yi = hi (x, vi) , (2.3)

and vi is the measurement noise.
Applying (2.2) and (2.3) in the open loop dynamics (2.1), the closed loop dynamic equa-

tion becomes

ẋ = F (x, v1, ..., vN , w|B1, . . . ,BN) . (2.4)

The system block diagram for the general multi-agent system is shown in Fig.2.1 accord-
ing to (2.1), (2.2) and (2.3).

2.1.2 Models for Different Modes of Interactions

As discussed in Chapter 1.2, the relationships between human and robot are complicated.
Nonetheless, the general model can cover the diversity of HRI.

Figure 2.1: The block diagram of the multi-agent system.

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 18

Space-Sharing Interactions and Time-Sharing Interactions

Usually, agent i has its own dynamics, e.g.

ẋi = fi(xi, ui, wi, ei), (2.5)

where ei represents external inputs induced by the environment or other agents. When there
is no direct contact among agents, ei = ∅. Otherwise, ei 6= ∅ and it comes in pairs, e.g.
if agent i receives an external input from agent j, then agent j also receives an external
input from agent i. The external input pair can be viewed as a constraint between two
agents, such as the force and reaction between a human patient and an exoskeleton. When
there is no constraint among agents, the system does not need to be synchronized in time.
Such interaction is called space-sharing interaction [64]. When there are constraints among
agents, the system needs to be synchronized and it is called time-sharing interaction. The
block-diagram for the space-sharing system is shown in Fig.2.2.

Complete Information and Incomplete Information

When there is no learning process, agent i’s control input ui is chosen by minimizing its
internal cost function Ji(x, u1, · · · , uN) given πi and Mi, e.g.

ui = gi(πi|Ji,Mi) = arg min
ui

E[Ji(x, u1, · · · , uN)|πi,Mi], (2.6)

where the cost function depends on the system state x and other agents’ inputs as variables,
and on the data set πi and agent i’s internal model Mi as parameters.

If the system dynamics and agents’ internal costs are globally known, i.e. all agents’
internal models of the environment are correct, the system is with complete information. If

Figure 2.2: The block diagram of the decomposable multi-agent system.

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 19

any of such information is unknown to some agents, e.g. some agent’s internal model does not
match the true model of the environment, the system is with incomplete information. If some
agent knows information that others don’t know, e.g. an agent knows its own internal cost
while others don’t, it is called information asymmetry. Information asymmetry is common
in human-robot systems as it is difficult to obtain human’s internal cost in advance.

Sequential System and Simultaneous System

As discussed in Chapter 1.2, human-robot relationship can either be parallel or hierar-
chical, depending on how the agents’ decisions are made. The decision hierarchy depends
on the information structure of the system [11], e.g. what data is available to which agent
when the agents are making decisions in (2.6).

For a parallel relationship, no agent can obtain more data before they make the next move.
This is called a simultaneous game. For a hierarchical relationship, some agent obtains more
data about others before they take the next move. The agents with fewer data are considered
as leaders and the agents with more data are considered as followers. For example, in robot
skill learning from human demonstration, the human teacher is a leader and the robot learner
is a follower. The robot learner only moves after collecting enough human demonstration
data, while the human teacher teaches the robot from the very beginning without any robot
motion data. A leader is supposed to comprehensively evaluate the consequences of its action
by taking into consideration of the follower’s reactions. On the other hand, a follower only
needs to follow the leader’s plan. This is called a sequential game.

2.1.3 Features of Human-Robot Systems

Although HRI is modeled in a multi-agent system, it is different from conventional multi-
agent models [148] both in the design phase and in the execution phase. The distinct features
are summarized below:

1. Partial knowledge in the design phase

The system is only partially known even to the designer in the design phase. It is com-
mon for a robot in the execution phase to have partial knowledge since it is beneficial
to scale down the problem. However, the successful implementation of those systems
depends on the designer’s understanding of the overall system in the design phase. As
there is no universal model to describe human behavior in the presence of fully auto-
mated robots, the system contains many structural or hyper-parametric uncertainties
in the design phase. Methods to deal with those uncertainties need to be studied.

2. Time-varying topology in the execution phase

When a robot is brought to life (e.g. in the execution phase), it may encounter various
agents in diverse scenarios. For example, automated vehicles need to interact with
different road participants in various traffic conditions, which implies that different

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 20

agents will be added or removed in the system model in Fig.2.1. The topology of the
multi-agent system is time-varying. In comparison, conventional multi-agent networks
such as power networks usually have relatively static topology. The time-varying topol-
ogy brings large structural uncertainty to the design and analysis of the multi-agent
systems.

Regarding the features mentioned above, we are trying to solve the following problems
given the model in Fig.2.1.

• How to describe physical systems using the general model?

• How to design the behavior system Bi for a robot agent i in such a system?

• How to analyze the performance of the designed behavior from the multi-agent system
perspective?

The questions will be answered in the following chapters. In the remainder of this chapter,
we discuss the architecture of the proposed behavior system for robot agents. Note that
human behavior can also be shaped by providing different incentives to shape their internal
costs and internal models. Readers are referred to [3, 10] for detailed discussions on how to
provide desired incentives.

2.2 Agent Behavior Design and Architecture

Behavior design for robots concerns with the three components discussed in Chapter 1.3
and shown in Fig.1.2. In our approach, we concern with the design of J andM, the design
of the logic g, and the design of the learning process to update M.

2.2.1 Knowledge: The Optimization Problem

For a robot agent i in the multi-agent system, its internal cost is designed with the
following structure,

Ji(x, u1, u2, · · · , uN) = Ji(x, u1, u2, · · · , uN), (2.7a)

s.t. ui ∈ Ω, xi ∈ Γ, ẋi = fi(xi, ui, wi, ei), (2.7b)

yi = hi(x, vi), (2.7c)

x ∈ I, (2.7d)

where the right hand side of (2.7a) is the dynamic cost for task performance. It is evaluated
over the planning horizon or the look-ahead horizon T , which can either be chosen as a
fixed number or as a decision variable that should be optimized up to the accomplishment
of the task. Equation (2.7b) is the constraint for the agent itself, e.g. constraint on the
control input (such as control saturations), constraint on the state (such as joint limits for

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 21

Figure 2.3: The designed architecture of the logic in this dissertation.

robot arms) and the dynamic constraint. Equation (2.7c) is the measurement constraint,
which builds the relationship between the state x and the data set πi. Equation (2.7d) is
the constraint induced by interactions in the multi-agent system, e.g. safety constraint for
collision avoidance, where I ⊂ X is a subset of the system’s state space. Equation (2.7a)
can also be called the soft constraint and (2.7b-2.7d) hard constraints. The detailed design
of the internal cost will be discussed with respect to specific applications in Chapter 8 and
Chapter 9.

The internal model of the environment for agent i is an estimation of the system dynamics
and other agents’ behaviors, i.e. all blocks that are unknown to agent i in Fig.2.1. However,
both the dynamics of the system and other agents’ behavior are hard to obtain in the design
phase in human-robot systems. They will be identified in the learning process. Moreover,
since only the closed loop dynamics of other agents matter, the following function is identified,

ẋ−i = Fi(x−i, xi, v−i, w−i), (2.8)

where the subscript −i refers to the combination of variables except for agent i, e.g. x−i =
[xT1 , . . . , x

T
i−1, x

T
i+1, · · · , xTN , xTe]T . Hence Mi is an estimate of Fi, e.g. Mi = F̂i.

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 22

2.2.2 Logic: The Motion Planning Skill

A “see-think-do” structure is adopted to tackle the complicated optimization problem
(2.7). The mission of the “see” step is to process the high dimensional data πi(t) to obtain an
estimate of the system states x̂(t). The “think” step is to solve an approximated optimization
problem using the estimated states and construct a realizable plan xi(t : t + T). The “do”
step is to realize the plan by generating a control input ui(t).

In the “think” step, two important modules are prediction and planning. In the prediction
module, agent i makes predictions of other agents x̂−i(t : t+T) based on the internal model
Mi. The prediction can be a fixed trajectory or a function depending on agent i’s future
state xi(t : t + T). In the planning module, the future movement xi(t : t + T) is computed
given the current state x̂(t), predictions of others’ motion x̂−i(t : t + T) as well as the task
requirements and constraints encoded in Ji.

As it is computationally expensive to obtain the optimal solution of (2.7) for all scenarios
in the design phase, the optimization problem is computed in the execution phase given the
obtained information. However, there are two major challenges in real time motion planning.
The first challenge is the difficulty in planning a safe and efficient trajectory when there are
large uncertainties in other agents’ behaviors. As the uncertainty accumulates, solving the
problem (2.7) in the long term might make the robot’s motion very conservative. The second
challenge is real-time computation with limited computation power since problem (2.7) is
highly non-convex. We design a unique parallel planning and control architecture to address
the first challenge as will be discussed below and develop fast online optimization solvers to
address the second challenge as will be discussed in Chapter 4 to Chapter 6.

A toy example is presented in Fig.2.4 to illustrate the first challenge. There is a closed
environment. The robot (shown as the purple dot) is required to approach the target (shown
as the green dot) while avoiding the human (represented by the pink dot). The time axis is
introduced to illustrate the spatiotemporal trajectories. At the first planning step, the robot
makes a prediction of the human trajectory and plans a trajectory for itself avoiding the
uncertainty cone. As time propagates, the planned trajectory is executed and the human
trajectory is observed. In the next planning step, the robot repeats the process, predicts the
human trajectory, plans its own trajectory and then executes the planned trajectory. The
process is repeated in the following steps. This is the conventional model predictive control
method, which is safe, however, too conservative, as the robot hesitates to get close to the
human due to the perceived uncertainty.

On the other hand, the uncertainty will not accumulate too much for a short term planner.
However, using a short term planner alone will also be problematic. The robot can easily get
stuck in local optima and not be able to finish the task as illustrated in Fig.2.5, since the robot
does not have a global perspective on how to bypass the obstacle. Although it is possible to
construct a globally-converging local policy for a Dubins car1 when the environment satisfies

1A Dubins car is a wheeled robot that runs at a constant speed V . It has a simple kinematic model,
ẋ = V cos(θ), ẏ = V sin θ and θ̇ = u where x and y denote the planar position of the vehicle, θ the heading,
and u the control input.

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 23

Figure 2.4: Illustration of the accumulation of uncertainty in the long term planning.

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 24

Figure 2.5: Illustration of the local optima problem with the local planner.

certain geometric properties [122], it is in general hard to obtain a globally-converging local
policy for robots with complicated dynamics in complicated environments.

A parallel planner which consists of a global (long term) planner as well as a local (short
term) planner is adopted in this dissertation to leverage the benefits of the two planners.
The idea is to have a long term planner solving (2.7) while considering only rough estimation
of human’s future trajectory, and have a short term planner addressing uncertainties and
enforcing the safety constraint (2.7d). The long term planning is efficiency-oriented and can
be understood as deliberate thinking, while the short term planning is safety-oriented and
can be understood as a reflex behavior.

The idea is illustrated using the previous example in Fig.2.6. For the long term planning,
the robot has a rough estimation of the human’s trajectory and it plans a trajectory without
considering the uncertainties in the prediction. Then the trajectory is used as a reference in
the short term planning. In the first time step, the robot predicts the human motion (with
uncertainty estimation) and checks whether it is safe to execute the long term trajectory. As
the trajectory does dot intersect with the uncertainty cone, it is executed. In the next time
step, since the trajectory is no longer safe, the short term planner modifies the trajectory
by detouring. Meanwhile, the long term planner comes with another long term plan and
the previous plan is overwrote. The short term planner then monitors the new reference
trajectory. The robot follows the trajectory and finally approaches the goal. This approach
addresses the uncertainty and is non conservative. As a long term planning module is
included, the local optima problem in Fig.2.5 can be avoided.

The block diagram of the parallel controller architecture is shown in Fig.2.3. In the
following discussions, we also call the long term module as the efficiency controller and the
short term module as the safety controller. The computation time flow is shown in Fig.2.7
together with the planning horizon and the execution horizon. Three long term plans are
shown, each with one distinct color. First, plan 1 is computed in the long term planner. The
upper part of the time axis shows the planning horizon. The middle layer is the execution
horizon. Only the first half of the planned trajectory is executed. The bottom layer shows
the computation time. The computation is done before the execution of the plan. Once

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 25

Figure 2.6: Illustration of the performance of the parallel planning.

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 26

Figure 2.7: The time flow in the parallel planners.

computed, plan 1 is sent to the short term planner for monitoring. The sampling rate in the
short term planner is much higher than that in the long term planner, since the computation
time in the short term planner is much smaller than that in the long term planner. The
mechanism in the short term planner is similar to that in the long term planner. Note that
the planning horizon in the short term planner is not necessarily one time step, though the
execution horizon is one time step. While the short term planner is monitoring the trajectory,
the long term planner is computing a new long term trajectory. Once the new trajectory is
computed, it will be sent to the short term planner for monitoring. The long term planner
then computes another trajectory and so on.

This approach can be regarded as a two-layer MPC approach. Coordination between the
two layers is important. To avoid instability, a margin is needed in the safety constraint
in the long term planner so that the long term plan will not be revoked by the short term
planner if the long term prediction of the human motion is correct. Theoretical analysis of
the stability of the two-layer MPC method is out of the scope of this dissertation, and is left
as a topic for future study.

Nonetheless, the successful implementation of the parallel control architecture highly
depends on computation. It is important that the optimization algorithm finds a feasible
and safe trajectory within the sampling time. The algorithms will be discussed in Chapter
4 to Chapter 6.

2.2.3 Learning Process: The Cognition Skill

The internal model Mi needs to be updated online, which is a cognition skill. As dis-
cussed in Chapter 1.3, there are many ways to describe agent behaviors. Among those
methods, a reactive model (2.8) is adopted in this dissertation. The advantage of this model
is that it directly approximates the optimal response of other agents. Hence no optimization
is needed for motion prediction. The reactive model depends on other agents’s internal costs
and internal models, hence may be multi-modal. The learning is divided into two parts: goal
inference and model adaptation. For example, in a factory environment, goal inference tells

CHAPTER 2. FRAMEWORK AND ARCHITECTURE 27

Figure 2.8: Cognition: the designed learning process in this dissertation.

whether a human worker is going to sit down, stand up, walk to a bench, or pick up a work
piece. Indeed, goal inference identifies the context behind the observed motion. Mathemat-
ically, it can be understood as model selection. Given the goal (selected model), different
agents may have different ways to achieve the goal. For example, a cautious pedestrian
may wait for all the vehicles to pass before he crosses the street, while another pedestrian
may cross the street assuming that all the vehicles will yield. Hence model adaptation is
needed to account for individual differences. Another reason for model adaptation is to
account for time-varying behaviors, since other agents are also adapting their behaviors to
the environment. We can either build the structure of the models offline during the training
phase or identify the models from sketch online. The advantage of such structure is that
the prior knowledge in the design phase or in the training phase can be easily incorporated.
The architecture of the cognition system is shown in Fig.2.8. The methods will be further
explained in Chapter 3.

2.3 Conclusion

In this chapter, we modeled the human-robot interactions in a multi-agent framework.
The considerations in robot behavior design were discussed and will be further elaborated
in the following chapters. The application of the method will be discussed in Chapter 8 and
Chapter 9.

28

Chapter 3

Cognition: Understanding Others’
Behaviors

3.1 Overview

Cognition is a skill to identify the dynamic model of the environment, especially the closed
loop dynamics of human agents. It is a part of the learning process and can be performed
either in the training phase (offline) or in the execution phase (online). Nonetheless, the
learning algorithms should be specified in the design phase. This chapter discusses the
algorithms according to the structure described in Chapter 2.2 and shown in Fig.2.8.

Reactive models are used to describe the behavior of other agents. Denote the state of
the robot that we design for as xR and the state of the other agents as xH . Ignoring the
noise term, (2.8) can be rewritten in discrete time as

xH(k + 1) = F (x(k)). (3.1)

There are many methods to identify (3.1). For example, Gaussian Mixture Model (GMM)
[96] or Neural Networks (NN) [116]. The structure in Fig.2.8 is adopted, which is equivalent
to the following equations,

xH(k + 1) = Fδ(k)(x(k)), (3.2)

Fm(x(k)) =
∑
j

θm,jfm,j(x(k)), (3.3)

where δ(k) ∈ {1, . . . ,M} is a discrete classification function. M is the number of models.
Fm is the closed loop dynamics in model m, which is a linear combination of several features
fm,j(x). θm,j ∈ R are coefficients that can be adapted online. Mathematically, Fm can be
understood as a group of basis for function F . The features should either be designed or
identified in the training phase.

In the remainder of this chapter, the method for model selection will be discussed in
Section 3.1, and the method for model adaptation in Section 3.2.

CHAPTER 3. COGNITION: UNDERSTANDING OTHERS’ BEHAVIORS 29

3.2 Classification of the Behaviors

3.2.1 Dynamic Classification using Hidden Markov Model

Hidden Markov Model (HMM) [23] is chosen for model selection where the classification
function δ(k) is regarded as the hidden variable that needs to be inferred from the observation
πR(k). There are two important relationships in a HMM: (1) how the current classification is
affected by previous classification (or how the intentions of agents change dynamically) and
(2) how the current classification is affected by current observation (or how the intentions
of agents are revealed in data). The first is a dynamic model, which encodes the following
relationship

P (δ(k) = m|δ(k − 1) = n). (3.4)

The second is a measurement model, which encodes the following relationship

P (yR(k)|δ(k) = m). (3.5)

Then the estimate of δ(k) given πR(k) is

P (δ(k) = m|πR(k)), (3.6)

∝ P (δ(k) = m, yR(1), · · · , yR(k)),

∝ P (yR(k)|δ(k) = m)P (δ(k) = m|πR(k − 1)),

∝ P (yR(k)|δ(k) = m)
∑
n

P (δ(k) = m|δ(k − 1) = n)P (δ(k − 1) = n|πR(k − 1)),

which depends on the estimate of δ(k − 1) in the last time step, the dynamic model (3.4)
and the measurement model (3.5). Then the value of δ(k) is chosen according to maximum
likelihood.

The dynamic model (3.4) and the measurement model (3.5) can either be designed in the
design phase or be learned in the training phase. The training data can be obtained through:
1) real world experiment; 2) virtual reality-based simulation as discussed in Appendix A.

3.2.2 Example: Behavior Classification of Surrounding Vehicles

Denote the intended behavior of a surrounding vehicle i at time step k as bi(k). In this
example, three behaviors are considered:

• Behavior 1 (B1): Lane following;

• Behavior 2 (B2): Lane changing to the left;

• Behavior 3 (B3): Lane changing to the right;

CHAPTER 3. COGNITION: UNDERSTANDING OTHERS’ BEHAVIORS 30

Figure 3.1: Behavior classification for a vehicle in a two-lane case.

where B1 is the steady state behavior; B2, B3 are driving maneuvers.
The transition model is designed to be

A =

 0.6 0.5 0.5
0.2 0.5 0
0.2 0 0.5

 , (3.7)

where Amn := P (δ(k) = m|δ(k − 1) = n).
The measurement model for a vehicle is designed according to the following the three

features: (1) its lateral velocity vlat, (2) its lateral deviation from the center of its current
lane d (d > 0 if the deviation is to the left), and (3) an indicator c whether the vehicle is
crossing the boundary of two lanes (c = 1 if true). Then the measurement model is

P (yR(k)|δ(k) = 1) = (1− c)e−(vlat+d)2

, (3.8)

P (yR(k)|δ(k) = 2) = cI(d > 0)(1− e−(vlat+d)2

), (3.9)

P (yR(k)|δ(k) = 3) = cI(d < 0)(1− e−(vlat+d)2

), (3.10)

Given the transition model and measurement model, the distribution of δ(k) follows from
(3.6). The simulation result is shown in Fig.3.1, which correctly predicts the lane change
behavior before the yellow vehicle crossed the lane boundary. This classification model will
be used in Chapter 8.

3.3 Adaptation of the Behavior Model

3.3.1 Online Learning Using Parameter Adaptation

For a selected model m, the learning objective is to approximate the function Fm(x(k))
such that the estimate x̂H(k+ 1|k) = F̂m(x(k)) minimizes the expected prediction error, e.g.

x̂H(k + 1|k) = arg min
a
ExH(k+1)(‖xH(k + 1)− a‖2). (3.11)

The notations for estimates of xH are listed in Table 3.1.

CHAPTER 3. COGNITION: UNDERSTANDING OTHERS’ BEHAVIORS 31

The robot’s measurement of the human is denoted as yHR , which satisfies that

yHR (k) = xH (k) + vHR (k) . (3.12)

where vHR (k) is measurement noise.
Rewriting Fm(x(k)) in (3.3) and ignore m, we have the following dynamics

xH(k + 1) = Φ(x(k))ϑT + w(k). (3.13)

where Φ(·) = [f1(·), · · · , fj(·), · · ·], ϑ = [θ1, · · · , θj, · · ·] and w is a noise term assumed to be
zero-mean, white and with covariance W .

Equations (3.13) and (3.12) form a nonlinear Gaussian system with unknown parame-
ters. A recursive least square parameter adaptation algorithm (RLS-PAA) [44] is developed
to identify the system online such that the prediction x̂H(k+1|k) minimizes the expected pre-
diction error (3.11). Define ϑ̂(k) to be the estimates of the coefficients given the information
up to the k-th time step.

• State Estimation

At k + 1-th time step, x̂H is first updated according to the closed loop dynamics in
(3.14). Then the measurement information is incorporated in the a posteriori estimate
in (3.15). A constant update gain α ∈ (0, 1) is chosen to ensure that the measurement
information is always incorporated.

x̂H (k + 1|k) = Φ(x̂(k|k))ϑ̂(k)T , (3.14)

x̂H (k + 1|k + 1) = (1− α) x̂H (k + 1|k) + αyHR (k + 1) , (3.15)

where x̂(k|k) = [x̂H(k|k)T , x̂R(k|k)T]T , and x̂R(k|k) is the estimate of the state of the
robot itself, which can be obtained using Kalman Filter.

• Parameter Estimation

The coefficients are estimated using RLS-PAA:

ϑ̂(k + 1) = ϑ̂(k) + (x̂H (k + 1|k + 1)− x̂H (k + 1|k))T Φ(x̂(k|k))F (k + 1) , (3.16)

where F is the learning gain such that

F (k + 1) =
1

λ

[
F (k)− F (k) Φ(x̂(k|k))TΦ(x̂(k|k))F (k)

λ+ Φ(x̂(k|k))F (k)Φ(x̂(k|k))

]
, (3.17)

where λ ∈ (0, 1) is a forgetting factor.

CHAPTER 3. COGNITION: UNDERSTANDING OTHERS’ BEHAVIORS 32

Table 3.1: The notations in state estimation and prediction.

State Estimate Estimation Error MSEE
a posteriori x̂H (k|k) x̃H (k|k) = xj(k)− x̂j (k|k) XH (k|k)
a priori x̂H (k + 1|k) x̃H (k + 1|k) = xj (k + 1)− x̂j (k + 1|k) XH (k + 1|k)

3.3.2 Quantifying the Uncertainty

The motions of other agents can be predicted using the estimate ϑ̂. However, we also need
to quantify the uncertainty associated with the prediction, e.g. the mean square estimation
error (MSEE),

XH(k + h|k) = ExH(k+h)(‖xH(k + h)− x̂H(k + h|k)‖2). (3.18)

Assume that the human state can be directly measured, i.e. vHR (k) = 0. Let ϑ̃ (k) =

ϑ (k)− ϑ̂ (k) be the estimation error. The a priori state estimation error is

x̃ (k + 1|k) = Φ (x(k)) ϑ̃ (k)T + w (k) . (3.19)

Since ϑ̂ (k) only contains information up to the (k − 1)-th time step, ϑ̃ (k) is independent of
w (k). Thus the a priori MSEE is

Xx̃x̃ (k + 1|k) = E
[
x̃ (k + 1|k) x̃ (k + 1|k)T

]
= Φ (k)Xϑ̃ϑ̃ (k) ΦT (k) +W, (3.20)

where Xϑ̃ϑ̃ (k) = E
[
ϑ̃ (k)T ϑ̃ (k)

]
is the mean squared error of the parameter estimation.

The parameter estimation error is

ϑ̃ (k + 1) = ϑ̃ (k)− F (k + 1) ΦT (k) x̃ (k + 1|k) + ∆ϑ (k) , (3.21)

where ∆ϑ (k) = ϑ (k + 1)−ϑ (k). Since the system is time varying, the estimated parameter
is biased and the expectation of the error can be expressed as

E
(
ϑ̃ (k + 1)

)
=

[
I − F (k + 1) ΦT (k) Φ (k)

]
E
(
ϑ̃ (k)

)
+ ∆ϑ (k) ,

=
k∑

n=0

k∏
i=n+1

[
I − F (i+ 1) ΦT (i) Φ (i)

]
∆ϑ (n) . (3.22)

The mean squared error of parameter estimation follows from (3.21) and (3.22):

Xϑ̃ϑ̃ (k + 1) (3.23)

= F (k + 1) ΦT (k)Xx̃x̃ (k + 1|k) Φ (k)F (k + 1)

−Xϑ̃ϑ̃ (k) ΦT (k) Φ (k)F (k + 1)− F (k + 1) ΦT (k) Φ (k)Xϑ̃ϑ̃ (k)

+E
[
ϑ̃ (k + 1)

]
∆ϑT (k) + ∆ϑ (k)E

[
ϑ̃ (k + 1)

]T
−∆ϑ (k) ∆ϑ (k)T +Xϑ̃ϑ̃ (k) .

Since ∆ϑ (k) is unknown in (3.22) and (3.23), it is set to an average time varying rate dϑ
in the implementation.

CHAPTER 3. COGNITION: UNDERSTANDING OTHERS’ BEHAVIORS 33

Figure 3.2: Identification of a linear time varying system.

3.3.3 Example: Identification of a Linear Time Varying System

In this example, we illustrate the performance of the algorithms in a linear scalar system

x(k + 1) = A(k)x(k) +B(k)u(k) + w(k), (3.24)

where x, u, A and B are all scalars. A and B are unknown coefficients that need to be
identified. B is constant, while A is time varying. x(k) and u(k) are linear features that is
directly measurable.

Figure 3.2 shows the simulation result of the proposed learning algorithm on a first order
system with a noise covariance W = 0.0052. A forgetting factor λ = 0.98 is used. The solid
and dashed blue lines in the upper figure are Â (k) and A (k), while the solid and dashed
green lines are B̂ (k) and the constant parameter B respectively. As shown in the figure, the
time varying parameter A(k) is well approximated by Â(k), while B̂(k) converges to B. In
the lower figure, the blue curve is the one step prediction error x̃ (k|k − 1). The green curves
are the 3σ bound (σ =

√
Xx̃x̃(k|k − 1)). The black dashed line is the statistical standard

deviation (Std) of the data x̃ (k|k − 1) from k = 1 to k = 1000. As shown in the figure,
the 3σ value offers a good bound for the prediction errors as all measured errors lie between
the green curves. Moreover, the MSEE is larger when the parameter is changing faster,
which captures the time varying property of the system. On the other hand, the statistical
standard deviation does not give a good description of the data in real time.

Note that although the method works well in practice, it is possible that it goes unstable
for complicated dynamics. Theoretical analysis will be performed in the future.

CHAPTER 3. COGNITION: UNDERSTANDING OTHERS’ BEHAVIORS 34

3.4 Conclusion

This chapter discussed a HMM-based classification algorithm for model selection and a
RLS-PAA-based adaptation algorithm for model adaptation in order to identify the models
to describe other agents’ behaviors. The identified models will be used in predicting other
agents’ behaviors, which belongs to the “think” function in the system architecture in Fig.2.3.

35

Chapter 4

Safety-Oriented Local Motion
Planning

4.1 Overview

Human safety is one of the biggest concerns in HRI [132]. Two different approaches can
be used to address the safety issues. One way is to increase the intrinsic safety level of the
robot through hardware design or low level control, so that even if collision happens, the
impact on the human is minimized [50]. The other way is to let the robot behave safely,
which is called “interactive safety” as opposed to the intrinsic safety [139]. In this chapter,
interactive safety will be addressed in the context of local motion planning and control.

Conventional approach to address the interactive safety is conservative, which slows down
the robot when human is nearby, hence sacrifices productivity for the sake of safety. How-
ever, to make the interaction desirable, both safety and efficiency need to be considered in
designing the robot behavior. Less conservative methods in the context of obstacle avoidance
in robot motion planning have also been used to address safety in HRI, such as potential field
methods [61, 108] and sliding mode methods [45]. These two methods result in closed-form
analytical control laws; but they do not emphasize optimality (or efficiency) and sometimes
may not enforce hard constraints. Some authors formulate the problem as an optimization
or optimal control problem with hard constraints to represent the safety requirements [34].
Unfortunately, these non-convex optimization problems are generally hard to solve analyti-
cally [54] and different approximations and numerical methods are used [123, 127]. As the
algorithms must be designed such that it can be executed fast enough for timely responses
in emergency situations, those methods may not be desirable for online applications. New
approaches to deal with safety in HRI are needed, e.g. the robot should be designed intelli-
gent enough to conduct social behavior [153] to interact with humans safely and efficiently
even in emergency situations.

By designing the robot behavior, the safety issues need to be understood in the human-
robot systems. This multi-agent situation complicates the interactions as the individual

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 36

optima usually do not coincide with the system optima [91]. An agent’s interest is to be
efficient, i.e. finish the task as soon as possible, while staying safe. For example, an auto-
mated vehicle’s interest is to go to the destination in minimum time without colliding with
surrounding vehicles. The safety is the mutual interests for all agents in the system, while
the efficiency goals may conflict with one another. Figure 4.1a shows the conflict between
two vehicles during lane merging. The two vehicles cannot pass the conflict zone at the
same time. One of the vehicle must yield (i.e. sacrifice efficiency) to ensure safety. Figure
4.1b shows the conflict between an autonomous guided vehicle (AGV) and a human worker
as their future trajectories intersect. The intersection point is a potential conflict zone if
neither the AGV or the human detours.

Take human’s social behavior as an example, to solve conflicts of interests, a human’s
behavior is usually constrained. The constraint comes from at least two factors: the social
norm and the uncertainties that he or she perceives for other people. The social norm
guides human’s behavior in a certain situation or environment as “mental representations
of appropriate behavior”. For example, in the AGV case, the social norm will suggest the
AGV to keep a safe distance from human and detour if necessary. In practice, the perceived
uncertainties also affect human’s decision. Similarly, whether the AGV needs to detour and
how much the AGV should detour highly depends on how certain the AGV is about its
prediction of the human’s trajectory. Moreover, the uncertainties can be attenuated through
active learning (refer to uncertainty reduction theory [15]). A common experience is: a
newcomer tends to behave conservatively in a new environment due to large uncertainties.
But through observing and learning his peers, he will gradually behave freely due to the
reduction of uncertainties.

Based on these observations, a safety oriented method is introduced to design the short

(a) Conflict between two vehicles during lane merging.

(b) Conflict between a human worker and an autonomous guided vehicle (AGV) in a factory floor.

Figure 4.1: Conflicts in multi-agent systems and safety issues in human-robot interactions.

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 37

term motion planner for the robot. As discussed in Chapter 2, local planning is mainly
to address safety. Suppose a reference input uoR is received from the long term planner, the
short term planner needs to ensure that the interaction constraint x ∈ I will be satisfied after
applying this input. Hence the problem can be formulated as the following optimization,

u∗R = min ‖uR − uoR‖2
Q (4.1a)

s.t. uR ∈ Ω, x ∈ I, ẋR = fR(xR) + hR(xR)uR, (4.1b)

where ‖uR−uoR‖Q = (uR−uoR)TQ(uR−uoR) penalizes the deviation from the reference input.
The last equation in (4.1b) is the robot dynamic function, which is assumed to be affine in the
control input. The interaction constraint x ∈ I defines a safe set in the system state space.
In this chapter, we define XS := I and assume that all agents agree on this constraint, which
can be understood as a social norm. The safe set and the robot dynamics impose nonlinear
and non-convex constraints which make the problem hard to solve. We propose to transform
the non-convex state space constraint into convex control space constraint using the idea of
invariant set. The safe set algorithm (SSA) [78] is developed to enforce invariance in the safe
set according to the predicted human behavior, and the safe exploration algorithm (SEA)
further constrains the robot motion by uncertainties in the predictions [83]. By actively
learning human behaviors, the robot will be more “confident” about its prediction of human
motion, hence able to access a larger subset of the safe set when the uncertainty is smaller.

The remainder of the chapter is organized as follows: in Section 4.2, the design method-
ology of the safety-oriented local motion planning will be discussed. The safe set algorithm
(SSA) and the safe exploration algorithm (SEA) will be discussed in Section 4.3 and Sec-
tion 4.4 respectively. A method to combine SSA and SEA will be discussed in Section 4.5.
Section 4.6 concludes the chapter.

4.2 The Safety-Oriented Behavior Design

The Safety Principle

According to the safe set XS, define the state space constraint RS for the robot as
RS(xH) = {xR : [xTR, x

T
H]T ∈ XS}, which depends on humans’ states. If human will take care

of the safety, then the safe set for the robot is

R1
S = {xR : xR ∈ RS(xH) for some xH}. (4.2)

However, to make the system reliable, the safety problem should be taken care of by the
robot. In the case that the robot knows human’s next move x̂H , the safety bound for the
robot becomes

R2
S = {xR : xR ∈ RS(x̂H)}. (4.3)

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 38

Figure 4.2: Illustration of the state space safety constraints XS, R1
S, R2

S and R3
S.

Due to noises and uncertainties, the estimate x̂H may not be accurate. The human state
xH may lie in a set ΓH containing x̂H . Then the robot motion should be constrained in a
smaller set

R3
S = {xR : xR ∈ RS(xH),∀xH ∈ ΓH}. (4.4)

Figure 4.2 illustrates the safe set XS and the state space constraints R1
S, R2

S and R3
S. It

is clear that R3
S ⊂ R2

S ⊂ R1
S.

The Safety Principle: the robot control input uR(t) should be chosen such that XS is
invariant, i.e. x(t) ∈ XS for all t, or equivalently, xR(t) ∈ R3

S(t) for ΓH(t) which accounts for
almost all possible noises v1, ...vN , w1, ..., wN and human behaviors Bi(·), i ∈ H (those with
negligible probabilities will be ignored).

Figure 4.3 illustrates the expected outcome of the robot behavior under the safety prin-
ciple. In view of the potential conflict, the robot detours in the safe region R3

S.

