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AIDE: annotation-assisted isoform discovery
with high precision
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China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China; 4Department of Data Sciences
and Operations, Marshall School of Business, University of Southern California, Los Angeles, California 90089, USA; 5Laboratory of
Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041,
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Genome-wide accurate identification and quantification of full-length mRNA isoforms is crucial for investigating transcrip-

tional and posttranscriptional regulatory mechanisms of biological phenomena. Despite continuing efforts in developing

effective computational tools to identify or assemble full-length mRNA isoforms from second-generation RNA-seq data,

it remains a challenge to accurately identify mRNA isoforms from short sequence reads owing to the substantial informa-

tion loss in RNA-seq experiments. Here, we introduce a novel statistical method, annotation-assisted isoform discovery

(AIDE), the first approach that directly controls false isoform discoveries by implementing the testing-based model selection

principle. Solving the isoform discovery problem in a stepwise and conservative manner, AIDE prioritizes the annotated

isoforms and precisely identifies novel isoforms whose addition significantly improves the explanation of observed

RNA-seq reads. We evaluate the performance of AIDE based on multiple simulated and real RNA-seq data sets followed

by PCR-Sanger sequencing validation. Our results show that AIDE effectively leverages the annotation information to com-

pensate the information loss owing to short read lengths. AIDE achieves the highest precision in isoform discovery and the

lowest error rates in isoform abundance estimation, compared with three state-of-the-art methods Cufflinks, SLIDE, and

StringTie. As a robust bioinformatics tool for transcriptome analysis, AIDE enables researchers to discover novel transcripts

with high confidence.

[Supplemental material is available for this article.]

A transcriptome refers to the entire set of RNA molecules in a bio-
logical sample. Alternative splicing, a posttranscriptional process
during which particular exons of a gene may be included or ex-
cluded from amaturemessenger RNA (mRNA) isoform transcribed
from that gene, is a key contributor to the diversity of eukaryotic
transcriptomes (Ghigna et al. 2008). Alternative splicing is a prev-
alent phenomenon in multicellular organisms, and it affects
∼90%–95% of genes in mammals (Hooper 2014). Understanding
the diversity of eukaryotic transcriptomes is essential to interpret-
ing gene functions and activities under different biological condi-
tions (Adams 2008). In transcriptome analysis, a key task is to
accurately identify the set of truly expressed isoforms and estimate
their abundance levels under a specific biological condition,
because the information on isoform composition is critical to un-
derstanding the isoform-level dynamics of RNA contents in differ-
ent cells, tissues, and developmental stages. Abnormal splicing
events have been known to cause many genetic disorders (Wang
and Cooper 2007), such as retinitis pigmentosa (Mordes et al.
2006) and spinal muscular atrophy (Singh and Singh 2011).
Accurate isoform identification and quantification will shed light
on the gene regulatorymechanisms of genetic diseases, thus assist-
ing biomedical researchers in designing targeted therapies for
diseases.

The identification of truly expressed isoforms is an indispens-
able step preceding accurate isoform quantification. However,
compared with the quantification task, isoform discovery is an
inherentlymore challenging problem both theoretically and com-
putationally. The reasons behind this challenge are threefold. First,
second-generation RNA-seq reads are too short compared with
full-length mRNA isoforms. RNA-seq reads are typically no longer
than 300 bp in Illumina sequencing (Chhangawala et al. 2015),
whereas >95%of human isoforms are >300 bp,with amean length
of 1712 bp (GENCODE annotation, release 24) (Harrow et al.
2012). Hence, RNA-seq reads are short fragments of full-length iso-
forms. Since most isoforms of the same gene share some overlap-
ping regions, many RNA-seq reads do not unequivocally map to
a unique isoform. As a result, isoform origins of those reads are am-
biguous and need to be inferred from a huge pool of candidate iso-
forms. Another consequence of short reads is that “junction reads”
spanning more than one exon–exon junction are underrepresent-
ed in second-generation RNA-seq data, owing to the difficulty of
mapping junction reads (every read needs to be split into at least
two segments and has all the segments mapped to different exons
in the reference genome). The underrepresentation of those junc-
tion reads further increases the difficulty of discovering full-length
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RNA isoforms accurately. Second, the number of candidate iso-
forms increases exponentially with the number of exons. Hence,
computational efficiency becomes an inevitable factor that every
method must account for, and an effective isoform screening
step is often needed to achieve accurate isoform discovery (Ye
and Li 2016). Third, it is a known biological phenomenon that of-
ten only a small number of isoforms are truly expressed under one
biological condition. Given the huge number of candidate iso-
forms, how isoform discovery methods balance the parsimony
and accuracy of the discovered isoforms becomes a critical and dif-
ficult issue (Mezlini et al. 2013; Canzar et al. 2016). For more com-
prehensive discussion and comparison of existing isoform
discovery methods, refer to Steijger et al. (2013) and Li and Li
(2018).

Over the past decade, computational researchers have devel-
opedmultiple state-of-the-art isoform discoverymethods to tackle
one or more of the challenges mentioned above. The two earliest
annotation-free methods are Cufflinks (Trapnell et al. 2010) and
Scripture (Guttman et al. 2010), which can assemble mRNA iso-
forms solely from RNA-seq data without using annotations of
known isoforms. Both methods use graph-based approaches, but
they differ in how they construct graphs and then parse a graph
into isoforms. Scripture first constructs a connectivity graph
with nodes as genomic positions and edges determined by junc-
tion reads. It then scans the graphwith fixed-sizedwindows, scores
each path for significance, connects the significant paths into can-
didate isoforms, and finally refines the isoforms using paired-end
reads. Cufflinks constructs an overlap graph of mapped reads,
and it puts a directed edge based on the genome orientation
between two compatible reads that could arise from the same iso-
form. It then finds a minimal set of paths that cover all the frag-
ments in the overlap graph. A more recent method, StringTie,
also uses the graph idea (Pertea et al. 2015). It first creates a splice
graph with read clusters as nodes to identify isoforms, and it then
constructs a flow network to estimate the expression levels of iso-
forms using a maximum flow algorithm.

Another suite of methods use different statistical and compu-
tational tools and regularizationmethods to tackle the problems of
isoform discovery and abundance estimation. IsoLasso (Li et al.
2011b), SLIDE (Li et al. 2011a), and CIDANE (Canzar et al. 2016)
all build linear models, in which read counts are summarized as
the response variable, and isoform abundances are treated as pa-
rameters to be estimated. IsoLasso starts from enumerating valid
isoforms and then uses the LASSO algorithm (Tibshirani 1996)
to achieve parsimony in its discovered isoforms. SLIDE incorpo-
rates the information of gene and exon boundaries in annotations
to enumerate candidate isoforms, and it uses a modified LASSO
procedure to select isoforms. CIDANE also uses the LASSO regres-
sion in its first phase, and then it uses a delayed columngeneration
technique in its second phase to check if new isoforms should be
added to improve the solution. Another method, iReckon, takes
a different approach and tackles the isoform discovery problem
via maximum likelihood estimation (Mezlini et al. 2013). It first
constructs all the candidate isoforms supported by RNA-seq data,
and then it uses a regularized expectation-maximization (EM) al-
gorithm (Dempster et al. 1977) to reduce the number of expressed
isoforms and avoid overfitting.

Aside from the intrinsic difficulty of isoform identification
owing to the short read lengths and the huge number of candidate
isoforms, the excess biases in RNA-seq experiments further afflict
the isoform discovery problem. Ideally, RNA-seq reads are expect-
ed to be uniformly distributed within each isoform. However, the

observed distribution of RNA-seq reads significantly violates
the uniformity assumption owing to multiple sources of biases.
Themost commonly acknowledged bias source is the different lev-
els of guanine–cytosine (GC) content in different regions of an
isoform. The GC content bias was first investigated by Dohm
et al. (2008), and a significantly positive correlation was observed
between the read coverage and theGC content. Anotherwork later
showed that the effects of GC content tend to be sample-specific
(Risso et al. 2011). Another major bias source is the positional
bias, which causes uneven read coverage at different relative posi-
tions within an isoform. As a result of the positional bias, reads are
more likely to be generated from certain regions of an isoform, de-
pending on experimental protocols, for example, whether cDNA
fragmentation or RNA fragmentation is used (Li et al. 2010;
Frazee et al. 2015). Failing to correct these biases will likely lead
to high false-discovery rates in isoform discovery and unreliable
statistical results in downstream analyses, such as differential iso-
form expression analysis (Patro et al. 2017). Current computation-
al methods account for the nonuniformity of reads using three
main approaches: to adjust read counts summarized in defined ge-
nomic regions to offset the nonuniformity bias (Li et al. 2010;
Roberts et al. 2011b; Zheng et al. 2011), to assign a weight to
each single read to adjust for bias (Hansen et al. 2010), and to in-
corporate the bias as a model parameter in likelihood-based meth-
ods (Bohnert and Rätsch 2010; Roberts et al. 2011b; Jiang and
Salzman 2015; Love et al. 2016).

