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Abstract

It has been widely shown that genomic factors influence both risk for schizophrenia and variation 

in functional brain connectivity. Moreover, schizophrenia is characterized by disrupted brain 

connectivity. In this work, we proposed a genome-connectome bipartite graph model to perform 

imaging genomic analysis. Functional network connectivity (FNC) was estimated after 

decomposing resting state functional magnetic resonance imaging data from both healthy controls 

(HC) and patients with schizophrenia (SZ) into spatial brain components using group independent 

component analysis (G-ICA). Then 83 FNC connections showing a group difference (HC vs SZ) 

were selected as fMRI nodes, and eighty-one schizophrenia-related single nucleotide 

polymorphisms (SNPs) were selected as genetic nodes respectively in the bipartite graph. Edges 

connecting pairs of genetic and fMRI nodes were defined based on the SNP-FNC associations 

across subjects evaluated by a general linear model. Results show that some SNP nodes in the 

bipartite graph have a high degree implying they are influential in modulating brain connectivity 

and may be more strongly associated with the risk of schizophrenia than other SNPs. A bi-

clustering analysis detected a cluster with 15 SNPs interacting with 38 FNC connections, most of 

which were within or between somato-motor and visual brain areas. This suggests that the activity 

of these brain regions may be related to common SNPs and provides insights into the pathology of 

schizophrenia. The findings suggest that the SNP-FNC bipartite graph approach is a novel model 

to investigate genetic influences on functional brain connectivity in mental illness.

Keywords

fMRI; FNC; SNPs; bipartite graph

1. Introduction:

Resting state functional magnetic resonance imaging (R-fMRI) is a popular non-invasive 

technique to investigate the characteristics of the human brain (Fox and Raichle, 2007; van 

den Heuvel and Hulshoff Pol, 2010). Functional connectivity (FC) analysis is a widely used 

and informative approach to analyze R-fMRI data (Biswal et al., 1995; Biswal, 2012; 

Friston, 2011; Friston et al., 1996). Functional network connectivity (FNC) analysis is a data 

driven method to compute the inter-network FC in R-fMRI data (Jafri et al., 2008). In this 

approach, group spatial independent component analysis (G-ICA) is firstly performed on R-

fMRI data, and then brain components of interest are determined. Finally, an FNC matrix is 

constructed by computing the correlation values of each pair of ICA time courses of the 

brain components of interest (He et al., 2016). Using this method, disrupted brain 

connectivity between spatial brain components has been consistently shown in individuals 

with brain disorders such as schizophrenia (Arbabshirani and Calhoun, 2011; Arbabshirani 

et al., 2013; Arbabshirani et al., 2017; Du et al., 2018; Du et al., 2015). Graph measures of 

FNC in both healthy controls (HCs) and patients with schizophrenia (SZs) are also widely 

studied (Betzel and Bassett, 2016; van den Heuvel and Fornito, 2014; Yu et al., 2018; Yu et 

al., 2015; Yu et al., 2011a; Yu et al., 2013a; Yu et al., 2013b; Yu et al., 2011b). In addition, it 

has been demonstrated that, in some cases, data-driven ICA derived brain nodes outperform 

brain atlas based-ROI nodes for building a brain connectivity brain graph (Yu et al., 2017). 
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However, the genetic basis of brain FNC is largely unknown, though resting brain functional 

patterns are strongly heritable (Adhikari et al., 2018; Glahn et al., 2010), which motivated us 

to explore the associations of FNC with genetic variants.

It is well known that genetic factors influence both risk for schizophrenia and variation in 

functional brain connectivity. For example, heritability (the proportion of total variance in a 

trait due to genetic variation) has been estimated from family and twin studies at 81% for 

schizophrenia (Sullivan et al., 2003). Genome-wide association studies (GWAS) are 

increasingly used to characterize genetic risk profiles for schizophrenia (Potkin et al., 2009). 