The Safety Index

The safety principle requires the designed control input to make the safe set invariant with
respect to time. In addition to constraining the motion in the safe region R3

S, the robot should
also be able to cope with any unsafe human movement. Given the current configuration in
Fig.4.2, if the human is anticipated to move downwards, the robot should go left in order for
the combined trajectory to stay in the safe set. To cope with the safety issue dynamically,
a safety index is introduced as shown in Fig.4.4. The safety index φ : X → R is a function
on the system state space such that

1. φ is differentiable with respect to t, i.e. φ̇ = (∂φ/∂x)ẋ exists everywhere;

2. ∂φ̇/∂uR 6= 0;

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 39

Figure 4.3: Solving the conflicts by re-planning in the safe region R3
S.

3. The unsafe set X \ XS is not reachable given the control law φ̇ < 0 when φ ≥ 0 and
the initial condition x(t0) ∈ XS.

The first condition is to ensure that φ is smooth. The second condition is to ensure that
the robot input can always affect the safety index. The third condition provides a criteria
to determine whether a control input is safe or not, e.g. all the control inputs that drive the
state below the level set 0 are safe and unsafe otherwise.

Lemma: (Existence of the Safety Index) A function φ satisfying all three conditions
exists for any set XS that can be represented by a smooth function φ0(x), i.e. XS = {x :
φ0(x) ≤ 0}.1

To ensure safety, the robot’s control must be chosen from the set of safe control US(t) =
{uR(t) : φ̇ ≤ −ηR when φ ≥ 0} where ηR ∈ R+ is a safety margin. By the dynamic equation
in (4.1b), the derivative of the safety index can be written as

φ̇ =
∂φ

∂xR
hRuR +

∂φ

∂xR
fR +

∑
j∈H

∂φ

∂xj
ẋj. (4.5)

Then the set of safe control is

US (t) = {uR (t) : L (t)uR (t) ≤ S (t, ẋH)} , (4.6)

1The Lemma is proved in [78]. φ can be constructed in the following procedure: first, check the order

from φ0 to uR in the Lie derivative sense, denote it by n; then define φ as φ0 + k1φ̇0 + ...+ kn−1φ
(n−1)
0 . The

coefficients k1, ..., kn are chosen such that the roots of 1 + k1s + ... + kn−1s
n−1 = 0 all lie on the negative

real line.

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 40

Figure 4.4: The safety index and the safe set.

where

L (t) =
∂φ

∂xR
hR, (4.7)

S (t, ẋH) =

{
−ηR −

∑
j∈H

∂φ
∂xj
ẋj − ∂φ

∂xR
fR

∞
φ ≥ 0

φ < 0
. (4.8)

L(t) is a vector at the “safe” direction, while S(t, ẋH) is a scalar indicating how much
control effort is needed to be safe, which can be broken down into three parts: a margin
−ηR, a term to compensate human motion −

∑
j∈H

∂φ
∂xj
ẋj and a term to compensate the

inertia of the robot itself − ∂φ
∂xR

fR. In the following arguments when there is no ambiguity,
S(t, ẋH) denotes the value in the case φ ≥ 0 only. Under different assumptions of the human
behavior, S(t) varies. The sets of safe control correspond to R1

S, R2
S and R3

S are

U1
S (t) = {uR (t) : L (t)uR (t) ≤ S (t, ẋH) for some ẋH} , (4.9)

U2
S (t) =

{
uR (t) : L (t)uR (t) ≤ S

(
t, ˆ̇xH

)}
, (4.10)

U3
S (t) =

{
uR (t) : L (t)uR (t) ≤ S (t, ẋH) for all ẋH ∈ Γ̇H

}
, (4.11)

where ˆ̇xH is the velocity vector that moves the current configuration xH of human to x̂H and
Γ̇H is the set of velocity vectors that move xH to ΓH . Computationally, ˆ̇xH = x̂H−xH

ts
where

ts is the sampling time. Obviously U3
S ⊂ U2

S ⊂ U1
S. When the uncertainties in the estimation

of ˆ̇xH reduces, U3
S converges to U2

S.
The difference between RS and US is that RS is static as it is on the state space, while US

is dynamic as it concerns with the “movements”. Due to introduction of the safety index, the
non-convex state space constraint RS is transformed to a convex state space constraint US.
For example, in Fig.4.3, the safe region R3

S for the AGV is the space outside the uncertainty
range. But the set U3

S according to (4.11) is a half space.

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 41

According to the safety principle, the robot’s control input should lie in the set U3
S. There

are two ways to choose the uncertainty bound Γ̇H . One way is to use a constant bound based
on the mean prediction error. Another way is to dynamically adjust the uncertainty bound
according to the level of uncertainties in real time. The first way corresponds to the safe
set algorithm (SSA) [78] while the second one corresponds to the safe exploration algorithm
(SEA) [83], which will be discussed in the following two sections.

4.3 The Safe Set Algorithm (SSA)

The safe set algorithm offers a fast online solution concerning the safety principle. In this
section, the control algorithm and the learning algorithm in SSA will be discussed, followed
by an application on a robot arm.

4.3.1 The Algorithm

In SSA, a constant λSSAR ∈ R+ is introduced to bound the noises and uncertainties in the
estimation, i.e.

SSSA
(
t, ˆ̇xH

)
= S(t, ˆ̇xH)− λSSAR = −ηR − λSSAR −

∑
j∈H

∂φ

∂xj
ˆ̇xj −

∂φ

∂xR
f ∗Rx, (4.12)

where ˆ̇xj =
x̂j(k+1|k)−x̂j(k|k)

ts
for all j ∈ H. The index k represents the time step of the last

measurement before t, while k + 1 is the time step for the next anticipated measurement.
x̂j(p|k) is the estimate of xj(p) given information up to time step k as discussed in Chapter
3. The computation of x̂j(k + 1|k) and x̂j(k|k) follow from (3.14-3.17). L(t) and S(t) will
also be written as L(k) and S(k) to denote that the last measurement is taken at k-th time
step. The control algorithm can also be designed in discrete time as discussed in [78].

With the set of safe control USSA
S , we can transform the non-convex optimization problem

(4.1) into a convex optimization problem:

u∗R = min
uR∈Ω∩USSA

S

‖uR − uoR‖2
Q, (4.13)

where USSA
S (t) = {uR : L(t)uR ≤ SSSA(t, ˆ̇xH)}. An analytic control law that solves the

optimization approximately can be obtained. Let c = minu∈USSA
S (t) |L (t) (u− uoR (t))|. When

Ω is not tight, the safe control input u∗R (t) is [78]:

u∗R (t) = uoR (t)− c Q−1L (t)T

L (t)Q−1L (t)T
. (4.14)

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 42

(a) The interaction between a robot arm and a human.

(b) The simulation result: scenario 1.

(c) The simulation result: scenario 2.

Figure 4.5: Application of the SSA algorithm on a planar robot arm.

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 43

4.3.2 Example: Local Planning of a Planar Robot Arm

In this section, the SSA is applied to a planar robot arm to demonstrate the effectiveness
of the algorithm.

The environment is shown in Fig.4.5a where both the robot arm and the human need
to approach their respective goals in minimum time without colliding with each other. The
robot arm has two links with joint positions θ1 and θ2 and the joint velocities θ̇1 and θ̇2. Let
θ = [θ1, θ2]T . Considering the kinematics of the robot arm, the control input is defined to be

the joint accelerations, i.e. uR =
[
θ̈1, θ̈2

]T
. The end point position of the robot is denoted

as p = (px, py). The optimal control law is designed to be

uoR = J−1
p

{
Kp

[
px − gx
py − gy

]
+Kv

[
ṗx
ṗy

]
−Hp

}
, (4.15)

where Jp is the Jacobian matrix at p and Hp = J̇pθ̇. The pair (gx, gy) is the goal point in the
work space. The matrices Kp ∈ R2×2 and Kv ∈ R2×2 are the control gain.

The closest point to the human on the robot arm is denoted as m = (mx,my). Define
the robot state as xR = [mx,my, ṁx, ṁy]

T . The state space equation is

ẋR = ARxR +BRJmuR +BRHm, (4.16)

where

AR =

[
0 I2

0 0

]
, BR =

[
0
I2

]
,

and Jm is the Jacobian matrix at m with Hm = ˙Jmθ̇.
The human is simplified as a circle, whose state is taken as xH = [hx, hy, ḣx, ḣy] where hx

and hy is the position and ḣx and ḣy is the velocity. Define the safe set as XS = {x : d ≥ dmin}
where d measures the smallest distance between the human and the robot arm and dmin is
a positive constant. Based on the discussion in Section 4.2, the safety index is designed as
φ = D − d2 − kφḋ where D = d2

min + ηRts + λSSAR ts and kφ > 0 are constants [78]. Let
the relative distance, velocity and acceleration vectors be d =

[
I2 0

]
(xR − xH),v =[

0 I2

]
(xR − xH) and a =

[
0 I2

]
(ẋR − ẋH). Then d = |d| and

φ̇ = −2dḋ− kφd̈ = −2dTv − kφ
dTa + vTv − ḋ2

d
,

= −2dTv − kφ
dT (JmuR +Hm)− dT

[
0 I2

]
ẋH + vTv

d
+ kφ

(dTv)2

d3
. (4.17)

Hence

L(t) = −kφ
dT

d
Jm, (4.18)

S(t, ẋH) = −ηR + 2dTv + kφ
dTHm − dT

[
0 I2

]
ẋH + v · v

d
− kφ

(dTv)2

d3
. (4.19)

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 44

In the simulation, several goals were assigned for the human. Before parameter adap-
tation, the robot inferred on the human’s current goal first [81]. Sampling time ts = 0.1s.
Figure 4.5b shows the human avoidance behavior of the robot. In (1), the human and the
robot were both near their respective goals. However, since the human was heading towards
the robot in high speed, the robot went backward in (2) and (3). Figure 4.5c shows the robot
behavior under unexpected human behavior. In (1), the human suddenly changed his course.
Although all of his goal points were in the lower part of the graph, the human started to go
up. By observing that, the robot went away from the human in (2) and (3). The simulation
results confirms the effectiveness of the algorithm.

4.4 The Safe Exploration Algorithm (SEA)

In SSA, the bound for the uncertainties (i.e. λSSAR) is a constant. However, the mean
squared estimation error (MSEE) of the human’s state is changing from time to time. A
larger bound is needed if the MSEE is larger. To capture this property, the safe exploration
algorithm (SEA) is introduced, where the control input changes under different levels of
uncertainties.

4.4.1 The Algorithm

In a belief space [34], the state estimate of xj for j ∈ H is no longer a point but a
distribution, i.e. N (x̂j, Xj) where Xj is the covariance representing the level of uncertainties
in the estimation. All the distributions are assumed to be Gaussian. Since xj ∼ N (x̂j, Xj),

the covariance can be written as Xj = E
[
(xj − x̂j) (xj − x̂j)T

]
, which is the mean squared

estimation error (MSEE) defined in Chapter 3. The a priori and a posteriori estimates,
estimation errors and MSEEs are all defined in Chapter 3 in Table 3.1. At the k-th time
step, the best prediction for xj (k + 1) has the following distribution

N (x̂j (k + 1|k) , Xj (k + 1|k)) . (4.20)

In the belief space, since the distribution of xj (k + 1) is unbounded, the inequality in
(4.11) is ill-defined. Indeed, uR needs to satisfy a probability constraint

P ({xj (k + 1) : L(k)uR ≤ S(k, xH)}) ≥ 1− ε,∀j ∈ H, (4.21)

where ε > 0 is a small number. A bounded set Γj(k) can be defined for j ∈ H such that
the probability density of xj /∈ Γj(k) is small and P (xj ∈ Γj (k)) ≥ 1 − ε. For a Gaussian
distribution, the probability mass lying within the 3σ deviation is 0.997. Set ε = 0.003 and
let ∆xj = xj − x̂j (k + 1|k), then the set Γj can be defined as

Γj (k) =
{
xj : ∆xTj Xj (k + 1|k)−1 ∆xj ≤ 9

}
. (4.22)

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 45

Figure 4.6: Illustration of the safety constraint in the belief space.

By (4.11) and (4.21), the constraint in U3
R is satisfied if the following inequality holds,

L(k)uR ≤ SSEA(k) = min
xj(k+1)∈Γj(k),∀j∈H

{S(k)} . (4.23)

By (4.8), the RHS of (4.23) can be decoupled as a sequence of optimization problems,
i.e. for all j ∈ H,

minxj(k+1)∈Γj(k)
∂φ
∂xj
xj(k + 1). (4.24)

By Lagrangian method2, the optimal solution x∗j (k + 1) for all j ∈ H is

x∗j(k + 1) = x̂j (k + 1|k) +
3Xj (k + 1|k)

(
∂φ
∂xj

)T
[(

∂φ
∂xj

)
Xj (k + 1|k)

(
∂φ
∂xj

)T] 1
2

. (4.26)

According to (4.26), SSEA(k) can be expressed as

SSEA(k) = S(k, ˆ̇xH)− λSEAR (k) = −ηR − λSEAR (k)−
∑
j∈H

∂φ

∂xj
ˆ̇xj −

∂φ

∂xR
f ∗Rx, (4.27)

where

λSEAR (k) =
3

ts

∑
j∈H

[(
∂φ

∂xj

)
Xj (k + 1|k)

(
∂φ

∂xj

)T] 1
2

+ λoR, (4.28)

2The objective function is linear while the constraint function defines an ellipsoid as shown in Fig.4.6.
The optimal solution must lie on the boundary of the ellipsoid. Let γ be a Lagrange multiplier. Define the
new cost function as:

J∗
j =

∂φ

∂xj
xj(k + 1) + γ

[
9−∆xTj Xj (k + 1|k)

−1
∆xj

]
. (4.25)

The optimal solution satisfies
∂J∗

j

∂xj(k+1) =
∂J∗

j

∂γ = 0, i.e. (∂φ∂xj
)T − 2γXj (k + 1|k)

−1
∆xj = 0 and 9 −

∆xTj Xj (k + 1|k)
−1

∆xj = 0. Then (4.26) follows.

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 46

(a) The interaction between an AGV and a human.

(b) Simulation result with SEA. (c) Simulation result with SSA.

Figure 4.7: Application of the SEA algorithm and the SSA algorithms on an AGV.

and λoR ∈ R+ is the bound for other uncertainties. All other equations follow from the safe
set algorithm except for the learning and prediction part. In SSA, we only estimate the
expected state of the humans, e.g. x̂j (k + 1|k). In SEA, the MSEE of x̂j (k + 1|k) for all
j ∈ H also needs to be estimated using the algorithm discussed in Chapter 3 in (3.20) and
(3.23). In the implementation, the covariance of the noise W , the time varying rate dϑ and
the initial values are hand-tuned.

4.4.2 Example: Local Planning of a Vehicle

In this section, a comparative study between SSA and SEA is performed on a vehicle
shown in Fig.4.7a. The vehicle’s state is denoted by xR = [Rx, Ry, vR, θR]T where Rx is the
x-position of the vehicle, Ry the y-position, vR the speed and θR the direction. The control
input of the vehicle is uR = [v̇R, θ̇R]T (saturations apply: |v̇R| ≤ amax and |θ̇R| ≤ ωmax, where

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 47

amax, ωmax are positive constants). The state equation is

ẋR = f ∗Rx(xR) +BuR, (4.29)

where f ∗Rx(xR) =
[
vR cos θR vR sin θR 0 0

]T
, B =

[
0 I2

]T
.

The vehicle can measure its own state directly. It can also measure the relative distance
d and the relative direction θr towards the nearby human as illustrated in Fig.4.7a. The
human’s state is xH = [hx, hy, ḣx, ḣy]

T , which is calculated based on the measurements and
the robot state. Suppose that the goal point of the robot is [Gx, Gy]. The baseline control
law is designed as [83]

v̇R = − [(Rx −Gx) cos θR + (Ry −Gy) sin θR]− kvvR, (4.30)

θ̇R = kθ

[
arctan

Ry −Gy

Rx −Gx

− θR
]
, (4.31)

where kv, kθ ∈ R+ are constants.
The safety index φ = D − d2 − kφḋ is chosen to be the same as in section 4.3.2. In SSA,

D is set to be d2
min + ηRts + λSSAR ts. In SEA, D is set to be d2

min + ηRts + λSEAR (k)ts. The
relative distance, velocity and acceleration vectors are

d = [d cos(θr + θR), d sin(θr + θR)]T ,

v = [v cos(θR)− ḣx, v sin(θR)− ḣy]T ,

a =

[
cos θR −vR sin θR
sin θR vR cos θR

]
uR −

[
0 I2

]
ẋH .

Similar to (4.17), the time derivative of the safety index is

φ̇ = −2dTv − kφ
dTa + vTv − ḋ2

d
,

= −2dTv − kφ
[d cos θr,−dvR sin θr]uR − dT

[
0 I2

]
ẋH + vTv

d
+ kφ

(dTv)2

d3
,(4.32)

which implies

L(t) = kφ [cos θr,−vR sin θr] , (4.33)

S(t, ẋH) = −ηR + 2dTv + kφ
vTv − dT

[
0 I2

]
ẋH

d
− kφ

(dTv)2

d3
. (4.34)

Then SSSA and SSEA follow from (4.12) and (4.27) respectively, and the final control
input follows from (4.14).

Figure 4.7b and Fig.4.7c show the vehicle trajectories under SSA and SEA. The vehicle
needed to approach (0,5) from (-5,-5) while the human went from (0,-3) to (-5,5). Five time
steps are shown in the plots: k = 3, 52, 102, 206, 302 from the lightest to the darkest. The

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 48

solid circles represent the human, which was controlled by a human subject through a multi-
touch trackpad in real time (notice there was overshoot as the control was not perfect). The
triangles represent the vehicle. The transparent circles in Fig.4.7b represent the set ΓH(k) in
(4.22) mapped into 2D, which is shrinking gradually due to the reduction of uncertainties as
an effect of learning. In Fig.4.7c, the transparent circles represent the equivalent uncertainty
levels introduced by λSSAR , thus the radius remain constant throughout the time.

Figure 4.8 shows the distance profiles and the vehicle velocity profiles under SSA and SEA.
Due to large initial uncertainties, the vehicle only started to accelerate after k = 50 (when
the relative distance was large) in SEA. However, in SSA, the vehicle tried to accelerate in
the very beginning, then decelerated when the relative distance to the human decreased. The
velocity profile in SSA was serrated, while the one in SEA was much smoother. Meanwhile,
in both algorithms, the relative distance was always greater than dmin = 3. However, before
k = 150, the relative distance was kept larger in SEA than in SSA, since the vehicle was
more conservative in SEA due to large uncertainty. Figure 4.8c shows that the a priori
MSEE provides a perfect bound for the prediction error, while the prediction error reduces
gradually, hence validates the learning algorithms.

In conclusion, the behavior in SSA is: move and modify; while in SEA, it is: move only if
confident. The behavior under SEA is better for a new comer, while the behavior under SSA
is better if the robot is already very familiar with the environment, i.e. with low uncertainty
levels.

4.5 An Integrated Method for Time Varying

Topology

In real world applications, the system topology is usually time varying, e.g. the robot will
encounter different agents at different time in different locations [40]. Mathematically, that
means some agents will be decoupled from the system block diagram in Fig.2.2 and others
will join from time to time. The robot is not faced with the “same” system throughout the
time. This scenario is common for mobile robots and automated vehicles [80].

As the robot needs to deal with new agents, SEA is more appropriate than SSA. How-
ever, when the number of agents increase, the computation complexity in SEA increases
dramatically. In this section, a method to combine SSA and SEA is discussed in order to
balance the performance and the computation complexity.

4.5.1 The Algorithm

The Control Algorithm

Due to limited sensing capability, the robot can only track humans that are within certain
distance. Every agent within this range will be assigned a special identification number. Let
H(k) denotes the collection of those identification numbers at time step k. A safety index φj

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 49

(a) The relative distance profiles in SEA and SSA.

(b) The velocity profiles of the vehicle in SEA and SSA.

(c) The a priori MSEE as a bound of the state prediction error.

Figure 4.8: Comparison between the SEA algorithm and the SSA algorithm.

is designed for each agent j ∈ H(k), as it is hard to design one analytical safety index that
satisfies all the requirements for time varying H(k). In this way, uR needs to be constrained
by

U3
R =

⋂
j∈H(k)

U3
R,j = {uR : Lj(k)uR(k) ≤ Sj(t, ẋj) for all ẋj ∈ Γ̇j}, (4.35)

where Lj and Sj are calculated with respect to φj. The uncertainty bound Γ̇j is chosen
according to SEA only for new agents. Once the MSEE converges, the algorithm is switched
to SSA for that agent. The idea is illustrated in Algorithm 4.1, where Π is a set that records
the identification numbers of the agents who are no longer considered as new agents.

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 50

Initialize Π = ∅, k = 0;
while Controller is Active do

k = k + 1;

Read current H(k) and yjR(k) for j ∈ H(k);
for j ∈ H(k) do

calculate the estimate x̂j(k + 1|k) based on measurements yjR(k);
if j /∈ Π then

calculate the MSEE Xj(k + 1|k);
if Xj converges then

Π = Π ∪ {j};
end

end

end
for j ∈ H(k) do

if j ∈ Π then
U3
R,j = USSA

R,j = {uR : Lj(k) ≤ SSSAj (k)} (Apply SSA to φj);

else
U3
R,j = USEA

R,j = {uR : Lj(k) ≤ SSEAj (k)} (Apply SEA to φj);

end

end
U3
R =

⋂
j∈H(k) U

3
R,j;

Choose control u∗R by optimizing over U3
R;

end
Algorithm 4.1: The Algorithm Combining SSA and SEA

The Learning Algorithm

When the number of agents increases, the computation complexity regarding (3.13) in-
creases exponentially. However, the correlation among agents are over estimated, e.g. an
agent’s motion may only be affect by several surrounding agents instead of by all agents.
When the system topology is time varying, it is better to learn agents’ dynamics separately
and use low dimension features to represent the correlations among agents. It is assumed
that an agent j’s motion will be affected by several features fpj for p = 1, 2, . . ., e.g. the
distance to the nearest agent and distance to the goal point. Then the linearized closed loop
dynamics of agent j can be written as

xj (k + 1) = Aj (k)xj (k) +
∑
p

Bp
j (k) fpj (k) + w∗j (k) , (4.36)

where w∗j (k) is a noise term. Then the parameters Aj (k) and Bp
j (k) can be identified using

the methods discussed in Chapter 3.3.

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 51

4.5.2 Example: Robot Navigation in a Crowded Environment

The strategy is tested on robot navigation in a crowded environment with multiple hu-
mans as shown in Fig.4.9a. The robot is modeled as a double integrator whose input is the
acceleration in x and y directions. The position of the humans were controlled in real time
by several human subjects who observed the virtual environment though a screen. The hu-
mans did not have specific tasks and were just “wandering” in the environment. The robot
is required to approach its goal while avoiding humans. The safety index was the same as
in section 4.4.2. The features in (4.36) were chosen to be the distance to the closest human
and the distance to the robot.

The simulation result is shown in Fig.4.9b, Fig.4.9c and Fig.4.9d. Before the 50-th time
step, the robot was trying to approach its goal. It detoured when the blue agent came close.
At the same time, the green agent which was previously hidden by the blue agent showed up
in the robot’s view. The new agent surprised the robot, and resulted in a large peak in the
robot velocity profile in Fig.4.9c. Algorithm-wise, it was the large uncertainty of the green
agent that “pushed” the robot away. The constraint U3

R was effective after the 50-th time
step as evidenced in Fig.4.9c. The relative distance between the robot and every human
agent was always maintained greater than dmin as shown in Fig.4.9d.

4.6 Conclusion

This chapter discussed a general methodology in designing the short term robot controller
for safe HRI. The safety issues were understood as conflicts in the multi-agent system. To
solve the conflicts, the robot’s behavior was constrained according to the “social norm” and
the uncertainties it perceived for the other agents (including humans and other robots).
Two algorithms were discussed under the framework: the safe set algorithm (SSA) and
the safe exploration algorithm (SEA). In both algorithms, the robot calculated the optimal
action to finish the task while staying safe with respect to the predicted human motion.
The difference was that SEA actively tracked the uncertainty levels in the prediction and
incorporated that information in robot control, while SSA did not. As shown in the human-
involved simulations, SEA was better when the uncertainty levels change from time to time,
especially in the early stages of human-robot interactions. On the other hand, SSA was
better when the predictions were more accurate, e.g. when the robot was “familiar” with
the human, as SSA was more computationally efficient than SEA. Finally, a method to
combine both algorithms was proposed to take the advantage of both algorithms. Several
case studies were presented and demonstrated the effectiveness of the method.

CHAPTER 4. SAFETY-ORIENTED LOCAL MOTION PLANNING 52

(a) Robot navigation in a crowded environment.

(b) The snapshots of the simulation result.

(c) The velocity profile of the robot.

(d) The relative distance profile among the robot and the human agents.

Figure 4.9: Application of the integrated method on robot navigation.

53

Chapter 5

Efficiency-Oriented Global Motion
Planning

Global or long term trajectory or motion planning is one of the key challenges in robotics.
Robots need to find motion trajectories to accomplish certain tasks in constrained environ-
ments in real time. The scenarios include but are not limited to navigation of unmanned
areal or ground vehicles in civil tasks such as search and rescue, surveillance and inspection;
navigation of autonomous or driverless vehicles in future transportation systems; or motion
planning for industrial robots in factory floor. In the context of human-robot interactions,
the motion planning should be accomplished in real time in order to for the robot to response
to environmental changes. In this chapter, we focus on optimization-based global motion
planning.

5.1 Overview

Global motion planning is to find a trajectory that solves (2.7) in a long time horizon.
A trajectory has two attributions, spatial attribution and temporal attribution. To avoid
dynamic obstacles such as human, the robot can resort to either spatial maneuvers such as
detours or temporal maneuvers such as slowing down or speeding up. Regarding these two
kinds of maneuvers, there are two planning frameworks in literature, e.g. the integrated
framework and the layered framework.

The integrated framework relies on spatiotemporal planning, which considers the spatial
and temporal maneuvers simultaneously. On the other hand, the layered framework separates
the considerations on the spatial and temporal maneuvers by planning a path first and then
generating a speed profile along the path [42]. In the cases when there is not much freedom for
the robot to choose alternative paths, nudging the speed profile is the only choice to respond
to moving obstacles. Figure 5.1 illustrates the differences between the two frameworks under
optimization-based methods. The horizontal plane represents the 2D state space. The
vertical axis represents time. The shaded volume is the time-augmented obstacle. In the

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 54

(a) Optimization-based spatial-temporal planning. (b) Optimization-based temporal planning.

Figure 5.1: The global motion planning problem and typical methods.

integrated framework, a trajectory needs to be computed directly in the spatiotemporal
space starting from a simple reference trajectory connecting the start point and the target
point as shown in Fig.5.1a. In the layered framework, the trajectory is planned by assigning
temporal information to the points on a given path as shown in Fig.5.1b.

In the remainder of this chapter, the global motion planning problem will be re-formulated
first, followed by the discussion of optimization-based trajectory planning in an integrated
framework in Section 5.3 and optimization-based speed profile planning in a layered frame-
work in Section 5.4.

5.2 Problem Formulation

The problem (2.7) will be reformulated in the context of trajectory planning in this
section.

Representing the Trajectory Denote the configuration of the robot as p ∈ C ⊂ Rn

where C is the configuration space and n is its dimension. Note that the configuration of a
robot may not be identical to the state xR of the robot since configuration does not include
velocity information. For a mobile robot, p is the position of the robot in the plane; for
an aerial robot, p is the position of the robot in the space; for a robot arm, p is the joint
position of the robot.

Let p : [0, s∗]→ C denotes a path which is parameterized by length s. The total length
of the path is s∗. p(s) ∈ Rn is a point on the path p which has distance s to the starting

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 55

point p(0). ṗ := ∂p/∂s and p̈ := ∂2p/∂s2 denote the tangent vector and the normal vector
of the path respectively. Since the path p is parameterized by length, its tangent vector has
unit length, e.g. ‖ṗ‖ = 1, and the length of its normal vector represents the curvature of
the path. Hence we define the curvature κ : [0, s∗]→ R along the path p as κ(s) := ‖p̈(s)‖.

Let s : [0, t∗] → [0, s∗] be a mapping from the time axis to the station on the path. s
encodes the speed profile, e.g. ṡ(t) is the speed of the object at time t. This mapping is non
decreasing, but may not be bijective as the speed can be zero.

With the speed profile, a trajectory T : [0, t∗]→ Rn is defined to be T := p ◦ s where ◦
denotes function composition. The velocity along the path is

Ṫ(t) = ṗ(s(t)) · ṡ(t), (5.1)

which equals to the speed ṡ times the tangent vector ṗ at point s(t). The acceleration along
the path is

T̈(t) = p̈(s(t)) · ṡ(t)2 + ṗ(s(t)) · s̈(t), (5.2)

which have two components, e.g. the longitudinal acceleration s̈ and the lateral acceleration
κ(s)ṡ2. For simplicity, we sometimes omit the parameter t or s if there is no ambiguity.

Let pa→b be a path connecting points a and b in Rn, e.g. p(0) = a and p(s∗) = b.
Similarly, let sc→d be a speed profile such that ṡ(0) = c and ṡ(t∗) = d. Let T[a,c]→[b,d] be a
trajectory T composed of pa→b and sc→d.

The Safety Constraint The area in the Cartesian space that is occupied by the robot
with configuration p is denoted as V (p) ∈ Rk where k = 2 or 3 is the dimension of the
Cartesian space. The area occupied by the obstacles or other agents in the environment
at time t is denoted as OCt ∈ Rk, which can be predicted using the methods described in
Chapter 3. Let dE : Rk×Rk → R be the Euclidean distance function in the Cartesian space.
The distance from the robot to the obstacles in the Cartesian space is computed as

d(p,OCt) := min
y∈V (p),z∈OC

t

dE(y, z). (5.3)

Suppose the minimum distance requirement is dmin. Then the obstacle in the configuration
space at time t is

Ot := {p : d(p,OCt) <= dmin}. (5.4)

Note that Ot can be regarded as the projection of the Cartesian space obstacles to the
configuration space.

The Dynamic Constraint The constraints come from kinematic limits and limitations on
control effort. Kinematic limits include speed limits and acceleration limits. For example, the
curvature of the path should be bounded for nonholonomic vehicles. Denote the constraint
as

F (T, Ṫ, T̈, · · ·) ∈ Ω. (5.5)

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 56

The Boundary Constraint The initial condition is always fixed as it is determined by
the robot’s current position and velocity. The terminal condition varies, which can either
be in fixed time horizon or for fixed target as discussed in Chapter 2. One example of fixed
time horizon problems is vehicle lane following where we only need to specify the lateral
position and desired longitudinal speed for the vehicle instead of the longitudinal position.
One example of fixed target problems is robot grasping or vehicle parking which requires the
robot to go to certain destination.

The Problem The global motion planning problem can be re-formulated as

min
TA→Z

J(TA→Z) (5.6a)

F (T, Ṫ, T̈, · · ·) ∈ Ω (5.6b)

T(t) /∈ Ot,∀t. (5.6c)

where (5.6a) is the cost function (soft constraint), (5.6b) is the dynamic constraint and (5.6c)
is the collision avoidance constraint. A and Z are the boundary conditions.

5.3 Optimization-Based Trajectory Planning

Optimization methods are widely adopted in robot trajectory planning due to its flexi-
bility to address multiple objectives [115, 123]. The major challenges lie in real time com-
putation. The optimization problem for trajectory smoothing in a clustered environment
is usually highly non-convex, which is hard to solve in real time using conventional non-
convex optimization solvers such as sequential quadratic programming (SQP) [17]. A con-
vex feasible set (CFS) algorithm [76] is proposed to convexify the problems. In this section,
the optimization-based trajectory planning problem will be discussed first, followed by a
quadratic approximation of the non-convex problem using the CFS algorithm. Then its
performance will be illustrated through several examples.

5.3.1 Problem Formulation

Discretize the trajectory T into h points and define xq := T(qts) where ts is the sampling
time. The discrete trajectory is now denoted as x = [xT0 , x

T
1 , · · · , xTh]T . The reference

trajectory is denoted as Tr and also discretized as xr which consists of a sequence of reference
states xrq := Tr(qts) for different time step q. Define the finite difference operators V ∈
Rnh×n(h+1) and A ∈ Rn(h−1)×n(h+1) as

V =
1

ts


In −In 0 · · · 0
0 In −In · · · 0
...

...
. . .

. . .
...

0 0 · · · In −In

, A =
1

t2s


In −2In In 0 · · · 0
0 In −2In In · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · In −2In In

 .

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 57

Note that V x is the velocity vector and Ax is the acceleration vector of the trajectory x.
Rewriting (5.6) in the discrete time as

min
x

J(x; xr) = w1‖x− xr‖2
Q + w2‖x‖2

S (5.7a)

s.t. x0 = A, xh = Z (5.7b)

vmin ≤ V x ≤ vmax, amin ≤ Ax ≤ amax (5.7c)

xq /∈ Oq,∀q = 1, · · · , h− 1. (5.7d)

The cost function is designed to be quadratic where w1, w2 ∈ R+. ‖x−xr‖2
Q := (x−xr)TQ(x−

xr) penalizes the distance from the target trajectory to the reference trajectory. ‖x‖2
S :=

xTSx penalizes the properties of the target trajectory itself, e.g. length of the trajectory
and magnitude of acceleration. The positive definite matrices Q,S ∈ Rn(h+1)×n(h+1) can
be constructed from the following components: 1) matrix for position Q1 := In(h+1); 2)
matrix for velocity Q2 := V TV and 3) matrix for acceleration Q3 := ATA. Then Q :=∑3

i=1 c
q
iQi and S :=

∑3
i=1 c

s
iQi where cqi and csi are positive constants. Constraint (5.7b) is

the boundary condition. Constraint (5.7c) is the linear constraint which represents velocity
and acceleration limits where vmin, vmax ∈ Rh and amin, amax ∈ Rh−1. Constraint (5.7d) is
for collision avoidance where dmin ∈ R+ is constant.

5.3.2 Quadratic Approximation

The non-convex optimization problem (5.7) is hard to solve in general using conventional
non-convex optimization solvers. We will solve it using the convex feasible set algorithm
(CFS). The details of the algorithm will be discussed in Chapter 6. The key idea is to
transform problem (5.7) into a quadratic programming by obtaining a linear subset of the
nonlinear constraint (5.7d).

For each time step q, the infeasible set is Oq. Let d∗E : Rn × Rn → R be the Eu-
clidean distance function in the Configuration space. Then constraint (5.7d) is equivalent to
d∗(xq,Oq) ≥ 0 where d∗(xq,Oq) is the signed distance function to Oq such that

d∗(xq,Oq) :=

{
minz∈∂Oq d

∗
E(xq, z) xq /∈ Oq

−minz∈∂Oq d
∗
E(xq, z) xq ∈ Oq

. (5.8)

∂Oq denotes the boundary of the obstacle Oq. Figure 5.2 illustrates the obstacle in the
Cartesian space and the corresponding Oq (shaded part) in the configuration space for a
planar robot arm.