Despite the sustained efforts the bioinformatics community
has spent in developing effective computational methods to iden-
tify full-length isoforms from second-generation RNA-seq data,
the existing methods still suffer from low accuracy for genes
with complex splicing structures (Steijger et al. 2013; Conesa
et al. 2016). A comprehensive assessment has shown thatmethods
achieving good accuracy in identifying isoforms inDrosophila mel-
anogaster (34,776 annotated isoforms) and Caenorhabditis elegans
(61,109 annotated isoforms) fail to maintain good performance
in Homo sapiens (200,310 annotated isoforms) (Steijger et al.
2013; Zerbino et al. 2018). Although it is generally believed that
deeper sequencing will lead to better isoform discovery results,
the improvement is not significant in H. sapiens, compared with
D. melanogaster and C. elegans, owing to the complex splicing
structures of human genes (Mortazavi et al. 2008; Steijger et al.
2013). Moreover, despite increasing accuracy of identified iso-
forms evaluated at the nucleotide level and the exon level, it re-
mains difficult to improve the isoform-level performance. In
other words, even when all subisoform elements (i.e., short com-
ponents of transcribed regions, such as exons) are correctly identi-
fied, accurate assembly of these elements into full-length isoforms
remains a big challenge.

Motivated by the observed low accuracy in identifying full-
length isoforms solely fromRNA-seq data, researchers have consid-
ered leveraging information from reference annotations (e.g.,
Ensembl [Zerbino et al. 2018], GENCODE [Harrow et al. 2012],
and the UCSC Genome Browser [Rosenbloom et al. 2015]) to aid
isoform discovery. Existing efforts include two approaches. In
the first approach, methods extract the coordinates of gene and
exon boundaries, that is, known splicing sites, from annotations
and then assemble novel isoforms based on the exons or subexons
(the regions between adjacent known splicing sites) of every gene
(Li et al. 2011a; Pertea et al. 2015; Canzar et al. 2016). In the second
approach,methods directly incorporate all the isoforms in annota-
tions by simulating faux-reads from the annotated isoforms
(Roberts et al. 2011a). However, the above two approaches have
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strong limitations in their use of annotations. The first approach
does not fully use annotation information because it neglects
the splicing patterns of annotated isoforms, and these patterns
could assist learning the relationship between short reads and
full-length isoforms. The second approach is unable to filter out
nonexpressed annotated isoforms because researchers lack prior
knowledge on which annotated isoforms are expressed in an
RNA-seq sample; hence, its addition of unnecessary faux-reads
will bias the isoform discovery results and fail to control the false
discovery rate.

Here we propose a more statistically principled approach, an-
notation-assisted isoform discovery (AIDE), to leverage annota-
tion information in a more advanced manner to increase the
precision and robustness of isoform discovery. Our approach is
rooted in statisticalmodel selection,which takes a conservative ap-
proach to search for the smallest model that fits the data well, after
adjusting for themodel complexity. In our context, a model corre-
sponds to a set of candidate isoforms (including annotated and
nonannotated ones), and a more complex model contains more
isoforms. Our rationale is that a robust and conservative computa-
tional method should only consider novel isoforms as credible if
adding them would significantly better explain the observed
RNA-seq reads than using only the annotated isoforms. AIDE dif-
fers from many existing approaches in that it does not aim to
find all seemingly novel isoforms. It enables controlling false dis-
coveries in isoform identification by using a statistical testing pro-
cedure, which ensures that the discovered isoforms make
statistically significant contributions to explaining the observed
RNA-seq reads. Specifically, AIDE learns gene and exon boundaries
from annotations and also selectively borrows information from
the annotated isoform structures using a stepwise likelihood-based
selection approach. Instead of fully relying on the annotation,
AIDE is capable of identifying nonexpressed annotated isoforms

and removing them from the identified isoform set. Moreover,
AIDE simultaneously estimates the abundance of the identified
isoforms in the process of isoform reconstruction.

Results

The AIDE method uses the likelihood ratio test (LRT) to identify
isoforms via a stepwise selection procedure, which gives priority
to the annotated isoforms and selectively borrows information
from their structures. The stepwise selection consists of both for-
ward and backward steps. Each forward step finds an isoform
whose addition contributes the most to the explanation of RNA-
seq reads given the currently identified isoforms. Each backward
step rectifies the identified isoform set by removing the isoform
with the most trivial contribution given other identified isoforms.
AIDE achieves simultaneous isoform discovery and abundance es-
timation based on a carefully constructed probabilistic model of
RNA-seq read generation (Methods; Fig. 1).We first used a compre-
hensive transcriptome-wide study to evaluate the performance of
AIDE and three other widely used methods (Cufflinks, SLIDE,
and StringTie) provided with varying read coverages and annota-
tions of different quality. Second, we assessed the precision and
recall of these four methods on real human and mouse RNA-seq
data sets. In addition, we compared the fourmethods based on iso-
forms identified by long-read sequencing technologies. Third, we
validated the performance of AIDE using polymerase chain reac-
tion (PCR) experiments and an additional comparison with
Nanostring data. We finally used a simulation study to show the
necessity and superiority of stepwise selection in AIDE. In all these
studies, AIDE showed its advantages in achieving the highest pre-
cision in isoform discovery and the best accuracy in isoform quan-
tification among the four methods.

Figure 1. Workflow of the stepwise selection in the AIDE method. Stage 1 starts with a single annotated isoform compatible with the most reads, and all
the other annotated isoforms are considered as candidate isoforms. Stage 2 starts with the annotated isoforms selected in stage 1, and all the possible
isoforms, including the unselected annotated isoforms, are considered as candidate isoforms. In the forward step in both stages, AIDE identifies the isoform
that mostly increases the likelihood, and it uses the LRT to decide whether this increase is statistically significant. If significant, AIDE adds this isoform to its
identified isoform set; otherwise, AIDE keeps its identified set and terminates the current stage. In the backward step in both stages, AIDE finds the isoform in
its identified set such that the removal of this isoform decreases the likelihood the least, and it uses the LRT to decide whether this decrease is statistically
significant. If not significant, AIDE removes this isoform from its identified set; otherwise, AIDE keeps the identified set. After the backward step, AIDE returns
to the forward step. AIDE stops when the forward step in stage 2 no longer adds a candidate isoform to the identified set.
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AIDE outperforms state-of-the-art methods on simulated data

We compared AIDE with three other state-of-the-art isoform dis-
covery methods, Cufflinks (Trapnell et al. 2010), StringTie
(Pertea et al. 2015), and SLIDE (Li et al. 2011a), in a simulation set-
ting that mimicked real RNA-seq data analysis. The four methods
tackle the isoform discovery task from different perspectives.
Cufflinks assembles isoforms by constructing an overlap graph
and searching for isoforms as sparse paths in the graph. SLIDE
uses a regularized linear model and showed precise results in
large-scale comparisons (Steijger et al. 2013). StringTie uses a net-
work-based algorithm and achieves the best computational effi-
ciency and memory usage among the existing methods (Pertea
et al. 2015). Unlike these three methods, our proposed method
AIDE, built uponLRTs and stepwise selection, converts the isoform
discovery problem into a statistical variable selection problem.

To conduct a fair assessment, we simulated RNA-seq data sets
using the R (R Core Team 2018) package polyester (Frazee et al.
2015), which uses both built-in models and real RNA-seq data to
generate synthetic RNA-seq data that show similar properties to
those of real data. We simulated eight human RNA-seq data sets
with different read coverages (10×, 20 ×, …,80 ×) and predeter-
mined isoform fractions (see Methods). An “n×“ coverage means
that an exonic genomic locus is covered by n reads on average.
We compared the accuracy of the four methods supplied with an-
notations of different quality. In real scenarios, annotations con-
tain both expressed (true) and nonexpressed (false) isoforms in a
specific RNA-seq sample. Annotations might miss some expressed
isoforms in that RNA-seq sample because alternative splicing is
known to be condition specific and widely diverse across different
conditions. Therefore, it is critical to evaluate the extent to which
different methods rely on the accuracy of annotations, specifically
the annotation purity and the annotation completeness, whichwe
define as the proportion of expressed isoforms among the annotat-
ed ones and the proportion of annotated isoforms among the ex-
pressed ones, respectively. We constructed nine sets of synthetic
annotations, as opposed to the real annotation from GENCODE
(Harrow et al. 2012) or Ensembl (Aken et al. 2016), with varying
purity and completeness (Table 1). For example, annotation 4
has a 60% purity and a 40% completeness, meaning that 60% of
the annotated isoforms are truly expressed and the annotated iso-
forms constitute 40% of the truly expressed isoforms.