In addition, numerous twin and family studies have provided strong evidence for heritability 

of diverse aspects of functional brain connectivity (Anokhin, 2014; Fu et al., 2015; Ge et al., 

2017; Yang et al., 2016). Heritability of effective and functional connectivity in default mode 

network has been reported to be 0.54 (Xu et al., 2017), and 0.424 (Glahn et al., 2010) 

respectively. Heritability of graph measures in brain connectivity has also been investigated. 

A study with monozygotic and dizygotic twins has estimated the heritability of five graph 

metrics (clustering coefficient, modularity, rich-club coefficient, global efficiency, and small-

worldness), and results show that the graph metrics are moderately influenced by genetic 

factors suggesting that these metrics may be potential endophenotypes for psychiatric 

diseases and suitable for genetic association studies (Sinclair et al., 2015). In a twin fMRI 

study involving young children, global efficiency of functional connectivity brain graphs 

have been found to be under genetic control (42%) implying that a set of genes is shaping 

the underlying architecture of functional brain communication during development (van den 

Heuvel et al., 2013). This also implies that neuroimaging parameters such as functional 

brain connectivity may be useful as endophenotypes.

The combination of neuroimaging and genetic analyses, or imaging genetics (Petrella et al., 

2008), has been increasingly used in the past decade. By incorporating neuroimaging 

endophenotypes with the genetic data from healthy and/or disease subjects, the effects of 

genetic variations (such as SNPs) on brain structure and function can be assessed. Imaging 

genetics is a powerful way to link genetic factors to structural and functional variation in 

brain systems related to cognition and emotion (Meyer-Lindenberg and Weinberger, 2006). 

One strategy is to utilize endophenotypes derived from neuroimaging data to test the genetic 

association of a relatively well validated candidate gene of specific mental illness (Arslan, 

2018). The other strategy is blind genome wide assessment, i.e. genome-wide association 

studies with imaging phenotypes serving as the trait. The common assumption of using 

intermediate imaging phenotype is that genetic variants present more direct effects at the 

level of the brain than complex behavior, and carriers of risk alleles may present brain 

abnormalities even if they show no clinical diagnostic characteristics. Imaging genetics 

therefore becomes a guide to the discovery of neural circuitry that translates genetic effects 

into behavior, and endophenotypes implicate endo-mechanisms (Meyer-Lindenberg and 

Weinberger, 2006).

In this work, we propose a genome-connectome multimodal bipartite graph model to 

perform imaging genetic analysis. A bipartite graph, also called a bigraph, is a set of graph 

nodes decomposed into two disjoint sets such that no two graph nodes within the same set 

are adjacent (Brualdi et al., 1980). Here we build a bipartite graph in which one group nodes 
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are schizophrenia-related SNPs and the other group nodes represent schizophrenia-related 

functional brain connectivity. Associations between nodes from these two sets are evaluated 

using a general linear model. This pilot study provides a novel framework by combining 

group ICA, bipartite graph analysis, and biclustering analysis to investigate possible genetic 

basis of the variations in functional brain connectivity and the risk of schizophrenia.

2. Materials and Methods:

2.1. Participants

A total of 97 HCs (30 female; 5 left handed; age: range 19 – 60; mean ± SD 37 ± 11) and 70 

SZs (11 female; 1 left handed; age: range 18 – 60; mean ± SD 38 ± 11) from 7 research sites 

participated in this study. All participants provided written, informed consent in accordance 

with internal review boards of their corresponding institutions.

2.2. fMRI data acquisition

Brain imaging data were collected from 3T Siemens Tim Trio MRI Systems (6 of the 7 

sites) and a 3T General Electric Discovery MR750 scanner (the other site). Resting state 

fMRI scans were acquired using a standard gradient-echo planar imaging paradigm: FOV of 

220 × 220 mm (64 × 64 matrix), TR = 2 s, TE = 30 ms, flip angle = 70°, 32 sequential 

ascending axial slices of 4 mm thickness and 1 mm skip. A total of 162 brain volumes were 

acquired for each subject with eyes closed over 5 minutes and 24 seconds.