Note that if Oq is convex, then the function d∗(·,Oq) is also convex. Hence d∗(xrq,Oq) +
∇d∗(xrq,Oq)(xq − xrq) ≥ 0 implies d∗(·,Oq) ≥ 0, which further implies that xq /∈ Oq. If the
obstacle Oq is not convex, we then break it into several simple convex objects Oiq such as
circles or spheres, polygons or polytopes. The Oiq’s need not be disjoint. Then d∗(·,Oiq) is
the convex cone of the convex set Oiq as shown in Fig.5.3a. Replacing (5.7d) with its first

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 58

(a) The constraint in the Cartesian space. (b) The constraint in the Configuration space.

Figure 5.2: The constraints for a planar robot arm in Cartesian and Configuration spaces.

order approximation, the new optimization problem becomes

min
x

J(x; xr) = w1‖x− xr‖2
Q + w2‖x‖2

S (5.9a)

s.t. x0 = A, xh = Z (5.9b)

vmin ≤ V x ≤ vmax, amin ≤ Ax ≤ amax (5.9c)

d∗(xrq,Oiq) +∇d∗(xrq,Oiq)(xq − xrq) ≥ 0,∀q, i. (5.9d)

The constraint (5.9d) is a convex feasible set of the original non-convex constraint since
d∗(·,Oiq) are convex for all i. The non-convex problem (5.7) reduces to a quadratic problem
(5.9) which can be solved efficiently using quadratic programming.

For iterative implementation, we can set x(0) to be xr and substitute xrq in (5.9d) with

x
(k)
q at each iteration k. It will be shown in Chapter 6 that the sequence x(k) generated by

the iterations will converge to a local optimum of the original problem (5.7) if the reference
xr is nearly feasible, i.e. there exists some x that satisfies the constraint (5.7d). Nonetheless,
in the simulations, it will be verified that the trajectory after one iteration is good enough
in the sense of feasibility and optimality. Thus we can safely work with the non-iterative
version if strict optimality is not required and the computation time is limited.

Visualization of the Convex Feasible Set The convex feasible set in (5.9d) is illustrated
in Fig.5.3a for certain q and i when X ⊂ R2. The left hand side of (5.9d) represents the
tangent plane of the distance function d∗ at the reference point xrq. Due to the cone structure
of d∗, the tangent plane touches the boundary of the obstacle. The convex feasible set is
the projection of the positive portion of the tangent plane onto R2, which is a half space.
The half space is maximal in the sense that the distance from the reference point to the
boundary of the half space is maximized, which is equal to the distance from the reference
point to the obstacle. With this observation, we can construct the convex feasible set using

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 59

(a) Illustration of the convex feasible set.

(b) The geometric interpretation.

Figure 5.3: The convex feasible set and its geometric interpretation.

purely geometric method without differentiation. For any reference point xr and any convex
obstacle O, denote the closest point on O to xr as b∗. The convex feasible set for xr with
respect to O is just the half space which goes through b∗ and whose normal direction is along
b∗ − xr as shown in Fig.5.3b.

At each time step q, the convex feasible set with respect to all obstacles is a polygon
that is the intersection of all feasible half spaces. The polygon is always nonempty since
the reference point is nearly feasible. Thus the convex feasible set for the whole planning
horizon is a “tube” around the reference trajectory whose cross sections are those polygons.
Similar idea of using a “tube” constraint to simplify the trajectory smoothing problem can
be founded in [155]. The advantages of our method over the existing methods are that 1) the
“tube” is maximized and 2) the feasibility and convergence of the algorithm is guaranteed
theoretically.

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 60

5.3.3 Examples: Trajectory Planning for Various Systems

Mobile Vehicle In this section, trajectory planning problems for various robots are con-
sidered, including a mobile robot, a planar robot arm and an areal robot. The problem
is solved using both the CFS algorithm and the sequential quadratic programming (SQP)
algorithm. The algorithms are run in Matlab (using Matlab script) on a MacBook of 2.3
GHz using Intel Core i7. The SQP algorithm solves the problem (5.7) directly using Matlab
fmincon function. The CFS algorithm transforms the problem to (5.9) and solves it using
Matlab quadprog function iteratively till convergence. The termination conditions for the
two algorithms are set to be the same. For the CFS algorithm, we record both the processing
time for transforming the problem from (5.7) to (5.9) as well as the computation time for
the resulting quadratic problem.

Consider navigation of mobile vehicles in indoor environments or autonomous driving
in parking lots as shown in Fig.5.4a. In this case, X = R2 and Oq is a static maze for
all q. We identify the configuration space with the Cartesian space and assume that the
nonlinear constraint on vehicle dynamics is considered in the reference trajectory and will
not be violated if the reference trajectory is slightly modified. The point cloud model of
Oq is shown in Fig.5.4a. It is first partitioned into five polygons as shown in Fig.5.4b. The
reference trajectory (shown as the solid line in Fig.5.4b) is computed using Lattice A* search
[85]. Since the possible turning directions are discretized, there are undesirable oscillations
in the reference trajectory. In the optimization problem, large penalty on acceleration is
applied in order to git rid of the oscillatory waves. The convex feasible set in (5.9d) is
illustrated in a time-augmented state space in Fig.5.4c where the z-axis is the time axis.
At each time step, the convex feasible set is just a polygon around the reference point. All
those polygons form a “tube” around the reference trajectory. The horizon of the problem is
h = 116. Hence the dimension of the problem is 234. A safety margin is added as dmin = 3.

The CFS algorithm converges after 5 iterations, with total computation time 0.9935s.
The smoothed trajectories for each iteration are shown in Fig.5.4b. The average time for
transforming the problem from (5.7) to (5.9) during each iteration is 0.1632s. The average
time for solving the optimization problem (5.7) is 0.0355s. The cost profile is J(xr) = 423.7,
J(x(1)) = 584.3, J(x(2)) = 455.0, J(x(3)) = 407.6, J(x(4)) = 403.7, J(x(5)) = 403.6. However,
it is worth noting that although the cost changes quite a lot from the first iteration, the
resulting paths are similar to each other as shown in Fig.5.4b. The descent in cost is due to
the adjustment of the velocity and acceleration profiles, e.g. redistributing sample points on
the path.

The SQP algorithm does not converge or even find a feasible solution within the max
function evaluation limit 5000 with computation time 387.2s. The SQP algorithm undergoes
20 iterations. When terminated, the cost is drops from 423.7 to 287.2, but the feasibility of
the trajectory, i.e. −minq,i d

∗(xq,Oiq), only goes from 3.1 to 2.3.

Robot Arm In this case, a three-link planar robot arm is considered as shown in Fig.5.5
with X = [0, 2π)3. The infeasible area in the Cartesian space is wrapped by a capsule,

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 61

(a) The environment.

(b) The trajectories.

(c) The convex feasible set in time-augmented state space.

Figure 5.4: Trajectory smoothing for a mobile vehicle.

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 62

(a) Reference trajectory. (b) Smoothed trajectory.

Figure 5.5: Trajectory smoothing for a robot arm.

which characterizes Oq for all q. The reference trajectory is generated by linear interpolation
between boundary conditions A and Z, which violated the constraint. The horizon is h = 15.

The CFS algorithm converges after 2 iterations, with total computation time 2.4512s. The
smoothed trajectory is shown in Fig.5.5b which is feasible. The average time for transforming
the problem from (5.7) to (5.9) during each iteration is 1.2213s while the average time for
solving the optimization problem is 0.0043s. The pre-processing time is much longer than
that for the mobile vehicle due to the nonlinearity of the robot arm. Moreover, the solution
in the first iteration is already good enough and the second iteration is just for verification
that a local optimum has been found.

In comparison, the SQP algorithm converges after 41 iterations, with total computation
time 5.34s. Both the CFS algorithm and the SQP algorithm converge to the local optima at
J = 616.7.

Areal Vehicle In this case, an areal vehicle needs to fly over an uneven terrain. Thus
X = R3 and Oq is the uneven terrain for all q, which is segmented into three cones. The
reference trajectory is demonstrated by human, which is very coarse. The planning horizon
is h = 30. The margin is dmin = 1.

CFS algorithm converges after two iterations with total time 0.1931s. The average time
for pre-processing is 0.0730s and the average time for solving the optimization is 0.0235s.
On the other hand, SQP converges to the same trajectory after 10 iterations with total time
1.5329s.

5.4 Optimization-Based Speed Profile Planning

Decoupling temporal planning from spatiotemporal planning is beneficial to reduce the
computation complexity since the computation complexity grows exponentially when the

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 63

Figure 5.6: Trajectory smoothing for an areal vehicle.

dimension of the problem grows.
A speed profile is a one-to-one mapping between the time domain and the distance domain

of the path. Optimization can be performed either over station as shown in Fig.5.7a or over
time as shown in Fig.5.7b. Optimization over station requires an analytical parameterization
of the path as discussed in [47, 48, 71, 112, 150]. However, globally continuous analytical
parameterization of a complicated path is difficult, which usually requires approximation.
For a curvy path, the approximation may introduce infeasibility, e.g. curvature exceeding
the vehicle’s kinematic limits. Moreover, the complexity of the optimization problem may
increase when complicated expressions of the parameterization enter the objective function.
On the other hand, if we optimize over time as discussed in [14], only a sequence of way
points are needed instead of a continuous parameterization of the path. This section focuses
on speed profile planning via temporal optimization which optimizes the time stamps for all
waypoints along a given path.

In this section, the mathematical problem underlying speed profile planning will be dis-
cussed first by introducing the s − T graph. Then the temporal optimization problem for
speed profile generation will be formulated.

5.4.1 Problem Formulation

Representing Speed Profile Using the s− T graph

Suppose a path p is given. There is no speed information in the path p. In order to
determine the speed at each station, the time axis need to be introduced. The s− T graph
is shown in Fig.5.8a where the vertical axis is the one dimensional parameterization of the
path and the horizontal axis is the time axis. A speed profile V for the path p is denoted

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 64

(a) Optimization over station. For each sampled time step Ti, we need to find a corresponding station si
on the path.

(b) Optimization over time. For each sampled station si, we need to find a corresponding time stamp Ti
on the time axis.

Figure 5.7: Two optimization schemes to obtain the speed profile.

as a monotone curve on the s− T graph as shown in Fig.5.8a. Since the curve is monotone,
there are two ways to obtain the speed profile. The first way is to find a mapping from the
T axis to the s axis, e.g. fix a sequence of time steps {Ti} and find the desired si for each
Ti as shown in Fig.5.7a. The second way is to find a mapping from the s axis to the T axis,
e.g. fix a sequence of sampled stations {si} and find the desired Ti for each si as shown in
Fig.5.7b. The first way is the optimization over station as si’s are the decision variables,
while the second way is the optimization over time as Ti’s are the decision variables. In
either case, the speed profile is represented by the curve V = {(Ti, si)}i in the s− T graph.

Computing Speed, Acceleration and Jerk

Consider the speed profile V = {(Ti, si)}i. Denote pi := p(si) and the time interval
between pi and pi+1 as ti = Ti+1−Ti. When the time interval ti and the distance between pi
and pi+1 are not too large, the velocity vi, acceleration ai and jerk ji at pi can be approximated
by

vi =
pi+1 − pi

ti
, ai =

2(vi − vi−1)

ti + ti−1

, ji =
3(ai − ai−1)

ti + ti−1 + ti−2

. (5.10)

Denote the heading of the vehicle at point pi as θi := arctan(ṗ(si)). Hence the lon-
gitudinal and lateral directions at pi are denoted as τ(θi) := [cos θi, sin θi] and η(θi) :=
[sin θi,− cos θi] respectively. Then the longitudinal and lateral velocity, acceleration and jerk

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 65

(a) Multiple topological trajectories. (b) One topological trajectory.

Figure 5.8: Illustration of the constraints and the topological trajectories on the s−T graph.

are defined as

vτi = vi ·τ(θi), v
η
i = vi ·η(θi), a

τ
i = ai ·τ(θi), a

η
i = ai ·η(θi), j

τ
i = ji ·τ(θi), j

η
i = ji ·η(θi). (5.11)

Note that both pi and θi depend on station si. If we optimize over station, an analytical
expression of p(s) is indispensable, which will also increase the complexity of the problem.
On the other hand, if we optimize over time, si is predefined and pi and θi are fixed for all
i. The analytical expression of p(s) is not necessary. Moreover, in a lot of cases, the paths
are represented by a sequence of points instead of an analytical expression. Hence temporal
optimization is desired.

Speed Profile Planning via Temporal Optimization

As discussed earlier, given a path that is represented by a list of points {pi}h+1
1 , we need

optimize the time stamps Ti’s for each point along the path. The safety constraints for the
optimization problem is illustrated in the s−T graph in Fig.5.8a. The shaded area represents
the moments that another road participant is occupying some parts of the path (e.g. the
conflict zone) so that the ego vehicle cannot enter. The constraints in Fig.5.8a are generated
regarding the case shown in Fig.5.9a where the slow front vehicle is denoted as V1 and the
vehicle in the opposite lane is denoted as V2. As the ego vehicle can choose to enter the
conflict zone before or after another road participant, there are more than one topological
trajectory (or homotopy class), hence more than one local optimum as shown in Fig.5.8a.
The red trajectory corresponds to the case that the ego vehicle overtook V1 before V2 passed
by, while the green trajectory corresponds to the case that the ego vehicle overtook V1 after
V2 went away. It is assumed that which homotopy class to choose is determined by a high
level planner. In temporal optimization, the speed profile planner only tries to find the local
optimum inside the chosen homotopy class as shown in Fig.5.8b. This implies that for each

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 66

point pi, the high level planner would specify an interval constraint [Tmini , Tmaxi] for the time
stamp Ti. Hence the optimization problem is formulated as

min
t

J1(t) + J2(u), (5.12a)

s.t. Ti ∈ [Tmini , Tmaxi], (5.12b)

|ui| ≤ ū, (5.12c)

F(t,u) = 0. (5.12d)

where t := [t1, · · · , th], u := [u1, · · · , uh] and ui := [aτi , a
η
i , j

τ
i , j

η
i , v

r − vτi]1. For simplicity, let
uji ∈ R be the j-th entry in ui. Equation (5.12a) is the cost function, which penalizes cycle
time for efficiency in J1 and speed, acceleration and jerk for smoothness of the speed profile
in J2. J1 and J2 are convex. Moreover, J2 is symmetric with respect to 0. Equation (5.12b) is
the safety constraint to avoid dynamic obstacles. Equation (5.12c) is the dynamic constraint
on the speed, acceleration and jerk, which is assumed to be a box constraint. Equation
(5.12d) encodes the relationship between the time stamps and the speed profile in (5.10-
5.11). Indeed, (5.12d) can be written as a sequence of affine equations, f ji (t) + hji (t)uji = 0
for all i, j where

f 1
i (t) = 2

[
tidp

τi
i−1 − ti−1dp

τi
i

]
,

h1
i (t) = titi−1(ti + ti−1),

f 2
i (t) = 2

[
tidp

ηi
i−1 − ti−1dp

ηi
i

]
,

h2
i (t) = titi−1(ti + ti−1),

f 3
i (t) = 6[(ti−1 + ti−2)ti−1ti−2dp

τi
i − (ti + 2ti−1 + ti−2)titi−2dp

τi
i−1 + (ti + ti−1)titi−1dp

τi
i−2],

h3
i (t) = titi−1ti−2(ti + ti−1)(ti + ti−1 + ti−2),

f 4
i (t) = 6[(ti−1 + ti−2)ti−1ti−2dp

ηi
i − (ti + 2ti−1 + ti−2)titi−2dp

ηi
i−1 + (ti + ti−1)titi−1dp

ηi
i−2],

h4
i (t) = titi−1ti−2(ti + ti−1)(ti + ti−1 + ti−2),

f 5
i (t) = vrti − dpτii ,
h5
i (t) = ti,

where dpi = pi+1 − pi, dp
τj
i = dpi · τ(θj), and dp

ηj
i = dpi · η(θj). By definition, hji ≥ 0 for

all i and j. This property will be exploited to relax the problem. In order to compute the
acceleration and jerk at i = 1, 2, constants p0, p−1, t0 and t−1 are defined according to the
initial velocity v0 and the initial acceleration a0 = 0.

5.4.2 Quadratic Approximation

To solve (5.12) efficiently, we exploit its quadratic approximation using the slack convex
feasible set (SCFS) algorithm. As will be discussed in Chapter 6, the SCFS algorithm is

1ui may contain other parameters depending on the objective of the problem.

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 67

designed for problems with convex costs and nonlinear equality constraints. The idea is to
1) relax the nonlinear equality constraints to a set of non degenerating nonlinear inequality
constraints using slack variables by exploiting symmetry of the problem, and 2) approximate
the relaxed problem using quadratic programs. A set of nonlinear inequality constraints are
non degenerating if they do not imply any nonlinear equality constraint.

Assuming J1 and J2 are quadratic. Since (5.12) is symmetric with respect to u in the
cost function (5.12a) and in the dynamic constraints (5.12c), we define y ≥ |u| to be the
slack variable. Then the relaxed problem is as

min
t,y

J1(t) + J2(y), (5.13a)

s.t. At ≤ b, yi ≤ ū,∀i,∀j = 1, 2, (5.13b)

f ji (t) + hji (t)yji ≥ 0, f ji (t)− hji (t)yji ≤ 0. (5.13c)

where

A =



1 0 · · · 0

1 1
. . . 0

...
. 0

1 · · · 1 1
−1 0 · · · 0

−1 −1
. . . 0

...
. 0

−1 · · · −1 −1


, b =



Tmax1
...

Tmaxh

−Tmin1
...

−Tminh


.

According to Proposition 6.10 in Chapter 6, (5.13) is equivalent to (5.12) in the sense that:
if (to,yo) is a local optimum of (5.13), then to is a local optimum of (5.12); and if to is a local
optimum of (5.12), then (to,yo) is a local optimum of (5.13) with (yji)

o := |[hji (to)]−1f ji (to)|.
The relaxed problem is solved iteratively. Suppose at the k-th iteration, we have the

solution t(k) and y(k). Then at the (k + 1)-th iteration, (5.13c) is linearized with respect to
t(k) and y(k), and the following approximated quadratic program is formulated,

min
t,y

J1(t) + J2(y), (5.14a)

s.t. At ≤ b, yi ≤ ū,∀i,∀j = 1, 2, (5.14b)[
∇tf

j
i (t(k)) +∇th

j
i (t

(k))(yji)
(k)
]

(t− t(k)) + hji (t
(k))yji + f ji (t(k)) ≥ 0, (5.14c)[

∇tf
j
i (t(k))−∇th

j
i (t

(k))(yji)
(k)
]

(t− t(k))− hji (t(k))yji + f ji (t(k)) ≤ 0. (5.14d)

Solving the above quadratic program, we obtain to and yo. Define t(k+1) := to and
(yji)

(k+1) := |[hji (to)]−1f ji (to)|. Then we iterate until the solution converges, e.g. ‖t(k+1) −
t(k)‖ ≤ ε for ε small. t(0) and y(0) is initialized as

t
(0)
i :=

dpτii
v∗

, (yji)
(0) := |[hji (t(0))]−1f ji (t(0))|, (5.15)

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 68

(a) Case 1: Overtake a slow front vehicle using the opposite lane.

(b) Case 2: Right turn at an intersection.

Figure 5.9: Urban driving scenarios.

where v∗ can be the reference vr or the initial speed vτ0 .

5.4.3 Example: Speed Profile Planning for Autonomous Vehicles

Autonomous driving is widely viewed as a promising technology to revolutionize today’s
transportation system. However, it is still challenging to plan collision-free, time-efficient and
comfortable trajectories for an automated vehicle in dynamic environments such as urban
roads, since the vehicle needs to interact with other road participants. For example, how to
overtake a slow front vehicle safely using the opposite lane as shown in Fig.5.9a and how to
turn safely at an intersection when pedestrians are crossing and vehicles in the opposite lane
are turning left as shown in Fig.5.9b.

For vehicles, the path p ⊂ R2 concerns with the position of the center of the rear axle.
Regarding the driving quality, aτ and jτ should be minimized for longitudinal comfort, while
aη and jη should be minimized for lateral comfort. Moreover, a reference speed vr should be
tracked for time efficiency. Hence, the cost function in (5.12a) is designed to be

J1(t) = 0, J2(u) = w1

∑
‖aτi ‖2 + w2

∑
‖aηi ‖2 + w3

∑
‖jτi ‖2, (5.16)

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 69

where w1 = 1 and w2 = w3 = w4 = w5 = 10 are weights. The dynamic constraint in (5.12c)
is designed to be

|aτi | ≤ ā, |aηi | ≤ ā, (5.17)

for ā := 2.5m/s2 for passenger comfort.
The performance of the proposed method will be illustrated in several scenarios including

the two cases in Fig.5.9. The simulations were run in Matlab on a MacBook of 2.3 GHz
using Intel Core i7. In the SCFS algorithm, (5.14) for each iteration was solved using the
quadprog function. For comparison, (5.12) was also solved using the SQP in the fmincon

function. The SCFS algorithm and the SQP algorithm terminated if the step size (difference
between the two consecutive solutions) was less than 10−6. For better illustration, the speed
profiles after every iteration are shown in grayscale (the later in the iteration, the darker)
together with the optimal speed profile in all three cases.

Case 0: Speed Profile for a Curvy Road In this scenario, the automated vehicle
needs to pass a curvy road shown in Fig.5.10. The reference speed is vr = 11m/s. The
vehicle’s initial speed is vτ0 = 11m/s and vη0 = 0m/s. The path is sampled every 2m and 35
points are chosen. The SCFS algorithm (iteratively solving (5.14)) converges after 5 steps
with total computation time 0.185s. The optimal speed, acceleration and jerk profiles are
shown in Fig.5.10. The horizontal axes in the plots represents the traveling distance along
the path. The vehicle decelerated first in order to meet the acceleration constraint in the
lateral direction. It then accelerated after the maximum curvature was reached. The SQP
algorithm converges to the same speed profile after 80 iterations with total computation time
54.479s.

Case 1: Speed Profile for Overtake The scenario is shown in Fig.5.9a where the auto-
mated vehicle wants to overtake the slow front vehicle using the opposite lane. The reference
speed is vr = 11m/s. The vehicle’s initial speed is vτ0 = 10m/s and vη0 = 0m/s. t(0) is initial-
ized using vτ0 . The path is sampled every 2m and 34 points are chosen. The SCFS algorithm
converges at iteration 5 with computation time 0.308s. The optimal speed, acceleration and
jerk profiles are shown in Fig.5.11. The horizontal axis in the plots represents the travel-
ing distance along the lane. The corresponding time stamps for all stations are shown in
Fig.5.12. Snapshots are also shown in Fig.5.12 where the gray rectangle represents the ego
vehicle and the yellow rectangles are the surrounding vehicles. The ego vehicle slowed down
first to keep a safe headway from the front vehicle V1. When it changed to the adjacent
lane, it speeded up to overtake V1. Before the vehicle V2 in the opposite direction came,
the ego vehicle went back to its lane. The optimal speed profile is on the boundary of the
safety constraint as shown in Fig.5.12 and on the boundary of the feasibility constraint as
shown in the acceleration profile in Fig.5.11. For comparison, SQP method converges to the
same optimum after 48 iterations with computation time 28.513s.

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 70

Figure 5.10: Speed profile planning for driving on a curvy road.

Case 2: Speed Profile for Right Turn The scenario is illustrated in Fig.5.9b where the
automated vehicle tries to turn right in green light when a vehicle in the opposite direction
turns left and a pedestrian is crossing the street. The reference speed is vr = 5m/s. The
vehicle’s initial speed is vτ0 = 2.5m/s and vη0 = 0m/s. t(0) is initialized using vτ0 . The path
is sampled every 0.5m and 36 points are chosen. The strategy determined by the high level
planner for the ego vehicle is to pass the conflict zone after the pedestrian at T = 5s and
before the left-turn vehicle at T = 6s. To meet the safety constraint, the ego vehicle slowed
down to yield the pedestrian and speeded up to pass the conflict zone before the left-turn
vehicle, as shown in the speed profile in Fig.5.13a. For comparison, the optimal speed profile
without the safety constraint is shown in Fig.5.13b where the ego vehicle turned smoothly.
The SCFS algorithm converges after 8 iterations with computation time 0.522s. The SQP
algorithm does not converge before the maximum number of iterations 100 is reached.

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 71

Figure 5.11: Speed profile planning for overtake.

5.5 Conclusion

In this chapter, we discussed the optimization-based methods for global motion planning,
e.g. optimization-based trajectory planning in an integrated framework and optimization-
based speed profile planning in a layered framework. The CFS algorithm and SCFS algorithm
are adopted to transform the non-convex optimization problems into quadratic programs.
The properties of the two algorithms will be discussed in Chapter 6.

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 72

Figure 5.12: The optimal time stamps for overtake.

CHAPTER 5. EFFICIENCY-ORIENTED GLOBAL MOTION PLANNING 73

(a) The speed profile.

(b) Comparison between the speed profiles with and without the temporal constraint.

Figure 5.13: Speed profile planning for turning at intersection.

74

Chapter 6

Real-Time Numerical Optimization

Real time trajectory optimization is critical for robotic systems to achieve full autonomy.
Due to nonlinear system dynamics and obstacles in the environment, the optimization prob-
lems for motion planning, such as (5.7) and (5.12), are highly nonlinear and non-convex,
hence hard to be computed in real time. In this chapter, we discuss the convex feasible set
algorithm (CFS) and the slack convex feasible set algorithm (SCFS) for efficient computa-
tion of the motion planning problems by exploiting the geometric structure of the problem.
The CFS algorithm is for non-convex problems on linear space. The SCFS algorithm is for
non-convex problems with on nonlinear space. The benchmark problem, the algorithm, the
theoretical results and the applications will be discussed for each method.

6.1 Non-Convex Optimization on Linear Space

6.1.1 The Benchmark Problem

Consider an optimization problem with a convex cost function but non-convex con-
straints, i.e.

min
x∈Γ

J(x), (6.1)

where x ∈ Rn is the decision variable and the problem follows two assumptions.

Assumption 6.1 (Cost). J : Rn → R+ is smooth, strictly convex.

Assumption 6.2 (Constraint). The set Γ ⊂ Rn is connected and complete, while its com-
plements Γc := Rn \ Γ is a disjoint collection of simply-connected open sets with piecewise
smooth boundaries and disjoint closures. For every point x on the boundary ∂Γ, there exists
an n-dimensional convex polytope P ⊂ Γ such that x ∈ P .

Assumption 6.1 implies that J is radially unbounded, i.e. J(x) → ∞ when ‖x‖ → ∞.
Assumption 6.2 specifies the geometric features of the feasible set Γ, where the first part deals
with the topological features of Γ and Γc and the second part ensures that the constraint

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 75

Figure 6.1: Illustration of Assumption 6.2, the geometric features of the constraint Γ.

can be locally convexified. Intuitively, Assumption 6.2 excludes (1) local and global equality
constraints1, (2) sharp concave corners2 in Γc and (3) intersecting boundaries, which are
illustrated in Fig.6.1. In the figure, Γ includes the white area and the black boundaries.
When there is an equality constraint at x ∈ ∂Γ, e.g. x4 in Fig.6.1, we cannot find an n-
dimensional convex polytope P ⊂ Γ with x ∈ P since the dimension of Γ is less than n locally.
When there are sharp concave corners in the infeasible set, e.g. x1 in Fig.6.1, the dimension of
the convex feasible polytope is strictly less than n. On the other hand, the desired polytopes
(shown in red) can be defined at non-sharp concave corners such as x2, convex corners such
as x3 and smooth boundary points such as x5. When the boundary intersects with itself such
as in x6, it is possible to find such polytopes. But the 8-shaped set consists of two disjoint
simply-connected open sets whose closures are no longer disjoint, which violates the first
part of Assumption 6.2. Hence intersecting boundaries are not considered in this chapter.
We will relax this assumption in our future work.

The geometric structure of problem (6.1) is illustrated in Fig.6.2a. The contour represents
the cost function J , while the gray parts represent Γc. There are two disjoint components in
Γc. The goal is to find a local optimum (hopefully global optimum) starting from the initial
reference point (blue dot). As shown in Fig.6.2a, the problem is highly non-convex and the
non-convexity mainly comes from the constraint. To make the computation more efficient, we
propose the convex feasible set algorithm in this section, which transforms the problem into
a sequence of convex optimizations by obtaining a sequence of convex feasible sets inside the
non-convex domain Γ. As shown in Fig.6.2, the idea is implemented iteratively. At current
iteration, a convex feasible set for the current reference point (blue dot) is obtained. The
optimal solution in the convex feasible set (black dot) is set as the reference point for the
next iteration. The formal mathematical description of this algorithm will be discussed in

1We say a point x ∈ Γ in on a local equality constraint when the dimension of the neighborhood of x is
less than n. If Γ is on a m-dimensional manifold with m < n, we then call it a global equality constraint.

2A sharp concave corner is a concave corner such that some pieces of boundary are tangent to each other
locally.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 76

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 6.2: Geometry of problem 6.1 and the idea of the convex feasible set algorithm.

Section 6.1.2. The feasibility of this method, i.e. the existence of an n-dimensional convex
feasible set, is implied by Assumption 6.2. Nonetheless, in order to compute the convex
feasible set efficiently, we still need an analytical description of the constraint.

Analytically, Γ can be represented by N continuous and piecewise smooth functions
φi : Rn → R, e.g.

Γ =
⋂
i

{x : φi(x) ≥ 0} =
⋂
i

Γi, (6.2)

where Γi := {x : φi(x) ≥ 0}. φi can be regarded as a potential function of Γi where the
boundary and the interior of Γi satisfy that ∂Γi = {x : φi(x) = 0} and Γoi = {x : φi(x) > 0}.
Note that Γci ’s are not required to be disjoint and N should be greater than or equal to
the number of disjoint components in Γc. The decomposition from Γ to Γi’s is not unique.
Neither is the function φi that represent Γi. In many cases, φi can be chosen as a signed
distance function to ∂Γi. Since φi is only piecewise smooth, it may not be differentiable at
all points. For any v ∈ Rn, define the directional derivative ∂v

3 as

∂vφi(x) := lim
a→0+

φi(x + av)− φi(x)

a
. (6.3)

Let S(φi,x) := {v ∈ Rn : ∂vφi(x) + ∂−vφi(x) = 0} denote all the smooth directions of
function φ at point x. Define the sub-differential of φi at x as

Dφi(x) := {d ∈ Rn : d · v ≤ ∂vφi(x),∀v ∈ Rn}. (6.4)

This definition is valid, i.e. the right hand side of (6.4) is non empty under Assumption 6.3
below and will be justified later. The elements in Dφi(x) are called sub-gradients. When φi
is smooth at x, Dφi(x) reduces to a singleton set which contains only the gradient ∇φi(x).

3Note that ∂ means boundary when followed by a set, e.g. ∂Γ. It means derivative when followed by a
function, e.g. ∂vφi.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 77

The definition (6.4) follows from Clarke (generalized) sub-gradients for non-convex functions
[27]. Nonetheless, we make the following assumption on φi’s.

Assumption 6.3 (Regularity). (1) φi is semi-convex for all i, i.e. there exists a positive
semi-definite H∗i ∈ Rn×n such that for any x, v ∈ Rn,

φi(x + v)− 2φi(x) + φi(x− v) ≥ −vTH∗i v. (6.5)

(2) 0 /∈ Dφi(x) if x ∈ ∂Γi or if Dφi(x) is a singleton set. (3) for any x such that I := {i :
φi(x) = 0} 6= ∅, there exists v ∈ Rn such that ∂vφi(x) < 0 for all i ∈ I.

Lemma 6.1 (Properties of Semi-Convex Functions). If φi is semi-convex, for any x, v, v1, v2 ∈
Rn and b ∈ R such that v = v1 + v2, the following inequalities hold,

0 ≤ ∂vφi(x) + ∂−vφi(x), (6.6)

b∂vφi(x) ≤ ∂bvφi(x), (6.7)

∂vφi(x) ≤ ∂v1φi(x) + ∂v2φi(x). (6.8)

The equalities in (6.6) and (6.7) are achieved when φi(x) is smooth at direction v. The
equality in (6.8) is achieved when φi(x) is smooth at directions v1 and v2. Moreover, for any
unit vector w ∈ Rn, ∂wφi(x) is locally bounded.

Lemma 6.1 is proved in [76], which justifies the definition in (6.4). By (6.7) and (6.8),
for any v1, v2 ∈ S(φi,x), a, b ∈ R and v = av1 + bv2, ∂vφi(x) = a∂v1φi(x) + b∂v2φi(x) and
∂vφi(x) + ∂−vφi(x) = 0. Hence v ∈ S(φi,x). We can conclude that 1) S(φi,x) is a linear
subspace of Rn and 2) the function induced by the directional derivative v 7→ ∂vφi(x) is a
sub-linear function4 on Rn and a linear function on S(φi,x). By Hahn-Banach Theorem [37],
there exists a vector d ∈ Rn such that d · v = ∂vφi(x) for v ∈ S(φi,x) and d · v ≤ ∂vφi(x)
for v ∈ Rn. Moreover, as the directional derivative is bounded, the sub-gradients are also
bounded. Hence the definition in (6.4) is justified.

Geometrically, Assumption 6.3 implies that there cannot be any concave corners in Γci
or convex corners in Γi. Suppose Γci has a concave corner at x ∈ ∂Γi. Since 0 /∈ Dφi(x), we
can choose a unit vector v such that ∂vφi < 0 and ∂−vφi < 0 as shown in Fig.6.3a. Then
(6.6) is violated, which contradicts with the assumption on semi-convexity. Nonetheless,
concave corners are allowed in Γc, but should only be formulated by a combination of several
intersecting Γci ’s as shown in Fig.6.3. Those Γci ’s should be intersecting due to the third
statement of Assumption 6.3. In the example, the set Γ = {x = (x1, x2) : min(|x1|−1, |x2|−
1) ≥ 0} is partitioned into two sets Γ1 = {x : |x1| − 1 ≥ 0} and Γ2 = {x : |x2| − 1 ≥ 0}.
Both φ1 = |x1| − 1 and φ2 = |x1| − 1 satisfies Assumption 6.3. Without the partition,
φ = min(|x1| − 1, |x2| − 1) violates the condition on semi-convexity5. A method to partition

4A function f is called sub-linear if it satisfies positive homogeneity f(ax) = af(x) for a > 0, and
sub-additivity f(x+ y) ≤ f(x) + f(y).