We first compared the four methods in terms of their gene-
level isoform discovery accuracy. Regarding both the precision
rate (i.e., the proportion of expressed isoforms in the discovered
isoforms) and the recall rate (i.e., the proportion of discovered iso-
forms in the expressed isoforms), AIDE outperforms the other
three methods with all nine synthetic annotation sets (Fig. 2;
Supplemental Figs. S1, S2). Especially with the less accurate syn-
thetic annotation sets 1–4, AIDE shows its clear advantages due
to its stepwise selection strategy, which prevents AIDE from being
misled by wrongly annotated isoforms. When the read coverage is
10 × and the annotations have 40% purity (sets 1–3), the median

precision rates of AIDE are as high as the third-quantile precision
rates of Cufflinks. In addition, AIDE achieves high precision rates
(> 75%) muchmore frequently than the other three methods (Fig.
2A). In terms of the recall rates, AIDE and Cufflinks show better
capability in correctly identifying truly expressed isoforms than
StringTie and SLIDE. AIDE achieves high recall rates (> 75%) in
more genes with the annotation sets 1–3 (purity=40%), and its re-
call rates are close to those of Cufflinks when the annotation pu-
rity is increased to 60% and 80% (annotation sets 4–9) (Fig. 2B).
We also compared the accuracy of the four methods on the ex-
pressed but nonannotated isoforms (Supplemental Fig. S3A,B),
and AIDE shows greater accuracy in identifying these novel iso-
forms. In addition, AIDE is robust to sequencing depths. On the
contrary, the recall rates of StringTie and SLIDE deteriorate as se-
quencing depths decrease (Supplemental Fig. S2). Regarding to
what extent the accuracy of annotations affects isoform discovery,
we find that the annotation purity is more important than
the annotation completeness for isoform discovery (Fig. 2;
Supplemental Figs. S1, S2). This observation suggests that if prac-
titioners have to choose between two annotation sets, one with
high purity but low completeness and the other with low purity
but high completeness, they should use the former annotation
set as input for AIDE.When no annotation is given, AIDE still pre-
sents higher accuracy to predict isoform structures (Supplemental
Fig. S3C).

As a concrete example, we considered the human geneDPM1
and its annotated isoforms in annotation sets 1 and 9 (Table 1). For
DPM1, the annotation set 1 has a 67% purity and a 67% complete-
ness, and the annotation set 9 has a 60% purity and a 100% com-
pleteness. In Supplemental Figures S4 and S5, we plotted the
distribution of RNA-seq reads in the reference genome, along
with the truly expressed isoforms, the annotated isoforms, and
the isoforms identified by AIDE, Cufflinks, and StringTie, respec-
tively. Due to its capacity to selectively incorporate information
from the annotated isoforms, AIDE successfully identified the
shortest truly expressed isoform, which is missing in the annota-
tion set 1 (Supplemental Fig. S4). In annotation set 9, which con-
tains two nonexpressed isoforms, AIDE correctly identified the
three truly expressed isoforms (Supplemental Fig. S5). In contrast,
the other three methods missed some of the truly expressed iso-
forms in both annotation sets, and they identified too many non-
expressed isoforms in the less pure annotation set 9.

We also summarized the genome-wide average accuracy of
AIDE and the other three methods at three different levels: base,
exon, and transcript levels (Supplemental Fig. S6; for calculation
formulas, see Supplemental Methods). All the four methods have
high accuracy at the base and exon levels regardless of the annota-
tion quality. However, even when exons are correctly identified, it
remains challenging to accurately assemble exons into full-length
isoforms. At the transcript level, AIDE achieves the best precision
rates, recall rates comparable to Cufflinks, and the best F1-scores
with all the synthetic annotation sets. In addition to the recon-
struction accuracy based on the initial output of each method,

Table 1. Synthetic annotations

Synthetic annotation set 1 2 3 4 5 6 7 8 9

Purity 40% 40% 40% 60% 60% 60% 80% 80% 80%
Completeness 40% 60% 80% 40% 60% 80% 40% 60% 80%

Purity and completeness of the nine sets of synthetic annotations are calculated based on the truly expressed isoforms in the simulated data.
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we also compared the precision-recall curves of different methods
by applying varying thresholds on the estimated isoform ex-
pression levels (Fig. 3). Regardless of the annotation quality,
AIDE achieves higher precision than the other three methods
when all the methods lead to the same recall. It is worth noting
that the results of AIDE were filtered by statistical significance be-
fore being thresholded by expression values, whereas the results of
the other three methods were only thresholded by isoform expres-
sion. Therefore, it is not proper to directly compare the maximum
recall rates or area under the curve (AUC) scores of different meth-
ods. Nonetheless, AIDE still has the largest AUC scores. These re-
sults show the advantage of AIDE in achieving high precision
and low false-discovery rates in isoform
discovery.

As the proportions of the expressed
isoforms were specified in this simula-
tion study, we also compared AIDE with
the other three methods in terms of their
accuracy in isoform abundance estima-
tion. We use α= (α1, …, αJ)′ to denote
the proportions of J possible isoforms
enumerated from a given gene’s known
exons, and we use â = (â1, . . . , âJ )

′ to
denote the estimated proportions by a
method (

∑J
j=1 aj =

∑J
j=1 â j = 1). We

define the estimation error rate as
e(â) = 1/2

∑J
j=1 |aj − â j|. The error rate

is a real value in [0, 1], with a value of
zero representing a 100% accuracy.
With all the nine synthetic annotation
sets, AIDE achieves the overall smallest
error rates (Fig. 2C). The advantages of
AIDE over the other three methods are
especially obvious with the first three an-
notations, whose purity is only 40%.

AIDE improves isoform discovery on

real data

We performed a transcriptome-wide
comparison of AIDE and the other three
methods based on real RNA-seq data
sets. Because transcriptome-wide bench-
mark data are unavailable for real RNA-
seq experiments, we used the isoforms
in the GENCODE annotation as a surro-
gate basis for evaluation (Harrow et al.

2012). For every gene, we randomly selected half of the annotated
isoforms and inputted them as partial annotations into every iso-
form discovery method. For RNA-seq data, we collected three hu-
man embryonic stem cell (ESC) data sets and three mouse bone
marrow–derived macrophage (BMDM) data sets (Supplemental
Table S1). For each gene, we applied AIDE, Cufflinks, StringTie,
and SLIDE to these six data sets for isoform discovery with partial
annotations, and we evaluated each method by comparing their
identified isoforms with the complete set of annotated isoforms.
Although the annotated isoforms are not equivalent to the truly
expressed isoforms in the six samples from which RNA-seq data
were generated, the identified isoforms, if accurate, are supposed

B CA

Figure 2. Gene-level isoform discovery and abundance estimation results of AIDE, Cufflinks, StringTie, and SLIDE on simulated RNA-seq data with 10 ×
coverage. Each box gives the first quantile, median, and third quantile of the gene-level accuracy given each of the nine sets of synthetic annotations.
(A) Precision rates in isoform discovery; (B) recall rates in isoform discovery; and (C) error rates (defined as one-half of the sum of the absolute differences
between the true and estimated isoform proportions) in abundance estimation.

Figure 3. Comparison between AIDE and the other three isoform discovery methods in simulation.
Given each synthetic annotation set, we applied AIDE, Cufflinks, StringTie, and SLIDE for isoform discov-
ery and summarized the expression levels of the predicted isoforms using fragments per kilobase million
reads mapped (FPKM) units. Then the precision-recall curves were obtained by thresholding the FPKM
values of the predicted isoforms. The AUC of each method is also marked in the plot. The results shown
are based on RNA-seq data with a 10× coverage.
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to largely overlapwith the annotated iso-
forms given the quality of human and
mouse annotations. Especially if we as-
sume the humanandmouse annotations
are unions of known isoforms expressed
under various well-studied biological
conditions including human ESCs and
mouse BMDMs, it is reasonable to use
those annotations to estimate the preci-
sion rates of the discovered isoforms,
that is, what proportions of the discov-
ered isoforms are expressed. Estimation
of the recall rates ismore difficult because
the annotations are likely to include
some isoforms that are nonexpressed in
human ESCs or mouse BMDMs.

We summarized the accuracy of the
four isoform discovery methods at both
the exon level and the transcript level
(Fig. 4). At the exon level, AIDE has the
highest precision and recall rates on all
the six data sets, achieving F1-scores
>90% (Fig. 4A,B). The second-best meth-
od at the exon level is StringTie. Because
connecting exons into the full-length
isoforms is much more challenging
than simply identifying the individual
exons, all the methods have lower accu-
racy at the isoform level than at the
exon level. Although having recall rates slightly lower than
but similar to Cufflinks, AIDE achieves the highest precision rates
(∼70% on human data sets and ∼60% on mouse data sets) at the
isoform level (Fig. 4C,D). Moreover, when all the methods achieve
the same recall rates after thresholding the estimated isoform ex-
pression levels (in FPKM units), AIDE has the largest precision
rate on all the six samples (Supplemental Fig. S7). Although preci-
sion and recall rates are both important measures for isoform dis-
covery, high precision results (equivalently, low false-discovery
results) of computational methods are often preferable for experi-
mental validation. In the threemouse BMDM samples, AIDE iden-
tified novel isoforms for genesMAPKAPK2, CXCL16, and HIVEP1,
which are known to play important roles in macrophage activa-
tion (Zhang et al. 2009; Limbourg et al. 2015; Schultze and
Schmidt 2015). In our previous simulation results, we have shown
that the accuracy of annotations is a critical factor determining the
performance of AIDE. Even though the partial annotations used in
this study only have 50% completeness, AIDE achieves the best
precision rates among the four methods, and we expect AIDE to
achieve high accuracy when supplied with annotations of better
quality in real applications.