2.3. fMRI data preprocessing

FMRI data preprocessing was performed using a combination of toolboxes (AFNI: https://

afni.nimh.nih.gov/; SPM: http://www.fil.ion.ucl.ac.uk/spm/; GIFT: http://mialab.mrn.org/

software/gift) and custom Matlab code (https://www.mathworks.com/products/matlab.html). 

We performed rigid body motion correction using the INRIAlign (Freire et al., 2002) 

toolbox in SPM to correct for subject head motion followed by slice-timing correction to 

account for timing differences in slice acquisition. Then the fMRI data were de-spiked using 

AFNI’s 3dDespike algorithm to mitigate the impact of outliers. The fMRI data were 

subsequently warped to a Montreal Neurological Institute (MNI) template and resampled to 

3 × 3 × 3 mm isotropic voxels. Instead of Gaussian smoothing, we smoothed the data to 6 

mm full width at half maximum (FWHM) using AFNI’s BlurToFWHM algorithm which 

performs smoothing by a conservative finite difference approximation to the diffusion 

equation. This approach had been shown to reduce scanner specific variability in smoothness 

providing “smoothness equivalence” to data across sites (Friedman et al., 2006a; Friedman 

et al., 2006b). Each voxel time course was variance normalized prior to performing group 

ICA as this has shown to better decompose subcortical sources in addition to cortical 

networks (Allen et al., 2011; Damaraju et al., 2014).

2.4. Group ICA of fMRI

After preprocessing, fMRI of both controls and patients were analyzed using a spatial group 

ICA as implemented in GIFT software (Calhoun et al., 2001; Erhardt et al., 2011). Spatial 

ICA decomposes the subject data into linear mixtures of spatially independent components 

(ICs) that exhibit unique time course profiles. A subject-specific data reduction step was first 
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used to reduce 162-time-point data into 100 directions of maximal variability using principal 

component analysis (PCA). Then subject-reduced data were concatenated along the time 

dimension and a second PCA step reduced this grouped data matrix further into 100 

components along directions of maximal group variability. One hundred ICs were obtained 

from the group PCA reduced matrix using the Infomax algorithm (Bell and Sejnowski, 

1995). To ensure stability of estimation, we repeated the ICA algorithm 20 times in ICASSO 

(http://research.ics.aalto.fi/ica/icasso/), and the most central run was selected and further 

analyzed (Ma et al., 2011). Subject specific spatial maps (SMs) and time courses (TCs) were 

obtained using the spatiotemporal regression back reconstruction approach implemented in 

GIFT (Calhoun et al., 2001; Erhardt et al., 2011).

2.5. Post-ICA processing

Subject-specific SMs and TCs underwent post-processing as described in our earlier work 

(Allen et al., 2014). Briefly, we obtained one sample t-test maps for each SM across all 

subjects and thresholded these maps to obtain regions of peak activation clusters for that 

component. We also computed mean power spectra of the corresponding TCs. We identified 

a set of components as intrinsic connectivity networks (ICNs) if their peak activation 

clusters fell on gray matter and showed less overlap with known vascular, susceptibility, 

ventricular, and edge regions corresponding to head motion. We also ensured that the mean 

power spectra of the selected ICN time courses showed higher low frequency spectral power. 

This selection procedure resulted in 50 ICNs out of the 100 ICs obtained. The subject 

specific TCs corresponding to the 50 ICNs selected were detrended, despiked, and then band 

pass filtered (0.01 − 0.10 Hz) before the subsequent FNC analysis (Allen et al., 2014; 

Damaraju et al., 2014; Yu et al., 2015).

2.6. FNC analysis and the definition of connectome nodes

We constructed the FNC which is defined as pairwise correlations between ICN time 

courses, as a measure of connectivity among different ICNs during the scan duration for 

each individual. In this work, the FNC computed using the whole ICN time courses is 

referred to as stationary or static FNC (sFNC). The mean sFNC matrix across subjects was 

also computed in each group.