5Let x = (1, 1) and v = (cos π4 , sin
π
4). Then φi(x+av)−2φi(x)+φi(x−av) = −a cos π4−a sin π

4 = −
√

2a,
which can not be greater than any −a2vTH∗

i v when a is small.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 78

(a) The constraint Γ (b) One partition of Γ

Figure 6.3: Representing Γ using Γi and φi.

the obstacles and construct the desired φi’s is discussed in [87]. It is our hypothesis that any
set Γ that satisfies Assumption 6.2 can be partitioned into Γi’s and represented by φi’s that
satisfy Assumption 6.3, which will be verified in our future work.

Assumption 6.3 will be exploited in computing the convex feasible set in Section 6.1.2.
Lemma 6.1 will be used in the proofs in Section 6.1.3.

6.1.2 The Convex Feasible Set Algorithm

To solve the problem (6.1) efficiently, we propose the convex feasible set algorithm. A
convex feasible set F for the set Γ is a convex set such that F ⊂ Γ. F is not unique. We
define the desired F in Section 6.1.2. As Γ can be covered by several (may be infinitely
many) convex feasible sets, we can efficiently search the non-convex space Γ for solutions by
solving a sequence of convex optimizations constrained in a sequence of convex feasible sets.
The idea is implemented iteratively as shown in Fig.6.2a. At iteration k, given a reference
point x(k), a convex feasible set F (k) := F(x(k)) ⊂ Γ is computed around x(k). Then a new
reference point x(k+1) will be obtained by solving the resulting convex optimization problem

x(k+1) = arg min
x∈F(k)

J(x). (6.9)

The optimal solution will be used as the reference point for the next step. The iteration
will terminate if either the change in solution is small, e.g.

‖x(k+1) − x(k)‖ ≤ ε1, (6.10)

for some small ε1 > 0, or the descent in cost is small, e.g.

J(x(k))− J(x(k+1)) ≤ ε2, (6.11)

for some small ε2 > 0. We will show in Section 6.1.3 that these two conditions are equivalent
and both of them imply convergence. The process is summarized in Algorithm 6.1.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 79

Initialize initial guess x(0), k := 0;
while True do

Find a convex feasible set F (k) ⊂ Γ for x(k);

Solve the convex optimization problem (6.9) for x(k+1);
if Solution converges then

Break the while loop;
end
k := k + 1;

end

return x(k+1);
Algorithm 6.1: The Convex Feasible Set Algorithm

Finding the Convex Feasible Set

Since the constraint Γ can be represented by several piecewise smooth functions (6.2).
We try to find a convex feasible set Fi for each constraint Γi = {x : φi(x) ≥ 0}.

Case 1: φi is concave Then Γi is convex. The convex feasible set is chosen to be itself,

Fi = Γi. (6.12)

Case 2: φi is convex Then Γci is convex. The convex feasible set Fi with respect to a
reference point xr ∈ Rn is defined as

Fi(xr) := {x : φi(x
r) + ∇̂φi(xr)(x− xr) ≥ 0}, (6.13)

where ∇̂φi(xr) ∈ Dφi(xr) is a sub-gradient. When φi is smooth at xr, ∇̂φi(xr) equals to the
gradient ∇φi(xr). Otherwise, the sub-gradient is chosen according to the method discussed
in Section 6.1.2. Since φi is convex, φi(x) ≥ φi(x

r) + ∂x−xrφi(x) ≥ φi(x
r) + d · (x− xr) for

all d ∈ Dφi(xr). Hence Fi(xr) ⊂ {x : φi(x) ≥ 0} = Γi for all xr ∈ Rn.

Case 3: φi is neither concave nor convex Considering Assumption 6.3, the convex
feasible set with respect to the reference point xr is defined as

Fi(xr) := {x : φi(x
r) + ∇̂φi(xr)(x− xr) ≥ 1

2
(x− xr)TH∗i (x− xr)}, (6.14)

where ∇̂φi(xr) ∈ Dφi(xr), which is chosen according to the method discussed in Section 6.1.2.
Since φi is semi-convex, φi(x) ≥ φi(x

r) + ∂x−xrφi(x)− 1
2
(x− xr)TH∗i (x− xr) ≥ φi(x

r) + d ·
(x− xr)− 1

2
(x− xr)TH∗i (x− xr) for all d ∈ Dφi(xr). Hence Fi(xr) ⊂ {x : φi(x) ≥ 0} = Γi

for all xr ∈ Rn.
Considering (6.12), (6.13) and (6.14), the convex feasible set for Γ at xr is defined as

F(xr) :=
⋂
i

Fi(xr). (6.15)

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 80

(a) Case one (b) Case two

Figure 6.4: The choice of sub-gradient ∇̂φi(xr) on non-smooth point xr.

Choosing the Optimal Sub-Gradients

The sub-gradients in (6.13) and (6.14) should be chosen such that the steepest descent
of J in the set Γ is always included in the convex feasible set F .

Let B(x, r) denote the unit ball centered at x ∈ Rn with radius r. At point xr, a search
direction v ∈ ∂B(0, 1) is feasible if for all i, one of the three conditions holds:

• φi(xr) > 0;

• φi(xr) = 0 and there exists d ∈ Dφi such that v · d ≥ 0;

• φi(xr) < 0 and there exists d ∈ Dφi such that v · d > 0.

Define the set of feasible search directions as C(xr), which is non empty since we can
choose v to be d/‖d‖ for any nonzero d ∈ Dφi. Dφi always contain a nonzero element
by the second statement in Assumption 6.2. Then the direction of the steepest descent is
v∗ := arg minv∈C(xr)∇J · v. If v∗ is not unique, the tie breaking mechanism is chosen as:
choosing the one with the smallest first entry, the smallest second entry, and so on6. Then the
optimal sub-gradient is chosen to be ∇̂φi := arg mind∈DFi

∇J ·d/‖d‖, whereDFi is the feasible
set of sub-gradients for φi such that DFi := Dφi when φi > 0; DFi := {d ∈ Dφi|d · v∗ ≥ 0}
when φi = 0; and DFi := {d ∈ Dφi|d · v∗ > 0} when φi < 0. The set DFi is non
empty by definition of C(xr). To avoid singularity, let ‖d‖ = 1 when d = 0. Figure 6.4
illustrates the above procedure in choosing the optimal sub-gradient, where the short arrow
shows the direction of the steepest descent of J , the shaded sector shows the range of sub-
differentials, the long arrow denotes the optimal sub-gradient and the shaded half-space is
the convex feasible set Fi. In case one, v∗ is in the same direction of ∇̂φi, while the two are
perpendicular to each other in case two.

6Note that the tie braking mechanism can be any as long as it makes v∗ unique. The uniqueness is
exploited in Lemma 6.4.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 81

(a) A strong local optimum. (b) A weak local optimum.

Figure 6.5: Definition of local optima.

6.1.3 Theoretical Results

In this section, the feasibility and convergence of Algorithm 6.1 will be shown. The main
result is summarized in the following theorem.

Theorem 6.2 (Convergence of Algorithm 6.1). Under Algorithm 6.1, the sequence {x(k)}
will converge to some x∗ ∈ Γ for any initial guess x(0) such that F (0) 6= ∅. When the limit
is attained, e.g. there exists a constant K ∈ N such that x(k) = x∗ for all k > K, x∗ is a
strong local optimum of (6.1). Otherwise, the sequence {J(x(k))} is strictly decreasing and
x∗ is at least a weak local optimum of (6.1).

The point x that satisfies F(x) 6= ∅ is called nearly feasible. We say that x∗ is a
strong local optimum of (6.1) if J is nondecreasing along any feasible search direction, e.g.
∇J(x∗)v ≥ 0 for all v ∈ C(x∗) as shown in Fig.6.5a. We say that x∗ is a weak local
optimum of (6.1) if the KKT condition is satisfied, i.e. ∇J(x∗) +

∑N
i=1 λidi = 0 for some

di ∈ Dφi(x
∗) as shown in Fig.6.5b. λi is a Lagrange multiplier such that λi ≤ 0 and

λiφi(x) = 0 (complementary slackness) for all i = 1, · · · , N . A strong local optimum is
always a weak local optimum. The two are equivalent when all φi’s are smooth at x∗.

Before proving Theorem 6.2, we present some preliminary results that are useful towards
proving the theorem. The proofs of the preliminary results can be found in [76]. We say that
a reference point xr ∈ Rn is feasible if xr ∈ Γ; and x∗ ∈ Γ is a fixed point of Algorithm 6.1 if

x∗ = arg min
x∈F(x∗)

J(x). (6.16)

Lemma 6.3 (Feasibility). If xr ∈ Γ, then xr ∈ F(xr) and Fo(xr) 6= ∅.

Proposition 6.4 (Fixed point). If x∗ is a fixed point of Algorithm 6.1, then x∗ is a strong
local optimum of (6.1).

Lemma 6.3 and Lemma 6.4 imply that a feasible xr can always be improved by optimizing
over the convex feasible set F(xr) if xr itself is not a local optimum. However, the existence
of nonempty convex feasible set for an infeasible reference point is more intricate, which is
deeply related to the choice of the function φi’s.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 82

Lemma 6.5 (Strong descent). For any feasible x(k), the descent of the objective function
satisfies that ∇J(x(k+1))(x(k) − x(k+1)) ≥ 0. Moreover, if J(x(k+1)) = J(x(k)), then x(k+1) =
x(k).

Proposition 6.6 (Convergence of strictly descending sequence). Consider the sequence
{x(k)} generated by Algorithm 6.1. If J(x(1)) > J(x(2)) > · · · , then the sequence {x(k)}
converges to a weak local optimum x∗ of (6.1).

Lemma 6.5 and Lemma 6.6 justify the adoption of the terminate condition (6.11), which
is indeed equivalent to the standard terminate condition (6.10), e.g. convergence in the
objective function implies convergence in the solution.

Proof of Theorem 6.2. If F (0) is nonempty, then x(1) ∈ Γ can be obtained by solving the
convex optimization (6.9). By Lemma 6.3, F (1) has nonempty interior, then x(2) ∈ Γ can be
obtained. By induction, we can conclude that x(i) ∈ F (i−1) ⊂ Γ for i = 1, 2, 3, · · · . Moreover,
as a better solution is found at each iteration, then J(x(1)) ≥ J(x(2)) ≥ · · · . This leads to
two cases. The first case is that J(x(K)) = J(x(K+1)) for some K, while the second case is
that the cost keeps decreasing strictly, e.g. J(x(1)) > J(x(2)) > · · · . In the first case, the
condition J(x(K)) = J(x(K+1)) is equivalent to x(K) = x(K+1) by Lemma 6.5. By induction,
the algorithm converges, e.g. x(k) = x(k+1) and J(x(k)) = J(x(k+1)) for all k ≥ K. Moreover,
as x∗ := x(K) is a fixed point, it is a strong local optima by Lemma 6.4. If the cost keeps
decreasing, e.g. J(x(1)) > J(x(2)) > · · · , then the sequence {x(k)} converges to a weak local
optima x∗ by Lemma 6.6.

6.1.4 Applications

Many motion planning problems can be formulated into (6.1) when x is regarded as the
trajectory as discussed in Chapter 5. The dimension of the problem n is proportional to the
number of sampling points on the trajectory. If continuous trajectories are considered, then
n→∞ and Rn approaches the space of continuous functions C(R) in the limit.

The performance of Algorithm 6.1 will be illustrated through one example, which will
also be compared to the performance of existing non-convex optimization methods such
as interior point (ITP) and sequential quadratic programming (SQP). For simplicity, only
convex obstacles and convex boundaries are considered7. Algorithm 6.1 is implemented in
both Matlab and C++. The convex optimization problem (6.9) is solved using the interior-
point-convex method in quadprog in Matlab and the interior point method in Knitro [22] in
C++. For comparison, (6.1) is also solved directly using ITP and SQP methods in fmincon

[105] in Matlab and in Knitro in C++. To create fair comparison, the gradient and the

7The non-convex obstacles or boundaries can either be partitioned into several convex components or
be replaced with their convex envelops. Moreover, in practice, obstacles are measured by point clouds. The
geometric information is extracted by taking convex hull of the points. Hence it automatically partitions the
obstacles into several convex polytopes.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 83

Hessian of the objective function J and the optimal sub-gradients ∇̂φi of the constraint
function φi’s are also provided to the ITP and SQP solvers.

In the examples, the problem formulation in (5.7) is adopted where x0 = (0, 0) and
xh = (9, 0). The planning horizon h goes from 30 to 100. ts = (h+ 1)−1. The cost function
(5.7a) penalizes the average acceleration along the trajectory, e.g. Q = 0 and S = h−1ATA.
The initial reference x(0) is chosen to be a straight line connecting x0 and xh with equally
sampled waypoints. In the first scenario, there are three disjoint convex obstacles as shown
in Fig.6.6. In the constraint, a distance margin of 0.25 to the obstacles is required.

The computation time under different solvers is listed in Table 6.1. The first column
shows the horizon. In the second column, “-M” means the algorithm is run in Matlab and
“-C” means the algorithm is run in C++. Under each scenario, the first column shows
the final cost. The second column is the total number of iterations. The third and fourth
columns are the total computation time and the average computation time per iteration
respectively (only the entries that are less than 100ms are shown). It does happen that
the algorithms find different local optima, though CFS-M and CFS-C always find the same
solution. In terms of computation time, Algorithm 6.1 always outperforms ITP and SQP,
since it requires less time per iteration and fewer iterations to converge. This is due to the
fact CFS does not require additional line search after solving (6.9) as is needed in ITP and
SQP, hence saving time during each iteration. CFS requires fewer iterations to converge
since it can take unconstrained step length ‖x(k+1) − x(k)‖ in the convex feasible set as will
be shown later. Moreover, Algorithm 6.1 scales much better than ITP and SQP, as the
computation time and time per iteration in CFS-C go up almost linearly with respect to h
(or the number of variables).

The computation time of CFS consists of two parts: 1) the processing time, i.e. the
time to compute F and 2) the optimization time, i.e. the time to solve (6.9). As shown in
Fig.6.7, the two parts grow with h. In Matlab, the processing time dominates, while the
optimization time dominates in C++.

To better illustrate the advantage of Algorithm 6.1, the runtime statistics across all meth-
ods when h = 100 is shown in Fig.6.8. The first log-log figure shows the cost J(x(k)) versus it-
eration k, while the second semi-log figure shows the feasibility error max{0,−mini φi(x

(k))}
versus k. At the beginning, the cost J = 0 and the feasibility error is 0.75. In Algorithm 6.1,
x(k) becomes feasible at the first iteration while the cost J(x(k)) jumps up. In the following
iterations, the cost goes down and converges to the optimum value. In ITP-C, the problem
becomes feasible at the third iteration. In SQP-C, it is the fifth iteration. In order to make
the problem feasible, the cost jumps much higher in ITP-C than in CFS-C. Once the prob-
lem is feasible, it also takes more iterations for ITP-C and SQP-C to converge than CFS-C.
On the other hand, ITP-M and SQP-M have very small step length in the beginning. The
problem only becomes feasible after 100 iterations. But once the problem is feasible, the
performance of ITP-M and SQP-M is similar to that of ITP-C and SQP-C. Note that the
cost below 1 is not shown in the figure.

The optimal trajectories computed by Algorithm 6.1 for different h is shown in Fig.6.6.
Those trajectories converge to a continuous trajectory when h goes up.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 84

Figure 6.6: Simulation environment and the optimal trajectories for different horizon h.

Table 6.1: Comparison among CFS, ITP and SQP.

h Method Cost Iter Time dT

100
or
60

SQP-M 1358.9 239 140.5s -
ITP-M 1358.9 470 50.6s -
CFS-M 1358.9 18 1.8s 98.8ms
SQP-C 1347.6 123 47.3s -
ITP-C 1341.7 306 2.9s 9.5ms
CFS-C 1358.9 18 74.4ms 4.1ms

50

SQP-M 2299.5 110 25.8s -
ITP-M 1308.3 187 8.8s 47.1ms
CFS-M 1458.2 8 212.1ms 26.5ms
SQP-C 1308.3 52 3.4s 65.4ms
ITP-C 1275.1 131 390ms 3.0ms
CFS-C 1458.2 8 23.7ms 3.0ms

40

SQP-M 3391.6 97 15.6s -
ITP-M 1317.0 150 5.2s 34.7ms
CFS-M 1317.0 8 172.6ms 21.6ms
SQP-C 1317.0 40 1.5s 37.5ms
ITP-C 1170.5 102 240.5ms 2.4ms
CFS-C 1317.0 8 16.5ms 2.1ms

30

SQP-M 1039.2 106 8.4s 79.2ms
ITP-M 1039.2 109 2.8s 25.7ms
CFS-M 1039.2 12 208.2ms 17.3ms
SQP-C 1453.3 27 379.1ms 14.0ms
ITP-C 1039.2 59 118.5ms 2.0ms
CFS-C 1039.2 12 19.0ms 1.6ms

With respect to the results, we conclude that Algorithm 6.1 is time-efficient, local-optimal
and scalable.

In addition to motion planning problems, the proposed method deals with any problem
with similar geometric properties as specified in Assumption 6.1 and Assumption 6.2. More-
over, problems with global linear equality constraints also fit into the framework if we solve
the problem in the low-dimensional linear manifold defined by the linear equality constraints.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 85

Figure 6.7: The decomposed time per iteration using Algorithm 6.1.

Figure 6.8: The run time statistics.

The case for nonlinear equality constraints will be discussed below.

6.2 Non-Convex Optimization on Nonlinear Space

One limitation of the CFS algorithm is that it may not converge to local optima un-
der nonlinear equality constraints (such as nonlinear dynamic constraints) since the convex
feasible set for a nonlinear equality constraint may reduce to a singleton point.

In this section, the slack convex feasible set algorithm (SCFS) is introduced to handle
optimization problems with convex cost functions and non-convex equality and inequality
constraints. The idea is to relax the nonlinear equality constraints to several nonlinear
inequality constraints using slack variables and then solve the relaxed problem using CFS.
The feasibility, convergence and optimality of the algorithm will be shown in this section.
The performance of SCFS will be compared to that of conventional non-convex solvers.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 86

The remainder of the section will be organized as follows: in Section 6.2.1, the benchmark
problem is proposed; Section 6.2.2 introduces the slack convex feasible set algorithm; Section
6.2.3 proves the convergence of the SCFS algorithm; Section 6.2.4 discusses the application
of the algorithm.

6.2.1 The Benchmark Problem

Denote the state of the robot as x ∈ X ⊂ Rn where X represents n dimensional state
space. Denote the control input of the robot as u ∈ U ⊂ Rm where U represents m dimen-
sional control space. The robot needs to travel from A to Z. Its trajectory is denoted as
x = [xT0 , x

T
1 , · · · , xTh]T ∈ Xh+1 where xq is the robot state at time step q and h is the planning

horizon. Without loss of generality, the sampling time ts is assumed to be 1. Similarly, the
input trajectory is denoted as u = [uT0 , u

T
1 , · · · , uTh−1]T ∈ Uh where uq is the robot input at

time step q. Let ujq denote the j-th entry in uq for j = 1, · · · ,m.
Consider the following optimization problem

min
x,u

J(x,u) (6.17a)

s.t. x ∈ Γ,u ∈ Ω,G(x,u) = 0, (6.17b)

where J : Xh+1 × Uh → R is the cost function; Γ is the constraint on the augmented state
space Xh+1; Ω is the constraint on the augmented control space Uh; and G : Xh+1 × Uh →
Rmh represents the dynamic relationship between states and inputs. Assumptions 6.4 to 6.8
are required.

Assumption 6.4 (Cost Function). The cost function J(x,u) = J1(x) + J2(u) is smooth
and bounded below by 0. J1 is strictly convex. J2 is strictly convex and symmetric, and it
achieves minimum at u = 0.

Assumption 6.5 (State Constraint). The constraint Γ is a collection of linear equality
constraints, linear inequality constraints and N nonlinear inequality constraints, i.e. Γ =
∩iΓi where

Γi =


{x : φi(x) ≥ 0} i = 1, · · · , N
{x : Aeqx = beq} i = N + 1
{x : Ax ≤ b} i = N + 2,

(6.18)

Aeq ∈ Rkeq×n(h+1), beq ∈ Rkeq , A ∈ Rk×n(h+1), and b ∈ Rk where keq < n(h+ 1) and k are the
dimensions of the constraints such that rank(Aeq) = keq. φi : Rn(h+1) → R is continuous,
piece-wise smooth and semi-convex, e.g. there exists a positive semi-definite matrix H∗i ∈
Rn(h+1)×n(h+1) such that for any x, v ∈ Rn(h+1), φi(x + v) − 2φi(x) + φi(x − v) ≥ −vTH∗i v.
Moreover, the interior of the inequality constraints is nontrivial, i.e. ∩i{x : φi(x) > 0} 6= ∅8.

8This is to exclude the case that some combination of nonlinear inequality constraints indeed forms a
nonlinear equality constraint, such as Γ = {x : φi(x) ≥ 0,−φi(x) ≥ 0}.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 87

(a) The geometry of problem (6.17). (b) The convex feasible set for problem (6.23).

Figure 6.9: Geometric illustration of the non-convex optimization on a nonlinear space.

The linear equality constraints are for boundary conditions at the start point and the
goal point. The linear inequality constraints are for state limits. The nonlinear equality
constraints are for collision avoidance where φi can usually be identified as a signed distance
function to an obstacle. The semi-convexity assumption on φi is satisfied if there is no
concave corner in the obstacle.

Assumption 6.6 (Control Constraint). The constraint Ω is a box constraint such that −ū ≤
u ≤ ū for some constant vector ū = [ū1

0, · · · , ūmh−1]T > 0.

Assumption 6.7 (Dynamic Constraint). The dynamic equation G(x,u) = 0 is affine in u,
i.e. there exist functions F : Xh+1 → Rmh and H : Xh+1 → Rmh×mh such that

G(x,u) = F (x) +H(x)u = 0. (6.19)

H is assumed to be diagonal, non-singular and positive definite. Equation (6.19) is equivalent
to

f jq (x) + hjq(x)ujq = 0,∀q = 0, · · · , h− 1, j = 1, · · · ,m, (6.20)

where f jq : Xh+1 → R and hjq : Xh+1 → R+ are entries in F and H, which are smooth with
bounded derivatives and Hessians.

Equation (6.19) and (6.20) cover a wide range of typical nonlinear dynamic systems. For
robot arms, let x be the robot joint position and u be the torque input, then the relationship
between x and u is

M(xq)(xq+1 − 2xq + xq−1) +N(xq, xq − xq−1) = uq, (6.21)

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 88

where M(·) represents the generalized inertia matrix and N(·, ·) represents the Coriolis and
centrifugal forces. Finite differences are used to compute joint velocity and joint acceleration.
For vehicles, let x be the position of the rear axle of the vehicle and u be the yaw rate, then

(xq − xq−1)× (xq+1 − xq) = ‖xq − xq−1‖2uq. (6.22)

where × denotes the cross product. Both cases satisfy (6.20). Moreover, the relationship
(5.12d) in the temporal optimization also satisfies (6.20).

By Assumptions 6.5 to 6.7, the constraints in (6.17b) form a K dimensional manifoldM
where K = n(h+ 1)− keq9. In order for the optimization to be nontrivial, the manifold M
should have non empty interior, which leads us to the following assumption.

Assumption 6.8 (Connected Nontrivial Domain). The domain that satisfies (6.17b) is
connected. There exist x∗ and u∗ that satisfy all the constraints in (6.17b) such that Ax∗ < b,
φi(x

∗) > 0 for all i and −ū < u∗ < ū.

The geometry of problem (6.17) is illustrated in Fig.6.9a where the horizontal plane
represents the augmented state space Xh+1 and the vertical axis represents the augmented
control space Uh. The dark holes represent the infeasible set Xh+1 \ Γ. The manifold M is
represented by the shaded curvy surface under the nonlinear equality constraints. The cost
J on the manifold M is shown in the contours. Although the cost J is convex in x and
u (as shown in the contours on the horizontal plane), the cost J |M is non-convex as M is
nonlinear and non-convex.

6.2.2 The Slack Convex Feasible Set Algorithm

The slack convex feasible set algorithm (SCFS) will be introduced in this section to solve
problem (6.17). The key idea is to introduce slack variables and transform the nonlinear
equality constraint (6.19) to a set of non degenerating nonlinear inequality constraints such
that CFS algorithm can be applied.

The Relaxed Problem

Let y be the slack variable for u such that −y ≤ u ≤ y. Symmetry of problem (6.17)
in u is exploited in the relaxation. By Assumption 6.4, J2(u) ≤ J2(y). By Assumption 6.6,
y ≤ ū implies −ū ≤ u ≤ ū. Using the slack variable y, constraint (6.19) can be relaxed to
two inequality constraints with respect to y, e.g. F (x) − H(x)y ≤ F (x) + H(x)u = 0 ≤
F (x) +H(x)y. Then we have the following relaxed problem.

min
x,y

J(x,y) (6.23a)

s.t. x ∈ Γ,y ≤ ū (6.23b)

F (x) +H(x)y ≥ 0, F (x)−H(x)y ≤ 0. (6.23c)

9The dimension of the decision variables x and u is n(h+ 1) +mh. As there are keq +mh independent
equality constraints, the dimension of the manifold is reduced to n(h+ 1)− keq.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 89

Consider the extended state z = [xT ,yT]T . The relaxed problem can be transformed to

min
z∈Γe

J(z), (6.24)

where Γe := (Γ ⊕ {y ≤ ū}) ∩ {F (x) + H(x)y ≥ 0} ∩ {−F (x) + H(x)y ≥ 0}. The differ-
ence between problem (6.23) and problem (6.17) is illustrated in Fig.6.10, where the curve
in Fig.6.10a represents the nonlinear equality constraint (6.19) in problem (6.17) and the
shaded area in Fig.6.10b represents the nonlinear inequality constraints (6.23c) in problem
(6.23). Due to the introduction of the slack variable y, the nonlinear equality constraint is
successfully removed. Γe is illustrated in Fig.6.9b, whose dimension is n(h + 1) + mh − keq
and M belongs to the boundary of Γe.

The intuition behind the relaxation is that: as J2 achieves minimum at u = 0, the
optimization algorithm will pull the optimal solution down toM which is on the “bottom” of
Γe, so that we may still get the same optimal solution as in problem (6.17). This property will
be proved in Theorem 6.8, Lemma 6.9 and Proposition 6.10. We first verify that the relaxed
problem satisfies Assumption 6.5 (which will imply that Assumption 6.1 to Assumption 6.3
are satisfied).

Lemma 6.7. Γe satisfies Assumption 6.5 if we take z as the state variables.

Proof. It is easy to verify that Γe is a collection of linear equality constraints, linear inequality
constraints and nonlinear inequality constraints, e.g. Γe = ∩iΓei where

Γei =



{z : φi(x) ≥ 0} i = 1, · · · , N
{z : ϕjq(z) ≥ 0} i = N + qm+ j
{z : ψjq(z) ≥ 0} i = N + (q + h)m+ j
{z : Aeqx = beq} i = N + 2hm+ 1
{z : Ax ≤ b} i = N + 2hm+ 2
{z : y ≤ umax} i = N + 2hm+ 3

, (6.25)

ϕjq(z) := f jq (x) + hjq(x)yjq , and ψjq(z) := −f jq (x) + hjq(x)yjq . ϕ
j
q and ψjq are smooth as f jq and

hjq are smooth. We just need to check whether they are semi-convex. Since f jq and hjq have
bounded derivatives and Hessians and yjq is bounded, the Hessian of ϕjq is bounded below,
e.g.

∇2
[x,yjq]

ϕjq =

[
∇2

xf
j
q (x) +∇2

xh
j
q(x)yjq ∇xh

j
q(x)

∇xh
j
q(x) 0

]
�

[
∇2

xf
j
q +∇2

xh
j
qy
j
q −∇xh

j
q∇T

xh
j
q 0

0 −1

]
� −

[
Hj
q 0

0 1

]
, (6.26)

where Hj
q depends on the bounds on ∇2

xf
j
q , ∇2

xh
j
q, ∇xh

j
q and yjq . Similar condition holds for

∇2
[x,yjq]

ψjq .

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 90

(a) The nonlinear equality constraint. (b) The relaxed nonlinear inequality constraint.

Figure 6.10: The relaxation of the nonlinear equality constraint.

Then we need to verify that the interior of the nonlinear inequality constraints is non
empty. Consider x∗ and u∗ in Assumption 6.8. Let z∗ = [(x∗)T , ūT]T . Then F (x∗) −
H(x∗)ū < 0 = F (x∗) + H(x∗)u∗ < F (x∗) + H(x∗)ū. Hence z∗ ∈ ∩i{z : φi(x) > 0} ∩ {z :
F (x) +H(x)y > 0} ∩ {z : −F (x) +H(x)y > 0}. Thus Γe satisfies Assumption 6.5.

The Algorithm

The steps in the SCFS algorithm are summarized below.

Algorithm 1 (SCFS). Problem (6.17) is solved using the following steps:

1. Transform problem (6.17) to problem (6.23);

2. Initialize z(0);

3. Apply Algorithm 6.1 on problem (6.23) by iteratively solving the following problem

z(k+1) = arg min
z∈Fe(z(k))

J(z), (6.27)

where F e(z(k)) (illustrated in Fig.6.9b) is the convex feasible set of Γe constructed ac-
cording to the three cases in Section 6.1.2. Denote the solution as ẑ = [x̂T , ŷT]T ;

4. Construct the solution ŵ = [x̂T , ûT]T for problem (6.17) from ẑ by setting û to be
−H−1(x̂)F (x̂).

6.2.3 Theoretical Results

Theorem 6.8 (Convergence of SCFS). Algorithm 1 will converge to a local optimum of
problem (6.17) for any nearly feasible initial value z(0).

This is the main result in this section. Before proving the theorem, we first show that
the local optima of problem (6.23) is equivalent to the local optima of problem (6.17).

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 91

Lemma 6.9. Any local optimum ẑ = [x̂T , ŷT]T of problem (6.23) satisfies |H−1(x̂)F (x̂)| = ŷ.

Proof. Let û = −H−1(x̂)F (x̂). For each entry ûjq in û, constraint (6.23c) implies that
ûjq = −(hjq)

−1(x̂)f jq (x̂) ∈ [−ŷjq , ŷjq]. Suppose there exist some q and j such that |ûjq| < ŷjq .
Define z̃ := [x̂T , ŷ1

0, · · · , ŷjq − ε, · · · , ŷmh−1] for small ε ∈ (0, ŷjq − |ûjq|). Since |ûjq| < ŷjq , then
ϕjq(ẑ) > 0 and ψjq(ẑ) > 0. Due to the continuity of ϕjq and ψjq , ϕ

j
q(z̃) > 0 and ψjq(z̃) > 0 for ε

sufficiently small. Hence z̃ ∈ Γe. However J(z̃) < J(ẑ) by Assumption 6.4, which contradicts
the fact that ẑ is a local optimum. Hence |ûjq| = ŷjq for all q and j.

Proposition 6.10 (Equivalence). If ẑ = [x̂T , ŷT]T with ŷ = |H−1(x̂)F (x̂)| is a local optimum
of problem (6.23), then ŵ = [x̂T , ûT]T with û = −H−1(x̂)F (x̂) is a local optimum of problem
(6.17), and vice versa.

Proof. Since ẑ is a local optimum in problem (6.23), there exist Lagrangian multipliers
ηjq , ξ

j
q , λi ≤ 0, αjq ≥ 0, Λ1 ≥ 0 and Λ2 ∈ Rkeq for all i, j and q such that ∇Lr|ẑ = 0, where

the Lagrangian Lr is defined as

Lr = J +
∑
q,j

(ηjqϕ
j
q + ξjqψ

j
q + αjq(y

j
q − ūjq)) +

∑
i

λiφi

+ΛT
1 (Ax− b) + ΛT

2 (Aeqx− beq). (6.28)

Taking the partial derivatives at ẑ, we have

0 = ∇xJ1 +
∑

ηjq∇xϕ
j
q +

∑
ξjq∇xψ

j
q +

∑
λi∇xφi

+ATΛ1 + ATeqΛ2, (6.29)

0 = ∇yjq
J2 + ηjq∇yjq

ϕjq + ξjq∇yjq
ψjq + αjq. (6.30)

The complementary slackness condition at ẑ is

ηjqψ
j
q = ξjqϕ

j
q = λiφi = αjq(ŷ

j
q − ūjq) = 0, (6.31)

ΛT
1 (Ax̂− b) = 0. (6.32)

We need to show that (6.29-6.32) imply the first order optimality condition for problem
(6.17) at ŵ. Define βjq , γ

j
q ≥ 0 such that

βjq =

{
αjq ujq > 0
0 ujq ≤ 0

, γjq =

{
αjq ujq < 0
0 ujq ≤ 0

.

By Lemma 6.9, |û| = ŷ. When ujq = yjq > 0, ϕjq = 0 and ψjq 6= 0. When ujq = −yjq < 0,
ψjq = 0 and ϕjq 6= 0. By complementary slackness (6.31) and symmetry of J2, (6.30) implies
that

0 =


∇ujq

J2 + ηjqh
j
q + βjq ujq > 0

−∇ujq
J2 + ξjqh

j
q − γjq ujq < 0

ηiqh
j
q + ξjqh

j
q ujq = 0

. (6.33)

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 92

For the third equation in (6.33), since hjq > 0 and ηiq, ξ
j
q ≤ 0, then ηiq = ξjq = 0 when

ujq = 0. Define

δjq =


ηjq ujq > 0
−ξjq ujq < 0
0 ujq = 0

.

Then the complementary slackness (6.31) implies that ηjq∇xϕ
j
q + ξjq∇xψ

j
q = δjq(∇xf

j
q +

∇xh
j
qu

j
q). Hence (6.29) and (6.33) imply that at ŵ,

0 = ∇xJ1 +
∑

δjq∇x(f jq + hjqu
j
q) +

∑
λi∇xφi

+ATΛ1 + ATeqΛ2, (6.34)

0 = ∇ujq
J2 + δjq∇ujq

(f jq + hjqu
j
q) + βjq + γjq . (6.35)

The above equation is equivalent to ∇L|ŵ = 0 where the Lagrangian L is defined as

L = J +
∑
i

λiφi + ΛT
1 (Ax− b) + ΛT

2 (Aeqx− beq) (6.36)

+
∑
q,j

(
δjq(f

j
q + hjqu

j
q) + βjq(u

j
q − ūjq) + γjq(−ujq − ūjq)

)
.

It is easy to check that primal feasibility (6.37), dual feasibility (6.38) and complementary
slackness (6.39) are all satisfied.

x̂ ∈ Γ,−ū ≤ û ≤ ū, F (x̂) +H(x̂)û = 0, (6.37)

βi ≥ 0, γi ≥ 0, (6.38)

δjq(f
j
q + hjqû

j
q) = βjq(û

j
q − ūjq) = γjq(−ûjq − ūjq) = 0. (6.39)

Hence ŵ is a local optimum in problem (6.17). To prove the other direction, we just need
to reverse the above process, which will not be elaborated.