AIDE is able to achieve more precise isoform discovery than
existing methods because it uses a statistical model selection prin-
ciple to determine whether to identify a candidate isoform as ex-
pressed. Therefore, only those isoforms that are statistically
supported by the observed reads are retained. We used four exam-
ple genes, ZBTB11, TOR1A, MALSU1, and SRSF6, to illustrate the
superiority of AIDE over the other three methods (Supplemental
Figs. S8, S9). The genome browser plots show that AIDE identifies
the annotated isoforms with the best precision, whereas the other
methods either miss some annotated isoforms or lead to toomany
false discoveries. We also used these four genes to show that AIDE
is robust to the choice of the P-value threshold used in the LRTs

(Methods). The default choice of the threshold is 0.01/total num-
ber of genes, which is 4.93×10−7 for human samples and 4.54×
10−7 for mouse samples. We used AIDE to identify isoforms with
different thresholds and tracked how the results change while
the threshold decreases from 10−2 to 10−10 (Supplemental Figs.
S10, S11). As expected, AIDE tends to discover slightly more iso-
formswhen the threshold is larger, and it becomesmore conserva-
tivewith a smaller threshold. However, the default threshold leads
to accurate results for those four genes, and the discovered isoform
set remains stable around the default threshold.

AIDE achieves the best consistency with long-read sequencing

technologies

We conducted another transcriptome-wide study to evaluate the
isoform discovery methods by comparing their reconstructed iso-
forms (from the second-generation, short RNA-seq reads) to those
identified by the third-generation long-read sequencing technolo-
gies, including Pacific Biosciences (PacBio) (Rhoads and Au 2015)
and Oxford Nanopore Technologies (ONT) (Mikheyev and Tin
2014). Even though PacBio and ONT platforms have higher
sequencing error rates and lower throughputs compared with sec-
ond-generation sequencing technologies, they are able to generate
much longer reads (1–100 kbp) to simultaneously capturemultiple
splicing junctions (Weirather et al. 2017). Here, we used the
full-length transcripts identified from PacBio or ONT sequencing
data as a surrogate gold standard to evaluate the isoform discovery
methods.

We appliedAIDE, Cufflinks, StringTie, and SLIDE to a second-
generation RNA-seq sample of human ESCs and compared their
identified isoforms with those discovered from PacBio or ONT
data generated from the same ESC sample (Weirather et al.
2017). The comparison based on ONT and PacBio are highly
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Figure 4. Comparison of AIDE and the other three methods using real data. (A) Exon-level accuracy in
the human ESC samples; (B) exon-level accuracy in the mouse BMDM samples; (C) transcript-level accu-
racy in the human ESC samples; and (D) transcript-level accuracy in the mouse BMDM samples. The gray
contours denote the F1-scores, as marked on the right of each panel.
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consistent: AIDE achieves the best precision and the highest over-
all accuracy (F1-score) at both the base level and the transcript level
(Fig. 5). We also compared the precision-recall curves of different
methods by applying varying thresholds on the predicted isoform
expression levels (Supplemental Fig. S12). When all four methods
achieve a recall rate >30%, AIDE has the highest precision. The fact
that all the other three methods have high accuracy at the exon
level but much lower accuracy at the transcript level again indi-
cates the difficulty of assembling exons into full-length isoforms
based on short RNA-seq reads. Among all the four methods,
AIDE is advantageous in achieving the best precision in full-length
isoform discovery.

PCR-Sanger sequencing validates the precision of AIDE

Because AIDE andCufflinks have shownhigher accuracy than oth-
er methods in the assessment of genome-wide isoform discovery,
we further evaluated the performance of these two methods on a
small cohort of RNA-seq data sets using PCR followed by Sanger se-
quencing. We applied both AIDE and Cufflinks to five breast can-
cer RNA-seq data sets for isoform discovery. After summarizing the
genome-wide isoform discovery results, we randomly selected
10 genes that have annotated transcripts uniquely predicted
by only AIDE or Cufflinks with FPKM>2 for experimental valida-
tion (Supplemental Table S2, for experimental details, see
SupplementalMethods).We divided the genes into two categories:
six genes with annotated isoforms identified only by Cufflinks but
not by AIDE (category 1), and four genes with annotated isoforms
identified only by AIDE but not by Cufflinks (category 2). For four
out of the six genes in category 1, MTHFD2, NPC2, RBM7, and
CD164, our experimental validation found that the isoforms
uniquely predicted by Cufflinks were false positives (Fig. 6A–D).
Specifically, both AIDE and Cufflinks correctly identified the
full-length isoforms MTHFD2-201, NPC2-207, titRBM7-203, and
CD164-003 for the four genes, respectively. However, the isoforms

MTHFD2-203, NPC2-205, RBM7-208, and CD164-210 predicted
only by Cufflinks were all false discoveries. For two out of the
four genes in category 2, we validated the isoforms uniquely pre-
dicted by AIDE as true positives (Fig. 6E,F). In detail, AIDE correctly
identified isoforms FGFR1-238 and FGFR1-201 for gene FGFR1, as
well as isoformZFAND5-208 for geneZFAND5. On the other hand,
Cufflinks only identified FGFR1-201 and missed the other two
isoforms. The experimental validation for both category 1 and cat-
egory 2 genes presented results that are consistent with our ge-
nome-wide computational results.

AIDE identifies isoforms with biological relevance

We investigated the biological functions of FGFR1-238, an isoform
predicted by AIDE but not by Cufflinks. Because FGFR1-238 was
identified in breast cancer RNA-seq samples, we evaluated its func-
tions in breast cancer development by a loss-of-function assay. In
detail, we validated the expression of FGFR1-238 in breast cancer
cell lines MCF-7, BT549, SUM149, MDA-MB-231, BT474, and SK-
BR-3 using PCR (Fig. 7A), andwe designed primers to uniquely am-
plify a sequence of 533 bp in its exon 18 (Supplemental Table S3).
Results show that high levels of FGFR1-238 were detected in cell
lines MCF-7, BT549, MDA-MB-231, and BT474 (Fig. 7A). Next,
we designed five small interfering RNAs (siRNAs) that specifically
target the unique coding sequence of FGFR1-238 (Supplemental
Table S4). Then we studied the dependence of tumor cell growth
on the expression of FGFR1-238 by conducting a long-term (10
days) cell proliferation assay in the presence or absence (control)
of siRNA knockdown. Our experimental results show that the
knockdown of the FGFR1-238 isoform inhibits the survival of
MCF-7 and BT549 cells (Fig. 7B). Therefore, FGFR1 and especially
its isoform FGFR1-238 could be promising targets for breast cancer
therapy, implying the ability of AIDE in identifying full-length iso-
forms with biological functions in pathological conditions.
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Figure 5. Evaluation of isoform discovery methods based on long reads. The F1-score, precision, and recall of the four discoverymethods were calculated
at the base, exon, and transcript levels. (A) Evaluation based on isoforms identified by ONT. (B) Evaluation based on isoforms identified by PacBio.
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To validate the specific biological function of isoform FGFR1-
238, we also designed siRNAs targeting two nonfunctional iso-
forms FGFR1-205 and FGFR1-C1 (nonannotated), which were pre-
dicted by Cufflinks (Fig. 7C; Supplemental Table S4). The
expressions of FGFR1-205 and FGFR1-C1 were validated in three
breast cancer cell lines, BT549, MCF-7, and BT474, by PCR exper-
iments (Supplemental Fig. S13). The lengths of the amplified
FGFR1-205 and FGFR1-C1 are 510 bp and 528 bp, respectively.
The three isoforms were knocked down in the host mammalian
cells BT549, MCF-7, and BT474 by RNA interference, respectively.
The results of the colonegenic assay show that only the deletion of
FGFR1-238 but not of FGFR1-205 or FGFR1-C1 impacted long-term
cell survival (Fig. 7D). This isoform-specific function, which was
only identified by AIDE in this case, further highlights the impor-
tance of full-length isoform identification.

To further compare AIDE and other reconstruction methods
in identifying isoforms with biological functions, we applied

AIDE, Cufflinks, and StringTie to the RNA-seq data of three mela-
noma cell lines. As one of themost predominant driver oncogenes,
the tumorigenic function of NRAS was well described (Goel et al.
2006). Recently, somenovel isoforms of theNRAS genewere exper-
imentally identified using quantitative PCR and shown tohave po-
tential roles in cell proliferation and malignancy transformation
(Eisfeld et al. 2014). Except for the canonical isoform 1, the other
two isoforms identified by Eisfeld et al. (2014) have not been in-
cluded in the GENCODE (Harrow et al. 2012) or Ensembl
(Zerbino et al. 2018) annotation (Fig. 7E). In our previous work,
we profiled the transcriptomes of a serial of melanoma cell lines
(Moriceau et al. 2015; Song et al. 2017). We applied both AIDE
and the other two reconstruction methods to the RNA-seq data
of these cell lines. Our results showed that, among the expressed
isoforms, (1) two novelNRAS isoforms, in addition to the annotat-
ed isoform (isoform 1), were identified by AIDE; (2) only isoform 1
was identified in two out of the three cell lines by StringTie; and (3)
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Figure 6. Experimental validation of isoforms predicted by AIDE and Cufflinks. Isoforms of genesMTHFD2 (A),NPC2 (B), RBM7 (C ), CD164 (D), FGFR1 (E),
and ZFAND5 (F ) were validated by PCR and Sanger sequencing. The isoforms to validate (yellow) are listed under each gene (dark gray), with +/− indicating
whether an isoformwas/was not identified by PCR or a computational method. The forward (F) and reverse (R) primers aremarked on top of each gene. For
each gene, the agarose gel electrophoresis results show the molecular lengths of PCR products.
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none of them were identified by Cufflinks (Fig. 7E). These results
again show the potential of AIDE as a powerful bioinformatics
tool for isoform discovery from short read sequencing data.