FMRI nodes in the gene-fMRI bipartite graph represent FNC connections in the sFNC 

matrix. Eighty-three fMRI nodes were selected by below criteria: 1. Correlation value of the 

group mean FNC connection of HCs is higher than 0.3268 (r > 0.3268). This criterion was 

determined based on the significant correlation between ICNs (q < 0.05, Bonferroni 

correction). 2. Group difference (HCs vs SZs) on the correlation value is significant (q < 

0.05, false discovery rate [FDR] correction).

2.7. SNP data acquisition and processing

DNA of each subject was extracted from blood or saliva samples. Illumina Human Omni1-

Quad, Illumina Human Omni5, and Illumina Infinium MEGA + Psych were used for 

genotyping. No significant difference was noted in genotyping call rates between blood and 

saliva samples. The data then went through quality control (QC), imputation and post-

imputation QC as described in (Chen et al., 2018). In brief, a standard QC (Chen et al., 
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2013) was firstly performed using PLINK (Purcell et al., 2007). Then imputation was 

conducted with SHAPEIT used for pre-phasing (Delaneau et al., 2011), IMPUTE2 for 

imputation (Marchini and Howie, 2010), and the 1000 Genomes data as the reference panel 

(Altshuler et al., 2012). Only markers with high imputation qualities (INFO score > 0.95) 

were retained. The imputed data were then aggregated and went through the post-imputation 

QC. Finally, linkage disequilibrium (LD) pruning (r2 > 0.9) was applied to yield 977,242 

SNPs for which population structure was corrected using PCA (Price et al., 2006).

2.8. Definition of genome nodes

In this study, we used schizophrenia-related SNPs as genetic nodes. Firstly, the SNP with the 

lowest p value in each of the 108 schizophrenia-associated genetic loci reported by the 

largest psychiatric genomic consortium (PGC) study (Schizophrenia Working Group of the 

Psychiatric Genomics, 2014) was identified. SNPs with 0 risk alleles occurring in less than 

17 subjects were excluded. This resulted in a set of 81 SNPs selected as gene nodes in the 

genome-connectome bipartite graph.

2.9. Building the genome-connectome bipartite graph

To build edges in the bipartite graph, we used a general linear model (a MANCOVA 

framework: http://mialab.mrn.org/software/mancovan) to evaluate the association between 

each pair of genome-connectome nodes. In this model, for each pair of SNP-FNC, 

correlation values of all subjects for the FNC connection were input as the dependent 

variable, and the SNP data coded based on number of risk allele (0, 1, or 2) of all subjects 

were input as the independent variable. To control sites, groups, and ethnicity effects, they 

were input as covariates. A significant (p < 0.05, uncorrected) association was used to 

determine whether there is an edge between those two nodes. Finally the degree of each SNP 

node in the bipartite graph was computed.

2.10. Biclustering analysis

Biclustering is a data mining technique which allows simultaneous clustering of the rows 

and columns of a matrix (Govaert and Nadif, 2008; Van Mechelen et al., 2004). As a result, 

submatrices exhibiting unique patterns can be revealed helping us to better understand the 

relationship between row and column variables (Gupta et al., 2013). To investigate if any 

subset of SNPs are densely associated with any subset of FNC connections, we performed a 

biclustering analysis on the SNP-FNC bipartite graph using MTBA (a Matlab toolbox for 

biclustering analysis) (Gupta et al., 2013).