Proof of Theorem 6.8. For any nearly feasible initial value z(0), the sequence {z(k)} in Al-
gorithm 1 converges to a local optimum of problem (6.23) by Theorem 6.2 and Lemma 6.7.
Hence ẑ = limk→∞ z(k) is a local optimum of problem (6.23). Then ŵ is a local optimum of
problem (6.17) by Proposition 6.10.

6.2.4 Applications

The performance of SCFS is illustrated in a motion planning problem for a vehicle in a
crowded environment as shown in Fig.6.11. State x ∈ R2 denotes the planar position of the
vehicle. Control u ∈ R is the yaw rate. Then x = [xT0 , x

T
1 , · · · , xTh]T ∈ R2(h+1) is the planar

trajectory. u = [uT0 , u
T
1 , · · · , uTh−1]T ∈ Rh is the trajectory of yaw rate. x and u satisfy the

dynamic equation in (6.22) for any q. The area occupied by the j-th obstacle at time step q

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 93

is denoted as Oj,q ∈ R2. Define φj,q(x) = d(xq,Oj,q)− dmin where d(·, ·) computes the signed
distance between the vehicle and the j-th obstacle and dmin > 0 is the minimum distance
requirement. The vehicle needs to travel from A to Z with small yaw rate without colliding
with any obstacle. The optimization problem is formulated as

minx J(x) = w1‖x− xr‖2
Q + w2‖x‖2

S + w3‖u‖2
R

s.t. x0 = A, xh = Z,−ū ≤ u ≤ ū

(xq − xq−1)× (xq+1 − xq) = ‖xq − xq−1‖2uq

φj,q(x) ≥ 0, ∀j,∀q = 1, · · · , h− 1.

The cost function is designed to be quadratic where w1, w2, w3 ∈ R+. ‖x − xr‖2
Q :=

(x−xr)TQ(x−xr) penalizes the distance from the target trajectory to a reference trajectory
xr. ‖x‖2

S := xTSx concerns with the smoothness of the trajectory. ‖u‖2
R := uTRu penalizes

the magnitude of yaw rate. In a bounded environment X, the second order derivatives of
the nonlinear equality are also bounded. Hence the lower bound of Hessian in (6.14) can
be chosen manually offline. Admittedly, the requirement of the lower bound of Hessian
introduces inconvenience in implementing Algorithm 1. Relaxation of the lower bound will
be considered in the future work.

The simulation was run in C++ on a MacBook of 2.3 GHz using Intel Core i7. Planning
horizon is h = 40. The reference trajectory xr is a straight line connecting the start point
and the goal point (which is not shown in the figure). The green sections correspond to the
static obstacles Oj,q. The initial value is chosen as x(0) = xr and u(0) = 0. The termination
condition is that the step size ‖x(k+1) − x(k)‖ is smaller than 0.001.

Algorithm 1 (SCFS) converges after 11 iterations with total computation time 119.9ms
and final cost 1408.25. Equation (6.27) is solved using KNITRO [22] interior-point method.
The trajectories under different iterations are shown in Fig.6.11. The dark curve is the op-
timal path. The gray curves are the solutions before convergence, the lighter the earlier in
iterations. The decomposed computation time in SCFS is shown in Fig.6.12. The compu-
tation time during each iteration is composed of two parts, the processing time, e.g. the
time spent to transform the problem to a convex problem, and the optimization time, e.g.
the time spent to solve the convex optimization. The processing time for each iteration is
around 0.80ms (7.3% of the total time), which is very consistent through iterations. The
optimization time varies from iteration to iteration.

For comparison, the planning problem is also solved using built-in non-convex optimiza-
tion solvers in KNITRO directly, where the same termination condition is applied. In Table
6.2, the computation time in interior point (ITP), sequential quadratic programming (SQP),
and active set (ACT) methods is compared. ITP-J, ACT-J and SQP-J refer to the case that
we provide Jacobian to the solver. Otherwise, the gradient is computed numerically by cen-
tral finite differences. The Hessian is computed numerically using quasi-Newton symmetric
rank 1 method for all cases, which has desired accuracy and relatively small computation
load. For ITP, the computation time reduced 96.7% when Jacobian is provided10. As shown

10Note that the number of iterations and the final cost are not identical in ITP-J and ITP. That is due

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 94

Table 6.2: Comparison among SCFS, ITP, ACT and SQP.

Method Computation Time (ms) Iterations Cost
SCFS 119.9 11 1408.25
ITP-J 419.4 94 1489.72
ITP 14031.4 90 1489.58

ACT-J 5970.2 718 1489.71
SQP-J 20632.7 848 3487.26

in the table, the other two methods (ACT and SQP) are much slower than ITP and require
more iterations to converge. As ITP-J is most efficient, we only provide detailed comparison
between SCFS and ITP-J. Figure 6.13 shows the run time statistics of the two methods, e.g
cost J(x) and feasibility (absolute value of the maximum violation of the constraints) during
each iteration. The cost profiles have similar characteristics under the two methods, i.e. the
cost first jumps up to make the problem feasible, then drops down to the optimal value. The
difference is that the cost drops down much faster in SCFS than in ITP-J, as shown in the
zoomed-in figure. Moreover, ITP-J finds a local optimum with higher cost than SCFS. The
trajectories in ITP-J are shown in Fig.6.11b, where the color of the trajectories corresponds
to the iteration number, the lighter the earlier. Different from the trajectories in SCFS, the
trajectories in the early iterations of ITP-J are not feasible and the step size in ITP-J is
smaller.

The performance of SCFS under different conditions is shown in Fig.6.14, where the
number of sampling points h changes from 20 to 40, and the number of obstacles changes
from 1 to 5. The start point and the goal point are fixed. We use “l obstacles” to denote
the case that we only consider polygons 1 to l in Fig.6.11a. The average processing time in
SCFS scales linearly with respect to h and l. In general, the total computation time in SCFS
also grows with respect to h and l. However, the trend in the total computation time is not
as clear as in the average processing time, since the optimization time for each iteration
and the number of iterations up to convergence are highly problem-specific and sensitive to
initial conditions. Nonetheless, SCFS always outperforms ITP-J in terms of computation
time as shown in Fig.6.11a. In those cases, SCFS either finds a better optima than ITP-J
or converges to the same local optima as ITP-J.

6.3 Conclusion

This chapter introduced two fast algorithms for real time motion planning based on the
convex feasible set. The CFS algorithm can handle problems that have convex cost func-
tion and non-convex constraints which are usually encountered in robot motion planning.

to the fact that the constraint is non differentiable at some points, e.g. at a corner point of an obstacle. At
those points, the sub-gradients computed by the Jacobian and by the central finite differences are different.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 95

(a) The trajectories in SCFS. (b) The trajectories in ITP-J.

Figure 6.11: The motion planning problem in 2D.

1 2 3 4 5 6 7 8 9 10 11
Iteration

0

10

20

m
s

Processing Time
Optimization Time

Figure 6.12: Decomposition of the computation time in SCFS.

By computing a convex feasible set within the non-convex constraints, the non-convex op-
timization problem was transformed into a convex optimization. Then by iteration, we can
efficiently eliminate the error introduced by the convexification. It was proved that the pro-
posed algorithm was feasible and stable. Moreover, it can converge to a local optimum if the
initial reference was nearly feasible. The performance of CFS was compared to that of ITP
and SQP. It was shown that CFS outperformed ITP and SQP in computation time, hence
better suited for real time applications. In order to handle nonlinear equality constraints, the
SCFS algorithm was proposed to solve the constrained trajectory optimization problem by
relaxation and convexification. The feasibility, convergence and optimality of the algorithm
were proved. Simulation results also validated the efficiency of the algorithm and illustrated
its advantage over existing algorithms.

CHAPTER 6. REAL-TIME NUMERICAL OPTIMIZATION 96

Figure 6.13: Profiles of cost and feasibility in SCFS and ITP-J.

20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

m
s

Average Processing Time in SCFS1 Obs
2 Obs
3 Obs
4 Obs
5 Obs

20 22 24 26 28 30 32 34 36 38 40
Number of Sampling Points

0

100

200

300

400

500

m
s

Total Computation Time
SCFS-1 Obs
SCFS-2 Obs
SCFS-3 Obs
SCFS-4 Obs
SCFS-5 Obs
ITP-J-1 Obs
ITP-J-2 Obs
ITP-J-3 Obs
ITP-J-4 Obs
ITP-J-5 Obs

Figure 6.14: Performance of SCFS under different conditions.

97

Chapter 7

Evaluation of Systems under
Information Asymmetry

In the previous chapters, we discussed the methods to design the behavior of a robot. The
performance of the design needs to be evaluated in the context of multi-agent system. The
key feature of such system is that the information is asymmetric in the sense that each agent
only knows its own model. In this chapter, we discuss methods to analyze the performance
of MAS under information asymmetry.

7.1 Overview

In the robotics community, the idea of multi-robot teams has received much attention
due to its wide applications in search and rescue, intelligent manufacturing, and unknown
environment exploration. Conventionally, distributed control laws are designed for each
robot agent [118]. Following the control laws specified by the intelligent designer, who has
an omniscient perspective, the agents do not need much intelligence. Although it is not
explicitly stated that the control laws are globally known, the effectiveness of the controllers
is based on the confidence that all agents will exactly follow the designed control laws, i.e. an
agent just needs to follow his own control law, while other agents will take care of everything
else by following their designed control laws. This strategy usually works well on problems
with predefined environment and interaction patterns, but has limited extendability, as it is
hard to design a universal control law that leads to desired results in many cases, especially
when the system topology is time-varying (interactions are happening among different agents
at different time).

Another approach is to design a cost function and a corresponding reasoning strategy
(how to minimize cost under uncertainties) following the behavior system discussed in Chap-
ter 1.3 (in Fig.1.2) for each agent and let the behavior evolve during interactions [81], so that
the multi-agent system can be self-organized [91]. The cost function determines the behavior
of each agent, which can be understood as the agent’s character. In certain cases, the cost

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY98

function of an agent may not be clear to other agents, which is natural during HRI. This
scenario is called information asymmetry [113]. The problem of interest is how to design the
reasoning strategy so that the desired behavior will evolve even in the case of information
asymmetry. This is not only important from the control point of view, but also essential in
understanding how cooperation evolves among humans and how robots may cooperate with
humans.

The reasoning strategy for an agent consists of the learning strategy (estimating the
behavior of other agents) and the control strategy (minimizing its own cost based on the es-
timates). The learning strategy corresponds to the learning module and the control strategy
corresponds to the logic in the behavior system in Fig.1.2. From the agent perspective, most
learning and control strategies follow a centralized design philosophy, such as reinforcement
learning [72] and adaptive control [67], which adjust agent’s estimation if its observation
deviates from its prediction. However, in MAS, where each agent acts on its estimation of
the unknowns, the gap between an agent’s observation and prediction can be caused by the
following two factors:

1. the agent’s wrong estimation (wrong prediction);

2. other agents’ wrong estimations and subsequent improper actions (deviated observa-
tions).

Since the centralized design strategies (called the “Blame-Me” strategy) do not address the
second factor, they are likely to produce instability in MAS as will be shown in this chapter.
To deal with this problem, a new “Blame-All” strategy that considers both factors will be
proposed.

Given the reasoning strategies, it is important to determine whether the agents can
cooperate. To answer the question, the closed loop response of the MAS needs to be
analyzed, especially the response in the equilibrium where single agent cannot change its
control law for lower cost. For example, in the Bayesian game theory, a Bayesian Nash
Equilibrium (BNE) [146] is defined as a profile of control laws that minimizes the expected
cost for each agent given its belief about others’ costs. However, since the learning process is
not considered, BNE is not suitable to analyze dynamic systems with information asymmetry.
To deal with this problem, the Trapped Equilibrium (TE) is introduced in this chapter to
characterize the control laws (as well as the resulting time-invariant closed loop system) when
all learning processes have converged (but may or may not converge to the true values). The
aforementioned question will be answered regarding the TE, e.g. whether the cooperative
goal can be achieved in the TE.

This chapter discusses the closed loop performance of MAS in the TE under different
learning and control strategies in a dynamic simultaneous game, and proposes the Blame-
All strategy to improve the closed loop performance. The remainder of this chapter is
organized as follows: the mathematical problem is formulated in Section 7.2; Section 7.3 sets
up an analytical framework for quadratic games; Section 7.3.3 shows the drawbacks of the

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY99

Blame-Me strategy; the Blame-All strategy is discussed in Section 7.3.4; Section 7.4 gives
an illustrating example; and Section 7.5 concludes the chapter.

The notations used in this chapter are listed below.

• x, ui, U
The observed state and control inputs.

• xo(k)

The optimal state at k under complete information given x(k − 1).

• uoi , U o

The optimal control inputs under complete information.

• δx, δui, δU
The deviation of the state and control inputs due to information asymmetry: δx =
x− xo, δui = ui − uoi , δU = U − U o.

• ·̂(i), ·̃(i)

The estimate and estimation error of a parameter by agent i such that ·̃(i) = ·̂(i) − ·,
e.g. θ̂

(i)
j (k) is the estimate of θj by agent i at time k and θ̃

(i)
j (k) = θ̂

(i)
j (k)− θj.

• ·̂ , ·̃
The estimate and estimation error of a parameter regardless of who makes the estima-
tion.

7.2 Evaluation of the Interactions in Multi-Agent

Systems

7.2.1 The Multi-Agent Model

Denote the system state as x ∈ Rn where n is the dimension of the state space. The
agents in the system are indexed as i = 1, ..., N , and they provide inputs u1, u2, ..., uN to the
system, where ui ∈ Rri for all i. U ∈ Rr is the stack of all ui’s, where r =

∑
i ri. Assume

the system dynamics is affine with respect to ui’s, e.g.

x(k + 1) = f(x(k)) +
N∑
i=1

hi(x(k))ui(k). (7.1)

Assume there is no direct communication among the agents. Then for any agent i, it can
only choose its control ui based on the observations (the current state and the previous inputs
of other agents) and its reference goal Gi ⊂ Rn by minimizing a cost function Ji(x, ui, Gi),

ui = arg min Ji(x, ui, Gi). (7.2)

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY100

Figure 7.1: The response curve and the Nash Equilibrium

(a) Time step k (b) Time step k + 1

Figure 7.2: The update of the control law under the adaptive algorithm (the Blame-Me
strategy)

For simplicity, it is assumed that Gi = G for all i.

7.2.2 The Simultaneous Dynamic Game

Since all agents’ inputs can affect the system state x, the solution of the optimization
problem in (7.2) is indeed a response curve, e.g. ui = gi (x,Gi, u−i) where u−i denotes the
inputs of all other agents except the agent i. The intersection of the response curves among
all agents is the Nash Equilibrium. The resulting control laws {uoi}i are optimal in the sense
that an agent cannot get a lower cost by deviating from this control law alone. Figure 7.1
illustrates the NE in the (u1, u2) function space in a two-agent case. However, the NE is only
defined for systems with complete information, e.g. the cost functions Ji’s or the response

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY101

(a) Time step k (b) Time step k + 1

Figure 7.3: The update of the control law under the Blame-All strategy

curves gi’s are globally known. When those are not globally known, the system is with
incomplete information. The scenario that the cost functions known to different agents are
not identical is called information asymmetry. In this chapter, the case that an agent only
knows its own cost function is considered, in which case the agents can only act on their
estimates of other’s response curves.

Figure 7.2 illustrates the reasoning process under the adaptive algorithm (or the Blame-
Me strategy). In Fig.7.2a, agent i (i = 1, 2) chooses its action ui in the intersection of
its response curve (the solid curve) and the estimated response curve of the other agent
(the dashed curve of the same color). However, the action pair u1, u2 in the yellow dot
deviates from the agents’ predictions of what the other would do, which provides incentives
for the agents to update their estimations. From agent 1’s perspective, since the deviation
is only attributed to its wrong estimation, the updated estimate of agent 2’s response curve
should go through the observed action pair u1, u2 in Fig.7.2a. A new control law can be
chosen based on the new estimation as shown in Fig.7.2b. Agent 2 goes through the same
reasoning. The implicit assumption under this strategy is that other agents are optimal
given the observed data, which is a common assumption in data-driven estimation of cost
functions [16]. However, this strategy is not ideal as it results in ‘over-reaction’ as the new
action pair moves farther away from the NE in Fig.7.2b.

In the Blame-All strategy, it is assumed that other agents are only optimal given their
estimates. To predict what others would do, how they are estimating ‘me’ should also be
considered. For example, in Fig.7.3a, the response curve of agent 1 is estimated by both
agents (shown as the red and black dashed lines and denoted as Agent 1’s ideal response
curve). If the two agents follow the same initialization rule, they will have consensus on the
estimates of the response curves. The ideal response curves define a virtual NE (the light
blue dot). An agent’s best action is to choose the corresponding action on its response curve,
assuming others choosing actions in the virtual NE. Since the virtual NE is not the true NE,

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY102

the observed action pair is still deviating from the predicted. From agent 1’s perspective, the
deviation is caused both by its wrong estimation and the agent 2’s improper action. Hence
the estimate of agent 2’s response curve is updated only to compensate the gap (between
the virtual NE and the action pair) in the u2 direction, while the gap in the u1 direction is
compensated by updating agent 1’s ideal response curve as shown in Fig.7.3b. In this way,
the true response curves are found and the NE is achieved.

7.2.3 Evaluation of the Interactions: the Trapped Equilibrium

Following the above procedure, the update of the control law can be continued. The
problems of interest are: under different strategies, whether the parameter estimates converge
to true values and what is the resulting closed loop system.

The Trapped Equilibrium is defined as the time-invariant closed loop system where
all agents do not have incentives to change their control laws, as their learning processes
converge. In Fig.7.2 and Fig.7.3, being in the TE means that the yellow dot remains in
the same location under the specific reasoning strategy. Under the TE, the closed loop
stability around the goal point will be analyzed to answer the question whether the agents
can cooperate.

7.3 The Equilibria in Quadratic Games

In this section, the scope is narrowed down to quadratic games, which rise naturally in
multi-robot cooperations [126].

7.3.1 The Model and Assumptions

Let the system goal G be driving the state x to the target state in the origin. Consider
a quadratic game, i.e.

Ji(x(k)) = xT (k + 1)Px(k + 1) + uTi (k)ui(k)θi,∀i, (7.3)

where θi ∈ R encodes the preference of agent i which is not known to others, and P ∈ Rn×n

is positive definite, which is chosen such that the closed loop system in the Nash Equilibrium
is globally asymptotically stable around the origin. Define R = diag(θ1Ir1 , ..., θNIrN) ∈ Rr×r.
Let Bi = hi(x(k)) be constant and B = [B1 · · · BN] ∈ Rn×r. Denote the matrices that
contain the diagonal and the off-diagonal entries of R + BTPB as H1 and H2 respectively.
It is assumed that H1, H2 are invertible. If H1 is singular, then some Ji does not depend
on some entries in ui; if H2 is singular, then there are no cross coupling terms among some
control pairs.

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY103

7.3.2 The Benchmark System in the Nash Equilibrium

For any agent i, the response curve ∂Ji/∂ui = 0 with respect to the cost function (7.3) is

θiui(k) = −BT
i Px(k + 1), (7.4)

where others’ inputs are implicitly contained in x(k + 1). By (7.1) and using estimates for
other agents’ inputs,

ui(k) = −[θiIri +BT
i PBi]

−1BT
i P [f(x(k)) +

∑
j 6=i

Bjû
(i)
j (k)]. (7.5)

Hence the optimal control law is a linear combination of a state feedback control law and
a predictive control law (where the actions of other agents are predicted). The predictive
control law varies under different strategies, which will be discussed in the following two
sections.

In the Nash Equilibrium, agents have correct predictions, i.e. û
(i)
j (k) = uj(k). Stacking

the control law (7.5) for all agents and moving the inverse terms to the left, then H1U(k) =
−BTPf(x(k))−H2U(k). Hence the saddle solution with respect to (7.3) is

U o(k) =

 uo1(k)
...

uoN(k)

 = −[R +BTPB]−1BTPf(x(k)), (7.6)

which coincides with the solution to a centralized cost function, e.g. J(x(k)) = xT (k +
1)Px(k + 1) + UT (k)RU(k).

Denote the system’s feedback gain as K = [R + BTPB]−1BTP , the agent i’s feedback
gain as Ki = TiK where Ti = [0, ...0, Iri , 0, ...0] ∈ Rri×n. Hence the optimal control law for
agent i under complete information is uoi (k) = −Kif(x(k)). Let yij ∈ Rri×rj be the block

entries of
[
R +BTPB

]−1
, which depends on θ1, ...θN . yij encodes interactions among agents,

as the control strategy of agent i depends on parameters of agent j, i.e. Ki =
∑

j yijB
T
j P .

The closed loop system in the Nash Equilibrium is

x(k + 1) = [I −BK]f(x(k)). (7.7)

7.3.3 The Blame-Me Strategy and the Trapped Equilibrium

The Adaptive Control Algorithm

In the case that θj is only known to agent j, according to the control law (7.6), the
adaptive control law of agent i can be written as

ui(k) = −Ti[R̂(i) +BTPB]−1BTPf(x(k)), (7.8)

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY104

where R̂(i) = diag(θ̂
(i)
1 Im1 , ..., θiImi

.., θ̂
(i)
N ImN

) contains the estimated parameters. Agent i’s
learning objectives are other agents’ response curves (7.4), e.g. the solid curves in Fig.7.1.
Since θj is a scalar, it is intuitive to do the parameter estimation using the following equation
with reduced order,

θju
T
j (k)uj(k) = −uTj (k)BT

j Px(k + 1). (7.9)

The parameter θj can be learned by agent i using the recursive least square (RLS) method
[67], i.e.

θ̂
(i)
j (k + 1) = θ̂

(i)
j (k) + e

(i)
j (k + 1)uTj (k)uj(k)F (k), (7.10)

e
(i)
j (k + 1) = −uTj (k)BT

j Px(k + 1)− θ̂(i)
j (k)uTj (k)uj(k),

where F (k) ∈ R+ is the learning gain. For simplicity, F (k) is set to be (uTj (k)uj(k))−2 if
uj(k) 6= 0 and 0 otherwise. Note that uj(k) is known to agent i at k + 1.

The Closed Loop System

Proposition 7.1 (Multiplicative uncertainty). The closed loop dynamics of the system
when all agents are using the control law (7.8) follow from

U(k) = (I + ∆(k))U o(k), (7.11)

x(k + 1) = [I −B[I + ∆(k)]K]f(x(k)), (7.12)

where ∆(k) ∈ Rr×r, whose diagonal entries are all zero.

Proof. Notice that

ui(k)− uoi (k) = −Ti{[R̂(i)(k) +BTPB]−1 − [R +BTPB]−1}BTPf(x(k))

= Ti[R̂
(i)(k) +BTPB]−1R̃(i)(k)[R +BTPB]−1BTPf(x(k))

= −Ti[R̂(i)(k) +BTPB]−1R̃(i)(k)U o(k)

= [ŷ
(i)
i1 θ̃

(i)
1 , ..., ŷ

(i)
i(i−1)θ̃

(i)
i−1, 0, ŷ

(i)
i(i+1)θ̃

(i)
i+1, ..., ŷ

(i)
iN θ̃

(i)
N]U o(k).

Stack the equation for all agents,

U(k)− U o(k) = ∆(k)U o(k), (7.13)

∆(k) = −


0 ŷ

(1)
12 θ̃

(1)
2 · · · ŷ

(1)
1N θ̃

(1)
N

ŷ
(2)
21 θ̃

(2)
1 0 · · · ŷ

(2)
2N θ̃

(2)
N

...
...

. . .
...

ŷ
(N)
N1 θ̃

(N)
1 ŷ

(N)
N2 θ̃

(N)
2 · · · 0

. (7.14)

Hence (7.11) and (7.12) hold.

Remark 7.1. (7.12) shows that the uncertainty introduced by information asymmetry is
multiplicative and (7.14) indicates the structure of the uncertainty in the Blame-Me strategy.

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY105

The Trapped Equilibrium

Note that θ̂
(i)
j (k) = θ̂

(m)
j (k), ∀i,m 6= j if both agent i and agent m are using the same

learning algorithm with the same initial conditions. Let θ̂j(k) = θ̂
(i)
j (k), ∀i 6= j. Define

R̂(k) = diag(θ̂1(k)Inu1 , ..., θ̂N(k)InuN).

Proposition 7.2 (Convergence of the learning algorithm). In system (7.12) with
uncertainty (7.14), for all initial conditions, the learning algorithm (7.10) converges, i.e.

limk→∞ R̂(k) = R̂e and consequently limk→∞∆(k) = ∆e, if

(∆e + I)T [(R̂e +BTPB)∆e + R̃e] = 0. (7.15)

Proof. When uj(k) = 0, θ̃j(k + 1) = θ̃j(k) is trivial. Consider the case uj(k) 6= 0. Note that
(7.4) holds only for x = xo and uj = uoj , e.g. θj(uj(k)−δuj(k)) = −BT

j P (x(k+1)−BδU(k)).
Hence

θjuj(k) +BT
j Px(k + 1) = (θjTj +BT

j PB)δU(k). (7.16)

Thus the estimate of the reaction curve is biased, so is θ̂j. Multiply uTj (k) on both

sides, then −θ̃j(k + 1)uTj (k)uj(k) = uTj (k)Tj(R + BTPB)∆(k)U o(k). Since uj(k) = Tj(I +

∆(k))U o(k), the relationship between the estimation error θ̃j(k + 1) and the uncertainty
∆(k) follows from

−θ̃j(k + 1) =
(U o(k))T (I + ∆(k))TT Tj Tj(R +BTPB)∆(k)U o(k)

(U o(k))T (I + ∆(k))TT Tj Tj(I + ∆(k))U o(k)
. (7.17)

For all initial conditions, the learning algorithm converges if (I+∆e)TT Tj Tj(R+BTPB)∆e =

−θ̃ej(I + ∆e)TT Tj Tj(I + ∆e), which can be rearranged as:

(∆e + I)T [T Tj Tj(θ̃
e
j +R +BTPB))∆e + θ̃ejT

T
j Tj] = 0. (7.18)

Stacking the equations for all j, (7.15) holds.

Remark 7.2. (7.14) and (7.15) determine the TEs of the MAS, e.g. ∆e = R̃e = 0, or

∆e = −[R̂e + BTPB]−1R̃e. The first TE is efficient as it is identical with the NE. When
∆e 6= 0, the cooperation under the second TE is inefficient.

Remark 7.3 (Unstable modes). When N = 2, suppose BT
j PBj = cjI for some scalar

cj. Then R̂e = −H1 + R,∆e = H−1
2 H1 satisfies (7.14) and (7.15), hence defines a TE.

Moreover, (I + ∆e)K = H−1
2 (H1 + H2)[H1 + H2]−1BTP = H−1

2 BTP . By (7.12), the closed
loop dynamics is

x(k + 1) = [I −BH−1
2 BTP]f(x(k)), (7.19)

which can be unstable when ||H2|| → 0.

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY106

7.3.4 The Blame-All Strategy and the Trapped Equilibrium

The Algorithm

To overcome the instability in the Blame-Me strategy, the Blame-All strategy is proposed.
Putting (7.8) in the form of (7.5), it is clear that the estimate of uj(k) in the Blame-Me

strategy is equivalent to û
(i)
j (k) = −[θ̂

(i)
j +BT

j PBj]
−1[f(x(k)) +

∑
m6=i,j Bmû

(i)
m (k) +Biui(k)],

which is biased since agent j does not know ui(k) in advance. The term ui(k) should also
be estimated, e.g.

û
(i)
j (k) = −[θ̂

(i)
j +BT

j PBj]
−1[f(x(k)) +

∑
m 6=j

Bmû
(i)
m (k)], (7.20)

where the estimate u
(i)
i (k) should be calculated using the same algorithm in estimating other

agents’ behavior as in (7.20). Following the procedure in obtaining (7.6) from (7.5), (7.20)
can be solved for all j = 1, · · · , N , e.g.

û
(i)
j (k) = −Tj[R̂(i)(k) +BTPB]−1BTPf(x(k)), (7.21)

where R̂(i) = diag(θ̂
(i)
1 Ir1 , ..., θ̂

(i)
i Iri .., θ̂

(i)
N IrN). Specifically, θ̂

(i)
i is the estimate of θ̂

(j)
i for j 6= i

made by agent i to compensate for others’ wrong estimations of θi. When all agents are using
the same algorithm with the same initial condition, they should agree on their estimates,
e.g. R̂(i) = R̂(j) = R̂. Then by (7.21), û

(i)
j (k) does not depend on i, e.g. û

(i)
j (k) = ûj(k), ∀i.

Stack all ûj(k),

Û(k) = −[R̂(k) +BTPB]−1BTPf(x(k)). (7.22)

Û(k) is the virtual NE (the light blue dot in Fig.7.3) that is consensual among all agents.
Plugging (7.22) into (7.5), agent i’s control law becomes

ui(k) = −[θi +BT
i PBi]

−1BT
i P [f(x(k)) + (B −BiTi)Û(k)]. (7.23)

From agent i’s perspective, agent j is only optimal given its estimate Û(k). Equation
(7.4) needs to be rewritten as

θjuj(k) = −BT
j Px̂

(j)(k + 1), (7.24)

where x̂(j)(k + 1) = f(x(k)) + (B − BjTj)Û(k) + Bjuj(k). In the Blame-Me strategy (7.9),
the observed x(k + 1) is used for the x(k + 1) term, which is biased, since it may not be
the future state predicted by agent j when it was doing control at time k. In (7.24), on the
other hand, the predicted future state x̂(j)(k + 1) is used. This calculation is made possible

by using the consensus Û(k). Using F (k) in (7.10), the following unbiased RLS algorithm
can be formulated,

θ̂j(k + 1) = θ̂j(k) + ej(k + 1)uTj (k)uj(k)F (k), (7.25)

ej(k + 1) = −uTj (k)BT
j P
[
f(x(k)) + (B −BjTj)Û(k) +Bjuj(k)

]
− θ̂j(k)uTj (k)uj(k).

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY107

The Closed Loop System

Proposition 7.3 (Multiplicative uncertainty). The closed loop dynamics of the system
when all agents are using control law (7.23) follow from (7.11) and (7.12) where

∆(k) = H−1
1 H2[R̂(k) +BTPB]−1R̃(k). (7.26)

Proof. Subtracting u0
i (k) from (7.23), ui(k)−uoi (k) = −

[
θi +BT

i PBi

]−1
BT
i P (B−BiTi)Ũ(k) =

−TiH−1
1 H2Ũ(k), where Ũ(k) = Û(k) − U o(k) = −[R̂(k) + BTPB]−1R̃(k)U o(k). Stack the

equations for all agents, then U(k) − U o(k) = ∆(k)U o(k) where ∆(k) follows from (7.26).
Equations (7.11) and (7.12) hold.

The Trapped Equilibrium

Proposition 7.4 (Convergence of the learning algorithm). In system (7.12) with

uncertainty (7.26) and learning algorithm (7.23), θ̂j(k) is bounded ∀j = 1, ..N . It converges
to θj in finite time steps if and only if the set {uj(k) ≡ 0} does not contain any trajectory
of the closed loop system.

Proof. When uj(k) 6= 0, ej(k + 1) = −θ̃j(k)uTj (k)uj(k). Since F (k) = (uTj (k)uj(k))−2, then

θ̂j(k + 1) = θ̂j(k)− θ̃j(k) = θj. When uj(k) = 0, θ̂j(k + 1) = θ̂j(k). Hence θ̂j(k) is bounded

by max{θj, θ̂j(0)}, and θ̂j(k) converges to true θj if ∃k∗ s.t. uj(k
∗) 6= 0.

Proposition 7.4 implies two TEs under the Blame-All strategy: 1) the parameter estima-
tion converges in finite steps and the system converges to the benchmark system in (7.7);
2) the system is trapped in the set ∪j{uj(k) ≡ 0}. To get rid of the second TE, agent j is
allowed to choose a random control input when the optimal input in (7.23) is always zero,
which is called a perturbation to the system.

Theorem 7.5 (System performance under the Blame-All strategy). For any N , the
closed loop system under the Blame-All strategy will converge to the benchmark system (7.7)
in the Nash Equilibrium, if the agent j is allowed to perturb the system when the system is
trapped in {uj(k) ≡ 0}, but BT

j Px(k) 6= 0.

Proof. The proof is in two steps. First, we will show that under certain initial conditions,
the system will converge to the benchmark system in two time steps. Then we show that a
perturbation to the system is equivalent to starting over with a new set of initial conditions.
Hence the system will always converge to the benchmark system.

By Proposition 7.4, if uj(0) = −Tj(∆(0) + I)Kf(x(0)) 6= 0,∀j, the parameters converge

at k = 1, i.e. R̂(1) = R. By (7.26), R̂(1) = R implies that ∆(1) = 0, which further implies

that U(1) = U o(1) and x(2) = xo(2) and R̂(k) = R,∆(k) = 0 for all k ≥ 2. Hence the system
converges to the benchmark system in two time steps if Tj(∆(0) + I)Kf(x(0)) 6= 0,∀j.

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY108

(a) The real world scenario (b) The simulation

Figure 7.4: Multi-robot cooperation

(a) Complete information (b) The BM strategy (c) The BA strategy

Figure 7.5: The trajectories under different strategies

If the system is trapped in the set {uj(k) ≡ 0}, i.e. Tj(∆(k) + I) ≡ 0 for some j. As
BT
j Px(k) 6= 0, the pair uj(k − 1) = 0 and x(k) is not optimal with respect to Jj. Suppose

agent j chooses a random input uj(k) 6= 0 at k. At k + 1, the system starts over again with

the new initial conditions: R̂(k + 1) 6= R̂(k), and x(k + 1). When the perturbation goes to
the right direction, Tj(∆(k+ 1) + I)Kf(x(k+ 1)) 6= 0. Then the system will converge to the
benchmark system in two steps.

Remark 7.4. The perturbation only works in the Blame-All case, since the convergence is
only affected by the initial conditions (in contrast, in the Blame-Me case, the convergence
highly depends on the parameter θi’s, according to Proposition 7.2). The improved perfor-

mance in the Blame-All case is due to the introduction of the consensus Û(k) among all
agents, which decouples learning and control strategies.