AIDE improves isoform abundance estimation on real data

Because the structures and abundance of expressed isoforms are
unobservable in real RNA-seq data, we evaluated the performance
of differentmethods by comparing their estimated isoform expres-
sion levels in the FPKM unit with the NanoString counts, which
could serve as benchmark data for isoform abundance when PCR
validation is not available (Geiss et al. 2008; Steijger et al. 2013;
Germain et al. 2016; Li et al. 2018). The NanoString nCounter
technology is considered as one of the most reproducible and ro-
bust medium-throughput assays for quantifying gene and isoform
expression levels (Kulkarni 2011; Prokopec et al. 2013; Veldman-
Jones et al. 2015). We expect an accurate isoform discovery meth-
od to discover a set of isoforms close to the expressed isoforms in
an RNA-seq sample. If the identified isoforms are accurate, the sub-
sequently estimated isoform abundance is more likely to be accu-
rate and agree better with the NanoString counts.

We therefore applied AIDE, Cufflinks, and StringTie to six
samples of the humanHepG2 (liver hepatocellular carcinoma) im-
mortalized cell line with both RNA-seq and NanoString data
(Supplemental Table S1; Steijger et al. 2013). The NanoString

nCounter technology is not designed for genome-wide quantifica-
tion of RNA molecules, and the HepG2 NanoString data sets have
measurements of 140 probes corresponding to 470 isoforms of 107
genes. Because one probemay correspond tomultiple isoforms, we
first found the isoforms compatible with every probe, and we then
compared the sumor themaximumof the estimated abundance of
these isoforms with the count of that probe. For each HepG2 sam-
ple, we calculated the Spearman’s correlation coefficient between
the estimated isoform abundance (“sum” or “max”) and the
NanoString probe counts to evaluate the accuracy of each method
(Fig. 8). AIDEhas the highest correlations in five out of the six sam-
ples, suggesting that AIDE achieves more accurate isoform discov-
ery as well as better isoform abundance estimation in this
application. It is also worth noting that all three methods have
achieved high correlation with the Nanostring counts for samples
3 and 4, because these two samples have the longest reads of 100
bp among all the samples. It is well acknowledged that longer reads
assist isoform identification by capturing more exon–exon junc-
tions (Li et al. 2018).

AIDE improves isoform discovery accuracy via stepwise selection

We also conducted a proof-of-concept simulation study to verify
the accuracy of our proposed AIDE method. We used this study
to show why simply performing forward selection is insufficient
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Figure 7. AIDE identifies isoforms with biological relevance. (A) PCR experiments validated the expression of FGFR1-238 in breast cancer cell linesMCF-7,
SUM149, BT474, SK-BR-3, MDA-MB-231, and BT549. (B) Long-term colonegenic assay with Lipofectamine 3000 controls (“siControl”) and FGFR1-238
knockdowns. Tumor growths relative to the siControl were quantified by the ImageJ software (Schneider et al. 2012). (C) FGFR1 isoforms identified by
AIDE and Cufflinks. (D) Long-term colonegenic assay with siControl (negative control), si-FGFR1-238 (positive control), si-FGFR1-205, and si-FGFR1-C1.
Tumor growths relative to the siControl were quantified by the ImageJ software. (E) NRAS isoforms in the GENCODE annotation, reported by Eisfeld
et al. (2014) and discovered by AIDE, Cufflinks, or StringTie in three melanoma BRAF inhibitor–resistant cell lines: M229R, M263R, and M395R.
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and how stepwise selection leads tomore robust isoform discovery
results. Here, we considered 2262 protein-coding genes from
the human GENCODE annotation (version 24) (Harrow et al.
2012). We treated the annotated isoforms as the true isoforms
and simulated paired-end RNA-seq reads from those isoforms
with predetermined abundance levels (for detailed simulation
strategy, see Supplemental Methods). For every gene, we applied
AIDE, which uses stepwise selection, and its counterpart AIDEf,
which only uses forward selection, to discover isoforms from the
simulated reads. To evaluate the robustness of AIDE to the accuracy
of annotation, we considered three types of annotation sets: (1)
“N” (no) annotations, no annotated isoforms were used; (2) “I”
(inaccurate) annotations, the “annotated isoforms” consisted of
half of the randomly selected true isoforms and the same number
of false isoforms; and (3) “A” (accurate) annotations, the “annotat-
ed isoforms” consisted of half of the randomly selected true
isoforms.

The simulation results show that AIDE andAIDEf perform the
best when the “A” annotations are supplied, and they have the
worst results with the “N” annotations, as expected (Supplemental
Fig. S14). Given the “A” annotations, AIDE and AIDEf have simi-
larly good performance. However, when supplied with the “I” or
“N” annotations, AIDE has much better performance than AIDEf.
In addition, the performance of AIDE with the “I” annotations is
close to that with the “A” annotations, showing the robustness
of AIDE to inaccurate annotations. On the other hand, AIDEf
has decreased precision rates when the “I” annotations are sup-
plied because forward selection is incapable of removing nonex-
pressed annotated isoforms from its identified isoform set in
stage 1 (Fig. 1). Given the “N” annotations, AIDE also has better
performance than AIDEf. These results suggest that choosing step-
wise selection over forward selection is reasonable for AIDE
because perfectly accurate annotations are usually unavailable in
real scenarios. Supplemental Figure S14 also suggests that both ap-
proaches show improved performance with all the three types of
annotations as the read coverages increase. Higher read coverages
help the most when the “N” annotations are supplied, but its ben-
eficial effects become more negligible with the “A” annotations.
Moreover, we observe that the F1-scores of AIDE with the “N” an-
notations and the 80× coverage are∼30% lower than the F1-scores
with the “A” annotations and the 30× coverage. This suggests that
accurate annotations can assist isoform discovery and reduce the
costs for deep-sequencing depths to a large extent.

We also summarized the precision and recall of AIDE at the
individual gene level (Supplemental Fig. S15). When the “A” an-
notations are supplied, both AIDE and AIDEf achieve 100% preci-
sion and recall rates for >80% of the genes. When the “N” or “I”
annotations are supplied, we observe a 2.0- or 2.6-fold increase
in the number of genes with 100% precision and recall rates
from AIDEf to AIDE. These results again show the effectiveness
of AIDE in removing nonexpressed annotated isoforms and iden-
tifying novel isoformswith higher accuracy owing to its use of stat-
istical model selection principles.

Discussion

We propose a new method, AIDE, to improve the precision of iso-
form discovery and the accuracy of isoform quantification from
the second-generation RNA-seq data, by selectively borrowing
full-length isoform information from annotations. AIDE iterative-
ly identifies isoforms in a stepwise manner while placing priority
on the annotated isoforms, and it performs statistical testing to
automatically determine what isoforms to retain. We show the
efficiency and superiority of AIDE compared with three state-of-
the-art methods, Cufflinks, SLIDE, and StringTie, onmultiple syn-
thetic and real RNA-seq data sets followed by an experimental
validation with PCR-Sanger sequencing, and the results suggest
that AIDE leads to much more precise discovery of full-length
RNA isoforms and more accurate isoform abundance estimation.
In an evaluation based on the third-generation long-read RNA-
seq data, AIDE also leads to the most consistent isoform discovery
results compared with the other methods.

In addition to reducing false discoveries, AIDE is also shown
to identify full-length mRNA isoforms with biological relevance
in disease conditions. First, we assessed the biological relevance
of the isoform FGFR1-238, which was only identified by AIDE, us-
ing a loss-of-function assay.We selected breast cancer samples that
originally had this isoform expressed, and we experimentally
proved that cell proliferationwas inhibitedwith this isoformbeing
knocked down. Second, we applied AIDE, Cufflinks, and StringTie
to RNA-seq data ofmelanomacell lines for isoformdiscovery.Only
AIDE was able to detect two expressed but nonannotated isoforms
of NRAS, which were reported to play a role in the drug-resistance
mechanism of BRAF-targeted therapy.

Because of technical limitations, the isoforms not amplified
by PCR may still exist at an extremely low level. We attempted
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Figure 8. Spearman’s correlation coefficients between the estimated isoform expression and the benchmark NanoString counts. (A) For every probe, the
sum of the expression levels of its corresponding isoforms is used in the calculation. (B) For every probe, the maximum of the expression levels of its cor-
responding isoforms is used in the calculation.
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to reduce this possibility by optimizing the design and parameters
used in our PCR experiments. First, we only validated the isoforms
uniquely predicted by AIDE or Cufflinks if those isoforms have
comparable abundance estimates (in FPKM units). Hence, the
PCR amplifications started with similar template amounts.
Second, we designed the PCR primers to preferentially amplify
the isoforms predicted by Cufflinks, so that if Cufflinks correctly
identifies an isoform, the PCR experiment would capture it with
high confidence. Specifically, when PCR primers are compatible
with multiple isoforms of different lengths but similar abundance
levels, PCR reaction preferentially amplifies the shorter isoform(s).
Therefore, we experimentally validated the genes for which the
isoform predicted by AIDE is longer than the isoform predicted
by Cufflinks, and we designed the primers to be compatible
with both isoforms. Third, we performed extensive amplification
by setting the PCR cycle number to 50. Therefore, if an isoform
is not captured by the PCR, it either does not exist or has an ex-
tremely low abundance level. In either case, the isoform is unlikely
to be biologically functional. Given the above considerations in
experimental design and the validation results (Fig. 6), we
conclude that AIDE has unique advantages in identifying full-
length mRNA isoforms with a high precision and reducing false
discoveries.