3. Results:

3.1. Functional brain connectivity

Figure 1A displays the spatial maps of the 50 ICNs identified using group ICA on the fMRI 

data. Based on their anatomical and presumed functional properties, 50 ICN are arranged 

into groups of subcortical (SC), auditory (AUD), somato-motor (SM), visual (VIS), 

cognitive control (CC), default mode (DM), and cerebellum (CB) components. Figure 1B 

displays the structure of group mean FNC in HCs and SZs. Patterns of FNC are consistent 

with prior literature, showing modular organization within sensory-cognitive systems and 
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default mode networks, as well as anti-correlation between these domains (Allen et al., 

2014; Fox et al., 2005; Yu et al., 2015; Yu et al., 2011a). In addition, SZs show lower brain 

connectivity, in line with previous work (Liu et al., 2008; Lynall et al., 2010; Yu et al., 2015; 

Yu et al., 2011a; Yu et al., 2013b). Figure 1C shows the 83 FNC connections that are 

selected as fMRI nodes to build the gene-fMRI bipartite graph.

3.2. SNP nodes

Eighty-one schizophrenia-related SNPs were selected as genetic nodes in the genetic-fMRI 

multimodal bipartite graph. Chromosome 2 had the maximum (10) such number across all 

22 chromosomes. For the p values of schizophrenia association of the 81 SNPs and the 

distribution of them across chromosomes see Figure 2. SNP names are listed in Table 1.

3.3. Bipartite graph

Edges in the bipartite graph between SNP nodes and FNC nodes were determined based on 

the associations yielded by the general linear model. There are 401 total edges. SNP 

rs10503253 has the maximum degree of 31 across all 81 SNP nodes. Ten SNPs have a 

degree value above 10. For the degree of each SNP node see Table 1. Figure 3 shows the 

structure of this genome-connectome multimodal bipartite graph.

3.4. Biclustering

A biclustering analysis revealed one cluster with 15 SNP nodes and 38 FNC nodes (Figure 

4). Most (27) of those 38 FNC nodes are connectivity within or between somato-motor and 

visual brain components. For spatial brain maps of the 38 FNC pairs see supplemental 

Figures.

4. Discussion:

In this genome-connectome multimodal study, we proposed a SNP-FNC bipartite graph 

model. First, fMRI data of HC and SZ were decomposed into 100 spatial components. Then 

FNC was estimated using 50 components selected as ICNs. Eighty-three FNC connections 

showing group differences (HCs vs SZs) were chosen as fMRI nodes in the bipartite graph. 

Eighty-one SNPs previously associated with schizophrenia based on psychiatric genomics 

consortium (PGC) studies were chosen as genetic nodes. Edges between SNP and FNC were 

defined by computing the association between SNP node (numbers of risk alleles) and FNC 

node (correlation values) across subjects using a general linear model. N=401 edges were 

built in the bipartite graph. Ten SNP nodes are with a degree higher than 10 (see Table 1). A 

bi-clustering analysis revealed that 15 SNP nodes and 38 FNC nodes are densely associated 

as a cluster. Most (27) of the 38 FNC nodes are brain connectivity within or between 

somato-motor and visual components.

To our knowledge, this is the first study which used SNPs and FNC connections as genetic 

and fMRI nodes respectively to build a genome-connectome multimodal bipartite graph. 

This model may be widely adopted in a variety of imaging genetic studies. One advantage of 

the bipartite graph model is that associations between a group of SNPs and a group of 

connections of brain connectivity may be evaluated in one analysis, rather than most 
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previous studies that focus only on one or a few candidate SNPs and brain connectivity 

(Arslan, 2018; Petrella et al., 2008). In addition, both SNP and FNC nodes are 

schizophrenia-related, and the associations are evaluated across both HCs and SZs, thus the 

edges in the bipartite graph indicate a consistent relationship in controls and patients.