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY109

0 5 10 15 20 25 30 35 40 45 50
-10

0

10
px
py
vx
vy
θ

ω

0 5 10 15 20 25 30 35 40 45 50
-5

0

5
F x
1

F
y

1

F x
2

F
y

2

Time step k
0 5 10 15 20 25 30 35 40 45 50

-10

0

10

θ̂
(2)
1

θ̂
(1)
2

Figure 7.6: The simulation profile under the Blame-Me strategy

0 5 10 15 20 25 30 35 40 45 50
-10

0

10
px

py

vx

vy

θ

ω

0 5 10 15 20 25 30 35 40 45 50
-2

0

2
F x
1

F
y

1

F x
2

F
y

2

Time step k
0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

θ̂
(2)
1

θ̂
(1)
2

Figure 7.7: The simulation profile under the Blame-All strategy

7.4 Example: Robot-Robot Cooperation

Consider the case where two mobile robots cooperate in moving a large object as shown
in Fig.7.4a. Suppose there are rigid connections among the robots and the object. Define
x = [pT , vT , α, ω]T ∈ R6 where p and v are the position and velocity of the center of mass
(which is assumed to be at the middle of the object), α is the orientation of the object and
ω is the angular velocity around the center of mass. The inputs of the agents are the forces,
e.g. ui = Fi ∈ R2. Then the system dynamics is in the form of (7.1),

x(k + 1) =


p(k) + v(k)dt

v(k)− dt
m
fr1(v(k))

α(k) + ω(k)dt
ω(k)− dt

M
fr2(ω(k))

+


0 0

dt
m
I2

dt
m
I2

0 0
dt
M
l1

dt
M
l2

U(k), (7.27)

where m is the mass, M is the inertia, dt is the sampling time, fr1(·) and fr2(·) are the
frictions, and l1 and l2 are the vectors pointing from the center of mass to the robot 1 and

CHAPTER 7. EVALUATION OF SYSTEMS UNDER INFORMATION ASYMMETRY110

2 respectively. The task for the robots is to move the object from (4, 10, 0, 0,−π/2, 0) to
(0, 0, 0, 0, 0, 0) as shown in Fig.7.4b. The cost function is given by (7.3).

In the simulation, dt = m = 0.2, M = 0.067, |l1| = |l2| = 1, fr1(v) = 0.02v and
fr2(ω) = 0.0067ω. The parameters in the cost function are θ1 = 0.3, θ2 = 0.9 and

P = diag




4 0 0.3 0.1
0 4 0.1 0.3

0.3 0.1 1 0.1
0.1 0.3 0.1 1

 , [9 0.3
0.3 1

] .

The agents initiate the learning process by setting the estimates to be 1. The simulated
trajectories are shown in Fig.7.5 where (a) shows the trajectory under complete information,
(b) and (c) show the trajectories under the two strategies when information is asymmetric.

TE under the Blame-Me Strategy: When α ≈ 0, Bi = hi(x) is almost constant and

θ̂
(2)
1 = θ̂

(1)
2 = −2 is a TE by Remark 7.3. The resulting closed loop matrix I −BH−1

2 BTP in
(7.19) has an eigenvalue at 10 (the maximum singular value is 10.8), which causes instability
as shown in Fig.7.5b. Due to the instability, the target position was not reached. Figure 7.6
shows the simulation profile under this strategy and illustrates how the oscillation starts.

TE under the Blame-All Strategy: Figure 7.7 shows the system performance under
the Blame-All strategy. The Blame-All strategy outperforms the Blame-Me strategy as the
parameter estimation converges in two time steps and the state goes to zero asymptotically,
which verifies Theorem 7.5.

7.5 Conclusion

This chapter investigated methods to analyze the closed loop performance of the multi-
agent system under different agent behaviors. In particular, the Trapped Equilibrium was
introduced for system evaluation.

Quadratic simultaneous games were analyzed in the chapter as they rise naturally from
multi-robot cooperations. The conclusions are: 1) In a quadratic simultaneous game, the
uncertainty introduced by asymmetric information is multiplicative (Proposition 7.1 and
Proposition 7.3). 2) The Blame-Me strategy can cause instability in the quadratic simul-
taneous game (Remark 7.3). 3) Under the proposed Blame-All strategy, the only Trapped
Equilibrium assures parameter convergence to true values and system convergence to the
benchmark system in the Nash Equilibrium (Theorem 7.5).

This method presented in this chapter can serve as a building block in analyzing inter-
actions with even lesser shared information.

111

Part II

Applications

112

Chapter 8

The Robustly-Safe Automated
Driving (ROAD) System

Road safety is one of the major concerns for automated vehicles. In order for these vehicles
to interact safely and efficiently with the other road participants, the behavior of the auto-
mated vehicles should be carefully designed. In this chapter, we discuss the Robustly-safe
Automated Driving system (ROAD) which prevents or minimizes occurrences of collisions of
the automated vehicle with other road participants while maintaining efficiency. The design
of the ROAD system is a direct application of the methods discussed in previous chapters.
In this chapter, a set of design principles will be elaborated, including robust perception and
cognition algorithms for environment monitoring and high level decision making and low
level control algorithms for safe maneuvering of the automated vehicle.

8.1 Overview

Automated driving is widely viewed as a promising technology to revolutionize today’s
transportation systems [21], so as to free the human drivers, ease the road congestion and
lower the fuel consumption among other benefits. Substantial research efforts are directed
into this field from research groups and companies [33], which are also encouraged by policy
makers [120].

When the automated vehicles drive on public roads, safety is a big concern. While existing
technologies can assure high-fidelity sensing, real-time computation and robust control, the
challenges lie in the interactions between the automated vehicle and the environment which
includes other manually driven vehicles and pedestrians [143]. For road safety, the driving
behavior for the automated vehicles should be carefully designed.

Conservative strategies such as “braking when collision is anticipated”, known as the
Automatic Emergency Braking (AEB) function in existing models [147], are not the best
actions in most cases (although they may be necessary in certain cases). Taking into account
the dynamics and future course of surrounding vehicles, the automated vehicle has multiple

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM113

Figure 8.1: Architecture for the robustly-safe automated driving (ROAD) system

choices for a safe maneuver, i.e. i) slow down to keep a safe headway till the headway reaches
the safe limit; ii) steer to the left or right to avoid a collision; iii) even speed up if it can get
out a dangerous zone by so doing, etc. The autonomy in driving needs high level machine
intelligence [144].

This chapter discusses a framework in designing the driving behavior for automated
vehicles to prevent or minimize occurrences of collisions among vehicles, pedestrians and
obstacles while maintaining efficiency (e.g. maintaining high speed on freeway). The three-
layer Robustly-Safe Automated Driving (ROAD) system is considered, as shown in Fig.8.1,
which has a “see-think-do” structure. The expected performance of the ROAD system is
illustrated in Fig.8.2, where the automated vehicle predicts the future courses of all sur-
rounding road participants (vehicles or pedestrians) and confines its own trajectory in a safe
region in adherence to the predictions for safety.

This chapter is based on [80, 89]. The remainder of the chapter is organized as follows:
in Section 8.2, a multi-agent traffic model will be introduced and the control problem for
automated driving will be formulated. The ROAD system will be discussed in Section 8.3.
Simulation studies will be presented in Section 8.4. Section 8.5 concludes the chapter.

8.2 The Multi-Agent Traffic Model

The scenario shown in Fig.8.2 is modeled in the framework of multi-agent systems. All
vehicles (the automated vehicle and other manually driven vehicles) on freeway are viewed
as agents, which have several important characteristics: 1) autonomy: the agents are self-

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM114

(a) Interaction with surrounding vehicles.

(b) Interaction with pedestrians.

Figure 8.2: Illustration of the function of the ROAD system.

Figure 8.3: The kinematic bicycle model.

aware and autonomous; 2) local views: no agent has a full global view of the system; 3)
decentralization: there is no designated controlling agent. From a global view, there can
be thousands of agents (vehicles) in the system (e.g. on the freeway). But only the local
interactions among the vehicles are of interest. Hence, in the controller of the automated
vehicle, only the behavior of the surrounding vehicles will be analyzed. Surrounding vehicles
refer to the vehicles that can be detected and within certain distances to the automated
vehicle.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM115

Figure 8.4: The block diagram for local interactions among road participants.

8.2.1 The System Model

Suppose there are N surrounding vehicles locally and are indexed from 1 to N . Let
H = {1, .., N} be the set of indices for all surrounding vehicles. The automated vehicle has
index 0. Since the surrounding vehicles are changing from time to time, mathematically, the
topology of the MAS is time varying [119].

For vehicle i, denote its state as xi, control input as ui. According to (2.5), agent i’s
dynamic equation can be written as

ẋi = fi(xi, ui, wi), (8.1)

where wi is the disturbance introduced by the environment, e.g. wind. Let xe be the state
of the environment, e.g. speed limit vlim, stationary obstacles and so on. Then the system
state x is defined as x = [xT0 , x

T
1 , · · · , xTN , xTe]T .

Agent i chooses the control ui based on its information set πi and its objective Gi (which
can be intended behaviors or desired speed). In this chapter, it is assumed that there is
no direct communication among vehicles. In this way, agent i’s information set at time T
contains all the measurements up to time T , i.e. πi (T) = {yi (t)}t∈[0,T] where yi follow from
(2.3). The controller for agent i can be written as

ui = gi (πi, Gi) . (8.2)

Based on (2.3), (8.1) and (8.2), the block diagram for the multi-agent system is shown
in Fig.8.4, which is a variation of Fig.2.2. All agents are coupled together in the closed loop
system due to measurement feedbacks.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM116

8.2.2 The Optimal Control Problem

In the ROAD system, the driving behavior for the automated vehicle should be designed
considering the following two factors: efficiency and safety. Equations (8.3) provide the
mathematical formulation. The efficiency factor requires that the objective of the auto-
mated vehicle (such as lane following in a constant speed or going to a desired position)
be achieved in an optimal manner through minimizing a cost function J(x0, u0, G0). As
the state x0 is not directly known, the cost should be minimized in the sense of expecta-
tion given the measurement y0, e.g. E(J(x0, u0, G0)|y0) as shown in (8.3a). Meanwhile, the
safety factor requires that the efficiency requirement be fulfilled safely as the motion of the
automated vehicle should be constrained with respect to other road participants’ behaviors.
The constraint on the automated vehicle can be written as x0 ∈ RS(x1, · · · , xn, xe) where
RS is a safe set in the state space of the automated vehicle that depends on the states
of other road participants and the state of the environment. As all of the states are not
directly known, the constraint should be considered in the stochastic sense such that it is
satisfied almost surely with probability 1 − ε for ε → 0 given the measurement y0, e.g.
P ({x0 ∈ RS(x1, · · · , xn, xe)}|y0) ≥ 1 − ε as shown in (8.3e). Then the following optimal
control problem can be formulated

min
u0

E [J(x0, u0, G0)|y0] , (8.3a)

s.t. u0 ∈ Ω, E(x0|y0) ∈ Γ, (8.3b)

ẋ0 = f(x0, u0, w0), (8.3c)

y0 = h(x0, x1, · · · , xn, xe, v0), (8.3d)

P ({x0 ∈ RS(x1, · · · , xn, xe)}|y0) ≥ 1− ε, (8.3e)

where Ω is the control space constraint for vehicle stability, and Γ is the constraint regarding
the speed limit and other regulations. Equation (8.3c) and (8.3d) are the dynamic equation
and the measurement equation respectively, where w0 and v0 are noise terms.

The ROAD system solves the above problem by 1) estimating the states xi’s using the
measurement y0 in layer 1 and 2) estimating the dynamics of all road participates (e.g.
dynamics of xi’s) and solving for the optimal control u0 using the estimated states in Layer
2 and 3) tracking the computed optimal control trajectory in layer 3.

8.3 The Functions in the ROAD System

In this chapter, we focus on Layer 2. In Layer 2, the control sequence u0 is obtained by
solving the optimization problem (8.3). However, the problem is in general hard to solve due
to the safety constraint (8.3e), as the dynamics of the states xi’s are unknown and the set RS

is non-convex. To solve the problem efficiently, the behavior design architecture discussed in
Chapter 2 will be implemented. The behaviors of other road participants will be identified

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM117

and xi’s will be predicted online. A parallel planning structure will be used to solve the
non-convex optimization efficiently.

For simplicity, only the kinematic model will be considered in Layer 2. Figure 8.3 shows
the bicycle model used for all vehicle i, where (pxi , p

y
i) is the position of the center of the

rear axle, vi the forward speed, θi the vehicle heading (θi = 0 when the vehicle is following
the lane), γi the steer angle and Li the vehicle wheelbase. Assuming no tire slip angle, the
kinematics of vehicle i follow from ṗxi = vi cos(θi), ṗ

y
i = vi sin(θi), θ̇i = vi

Li
tan γi. Since the

mapping from γi to θ̇i is homeomorphic given vi, θ̇i is chosen as an input signal instead of
γi. For vehicle i, define xi = [pxi , p

y
i , vi, θi]

T and ui = [v̇i, θ̇i]
T . Hence (8.1) can be simplified

as

ẋi = f(xi) + Bui + Bwi,∀i = 0, · · · , N, (8.4)

where f(xi) =


vi cos θi
vi sin θi

0
0

 ,B =


0 0
0 0
1 0
0 1

 = [B1,B2].

8.3.1 Cognition: Understanding Other Road Participants

Instead of predicting other vehicles’ trajectories directly, human drivers may classify other
drivers’ intended behavior first. If the intended driving behaviors are understood, the future
trajectories can be predicted using empirical models. Mimicking what humans would do,
the learning structure in Fig.8.5 is designed as an instance of the structure in Fig.2.8 for
the automated vehicle to make predictions of the surrounding vehicles, where the process
is divided into two steps: 1) the behavior classification, where the observed trajectory of a
vehicle goes through an offline trained classifier; and 2) the trajectory prediction, where the
future trajectory is predicted based on the identified behavior, by using an empirical model
which contains adjustable parameters to accommodate the driver’s time-varying behavior.1

The classification step is needed when the communications among vehicles are limited. Oth-
erwise, vehicles can broadcast their planned behaviors as discussed in [88].

In this section, the design of the classifier, the empirical models and the online learning
algorithm will be discussed.

The Driving Behaviors

Denote the intended behavior of vehicle i at time step k as bi(k). In this chapter, five
behaviors are considered:

• Behavior 1 (B1): Lane following;

1Consider Fig.8.4. When Gi denotes vehicle i’s intended behavior, the behavior classification is a back-
ward process to identify Gi, while the trajectory prediction is a forward process to predict vehicle i’s closed
loop behavior ẋi = f(xi) + Bgi(πi, Gi) based on identified Gi.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM118

Figure 8.5: The structure of the learning and prediction center.

• Behavior 2 (B2): Lane changing to the left;

• Behavior 3 (B3): Lane changing to the right;

• Behavior 4 (B4): Lane merging;

• Behavior 5 (B5): Lane exiting;

where B1 is the steady state behavior; B2, B3 and B4 are driving maneuvers; and B5 is
the exiting behavior. It is assumed that there must be gaps (lane following) between two
maneuvers (B2, B3 and B4). The transitions among behaviors follow from the model shown
in Fig.8.6a.

Let P (bi(k)|π0(k)) ∈ R5 be the probability vector that vehicle i intends to conduct
B1, · · · , B5 at time step k given information up to time step k. The relationship between
P (bi(k)|π0(k)) and P (bi(k + 1)|π0(k)) can be described by a Markov matrix A = P (bi(k +
1)|bi(k)) ∈ R5×5, e.g.

P (bi(k + 1)|π0(k)) = A ∗ P (bi(k)|π0(k)), (8.5)

where A represents the transition model2 in Fig.8.6a.
The transition model should be invoked in calculation only when vehicle i is following the

lane and is about to conduct a maneuver. When vehicle i is conducting a maneuver, there is
no need to calculate the probability distribution over other behaviors. The transition model
can be used again when the maneuver is completed or aborted and vehicle i starts to follow
the lane. The intuition is that: although the intention of a driver is unknown (thus needs to
be inferred), but his action is observable (thus when he turns his intention into action, there
is no need to guess).

2A can be trained using real world labeled data bi(k), e.g. Apq = P (bi(k + 1) = Bp|bi(k) = Bq) :=∑
i,k I(bi(k + 1) = Bp, bi(k) = Bq)/

∑
i,k I(bi(k) = Bq) where I is the indicator function.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM119

(a) The transition model (b) The HMM model

Figure 8.6: The behavior transition model and the hidden Markov model.

The Classifier and the Features

The intentions of a driver at different time steps form a Markov process, which, however,
are unknown to the automated vehicle. Hence the behavior classification problem becomes an
inference problem in the Hidden Markov Model (HMM) [23] as shown in Fig.8.6b. According
to Bayes’ rule, at time step k, for j = 1, 2, · · · , 5,

P (bi(k) = Bj|π0(k)) ∝ P (bi(k) = Bj, y0(0), · · · , y0(k)),

∝ P (y0(k)|bi(k) = Bj)P (bi(k) = Bj|π0(k − 1)),

where P (bi(k)|π0(k−1)) encodes the temporal transitions of the intended behaviors and can
be obtained using (8.5). P (y0(k)|bi(k)) is the measurement model, which can be constructed
from data offline3. To represent the high-dimension data efficiently, the measurement y0

is divided into several features for each surrounding vehicle i (not limited to the following
ones):

• Feature 1: Longitudinal acceleration f 1
i = v̇i.

• Feature 2: Deceleration light f 2
i = (1, 0) = (on, off).

• Feature 3: Turn signal f 3
i = (1, 0,−1) = (left,off,right).

• Feature 4: Speed relative to the traffic flow f 4
i = vi − v̄.

• Feature 5: Speed relative to the front vehicle f 5
i = vi − vfront.4

• Feature 6: Current lane Id f 6
i . f 6

i = −1 if the vehicle is occupying two lanes.

• Feature 7: Current lane clearance f 7
i = (1, 0,−1) = (blocked, clear, ended).

3Similar to the transition model A, the measurement model can also be obtained by supervised training,
together with necessary curve fitting.

4Feature 4 and 5 encodes the interactions among vehicles.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM120

initialization P (bi(0)) = [1, 0, 0, 0, 0]T , k = 0;
while Classifier is Active do

k = k + 1;
read current y0(k), calculate f 1

i (k), · · · , f 10
i (k);

if f 6
i (k) == −1 then
B∗ = arg maxB=B3,B3,B4 P (bi(k − 1) = B);
P (bi(k) = B∗) = 1, P (bi(k) 6= B∗) = 0;
while f 6

i (k) == −1 do
k = k + 1, read y0(k), calculate f 6

i (k);
P (bi(k)) = P (bi(k − 1));

end
P (bi(k)) = [1, 0, 0, 0, 0]T ;

else
P (bi(k)|π0(k − 1)) = A ∗ P (bi(k − 1)|π0(k − 1));
calculate M = P (y0(k)|bi(k));
P (bi(k)|π0(k)) = M. ∗ P (bi(k)|π0(k − 1));
normalize P (bi(k)|π0(k));

end

end
Algorithm 8.1: Behavior classification for vehicle i

• Feature 8: Lateral velocity, e.g. f 8
i = vi sin θi.

• Feature 9: Lateral deviation from the center of its current lane f 9
i .

• Feature 10: Lateral deviation from the center of its target lane (if in the lane changing
mode) f 10

i .

Algorithm 8.1 is designed based on the previous discussion. The probability distribu-
tions over all possible behaviors are calculated at each time step when the vehicle is fol-
lowing the lane (not occupying two lanes). The update of the distribution stops when the
vehicle is conducting a maneuver. After the maneuver is completed, the probabilities will
be initialized. Figure 3.1 illustrates the behavior classification results under Algorithm 8.1,
where the measurement model is set empirically as P (y0|bi = B1) ∝ exp(−(f 8

i)2 − c(f 9
i)2),

P (y0|bi = B3) ∝ 1− exp(−(f 8
i)2 − c(f 9

i)2) and c is a constant. In the beginning, the vehicle
is following a lane. Then the probability of lane changing rises since the lateral speed f 6

i

goes up. When the vehicle crosses the boundary of two lanes, the probability of B3 goes to
1. After lane changing, the vehicle starts to follow the new lane.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM121

The Empirical Models for Trajectory Prediction

The future trajectory is predicted according to the most likely predicted behavior, i.e.
arg maxBj

P (bi(k) = Bj). For lane following B1, θi ≈ 0 and the lateral deviation of the
vehicle can be ignored. The vehicle i only regulates its longitudinal speed to match the
speed of the traffic flow and the speed of its front vehicle, e.g.

ẋi = f(xi) + B1[k1f
4
i + k2f

5
i], (8.6)

where k1, k2 ∈ R are online-adjustable parameters, which can be identified online using the
method discussed in Chapter 3.3. For lane changing B2 and B3, the vehicle not only regulates
the longitudinal speed, but also regulates the lateral position, hence the turning rate. The
empirical model can be described as

ẋi = f(xi) + B1[k1f
4
i + k2f

5
i] + B2[k3f

8
i + k4f

10
i], (8.7)

where k1, k2, k3, k4 ∈ R are online-adjustable parameters.

8.3.2 Online Motion Planning and Control

Based on the predictions of the surrounding vehicles, the automated vehicle needs to
find a safe and efficient trajectory satisfying the optimal control problem (8.3). The decision
making architecture in Fig.8.7 is considered as an variation of the parallel architecture in
Fig.2.3. The baseline planner solves the problem in a long time horizon without the safety
constraint (8.3e), and the safety planner takes care of the safety constraint in real time [77].

The Baseline Planner The baseline planner solves the optimal control problem (8.3)
to ensure efficiency, which is similar to the planner in use when the automated vehicle is
navigating in an open environment. When the cost function and the control constraint are
designed to be convex, (8.3) become a convex optimization problem.

Suppose the objective G0 (target behavior and target speed vr) is specified. The baseline
planner tries to plan a trajectory to accomplish G0. When the objective is to follow the lane,

Figure 8.7: The structure of the decision making center.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM122

the cost function is designed as

J =

∫ ∞
0

[
(v0 − vr)2 + q(f 9

0)2 + uT0Ru0

]
dt, (8.8)

where q ∈ R+ and R ∈ R2×2 is positive definite. When the objective is to change lane,
the automated vehicle should change the lane smoothly within time T . The cost function is
designed as

J =

∫ T

0

Φ(t)dt+ Γ(f 10
0 (T), θ0(T)), (8.9)

where Φ = (v0−vr)2+q1(f 10
0)2+q2(θ0)2+uT0Ru0 is the cost to go; Γ = s1(f 10

0 (T))2+s2(θ0(T))2

is the terminal cost; q1, q2, s1, s2 ∈ R+; and R ∈ R2×2 is positive definite.
The computation in the baseline planner can be done offline. The resulting control policy

will be stored for online application, to ensure real-time planning.

The Safety Planner The safety planner modifies the trajectory planned by the baseline
planner locally to ensure that it will lie in the safe set XS in real time as discussed in
Chapter 4.

During lane following, the safety constraint requires the automated vehicle to keep a
safe headway. Thus XS(B1) = {x : d1(x) ≥ dmin} where d1(x) calculates the minimum
distance between the automated vehicles and the vehicle or obstacles in front of it. During
lane changing, the safety constraint requires the automated vehicle to keep a safe distance
from vehicles on both lanes. Thus XS(B2), XS(B3) = {x : d2(x) ≥ dmin} where d2(x)
calculates the minimum distance between the automated vehicle and all surrounding vehicles
and obstacles in the two lanes.

Mathematically, the safe set is described using a safety index φ, which is a real-valued
continuously differentiable function on the system’s state space. The state x is considered
safe only if φ(x) ≤ 0 as shown in Fig.4.4. In Fig.8.2, the safe region for the automated vehicle
is affected by the future trajectory of the surrounding vehicles. Based on the prediction of
other vehicles, if the baseline trajectory leads to φ ≥ 0 now or in the near future, the safety
planner will generate a modification signal to decrease the safety index by making φ̇ < 0.

The safety index is chosen as φ = D − d2
j(x) − αḋj(x) (j = 1, 2) where D > d2

min, and
α > 0 are constants. To ensure safety, the control input of the automated vehicle must be
chosen from the set of safe control US(t) = {u0(t) : φ̇ ≤ −η0 when φ ≥ 0} where η0 ∈ R+ is
a safety margin. By (8.4), the set of safe control when φ ≥ 0 can be written as

US (t) = {u0 (t) : L (t)u0 (t) ≤ S (t)} , (8.10)

where L (t) = ∂φ
∂x0

B, S (t) = −η0 −
∑

j∈H
∂φ
∂xj
ẋj − ∂φ

∂x0
f and ẋj is the prediction made by the

trajectory predictor.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM123

If the baseline control input u0 (t) is anticipated to violate the safety constraint, the safety
controller will map it to the set of safe control US (t) according to the following quadratic
cost function

u0/US = min
u∈US∩Ω

J0 (u) =
1

2
(u− u0)T W (u− u0) , (8.11)

where W is a positive definite matrix and defines a metric in the vehicle’s control space. To
obtain optimality, W should be close enough to the metric imposed by the cost function J
in (8.8) and (8.9), e.g. W ≈ d2J/du2

0 where J is convex in u0. In the lane following mode, if
the lateral deviation f 9

0 is large due to obstacle avoidance and the safety controller continues
to generate turning signal θ 6= 0, the vehicle will enter the lane changing mode.

The constraints on the vehicle input US in different scenarios are illustrated in Fig.8.8
to Fig.8.9. For simplicity, a constraint on planar acceleration is used to illustrate the safety
constraint US as the constraint on planar acceleration can be transformed to the constraint
on throttle and wheel angles5.

Figure 8.8 shows the safety constraint with respect to a front vehicle. The red dot
represents zero acceleration and the circle represents the boundary of maximum acceleration
in any direction (which may also in be other shapes, e.g. a ellipsoid). The shaded area
represents US. When the front vehicle is relatively static with respect to the automated
vehicle, US depends only on the relative distance. When the headway is far enough, all
directions of acceleration are safe. When the headway is too short, only decelerations are
safe. When there is a wall, turning against the wall is not safe. When the front vehicle has
relative motions with respect to the automated vehicle, US depends on the relative distance
as well as relative movement. Figure 8.9 illustrate the safety constraint when there is a
vehicle in the adjacent lane. In mixed traffic, the constraint US is the intersection of the
constraint computed with respect to each surrounding vehicle.

8.4 Performance

Case studies are performed to illustrate the performance of the ROAD system during
on-road driving (e.g. freeway driving) and unstructured driving (e.g. driving in parking
lots). The simulations are done using parameters from a Lincoln MKZ shown in Fig.8.10.

8.4.1 On-Road Autonomous Driving

In freeway driving, there are typically two kinds of objectives : lane following with desired
speed (in any lane) and lane changing (to a target lane). The baseline planners for the two
objectives are obtained offline by computing optimal control policies for problem (1-4). The
safety planner checks online whether the planned trajectory is safe to execute with respect

5Note that in a kinematic model when the turning angle is small and there is no tire slip, the longitudinal
acceleration is proportional to the throttle angle and the lateral acceleration is proportional to the wheel
angle.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM124

(a) US when d > dmin and ḋ = 0.

(b) US when d < dmin and ḋ = 0.

(c) US when there is a wall.

(d) US when d > dmin and ḋ < 0.

(e) US when d < dmin and ḋ > 0.

Figure 8.8: The safety constraint US with respect to a front vehicle.

to the predicted motions of the surrounding vehicles. Three behaviors are considered for
surrounding vehicles: lane following, lane change to the left, and lane change to the right. A
Hidden-Markov-Model-based classifier is trained offline using labelled trajectories of human-
controlled road participants in the simulator. The intended behavior of each surrounding
vehicle is predicted online using the classifier. And the future motion of a surrounding vehicle
is predicted using an empirical model associated with the classified behavior.

Lane Following

Case 1 - Stationary Obstacle. Figure 8.11 shows the case when the automated vehicle
suddenly noticed a stationary obstacle 40m ahead. The safety controller went active. By
mapping the baseline input u0 to US in (8.11), the command for deceleration and turn was
generated. Then the automated vehicle slowed down and changed lane to the left to avoid

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM125

(a) US when the vehicle is in the front.

(b) US when the vehicle is behind.

(c) US when the vehicle is moving away.

(d) US when the vehicle is moving closer.

Figure 8.9: The safety constraint US with respect to a vehicle in the adjacent lane.

the obstacle. After lane changing, the vehicle accelerated to the desired speed again.
Case 2 - Slow Front Vehicle. Figure 8.12 shows the case when the front vehicle was

too slow. To illustrate the interaction, the trajectories of both vehicles are down sampled
and shown in the last plot in Fig.8.12, where circles represent the automated vehicle and
squares represent the slow vehicle. Different colors correspond to different time steps, the
lighter the earlier. At the beginning, since it was not possible for the automated vehicle
to keep the desired speed behind the slow car, it started to change lane to the left. After
changing the lane, it overtook the slow vehicle.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM126

Front IBEOBack IBEO

Figure 8.10: The test vehicle: Lincoln MKZ.

Case 3 - Fast Cut-in Vehicle. Figure 8.13 shows the scenario when the automated
vehicle was overtook by a fast vehicle. When the automated vehicle observed large lateral
velocity from the fast vehicle, it predicted that the fast vehicle would change lane. Under
the command from the safety controller, the automated vehicle slowed down. After the lane
changing of the fast vehicle, the automated vehicle accelerated again to meet the desired
speed and keep a safe headway to the fast vehicle.

Lane Change

In this simulation, the trajectory of the surrounding vehicle is manually controlled, in
order to test the real time interactions.

Case 1 - A Vehicle Moving Side by Side in the Target Lane. Figure 8.14 shows
the case when the vehicle in the target lane was traveling next to the automated vehicle
with approximately same speed. It was not safe to change lane in this case. Then the

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM127

Figure 8.11: Case 1 in lane following: stationary obstacle.

automated vehicle slowed down to create a gap between the two vehicles. When the distance
between the two vehicles was big enough, the automated vehicle then changed to the target
lane. After adjusting the relative distance to the front vehicle, the automated vehicle then
followed the new lane at constant speed.

Case 2 - A Slowing Down Vehicle in the Target Lane. Figure 8.15 shows the case
when the vehicle in the target lane was slowing down. At first, the automated vehicle tried
to use the strategy in case 1. However, when it noticed that the yellow car also slowed down,
it then sped up to overtake the yellow car.

Case 3 - Simultaneous Lane Change from Opposite Directions. Figure 8.16
shows the case when another vehicle changed to the target lane simultaneously with the
automated vehicle, but from the opposite direction. At the beginning, the yellow car was
anticipated to follow its lane. Hence it was safe for the automated vehicle to change lane.
When the lateral velocity of the yellow car became larger, the probability of B3 went up
and a possible future collision was anticipated. Then the safety planner went active. When
the yellow car was about to cross the lane boundary, the automated vehicle turned back to
its previous lane and slowed down. The automated vehicle finally changed lane using the
strategy in case 1: slowing down first and changing lane when the distance between the two
vehicles was big enough.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM128

Figure 8.12: Case 2 in lane following: slow front vehicle.

Mixed Traffic

Figure 8.17 illustrates the active safety measures when traffic is heavy on a curved freeway.
The objectiveG0 is lane following with a desired speed 37m/s which is higher than the current
traffic speed. To fulfill G0, the vehicle performed several lane changing safely with the help
of the safety planner. The distance and velocity profile during the simulation is shown in
Fig.8.17b. The dark bar indicates the moment when the safety planner was active, which
matches with the moment when the smallest distance to the surrounding vehicles reached
a threshold (shown by the dotted line). The smallest distance is only computed for the
surrounding vehicles that have the possibility to collide with the automated vehicle, e.g. in
the moving direction of the automated vehicle. For example, if there is only one surrounding
vehicle which is in the adjacent lane to the automated vehicle and both vehicles are going to
follow the lanes, then the smallest distance is infinity as their moving directions are parallel
to each other. When the safety planner was on, changes on the vehicle velocity and direction
were generated by the safety planner as discussed earlier. The smallest distance was always
kept over 4m. The video of this study can be found in [75].

Figure 8.18 shows the active safety performance of ROAD during lane following. There
are heavy traffic on the left lanes. As the current speed of the automated vehicle is below the
desired speed, the baseline planner generates a acceleration command. The safety constraints
with respect to vehicles 1 to 3 are computed and shown as U1

S, U2
S and U3

S in the figure
and US := ∩iU i

S. As the acceleration command generated by the baseline planner is not

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM129

Figure 8.13: Case 3 in lane following: fast cut-in vehicle.

safe, it is modified by the safety planner. The modification signal tries to minimize the
length difference between the reference acceleration vector and the modified vector as well
as the angular difference between the two vectors. Then a turning command is generated
in the modified signal. Under this new command, the vehicle changed to its right lane.
The metric for the modification is a design parameter which allows the vehicle to generate
diverse behaviors. For example, if the metric penalizes the norm difference between the
reference acceleration vector and the modified acceleration vector, there will be no turning
command in the modified signal as shown in Fig.8.18c. The automated vehicle will remain
in the current lane and adapt to track the velocity of the front vehicle. This behavior is very
similar to the one generated by adaptive cruise control (ACC).

Figure 8.19 illustrates the active safety during lane change on freeway. When the vehicle
started to change lane, it is not safe to do so. The safety planner cancelled the turning
command and increased the longitudinal acceleration. Then the automated vehicle overtook
the vehicle in the target lane and finished lane changing when it was safe to do so. The
behavior of the automated vehicle depends significantly on the prediction of the behavior of
the vehicle in the target lane. If the vehicle is predicted to be moving relatively forward, it
is possible that a decelerating modified signal be generated as shown in Fig.8.19c, in which
case the automated vehicle will change lane to follow the vehicle in the target lane when a
safe “gap” is created by decelerating.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM130

Figure 8.14: Case 1 in lane change: a parallel vehicle in the target lane.

8.4.2 Driving in Unstructured Environments

Driving in parking lots is a typical unstructured driving scenario. The automated vehicle
needs to interact with pedestrians safely. The objective G0 for the vehicle is to navigate
to a desired parking space. Similar to the freeway driving case, the baseline planner is
obtained offline. The safety planner checks online whether the planned trajectory is safe
to execute with respect to the prediction of the pedestrian motions. However, unlike the
freeway driving case, not all directions of acceleration are feasible due to the nonholonomic
nature of automobiles. For example, when the vehicle speed is high, it is possible for the
vehicle to have acceleration in many directions. When the vehicle speed is low and gear
shift is not allowed, the vehicle can only generate a small range of acceleration by steering
and pressing the pedal as shown in Fig.8.20. When modifying the trajectories in the safety
planner, the nonholonomic constraint also needs to be considered.