Even though long reads generated by PacBio and ONT have
advantages over second-generation short RNA-seq reads for assem-
bling full-length isoforms, it remains necessary to improve compu-
tational methods for short read–based isoform discovery. First,
wide application of the long-read sequencing technologies is still
hindered by their lower throughput, higher error rate, and higher
cost per base (Rhoads and Au 2015). Meanwhile, the second-gen-
eration short read sequencing technology is still the mainstream
assay for transcriptome profiling. Second, a huge number of sec-
ond-generation RNA-seq data sets have accumulated over the
past decade. Considering that many biological or clinical samples
used to generate those data sets are precious or no longer available
for long-read sequencing, the existing short-read data constitute
an invaluable resource for studying RNA mechanisms in these
samples. Therefore, an accurate isoform discovery method will
be indispensable for studying full-length isoforms from these
data. Meanwhile, we also expect that with increased availability
of long read data, we will be better equipped to compare and eval-
uate the reconstruction methods for short read data.

To the best of our knowledge, AIDE is the first isoform dis-
covery method that identifies isoforms by selectively leveraging
information from annotations using a testing-based model selec-
tion approach. The stepwise likelihood ratio testing procedure in
AIDE has multiple advantages. First, AIDE only selects the iso-
forms that significantly contribute to the explanation of the ob-
served reads, leading to more precise results and reduced false
discoveries than those of existing methods. Second, the forward
steps allow AIDE to start from and naturally give priority to the
annotated isoforms, which have higher chances of being ex-
pressed in a given sample. Meanwhile, the backward steps allow
AIDE to adjust its previously selected isoforms, given its newly
added isoform, so that all the selected isoforms together better ex-
plain the observed reads. Third, the testing procedure in AIDE al-
lows the users to adjust the conservatism and precision of the
discovered isoforms according to their desired level of statistical
significance. Because of these advantages, AIDE identifies fewer
novel isoforms at a higher precision level than previous methods,
making it easier for biologists to experimentally validate the novel
isoforms. In applications in which the recall rate of isoform dis-

covery is of great importance (i.e., the primary goal is to discover
novel isoforms with a not-too-stringent criterion), users can in-
crease the P-value threshold of AIDE to discover more novel
isoforms.

Through the application of AIDE to multiple RNA-seq data
sets, we show that selectively incorporating annotated splicing
patterns, in addition to simply obtaining gene and exon boundar-
ies from annotations, greatly helps isoform discovery. The step-
wise selection in AIDE also differentiates it from the methods
that directly assume the existence of all the annotated isoforms
in an RNA-seq sample. The development and application of
AIDE has led us to interesting observations that could benefit
both method developers and data users. First, we find that a
good annotation can help reduce the need for deep-sequencing
depths. AIDE has been shown to achieve good accuracy on data
sets with low sequencing depths when supplied with accurately
annotated isoforms, and its accuracy is comparable to that based
on deeply sequenced data sets. Second, we find it more important
for an annotation to have high purity than to have high complete-
ness in order to improve the isoform discovery accuracy of AIDE
and the othermethods we compared with in our study. Ideally, in-
stead of using all the annotated isoforms in isoform discovery
tasks, a better choice is to use a filtered set of annotated isoforms
with high confidence. This requires annotated isoforms to have
confidence scores, which unfortunately are unavailable in most
annotations. Therefore, how to add confidence scores to annotat-
ed isoforms becomes an important future research question, and
answering this question will help the downstream computational
prediction of novel isoforms.

In analysis tasks of discovering differential splicing patterns
between RNA-seq samples from different biological conditions, a
well-established practice is to first estimate the isoform abundance
in each sample by using amethod like Cufflinks and then perform
statistical testing to discover differentially expressed isoforms
(Trapnell et al. 2012; Seyednasrollah et al. 2015). However, as we
have shown in both synthetic and real data studies, existingmeth-
ods suffer fromhigh risks of predicting false positive isoforms, that
is, estimating nonzero expression levels for unexpressed isoforms
in a sample. Such false positive isoformswill severely reduce the ac-
curacy of differential splicing analysis, leading to inaccurate com-
parison results between samples under two conditions, for
example, healthy and pathological samples. In contrast, AIDE’s
conservativemanner in leveraging the existing annotations allows
it to identify truly expressed isoforms at a greater precision and
subsequently estimate isoform abundance with a higher accuracy.
We expect that the application of AIDE will increase the accuracy
of differential splicing analysis, lower the experimental validation
costs, and lead to new biological discoveries at a higher confidence
level.

The probabilisticmodel in AIDE is very flexible and can incor-
porate reads of varying lengths and generated by different plat-
forms. The nonparametric approach to learning the read
generating mechanism makes AIDE a data-driven method and
does not depend on specific assumptions of the RNA-seq experi-
ment protocols. Therefore, a natural extension of AIDE is to com-
bine the short butmore accurate reads from the second-generation
technologies with the longer butmore error-prone reads generated
by new sequencing technologies such as PacBio (Rhoads and Au
2015) and Nanopore (Byrne et al. 2017). Joint modeling of the
two types of reads using the AIDE method has the potential to
greatly improve the overall accuracy of isoform detection (Fu
et al. 2018), because AIDE is shown to have better precision than
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existingmethods, and longer RNA-seq reads capture more splicing
junctions and can further improve the recall rate of AIDE. A second
extension of AIDE is to allow the detection of novel, nonannotated
exon boundaries from RNA-seq reads, as considered by the
Cufflinks and StringTie Methods. Aside from the stepwise selec-
tion procedure used by AIDE, another possible way to incorporate
priority on the annotated isoforms in the probabilistic model is to
add regularization terms only on the unannotated isoforms.
However, this approach is less interpretable compared with
AIDE, because the regularization terms lack direct statistical inter-
pretations as the P-value threshold does. Moreover, this approach
may fail to control the false discovery rate when the annotation
has a low purity. Another future extension of AIDE is to jointly
consider multiple RNA-seq samples for more robust and accurate
transcript reconstruction. It has been shown that it is often possi-
ble to improve the accuracy of isoform quantification by integrat-
ing the information in multiple RNA-seq samples (Lin et al. 2012;
Behr et al. 2013; Li et al. 2018). Using our previous method
MSIQ, we have shown that it is necessary to account for the possi-
ble heterogeneity in the quality of different samples to improve
the robustness of isoform quantification (Li et al. 2018).
Therefore, by extending AIDE to combine the consistent informa-
tion from multiple technical or biological samples, it is likely to
achieve better reconstruction accuracy and enable researchers to
integrate publicly available and new RNA-seq samples for tran-
scriptome studies.

Methods

Isoform discovery and abundance estimation using AIDE

The AIDE method is designed to identify and quantify the mRNA
isoforms of each gene independently. Suppose that a gene has
m nonoverlapping exons (for a detailed definition, see
Supplemental Methods) and J candidate isoforms. If no filtering
steps based onprior knowledge or external information are applied
to reduce the set of candidate isoforms, J equals 2m−1, the number
of all possible combinations of exons into isoforms. The observed
data are the n RNA-seq reads mapped to the gene: R= {r1, …, rn}.
The parameters we would like to estimate are the isoform propor-
tions α= (α1,…, αJ)′, where αj is the proportion of isoform j among
all the isoforms (i.e., the probability that a randomRNA-seq read is
from isoform j), and

∑J
j=1 aj = 1. We also introduce hidden vari-

ables Z= {Z1, …, Zn} to denote the isoform origins of the n reads,
with Zi= j indicating that read ri is from isoform j, and P(Zi= j) =
αj, for i=1, …, n.

The joint probability of read ri and its isoform origin can be
written as

P(ri, Zi|a) =
∏J
j=1

P(ri, Zi = j|a)I{Zi=j}

=
∏J
j=1

[P(ri|Zi = j)aj]
I{Zi=j}

W
∏J
j=1

(hijaj)
Iij ,

where Iij≜I{Zi= j} indicates whether read ri is from isoform j, and
hij≜P(ri|Zi= j) is the generating probability of read ri given isoform
j, calculated based on the read generating mechanism described
in the following subsection.

Read generating mechanism

We have defined hij as the generating probability of read ri given
isoform j. Specifically, if read ri is not compatible with isoform j
(read ri contains regions not overlappingwith isoform j, or vice ver-
sa), then hij=0; otherwise,

hij = P(startingpositionof read ri | isoform j)

× P(fragment lengthof read ri | isoform j) W Ps
ijP

f
ij .