After computing the degree of each SNP node in the bipartite graph, a total of 10 SNPs 

(rs10503253, rs4674917, rs7201930, rs79235996, rs604362, rs3784399, rs12623667, 

rs7267348, rs4908939, rs11693094) had a degree higher than 10 which suggests that they 

are modulating more functional brain connectivity and may be more strongly associated with 

the risk of schizophrenia than other SNPs (see Table 1). Future studies may use other 

methods to validate the possibility of these 10 SNPs carrying more risk for disrupted 

functional brain connectivity in schizophrenia. A bi-clustering analysis revealed a cluster 

consisting of 15 SNPs (rs604362, rs9876421, rs11693094, rs7240986, rs67733815, 

rs1009080, rs3784399, rs4908939, rs79235996, rs10503253, rs4674917, rs7201930, 

rs12623667, rs12132780, rs7267348) and 38 FNC connections, most (27) of which are 

within or between somato-motor and visual brain components. These results provide 

evidence about the genetic basis of disrupted functional brain connectivity in schizophrenia.

However, the findings of this study should be interpreted in light of several methodological 

limitations. Functional brain connectivity was computed using FNC method in which the 

brain was firstly decomposed into spatial components. Though a previous simulation study 

exhibited the benefits of estimating the functional brain network using data driven ICA 

rather than a fixed atlas based ROI method (Yu et al., 2017), future work may use different 

approaches (Chong et al., 2017; Cohen et al., 2008; Craddock et al., 2012; Eickhoff et al., 

2015; Power et al., 2011; Shen et al., 2010; Wang et al., 2015; Wig et al., 2014; Yeo et al., 

2011) to perform brain parcellation for defining brain nodes to compute the functional 

connectivity. To reduce the number of multiple comparisons when building the edges using 

general linear model in the gene-fMRI bipartite graph, we just selected a small number of 

SNPs (81) and FNC connections (83) as nodes. Nevertheless, the edges were still defined via 

an uncorrected p values (p < 0.05). Future studies may include more SNPs and FNC 

connections, and many more samples (typically thousands of subjects in GWAS studies) to 

enhance the power of the statistical analysis. To evaluate the statistical probability of the 

bipartite graph relative to a random one, we built 50000 random bipartite graphs using the 

same 81 SNP nodes and 83 FNC nodes by randomly re-order the subjects. Results show that 

the mean degree of each node is 4, and the degree of 11 for any SNP node occurs at about 

the 10th percentile of the 50000 permutated bipartite graphs.

Conclusions:

This work proposed a new framework for performing image genetics analysis by combining 

group ICA, bipartite graph analysis, and bi-clustering analysis. We built a genetic-fMRI 

bipartite graph in which genetic nodes were 81 schizophrenia-related SNPs and fMRI nodes 

were 83 schizophrenia-related connections of functional brain connectivity. Edges between 

SNP-FNC nodes which indicate the association between them were assessed using a general 

linear model across both HCs and SZs. Results showed that 10 SNPs had a degree higher 

than 10 implying that they modulate functional brain connectivity and may be the most 
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strongly associated with the risk for schizophrenia. A bi-clustering analysis revealed a 

cluster with 15 SNPs and 38 connections of the FNC most of which were within or between 

somato-motor and visual brain components suggesting that brain connectivity in these 

sensory systems is modulated by a group of SNPs which provides insight for the pathology 

of schizophrenia. The results of this pilot study suggest that the SNP-FNC bipartite graph 

may potentially be a powerful model to access the genetic basis of functional brain 

connectivity as well as that of mental illnesses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A genome-connectome bipartite graph model for imaging genomic analysis.

• We used this model to explore associations of schizophrenia-related genetic 

variants with group-discriminative functional connectivity features.

• Genetic nodes with high degree in the bipartite graph were identified to 

indicate their role in modulating brain connectivity.

• A bi-clustering analysis detected a cluster where 15 genetic variants interact 

with 38 functional connectivity features.
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Figure 1. 
Spatial maps (A) of 50 brain components selected to compute functional network 

connectivity (FNC). Brain components are divided into groups and arranged based on their 

anatomical and functional properties. Structure of group mean FNC (B. HC: healthy 

controls; SZ: patients with schizophrenia) shows that brain connectivity is lower in SZ. 