Active Safety for Interacting with Pedestrians Figure 8.21a illustrates the active
safety for driving in a parking lot. The pedestrian in the simulation environment is controlled
by a human subject in real time to test the response of the automated vehicle. The desired
parking space is shown by the white lines. In the simulation, the vehicle tried to go to the
parking space while the pedestrian moved crossing the path of the vehicle. So the vehicle
slowed down to wait for the pedestrian and accelerated only after the pedestrian passed by.
The safety constraint for the automated vehicle in this scenario is shown in Fig.8.20c. As the

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM131

Figure 8.15: Case 2 in lane change: a slowing down vehicle in the target lane.

only action that satisfied both the safety constraint and the nonholonomic constraint was
to stay still, the vehicle chose to wait for the human to pass by. The distance and velocity
profile is shown in Fig.8.21b. The safety planner was on when the distance between the
vehicle and the human was small. The small velocity generated at the beginning was due
to the uncertainty in the human motion prediction. The smallest distance was always kept
over 4m.

8.5 Discussion and Conclusion

In this chapter, the design of Layer 2 in the ROAD system was discussed. The multi-
agent traffic model was proposed and an optimal control problem was formulated for vehicle
trajectory planning. To solve the problem, the behaviors of surrounding vehicles was iden-
tified and their future trajectories was predicted. Based on the predictions, the optimal
control problem was solved online using an unique architecture: a parallel combination of a
baseline planner which solved the problem without the safety constraint and a safety planner
which took care of the safety constraint online. The proposed algorithms were verified in
the simulations.

The function of the ROAD system can be divided into two parts: reasoning of other road
participants’ behaviors and planning the trajectory for the ego vehicle. The first part relies

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM132

Figure 8.16: Case 3 in lane change: simultaneous lane change from opposite directions.

on offline data collection and learning. The purpose of offline learning is to let the ego vehi-
cle make reasonable predictions of the environment so that it can behave less conservatively.
Even if the environment is new and the behaviors of the road participants are never encoun-
tered before, the system can still generate safe trajectories using only the online learning
method and the parallel planners as discussed in [13]. In the beginning of the interaction,
the safety planner can behave defensively by assuming the worst case scenario. During the
interaction, the vehicle can fit a reactive behavior model for each road participant using
the observed trajectory of that road participant, and refine the model by online adaptation,
similar to the method discussed in the case study “Driving in Unstructured Environments”.
The safety planner then monitors the trajectory generated by the baseline planner given
the predictions made by the reactive behavior models, while a larger minimum distance re-
quirement will be chosen if the confidence level of the model is lower. The confidence level
of the model can be tracked by comparing the predicted and the observed behaviors of the
corresponding road participant. Although the proposed method is mainly to address active
safety for automated vehicles, it can also be applied to driving assistive systems for manually
driven vehicles, if we replace the baseline planner by a function that gets human’s driving
command directly as shown in Fig.8.22. Then the safety planner can monitor human’s
driving commands based on the predicted motions of other road participants.

In the future, the following parts will be improved. An online long-term trajectory
planner discussed in Chapter 5 will replace the current offline baseline planner. The long-

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM133

(a) The snapshots of the simulation.

(b) The distance and velocity profile for mixed traffic simulation.

Figure 8.17: Performance of the ROAD system in heavy traffic.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM134

(a)

(b)

(c) Different safety maneuver during lane following due to different modification metric.

Figure 8.18: The safety constraints and maneuvers for lane following in mixed traffic.

term planner will consider all related issues in driving, including safety, efficiency, comfort
and economy, with a relatively long preview horizon (e.g. 10s) and a relatively low sampling
frequency (e.g. 4Hz). The safety controller described in this chapter will be running in high
frequency (e.g. 20Hz) and be prepared to interrupt the long-term planner in emergencies to
guarantee safety. Moreover, to account for diverse behaviors of other road participants, the
trajectory predictor will be extended to be stochastic and multimodal.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM135

(a)

(b)

(c) Different Safety Behavior during Lane Change due to Different Prediction

Figure 8.19: The safety constraints and maneuvers for lane change in mixed traffic.

(a) The dynamic constraint for low speed (b) The dynamic constraint for high speed

(c) The safety constraint and the dynamic constraint.

Figure 8.20: Considering the dynamic constraint together with the safety constraint.

CHAPTER 8. THE ROBUSTLY-SAFE AUTOMATED DRIVING (ROAD) SYSTEM136

(a) The snapshots of the simulation.

(b) The distance and velocity profile.

Figure 8.21: Application of the ROAD system for driving in a parking lot

Figure 8.22: A driver assistive system using the ROAD system.

137

Chapter 9

The Robot Safe Interaction System
(RSIS)

Human workers and robots are two major workforces in modern factories. For safety
reasons, they are separated, which limits the productive potentials of both parties. It is
promising if we can combine human’s flexibility and robot’s productivity in manufacturing.
This chapter describes the application of the methods discussed in previous chapters on
industrial robots.

9.1 Overview

In modern factories, human workers and robots are two major workforces. For safety
concerns, the two are normally separated with robots confined in metal cages, which limits
the productivity as well as the flexibility of production lines. In recent years, attention has
been directed to remove the cages so that human workers and robots may collaborate to
create a human-robot co-existing factory [24]. Those robots working in a human-involved
environment are called co-robots.

The potential benefits of co-robots are huge and extensive, e.g. they may be placed in
human-robot teams in flexible production lines [64] as shown in Fig.9.1, where robot arms and
human workers cooperate in handling workpieces, and automated guided vehicles (AGV) co-
inhabit with human workers to facilitate factory logistics [141]. Automotive manufacturers
Volkswagen and BMW [149] have took the lead to introduce human-robot cooperation in
final assembly lines in 2013.

In the factories of the future, more and more interactions among humans and industrial
robots are anticipated to take place. In such environments, safety is one of the biggest con-
cerns [132], which attracts attention from standardization bodies [52], as well as from major
robot manufacturers including Kuka, Fanuc, Nachi, Yaskawa, Adept and ABB [5]. Several
safe cooperative robots or co-robots has been released, such as UR5 from Universal Robots
(Denmark) [142] which is implemented by Volkswagen and BMW, Baxter from Rethink

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 138

Figure 9.1: Human-robot collaboration and co-inhabitance in future production lines.

Robotics (US) [12], NextAge from Kawada (Japan) [59] and WorkerBot from Pi4 Robotics
GmbH (Germany) [19]. However, most of these researches and products focus on intrinsic
safety, i.e. safety in mechanical design [55], actuation [156] and low level motion control
[95]. Safety during social interactions with humans, which are key to intelligence (including
perception, cognition and high level motion planning and control), still needs to be explored.

On the other hand, several successful implementations of non-industrial co-robots have
been reported, e.g. home assist robots [151] and nursing robots [111]. Complex software
architectures are developed to equip the robots with various cognition, learning and motion
planning abilities. However, those robots are mostly of human-size or smaller size with slow
motion, which may not be cost-efficient for industrial applications. To fully realize a human-
robot co-existing factory, the software design methodology for fast co-robots, especially those
that are large in size, with multiple links and complicated dynamics, needs to be explored.

In order to make the industrial co-robots human-friendly, they should be equipped with
the abilities [51] to: (1) collect environmental data and interpret such data, (2) adapt to
different tasks and different environments, and (3) tailor itself to the human workers’ needs.
The first ability is a perception problem, while the second and third are control problems
that are of interest in this chapter.

The challenges for control are (i) coping with complex and time-varying human motion,
and (ii) assurance of real time safety without sacrificing efficiency. An constrained optimal
control problem is formulated to describe this problem mathematically. And a modularized
controller architecture will be discussed as an variation of the architecture discussed in
Chapter 2.2. The modularized architecture 1) treats the efficiency goal and the safety goal
separately and allows more freedom in designing robot behaviors, 2) is compatible with
existing robot motion control algorithms and can deal with complicated robot dynamics, 3)

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 139

guarantees real time safety, and 4) are good for parallel computation.
The remainder of the chapter is organized as follows: in Section 9.2, the constrained

optimization problem will be described; in Section 9.3, the controller architecture in solving
the optimization problem will be proposed, together with the design considerations of each
module. Case studies with robot arms are performed in Section 9.4. Section 9.5 concludes
the chapter.

9.2 Algorithmic Safety Measures: The Optimization

Problem

As shown in Fig.9.1, co-robots can co-operate as well as co-inhabit with human workers.
In this chapter, safety in co-inhabitance and contactless co-operation will be addressed as
they form basic interaction types during human-robot interactions. Since the interaction is
contactless, robots and humans are independent to one another in the sense that the humans’
inputs will not affects the robots’ dynamics in the open loop. However, humans and robots
are coupled together in the closed loop, since they will react to others’ motions.

9.2.1 Problem Formulation

Denote the state of the robot of interest as xR ∈ Rn and the robot’s control input as
uR ∈ Rm where n,m ∈ N . Assume the robot dynamics is affine1 , i.e.

ẋR = f(xR) + h(xR)uR. (9.1)

The task or the goal for the robot is denoted as GR, which can be 1) a settle point
in the Cartesian space (e.g. a workpiece the robot needs to get), 2) a settle point in the
configuration space (e.g. a posture), 3) a path in the Cartesian space or 4) a trajectory in
the configuration space.

The robot should fulfill the aforementioned tasks safely. Let xH be the state of humans
and other moving robots in the system, which are indexed as H = {1, 2, · · · , N}. Then
the system state is x = [xTR, x

T
H]T . Denote the collision free state space as XS, e.g. XS =

{x : d(xH , xR) > 0} where d measures the minimum distance among the robot, the humans
and all other moving robots. Given the human configuration, the constraint on the robot’s
state space RS(xH) is a projection of XS, e.g. RS(xH) = {xR : [xTR, x

T
H]T ∈ XS}, which

is time varying with xH . Hence, two steps are needed to safely control the robot motion:

1Any system can have an affine form through dynamic extension. Suppose ẋR = F (xR, uR). Define
xeR = [xTR, u

T
R]T . Let the new control input be ueR = u̇R. Then the new system

ẋeR =

[
F (xeR)

0

]
+

[
0
1

]
ueR,

is affine.

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 140

1) predicting the human motion; and 2) finding the safe region for the robot based on the
prediction.

9.2.2 The Optimization Problem

The requirement of the co-robot is to finish the tasks GR efficiently while staying in
the safe region RS(xH), which leads to the following optimization problem [34]:

min
uR

J(xR, uR, GR), (9.2a)

s.t. uR ∈ Ω, xR ∈ Γ, ẋR = f(xR) + h(xR)uR, (9.2b)

xR ∈ RS(xH), (9.2c)

where J is a goal related cost function to ensure efficiency, Ω is the constraint on control
inputs, Γ is the state space constraint (e.g. joint limits, stationary obstacles). The problem
is hard to solve since the safety constraint RS(xH) is nonlinear, non-convex and time varying
with unknown dynamics.

There are numerical methods in solving non-convex optimizations, e.g. sequential convex
optimization [123], A* search [127] and Monte-Carlo based rapidly-exploring random trees
(RRT) method [66]. However, the computation loads are too high for online applications on
industrial co-robots. On the other hand, analytical methods such as potential field methods
[108] and sliding mode methods [45] have low computation loads. But they generally do not
emphasize optimality. Moreover, the motion patterns of human subjects (or other intelligent
robots) are much more complicated than those of general obstacles due to interactions, e.g.
xH may be a function of xR. In Chapter 4, a safe set algorithm (SSA) was discussed to
identify the dependency of xH on xR online and regulate the control input of the robot in
a supervisory loop so as for the system state to stay in the safe set XS. A safe exploration
algorithm (SEA) was built upon SSA to reflect the uncertainties in the prediction of xH in
robot motion control. These two methods will be generalized and a modularized controller
architecture that can handle 3D interactions will be proposed in the next section.

9.3 Algorithmic Safety Measures: The Controller

Architecture

9.3.1 The Controller Architecture

The proposed controller will be designed as a parallel combination of a baseline controller
and a safety controller as shown in Fig.9.2. The baseline controller solves (9.2a-9.2b), which
is time-invariant and can be solved offline. The safety controller enforces the time varying
safety constraint (9.2c), which computes whether the baseline control signal is safe to execute
or not (in the “Safety Constraint” and the “Criteria” module) based on the predictions made
in the human motion predictor, and what the modification signal should be (in the “Control

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 141

Figure 9.2: The controller architecture.

Modification” module). Each module will be elaborated below. The expected outcome
of this controller structure is shown in Fig.4.3 on an AGV. In that scenario, the baseline
controller will command the AGV to go straight towards its goal. However, the human
motion predictor predicts that the human will go to the blue dot and he will be very likely
to show up in the gray area. Since the baseline trajectory is no longer in the safe region, the
safety controller generates a modified trajectory towards the goal and avoids the human.

9.3.2 The Baseline Controller

The baseline controller solves (9.2a-9.2b), which is similar to the controller in use when
the robot is working in the cage. The cost function is usually designed to be quadratic which
penalizes the error to the goal and the magnitude of the control input, e.g. when GR is a
trajectory, J =

∫ T
0

[(xR −GR)TP (xR −GR) + uTRRuR]dt where P and R are positive definite
matrices. The control policy can be obtained by solving the problem offline. The collision
avoidance algorithms discussed in Chapter 5 can be used to avoid stationary obstacles de-
scribed by the constraint xR ∈ Γ. This controller is included to ensure that the robot can
still perform the tasks properly when the safety constraint RS(xH) is satisfied.

9.3.3 The Human Model and the Human Motion Predictor

In different applications, human body should be represented at various levels of details.
For AGVs, mobile robots and planar arms, since the interactions with humans happen in
2D, a human can be tracked as a rigid body in the 2D plane with the state xH being the
position and velocity of the center of mass and the rotation around it. For robot arms that
interact with humans in 3D, the choice of the human model depends on his distance to the
robot. When the robot arm and the human are far apart, the human should also be treated
as one rigid body to simplify the computation. In the close proximity, however, the human’s
limb movements should be considered. As shown in Fig.9.3a, the human is modeled as a

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 142

(a) The human model (b) The distance between capsules

Figure 9.3: The human model and the capsules.

connection of ten rigid parts: part 1 is the head; part 2 is the trunk; part 3, 4, 5 and 6 are
upper limbs; and part 7, 8, 9 and 10 are lower limbs. The joint positions can be tracked
using 3D sensors [125]. The human’s state xH can be described by a combination of the
states of all rigid parts.

The prediction of future human motion xH needs to be done in two steps: inference of
the human’s goal GH and prediction of the trajectory to the goal. Once the goal is identified
(using the method of model selection discussed in Chapter 3), a linearized reaction model
can be assumed for trajectory prediction [154], e.g.

ẋH = AxH +B1GH +B2xR + wH , (9.3)

where wH is the noise, A,B1 and B2 are unknown matrix parameters which encode the
dependence of future human motion on his current posture, his goal and the robot motion.
Those parameters can be identified using parameter identification algorithms discussed in
Chapter 3.3, while the prediction can be made using the identified parameters. Note that
to account for human’s time varying behaviors, the parameters should be identified online.
This method is based on the assumption that human does not ‘change’ very fast. Moreover,
to reduce the number of unknown parameters, key features that affect human motion can
be identified through offline analysis of human behavior. Those low dimension features
{fi} can be used in the model (9.3) to replace the high dimension states xH and xR, e.g.
ẋH =

∑
i aifi +B1GH + wH .

9.3.4 The Safety Controller

The Safety Index The safe set XS is a collision free subspace in the system’s state
space, which depends on the relative distance among humans and robots. Since humans and
robots have complicated geometric features, simple geometric representations are needed for
efficient online distance calculation. Ellipsoids [139] were used previously. However, it’s hard
to obtain the distance between two ellipsoids analytically. To reduce the computation load,

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 143

capsules (or spherocylinders) [97], which consists of a cylinder body and two hemisphere
ends, are introduced to bound the geometric figures as shown in Fig.9.3a, Fig.9.4b and in
Fig.9.6b. A sphere is considered as a generalized capsule with the length of the cylinder
being zero. The distance between two capsules can be calculated analytically, which equals
to the distance between their center lines minus their radiuses as shown in Fig.9.3b. In the
case of a sphere, the center line reduces to a point. In this way, the relative distance among
complicated geometric objects can be calculated just using several skeletons and points. The
skeleton representation is also ideal for tracking the human motion.

Given the capsules, the design of XS is mainly the design of the required minimum
distances among the capsules. The design should not be too conservative, while larger buffer
volumes are needed to bound critical body parts such as the head and the trunk, as shown
in Fig.9.3a. The safe set in the 3D interactions can be designed as:

XS = {x :
d(pij, xR)

dij,min
> 1,∀i = 1, · · · , 10,∀j ∈ H}, (9.4)

where d(pij, xR) measures the minimum distance from the capsule of body part i on the
human (or the robot) j to the capsules of the robot R. dij,min ∈ R+ is the designed minimum
safe distance. d1j,min should be large since the head is most vulnerable.

To describe the safe set XS efficiently, a safety index φ is introduced, which is a Lyapunov-
like function over the system’s state space as illustrated in Fig.4.4 that satisfies the three
conditions discussed in Chapter 4.2. The safety index for the safe set in (9.4) is designed as:

φ = 1 + γ − (d∗)c − k1ḋ
∗ − · · · − kl−1(d∗)(l−1), (9.5)

where d∗ =
d(pi∗j∗ ,xR)

di∗j∗,min
and the capsule i∗ on the human (or the robot) j∗ is the capsule that

contains the closest point (the critical point) to the robot R . l ∈ N is the relative degree
from the function d(·, xR) to uR in the Lie derivative sense. In most applications, l = 2 since
the robot’s control input can affect joint acceleration. c > 1 is a tunable parameter, while
larger c means heavier penalties on small relative distance. γ > 0 is a safety margin that can
uniformly enlarge the capsules in Fig.9.3a. k1, · · · , kl−1 are tunable parameters that need to
satisfy the condition that all roots of 1 + k1s+ · · ·+ kl−1s

l−1 = 0 should be on the negative
real axis in the complex plane. The higher order terms of d∗ are included to make sure that
the robot does not approach the boundary of the safe set in a large velocity, so that the state
can always be maintained in the safe set even if there are constraints on the robot control
input, e.g. uR ∈ Ω.

The Criteria Given the safety index, the criteria module determines whether or not a
modification signal should be added to the baseline controller. There are two kinds of criteria:
(I) φ(t) ≥ 0, or (II) φ(t + ∆t) ≥ 0. The first criterion defines a reactive safety behavior,
i.e. the control signal is modified once the safety constraint is violated. The second criterion
defines a forward-looking safety behavior, i.e. the safety controller considers whether the

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 144

safety constraint will be violated ∆t time ahead. The prediction in the second criterion is
made upon the estimated human dynamics and the baseline control law. In the case when
the prediction of future xH has a distribution, the modification signal should be added when
the probability for criteria (II) to happen is non-trivial, e.g. P ({φ(t + ∆t) ≥ 0}) ≥ ε for
some ε ∈ (0, 1).

The Set of Safe Control and the Control Modification The set of safe control US
R

is the equivalent safety constraint on the control space, i.e. the set of control that can drive
the system state into the safe set as shown in Fig.4.4. According to (4.5-4.8), the set of safe
control when φ ≥ 0 is

US
R = {uR :

∂φ

∂xR
h(xR)uR ≤ −η −

∂φ

∂xR
f(xR)− ∂φ

∂xH
ẋH} (9.6)

where η ∈ R+ is a margin and ẋH comes from human motion predictor. When ẋH has
a distribution, let Π be the compact set that contains major probability mass of ẋH , e.g.
P ({ẋH ∈ Π}) ≥ 1− ε for a small ε. Then the inequality in (9.6) should hold for all ẋH ∈ Π.

The non-convex state space constraint RS(xH) is then transferred to a linear constraint
on the control space in (9.6). In this way, the modification signal is the optimal value to be
added to the baseline control law such that the final control lies in the set of safe control,

∆uR = arg minuoR+u∈US
R∩Ω∩UΓ

uTQu (9.7)

where Q ∈ Rm×m is positive definite which determines a metric on the robot’s control space.
To obtain optimality, Q should be close enough to the metric imposed by the cost function
J in (9.2a), e.g. Q ≈ d2J/du2

R where J is assumed to be convex in uR. UΓ is the equivalent
constraint on the control space of the state space constraint Γ, which can be constructed
following the same procedure of constructing US

R. Equation (9.7) is a convex optimization
problem and is easy to solve. In the case that US

R ∩Ω∩UΓ is empty, a smaller margin η can
be chosen so that the feasible control set becomes nonempty.

9.4 Case Studies

Case studies are performed to evaluate the safety measures on scenarios shown in Fig.9.1.
The cases for AGVs and mobile robots are studied in Chapter 4. In this chapter, the inter-
actions among robot arms and humans will be studied. The architecture of the evaluation
platform is discussed in Appendix A.3. The result with the evaluation platform in Appendix
A.4 can be found in [73].

9.4.1 Planar Robot Arm

The planar robot arm is shown in Fig.9.4a. Denote the joint angle as θ = [θ1, θ2]T . The
dynamic equation of the robot arm is M(θ)θ̈ + N(θ, θ̇) = τR where M(·) is the generalized

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 145

(a) The planar robot arm (b) The simulation environment

Figure 9.4: The planar robot arm and the simulation environment.

inertia matrix and N(·, ·) is the Coriolis and centrifugal forces [25]. Both functions depend
on the robot state xR = [θT , θ̇T]T . uR = τR is the torque input. The state space equation of
the planar robot is affine

ẋR =

[
θ̇

−M−1(θ)N(θ, θ̇)

]
+

[
0

M−1(θ)

]
uR. (9.8)

The simulation environment is shown in Fig.9.4b where the robot arm is wrapped in two
capsules. The vertical displacement of the robot arm is ignored. The human is shown as
a blue circle, which is controlled in real time by a human user through a multi-touch pad.
Both the human and the robot need to approach their respective goal points in minimum
time. New goals will be generated when the old one is approached.

The baseline controller is designed as a computed torque controller with settle point GR.
The safety index is designed as φ = D − d2 − ḋ, where d measures the minimum distance
between the human and the robot arm and D = d2

min(1 + γ). The sampling frequency is
20hz. Due to the limitation of bandwidth, both reactive and forward-looking criteria are
used, in order not to violate the safety constraints between two samples. The set of safe
control US

R(k) at time k is the intersection of the two sets: U1 = {uR(k) : φ̇(k) ≤ η when
φ(k) ≥ 0} and U2 = {uR(k) : φ(k+ 1) < 0}. The computation of U1 follows from (9.6). The
computation of U2 is similar and is discussed in details in [83]. The metric Q is chosen to be
M(θ), which puts larger penalties on the torque modification applied to heavier link, thus is
energy efficient.

The simulation result is shown in Fig.9.5. The first plot in Fig.9.5a shows the critical
point on the arm that is the closest to the human capsule. The orange area represents the
first link (y = 0 is the base) and yellow area represents the second link (y = 0.55m is the
endpoint). The second plot shows the distance from the robot endpoint to the robot’s goal
position. The third plot shows the relative distance d between the robot capsules and the
human capsule, while the red area represents the danger zone {d < dmin}. The bars in

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 146

20 40 60 80 100 120 140 160 180 200 220
0

0.5

m

Critical position on the link

20 40 60 80 100 120 140 160 180 200 220
0

0.2

0.4
Distance to the Goal

m

20 40 60 80 100 120 140 160 180 200 220
0

0.5

Relative distance d between the human and the robot

m

20 40 60 80 100 120 140 160 180 200 220
0

0.5

1
Safety Controller Activity

(a) The simulation profile.

(b) The snapshots at k = 110 : 5 : 140 (c) The snapshots at k = 160 : 5 : 220

Figure 9.5: The simulation result of the planar robot.

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 147

(a) The 3D simulation environment (b) The capsules

Figure 9.6: The 6DoF robot arm and the simulation environment.

the fourth plot illustrate whether the safety controller is active (green) or not (white) at
each time step. During the simulation, the robot was close to its goal at k = 55 and at
k = 110 before it finally approached it at k = 220. However, since the human was too
close to the robot in that two cases, going to the goal was dangerous. Then the safety
controller went active and the robot arm detoured to avoid the human. This scenario is
also illustrated in Fig.9.5b, the 5-times down-sampled snapshots from time step 110 to 140,
denote as k = 110 : 5 : 140. Lighter color corresponds to smaller k. Due to the safety
controller, the relative distance was always maintained above the danger zone. Figure 9.5c
shows the snapshots at k = 160 : 5 : 220. As the human was far from the robot arm, the
safety controller was inactive and the robot finally approached its goal.

9.4.2 Six Degree of Freedom Robot Arm

In this case study, the Fanuc M16iB robot arm is used as shown in Fig.1.1a and the
simulation environment is shown in Fig.9.6a. Capsules are calculated for both the human
and the robot as shown in Fig.9.6b. The radius of the capsules are designed such that one
uniform minimum distance requirement dmin = 0.2m can be used for all capsules. Denote
the robot state as xR = [θT , θ̇T]T where θ = [θ1, θ2, θ3, θ4, θ5, θ6]T are the joint angles. uR = θ̈
is the joint acceleration. The control modification is done in the kinematic level. A perfect
low level tracking controller is assumed. The state space equation of the robot arm is linear:

ẋR = AxR +BuR, (9.9)

where AR =

[
06×6 I6×6

06×6 06×6

]
and BR =

[
06×6

I6×6

]
.

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 148

GR is to follow a path in the Cartesian space. The baseline controller is a feedback and
feedforward controller. The human is moving around the robot arm. The safety index is the
same as in the previous case, e.g. φ = D−d2− ḋ, where d is computed analytically [35]. The
sampling frequency is 20hz. The forward-looking criteria is used. The set of safe control is
US
R(k) = {uR(k) : φ(k + 1) < 0}, and Q = I.

The simulation results are shown in Fig.9.7, Fig.9.8 and Fig.9.9. The first plot in Fig.9.7
shows the critical capsule ID on the robot arm that contains the closest point to the human
and the second plot shows the critical capsule ID on the human that contains the closest
point to the robot. During interactions, those critical points changed from time to time.
The minimum distance between the human and the robot is shown in the third figure, which
was maintained above the danger zone during the simulation. The tracking error is shown in
the fourth plot. When the human was far from the robot, perfect tracking can be achieved
from k = 100 to k = 200. When the human went close to the robot at k = 230, the
safety controller took over and moved the robot arm away from the human, at the cost of
large tracking error. The snapshots at k = 230 : 5 : 250 are shown in Fig.9.8. Another
human avoidance behavior at k = 310 : 10 : 350 is shown in Fig.9.9, with the solid spheres
representing the reference path at each time step. The robot stopped tracking the path that
moved towards the human by moving backward. In this simulation, the human subject can
only control the planar movement of the dummy. The simulation that captures human’s
whole body movement using Kinect is shown in the video attachment.

The algorithms are run in Matlab on a MacBook of 2.3 GHz using Intel Core i7. The
running time of the safety controller is shown in Table 9.1. The average running time of the
safety controller is 9.5ms, which is dominated by the time in finding the critical points, e.g.
calculating the minimum distance between the robot and the human. This is because finding
the critical points involves 6×10 distance calculations between capsules. If only the first three
joints of the robot arm are considered, e.g. only three robot capsules are used in calculation,
the running time is reduced to 5.5ms. If the number of human capsules is reduced to two,
the running time for the safety controller is reduced to 2.7ms. Moreover, the running time
of the safety controller is only 0.77ms if the human geometry is represented using spheres.
However, the spheres cannot describe the geometry as accurate as the capsules do and may
be too conservative. In conclusion, current algorithms can support at least 100Hz sampling
frequency and the computation time can be further reduced if faster algorithms are developed
for distance calculation. The video of this study can be found in [74].

9.5 Discussion and Conclusion

This chapter discussed the algorithmic safety measures for industrial robots working in
a human-involved environment. The control problem was posed as a constrained optimal
control problem and a unique parallel controller structure was proposed to solve the problem.
The control problem was separated into two parts: the efficiency goal with time-invariant
constraints and the time-varying safety constraint. The first part was solved by the baseline

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 149

Table 9.1: Running time of the safety controller.

Robot arm: degree of
freedom

Human model
Running time of the

safety controller
Running time in finding

critical points
6 DoF 10 capsules 9.5ms 8.8ms

3 DoF 10 capsules 5.5ms 5.0ms

6 DoF 2 capsules 2.7ms 2.0ms

3 DoF 10 spheres 0.77ms 0.40ms

Figure 9.7: The simulation profile of the 6DoF robot arm

controller and the safety constraint was enforced by the safety controller. This separation is
ideal due to the following reasons:

• There is no need to solve the original problem in a long time horizon, since the un-
certainties of the human motion will accumulate. And the safety constraint RS(xH) is
only active in a small amount of time as evidenced in the simulations. The separation
respects different natures of the constraints, by allowing the baseline controller to do
long term planning without the time varying constraint and letting the safety controller
to do local modification regarding the time varying constraint.

• This separation can also be validated by analytically solving the optimal control prob-
lem. Suppose GR = {xR = 0} and J =

∫ T
0

(xTRPxR + uTRRuR)dt. Let Ω,Γ be the whole

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 150

(a) The lateral view (b) The top view

Figure 9.8: The simulated response of the 6DoF robot arm: scenario 1

space and RS(xH) = {xR : φ(xR, xH) < 0}. Assume h(xR) = B. Then the Lagrangian
[54] of the optimal control problem (9.2a-9.2c) is

L = xTRPxR + uTRRuR + λ(f(xR) +BuR) + ηφ̇, (9.10)

where λ, η are adjoint variables and η = 0 if φ < 0. The partial derivatives from L to
uR is Lu = 2(RuR)T + λB + ηφxRB. Setting Lu = 0, the optimal control law becomes

uR = −1

2
R−1BTλT − 1

2
ηR−1BTφTxR , (9.11)

where the first term on the RHS is not related to the safety constraint, which can
be viewed as the baseline control law; the second term is concerned with the safety
constraint, which is nontrivial only if φ ≥ 0, e.g. the safety constraint is violated.
Nonetheless, the optimality of this separation will be studied for more complicated
problems in the future.

Moreover, the separation offers more freedom in designing the robot behavior and is good
for parallel computation.

In conclusion, the controller design procedure is:

1. Design the baseline controller that can handle the goal and the time invariant con-
straints.

2. Wrap every moving rigid body with a capsule to simplify the geometry.

3. Design the safe set XS which specifies the required distance among capsules.

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 151

(a) The lateral view

(b) The left view

Figure 9.9: The simulated response of the 6DoF robot arm: scenario 2

4. Design the safety index φ based on the safe set XS and the robot dynamics.

5. Choose the control modification criteria and design the control modification metric Q.

6. Design the human motion predictor.

To fully realize the scenario in Fig.9.1, more aspects in the controller design needs to
be investigated. For example, as the number of agents in the system increases, the non-
convexity of the problem will increase. Methods to avoid local optima need to be developed.

CHAPTER 9. THE ROBOT SAFE INTERACTION SYSTEM (RSIS) 152

Moreover, the safe control method for human-robot cooperation that involves contacts also
needs to be studied.

Nonetheless, the controller structure proposed is of importance as it is a method to handle
constraints of different natures and to deal with multiple objectives, whose effectiveness is
demonstrated both in simulation and in analysis.

153

Chapter 10

Final Words

In this dissertation, we explored the methods to design the robot behavior toward safe and
efficient human-robot interactions in various scenarios. A three component behavior system
was proposed, which consisted of knowledge, logic and learning. The design of the knowledge,
especially the internal cost, was discussed with respect to specific applications in Chapter 8
and Chapter 9. The design of the logic in terms of motion planning was discussed in Chapter
4 and Chapter 5. To equip the robot with a global perspective and ensure timely responses
in emergencies, we developed a parallel planning and control architecture, which consisted of
an efficiency-oriented long term planner and a safety-oriented short term planner. Chapter
6 discussed the solvers to speed up the computation in the long term motion planning. The
design of the learning process was discussed in Chapter 3, where the humans’ behaviors
were identified and predicted. The overall architecture for behavior design as well as the
multi-agent model for the human-robot system were discussed in Chapter 2. The method to
evaluate the performance of the multi-agent system given the design behavior was discussed
in Chapter 7.

There are many directions for future work, which are listed below.

• To account for diverse modes of interactions

This dissertation focus on parallel human-robot relationship. In the future, hierarchi-
cal human-robot relationships will be explored, especially the interaction between a
human driver and an driver-assistive system and the interaction between a human and
a human-assistive device such as exoskeleton. How to increase the “transparency” of
such robots to make them understandable to human users is still challenging.

• To consider communication among agents

Action of an agent may have various purposes, which can be divided into two categories,
target action and communicative action. Target action is directed toward task perfor-
mance. Communicative action is to inform others one’s intention so that the task can
be performed smoothly, which contributes to task performance indirectly. For exam-
ple, in a lane change maneuver, an automated vehicle would switch on the turn signal

CHAPTER 10. FINAL WORDS 154

and turn the steering wheel. The wheel motion is a target action and the turn signal
light is a communicative action. This dissertation focused on target action achieved
by physical movement. However, physical movement can also be communicative as
it reveals one’s intention to observers. In [32], such motion is called legible motion.
Communicative motion will be explicitly incorporated into the design in the future. In
addition, it will also be beneficial to explore the effect of facial expression [101] and
spoken language [31] during interactions. On the other hand, with the development
of dedicated short range communication (DSRC) technology [60], vehicles are able to
perform vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication.
Such communication will significantly change the interactions among vehicles. For ex-
ample, if vehicles can directly exchange information about their intended behaviors,
the difficulty of predicting other vehicles’ trajectories (as discussed in Chapter 3 and
Chapter 8) would be greatly reduced. A method to incorporate the communicated
information into motion planning is discussed in [88]. In the future, the effect of direct
communication among agents will be considered.

• To improve computation efficiency

Computation efficiency of the designed algorithms is extremely important. In this
dissertation, we developed algorithms to speed up the computation of non-convex op-
timization problems that had convex objectives and satisfied several geometric proper-
ties. However, the assumptions narrowed the scope of the proposed algorithms, hence
should be relaxed in the future. In addition to algorithm innovation, another approach
to improve computation efficiency is to solidify the software into hardware. For ex-
ample, we can directly build the functions that will be frequently called, such as the
non-convex optimization, into the hardware. The possibility will be explored in the
future.

• Analysis, synthesis and evaluation of complex human-robot systems

The analysis of complex human-robot systems remains challenging. We discussed one
tool (e.g. the trapped equilibrium) to analyze the quadratic games under informa-
tion asymmetry in this dissertation. However, methods to analyze more complicated
dynamics are needed. Such methods should also provide a way to compare against
different designs.

With the development of technology, it may no longer be a fantasy to have intelligent and
autonomous robots that think, behave and interact with the world in the way that human
beings do, so that they can better serve, assist and collaborate with people in their daily
lives across work, home and leisure.