In the literature, different models have been used to calculate
the starting position distribution Ps and the fragment length distri-
bution Pf. Most of these models are built upon a basic model:

Ps
ij = 1/Lj,

Pf
ij =

1����
2p

√
sf

exp − (lij − mf )
2

2s2
f

{ }
,

(1)

where Lj is the effective length of isoform j (the isoform lengthmi-
nus the read length), and lij is the length of fragment i given that
read ri comes from isoform j. However, this basic model does not
account for factors like the GC-content bias or the positional
bias. Research has shown that these biases affect read coverages dif-
ferently, depending on different experimental protocols. For ex-
ample, reverse transcription with poly(dT) oligomers results in
an overrepresentation of reads in the 3′ ends of isoforms, whereas
reverse transcription with random hexamers results in an under-
representation of reads in the 3′ ends of isoforms (Finotello et al.
2014). Similarly, different fragmentation protocols have varying
effects on the distribution of reads within an isoform (Frazee
et al. 2015). Existing methods such as Cufflinks (Roberts et al.
2011b), StringTie (Pertea et al. 2015), SLIDE (Li et al. 2011a), and
Salmon (Patro et al. 2017) all adapted model (1) to account for
varying bias sources.

Given these facts, we decided to use a nonparametricmethod
to estimate the distribution Ps of read starting positions, because
nonparametric estimation is intrinsically capable of accounting
for the differences in the distribution owing to different protocols.
We use a multivariate kernel regression to infer Ps from the reads
mapped to the annotated single-isoform genes. Suppose
there are a total of cs exons in the single-isoform genes. For k

′
=

1, …, cs, we use qk′ to denote the proportion of reads, whose start-
ing positions are in exon k′, among all the reads mapped to the
gene containing exon k′. Given any gene with J isoforms, suppose
there are cj exons in its isoform j, j=1, …, J. We estimate the
conditional probability that a (random) read ri starts from exon k
(k=1, 2, …, cj), given that the read is generated from isoform j, as

Ps
ij(bi = k)/

∑cs
k′=1

∏3
d=1

1
hd

K
xkd − xk′d

hd

( )
qk′

∑cs
k′=1

∏3
d=1

1
hd

K
xkd − xk′d

hd

( ) ,

such that
∑cj
k=1

Ps
ij(bi = k) = 1 ,

(2)

where bi denotes the (random) index of the exon containing the
starting position of the read ri. When bi= k, we use xk1, xk2, and
xk3 to denote the GC content, the relative position, and the length
of exon k, respectively. The GC content of exon k, xk1, is defined as
the proportion of nucleotides G and C in the sequence of exon k.
The relative position of exon k, xk2, is calculated by first linearly
mapping the genomic positions of isoform j to [0, 1] (i.e., the start
and end positions aremapped to 0 and 1 respectively) and then lo-
cating the mapped position of the center position of the exon. For
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example, if isoform j spans fromposition 100 to position 1100 in a
chromosome and the center position of the exon is 200 in the
same chromosome, then the relative position of this exon is 0.1.
The meaning of xk′d (k′ =1, …, cs; d=1, …, 3) is defined in the
same way. The kernel function K( · ) is set as the Gaussian kernel
K(x) = (1/

����
2p

√
) exp (− x2/2). hd denotes the bandwidth of dimen-

sion d and is selected by cross-validation. The whole estimation
procedure of Ps

ij is implemented through the R package np.
As for the fragment length distribution Pf, Cufflinks uses the

truncated Gaussian distribution and SLIDE uses the truncated ex-
ponential distribution. In contrast, we assume that the fragment
length follows a truncated log normal distribution. This is because
mRNA fragments that are too long or too short are filtered out in
the library preparation step before the sequencing step. In addi-
tion, the empirical fragment length distribution is usually skewed
to right instead of being symmetric (Supplemental Fig. S16).
Therefore, a truncated log normal distribution generally fits well
the empirical distribution of fragment lengths:

Pf
ij =

��
2

√
exp − log

lij
mf

( )[ ]2
2s2

f

( )

��
p

√
sf erf

1��
2

√
sf

log
tfu
mf

( )( )
− erf

1��
2

√
sf

log
tfl
mf

( )( )[ ]
lij

, if lij [ [tfl , t
f
u ]

0, otherwise,

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(3)

wheremf and σf are themedian and the shape parameter of the dis-
tribution, respectively; tfl is the lower truncation threshold; and tfu
is the upper truncation threshold. The function erf ( · ) (the “error
function” encountered in integrating the normal distribution) is
defined as erf(x) = (2/

��
p

√
)
�x
0 exp (− t2)dt.

The probabilistic model and parameter estimation in AIDE

Given the aforementioned settings, the joint probability of all the
observed and hidden data is

P(R, Z|a) =
∏n
i=1

P(ri, Zi|a) =
∏n
i=1

∏J
j=1

(hijaj)
Iij =

∏n
i=1

∏J
j=1

(Ps
ijP

f
ijaj)

Iij , (4)

where Ps
ij and Pf

ij are defined in Equations 3 and 4, and the com-
plete log-likelihood is

ℓ(a|R, Z) =
∑n
i=1

∑J

j=1

Iij log (Ps
ijP

f
ijaj). (5)

However, as Z and the resulting Iij’s are unobservable, the
problem of isoform discovery becomes to estimate α via maximiz-
ing the log-likelihood based on the observed data:

â = argmax
a

ℓ(a|R)

= argmax
a

log P(R|a)

= argmax
a

log
∏n
i=1

∑J

j=1

Ps
ijP

f
ijaj

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

= argmax
a

∑n
i=1

log
∑J

j=1

Ps
ijP

f
ijaj

⎛
⎝

⎞
⎠ ,

(6)

subject to αj≥0 and
∑J
j=1

aj = 1. To directly solve Equation 6 is not

easy, so we use the EM algorithm alongwith the complete log-like-
lihood (5), and it follows thatwe can iteratively update the estimat-

ed isoform proportions as

a(t+1)
j = 1

n

∑n
i=1

Ps
ijP

f
ija

(t)
j∑J

j′=1 P
s
i j′P

f
i j′a

(t)
j′

.

As the algorithm converges, we obtain the estimated isoform
proportion â = (â1, . . . , âJ )

′.

Stepwise selection in AIDE

If we directly consider all the J=2m−1 candidate isoforms in (6)
and calculate â , the problem is unidentifiable when J>n. Even
when J≤n, this may lead to many falsely discovered isoforms
whose âj . 0, especially for complex genes, because themost com-
plexmodel with all the possible candidate isoforms would best ex-
plain the observed reads. Therefore, instead of directly using the
EM algorithm to maximize the log-likelihood with all the possible
candidate isoforms, we perform a stepwise selection of isoforms
based on the LRT. This approach has two advantages. On the
one hand, we can start from a set of candidate isoforms with
high confidence based on prior knowledge, and then we can
sequentially add new isoforms to account for reads that cannot
be fully explained by existing candidate isoforms. For example, a
common case is to start with annotated isoforms. On the other
hand, the stepwise selection by LRT intrinsically introduces spar-
sity into the isoform discovery process. Even though the candidate
isoform pool can be huge when a gene has a large number of ex-
ons, the set of expressed isoforms is usually much smaller in a spe-
cific biological sample. LRT can assist us in deciding a termination
point where adding more isoforms does not further improve the
likelihood.

The stepwise selection consists of steps with two opposite
directions: the forward step and the backward step (Fig. 1). The
forward step aims at finding a new isoform to best explain
the RNA-seq reads and significantly improve the likelihood
given the already selected isoforms. The backward step aims at rec-
tifying the isoform set by removing the isoformwith themost triv-
ial contribution among the selected isoforms. Because stepwise
selection is in a greedy-search manner, some forward steps, espe-
cially those taken in the early iterations, may not be the globally
optimal options. Therefore, backward steps are necessary to correct
the search process and result in a better solution path for the pur-
pose of isoform discovery.

We separate the search process into two stages. We use step-
wise selection to update the identified isoforms at both stages,
but the initial isoform sets and the candidate sets are different in
the two stages. Stage 1 starts with a single annotated isoform that
explains the highest number of reads, and it considers all the anno-
tated isoforms as the candidate isoforms. Stage 1 stops when the
forward step can no longer find an isoform to add to the identified
isoform set; namely, the LRT does not reject the null hypothesis
given the P-value threshold. Stage 2 starts with the isoforms identi-
fied in stage 1 and considers all the possible isoforms, including the
annotated isoformsnot chosen in stage1, as the candidate isoforms
(Fig. 1). The initial isoformset is denotedas S(0)1 (stage1) or S(0)2 (stage
2), the candidate isoform set is denoted as C1 (stage 1) or C2 (stage
2), and the annotation set is denoted as A. At stage 1, the initial set
and candidate set are respectively defined as

S(0)1 = argmax
j[A

(numberof reads compatiblewith isoform j)

{ }
,

C1 = A .

Suppose the stepwise selection completes after t1 steps in stage
1 and the estimated isoform proportions after step t (t=1, 2,…, t1)
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are denoted as â (t) = (â (t)
1 , . . . , â (t)

J )′. Note that ∀j � C1, â
(t)
j = 0 in

stage1.At stage2, the initial set and thecandidate set are respective-
ly defined as

S(0)2 = { j:â (t1)
j . 0},

C2 = {1, 2, . . . , J = 2m − 1}.