Eighty three connections (C) in the FNC are selected to be fMRI nodes for constructing the 

gene-fMRI bipartite graph. (SC: subcortical; AUD: auditory; SM: somatomotor; VIS: visual; 

CC: cognitive control; DM: default mode; CB: cerebellum)
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Figure 2. 
Scatter plot showing schizophrenia-related associations of the selected SNPs as genetic 

nodes and their distribution across chromosomes. The x axis is chromosomal position and 

the y axis is the significance (-log10(p)) of association as reported by the PGC study 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014).
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Figure 3. 
Structure of the gene-fMRI bipartite graph. Some SNP nodes are showing high degree (> 10, 

see Table 1).

Yu et al. Page 18

J Neurosci Methods. Author manuscript; available in PMC 2020 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Cluster with 15 SNP nodes and 38 FNC nodes detected by biclustering analysis.
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Table 1.

Eighty-one SNP nodes and their degree in the gene-fMRI bipartite graph (chromosomal positions based on 

hg19 genome assembly).

SNP rsID chromosome position degree SNP rsID chromosome position degree SNP rsID chromosome position degree

rs10503253 8 4180844 31 rs778341 2 233728801 5 rs9906500 17 2129210 2

rs4674917 2 225387522 24 rs2068012 14 30190316 5 rs12903146 15 61854663 2

rs7201930 16 9958655 21 rs12129573 1 73768366 4 rs4648845 1 2387101 2

rs79235996 14 72419030 15 rs9611520 22 41613303 4 rs67401222 1 8490320 2

rs604362 4 103147494 14 rs4481150 3 52837793 4 rs1209749 9 84802861 2

rs3784399 15 40598294 14 rs5995756 22 40000313 4 rs12446487 16 58671815 2

rs12623667 2 149405178 14 rs1501362 5 45378207 4 rs7722581 5 153676440 2

rs7267348 20 48131036 13 rs10206411 2 193933194 4 rs10860955 12 103581985 2

rs4908939 3 17793850 12 rs7197756 16 68275516 4 rs6867549 5 140153730 2

rs11693094 2 185601420 11 rs12939020 17 17950163 4 rs2007044 12 2344960 1

rs1009080 1 30431560 9 rs2789605 6 73155289 4 rs7108770 11 46648432 1

rs34026011 14 104050883 8 rs215411 4 23423603 4 rs2973155 5 152608619 1

rs11210892 1 44100084 8 rs4129585 8 143312933 3 rs34538000 19 19481379 1

rs12132780 1 207999605 8 rs11688767 2 57988194 3 rs217326 6 84349538 1

rs7896519 10 104866863 7 rs16880919 8 111620054 3 rs7438 4 170642246 1

rs7240986 18 53195249 7 rs2053079 19 30987423 3 rs134900 22 42683343 1

rs67733815 3 2549591 7 rs11956240 5 137840293 3 rs2693698 14 99719219 1

rs4788190 16 29948401 7 rs6846161 4 176866459 3 rs17149781 7 24695495 1

rs6670165 1 177280121 7 rs7838490 8 89585048 3 rs211792 7 110072128 1

rs2851447 12 123665113 6 rs1355585 15 70586617 3 rs4546329 5 60589739 0

rs9876421 3 36848316 6 rs2300990 5 109033393 3 rs12705304 7 104929633 0

rs1076884 16 13747803 6 rs10745572 12 92252357 3 rs68002929 2 146419989 0

rs4728408 7 137072096 6 rs8039305 15 91422543 2 rs11229116 11 57534542 0

rs7018304 8 60717504 6 rs13240464 7 110898915 2 rs1470276 11 24397676 0

rs7927176 11 123395864 6 rs787983 2 198345797 2 rs832190 3 63842629 0

rs13227554 7 2048220 5 rs2514218 11 113392994 2 rs302321 12 29928388 0

rs11693528 2 200736507 5 rs66691851 3 136154828 2 rs2909456 2 162836954 0
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