155

Appendix A

Evaluation Platforms

A.1 Overview

To evaluate the performance of the designed behavior system, pure simulation is not
enough. However, to protect human subjects, it is desirable if we can separate human
subjects and robot physically during the early phase of deployment. In this chapter, we
discuss possible evaluation platforms and the platforms we developed to evaluate the designed
behavior system. Figure A.1 shows five different evaluation platforms.

The first platform is the virtual reality-based human-in-the-loop platform. The robot’s
motion is simulated in the robot simulator. A human subject observes the robot movement
through the virtual reality display (e.g. virtual reality glasses, augmented reality glasses
or monitors). The reaction of the human subject is captured by sensors (e.g. Kinect or
touchpad). The sensor data then sent to the behavior system for compute desired control
input. The advantage of such platform is that it is safe to human subjects and convenient
for idea testing. The disadvantage is that the robot simulator may neglect dynamic details
of the physical robot, hence not reliable.

The second platform is the virtual reality-based hardware-in-the-loop platform. The only
difference from the first platform is that the robot motion is no longer simulated, but directly
measured from the robot hardware. This solves the problem of the mis-match problem that
the robot simulator may have. However, as the interaction happens virtually, the human
subjects may not react in the way that they will do with real robots.

The third platform is the dummy-robot interaction platform. The interaction happens
physically between the dummy and the robot. The human directly observes the robot motion
and controls the dummy to interact with the robot. As there are physical interactions, an
emergency check module should be added to ensure safety. The advantage of such platform
is that it is safe to human subjects, while it is able to test interactions physically. However,
the disadvantage is that the dummy usually doesn’t have as many degrees of freedom as a
human subject does.

The fourth platform is the robot-robot interaction platform. Each robot is regarding

APPENDIX A. EVALUATION PLATFORMS 156

the other as “human”. In general, such platform allows us to inquiry whether the designed
behavior system can cope with intelligent entities other than human. Moreover, it can also
tell us whether the multi-agent system consists of those intelligent robots are stable or not.

The fifth platform is the human-robot interaction platform where human subjects directly
interact with robots. Such platform should be designed to illustrate the performance of the
robot in real tasks.

In this dissertation, we focus on platform one and platform three. Section A.2 introduces a
multi-vehicle human-in-the-loop platform, which is used in Chapter 8. Section A.3 introduces
a human-in-the-loop simulation platform for industrial robots, which is used in Chapter 9.
Section A.4 introduces a dummy-robot interaction platform for industrial robots. The videos
with those platforms can be found in [73–75].

A.2 A Multi-Vehicle Human-in-the-Loop Simulation

Platform

To ensure safety, a simulation environment is needed in order to evaluate the algorithms
before the road test. Existing vehicle and traffic simulators often suffer from imbalanced
coverage of macro traffic dynamics and micro vehicle dynamics, e.g. some either contain
only high level decision making and omit the realistic vehicle dynamics, others involve too
many details of the low-level vehicle control and dynamics and omit the high-level decision
making and traffic. In order to simulate the real-world driving scenarios, a multi-vehicle
simulator is needed to consider both interactions between vehicles, and the dynamic details
of every single vehicle. For this purpose, we developed an object-oriented simulator. A physic
engine (bullet) is embedded in the simulator to simulate the real-world physical phenomenon
(e.g. collision, friction, and gravity) as well as the vehicle dynamics to make it realistic. The
simulator consists of four modules: environment, sensor, agent and vehicle, as an analogy of
real-world driving, where each human driver is considered as an agent, who uses his sensors
(e.g. eyes) to get information (e.g. distance from the front vehicle) from the environment,
provides control inputs (e.g. turning the steering wheel) to move the vehicle so as to influence
the environment.

In the simulator shown in Fig.A.2, multiple vehicles are running in the environment and
are interacting with the environment (e.g. friction and contact with the road, collision with
surrounding vehicles). The environment contains road map and all road participants. Each
road participant has its own dynamics and is associated with an agent which controls the
motion of the road participant. The agent may be software-controlled (e.g. agents that
run the ROAD system autonomously) or human-controlled (e.g. agents that read human
commands from input devices such as a wheel or a keyboard). Each software agent is
associated with a sensor through which it can acquire information from the environment.
For now, the sensors can access a noisy measurement of the positions and velocities of the
ego vehicle and the surrounding vehicles. In the future, we will add more realistic sensor

APPENDIX A. EVALUATION PLATFORMS 157

(a) Virtual reality-based human-in-the-loop platform.

(b) Virtual reality-based hardware-in-the-loop platform.

(c) Dummy-robot interaction platform.

(d) Robot-robot interaction platform.

(e) Human-robot interaction platform.

Figure A.1: The evaluation platforms.

APPENDIX A. EVALUATION PLATFORMS 158

Figure A.2: A multi-vehicle platform to evaluate autonomous driving

models to simulate Lidar, radar and camera. Using the sensor data, the software agent for a
vehicle then makes the driving decisions and sends out the steering, throttle and brake signals
to the vehicle. Other than ROAD system, we developed various classes of software agents
representing different driving characteristics in order to mimic the real-world scenarios. On
the other hand, a human agent observes the current configuration of the virtual environment
through a visual display and controls the assigned road participant using input devices.

The trajectories of vehicles or pedestrians controlled by human agents are recorded in
every simulation, which serve as the data source during offline learning in layer 2. During of-
fline learning, the trajectories are labelled manually regarding the intended driving behavior
at each time step. Then the classifier for behavior prediction and the empirical models for
trajectory prediction under different driving behaviors are learned from the labelled data.
The human subjects are volunteers, who also participate in the evaluation process of the
ROAD system during simulation. For different driving scenarios, e.g. freeway driving or
urban driving, different classifiers need to be trained as the types of road participants and
their behaviors in those scenarios differ. Note that discrepancies exist between the trajecto-

APPENDIX A. EVALUATION PLATFORMS 159

(a) The software architecture. (b) The human-in-the-loop simulation.

Figure A.3: The human-in-the-loop simulation platform for industrial robots.

ries of road participants controlled by human agents in the simulation and the trajectories
of manually driven vehicles (or pedestrians) in the real world, since the human subjects may
behave differently in virtual reality and in reality.

A.3 A Human-in-the-loop Simulation Platform for

Industrial Robots

The platform is shown in Fig.A.3, which consists of the human loop, the robot loop and
the environment. The human subject is in the human loop, who can observe the virtual
environment through the screen and whose reaction will be captured by the Kinect. The
human animator reads the tracking data from the sensors and sends the human figure to
the environment for display. In the robot loop, the robot animator reads the noisy human
data from the environment, computes the safe and efficient trajectory and then sends the
real time robot figure to the environment.

The human skeleton data can be stored for offline analysis in order to let the robot build
better cognitive models.

A.4 A Dummy-Robot Platform for Industrial Robots

The platform is shown in Fig.A.4. This platform is for a pick-and-place task. We have
a 6 DOF industrial robot arm, a kinect for environment monitoring, a workpiece, a target
box and an obstacle. The environment perceived by the robot is visualized in a screen. The
status of the robot is shown in the monitor. The robot needs to pick the workpiece and place
it in the target box while avoiding the dynamic obstacle. The scenario can be viewed as
an abstraction of the human-robot collaborative assembly we discussed before. The human

APPENDIX A. EVALUATION PLATFORMS 160

(a)

(b)

Figure A.4: The dummy-robot platform for industrial robots

hand that accept the tool is similar to the green target box. The other human hand is similar
to the obstacle. Hence the target box and the obstacle can be considered as dummies. The
human subjects can control the position of the obstacle at a distance to the robot arm as
shown in Fig.A.4b.

161

Bibliography

[1] P. Abbeel and A. Y. Ng. “Apprenticeship learning via inverse reinforcement learning”.
In: Proceedings of the International Conference on Machine learning (ICML). 2004,
p. 1.

[2] B. Açıkmeşe, J. M. Carson, and L. Blackmore. “Lossless convexification of nonconvex
control bound and pointing constraints of the soft landing optimal control problem”.
In: IEEE Transactions on Control Systems Technology 21.6 (2013), pp. 2104–2113.

[3] N. Aharony et al. “Social fMRI: Investigating and shaping social mechanisms in the
real world”. In: Pervasive and Mobile Computing 7.6 (2011), pp. 643–659.

[4] B. Akgun et al. “Trajectories and keyframes for kinesthetic teaching: A human-robot
interaction perspective”. In: Proceedings of the ACM/IEEE International Conference
on Human-Robot Interaction. 2012, pp. 391–398.

[5] T. M. Anandan. Major Robot OEMs Fast-Tracking Cobots. 2014. url: http://www.
robotics.org/.

[6] T. Arai, R. Kato, and M. Fujita. “Assessment of operator stress induced by robot
collaboration in assembly”. In: CIRP Annals-Manufacturing Technology 59.1 (2010),
pp. 5–8.

[7] B. D. Argall et al. “A survey of robot learning from demonstration”. In: Robotics and
Autonomous Systems 57.5 (2009), pp. 469–483.

[8] J. Bae and M. Tomizuka. “Gait phase analysis based on a Hidden Markov Model”.
In: IEEE/ASME Transactions on Mechatronics 21.6 (2011), pp. 961–970.

[9] L. Bainbridge. “Ironies of automation”. In: Automatica 19.6 (1983), pp. 775–779.

[10] A. Bandura. “Social cognitive theory: An agentic perspective”. In: Annual review of
psychology 52.1 (2001), pp. 1–26.

[11] T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory. Vol. 200. London:
Academic Press, 1995.

[12] Baxter from Rethink Robotics. url: http://www.rethinkrobotics.com/products/
baxter/.

[13] G. A. Bekey. Autonomous Robots: From Biological Inspiration to Implementation and
Control. MIT press, 2005.

BIBLIOGRAPHY 162

[14] J. van den Berg. “Extended LQR: locally-optimal feedback control for systems with
non-linear dynamics and non-quadratic cost”. In: Robotics Research. Springer, 2016,
pp. 39–56.

[15] C. R. Berger and R. J. Calabrese. “Some explorations in initial interaction and be-
yond: Toward a developmental theory of interpersonal communication”. In: Human
Communication Research 1.2 (1975), pp. 99–112.

[16] D. Bertsimas, V. Gupta, and I. C. Paschalidis. “Data-driven estimation in equilibrium
using inverse optimization”. In: Mathematical Programming (2014), pp. 1–39.

[17] P. T. Boggs and J. W. Tolle. “Sequential quadratic programming”. In: Acta numerica
4 (1995), pp. 1–51.

[18] P. V. K. Borges, N. Conci, and A. Cavallaro. “Video-based human behavior un-
derstanding: a survey”. In: IEEE Transactions on Circuits and Systems for Video
Technology 23.11 (2013), pp. 1993–2008.

[19] S. Bouchard. “With Two Arms and a Smile, Pi4 Workerbot Is One Happy Factory
Bot”. In: IEEE Spectrum (2011).

[20] C. Breazeal. “Social interactions in HRI: the robot view”. In: IEEE Transactions
on Systems, Man, and Cybernetics-Part C: Applications and Reviews 34.2 (2004),
pp. 181–186.

[21] L. D. Burns. “Sustainable mobility: a vision of our transport future”. In: Nature
497.7448 (2013), pp. 181–182.

[22] R. H. Byrd, J. Nocedal, and R. A. Waltz. “Knitro: An Integrated Package for Non-
linear Optimization”. In: Large-Scale Nonlinear Optimization. Ed. by G. Di Pillo and
M. Roma. Boston, MA: Springer US, 2006, pp. 35–59.

[23] O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models. Springer
Science & Business Media, 2006.

[24] G. Charalambous. “Human-automation collaboration in manufacturing: Identifying
key implementation factors”. In: Proceedings of the International Conference on Er-
gonomics & Human Factors. CRC Press, 2013, p. 59.

[25] H. Cheng. “Vision and Inertial Sensor Based Drive Trains Control”. PhD thesis.
University of California at Berkeley, 2010.

[26] R. Chipalkatty et al. “Human-in-the-loop: MPC for shared control of a quadruped res-
cue robot”. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2011, pp. 4556–4561.

[27] F. H. Clarke. “Generalized gradients and applications”. In: Transactions of the Amer-
ican Mathematical Society 205 (1975), pp. 247–262.

[28] K. Dautenhahn. “Robots we like to live with?!– A developmental perspective on a
personalized, life-long robot companion”. In: Proceedings of the IEEE International
Workshop on Robot and Human Interactive Communication. 2004, pp. 17–22.

BIBLIOGRAPHY 163

[29] K. Dautenhahn. “Socially intelligent robots: Dimensions of human–robot interaction”.
In: Philosophical Transactions of the Royal Society B: Biological Sciences 362.1480
(2007), pp. 679–704.

[30] M. B. Dias et al. “Sliding autonomy for peer-to-peer human-robot teams”. In: Pro-
ceedings of the Intelligent Conference on Intelligent Autonomous Systems (IAS). 2008,
pp. 332–341.

[31] F. Doshi and N. Roy. “Spoken language interaction with model uncertainty: an adap-
tive human–robot interaction system”. In: Connection Science 20.4 (2008), pp. 299–
318.

[32] A. Dragan. “Legible Robot Motion Planning”. PhD thesis. Carnegie Mellon Univer-
sity, 2015.

[33] Driverless car market watch. 2015. url: http://www.driverless-future.com.

[34] N. E. Du Toit and J. W. Burdick. “Robot motion planning in dynamic, uncertain
environments”. In: IEEE Transactions on Robotics 28.1 (2012), pp. 101–115.

[35] D. Eberly. Robust Computation of Distance Between Line Segments. 2015.

[36] G. Eichfelder and J. Povh. “On the set-semidefinite representation of nonconvex
quadratic programs over arbitrary feasible sets”. In: Optimization Letters 7.6 (2013),
pp. 1373–1386.

[37] G. B. Folland. Real Analysis: Modern Techniques and Their Applications. John Wiley
& Sons, 2013.

[38] T. Fong, I. Nourbakhsh, and K. Dautenhahn. “A survey of socially interactive robots”.
In: Robotics and Autonomous Systems 42.3 (2003), pp. 143–166.

[39] K. Fragkiadaki et al. “Recurrent network models for human dynamics”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV). 2015,
pp. 4346–4354.

[40] A. Franchi et al. “Bilateral teleoperation of groups of mobile robots with time-varying
topology”. In: IEEE Transactions on Robotics 28.5 (2012), pp. 1019–1033.

[41] M. Golub, S. Chase, and M. Y. Byron. “Learning an internal dynamics model from
control demonstration”. In: Proceedings of the International Conference on Machine
Learning (ICML). 2013, pp. 606–614.

[42] D. González et al. “A Review of Motion Planning Techniques for Automated Ve-
hicles”. In: IEEE Transactions on Intelligent Transportation Systems 17.4 (2016),
pp. 1135–1145.

[43] M. A. Goodrich and A. C. Schultz. “Human-robot interaction: A survey”. In: Foun-
dations and Trends in Human-Computer Interaction 1.3 (2007), pp. 203–275.

[44] G. C. Goodwin and K. S. Sin. Adaptive Filtering Prediction and Control. Courier
Dover Publications, 2013.

BIBLIOGRAPHY 164

[45] L. Gracia, F. Garelli, and A. Sala. “Reactive siding-mode algorithm for collision avoid-
ance in robotic systems”. In: IEEE Transactions on Control Systems Technology 21.6
(2013), pp. 2391–2399.

[46] E. Gribovskaya, A. Kheddar, and A. Billard. “Motion learning and adaptive impedance
for robot control during physical interaction with humans”. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). 2011, pp. 4326–
4332.

[47] T. Gu, J. M. Dolan, and J.-W. Lee. “Runtime-bounded tunable motion planning for
autonomous driving”. In: Proceedings of the IEEE Intelligent Vehicles Symposium
(IV). 2016, pp. 1301–1306.

[48] T. Gu et al. “Tunable and stable real-time trajectory planning for urban autonomous
driving”. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2015, pp. 250–256.

[49] S. Haddadin et al. “Collision detection and reaction: A contribution to safe physical
human-robot interaction”. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2008, pp. 3356–3363.

[50] S. Haddadin et al. “New insights concerning intrinsic joint elasticity for safety”. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2010, pp. 2181–2187.

[51] S. Haddadin et al. “Towards the robotic co-worker”. In: Robotics Research. Vol. 70.
Springer Berlin Heidelberg, 2011, pp. 261–282.

[52] C. Harper and G. Virk. “Towards the development of international safety standards
for human robot interaction”. In: International Journal of Social Robotics 2.3 (2010),
pp. 229–234.

[53] M. W. Harris and B. Açıkmeşe. “Lossless convexification of non-convex optimal
control problems for state constrained linear systems”. In: Automatica 50.9 (2014),
pp. 2304–2311.

[54] R. F. Hartl, S. P. Sethi, and R. G. Vickson. “A survey of the maximum principles
for optimal control problems with state constraints”. In: SIAM Review 37.2 (1995),
pp. 181–218.

[55] G. Hirzinger et al. “On a new generation of torque controlled light-weight robots”.
In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). Vol. 4. 2001, pp. 3356–3363.

[56] R. Hof. “Toyota: ‘Guardian Angel’ cars will beat self-driving cars”. In: Forbes (2016).

[57] T. M. Howard, C. J. Green, and A. Kelly. “Receding horizon model-predictive control
for mobile robot navigation of intricate paths”. In: Field and Service Robotics. 2010,
pp. 69–78.

BIBLIOGRAPHY 165

[58] T. A. Johansen, T. I. Fossen, and S. P. Berge. “Constrained nonlinear control alloca-
tion with singularity avoidance using sequential quadratic programming”. In: IEEE
Transactions on Control Systems Technology 12.1 (2004), pp. 211–216.

[59] Kawada’s NextAge Robot. 2011. url: http://nextage.kawada.jp/en/.

[60] J. Kenney. “Dedicated Short-Range Communications (DSRC) Standards in the United
States”. In: Proceedings of the IEEE 99.7 (July 2011), pp. 1162–1182. issn: 0018-9219.
doi: 10.1109/JPROC.2011.2132790.

[61] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile robots”. In:
The International Journal of Robotics Research 5.1 (1986), pp. 90–98.

[62] R. Koeppe et al. “Robot-robot and human-robot cooperation in commercial robotics
applications”. In: Robotics Research (2005), pp. 202–216.

[63] K. Kong, J. Bae, and M. Tomizuka. “Control of rotary series elastic actuator for ideal
force-mode actuation in human–robot interaction applications”. In: IEEE/ASME
Transactions on Mechatronics 14.1 (2009), pp. 105–118.

[64] J. Krüger, T. K. Lien, and A. Verl. “Cooperation of human and machines in assembly
lines”. In: CIRP Annals-Manufacturing Technology 58.2 (2009), pp. 628–646.

[65] A. Kuefler et al. “Imitating Driver Behavior with Generative Adversarial Networks”.
In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). 2017.

[66] J. J. Kuffner and S. M. LaValle. “RRT-connect: An efficient approach to single-query
path planning”. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA). Vol. 2. 2000, pp. 995–1001.

[67] I. D. Landau, R. Lozano, and M. M’Saad. Adaptive control. Vol. 51. Springer, 1998.

[68] S. M. LaValle and J. J. Kuffner Jr. “Rapidly-exploring random trees: Progress and
prospects”. In: Algorithmic and Computational Robotics: New Directions. 2000, pp. 293–
308.

[69] J. Leber. At Volkswagen, Robots Are Coming Out Of Their Cages. 2013. url: http:
//www.fastcoexist.com/.

[70] I. Lee, E. Kim, and E. M. Marcotte. “Modes of interaction between individuals dom-
inate the topologies of real world networks”. In: PLOS ONE 10.3 (2015), pp. 1–12.

[71] X. Li et al. “A practical trajectory planning framework for autonomous ground vehi-
cles driving in urban environments”. In: Proceedings of the IEEE Intelligent Vehicles
Symposium (IV). 2015, pp. 1160–1166.

[72] M. L. Littman. “Markov games as a framework for multi-agent reinforcement learn-
ing”. In: Proceedings of the International Conference on Machine Learning (ICML).
Vol. 157. 1994, pp. 157–163.

[73] C. Liu. Real Time Robot Motion Planning in Dynamic Uncertain Environment. url:
https://youtu.be/o2X1Wsd046g.

BIBLIOGRAPHY 166

[74] C. Liu. Robot Safe Interaction System - Safe Human Robot Co-inhabitance. url:
https://youtu.be/GHd9hgpKIjQ.

[75] C. Liu. Robustly-Safe Automated Driving (ROAD) System - Freeway Driving in Mixed
Traffic. url: https://youtu.be/e3EUHDAeTKs.

[76] C. Liu, C.-Y. Lin, and M. Tomizuka. “The convex feasible set algorithm for real time
optimization in motion planning”. In: SIAM Journal on Control and Optimization
arXiv:1709.00627 (2017), under review.

[77] C. Liu and M. Tomizuka. “Algorithmic safety measures for intelligent industrial co-
robots”. In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA). 2016, pp. 3095–3102.

[78] C. Liu and M. Tomizuka. “Control in a safe set: Addressing safety in human robot
interactions”. In: Proceedings of the ASME Dynamic Systems and Control Conference
(DSCC). 2014, V003T42A003.

[79] C. Liu and M. Tomizuka. “Designing the robot behavior for safe human robot inter-
actions”. In: Trends in Control and Decision-Making for Human-Robot Collaboration
Systems. Springer, 2017, pp. 241–270.

[80] C. Liu and M. Tomizuka. “Enabling safe freeway driving for automated vehicles”. In:
Proceedings of the American Control Conference (ACC). 2016, pp. 3461–3467.

[81] C. Liu and M. Tomizuka. “Modeling and controller design of cooperative robots in
workspace sharing human-robot assembly teams”. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2014, pp. 1386–
1391.

[82] C. Liu and M. Tomizuka. “Real Time Trajectory Optimization for Nonlinear Robotic
Systems: Relaxation and Convexification”. In: System & Control Letters 108 (2017),
pp. 56–63.

[83] C. Liu and M. Tomizuka. “Safe exploration: Addressing various uncertainty levels
in human robot interactions”. In: Proceedings of the American Control Conference
(ACC). 2015, pp. 465–470.

[84] C. Liu and M. Tomizuka. “Who to blame? Learning and control strategies with in-
formation asymmetry”. In: Proceedings of the American Control Conference (ACC).
2016, pp. 4859–4864.

[85] C. Liu, Y. Wang, and M. Tomizuka. “Boundary layer heuristic for search-based non-
holonomic path planning in maze-like environments”. In: Proceedings of the IEEE
Intelligent Vehicles Symposium (IV). 2017, pp. 831–836.

[86] C. Liu, W. Zhan, and M. Tomizuka. “Speed profile planning in dynamic environ-
ments via temporal optimization”. In: Proceedings of the IEEE Intelligent Vehicles
Symposium (IV). 2017, pp. 154–159.

BIBLIOGRAPHY 167

[87] C. Liu et al. “Convex feasible set algorithm for constrained trajectory smoothing”.
In: Proceedings of the American Control Conference (ACC). 2017, pp. 4177–4182.

[88] C. Liu et al. “Distributed conflict resolution for connected autonomous vehicles”. In:
IEEE Transactions on Intelligent Vehicles (2017), under review.

[89] C. Liu et al. “The Robustly-Safe Automated Driving System for Enhanced Active
Safety”. In: SAE Technical Paper. 2017-01-1406. 2017.

[90] C. Liu et al. “Path planning for autonomous vehicles using model predictive control”.
In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). 2017, pp. 174–179.

[91] J. Liu. Autonomous Agents and Multi-Agent Systems: Explorations in Learning, Self-
Organization, and Adaptive Computation. World Scientific, 2001.

[92] X. Liu. “Autonomous trajectory planning by convex optimization”. PhD thesis. Iowa
State University, 2013.

[93] X. Liu and P. Lu. “Solving nonconvex optimal control problems by convex optimiza-
tion”. In: Journal of Guidance, Control, and Dynamics 37.3 (2014), pp. 750–765.

[94] L. Lu and J. T. Wen. “Human-robot cooperative control for mobility impaired indi-
viduals”. In: Proceedings of the American Control Conference (ACC). 2015, pp. 447–
452.

[95] R. C. Luo et al. “Adaptive impedance control for safe robot manipulator”. In: Pro-
ceedings of the World Congress on Intelligent Control and Automation (WCICA).
2011, pp. 1146–1151.

[96] R. Luo and D. Berenson. “A framework for unsupervised online human reaching mo-
tion recognition and early prediction”. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2015, pp. 2426–2433.

[97] V. Macagon and B. Wünsche. “Efficient collision detection for skeletally animated
models in interactive environments”. In: Proceedings of Image and Vision Computing
New Zealand (IVCNZ). Vol. 3. 2003, pp. 378–383.

[98] J. Mainprice and D. Berenson. “Human-robot collaborative manipulation planning
using early prediction of human motion”. In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2013, pp. 299–306.

[99] J. L. Marble et al. “Evaluation of supervisory vs. peer-peer interaction with human-
robot teams”. In: Proceedings of the Annual Hawaii International Conference on Sys-
tem Sciences. 2004, pp. 1–9.

[100] V. Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature
518.7540 (2015), pp. 529–533.

[101] M. Moosaei et al. “Using Facially Expressive Robots to Calibrate Clinical Pain Percep-
tion”. In: Proceedings of the ACM/IEEE International Conference on Human-Robot
Interaction. 2017, pp. 32–41.

BIBLIOGRAPHY 168

[102] X. Na and D. J. Cole. “Linear quadratic game and non-cooperative predictive methods
for potential application to modelling driver–AFS interactive steering control”. In:
Vehicle System Dynamics 51.2 (2013), pp. 165–198.

[103] S. Nikolaidis and J. Shah. “Human-robot cross-training: computational formulation,
modeling and evaluation of a human team training strategy”. In: Proceedings of the
ACM/IEEE International Conference on Human-Robot Interaction. 2013, pp. 33–40.

[104] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Me-
dia, 2006.

[105] Optimization Toolbox, Constrained optimization, fmincon. url: https://www.mathworks.
com/help/optim/ug/fmincon.html.

[106] U. Ozguner, C. Stiller, and K. Redmill. “Systems for safety and autonomous behavior
in cars: The DARPA Grand Challenge experience”. In: Proceedings of the IEEE 95.2
(2007), pp. 397–412.

[107] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. “A model for types and levels of
human interaction with automation”. In: IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 30.3 (2000), pp. 286–297.

[108] D.-H. Park et al. “Movement reproduction and obstacle avoidance with dynamic
movement primitives and potential fields”. In: Proceedings of the IEEE-RAS Inter-
national Conference on Humanoid Robots. 2008, pp. 91–98.

[109] H.-K. Park et al. “A nursing robot system for the elderly and the disabled”. In:
International Journal of Human-Friendly Welfare Robotic Systems 2.4 (2001), pp. 11–
16.

[110] V. Pavlovic et al. “A dynamic Bayesian network approach to figure tracking using
learned dynamic models”. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). Vol. 1. 1999, pp. 94–101.

[111] J. Pineau et al. “Towards robotic assistants in nursing homes: Challenges and results”.
In: Robotics and Autonomous Systems 42.3 (2003), pp. 271–281.

[112] X. Qian et al. “Motion planning for urban autonomous driving using Bézier curves and
MPC”. In: Proceedings of the IEEE International Conference on Intelligent Trans-
portation Systems (ITSC). 2016, pp. 826–833.

[113] E. Rasmusen and B. Blackwell. Games and Information: An Introduction to Game
Theory. Cambridge, MA, 1994.

[114] J. Rasmussen. “Outlines of a hybrid model of the process plant operator”. In: Moni-
toring Behavior and Supervisory Control. Springer, 1976, pp. 371–383.

[115] N. Ratliff et al. “CHOMP: Gradient optimization techniques for efficient motion plan-
ning”. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA). 2009, pp. 489–494.

BIBLIOGRAPHY 169

[116] H. C. Ravichandar and A. Dani. “Human intention inference and motion modeling
using approximate E-M with online learning”. In: Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). 2015, pp. 1819–
1824.

[117] H. C. Ravichandar, A. Kumar, and A. Dani. “Bayesian human intention inference
through multiple model filtering with gaze-based priors”. In: Proceedings of the In-
ternational Conference on Information Fusion (FUSION). 2016, pp. 2296–2302.

[118] J. H. Reif and H. Wang. “Social potential fields: A distributed behavioral control for
autonomous robots”. In: Robotics and Autonomous Systems 27.3 (1999), pp. 171–194.

[119] W. Ren, R. W. Beard, et al. “Consensus seeking in multiagent systems under dynam-
ically changing interaction topologies”. In: IEEE Transactions on Automatic Control
50.5 (2005), pp. 655–661.

[120] P. E. Ross. “California to issue driving licences to robots”. In: IEEE Spectrum (2014).

[121] D. Sadigh et al. “Planning for autonomous cars that leverages effects on human
actions”. In: Proceedings of the Robotics: Science and Systems Conference (RSS).
2016.

[122] A. V. Savkin et al. Safe Robot Navigation Among Moving and Steady Obstacles.
Butterworth-Heinemann, 2015.

[123] J. Schulman et al. “Finding Locally Optimal, Collision-Free Trajectories with Se-
quential Convex Optimization.” In: Proceedings of the Robotics: Science and Systems
Conference (RSS). Vol. 9. 1. 2013, pp. 1–10.

[124] M. Schwager et al. “Data-driven identification of group dynamics for motion predic-
tion and control”. In: Journal of Field Robotics 25.6-7 (2008), pp. 305–324.

[125] L. A. Schwarz et al. “Human skeleton tracking from depth data using geodesic dis-
tances and optical flow”. In: Image and Vision Computing 30.3 (2012), pp. 217–226.

[126] E. Semsar-Kazerooni and K. Khorasani. “Multi-agent team cooperation: A game the-
ory approach”. In: Automatica 45.10 (2009), pp. 2205–2213.

[127] E. A. Sisbot et al. “Synthesizing robot motions adapted to human presence”. In:
International Journal of Social Robotics 2.3 (2010), pp. 329–343.

[128] P. Spellucci. “A new technique for inconsistent QP problems in the SQP method”.
In: Mathematical Methods of Operations Research 47.3 (1998), pp. 355–400.

[129] R. G. Strongin and Y. D. Sergeyev. Global optimization with non-convex constraints:
Sequential and parallel algorithms. Vol. 45. Springer Science & Business Media, 2013.

[130] L. Sun et al. “A fast integrated planning and control framework for autonomous
driving”. In: arXiv:1707.02515. 2017.

[131] S. Tachi and K. Komoriya. “Guide dog robot”. In: Autonomous Mobile Robots: Con-
trol, Planning, and Architecture (1984), pp. 360–367.

BIBLIOGRAPHY 170

[132] T. S. Tadele, T. J. d. Vries, and S. Stramigioli. “The safety of domestic robots: a
survey of various safety-related publications”. In: IEEE Robotics and Automation
Magazine (2014), pp. 134–142.

[133] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Soft-
ware, and Applications. Vol. 65. Springer Science & Business Media, 2002.

[134] Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated
Driving Systems. 2014. url: http://doi.org/10.4271/J3016_201401.

[135] A. L. Thomaz, C. Breazeal, et al. “Reinforcement learning with human teachers:
Evidence of feedback and guidance with implications for learning performance”. In:
Proceedings of the National Conference on Artificial Intelligence (AAAI). Vol. 6. 2006,
pp. 1000–1005.

[136] K. Tone. “Revisions of constraint approximations in the successive QP method for
nonlinear programming problems”. In: Mathematical Programming 26.2 (1983), pp. 144–
152.

[137] G. Tonietti, R. Schiavi, and A. Bicchi. “Design and control of a variable stiffness
actuator for safe and fast physical human/robot interaction”. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). 2005, pp. 526–
531.

[138] P. Trautman and A. Krause. “Unfreezing the robot: Navigation in dense, interacting
crowds”. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2010, pp. 797–803.

[139] C.-S. Tsai, J.-S. Hu, and M. Tomizuka. “Ensuring Safety in Human-Robot Coexis-
tence Environment”. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2014, pp. 4191–4196.

[140] A. Turnwald et al. “Interactive navigation of humans from a game theoretic per-
spective”. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2014, pp. 703–708.

[141] G. Ulusoy, F. Sivrikaya-Şerifoǧlu, and Ü. Bilge. “A genetic algorithm approach to the
simultaneous scheduling of machines and automated guided vehicles”. In: Computers
and Operations Research 24.4 (1997), pp. 335–351.

[142] UR5 from Universal Robotics. url: http://www.universal- robots.com/GB/

Products.aspx.

[143] C. Urmson et al. “Autonomous driving in urban environments: Boss and the urban
challenge”. In: Journal of Field Robotics 25.8 (2008), pp. 425–466.

[144] K. G. Vamvoudakis et al. “Autonomy and machine intelligence in complex systems: A
tutorial”. In: Proceedings of the American Control Conference (ACC). 2015, pp. 5062–
5079.

BIBLIOGRAPHY 171

[145] J. Van Den Berg, P. Abbeel, and K. Goldberg. “LQG-MP: Optimized path plan-
ning for robots with motion uncertainty and imperfect state information”. In: The
International Journal of Robotics Research 30.7 (2011), pp. 895–913.

[146] T. Van Zandt. “Interim Bayesian Nash equilibrium on universal type spaces for su-
permodular games”. In: Journal of Economic Theory 145.1 (2010), pp. 249–263.

[147] Volvo collision avoidance features: Initial results. Tech. rep. 5. Highway Loss Data
Institute, 2012.

[148] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2009.

[149] “Working with Robots: Our Friends Electric”. In: The Economist (2013). url: http:
//www.economist.com/.

[150] W. Xu et al. “A real-time motion planner with trajectory optimization for autonomous
vehicles”. In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA). 2012, pp. 2061–2067.

[151] K. Yamazaki et al. “Home-assistant robot for an aging society”. In: Proceedings of
the IEEE 100.8 (2012), pp. 2429–2441.

[152] C. Yang et al. “Human-like adaptation of force and impedance in stable and unstable
interactions”. In: IEEE Transactions on Robotics 27.5 (2011), pp. 918–930.

[153] J. E. Young et al. “Toward acceptable domestic robots: Applying insights from social
psychology”. In: International Journal of Social Robotics 1.1 (2009), pp. 95–108.

[154] W. Zhang et al. “Real-time Kinematic Modeling and Prediction of Human Joint
Motion in a Networked Rehabilitation System”. In: American Control Conference
(ACC). 2015, pp. 5800–5805.

[155] Z. Zhu, E. Schmerling, and M. Pavone. “A convex optimization approach to smooth
trajectories for motion planning with car-like robots”. In: Proceedings of the IEEE
Conference on Decision and Control (CDC). 2015, pp. 835–842.

[156] M. Zinn et al. “A new actuation approach for human friendly robot design”. In: The
International Journal of Robotics Research 23.4-5 (2004), pp. 379–398.