Here, we introduce how to perform forward and backward se-
lectionbasedona defined initial isoform set S(0) and a candidate set
C. We ignore the stage number subscripts for notation simplicity.
At both stages, we first estimate the expression levels of the initial
isoform set S(0):

â (0) = argmax
a

ℓ(a|R) = argmax
a

∑n
i=1

log
∑
j[S(0)

Ps
ijP

f
ijaj

⎛
⎝

⎞
⎠,

subject to αj≥0 if j∈ S(0), aj = 0 if j � S(0), and
∑

j[S(0) aj = 1, based
on the EM algorithm.

Forward step

The identified isoform set at step t is denoted as S(t) = {j:â (t)
j . 0}.

The log-likelihood at step t is

ℓ(t) = ℓ(â (t)|R) =
∑n
i=1

log
∑
j[S(t)

Ps
ijP

f
ijâ

(t)
j

⎛
⎝

⎞
⎠ .

At step (t+1), we consider adding one isoform k [ C\S(t) into
S(t) as a forward step. Given S(t) and k, we estimate the correspond-
ing isoform proportions as

â (t,k) = argmax
a

∑n
i=1

log
∑

j[S(t)<{k}

Ps
ijP

f
ijaj

⎛
⎝

⎞
⎠ ,

subject to aj ≥ 0 if j [ S(t) < {k}, and αj=0 otherwise. Then we
choose the isoform

k∗ = argmax
k

∑n
i=1

log
∑

j[S(t)<{k}

Ps
ijP

f
ijâ

(t,k)
j

⎛
⎝

⎞
⎠ ,

which maximizes the likelihood among all the newly added iso-
forms. Then the log-likelihood with the addition of this isoform
k∗ becomes

ℓ∗ =
∑n
i=1

log
∑

j[S(t)<{k∗}

Ps
ijP

f
ijâ

(t,k∗)
j

⎛
⎝

⎞
⎠ .

To decidewhether to follow the forward step and add isoform
k∗ into the identified isoform set, we use the LRT to test the null
hypothesis (H0: S

(t) is the true isoform set from which the RNA-
seq reads were generated) against the alternative hypothesis
(Ha: S(t) < {k∗} is the true isoform set). UnderH0, we asymptotically
have −2(ℓ(t)−ℓ∗)∼ χ2(1). If the null hypothesis is rejected at a pre-
specified significance level (i.e., P-value threshold), then
S(t+1) = S(t) < {k∗}, â (t+1) = â (t,k∗), and the log-likelihood is updated
as

ℓ(t+1) =
∑n
i=1

log
∑

j[S(t+1)

Ps
ijP

f
ijâ

(t+1)
j

⎛
⎝

⎞
⎠ .

Otherwise, S(t+1) = S(t), â (t+1) = â (t), and ℓ(t+1) =ℓ(t).

Backward step

Every timewe add an isoform to the identified isoform set in a for-
ward step (say the updated isoform set is S(t+1)), we subsequently
consider possibly removing one isoform k∈ S(t+1) from S(t+1) in a
backward step. Given S(t+1) and k, we estimate the corresponding
isoform proportions as

â (t+1,−k) = argmax
a

∑n
i=1

log
∑

j[S(t+1)\{k}
Ps
ijP

f
ijaj

⎛
⎝

⎞
⎠ ,

subject to aj ≥ 0 if j [ S(t+1)\{k}, and αj=0 otherwise. Then we
choose the isoform

k− = argmax
k

∑n
i=1

log
∑

j[S(t+1)\{k}
Ps
ijP

f
ijâ

(t+1,−k)
j

⎛
⎝

⎞
⎠ ,

which maximizes the likelihood among all the isoforms in S(t+1).
Then the log-likelihood with the removal of this isoform k− be-
comes

ℓ− =
∑n
i=1

log
∑

j[S(t+1)\{k−}
Ps
ijP

f
ijâ

(t+1,−k−)
j

⎛
⎝

⎞
⎠ .

To decide whether to follow the forward step and remove
isoform k− from the identified isoform set, we use the LRT to
test the null hypothesis (H0: S(t+1)\{k−} is the true isoform set
from which the RNA-seq reads were generated) against the alter-
native hypothesis (Ha: S

(t+1) is the true isoform set). Under H0, we
asymptotically have −2(l−− l(t+1))∼ χ2(1). If the null hypothesis is
not rejected at a prespecified significance level (i.e., P-value
threshold), then S(t+2) = S(t+1)\{k−}, â (t+2) = â (t+1,−k−), and the
log-likelihood is updated as

ℓ(t+2) =
∑n
i=1

log
∑

j[S(t+2)

Ps
ijP

f
ijâ

(t+2)
j

⎛
⎝

⎞
⎠ .

Otherwise, S(t+2) = S(t+1), â (t+2) = â (t+1), and ℓ(t+2) =ℓ(t+1).
In both stage 1 and stage 2, we iteratively consider the forward

step and backward step and stop the algorithm at the first time
when a forward step no longer adds an isoform to the identified
set (Fig. 1). To determine whether to reject a null hypothesis in
the LRT, we set a threshold on the P-value. The default threshold
is 0.01/number of genes considered for isoform discovery. Unlike
the thresholds set on the FPKM values or isoform proportions in
other methods, this threshold on P-values allow users to tune
the AIDE method based on their desired level of statistical signifi-
cance. A larger threshold generally leads to more discovered iso-
forms and a better recall rate, whereas a smaller threshold leads
to fewer discovered isoforms that are more precise.

Software implementation notes

Note 1

If read ri is not compatible with any isoforms in the currently se-
lected set, then its conditional probability is theoretically zero.
When implementing the AIDE method, we set this probability
to e−10,000≈0. This setting requires almost all the reads to be ex-
plained by at least one selected isoform. However, if some reads
present lower quality and users want to allow some reads to be
left unexplained, this probability can be set to a relatively larger
value.
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Note 2

Suppose a gene hasm nonoverlapping exons, then the total num-
ber of possible isoform structures is 2m−1. For genes with complex
structures, we only consider splicing junctions supported by at
least one RNA-seq read to reduce the computational complexity.
By default, we apply this filtering step to genes with more than
15 exons, but users can change the value based on their research
questions.

Software version

Weperformed our analysis using the Cufflinks software v2.2.1, the
StringTie software v1.3.3b, the SLIDE software, and the AIDE pack-
age v1.0.0. As an example of computational efficiency, we ana-
lyzed the human ESC Illumina RNA-seq sample (containing
around 167.5 million paired-end reads) using the Ubuntu
14.04.5 system and two CPUs of Intel Xeon CPU E5-2687W v4
at 3.00 GHz. Using 12 cores, the running time of Cufflinks,
StringTie, AIDE, and SLIDE was 1445 min, 196 min, 413 min,
and 223 min, respectively. The memory usage of Cufflinks,
StringTie, AIDE, and SLIDE was 17 GB, 8 GB, 25 GB, and 10 GB,
respectively.

For studies including a comparison with SLIDE, the RNA-seq
reads were aligned to the reference genome using STAR v2.5
(Dobin et al. 2013) with the option –alignEndsType EndToEnd
and the other parameters set to default. This allows the aligned
reads to have equal lengths. For studies not using SLIDE, the reads
were aligned using STAR v2.5 with default parameters. The refer-
ence genomes used were GRCh38 (Schneider et al. 2017) for hu-
man and GRCm38 for mouse (Church et al. 2011).

Simulation for comparing isoform reconstruction methods

We considered 18,960 protein-coding genes from the human
GENCODE annotation (version 24). For each gene, we set the pro-
portions of isoforms not in the GENCODE database to zero. As for
the annotated isoforms in GENCODE, their isoform proportions
were simulated from a symmetric Dirichlet distribution with the
parameters (1/⌈J/2⌉, . . . , 1/⌈J/2⌉)′, where J denotes the number
of annotated isoforms for a given gene. When simulating the
RNA-seq reads, we treated these simulated proportions as the pre-
determined ground truth. Next, for each target read coverage
among the eight choices (10×, 20 ×, …,80 ×), we used the R pack-
age polyester to simulate one RNA-seq sample given the prede-
termined isoform proportions. All the simulated RNA-seq samples
contained paired-end reads with 100-bp length.

Long read data processing

In the comparison with the long-read sequencing technologies,
the isoforms were identified by Weirather et al. (2017) based on
the long reads generated using the ONT or PacBio technologies.
In summary, the long reads were first processed using SMRT
software (https://www.pacb.com/products-and-services/analytical-
software/smrt-analysis/; for PacBio) or poretools software (https
://poretools.readthedocs.io/en/latest/; for ONT). Then the reads
were aligned and full-length transcripts were identified using the
AlignQC software (https://www.healthcare.uiowa.edu/labs/au/
AlignQC/). Please refer to Weirather et al. (2017) for details.

Software availability

The AIDE method has been implemented in the R package AIDE,
which is available at https://github.com/Vivianstats/AIDE and
also in the Supplemental Code.
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